
Applied Mathematics Letters 126 (2022) 107799

h
0
(

Contents lists available at ScienceDirect

Applied Mathematics Letters

www.elsevier.com/locate/aml

A Cahn–Hilliard–Biot system and its generalized gradient flow
structure
Erlend Storvik ∗, Jakub Wiktor Both, Jan Martin Nordbotten,
Florin Adrian Radu
Department of Mathematics, University of Bergen, Allégaten 41, 5007 Bergen, Norway

a r t i c l e i n f o

Article history:
Received 7 September 2021
Received in revised form 12 November
2021
Accepted 12 November 2021
Available online 22 November 2021

Keywords:
Cahn–Hilliard equation
Biot’s equations
Generalized gradient flow
Mathematical modeling
Tumor growth modeling

a b s t r a c t

In this work, we propose a new model for flow through deformable porous media,
where the solid material has two phases with distinct material properties. The
two phases of the porous material evolve according to a generalized Ginzburg–
Landau energy functional, with additional impact from both elastic and fluid
effects, and the coupling between flow and deformation is governed by Biot’s
theory. This results in a three-way coupled system which can be seen as an
extension of the Cahn–Larché equations with the inclusion of a fluid flowing
through the medium. The model covers essential coupling terms for several relevant
applications, including solid tumor growth, biogrout, and wood growth simulation.
Moreover, we show that this coupled set of equations follow a generalized gradient
flow framework. This opens a toolbox of analysis and solvers which can be used
for further study of the model. Additionally, we provide a numerical example
showing the impact of the flow on the solid phase evolution in comparison to
the Cahn–Larché system.
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under

the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In this letter, we develop a general model with the ability to capture situations with flow through
a deformable porous medium, at Darcy scale, that changes character in terms of stiffness, permeability,
compressibility, and poroelastic coupling strength due to phase changes in the solid matrix. The phase
changes are governed by a generalized Ginzburg–Landau energy functional, and there are several applications
where this type of behavior exists. One example being solid tumor evolution, where it is argued that stress
effects resulting from tumor growth impact the tumor evolution itself [1] and that stress can inhibit tumor
growth [2]. Moreover, the elastic properties of the surrounding matrix and the interstitial fluid pressure
are elevated in most solid malignant tumors [3]. One can then consider the two-phase porous medium as
cancerous and healthy cells with the surrounding extracellular matrix, and the fluid as the interstitial fluid.
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Additional applications of poroelastic media with solid phase changes range from biogrout to wood growth,
where sapwood transforms to heartwood.

The proposed system is an extension of the Cahn–Hilliard model and the quasi-static linear Biot
equations, where the Cahn–Hilliard contribution governs the solid phase changes in the system through a
smooth phase-field variable, and the Biot equations govern flow and elasticity. The Cahn–Hilliard equation
originates from the work of Cahn and Hilliard [4], where the interfacial free energy of a non-uniform
composition was introduced to model phase separation. Coupling the Cahn–Hilliard model with elasticity, is
often called the Cahn–Larché model due to its origination [5], and several applications have been considered
with this model in mind, including li-ion batteries [6], and tumor evolution [7,8]. In this work, we assume
small deformations and negligible inertial effects. Moreover, we include fluid to the system, which is assumed
to flow through the poroelastic medium with Biot-type coupling between flow and elasticity [9].

We show that the resulting model has a generalized gradient flow structure, i.e., a dissipative system
where the state of the system evolves with the negative gradient of its free energy. The extension to
generalized gradient flows allows for non-quadratic, and partially degenerate, dissipation potentials, and
there is currently an increasing interest in the mathematics of generalized gradient flows, both with respect
to modeling [10,11], abstract analysis [12–15] and numerical solution strategies [15,16]. It is long known that
the Cahn–Hilliard equation and single-phase flow through porous media can be written as standard gradient
flows, and it was showed in [15] that the Biot equations have a generalized gradient flow structure. Here, we
show that even though it is not obvious that the combination of two gradient flows retains the structure,
the Cahn–Hilliard–Biot model does, indicating the thermodynamical consistency of the model. This will be
a valuable toolbox for further study and development of mathematics for the model, both with respect to
well-posedness analysis and numerical solution strategies.

