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A B S T R A C T   

This paper describes a decision support system designed for a Belgian Human Resource (HR) and Well-Being 
Service Provider. Their goal is to improve health and well-being in the workplace, and to this end, the task is 
to identify groups of employees at risk of sickness absence who can then be targeted with interventions aiming to 
reduce or prevent absences. To facilitate deployment, we apply a range of existing machine-learning methods to 
obtain predictions at monthly intervals using real HR and payroll data that contains no health-related predictors. 
We model employee absence as a binary classification problem with loss asymmetry and conceptualise a 
misclassification cost matrix of employee sickness absence. Model performance is evaluated using cost-based 
metrics, which have intuitive interpretation. We also demonstrate how this problem can be approached when 
costs are unknown. The proposed flexible evaluation procedure is not restricted to a specific model or domain 
and can be applied to address other HR analytics questions when deployed. Our approach of considering a wider 
range of methods and cost-based performance evaluation is novel in the domain of absenteeism prediction.   

1. Introduction 

Employee sickness absence or absenteeism, broadly defined as failure 
to attend scheduled work as a result of ill health, is a pervasive problem 
disruptive to operations and costly to the economy. The annual cost of 
worker absenteeism in the countries of the Organisation for Economic 
Co-operation and Development (OECD) has been estimated to be be-
tween 1.2 and 2% of their total GDP [1], which in current terms trans-
lates to between 0.6 and 1 trillion US dollars [2]. It is therefore only 
natural for employers to seek solutions to this problem. 

The motivation for this work was the request of a company in 
Belgium specialising in Human Resource (HR) Management and Well- 
Being for the development of a solution to address employee absen-
teeism using data science. A direction for finding a possible solution 
stemmed from the fact that as much as 20% of the working-age popu-
lation in the OECD countries suffers from common mental illnesses such 
as anxiety and depression disorders [3], and timely application of pre-
ventive measures is crucial in avoiding transition to long-term illness 
and disability [1]. Interventions in the form of health management or 
wellness programs have a long history and several meta-analytic studies 
have reported strong evidence of their effectiveness at reducing 
employee absenteeism [4–6]. Examples of such interventions can 
include individual fitness program, stress-management seminars, 

private or group therapy sessions, and work flexibility arrangements, to 
name a few. 

Naturally, such wellness programs are costly, both in terms of 
monetary costs for their implementation (which might not always be 
available due to budget limitation), and hours spent for participation. 
Therefore, the simplest solution of applying them to all employees at a 
workplace might not be the most cost-effective. Instead a design a de-
cision support system is needed that is able to identify the employees at 
risk of sickness absence, typically only a small fraction of the workforce, 
who should then be targeted with a preventive action. 

1.1. Related work 

HR analytics is most commonly applied to talent acquisition [7] or 
retention [8], rather than maintaining and improving the well-being of 
employees. As observed in [9], the absenteeism prediction literature to 
date has mostly been concerned with the explanation and association of 
various risk factors with employee absenteeism, rather than accuracy of 
predictions. The majority of contributions to the domain of absenteeism 
prediction come from the field of occupational health and medicine 
[10–17]. In this field, statistical techniques such as logistic regression 
and Cox proportional-hazards models are preferred and training data is 
collected either in the clinical setting or as part of a nation-wide 
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household survey. 
Another strand of literature focusses solely on predicting sickness 

absence using algorithmic models. Among those, several studies 
[18–20] approach employee sickness absence as a regression problem 
using neural networks that predict hours of absence on the data 
collected in [20]. [21] uses the same dataset in a multi-class classifica-
tion setting using decision tree ensembles to predict absences of specific 
duration. 

The main drawback in all of those studies is lack of transparency with 
regards to their experimental set-up and model selection procedure. 
Most contributions apply a single algorithm to a single dataset, the 
rationale behind the model choice and evaluation being rarely dis-
cussed. In contrast, in this paper we consider a wide range of state-of- 
the-art algorithms and relevant evaluation measures. 

Previous studies involved data collection in several waves, usually 
annually. However, predictions with a horizon of one year are of little 
relevance to businesses that are trying to reduce direct and indirect costs 
incurred through loss of productivity and disruption to operations. What 
is more desirable is the ability of the management to obtain reliable 
predictions at operationally practical intervals (such as a month or a 
quarter) preferably with data that is readily available from HR and 
payroll records. An attempt has been made in [22] to predict sickness 
absence using only such data from one industry sector, albeit at the 
impractical one-year prediction horizon. The data we have been pro-
vided with for this work does not contain health-related or attitudinal 
information either, but includes several sectors and allows us to consider 
a more practical prediction horizon of one month. 

Finally, as already mentioned, absenteeism is an event of relative 
rarity with only a small fraction of the population falling out of the 
workforce in any given period. Most absenteeism prediction papers do 
demonstrate an imbalanced class distribution of the outcome variable. 
Not accounting for this class imbalance in predictive models has im-
mediate negative implications for model performance [23,24]. To the 
best of our knowledge, [25] is the only paper that recognises the 
importance of class imbalance correction and models sickness absence 
as a problem with loss asymmetry where cost of misclassifying an ab-
sentee is set to the number of non-absentees in the dataset, and vice- 
versa. This heuristic is commonly applied to treat class imbalance 
alone, but could be suboptimal when real costs can actually be specified. 
Specifying them is what we attempt to do to simultaneously address 
class imbalance and cost asymmetry using cost-sensitive learning. 

1.2. Our contribution 

In this work we investigate the use of predictive analytics as a de-
cision support system for increasing employee well-being in the work-
place by identifying groups of employees at risk of sickness absence that 
should be targeted with a wellness intervention. 

Firstly, we employ cost-sensitive learning to treat the unequal 
misclassification costs pertaining absenteeism, something we could not 
find in the existing literature. Our main contribution is the con-
ceptualisation of a relevant misclassification cost matrix, which can be 
generalised to a variety of institutional and legislative contexts, and 
consequently to other datasets as well. A core element of our cost matrix 
is information on the effectiveness an intervention has on individuals, 
which is currently lacking and therefore identified as an important di-
rection for future research and requires collaboration between academia 
and industry. We also develop business-friendly cost-based evaluation 
metrics that have an intuitive interpretation. 

Secondly, since our data did not contain information on one of the 
parameters of our cost matrix, we also consider a cost-insensitive 
approach. We evaluate performance using balanced accuracy, which 
assumes that misclassification errors have equal severity, despite the 
class imbalance. 

