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Abstract. The minimum height of vertex and edge partition trees are
well-studied graph parameters known as, for instance, vertex and edge
ranking number. While they are NP-hard to determine in general, linear-
time algorithms exist for trees. Motivated by a correspondence with Das-
gupta’s objective for hierarchical clustering we consider the total rather
than maximum depth of vertices as an alternative objective for mini-
mization. For vertex partition trees this leads to a new parameter with a
natural interpretation as a measure of robustness against vertex removal.
As tools for the study of this family of parameters we show that they have
similar recursive expressions and prove a binary tree rotation lemma. The
new parameter is related to trivially perfect graph completion and there-
fore intractable like the other three are known to be. We give polynomial-
time algorithms for both total-depth variants on caterpillars and on trees
with a bounded number of leaf neighbors. For general trees, we obtain a
2-approximation algorithm.

1 Introduction

Clustering is a central problem in data mining and statistics. Although many
objective functions have been proposed for (flat) partitions into clusters, hier-
archical clustering has long been considered from the perspective of iterated
merge (in agglomerative clustering) or split (in divisive clustering) operations.
In 2016, Dasgupta [9] proposed an elegant objective function, hereafter referred
to as DC-value, for nested partitions as a whole, and thus facilitated the study of
hierarchical clustering from an optimization perspective. This work has sparked
research on other objectives, algorithms, and computational complexity, and
drawn significant interest from the data science community [8].

It is customary to represent the input data as an edge-weighted graph, where
the weights represent closeness (in similarity clustering) or distance (in dissim-
ilarity clustering). The bulk of work that has been done on DC-value has con-
centrated on assessing the performance of well-known clustering algorithms in
terms of this objective. In Dasgupta’s original paper, a simple divisive clustering
algorithm for similarity clustering, recursively splitting the input graph along an
α-approximated sparsest cut, was shown to give a O(α · log n)-approximation to
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Table 1. A family of graph parameters based on nested graph decompositions.

vertex depth maximum total
partition tree (max) (sum)

edge (EPT) edge ranking number [17] Dasgupta’s clustering
objective [9]

tree-depth [23,22]
vertex (VPT) vertex ranking number [26,12] [new in this paper ]

minimum elimination
tree height [3]

DC-value. In later papers, this result was further improved upon: Charikar and
Chatziafratis [4] show that this algorithm in fact achieves anO(α)-approximation
of DC-value, and complement this result with a hardness result for approximat-
ing DC-value. They also provide new approximation algorithms by way of lin-
ear and semi-definite relaxations of the problem statement. The former is also
pointed out by Roy and Pokutta [25]. For dissimilarity clustering (maximizing
the objective function), several algorithms achieve constant approximation ra-
tio, including average-linkage (the most commonly used agglomerative clustering
method) [8], although a semi-definite relaxation again can do a little better [5].

In a recent paper showing that Dasgupta’s objective remains intractable even
if the input dissimilarities are binary, i.e., when hierarchically clustering an un-
weighted undirected graph, Høgemo, Paul and Telle [15] initiated the study of
Dasgupta’s objective as a graph parameter. By the nature of Dasgupta’s ob-
jective, the associated cluster trees are binary, and admit a mapping from the
inner nodes to the edges of the graph such that every edge connects two vertices
from different subtrees. We relate such trees to so-called edge partition trees [17],
and show that minimizing Dasgupta’s objective is equal to minimizing the total
depth of all leaves in an edge partition tree.

If we consider the maximum depth of a leaf (the height of the tree) instead,
its minimum over all edge partition trees of a graph is known as the edge ranking
number of that graph [17]. The same concept applies to vertex partition trees,
in which there is a one-to-one correspondence between all of its nodes (leaves
and inner nodes) and the vertices of the graph such that no edge connects two
vertices whose corresponding nodes are in disjoint subtrees. The minimum height
of any vertex partition tree is called the vertex ranking number [26,12], but also
known as tree-depth [23,22] and minimum elimination tree height [3].

The above places Dasgupta’s objective, applied to unweighted graphs, into
a family of graph parameters as shown in Table 1. It also suggests a new graph
parameter, combining the use of vertex partition trees with the objective of
minimizing the total depth of vertices. All three previously studied parameters
are NP-hard to determine [24,19,15], and we show that the same holds for the
new parameter. Interestingly, the proof relies on a direct correspondence with
trivially perfect graph completion and thus provides one possible interpretation
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of the parameter in terms of intersecting communities in social networks [21].
We give an alternative interpretation in terms of robustness against network
dismantling.

For both parameters based on tree height, efficient algorithms have been
devised in case the input graph is a tree. For the edge ranking number, it took a
decade from a polynomial-time 2-approximation [17] and an exact polynomial-
time algorithm [10] to finally arrive at a linear-time algorithm [20]. Similarly, a
polynomial-time algorithm for the vertex ranking number [16] was later improved
to linear time [26]. No such algorithms for the input graph being a tree are known
for the total-depth variants.

Our paper is organized as follows. In Section 2 we give formal definitions,
and give a rotation lemma for general graphs to improve a given clustering tree.
This allows us to show that if a clustering tree for a connected graph has an
edge cut which is not minimal, or has a subtree defining a cluster that does not
induce a connected subgraph, then it cannot be optimal for DC-value. In Section
3 we go through the 4 problems in Table 1 and prove the equivalence with the
standard definitions. We also show an elegant and useful recursive formulation
of each of the 4 problems. In Section 5 we consider the situation when the input
graph is a tree. We give polynomial-time algorithms to compute the total depth
variants, including DC-value, for caterpillars and more generally for trees having
a bounded number of leaves in the subtree resulting from removing its leaves.
We then consider the sparsest cut heuristic used by Dasgupta [9] to obtain an
approximation on general graphs. When applied to trees, even to caterpillars,
this does not give an optimal algorithm for DC-value. However, we show that
it does give a 2-approximation on trees, which improves on an 8-approximation
due to Charikar and Chatziafratis [5].