The letter is structured as follows: In Section 2, the Cahn–Hilliard–Biot model is presented. Conservation
laws for each of the three coupled processes; phase-field evolution, elasticity, and fluid flow are introduced,
then the free energy of the system is proposed together with constitutive relations to close the system. In
Section 3, the system is showed to be a generalized gradient flow, and in Section 4, a numerical example
compares the newly proposed model with the Cahn–Larché system.

2. The derivation of the Cahn–Hilliard–Biot model

We consider a saturated porous medium with one fluid phase, and two solid phases with distinct material
properties. The solid phases are modeled by a diffuse interface approach of Cahn–Hilliard type, where surface
tension, deformation of the solid material, and pore pressure are acting as driving forces.

Let the medium Ω ⊂ Rd be a bounded domain, d the spatial dimension, and [0, T ] be a time interval
where T denotes the final time. In the matrix, the smooth phase-field, φ :Ω × [0, T ] → [−1, 1], tracks the
wo phases φ = −1 and φ = 1. We consider linearized elasticity with infinitesimal displacement u, and

∥∇u∥ ≪ 1, the pore pressure is denoted by p, and q is the fluid flux.

2.1. Balance laws

Balance laws are imposed for each of the three coupled systems. For the phase-field equation, we assume
that the phase change is balanced by a phase-field flux J and reactions R,

∂tφ + ∇ · J = R, (1)

here the form of the reaction term differs depending on the application. In [7], a suitable reaction term is
iven in the context of tumor simulation with elastic effects. The elastic behavior of the material is governed
y a quasi-static force balance equation where σ denotes the stress tensor and f external body forces

− ∇ · σ = f . (2)
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Finally, the fluid is assumed to follow a volume balance law with negligible density gradients,

∂tθ + ∇ · q = Sf , (3)

where θ is the volumetric fluid content which changes due to the fluid flux q and source Sf . Notice that,
as we are considering a saturated porous medium of a single fluid phase, the volumetric fluid content is
proportional to the porosity of the medium which might change depending on the solid phase.

2.2. Free energy

The system is then closed through its free energy together with appropriate constitutive relations. We
assume that the energy can be decomposed into three parts; the regularized interface energy, containing
chemical energy and interfacial energy between the solid phases, the elastic energy, and the fluid energy

E(φ, u, θ) = Ech(φ) + Ee(φ, u) + Ef(φ, u, θ). (4)

The regularized interface energy [4] is given as

Ech(φ) :=
∫
Ω

Ψ(φ) + γ

2 |∇φ|2 dx, (5)

here deviations from pure phases are penalized through the double-well potential Ψ(φ), and transitions
etween phases are penalized by the second term which is related to the interfacial energy. Here, the
arameter γ corresponds to interfacial tension between the phases and will account for adhesive and cohesive
orces. The double-well potential takes minimal values in the two phases, φ = −1 and φ = 1, and is, in this
ork, given as

Ψ(φ) := EΨ

(
1 − φ2)2

, (6)

here EΨ > 0 is a chemical energy density parameter.
We assume that the elastic energy takes the form that is typical to the Cahn–Larché equations,

Ee(φ, u) =
∫
Ω

1
2

(
ε(u) − T (φ)

)
:C(φ)

(
ε(u) − T (φ)

)
dx, (7)

here ε(u) = 1
2

(
∇u + ∇u⊤)

is the linearized strain at displacement u. The second term, T (φ), is the
eigenstrain at φ (often called stress-free strain, or intrinsic strain) which corresponds to the state of the
strain tensor if the material was uniform and unstressed [17]. Moreover, it can be considered to account for
swelling effects [6] and takes different values depending on the solid phase φ. Here, we consider the form
T (φ) = ξφI, where ξ is a swelling parameter. The elastic stiffness tensor C(φ), which can be anisotropic,
depends on the phase-field.

Finally, we consider a natural extension of the classical fluid energy which is given as in [15] by

Ef(φ, u, θ) =
∫
Ω

M(φ)
2 (θ − α(φ)∇ · u)2

dx (8)

here both the compressibility parameter M(φ) and the Biot–Willis coupling coefficient α(φ) depend on
he phase-field φ.