Finally, we try to illustrate best practices in the domain of absen-
teeism prediction for the practitioner. For this, we use an anonymised 

dataset that a Belgian HR and Well-Being company provided us, which 
contains employee payroll information only, without any health-related 
data. We specify different cost-matrices by considering different realistic 
scenarios for interventions and their (fictional) effectiveness, and 
consider a practical prediction horizon of one month. We follow a 
rigorous experimental design to prevent over-fitting and develop a 
flexible algorithm-agnostic evaluation framework. In the end, a selec-
tion of tree-based classifiers, both cost-sensitive and cost-insensitive, is 
evaluated on the same cost-matrices, and the advantages and disad-
vantages of both approaches are discussed. 

2. Preliminaries 

In what follows we will briefly outline the challenges of classification 
on imbalanced data. Readers familiar with the material are invited to 
continue to Section 3. 

A classifier is a function f : x→ŷ that maps a vector of real-valued 
predictors x ∈ ℝn to a predefined target class ŷ ∈ ℝ based on a training 
set of data with known true class labels y ∈ ℝ. In a binary classification 
setting, it is common to consider class labels y, ŷ ∈ {0,1} , with the rare 
class referred to as positive and labelled as 1. 

Most binary classifiers produce predictions in two stages: First a 
confidence score ∈ [0,1] is produced for each observation. Then, an 
instance i is classified as positive (ŷi = 1) if its score is greater than a 
threshold T, and as negative otherwise. Most classifiers implicitly as-
sume T = 0.5, which often results in poor classifier performance under 
class imbalance [23,26]. 

The typical loss function adopted to measure a classifier’s prediction 
accuracy is the 0–1 loss function, which counts the instances of incorrect 
classification. More detailed error analysis can be conducted using a 
confusion matrix, an example of which is shown in Table 1. Each entry in 
the confusion matrix represents the number of observations in the test 
set that were classified either correctly or incorrectly. The error count is 
thus split between two error types: false positives and false negatives. 

2.1. Cost-sensitive decision-making 

In most domains different misclassification errors entail different 
costs, known as cost asymmetry or sometimes cost skew or imbalance, 
and therefore the question of which of the error types is more costly is 
determined by the area of application. When the problem under 
consideration suggests cost asymmetry a cost-sensitive classification 
approach becomes appropriate [23]. Cost-sensitive learning translates 
the error-minimisation problem to cost-minimisation, where each pre-
diction type (as defined in the confusion matrix) is assigned a cost by 

means of a misclassification cost matrix 
(

CTP CFN
CFP CTN

)

. This matrix can 

be either class-dependent, where all observations of a class entail 
identical costs, or they can be record-dependent in which case every 

observation i has its own cost matrix 

(
Ci

TP Ci
FN

Ci
FP Ci

TN

)

, derived from a 

given dataset. 
An important result derived by Elkan [27] is that in the case where 

misclassification costs are known, any classifier can be made cost- 
sensitive by adopting a decision threshold that incorporates these 
costs, a method referred to as Direct Minimum Expected Cost Classification 
(DMECC) [28,29]. Here, the decision threshold is defined as follows: 

Table 1 
Confusion matrix. Each entry represents the number of observations in the 
respective category on a given test set.   

Predicted 1 Predicted 0 

True 1 True Positive (TP) False Negative (FN) 
True 0 False Positive (FP) True Negative (TN)  
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Tcs =
CFP − CTN

CFP − CTN+CFN − CTP
, where cs stands for cost-sensitive and the threshold 

can be either class- or record-dependent. This expression can be 

simplified to Tcs =
C′

FP
C′

FP+C′

FN 
if we transform the cost matrix into 

(
C′

TP = 0 C′

FN = CFN − CTP

C′

FP = CFP − CTN C′

TN = 0

)

. 

Another way to make any classifier cost-sensitive is to use an 
approach called thresholding [30], which performs a search across all 
scores produced by a given classifier. The score giving the lowest cost- 
loss is chosen as the decision threshold. In a situation where costs are 
unknown, thresholding can be optimised using a suitable loss-metric 
instead to improve classification performance on imbalanced datasets 
[31]. 

2.2. Classifier performance evaluation under cost asymmetry 

The goal of cost-sensitive learning is to construct a classifier that is 
aware of the differences in importance between the classes. The 
advantage of using a cost-matrix is the exact specification of the loss 
function for any given data input. This, of course, calls for a suitable 
performance metric. In the cost-sensitive literature classifier perfor-
mance is typically measured in terms of the total expected misclassifi-
cation cost [27,32], which is simply the total cost-weighted 
classification error. Let SFP be the set of false positives produced by a 
given classifier on a given test set, and let SFN be the set of false nega-
tives. The total misclassification cost of a given classifier is 
TC =

∑
i∈SFPCFP

i +
∑

i∈SFNCFN
i . However, how must one evaluate a classi-

fier when the costs are unknown at the time of estimation? Here we 
again refer to the importance of the knowledge of the application 
domain, which can determine whether or not performance on one of the 
two classes should be favoured. In the domain where both types of 
misclassification costs are non-negligible, it is preferable to use a metric 
that incorporates performance with regard to both classes, rather than 
one that only favours the positive class. Many metrics exist that assess 
classifier performance [33,34], with most derived from the confusion 
matrix (see Table 1). 

An empirical study of the stability of several such performance 
metrics under various degrees of class skew concludes that the two 
metrics that remain unbiased in the presence of class skew are the true 
positive rate TPR = TP

P and the true negative rate TNR = TN
N . Their 

arithmetic average TPR+TNR
2 shares these desirable properties [35]. This 

metric places equal emphasis on each misclassification error type, 
which, in the absence of information regarding the importance of each 
of the two classes, is a reasonable choice. It is known under several 
names in the literature, such as balanced accuracy (BACC) [36,37], 
bookmaker informedness [35] or weighted accuracy [33] and happens 
to correspond to a point on the receiver operating characteristic curve 
(ROC) at a given decision threshold [33,35,37]. In this paper, we also 
consider the cost-effectiveness of the best models selected using BACC in 
case the costs were known. 

3. A cost matrix for employee absenteeism and well-being 
interventions 

In this section we present our conceptualisation of a cost matrix of 
the direct costs of employee sickness absence in relation to a well-being 
intervention. We consider this as one of the main contributions of this 
paper. 

