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Abstract

The security of modern cryptography is based on the hardness of solving certain
problems. In this context, a problem is considered hard if there is no known poly-
nomial time algorithm to solve it. Initially, the security assessment of cryptographic
systems only considered adversarieswith classical computational resources, i.e., digital
computers. It is now known that there exist polynomial-time quantum algorithms
that would render certain cryptosystems insecure if large-scale quantum computers
were available. Thus, adversaries with access to such computers should also be con-
sidered. In particular, cryptosystems based on the hardness of integer factorisation or
the discrete logarithm problemwould be broken. For some others such as symmetric-
key cryptosystems, the impact seems not to be as serious; it is recommended to at
least double the key size of currently used systems to preserve their security level.
The potential threat posed by sufficiently powerful quantum computers motivates the
continued study and development of post-quantum cryptography, that is, cryptographic
systems that are secure against adversaries with access to quantum computations.

It is believed that symmetric-key cryptosystems should be secure from quantum
attacks. In this manuscript, we study the security of one such family of systems;
namely, stream ciphers. They are mainly used in applications where high throughput
is required in software or low resource usage is required in hardware. Our focus is on
the cryptanalysis of stream ciphers employing linear feedback shift registers (LFSRs).
This is modelled as the problem of finding solutions to systems of linear equations
with associated probability distributions on the set of right hand sides. To solve this
problem, we first present a multivariate version of the correlation attack introduced
by Siegenthaler. Building on the ideas of the multivariate attack, we propose a new
cryptanalytic method with lower time complexity. Alongside this, we introduce the
notion of relations modulo a matrix B, which may be seen as a generalisation of parity-
checks used in fast correlation attacks. The latter are among the most important class
of attacks against LFSR-based stream ciphers. Our newmethod is successfully applied
to hard instances of the filter generator and requires a lower amount of keystream com-
pared to other attacks in the literature. We also perform a theoretical attack against the
Grain-v1 cipher and an experimental attack against a toy Grain-like cipher. Compared
to the best previous attack, our technique requires less keystream bits but also has a
higher time complexity. This is the result of joint work with Semaev.

Public-key cryptosystems based on error-correcting codes are also believed to be
secure against quantum attacks. To this end, we develop a new technique in code-
based cryptography. Specifically, we propose new decoders for quasi-cyclic moderate
density parity-check (QC-MDPC) codes. These codes were proposed by Misoczki et
al. for use in the McEliece scheme. The use of QC-MDPC codes avoids attacks applic-
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able when using low-density parity-check (LDPC) codes and also allows for keyswith
short size. Although we focus on decoding for a particular instance of the p-ary QC-
MDPC scheme, our new decoding algorithm is also a general decoding method for p-
aryMDPC-like schemes. This algorithm is a bit-flipping decoder, and its performance
is improved by varying thresholds for the different iterations. Experimental results
demonstrate that our decoders enjoy a very low decoding failure rate for the chosen
p-ary QC-MDPC instance. This is the result of joint work with Guo and Johansson.
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Introduction

Communication is one of the fundamental processes within human civilization. The
discovery of rudimentary forms of it, such as paintings in caves, shows that human-
ity has tried to share information since ancient times. Communication can occur in
different ways, for example, it can be verbal, non-verbal or written. The development
of language is perhaps among the most important events in human history. Having a
mutually understood set of rules for communication (e.g., symbols or sounds) facilit-
ates the exchange of information between sender and receiver.

Information may have different levels of importance. We might consider some
information irrelevant and not care about who has access to it. Some other inform-
ation could be valuable, we may even invest resources in ensuring that it is securely
transmitted and stored. The meaning of security can vary depending on the context.
For instance, we may have a situation in which security means that the information
is accessible only to the entitled entities. In another situation, security may mean to
ensure that the transmitted information is actually being sent by the real sender and
not by someone else. Information security can be defined in terms of security services
like:

• Confidentiality: the information is protected from unauthorised access or dis-
closure.

• Authentication: ensure that an entity is indeed who it claims to be.

• Integrity: ensure that the information is not altered or destroyed in an unauthor-
ised manner.

• Non-repudiation: avoid that an entity involved in the communication process
denies having participated in it.

• Availability: ensure that the information is accessible and usable by an entitled
entity.

1



2 1. Introduction

This list is by no means exhaustive. Actually, important efforts have been made in
defining these and other security services [Tec00; Stu91].

As human society evolves, the means of communication also evolve. Perhaps the
most striking change occurred during the 20th century with the development of di-
gital communication. Given the ease of access to devices like digital computers and
smartphones, we are able to communicate practically at all times. The current status
of digital communication allows us to enjoy services tailored to our personal needs
and preferences, and in some cases has drastically reduced, even replaced, human
interaction. Historically, it was believed that only governments and big organisations
were concerned about the security of their information. Nowadays, however, everyone
communicating through a public insecure communication channel (e.g., the internet)
can be the target of an attack. Never before has the need to securely exchange and
store sensitive information been more required.