We leave as open the question if any of the two total depth variants can be
solved in polynomial time on trees. On the one hand it would be very surprising
if a graph parameter with such a simple formulation was NP-hard on trees. On
the other hand, the graph-theoretic footing of the algorithms for the two max
depth variants on trees does not seem to hold. The maximum depth variants
are amenable to greedy approaches, where any vertex or edge that is reasonably
balanced can be made root of the partition tree, while this is not true for the
total depth variants.

2 Preliminaries

We use standard graph theoretic notation [13]. In this paper, we will often talk
about several different trees: an unrooted tree which is the input to a problem,
and a rooted tree which is a decompositional structure used in the problem
formulation. To differentiate the two, we will denote an unrooted tree as any
graph, G, while a rooted tree is denoted T . Furthermore, V (G) are called the
vertices of G, while V (T ) are called the nodes of T .

A rooted tree has the following definition; a tree (connected acyclic graph)
T equipped with a special node called the root r, which produces an ordering
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on V (T ). Every node v in T except r has a parent, which is the neighbor that
lies on the path from v to r. Every node in T that has v as its parent is called
a child of v. A node with no children is called a leaf. Leaves are also defined on
unrooted trees as vertices which have only one neighbor. The set of leaves in a
tree T is denoted L(T ). The subtree induced by the internal vertices of T , i.e.
T \L(T ), is called the spine-tree of T . A caterpillar is a tree whose spine-tree is
a path; this is the spine of the caterpillar.

In a rooted tree, the set of nodes on the path from v to r is called the ancestors
of v, while the set of all nodes that include v on their paths to r is called the
descendants of v. We denote by T [v] the subtree induced by the descendants of
v (naturally including v itself). As can be seen already for the paragraph above,
we reserve the name node for the vertices in rooted trees. In unrooted trees and
graphs in general we only use vertex ; this is to avoid confusion. For a given graph
G, we use n(G) and m(G) to denote |V (G)| and |E(G)|, respectively, or simply n
and m if clear from context. Let A be a subset of V (G). Then G[A] is the induced
subgraph of G by A, i.e. the graph (A, {uv ∈ G | u, v ∈ A}). If B is a subset of
V (G) disjoint from A, then G[A,B] is the bipartite subgraph of G induced by
A and B, i.e. the graph (A ∪B, {uv ∈ G | u ∈ A ∧ v ∈ B}). A cut in a graph is
a subset of the edges that, if removed, leaves the graph disconnected. If G is an
unrooted tree, then every single edge uv forms a cut, and we let Gu (respectively
Gv) denote the connected component of G − uv containing u (respectively v).
We use [k] to denote the set of integers from 1 to k.

Definition 1 (Edge-partition tree, Vertex-partition tree). Let G be a
connected graph. An edge-partition tree ( EPT for short) T of G is a rooted tree
where:

– The leaves of T are V (G) and the internal nodes of T are E(G).
– Let r be the root of T . If G′ = G− r has k connected components G′1, . . . , G

′
k

(note that k ≤ 2), then r has k children c1, . . . , ck.
– For all 1 ≤ i ≤ k, T [ci] is an edge partition tree of G′i.

A vertex-partition tree ( VPT for short) T of G is a rooted tree where:

– The nodes of T are V (G).
– Let r be the root of T . If G′ = G−r has k connected components G′1, . . . , G

′
k,

then r has k children c1, . . . , ck.
– For all 1 ≤ i ≤ k, T [ci] is a vertex partition tree of G′i.

The set of all edge partition trees of G is denoted EPT (G) and the set of all
vertex partition trees of G is denoted V PT (G).

For each node x in a tree T , we denote by edT (x) the edge depth of x in T ,
i.e. the number of tree edges on the path from the root of T to x, and by vdT (x)
the vertex depth of x in T , equal to edT (x) + 1, i.e. the number of nodes on
the path from the root of T to x. We make this distinction as the measures on
VPT’s are defined in terms of vertex depth and vice versa for EPT’s. The vertex
height of a tree T is equal to the maximum vertex depth of the nodes in T , and
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Fig. 1. This figure shows the different types of partition trees on a small graph (the 3-
sun). Vertices are marked with letters and edges with numbers. The clustering tree and
the edge partition tree have the same structure. All trees are optimal for the measures
defined in Section 3.

the edge height of a tree T is equal to the maximum edge depth of the nodes
in T . We generally assume that the graph G is connected; if G is disconnected,
then any VPT (or EPT) is a forest, consisting of the union of VPTs (EPTs) of
the components of G.

A graph G is trivially perfect if there is a vertex partition tree T of G such
that for any two vertices u, v, if u is an ancestor of v (or vice versa) in T , then uv
is an edge in G. We call T a generating tree for G. Trivially perfect graphs are
also known as quasi-threshold graphs or comparability graphs of trees (see [18]).

Definition 2 (Clustering tree). A binary tree T is a clustering tree of G if:

– The leaves of T are V (G). The clustering tree of K1 is that one vertex.
– Let r be the root of T , with children a and b. Then A = L(T [a]) and B =
L(T [b]) is a partition of V (G).

– T [a] and T [b] are clustering trees of G[A] and G[B], respectively.

For any node x ∈ T , we define G[x] as shorthand for G[L(T [x])], and for two
siblings a, b ∈ T we define G[a, b] as shorthand for G[L(T [a]), L(T [b])].