In any period M, an employee is contractually obligated to supply tM 
hours of work in return for remuneration W, yielding the base hourly rate 
W
tM 

of the employee for this period. If in this period the employee is absent 
due to sickness for a total duration of ts ∈ [0, tM] hours, the number of 
worked hours is reduced to tM − ts , which are remunerated as usual 
according to the base rate. However, depending on the legislation of the 
country of employment, the employer may also be required to 

remunerate the ts hours of sickness according to a proportion r ∈ [0,1] of 
the employee’s base rate1. The hourly rate is in this case equal to 
(tM − ts) W

tM
+tsr W

tM
tM − ts =

(

1+ tsr
tM − ts

)
W
tM , which is higher than the base rate, 

reflecting the loss of productivity associated with the employee’s 
absence. 

Suppose now that the employer decides to put the employee through 
a well-being intervention in an attempt to prevent potential sickness 
absence. The price of such an intervention per participant is C, which 
burdens the employer. In addition, if the intervention requires atten-
dance (such as a coaching seminar) of duration ti, the number of hours 
worked by the employee is reduced by as much. Therefore, the hourly 
rate of an employee who was not going to be absent but is put through an 
intervention is W+C

tM − ti , which is also higher than the base rate. If, however, 
the employee was going to be absent, in addition we expect that the 
intervention would have a positive effect and result in the reduction of 
the absence period by ̃ts ∈ [0, ts] hours2. The resulting hourly rate is then 
equal to  

(tM − ts + t̃s)
W
tM
+(ts − t̃s)r W

tM
+C

tM − ts − ti + t̃s
=

W +C
tM − ts − ti + t̃s

−

(

ts − t̃s

)

(1 − r)

tM − ts − ti + t̃s

W
tM  

. Table 2 summarises these hourly rates. Here, just like in the confusion 
matrix in Table 1, the rows correspond to the true outcomes, and col-
umns correspond to predicted outcomes. Thus, true positives are ab-
sentees targeted with an intervention, false positives are non-absentees 
targeted with an intervention, true negatives are non-absentees not 
targeted, and finally, absentees not targeted are false negatives. 

Remark 1. Clearly, a necessary condition for the intervention to be 
cost-effective for the employer is that ti < t̃s . 

Remark 2. A limiting factor in specifying a concrete cost matrix is the 
parameter ̃ts , which is a priori unknown and no indication of example 
values can be found in the literature. 

3.1. The case of Belgium 

As we mentioned in the introduction, this work initiated at the 
request of a Belgian HR and Well-Being Specialist. We therefore adapt 
Table 2 to the specifics of Belgian legislation. 

In Belgium, throughout all sickness absences lasting up to 30 cal-
endar days, white-collar workers receive full wage equivalent sickness 
benefits from the employer. As soon as the duration of absence is longer 
than one calendar month, the benefits are paid by the social security 
instead. Blue-collar workers receive reduced compensation starting from 
week two of absence: the employer continues to cover some fraction r of 
the full wage W, while the remainder is covered by social security [38]. 

Our sample contains only white-collar employees. By consequence, 
the parameter r = 1 and ts is defined as the total hours of sickness ab-
sences covered by the employer in any given month M, with the 
necessary condition that ts < tM . 

Using the hourly rates from Table 2, and after applying the trans-
formation as mentioned in Section 2.1, such that the cost of correctly 
classifying observations is zero, we obtain the following costs: 

1 In some countries, r may actually be non-constant but instead a function of 
ts. Our arguments can be extended to such case as well, but for the sake of 
clarity here we focus on constant r.  

2 For simplicity we assume that ̃ts cannot be observed beyond the prediction 
horizon of one period ahead, and we leave the dynamic case to future work. 
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⎛

⎜
⎜
⎜
⎜
⎝

C
′

TP = 0 C
′

FN =
W

tM − ts
−

W + C
tM − ts + t̃s − ti

C′

FP =
W + C
tM − ti

−
W
tM

C′

TN = 0

⎞

⎟
⎟
⎟
⎟
⎠

(1) 

To simplify notation we omit the superscripts i that indicate that 
costs are record-dependent. 

Remark 3. Note that while C′
FP is always positive, C′

FN may become 
negative when ti > ts ≥ t̃s . This violates the so called reasonableness 
condition defined by Elkan [27], which states that the cost of correct 
predictions should always be less than the cost of misclassifying, 
otherwise it is more profitable to misclassify than to classify correctly. A 
negative misclassification cost is a benefit for the employer, meaning 
that it is more cost-effective not to apply an intervention to that indi-
vidual (e.g. due to low expected sickness absence hours). 

4. Experimental framework 

In this section we present the experimental procedure that was used 
to conduct our analysis. Our experiments consist of two parts: in the first 
instance we predict employee sickness absence using cost-sensitive 
learning and the cost matrix defined in Eq. (1), we evaluate model 
performance using custom cost-based metrics. Then, in view of lack of 
data regarding the t̃s parameter, we additionally predict using cost- 
insensitive models, which we evaluate using the balanced accuracy 
score. In both cases, we also report standard metrics such as the AUC, 
FPR, FNR. 

4.1. Data 

Our data contains HR and payroll records from roughly 280 small, 
medium and large Belgian firms from a variety of industry sectors. The 
data spans the period between January 2018 and March 2019. We adopt 
the prospective study design so commonly found in absenteeism pre-
diction literature, where attributes from period Mt are used to predict 
the outcome in period Mt+1. 

4.1.1. Target variable 
In any given month, each employee’s hours of certified sickness 

absences3 are summed and converted to a binary target variable ac-
cording to a threshold Thrs : observations having a total number of hours 
recorded below Thrs are coded as 0, and the rest as 1. The choice of Thrs 

should of course depend on the task at hand. In our case, after consulting 
the data provider, we decided to set Thrs = 0 . The resulting distribution 
of our target variable is highly imbalanced, ranging between 7.5% and 
16.5% of positives in any given period. Table 3 shows the class imbal-
ance in our data per prediction period. 

4.1.2. Predictors 
One of the novelties of our work is to exploit the rich absence pattern 

data at our disposal. The main difficulty we are faced with is the absence 
of any health-related predictors in our dataset or the reason for absence. 
Our dataset consists of 66 features. 

Demographic features: Employee’s demographic features, such as age, 
gender, marital status, education etc. 

Work environment features: Features that describe various aspects of 
the work circumstances of employees (wage, contract type, etc.). We 
also include fatigue inducing factors such as work shift irregularities (e. 
g. weekend work, overtime, night shifts) as well as patterns of holiday 
applications (e.g. holiday frequency and duration, number of rejected 
holiday applications, time since last holiday of a certain duration). 

Historic absence patterns: measures of recency (time since last 
absence) and frequency of illnesses, average hours of sickness absences 
in the 12 months prior to the prediction period and since the start of 
employment contract. 