Cryptography can be defined as the study of mathematical techniques for securing
digital information, systems, and distributed computations against adversarial attacks
[KL14]. Some security services can be attained by only employing basic cryptographic
primitives or tools, like cryptosystems, signature schemes and hash functions. These tools
can also be used in more complex cryptographic protocols, which are communication
protocols to perform a security-related function. In this manuscript, we will focus on
certain cryptosystems and attacks against them.

1.1 Cryptosystems
Cryptosystems are cryptographic tools used mainly to achieve confidentiality. Form-
ally, a cryptosystem can be defined [Buc04] as a tuple (P,C,K,E,D) such that

1. P is a set called plaintext space and its elements are called plaintexts;

2. C is a set called ciphertext space and its elements are called ciphertexts;

3. K is a set called key space and its elements are called keys;

4. E = {Ek : k ∈ K} is a family of functions Ek : P → C and its elements are called
encryption functions;

5. D = {Dk : k ∈ K} is a family of functions Dk : C→ P and its elements are called
decryption functions, and

6. For each ke ∈ K, there is kd ∈ K such that Dkd
(Eke

(p)) = p for all p ∈ P.

As it is usual in the literature, our friends Alice and Bob will yet again establish
communication through an insecure channel. Alice wants to send a message m, the
plaintext, to Bob. She does not want anyone but Bob to get the information contained
in the message. To achieve this, Alice encrypts the message m using the encryption key
ke, i.e., she gets the ciphertext c = Eke

(m). Alice sends c to Bob through the insecure
channel. Upon receiving c, Bob decrypts c using the decryption key kd to recover the
original message as m = Ddk

(c). This interaction is depicted in Figure 1.1.
Cryptosystems can be classified as symmetric, or private-key, cryptosystems and

asymmetric, or public-key, cryptosystems. In the first type, the key used for encryption
is the same as that used for decryption, i.e., ke = kd. When a symmetric cryptosystem
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.m Eke c

Alice

c Dkd
m

Bob

Insecure communication channel

Figure 1.1. Usage of a cryptosystem to communicate through an insecure channel.

is to be used, the communicating parties must share the secret key before they start
sending messages. Once the key has been established, it must be kept secret, since
anyone possessing it will be able to decrypt the transmitted messages. Asymmetric
cryptosystems, on the other hand, make use of different keys for encryption and de-
cryption. Diffie and Hellman introduced the idea of public-key cryptography in their
seminal paper [DH76] of 1976. In these cryptosystems, the encryption (or public)
key ke is made public and the decryption (or secret) key kd must be kept secret. It is
required that obtaining kd from ke is infeasible. Encryption can be done in principle
by everybody (since the encryption key is public) and only the owner of the private
key is able to decrypt the messages.

Securely exchanging the secret key is an important problem when using private-
key cryptography. However, this problem can be solved easily employing public-key
cryptography. The communicating parties can use a public-key cryptosystem within
a key exchange protocol (Diffie-Hellman protocol [DH76]) to agree on a shared secret,
the key for a private-key cryptosystem. Alternatively, the key can be encrypted with
a public-key cryptosystem and then transmitted. This process is called hybrid crypto-
graphy.

In general, public-key cryptosystems are slower in performing the encryption and
decryption operations compared to private-key cryptosystems. It is then advisable to
use public-key cryptosystems to exchange short messages and private-key cryptosys-
tems to exchange long messages.

1.2 Attacks against cryptosystems and security
In order to define what a successful attack against a cryptosystem is (or other cryp-
tographic primitives and protocols), we need to specify the goal of the attacker. One
natural goal is to recover the secret key. This is one of the strongest goals to achieve
(perhaps the strongest one), since the attacker would then be able to decrypt all fur-
ther communication. Another goal might be to fully or partially recover the plaintext
corresponding to a given ciphertext. It might also be to distinguish whether a given
string of symbols is a ciphertext obtainedwith a cryptosystemor a randomly generated
string.

It is also important to specify the power or capabilities the attacker has when per-
forming the attack. Here, it is common to follow the idea behind one of Kerckhoffs’s
Principles [Ker83]: the security of a cryptosystem must lie in the choice of its keys
only, everything else (including the encryption and decryption functions) should be
considered public information. There are several threat or attack models that capture
the capabilities of the attacker. Many textbooks and monographs on cryptography
provide detailed explanations; see for example [KL14; SP17; Buc04]. Herewemention
some of them, in increasing order of power for the attacker, and give a brief explana-
tion:
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• Ciphertext-only attack. In this model, the attacker has access only to a number of
ciphertexts.

• Known-plaintext attack. The attacker has access to plaintexts and their corres-
ponding ciphertexts.

• Chosen-plaintext attack. As in the previous model, the attacker can obtain plain-
text/ciphertext pairs, but the plaintexts are chosen by the attacker. (In a public-
key cryptosystem such attacks are always possible since the encryption key is
public.)