Definition 3 (DC-value). The Dasgupta Clustering value of a graph G and a
clustering tree T of G is

DC-value(G,T ) =
∑

x∈V (T )\L(T )

m(G[ax, bx]) · n(G[x])

where ax and bx are the children of x in T . The DC-value of G, DC-value(G), is
the minimum DC-value over all of its clustering trees.

The following lemma gives a condition under which one can improve a given
hierarchical clustering tree by performing either a left rotation or a right notation
at some node of the tree. See Figure 2. First off, it is easy to see that performing
such a rotation maintains the property of being a clustering tree.
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Fig. 2. Here T ′ is derived from T by a left tree rotation, or equivalently T is derived
from T ′ by a right tree rotation.

Lemma 1 (Rotation Lemma) Let G be a graph with clustering trees T and
T ′ such that T ′ is the result of left rotation in T and T of a right rotation in T ′.
Let T and T ′ have nodes a, b, c, t, u as in Figure 2. We have

DC-value(T )− DC-value(T ′) = n(G[c]) ·m(G[a, b])− n(G[a]) ·m(G[b, c]).

Proof. The DC-value of T [u] is equal to

(n(G[a]) + n(G[b]) + n(G[c])) · (m(G[a, b]) +m(G[a, c])) + (n(G[b]) + n(G[c]))·
m(G[b, c])+DC-value(T [a]) + DC-value(T [b]) + DC-value(T [c])

and the DC-cost of the rotated tree T ′[t] is equal to

(n(G[a]) + n(G[b]) + n(G[c])) · (m(G[a, c]) +m(G[b, c])) + (n(G[a]) + n(G[b])) ·m(G[a, b])+

DC-value(T [a]) + DC-value(T [b]) + DC-value(T [c])

See Figure 2 for reference. By substituting the costs written above and cancelling
out, we get the equality in the statement of the lemma. ut

This lemma proves useful anywhere where we would like to manipulate clus-
tering trees. We first use it to prove an important fact about DC-value:

Theorem 2 Let G be a connected graph, and let T be an optimal hierarchical
clustering of G. Then, for any node t ∈ T , the subgraph G[t] is connected.

Proof. We assume towards a contradiction that there exists a connected graph
G and an optimal hierarchical clustering T of G, with some node t ∈ T such that
the subgraph G[t] is not connected. Observe that for r, the root in T , G[r] = G
is connected. Then there must exist a node t′ such that G[t′] is not connected
and for every ancestor u 6= t′ (of which there is at least one) G[u] is connected.
We focus on t′, its parent u′, its children b and c, and its sibling, a. The following
claim is useful:

Claim 3 ([9], Lemma 2) Let G be a disconnected graph. In an optimal clus-
tering tree of G, the cut induced by the root is an empty cut.
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Since T is optimal, by Claim 3 there are no edges going between the subgraphs
G[b] and G[c] in G. Since G[u′] is connected, there must be at least one edge
going between G[a] and G[b] in G. We thus have n(G[a]) · m(G[b, c]) = 0 and
n(G[c]) ·m(G[a, b]) > 0. But now, by Lemma 1, we can perform a tree rotation
on T to obtain a clustering with strictly lower cost than T . This implies that T
cannot be optimal after all. Thus, the theorem is true as stated. ut

Corollary 4 Let T be an optimal clustering tree of a graph G (not necessar-
ily connected). Then, for every internal node t ∈ T with children u, v, the cut
E(G[u, v]) is an inclusion-wise minimal cut in G[t].

That all optimal clustering trees have this property is hardly surprising, but
is still worth pointing out. It is hard to imagine a scenario where this property
would be unwanted in an application of similarity-based hierarchical clustering.
Also, going forward in this paper, we will be exclusively working with this kind
of clustering trees. Therefore we give it the name:

Definition 4 (Viable clustering tree). Let T be a clustering tree of some
graph. We say that T is a viable clustering tree if it has the added restriction
that for every internal node x ∈ T with children ax, bx, the cut induced by the
partition (L(T [ax]), L(T [bx])) is an inclusion-wise minimal cut in G[L(T [x])].

3 Four Related Problems

We define four measures on partition trees of a graph G, three of them well-
known in the literature. To give a unified presentation, throughout this paper
we will call them VPT-sum, VPT-max, EPT-sum and EPT-max, with no intention
to replace the more well-known names. All four measures can be defined with
very simple recursive formulas.

Definition 5. VPT-max(G) is the minimum vertex height over trees T ∈ V PT (G).

This is arguably the most well-known of the four measures. It is known under
several names, such as tree-depth, vertex ranking number, and minimum elimi-
nation tree height. The definition of tree-depth and minimum elimination tree
height is exactly the minimum height of a vertex partition tree (an elimination
tree is a vertex partition tree). The equivalence of vertex ranking number and
minimum elimination tree height is shown in [11], while it is known from [23]
that

VPT-max(G) = min
v∈V (G)

(1 + max
C∈cc(G−v)

VPT-max(C)).

Definition 6. EPT-max(G) is the minimum edge height over trees T ∈ EPT (G).

It is known that EPT-max(G) is equivalent to the edge ranking number [17].
Statements with a ? are those whose proofs are in the Appendix.
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Theorem 5 (?) For any connected graph G,

EPT-max(G) = min
e∈E(G)

(1 + max
C∈cc(G−e)

EPT-max(C)).

Definition 7. EPT-sum(G) is the minimum over every tree T ∈ EPT (G) of
the sum of the edge depth of all leaves in T .

The following equivalence between EPT-sum and DC-value, and the very sim-
ple recursive formula, forms the motivation for the results we present here.