4.1.3. Data preparation 
In continuous numeric variables all values exceeding plausible 

minima and maxima are removed (e.g. age values below 18 and above 
100) and missing values are imputed with sample median. All levels in 
categorical predictors are transformed to binary variables, including the 
missing values. In recency variables missing values are replaced with 
366 indicating that the last incident was registered more than one cal-
endar year ago. 

4.2. Methods 

4.2.1. Classification algorithms 
We adopt a wide range of decision tree ensembles in our framework 

and combine them with state-of-the-art solutions to the problem of class 
imbalance. Since a requirement for our decision support system was that 
it could be readily implemented in the cloud, we apply methods with 
existing open-source implementations. 

The base algorithm adopted in our experiments is a decision tree 
classifier (specifically CART [39]). Decision trees have been shown to 
have a number of highly desirable properties: they can handle mixed 
data types and missing values; they are insensitive to monotone trans-
formations of the feature space and do not require normalisation of 
predictors; they can handle irrelevant predictors and are robust to 

Table 2 
The cost matrix of employee sickness absence in terms of hourly rates of 
employee remuneration, when considering well-being intervention. W repre-
sents the employee’s salary, tM the expected work hours, ts is the absence 

duration in hours, r is the fraction of the base rate 
W
tM 

to which hours of absence 

are remunerated as guaranteed by law in the form of statutory sick pay, ̃ts is the 
reduction in hours of sickness absence because of the intervention, C is the cost 
of the intervention, and ti is the duration of attendance in hours associated with 
the intervention.   

Intervention No Intervention 

Absentee 
CTP =

W + C
tM − ts − ti + t̃s

−

(ts − t̃s)(1 − r)
tM − ts − ti + t̃s

W
tM  

CFN =
(

1+
tsr

tM − ts

)
W
tM  

Non- 
Absentee 

CFP =
W + C
tM − ti  

CTN =
W
tM   

Table 3 
The class imbalance in our data per prediction period (year/month).   

Period Attributes Period Target # employee’s 
(from # firms) 

# positives (%) 

1 2018/01 2018/02 50,729 (284) 8193 (16.15) 
2 2018/02 2018/03 49,459 (281) 8161 (16.50) 
3 2018/03 2018/04 48,202 (280) 4268 (8.85) 
4 2018/04 2018/05 51,998 (280) 4682 (9.00) 
5 2018/05 2018/06 51,483 (280) 5123 (9.95) 
6 2018/06 2018/07 50,843 (281) 3845 (7.56) 
7 2018/07 2018/08 51,372 (282) 3863 (7.52) 
8 2018/08 2018/09 51,738 (282) 5201 (10.05) 
9 2018/09 2018/10 51,130 (282) 6340 (12.40) 
10 2018/10 2018/11 50,744 (281) 5905 (11.64) 
11 2018/11 2018/12 49,659 (268) 4986 (10.04) 
12 2018/12 2019/01 47,128 (268) 6256 (13.27) 
13 2019/01 2019/02 52,637 (268) 8432 (16.02) 
14 2019/02 2019/03 51,751 (268) 6493 (12.55)  

3 The medical reason for absence is unknown and therefore all types of ab-
sences are treated equally. This limitation is addressed in Section 6.1 
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outliers [40]. These properties combined with model interpretability 
make decision trees highly suitable for business applications. While a 
single decision tree may not show the highest performance because of 
high variance, combining a collection of trees into an ensemble de-
creases variance and improves performance, though at the expense of 
reduced interpretability [41]. 

All of the algorithms applied in our experiments are cost-insensitive 
by default, but can be made cost-sensitive in the presence of explicitly 
defined costs. In this work we limit ourselves to pre-training and post- 
training cost-sensitive learning methods as categorised in [42]. We 
describe these methods below and Table 4 provides a summary. 

4.2.1.1. Class imbalance correction. Each of the cost-insensitive decision 
tree ensembles can be combined with a sampling method in order to 
compensate for unequal class distribution of the training data. This can 
be achieved by modifying the training set using cost-sensitive sampling 
and passing it to a classifier of choice (also referred to as CS-pre-
SampleEnsemble). Alternatively resampling can be performed at the level 
of the ensemble (also referred to as CS-SampleEnsemble), where both 
classes are sampled in appropriate proportions prior to training each of 
the base classifiers in the ensemble. 

We performed cost-sensitive data sampling using average training 
misclassification costs, defined as follows: CFP = 1

N
∑

i∈SN
Ci

FP, CFN =

1
P
∑

i∈SP
Ci

FN . Here SN is the set of negatives (of size N) and SP is the set of 

positives (of size P). The cost ratio CFN
CFP 

is used to scale the number of 

positives for over-sampling and CFP
CFN 

is used to scale the number of neg-
atives for under-sampling [42]. 

When costs are unknown, it is reasonable to assume that the optimal 
class distribution is uniform and the classes are sampled in equal 

proportions [27]. 

4.2.1.2. Calibration. As was observed in [29,54], decision tree methods 
do not produce reliable posterior class membership probability esti-
mates. This has negative implications for application of post-training 
methods such as described above, where class membership probabili-
ties are used for decision-making [52]. In this work, we optionally apply 
two probability calibration methods to each of the classifiers in our 
framework: isotonic regression [52] and Platt scaling [53]. 

4.2.1.3. Post-training methods. When costs are record-dependent and 
are known at the time of estimation DMECC can be applied to derive the 
total misclassification cost on a given test set. If costs are unknown, 
thresholding can be applied to optimise over an error-based loss, which 
assumes that costs are class-dependent. 

All of our experiments consider the default threshold T = 0.5 along 
with the post-training methods that are simple to implement in practice. 

Cost-sensitive models are evaluated at the decision threshold ob-
tained using the DMECC approach (explained in Section 2.1). For the 
application of DMECC, both types of misclassification costs from Eq. (1) 
need to be specified to calculate record-dependent decision thresholds 
Tcs

i . Since ts is unknown at the time of prediction, we estimate this in 
two ways. First, we set the ts equal to each record’s individual average 
sickness duration in 12 months prior to prediction (denoting the 
resulting model Tcs

i − mean). Second, we predict ts using a Random 
Forest regressor trained on positive records from the same training set 
that the cost-sensitive classifier is trained on (denoted Tcs

i − postreg). 
Cost-insensitive models classify at the optimal decision threshold 
T = Tbest obtained using thresholding (see Section 2). 