.3. Constitutive relations

Assuming that the phase-field follows Fick’s law for non-ideal mixtures, the flux J is proportional to the
egative gradient of the chemical potential

J = −m(φ)∇µ, (9)
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where m(φ) is the chemical mobility. The chemical potential µ is defined to be the variational derivative of
the free energy with respect to φ. Here, we denote the variational derivative of E with respect to y by δyE ,
nd standard computations yield

µ := δφE = Ψ ′(φ) − γ∆φ + δφEe(φ, u) + δφEf(φ, u, θ), (10)

here zero Neumann or periodic boundary conditions have been applied to φ,

δφEe(φ, u) = 1
2 (ε(u) − T (φ)) :C′(φ) (ε(u) − T (φ)) − T ′(φ) :C(φ) (ε(u) − T (φ)) , (11)

nd
δφEf(φ, u, θ) = M ′(φ)

2 (θ − α(φ)∇ · u)2 − M(φ)(θ − α(φ)∇ · u)α′(φ)∇ · u. (12)

ccording to thermodynamical principles [9], we define the stress tensor to be the rate of change of energy
ith respect to strain

σ := δεE = C(φ) (ε(u) − T (φ)) − M(φ)α(φ) (θ − α∇ · u) I, (13)

nd the pore pressure p to be the rate of change of energy with respect to volumetric fluid content

p := δθE = M(φ) (θ − α(φ)∇ · u) . (14)

inally, the flow through the porous medium is assumed to follow Darcy’s law

q = −κ(φ)∇p, (15)

here the permeability κ(φ) is assumed to depend on the solid phase.
Combining the balance laws with the constitutive relations, and making the identification (14) in (12)

nd (13), the Cahn–Hilliard–Biot model becomes

∂tφ − ∇ · (m(φ)∇µ) = R (16)
µ + γ∆φ − Ψ ′(φ) − δφEe(φ, u) − δφEf(φ, u, p) = 0 (17)

−∇ · (C(φ) (ε(u) − T (φ))) + ∇ (α(φ)p) = f (18)

∂t

(
p

M(φ) + α(φ)∇ · u

)
+ ∇ · q = Sf (19)

q + κ(φ)∇p = 0, (20)

quipped with suitable boundary and initial conditions.

. The Cahn–Hilliard–Biot model as a generalized gradient flow

In this section, we identify the proposed Cahn–Hilliard–Biot model (16)–(20) as a generalized gradient
ow, which in contrast to regular gradient flows allows for non-quadratic and even degenerate dissipation
otentials. By making this identification for the newly proposed model, a wide toolbox of well-posedness
nalysis [12,15], numerical error analysis [13,14], and numerical solution algorithms [15,16] are made
vailable, which will be a valuable asset for further study. Moreover, generalized gradient flows are inherently
hermodynamically consistent in the sense that the free energy of the system decreases through dissipation,
nd can only increase through external forces. A generalized gradient flow takes the form

D R(∂ z, z) = −D E(z) + P , (21)
∂tz t z ext

4
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where z is a state variable, R is a dissipation potential, E is the energy at state z, Dx is the Gateaux
erivative with respect to x, and Pext corresponds to external forces. Alternatively, one can reformulate the
eneralized gradient flow and split between states evolving with (zd) and without (zdf) dissipation to get
he constrained minimization problem

zdf = arg min
sdf

{E(sdf) − ⟨Pext,df , sdf⟩} (22)

(∂tzd, F) = arg min
sd,l

{
R̃(l, zd) + ⟨DzdE(zd), sd⟩ − ⟨Pext,d, sd⟩

}
(23)

ubject to sd+∇·l = S, where R(∂tzd, zd) = R̃(F , zd), ⟨·, ·⟩ is the canonical inner-product, and the balance
aw ∂tzd + ∇ · F = S with flux F , and source S holds.