Theorem 6 For any connected graph G, EPT-sum(G) = DC-value(G) and

EPT-sum(G) = min
e∈E(G)

(n(G) +
∑

C∈cc(G−e)

EPT-sum(C)).

Proof. We begin proving the equivalence between EPT-sum and its recursive
formulation. For T ∈ EPT (G), we denote EPT-sum(G,T ) =

∑
`∈L(T ) edT (`).

Let T ∗ be an optimal EPT of G. Since G is connected, T ∗ has only one root r.
We let c1, . . . , ck be the children of r. We denote by T ∗i the subtree T ∗[ci] and
by Ci the induced subgraph G[L(T ∗i )]. Observe that we have:

EPT-sum(G,T ∗) =
∑

`∈L(T∗) edT∗(`)

= n(G) +
∑

i∈[1,k]
∑

`i∈L(T∗i) edT∗i (`i)

= n(G) +
∑

i∈[1,k] EPT-sum(Ci, T
∗
i ).

Suppose er is the edge of G mapped to r in T ∗. As T ∗ is optimal, for every
i ∈ [1, k], T ∗i is an optimal EPT of Ci. We have

EPT-sum(G,T ∗) = n(G) +
∑

i∈[1,k] EPT-sum(Ci)

= n(G) +
∑

C∈cc(G−er) EPT-sum(C)

= mine∈E(G)(n(G) +
∑

C∈cc(G−e) EPT-sum(C))

where the first two equalities follow from the definition of EPT’s and the last
from the optimality of T ∗, and we conclude that the recursive formula holds.

Now, we prove the equivalence between DC-value and EPT-sum. Given a clus-
tering tree CT of a graph G, which by Theorem 4 can be assumed to be viable,
it is easy to construct an EPT T such that DC-value(G,CT ) = EPT-sum(G,T ).
For each internal node x of CT with children ax, bx, we replace x with a path
Px on m(G[ax, bx]) nodes, connect one end to the parent of x and the other
end to the two children. Then we construct an arbitrary map between the nodes
on the path Px and the edges in G[ax, bx]. As CT is viable, E(G[ax, bx]) is
an inclusion-wise minimal cut of G[x] and thus T is an EPT of G. We have
DC-value(G,CT ) = EPT-sum(G,T ) because when we replace x by the path
Px, we increase the edge depth of the n(G[x]) leaves of the subtree rooted at
x by m(G[ax, bx]). Conversely, given an EPT T of G, contracting every path
with degree-two internal nodes into a single edge results in a clustering tree CT
(not necessarily viable unless T is optimal) and we have DC-value(G,CT ) =
EPT-sum(G,T ) by the same argument as above. We conclude from these con-
structions that DC-value(G) = EPT-sum(G). ut
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Definition 8. VPT-sum(G) is the minimum over every tree T ∈ V PT (G) of
the sum of the vertex depth of all nodes in T .

Theorem 7 (?) For any connected graph G, we have

VPT-sum(G) = min
v∈V (G)

(n(G) +
∑

C∈cc(G−v)

VPT-sum(C)).

When comparing the definition of VPT-sum with the definition of trivially
perfect graphs, it is not hard to see that a tree minimizing VPT-sum(G) is a
generating tree of a trivially perfect supergraph of G where as few edges as
possible have been added.

Theorem 8 (?) For any graph G, there exists a trivially perfect completion of
G with at most k edges iff VPT-sum(G) ≤ k + n(G) +m(G).

It is interesting that this formal relation, in addition to tree-depth, connects
the class of trivially perfect graphs to another one of the four measures. Note that
VPT-max (i.e. tree-depth) is also related to trivially perfect completion where
the objective is to minimize the clique number of the completed graph. This
parallels definitions of the related graph parameters treewidth and pathwidth as
the minimum clique number of any chordal or interval supergraph, respectively.
Nastos and Gao [21] have indeed proposed to determine a specific notion of com-
munity structure in social networks, referred to as familial groups, via trivially
perfect editing, i.e., by applying the minimum number of edge additions and edge
removals to turn the graph into a trivially perfect graph. The generating tree
of a closest trivially perfect graph is then interpreted as a vertex partition tree,
and thus a hierarchical decomposition into nested communities that intersect
at their cores. For both familial groups and VPT-sum, an imperfect structure is
transformed into an idealized one, with the difference that VPT-sum only allows
for the addition of edges. Nastos and Gao [21] prefer the restriction to addition
when one is “interested in seeing how individuals in a community are organized.”

Viewed from the opposite perspective, another interpretation of VPT-sum
is as a measure of network vulnerability under vertex removal. The capability
of a network to withstand series of failures or attacks on its nodes is often
assessed by observing changes in the size of the largest connected component, the
reachability relation, or average distances [14]. An optimal vertex partition tree
under VPT-sum represents a worst-case attack scenario in which, for all vertices
simultaneously, the average number of removals in their remaining component
that it takes to detach a vertex is minimized.

The problem of adding the fewest edges to make a trivially perfect graph was
shown NP-hard by Yannakakis in [27] and so Theorem 8 implies the following.

Corollary 9 Computing VPT-sum is NP-hard.
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4 VPT-sum and EPT-sum of Trees

In this section we consider the case when the input graph G is a tree. In this
case, every minimal cut consists of one edge, and hence by Corollary 4 the
optimal clustering trees are edge partition trees, i.e. the internal nodes of T are
E(G). This allows us to prove that the cut at any internal node t of an optimal
clustering tree is an internal edge of G[t], unless G[t] is a star, which in turn
allows us to give an algorithm for caterpillars.

Lemma 10 (?) Let T an optimal clustering tree of a tree G. For any internal
node t ∈ T with children u, v, if G[t] is not a star, then neither u nor v are leaves
in T . This implies that the edge associated with t is an internal edge of G.