All of the above experiments were run on the same 13 pairs of 
training and test data periods. In our experiments we use the combi-
nation of twelve algorithms, four pre-training options (including no pre- 
training), three calibration options (including no calibration), which 
gives us 120 base models to which post-training was optionally applied. 
Cost-insensitive models were evaluated at two decision thresholds, 
resulting in 240 models per period. From 120 base models 111 could be 
made cost-sensitive, each of which were evaluated at three decision 
thresholds (explained in 4.2.1), resulting in 333 models per period and 
per combination of C and ti, and t̃s (described in 4.4.2). CS- 
SampleEnsemble and CS-SampleBoost methods, naturally, are only 
combined with calibration. We note that using the name Balanced 
Random Forest in both cost-sensitive and cost-insensitive models we 
abuse the terminology slightly, as in fact cost-sensitive models perform 
sampling according to the cost matrix. 

4.3. Software used 

All experiments were conducted using Python (version 3.6.6), the 
majority of implementations come from scikit-learn (version 0.20.2) li-
brary [55], implementations of all pre-training methods come from 
imbalanced-learn library [56], post-training methods are our own 
implementations; the results were processed using Python and csvkit 
[57]. 

4.4. Experimental set up 

4.4.1. Data partition 
Three datasets, that contain the same set of employees, served as 

input to the experimental framework. We randomly split the set of 
employees into three disjoint sets. The first contains 60% of all obser-
vations and was used for training. The second contains 20% of the total, 
used for optimal threshold search respectively, where features were 
from period Mt and labels were from Mt+1. The remaining 20% of em-
ployees were used for testing with features from Mt+1 and labels from 
Mt+2. This process was repeated 50 times using different random seeds 

Table 4 
Overview of the methods used in our analysis.  

Our notation Method Parameter settings 

Algorithms 
dt Decision Tree (CART [39])   

Ensembles 
bag Bagging [43] #trees = 100 
rdf Random Decision Forest [44] #trees = 100 
rf Random Forest [45] #trees = 100 
xrf Extremely Randomized Trees 

[46] 
#trees = 100 

adab1 AdaBoost [47] #nodes = 1, 
#trees = 50 

adab2  #nodes = 2, 
#trees = 50  

CS-WeightedEnsemble   
wrf Weighted Random Forest [48] #trees = 100  

CS-SampleEnsemble   
bal_rf Balanced Random Forest [48] #trees = 100 
bal_rdf Balanced Random Decision 

Forest 
#trees = 100 

easy_ensmb Easy Ensemble [49] #estimators = 50  

CS-SampleBoost 
Methods   

rusboost RUSBoost [50] #trees = 50  

Sampling Methods 
ros Random Oversampling  
rus Random Undersampling  
smote SMOTE [51] k = 5  

Calibration 
isotonic Isotonic Regression [52]  
sigmoid Platt [53]   

Post-training methods 
T = Tbest Thresholding [30]  
T = Tcs

i DMECC [29]   
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to generate data splits and the results were averaged across iterations. 

4.4.2. Training costs 
The definition of the cost parameters are as introduced in Section 3. 
The values for W, tM and ts are readily available from our data. In the 

absence of information regarding the effectiveness of chosen in-
terventions in reduction of sickness absence, we assume some arbitrary 
values for the parameter t̃s . We consider three alternatives for this 
parameter: a) ̃ts = ts , b) ̃ts = 0.5⋅ts , and c) ̃tis = pi⋅ti

s where pi ∈ [0,1] is 
an individual percentage of reduction in sickness hours, randomly 
drawn from a uniform distribution. This parameter was drawn once and 
was reused across all intervention scenarios. We expect that alternative 
c) reflects the reality best, but further experiments are needed (see 
Section 6.1). 

We consider three examples of interventions with corresponding 
price C and duration ti : 

Case 1. “Fit Check-Up”. Aimed at increasing physical activity levels of 
employees. A professional coach examines one’s fitness level using 
specialised equipment and designs a personalised 12-week fitness pro-
gramme. The parameter settings are as follows: C = 100(EUR), ti = 4 
(hours). 

Case 2. A sleep and fitness tracking device. Aimed at promoting 
healthy lifestyle choices. The built-in software informs on sleep and 
activity patterns and encourages participants towards positive change in 
behaviour. The parameter settings are as follows: C = 30(EUR), ti = 0 
(hours). 

Case 3. Psychotherapy. The employer offers financial support for in-
dividual psychotherapy sessions to help reduce stress and prevent burn- 
out. The parameter settings are as follows: C = 60(EUR), ti = 1(hour). 

4.4.3. Evaluation 
Cost-sensitive model performance is typically assessed using the 

model’s total misclassification cost (TC), which sums record-dependent 
costs on a given test set. In the absence of a decision support system, the 
employer has two naive solutions, namely not applying any interven-
tion, and applying the intervention indiscriminately to all employees, 
with respective costs TCnone and TCall. Any intervention target group 
proposed by a predictive model (henceforth referred to as the campaign) 
is worthwhile only if it improves on either of these naive costs, some-
thing we are trying to capture via the Cost Improvement Score: CIS = 1 −

TC
min(TCnone ,TCall)

, with the following interpretation. CIS < 0 indicates that 
the model’s intervention campaign is more costly than either of the 
naive approaches. A perfect model that correctly classifies everyone 
achieves CIS = 1. To evaluate whether or not the size of the model’s 
intervention campaign prescribed by the model is cost-effective, as well 
as to compare models with similar cost performance, we use Return On 
Investment (ROI). In the context of absence prediction, ROI is defined as 
the intervention profit (benefits minus costs) over intervention costs: 

ROI =
∑

j∈SPP

t̃j
s
Wj

tjM

C + ti
Wj

tjM

− 1  

, where SPP is the set of positives predicted by the model and the index j 
refers to the fact that both the costs and the profits are record- 
dependent. ROI < 0 indicates that the model’s intervention campaign 
prescribed by the model is not cost-effective. Both CIS and ROI should be 
considered in the final model selection. For example, when one model 
has CIS = 0.7 and ROI is some positive value A, and another model has 
CIS = 0.68 with ROI B >A, then the second model might be preferred as 
it requires less budget to be available for similar cost performance. 

5. Results and discussion 

The primary interest of our work lies in applying cost-sensitive 
learning to the problem of absenteeism prediction on real data, using 
our newly designed cost matrix. We evaluate model performance per 
period, based on the two cost metrics: CIS and ROI (defined in Section 
4.4.3). Related to this are two further questions: first, whether the usage 
of record-dependent costs offers any advantage over class-dependent 
costs, and second, whether predicting the value of ts using a regressor 
offers any advantage over using mean historic sickness per individual. 
We also discuss which of the interventions considered offers the lowest 
misclassification cost. With the given current difficulty in obtaining all 
the necessary parameters of the cost matrix, we also try to see whether 
selecting models using a cost-insensitive metric would be a good alter-
native to cost-sensitive learning. 