For the Cahn–Hilliard–Biot system, consider the state variables z = (φ, u, θ), the energy E(z) from (4),
nd the state-dependent dissipation potential

R(J , ∂tu, q, φ) := Rch(J , φ) + Re(∂tu) + Rf(q, φ), (24)

ith
Rch(J , φ) :=

∫
Ω

1
2m(φ) |J |2 dx, Re(∂tu) := 0, and Rf(q, φ) :=

∫
Ω

1
2κ(φ) |q|2 dx

ogether with the conservation laws

∂tφ + ∇ · J = R and ∂tθ + ∇ · q = Sf . (25)

s the deformation is assumed to be dissipation free, the generalized gradient flow reads: Find φ, u, and θ

uch that

u = arg min
w

{
E(φ, w, θ) − ⟨Pext,e, w⟩

}
(26)

(∂tφ, ∂tθ, J , q) = arg min
η,s,l,v

{
Rch(l, φ) + ⟨DφE(φ, u, θ), η⟩ + Rf(v, φ) + ⟨DθE(φ, u, θ), s⟩ + ⟨Pext,f , s⟩

}
(27)

ubject to η + ∇ · l = R and s + ∇ · v = Sf with balance laws (25), ⟨Pext,e, w⟩ :=
∫
Ω

f · w dx

nd Pext,f corresponding to external forces related to the fluid (e.g., boundary conditions or gravitational
orce). Calculating optimality conditions, and substituting the phase-field flux J by the chemical potential

through Fick’s law (9), and the volumetric fluid content θ with the fluid pressure p through the relation
14), one obtains the variational form of the system (16)–(20).

. Numerical example

Here, we present a numerical example that emphasizes the impact the flow has on the phase-field evolution
n the Cahn–Hilliard–Biot model compared to a Cahn–Larché simulation (Cahn–Hilliard coupled with only
lasticity). We apply a pressure boundary condition to the Cahn–Hilliard–Biot system that acts as an
xternal force (in order to enforce flow in the domain), and compare it to both a simulation without the
ressure condition and to a Cahn–Larché simulation. The example clearly shows that when the fluid flow is
ominant, it also plays a crucial role in the evolution of the phase-field. However, in regimes with little, to
o flow, the phase-field is unaffected compared to the Cahn–Larché model.

We consider a unit square domain where three circular shapes of phase φ = 1 are surrounded by phase
= −1 initially, see Fig. 1(a),1(e),1(i). For both pressure and displacement, we apply zero initial data. The

ariational system (16)–(20) is discretized in time by a semi-implicit Euler method, where the deviation from

ully implicit Euler is an application of the first order convex splitting method of the double-well potential

5
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Table 1
Table of simulation parameters. Here, L denotes the unit of length, F force, and T time. Notice that the units are consistent in three
patial dimensions and that our example should be interpreted as a two-dimensional representation of a domain with thickness 1L.

Parameter name Symbol Value Unit Parameter name Symbol Value Unit

Chemical mobility m 1
[

L4

F T

]
Biot–Willis parameters α−1, α1 1, 0.5 [–]

Interfacial tension γ 1e−4 [F ] Permeabilities κ−1, κ1 1, 0.1
[

L4

F T

]
Compressibilities M−1, M1 1, 0.1

[
F
L2

]
Time step size τ 1e−3 [T ]

Swelling parameter ξ 0.3 [–] Mesh diameter h
√

2
65 [L]

Chemical energy density EΨ
1
4

[
F
L2

]
Elasticity tensors C−1, C1 (28)

[
F
L2

]

Ψ(φ) as proposed in [18]. The three-way coupled nonlinear system is then solved by an iterative decoupling
cheme, starting with the Cahn–Hilliard subsystem (16)–(17), then elasticity (18), and finally, flow (19)–(20),
nd the iterations are terminated when the (relative and absolute) residual and incremental values in the
2(Ω)-norm are smaller than a tolerance of 10−6. The Cahn–Hilliard subsystem (16)–(17) is discretized

in space with bilinear rectangular finite elements for both phase-field φ and chemical potential µ, and the
onlinear equations are solved by a Newton method in each iterative decoupling-iteration. As initial guess
n both the Newton method and the iterative decoupling method, the solution at the previous time step (the
nitial value at the first time step) is chosen. The flow subsystem (19)–(20) is discretized in space by lowest-
rder Raviart–Thomas elements, RT0, for the flux and constant elements for pressures, and the elasticity
quation (18) is discretized with bilinear finite elements. We have used modules from the DUNE project,
pecifically dune-functions [19], for the implementation.