Theorem 11 The DC-value of a caterpillar can be computed in O(n3) time.

Proof. We view a caterpillar G as a collection of stars (X1, . . . , Xp) that are
strung together. The central vertices of the stars (x1, . . . , xp) form the spine of
G. Thus, every internal edge xixi+1 in G lies on the spine, and removing such
an edge we get two sub-caterpillars, (X1, . . . , Xi) and (Xi+1, . . . , Xp). For every
i, j ∈ [p] with i ≤ j, we define DC[i, j] to be the DC-value of the sub-caterpillar
(Xi, Xi+1, . . . , Xj). Note that for a star X on n vertices we have DC-value(X) =(
n+1
2

)
−1 (one less than the n’th triangle number) as DC-value(K1) = 0 =

(
2
2

)
−1,

and whichever edge we cut in a star on n vertices we end up with a single vertex
and a star on n− 1 vertices. Therefore DC[i, i] =

(
n(Xi)+1

2

)
− 1 for every i ∈ [p].

From Theorem 2 and Lemma 10, we deduce the following for every i, j ∈ [p]
with i < j.

DC[i, j] =
∑

k∈[i,j]

n(Xk) + min
k∈{i,i+1,...,j−1}

DC[i, k] +DC[k + 1, j]

Hence, to find DC(G), we compute DC[i, j] for every i, j ∈ [p] with i < j in order
of increasing j − i and return DC[1, p]. For the runtime, note that calculating a
cell DC[i, j] takes time O(n) and there are O(n2) such cells in the table. ut

This dynamic programming along the spine of a caterpillar can be generalized
to compute the DC-value of any tree G in time nO(dG), where dG is the number
of leaves of the spine-tree G′ of G. Note that for a caterpillar G we have dG = 2.

In addition, we can show analogues of Theorem 2 and Lemma 10 for VPT-sum,
which enables us to form a polynomial-time algorithm for the VPT-sum of cater-
pillars, and by the same generalization as above, for any tree G where dG is
bounded.

Theorem 12 (?) DC-value and VPT-sum of a tree G is found in nO(dG) time.

Lastly, we discuss the most well-studied approximation algorithm for DC-value
[9], recursively partitioning the graph along a sparsest cut. A sparsest cut of a

graph G is a partition (A,B) of V (G) that minimizes the measure m(G[A,B])
|A|·|B| . A

sparsest cut must be a minimal cut.
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Fig. 3. Inclusion relations between the subtrees Gu, Gv, Gx, Gy and Guy.

For general graphs, finding a sparsest cut is NP-hard and must be approx-
imated itself. On trees however, every minimal cut consists of one edge, and a
sparsest cut is a balanced cut, minimizing the size of the largest component. The
optimal cut can therefore in trees be found efficiently. We call an edge of a tree
balanced, if it induces a balanced cut.

The results by Charikar and Chatziafratis [4] already indicate that the bal-
anced cut algorithm gives an 8-approximation of the DC-value of trees (and other
graph classes for which the sparsest cut can be found in polynomial time, like
planar graphs, see [1] for more information). In the following, we prove that for
trees, we can guarantee a 2-approximation. We start by showing an upper bound
on the DC-value of the two subtrees resulting from removing an arbitrary edge
of a tree, and follow up with a stronger bound if the removed edge is balanced.

Lemma 13 (?) If G is a tree and e = uv ∈ E(G), then
DC-value(Gu) + DC-value(Gv) ≤ DC-value(G)−min{n(Gu), n(Gv)}.

Lemma 14 If G is a tree and e = uv ∈ E(G) balanced, then DC-value(Gu) +

DC-value(Gv) ≤ DC-value(G)−max{n(Gu), n(Gv)} ≤ DC-value(G)− n(G)
2 .

Proof. The proof is by induction on the number of edges in the tree G. The single
edge e = uv of a K2 induces a balanced cut and DC-value(Gu)+DC-value(Gv) =
0 + 0 ≤ 2− 1 = DC-value(G)−max{n(Gu), n(Gv)}.

For the induction step assume that G is a tree with at least two edges
and choose any balanced edge e = uv. Let f = xy be the edge at the root
of an optimal clustering of G. If e = f , then by definition DC-value(G) =
DC-value(Gu) + DC-value(Gv) + n and the lemma holds. Assume therefore that
e 6= f and w.l.o.g. f ∈ E(Gu) and e ∈ E(Gy), as in Figure 3. We let Guy denote
the subgraph induced by V (Gu) ∩ V (Gy).

By definition, DC-value(Gu) ≤ DC-value(Gx) +DC-value(Guy) + (n−n(Gv)),
and together with DC-value(Guy) + DC-value(Gv) ≤ DC-value(Gy)− η where

η =

{
max{n(Guy), n(Gv)} if e is balanced in Gy (from induction hypothesis)

min{n(Guy), n(Gv)} otherwise (from Lemma 13)

we get

DC-value(Gu) + DC-value(Gv)
≤ DC-value(Gx) + DC-value(Gy) + n︸ ︷︷ ︸

=DC-value(G)

− n(Gv)− η.
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It remains to show that n(Gv) + η ≥ max{n(Gu), n(Gv)}, which is obvious if
n(Gu) ≤ n(Gv). So we suppose that n(Gu) > n(Gv) and proceed to show that
n(Gv) + η ≥ n(Gu). Since e is balanced in G, we have by definition

max{n(Gx) + n(Guy), n(Gv)} ≤ max{n(Gx), n(Guy) + n(Gv)},

implying that n(Gv) ≥ n(Gx). It follows that

n(Gv) + n(Guy) ≥ n(Gx) + n(Guy) = n(Gu).