Analysing the performance of specific algorithms lies outside the 
scope of this paper. 

5.1. Cost-sensitive absenteeism prediction 

The first part of our experiments provides an illustration of how our 
proposed misclassification cost matrix of employee absenteeism 
(defined in Eq. (1)) performs on real world data. 

5.1.1. Model performance and cost-effectiveness 
Our results show that in every prediction period and intervention 

combination, we find cost-sensitive models with CIS > 0, and with 
ROI > 0. 

Fig. 1 demonstrates cost performance of the top-ranking models 
(when ranked by CIS). We note that the largest cost improvement (the 
difference between the benchmark and the total cost) of the model was 
achieved under Case 1 and Case 3, while Case 2 - the least expensive 
intervention - shows only marginal improvement. We also found that 
DMECC models that use regression predictions to classify, achieved 
higher cost improvement much more frequently than models that use 
average hours. 

5.1.1.1. Record-versus class-based costs. As was mentioned in Remark 3, 
in our cost matrix, the reasonableness condition only holds for those 
individuals j, whose ̃ts

j
> ti , i.e. when the expected reduction in hours 

of absence due to the intervention exceeds the duration of the inter-
vention. The DMECC approach can directly account for this condition, 
which allow us to avoid targeting individuals for whom an intervention 
does not pay off. Models that use a constant threshold for classification 
decision, do not make such a distinction, and are less frequently ranked 
among the top models. 

Another drawback of using class-based costs became apparent when 
we applied sampling methods in combination with averaged record- 
dependent costs (explained in Section 4.2.1). We observed that under 
certain operating conditions, for a number of employees in our sample 
holds that CFP

i > CFN
i , and when the proportion of such individuals in 

the training sample was large enough, this resulted in: CFP > CFN . 
Under such cost imbalance, an oversampler will oversample the more 
costly class i.e. the negatives and an undersampler will undersample the 
less costly class i.e. the positives, which would increase class imbalance, 
instead of correcting it. Such models failed in the pre-training phase and 
were not considered in the rankings. 

5.1.2. Cost-effectiveness of interventions 
Another question a practitioner might be interested in is: which 

intervention offers the highest savings in any given period? To deter-
mine this, we shortlist the intervention that yield the highest CIS on any 
given prediction period and ̃ts combination. These results are presented 
in Table 5. We note that the highest CIS is not necessarily associated with 
a positive ROI, and therefore we restrict ourselves to models that have 
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Fig. 1. Cost performance of the cost-sensitive models across all prediction periods and interventions. The bars represent the total misclassification cost of the top- 
ranking model (ranked by CIS). The solid line shows the cost of the benchmark under the same operating conditions. Here “t_s_tilde” is ̃ts/ts and “random” refers to 
record-dependent pi ∈ [0, 1]. 

Table 5 
Selecting the most cost-effective intervention. For the final decision of which of the interventions offers the highest cost improvement in any given prediction period, 
we have selected models with the highest CIS and positive ROI. The column titled “% pos with CFN < 0“ shows the percentage of individuals in the test set whose 
misclassification costs violate the reasonableness conditions (see Remark 3). Rand refers to record-dependent pi ∈ [0,1].  

Target period Intervention Method %pos %pos with C′
FN < 0 Error-rates Cost-based metrics  

t̃s/ts  Case algo_sampling_calib-T   FNR FPR CIS TC Benchmark ROI 

2018/03 1 1 xrf_rus_sigmoid-Tcs
i -postreg 15.62 7.94 0.34 0.46 0.21 12,756.80 16,164.63 0.21 

2018/03 0.5 1 easy_ensmb_none_none-T = 0.5 15.62 26.59 0.59 0.19 0.18 9545.19 11,695.74 0.41 
2018/03 rand 1 dt_ros-isotonic-Tcs

i -postreg 15.62 40.61 0.81 0.13 0.98 384.20 16,164.63 1.01 
2018/04 1 1 adab1_smote_sigmoid-Tcs

i -postreg 8.09 12.43 0.54 0.27 0.32 8733.03 12,789.16 0.07 
2018/04 0.5 1 xrf_ros-isotonic-Tcs

i -postreg 8.09 33.34 0.84 0.09 0.26 6777.96 9218.97 0.48 
2018/04 rand 1 wxrf_ros_sigmoid-Tcs

i -mean 8.09 43.55 0.98 0.01 0.55 3735.29 8297.38 13.81 
2018/05 1 1 adab2_rus-isotonic-Tcs

i -postreg 8.01 12.51 0.82 0.07 0.26 9765.23 13,119.91 2.39 
2018/05 0.5 1 rusboost_none_none-Tcs

i -mean 8.01 36.65 0.96 0.02 0.24 7596.42 9939.64 3.77 
2018/05 rand 1 bal_rf_none_sigmoid-Tcs

i -postreg 8.01 48.01 0.91 0.02 0.30 6588.44 9386.79 3.49 
2018/06 1 1 adab2_ros_sigmoid-Tcs

i -postreg 9.05 13.88 0.80 0.06 0.23 13,708.92 17,892.66 3.52 
2018/06 0.5 1 adab2_none_sigmoid-Tcs

i -postreg 9.05 37.53 0.91 0.01 0.17 11,569.85 13,893.63 6.73 
2018/06 rand 1 adab1_none-isotonic-Tcs

i -postreg 9.05 47.53 0.92 0.02 0.67 4281.80 13,173.46 6.24 
2018/07 1 1 adab2_rus-isotonic-Tcs

i -mean 6.87 13.34 0.89 0.03 0.20 7750.51 9747.05 5.96 
2018/07 0.5 1 rf_ros_none-Tcs

i -mean 6.87 35.85 0.95 0.01 0.18 5556.31 9747.05 13.39 
2018/07 rand 3 xrf_smote-isotonic-Tcs

i -postreg 6.87 20.19 0.59 0.27 0.78 1481.94 6828.25 0.11 
2018/08 1 1 xrf_none_none-Tcs

i -postreg 6.72 14.15 0.79 0.07 0.15 9918.14 11,708.51 1.90 
2018/08 0.5 1 wrf_none_sigmoid-Tcs

i -postreg 6.72 37.27 0.94 0.01 0.16 7306.00 8700.07 11.39 
2018/08 rand 1 bal_rf_none-isotonic-Tcs