The material parameters can be found in Table 1, and the permeability κ(φ), compressibility M(φ), Biot–
Willlis coefficient α(φ) and elasticity tensor C(φ) are depending on the phase-field through the interpolation
function π(φ); κ(φ) = κ−1 +π(φ)(κ1 −κ−1), M(φ) = M−1 +π(φ)(M1 −M−1), α(φ) = α−1 +π(φ)(α1 −α−1)
nd C(φ) = C−1 + π(φ)(C1 − C−1). Here, we choose

π(φ) =

⎧⎪⎨⎪⎩
0, φ < −1
1
4

(
−φ3 + 3φ + 2

)
, φ ∈ [−1, 1]

1, φ > 1
, C−1 =

⎛⎝4 2 0
2 4 0
0 0 8

⎞⎠ , C1 =

⎛⎝ 1 0.5 0
0.5 1 0
0 0 2

⎞⎠ , (28)

ith the two elasticity tensors written in Voigt notation in two spatial dimensions. Zero Neumann boundary
onditions are applied to both the phase-field and the chemical potential, while the displacement is equipped
ith zero Dirichlet conditions on the entire boundary. For the flow subsystem, we enforce a pressure drop

rom p = 0.25 to p = 0 from top to bottom while no-flow conditions are applied on the left and right parts
f the boundary. The reaction R, source Sf and body force f are all equal to 0.

In Fig. 1(a)–1(d), the phase-field function φ is plotted after a series of time steps for the Cahn–Hilliard–
iot model with a drop in pressure from p = 0.25 to p = 0 from top to bottom. In Fig. 1(e)–1(h) the

solution is plotted at the same time steps, but with zero pressure on the entire boundary, and similarly in
Fig. 1(i)–1(l) the plots are from a simulation of the Cahn–Larché system. We observe that when the flow is
prominent in the simulation the phase-field is also significantly affected and takes a directional preference
to that of the flow direction. When, on the other hand, the system merely is filled with a fluid that has no
driving force in itself, the phase-field evolution is close to unaffected compared to the system without a fluid.
We emphasize also that the system energies (including external forces) are decreasing over the scope of the
simulation, as is expected from dissipative systems of gradient flow type. This is showed in Fig. 1, where the
energy is a combination of the free energy of the system (4), and the external forces applied through the
pressure boundary condition, ETot = E(φ, u, p) −

∫
ΓTop

pTop(q · n) dx, with n being the outwards pointing
ormal vector. Moreover, notice that the simulation is only a redistribution of the phases, due to the lack
f reaction/source terms.
6
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Fig. 1. (a)–(l): the solution at time t for the phase-field φ. (a)–(d): Cahn–Hilliard–Biot with p = 0.25 on the top, (e)–(h): Cahn–
illiard–Biot with zero pressure BC, (i)–(l): Cahn–Larché. (m): system energy (with external contributions). PD is Cahn–Hilliard–Biot
ith p = 0.25 on the top, CHB is Cahn–Hilliard–Biot with zero pressure BC and CHE is Cahn–Larché.

. Conclusions

The Cahn–Hilliard–Biot system was derived through balance laws and constitutive relations, i.e., Fick’s
aw for the phase-field, and Darcy’s law for the fluid flow. Key quantities are defined, following thermo-
ynamical principles, as rates of change of the free energy. The equations feature a three-way coupling,
nd the impact from flow to the phase-field was showed to be significant through a numerical example; the
hase-field does not only evolve as it would through the Cahn–Larché equations, but its evolution is aligned
nd magnified in the flow direction. Moreover, we showed that the system follows a generalized gradient
ow framework and that the energy dissipates numerically as expected. By this, we lay the groundwork
or a general model, showing numerical properties and highlighting important coupling terms, that can be
urther tailored and studied depending on the specific application in mind.
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