See Figure 3. We have two cases to consider. If n(Guy) ≤ n(Gv), then n(Guy) =
min{n(Guy), n(Gv)} ≤ η, implying that n(Gv) +η ≥ n(Gu). If n(Guy) > n(Gv),
then e is balanced in Gy, so η is the maximum of n(Gv) and n(Guy) and we are
done since n(Gu) ≤ n(Gv) + η. ut

Let a balanced clustering of a tree G be a clustering tree T̂ such that for every
internal node e in T̂ , the edge corresponding to e is a balanced edge in G[e]. As
discussed earlier, a balanced clustering of a tree can be found efficiently. We now
prove the guarantee of 2-approximation:

Theorem 15 Let G be a tree, and T̂ a balanced clustering of G. We then have
DC-value(G, T̂ ) ≤ 2 · DC-value(G).

Proof. The overall proof goes by strong induction. For the base case, we easily
see that for every tree on at most 2 vertices, all the balanced clustering trees are
actually optimal; for these trees the statement follows trivially. For the induction
step, we assume that for all trees on at most some k vertices, the statement
holds. We then look at a tree G on n = k+ 1 vertices. We focus on two different
clustering trees of G: T ∗, which is an optimal clustering tree and has DC-value
W ∗ = DC-value(G), and T̂ , which is a balanced clustering tree and has DC-value
Ŵ . Our aim is now to prove that Ŵ ≤ 2 ·W ∗.

We denote the root of T̂ by r = uv and its two children by cu and cv. By defini-
tion, T̂ [cu] and T̂ [cv] are balanced clustering trees of Gu and Gv, respectively. By
our induction hypothesis, we know that DC-value(Gu, T̂ [cu]) ≤ 2 ·DC-value(Gu)
and respectively for cv. By definition we have Ŵ = DC-value(Gu, T̂ [cu]) +
DC-value(Gv, T̂ [cv])+n which gives Ŵ ≤ 2 · (DC-value(Gu)+DC-value(Gv))+n.
By Lemma 14 we have DC-value(Gu) +DC-value(Gv) ≤ DC-value(G)− n

2 and so

Ŵ ≤ 2 · (DC-value(G)− n
2 ) + n = 2 ·W ∗ and we are done. ut

On the other hand, the recursive sparsest cut algorithm will not necessarily
compute the optimal value on trees. Actually, it fails already for caterpillars.

Theorem 16 (?) There is an infinite family of caterpillars {Bk | k ≥ 3} such
that DC-value(Bk) ≥ 2k and for any balanced clustering tree T̂k of Bk has the
property that DC-value(Bk, T̂k)/DC-value(Bk) = 1 +Ω(1/

√
DC-value(Bk)).

We conjecture that the actual performance of the balanced cut algorithm on
trees is 1+O(1/ log n)), which would substantially improve the 2-approximation
ratio given by Theorem 15.
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Note: After we submitted this paper to FCT 2021, it has come to our at-
tention that parameters equivalent to EPT-sum and VPT-sum have been studied
before in a completely different context, with edge and vertex partition trees
seen as a generalization of binary search trees. Relevant results include: finding
the EPT-sum of a node-weighted tree is NP-hard [6]; the balanced cut-approach
gives a 1.62-approximation for EPT-sum on (node-weighted) trees [7] (this sur-
passes the upper bound found in this paper); and VPT-sum on (node-weighted)
trees admits a PTAS [2].
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A Omitted Proofs

Theorem 5 (?) For any connected graph G,

EPT-max(G) = min
e∈E(G)

(1 + max
C∈cc(G−e)

EPT-max(C)).

Proof. For T ∈ EPT (G), we denote EPT-max(G,T ) = max`∈L(T ) edT (`). Let
T ∗ be an optimal EPT of G, that is

EPT-max(G) = min
T∈EPT (G)

EPT-max(G,T ) = EPT-max(G,T ∗).

Since G is connected, T has only one root r. We let c1, . . . , ck be the children of
r. We denote by T ∗i the subtree T ∗[ci] and by Ci the induced subgraph G[L(T ∗i )].
Observe that we have:

EPT-max(G,T ∗) = max`∈L(T∗) edT∗(`)
= 1 + maxi∈[1,k] max`i∈L(T∗i) edT∗i (`i)
= 1 + maxi∈[1,k] EPT-max(Ci, T

∗
i ).

Suppose that er is the edge of G mapped to r in T ∗. As T ∗ is optimal for at
least one i ∈ [1, k] we have EPT-max(G,T ∗) = 1 + EPT-max(Ci, T

∗
i ) = 1 +

EPT-max(Ci) and for every j 6= i we have EPT-max(Cj) ≤ EPT-max(Ci). By
definition of EPT’s, it follows that:

EPT-max(G,T ∗) = 1 + maxi∈[1,k] EPT-max(Ci)
= 1 + maxC∈cc(G−er) EPT-max(C).

Again the optimality of T ∗ implies that

1 + max
C∈cc(G−er)

EPT-max(C) = min
e∈E(G)

(1 + max
C∈cc(G−e)

EPT-max(C)),

concluding the proof of the theorem. ut

Theorem 7 (?) For any connected graph G, we have

VPT-sum(G) = min
v∈V (G)

(n(G) +
∑

C∈cc(G−v)

VPT-sum(C)).

Proof. For T ∈ V PT (G), we denote VPT-sum(G,T ) =
∑

v∈V (T ) vdT (v). Let T ∗

be an optimal VPT of a connected graph G, that is

VPT-sum(G) = min
T∈V PT (G)

VPT-sum(G,T ) = VPT-sum(G,T ∗).