i -postreg 6.72 47.90 0.87 0.02 0.23 6174.96 8053.30 3.75 
2018/09 1 1 easy_ensmb_none_none-T = 0.5 9.28 11.76 0.50 0.24 0.36 11,172.95 17,555.27 0.45 
2018/09 0.5 1 bal_rf_none-isotonic-T = 0.5 9.28 33.78 0.83 0.05 0.48 9062.25 17,555.27 2.36 
2018/09 rand 1 bal_rf_none-isotonic-Tcs

i -postreg 9.28 45.52 0.86 0.04 0.57 7594.42 17,555.27 2.54 
2018/10 1 1 adab1_rus_sigmoid-Tcs

i -postreg 11.57 11.27 0.45 0.33 0.26 12,463.05 16,772.53 0.21 
2018/10 0.5 1 wrf_none_none-Tcs

i -postreg 11.57 32.20 0.92 0.04 0.15 9743.45 11,519.75 3.46 
2018/10 rand 1 rdf_smote_sigmoid-Tcs

i -postreg 11.57 44.39 0.91 0.04 0.71 2729.36 9273.33 4.47 
2018/11 1 1 xrf_smote_none-Tcs

i -postreg 10.86 10.97 0.65 0.20 0.16 12,671.80 15,114.80 0.78 
2018/11 0.5 1 easy_ensmb_none_none-Tcs

i -mean 10.86 32.09 0.95 0.03 0.17 8649.31 10,381.59 2.52 
2018/11 rand 1 adab2_none-isotonic-Tcs

i -postreg 10.86 43.67 0.88 0.05 0.07 8496.65 9133.13 2.35 
2018/12 1 1 easy_ensmb_none_sigmoid-Tcs

i -postreg 8.95 11.37 0.72 0.12 0.17 9969.19 12,006.99 1.47 
2018/12 0.5 1 wrf_none-isotonic-Tcs

i -postreg 8.95 31.98 0.90 0.02 0.11 7109.03 7964.33 5.29 
2018/12 rand 1 rf_none_sigmoid-Tcs

i -postreg 8.95 45.67 0.92 0.00 0.15 5932.89 6994.47 6.19 
2019/01 1 1 wrf_rus_none-Tcs

i -postreg 12.37 9.36 0.65 0.24 0.14 12,184.36 14,212.21 0.64 
2019/01 0.5 1 rdf_none_sigmoid-Tcs

i -postreg 12.37 30.17 0.94 0.02 0.04 8707.68 9084.91 9.15 
2019/01 rand 1 adab1_none-isotonic-Tcs

i -postreg 12.37 42.44 0.95 0.02 0.72 2282.78 8058.50 7.78 
2019/02 1 1 adab1_rus_sigmoid-Tcs

i -postreg 14.69 10.41 0.52 0.26 0.16 12,839.96 15,316.98 0.83 
2019/02 0.5 1 bal_rf_none_sigmoid-Tcs

i -postreg 14.69 31.72 0.79 0.07 0.08 10,378.46 11,346.17 2.26 
2019/02 rand 1 adab2_none_sigmoid-Tcs

i -postreg 14.69 44.57 0.84 0.06 0.19 8279.77 10,169.78 2.45 
2019/03 1 1 easy_ensmb_none-isotonic-Tcs

i -postreg 11.62 12.17 0.58 0.19 0.32 10,038.56 14,837.82 0.89 
2019/03 0.5 3 adab1_ros_sigmoid-Tcs

i -postreg 11.62 6.69 0.36 0.39 0.25 5005.78 6637.93 0.23 
2019/03 rand 1 adab2_rus-isotonic-Tcs

i -postreg 11.62 47.45 0.83 0.08 0.32 5653.64 8300.72 1.20  

N. Lawrance et al.                                                                                                                                                                                                                              



Decision Support Systems 147 (2021) 113539

8

both ROI > 0 and CIS > 0. 

5.2. Absenteeism prediction when costs are unknown 

As mentioned in Remark 2, the value of the parameter ̃ts is currently 
unknown. In order to provide a viable alternative to the practitioners, 
we assume equal misclassification costs and perform model selection 
using the balanced accuracy score (BACC). Table 6 presents the results of 
the top-performing cost-insensitive models in every prediction period. 
We note that there is some variation in model performance across pe-
riods, which we attribute to changes in the class distribution across 
different months. 

When we compare our results to the literature, we find that a number 
of studies demonstrate higher performance under more severe class 
imbalance. For example [11] reports AUC 0.76 in a model of predicting 
sick leave due musculoskeletal disorders at the horizon of 3 months 
having less than 1% positives in their sample. Their predictors included 
musculoskeletal complaints, burnout, distress, among others. In [13] 
measures of depressed mood, distress and fatigue are used, whereas in 

[12] self-rated health, mental health factors and psychosocial work 
characteristics are described, and finally, [14] shows the highest per-
formance AUC 0.86 (10% positives) using an attitudinal predictor called 
the Work Ability Index. We conclude that when the misclassification 
costs are unknown, some objective health-related predictors may be 
necessary to achieve better performance. 

5.2.1. Cost performance of cost-insensitive models 
To investigate the cost performance of the top-ranking cost-insensi-

tive models, we calculated cost metrics under all nine intervention 
scenarios. Fig. 2 demonstrates the difference in cost performance ach-
ieved by the top-ranking cost-insensitive models when ranked by BACC 
versus top-ranking cost-sensitive models. Despite reasonable perfor-
mance, when evaluated using error-based metrics, cost-insensitive 
models rarely have positive CIS and are always inferior to cost- 
sensitive models. 

Model selection based on BACC does not appear to be a viable so-
lution once costs are known, based on costs derived using our artificial 
t̃s . Instead, effort should be put into determining ̃ts to facilitate the use 

Table 6 
Top-model selection when ranking by balanced accuracy. CIS for each combination of intervention and ̃ts are included for reference. Rand refers to record-dependent pi 
∈ [0,1].  