Since G is connected, T has only one root r. We let c1, . . . , ck be the children of
r. We denote by T ∗i the subtree T ∗[ci] and by Ci the induced subgraph G[L(T ∗i )].
Observe that we have:

VPT-sum(G,T ∗) =
∑

v∈V (T∗) vdT∗(v)

= n(G) +
∑

i∈[1,k]
∑

vi∈V (T∗i) vdT∗i (vi)

= n(G) +
∑

i∈[1,k] VPT-sum(Ci, T
∗
i ).
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Suppose that vr is the vertex of G mapped to r in T ∗. As T ∗ is optimal, for every
i ∈ [1, k], T ∗i is an optimal VPT of Ci. And by definition of VPT’s, it follows
that:

VPT-sum(G,T ∗) = n(G) +
∑

i∈[1,k] VPT-sum(Ci)

= n(G) +
∑

C∈cc(G−vr) VPT-sum(C).

Again the optimality of T ∗ implies that

n(G) +
∑

C∈cc(G−vr)

VPT-sum(C) = min
v∈V (G)

(n(G) +
∑

C∈cc(G−v)

VPT-sum(C)),

concluding the proof of the theorem. ut

Theorem 8 (?) For any graph G, there exists a trivially perfect completion of
G with at most k edges iff VPT-sum(G) ≤ k + n(G) +m(G).

Proof. Let G′ be a trivially perfect graph, and let T be a generating tree for G′.
As two vertices in G′ are adjacent if and only if the corresponding nodes in T
have an ancestor-descendant relationship, we can find the number of edges in
G′ by summing up, for each node v in T , the number of ancestors of v. This
number is clearly equal to vdT (v)−1. Therefore, VPT-sum(G′) = m(G′)+n(G′).
Thus, a subgraph G on the same vertex set has a completion into G′ on at
most k edges if and only if m(G) ≥ m(G′) − k = VPT-sum(G′) − n(G) − k ≥
VPT-sum(G)− n(G)− k. ut

Lemma 10 (?) Let T an optimal clustering tree of a tree G. For any internal
node t ∈ T with children u, v, if G[t] is not a star, then neither u nor v are leaves
in T . This implies that the edge associated with t is an internal edge of G.

Proof. In order to arrive at a contradiction, we assume that there exists a tree
G and an optimal hierarchical clustering (T, δ) where there is an internal node t
with children u, v, G[t] is not a star, but v is a leaf in T (corresponding: vG is a
leaf in G[t]). Since G[t] is not a star, there must exist an internal edge e in G[t].
We can assume that none of the ancestors of eT in T [t] also cut an internal edge
in G[t]. Let e′T be the parent of eT , and a the sibling of eT . Furthermore, let b
and c be the children of eT . Now, there are three cases:

Case 1 : e is an internal edge in G[eT ]. This is the simplest case. We know
that both b and c are internal nodes in T , while a must be a leaf in T . WLOG,
we assume that the vertex aG has a neighbor in G[bT ]. Now,

n(G[a]) ·m(G[b, c]) = n(G[a]) = 1

and
n(G[c]) ·m(G[a, b]) = n(G[c]) > 1

Thus, by Lemma 1, T cannot be optimal.
Case 2 : e is not an internal edge in G[eT ]. In this case, we assume WLOG

that b is a leaf in T . There are two subcases here:
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Case 2a: The vertex aG is neighbor with bG. This case is really identical with
Case 1. By Lemma 1, we can perform a rotation to get a clustering with lower
DC-cost than (T, δ), unless c also is a leaf in T . In this case, we switch b and c
and end up in Case 2b.

Case 2b: The vertex aG has a neighbor in G[c]. In this case, we can perform
an operation on T to obtain a new clustering with no higher cost than T : Let T ′

be such that the node labelled b in T is labelled a in T ′ and vice versa, and is
otherwise identical for every node in T . Since the underlying tree structure has
not been changed and T is a clustering tree where all subtrees induce connected
subgraphs, it follows that DC-value(G,T ) = DC-value(G,T ). But we now observe
that eG is cut at e′T , the parent of eT in T . When considering e′ and e′′, the parent
of e′, we still have a Case 2 situation. If it is Case 2b, then we can perform the
operation described above again. If it is Case 2a, then we can perform a rotation
and get a clustering of strictly lower DC-value. Since e is an internal edge in G[t],
there must exist some ancestor of e′ in T that has a child whose associated vertex
is a neighbor of bG. We will therefore always end up in Case 2a at some point.
As we have seen, in each of these cases we can find a hierarchical clustering with
lower DC-value than T . But one of these cases must always be true! Therefore
T cannot be optimal and the observation is true as stated. ut

Theorem 12 (?) DC-value and VPT-sum of a tree G is found in nO(dG) time.

Proof. One of the simplest algorithms for calculating the DC-value of a tree G
is a DP algorithm that for each edge uv recursively calculates the DC-value of
Gu and Gv and finds the minimum over all edges. This algorithm clearly works
because of Theorem 2. If G has N connected subtrees, then this algorithm takes
time in O(N · n).

Our algorithm for the DC-value of caterpillars is essentially this simple al-
gorithm, with one extra fact exploited: Lemma 10, which implies that you can
restrict your search to the connected subtrees of the spine-tree of G. Since there
are only O(n2) connected subtrees of the spine of a caterpillar, the algorithm
runs in O(n3) time. Let G be any tree, and let G′ be the spine-tree G. Given
dG = |L(G′)|, we can bound the number of connected subtrees of G′ as follows:

G′ can have at most dG − 2 vertices of degree 3 or more, and thus G′ has at
most 2dG−3 paths between vertices of degree 3 or more. A connected subtree of
G′ cannot contain 2 disjoint parts of such a path, thus when dG > 2 the number
of connected subtrees of G′ is no more than n2dG−3 (for dG = 2 cutting the
single path at any two positions gives a higher bound of n2dG−2).