Target Method  Error-based metrics Cost-Improvement Score (CIS) 

Period algo_sampling_calib_T % pos FNR FPR BACC AUC Case1, ̃ts= Case2, ̃ts= Case3, ̃ts=

1 0.5 rand 1 0.5 rand 1 0.5 rand 

2018/03 adab1_none_isotonic_Tbest 15.57 0.42 0.33 0.62 0.67 0.22 0.23 0.15 − 3.98 − 2.56 − 2.38 − 0.67 − 0.23 − 0.18 
2018/04 easy_ensmb_none_none_Tbest 8.13 0.40 0.35 0.63 0.67 0.24 0.12 0.06 − 1.68 − 0.96 − 0.77 − 0.01 0.21 0.23 
2018/05 easy_ensmb_none_none_Tbest 8.0 0.37 0.36 0.63 0.68 0.00 − 0.19 − 0.84 − 3.16 − 2.53 − 2.33 − 0.47 − 0.28 − 0.23 
2018/06 easy_ensmb_none_none_Tbest 9.12 0.37 0.34 0.65 0.70 0.23 0.19 0.16 − 3.67 − 2.88 − 2.62 − 0.61 − 0.36 − 0.35 
2018/07 adab1_none_isotonic_Tbest 6.87 0.42 0.31 0.63 0.69 0.04 − 0.16 − 0.30 − 1.87 − 1.29 − 1.12 − 0.05 0.13 0.16 
2018/08 adab1_ros_none_Tbest 6.8 0.42 0.27 0.65 0.71 0.11 − 0.01 − 0.17 − 2.73 − 2.07 − 1.85 − 0.28 − 0.07 − 0.04 
2018/09 easy_ensmb_none_none_Tbest 9.26 0.45 0.29 0.63 0.68 0.34 0.45 0.49 − 3.14 − 2.23 − 2.08 − 0.40 − 0.12 − 0.05 
2018/10 adab1_ros_isotonic-0.5 11.61 0.42 0.32 0.63 0.68 0.28 0.14 0.10 − 3.30 − 2.23 − 2.06 − 0.47 − 0.14 − 0.09 
2018/11 adab1_ros_none-0.5 10.86 0.41 0.32 0.63 0.68 0.15 − 0.02 − 0.14 − 3.87 − 2.89 − 2.73 − 0.64 − 0.34 − 0.30 
2018/12 adab1_none_isotonic_Tbest 9.04 0.35 0.36 0.64 0.69 0.10 − 0.15 − 0.19 − 2.20 − 1.45 − 1.17 − 0.18 0.06 0.10 
2019/01 easy_ensmb_none_sigmoid_Tbest 12.98 0.45 0.31 0.62 0.66 0.12 − 0.09 − 0.23 − 3.81 − 2.56 − 2.35 − 0.61 − 0.22 − 0.13 
2019/02 easy_ensmb_none_isotonic_Tbest 14.75 0.39 0.35 0.63 0.67 0.15 0.11 0.04 − 4.54 − 3.21 − 2.74 − 0.85 − 0.44 − 0.34 
2019/03 easy_ensmb_none_none_Tbest 11.71 0.39 0.32 0.65 0.70 0.28 0.12 − 0.08 − 2.18 − 1.21 − 1.12 − 0.13 0.17 0.22  

Fig. 2. Comparison of top models’ cost performance across prediction periods and interventions. The solid line represents the best performing cost-sensitive models 
(ranked by CIS). The dotted line shows the best performing cost-insensitive model (ranked by BACC) under the same operating conditions. The horizontal line shows 
CIS = 0. Here “t_s_tilde” is ̃ts/ts and “random” refers to record-dependent pi ∈ [0,1]. 
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of misclassification costs. Of course, once this is done, this statement can 
be revisited. 

6. Conclusion 

In this paper we describe a potential solution to a real-world prob-
lem, requested by HR and Well-being specialists. We were provided with 
an anonymised dataset containing employee payroll information only, 
without any health-related data. This carried the risk of the resulting 
models be based on correlations unrelated to health. We therefore 
emphasise that our conceptual model was developed under the 
assumption that any intervention considered aims to increase employee 
well-being. Thus targeting someone erroneously should never lead to a 
negative outcome for that individual. 

Our focus was on developing a flexible, algorithm-agnostic frame-
work to predict short-term employee sickness absence using HR and 
payroll data only. 

Our definition of the target variable, which depends on the threshold 
Thrs of number of hours of sickness absence can be adapted as needed. In 
fact, it is possible to use the same decision support system with a range of 
targets to focus on absences of specific duration (e.g. short term versus 
long term). 

Thanks to relying on existing open-source implementations, our 
model selection and evaluation framework can be readily deployed to 
the cloud. We provided two alternative evaluation metrics under class 
and cost imbalance: with and without knowledge of costs. We demon-
strate that improved cost-effectiveness of intervention campaigns can be 
achieved by focussing classifiers on the specific operating conditions of 
the underlying training data. 

Our main take-away for practitioners is as follows:  

• In the absence of misclassification costs, balanced accuracy allows 
one to ensure good model performance on both classes, instead of 
only the positives, but cost-based metrics almost always achieve 
higher savings.  

• Models selected based on BACC are not a cost-effective alternative to 
those selected on cost-based metrics. Thus efforts should be directed 
to quantifying the effect interventions have on individuals so that 
misclassification costs can be specified.  

• When the expected response to an intervention is known, DMECC 
allows to assess the cost-effectiveness of an intervention for each 
observation resulting in a more profitable intervention campaign.  

• Investigating the cost distribution on the available training data can 
allow one to conduct a preliminary cost and benefit analysis of a 
given intervention. 

6.1. Limitations and future research 

The experiments presented in this paper are not without limitations, 
some of which are subject to data availability. 

Firstly, the seasonal changes in class imbalance are accounted for by 
including, for example, sickness absences from other years as features, as 
well as creating derivative features from that data (e.g. each individual’s 
average absences in February in all previous years). 

Secondly, we assume that the effect of any given intervention does 
not extend beyond the prediction period. This can be rectified by either 
considering a longer prediction horizon (e.g. a quarter), or by extending 
the conceptual model to a dynamic setting. This, combined with the use 
of panel data to help the model cope with seasonal changes in class 
imbalance, might be an interesting avenue for future research. 

Thirdly, our experiments hinge on the apriori knowledge of the in-
dividual response to the intervention, which in practice can rarely be 
obtained. Instead of assigning arbitrary values, this parameter could be 
estimated, with the help of causal inference models. Causal models es-
timate individual-level treatment effects from observational data or 

randomized control trials, an example of algorithmic causal modelling 
can be found in [58]. We note that in this case, the cost matrix will also 
depend on the performance of the chosen causal model that predicts ̃ts . 
Related to that, ways to improve the estimates of expected hours of 
absence per individual might also be worth revisiting. 

Lastly, we assume that employees with varying hours of sickness will 
have identical response to any given intervention. Without the knowl-
edge of the true cause of absence, it is not possible to know if the absence 
is at all preventable. It is not realistic to target, for example, an employee 
with 10 h of absence caused by a common cold and an employee with 
100 h of absence caused by burnout equally. To rectify this, it is highly 
desirable to collect objective health-related information, such as e.g. the 
causes of absence. An interesting direction could be to consider multi- 
class setting, evaluating an array of interventions or to apply cost- 
sensitive regression such as in [59,60] but with real costs. 
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