Our algorithm, recursively computing the DC-cost of subtrees, thus takes
time in O(n2dG−2 · n) = nO(dG).

For the second result, on the VPT-sum of trees, we observe that the same
argument as above also must hold for VPT-sum, given the two crucial facts: Any
subtree of an optimal VPT induces a connected subgraph of the input graph;
and there are always an optimal VPT T ∗ such that the leaves of the input tree
are also leaves in T ∗. Then, an algorithm that for each vertex v ∈ G′ recursively
computes the VPT-sum of every component in G′− v and returns the minimum,
effectively computes VPT-sum(G) in nO(dG) time.
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The first fact, analogous to Theorem 2 for DC-value, is true by definition: In
any VPT, the subtrees induce connected subgraphs. The second fact, analogous
to Lemma 10, is easy to prove:

Let G be any tree, and let T be any VPT of G. We assume that there are
at least one leaf v in G, such that the corresponding node vT is not a leaf in T .
Since G[vT ] is connected, the neighbor u of v is in T [v]. Furthermore, vT has
only one child c in T . We will now show that there exists another tree T ′ where
vT is a leaf, and VPT-sum(G,T ′) ≤ VPT-sum(G,T ). We construct T ′ from T
by moving down vT , such that c becomes a child of the parent of vT , and vT ′

becomes a child of u. Then, vdT ′(vT ′) = vdT (u). So the depth of v increases by
vdT (u)−vdT (v). But on the other hand, there are at least vdT (u)−vdT (v) nodes
in the subtree whose depth decreases by 1. Thus, T ′ has no higher VPT-sum than
T .

From this fact, and the bound on connected subtrees of the spine-tree shown
above, we conclude that the VPT-sum of a caterpillar can be computed in O(n3)
time, and more generally, the VPT-sum of a tree can be computed in nO(dG)

time. ut

Lemma 13 (?) If G is a tree and e = uv ∈ E(G), then
DC-value(Gu) + DC-value(Gv) ≤ DC-value(G)−min{n(Gu), n(Gv)}.

Proof. Let f = xy ∈ E(G) be the edge at the root of an optimal clustering
tree T of G. If e = f , then DC-value(Gu) + DC-value(Gv) = DC-value(G)− n by
definition and we are done, so we can assume e 6= f and w.l.o.g. that e ∈ E(Gx).

Suppose that n(Gu) ≤ n(Gv). Observe that Gu is a subgraph of either Gx

or Gy, say Gx. A clustering tree Tu of Gu is obtained from T as follows: if T ′u
is the minimal subtree of T spanning the leaves mapped to vertices of Gu, then
contracting every path with degree-two internal nodes into a single edge results
in Tu. A clustering tree Tv of Gv is obtained the same way. We observe that,
by construction, for every vertex x ∈ V (Gv), edTv (x) ≤ edT (x). Focusing on
Gu and Tu, as by assumption Gu is a subgraph of Gx, Tu can be obtained from
the above process from the subtree T [cx] where cx is the child of the root node
of T such that T [cx] is a clustering tree of Gx. It follows that for every vertex
x ∈ V (Gu) we have edTu

(x) + 1 ≤ edT (x). Using the previous inequalities and
Definition 7, we obtain:

DC-value(Gu) + DC-value(Gv) ≤ DC-value(Gu, Tu) + DC-value(Gv, Tv)

=
∑

x∈V (Gu)

edTu(x) +
∑

x∈V (Gv)

edTv (x) ≤
∑

x∈V (Gu)

(edT (x)− 1) +
∑

x∈V (Gv)

edT (x)

=
∑

x∈V (G)

edT (x)− n(Gu) = DC-value(G)− n(Gu) ut

Theorem 16 (?) There is an infinite family of caterpillars {Bk | k ≥ 3} such
that DC-value(Bk) ≥ 2k and for any balanced clustering tree T̂k of Bk has the
property that DC-value(Bk, T̂k)/DC-value(Bk) = 1 +Ω(1/

√
DC-value(Bk)).
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Proof. For any k ≥ 3, we construct Bk ∈ B as a “broomstick”, consisting of a
path on 2k vertices connected to a star on 3

42k vertices. If we first separate the
path from the star and then take an optimal clustering for the path and the star,
we get a clustering tree with cost

W ∗ = k · 2k +
9

32
22k +

17

8
2k − 1

In other words, DC-value(Bk) ≤W ∗ ≤ 22k. Since the DC-value does not increase
when taking subgraphs, we also have that DC-value(Bk) ≥ 9

3222k.
Now, we discuss how a balanced clustering tree of Bk can be made. There is

one balanced edge in Bk: on the middle. We thus get a path on 7
82k vertices on

one side. On the other side, where the rest of the path meets the star, the next
balanced cut separates the path and the star. As all choices of balanced edges to
further construct the clustering tree will lead to clustering trees with the same
DC-value, any balanced clustering tree of Bk will thus have DC-value

W ′ = k · 2k +
9

32
22k +

20

8
2k − 1

We then see that W ′−W ∗ = 3
82k = 3

14n. By the above inequalities, we get that

W ′

DC-value(Bk)
≥ W ′

W ∗
= 1 +

W ′ −W ∗

W ∗
≥ 1 +

3
82k

22k
= 1 +

3

8 · 2k

and √
DC-value(Bk) ≥

√
9

32
22k ≥ 1

2
2k

From these inequalities, we deduce that

W ′

DC-value(Bk)
≥ 1 +

1

2 ·
√

DC-value(Bk)

ut
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