• Chosen-ciphertext attack. The attacker can choose ciphertexts and get the corres-
ponding plaintexts.

In all cases, the same secret key is used for all encryptions and decryptions. In the
last three cases, the attacker must obtain information on a plaintext different from
the ones already known and the ones corresponding to the ciphertexts used while
performing the attack. Also, in a given model, the attacker has the capabilities of the
previous weaker models, e.g., a chosen-plaintext attack implies ciphertext-only and
known-plaintext attacks.

Once the attacker’s goal and capabilities are defined, the security of a cryptosystem
can be analysed. If the attacker is able to fulfil its goal given the attack model, we
may consider the cryptosystem to be “broken” under this attack. Otherwise, we may
consider the cryptosystem to be secure.

The security of a cryptosystemmay be supported by rigorous formal proofs which
show that the cryptosystem satisfies a given definition under certain clearly specified
assumptions. When using this approach to proving security, we say that the cryptosys-
tem is provably secure. A proof of security is always relative to the considered defin-
itions and assumptions made. The proof may be irrelevant if the definitions and/or
assumptions are incorrect, or if the model does not match the adversary’s real capab-
ilities. Another approach to proving security is computational security. Here, the idea
is to show that, currently, it is computationally infeasible to break the system, i.e., the
attacker cannot break the cryptosystem in a reasonable amount of time using a reas-
onable amount of computational resources. However, the drawback of this approach
is that cryptosystems considered computationally secure nowmight become insecure
in the future. Regardless of the approach, the security of modern cryptosystems relies
on the assumption that a problem is hard to solve. In this context, hard means that
there is no known algorithm to solve the problem in question within reasonable (e.g.,
polynomial) time.

The security notions above do not necessarily imply security in the real world.
For instance, cryptographic implementations in hardware and software may intro-
duce vulnerabilities that the models cannot capture. Attacks against implementa-
tions which take advantage of these vulnerabilities are known as side channel attacks.
They exploit information that can be gathered from the target device, such as power
consumption, timing information, electromagnetic information and even sound. Ex-
amples of these are timing attacks, fault attacks, power analysis attacks and cache
attacks.



1.3. Some private-key primitives 5

1.3 Some private-key primitives
Private-key cryptography encompasses different primitives like stream ciphers, block
ciphers and hash functions, among others. Here, we give a brief presentation of stream
and block ciphers. The main topic of this manuscript is on a particular type of stream
ciphers. We briefly present block ciphers due to their importance in practical crypto-
graphic applications.

1.3.1 Stream ciphers
A stream cipher generates a pseudorandom sequence of symbols called keystream or run-
ning key. Informally, a pseudorandom sequence is a sequence that is difficult to dis-
tinguish from a true random sequence. The keystream is produced by the cipher’s
keystream generator whose initial state is determined by the secret key (and possibly
some additional parameters like an initialisation vector). The state of the generator is
updated constantly in order to produce the keystream symbols. Stream ciphers can
be classified according to how the state of the generator is updated. In a synchronous
stream cipher, the keystream is generated independently of the plaintext and cipher-
text. An asynchronous or self-synchronising stream cipher, on the other hand, employs
some symbols from the ciphertext to produce the keystream.

In order to encrypt a message, the keystream is “added” symbol by symbol to the
plaintext to produce the ciphertext. Decryption is achieved by generating the same
keystream and “subtracting” it from the ciphertext. When the symbols are bits, the
addition and subtraction operations correspond to bitwise XOR. Figure 1.2 shows, in
a general level, encryption and decryption using a synchronous stream cipher.

.Keystream
generator

s1 s2 s3 . . . sℓ

+

Stream cipher

k

p1 p2 p3 . . . pℓ

Encryption

Keystream
generator

s1 s2 s3 . . . sℓ

+

Stream cipher

k

p1 p2 p3 . . . pℓ

Decryption

c1 c2 c3 . . . cℓ

Figure 1.2. Encryption and decryption using a synchronous stream cipher with the secret
key k.

Linear feedback shift registers (LFSRs) have been extensively used in the design of
stream ciphers. An LFSR can be seen as an array of n cells alongwith a linear feedback
loop involving some of the cells. The content of the array is called the state of the LFSR.
Without loss of generality, we will assume the feedback loop is connected to the left-
most cell. The state is updated at each “clock tick” by shifting the contents of the cells
to the right and the new value of the left-most cell is computed by the feedback loop.
At each clock tick, the LFSR outputs the value of the right-most cell, thus producing an
output sequence. Figure 1.3a depicts a model of an LFSR. These devices are popular
due to ease and efficiency of implementation and the good statistical properties of
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the generated sequence. Due to the linearity of the feedback, however, LFSRs are not
used directly to produce the keystream of a stream cipher. Some nonlinearity must be
added for this purpose.

. . . .

+ + . . . +

(a) Linear feedback shift register.

. . . .

Nonlinear function

(b) Nonlinear feedback shift register.

Figure 1.3. Models of feedback shift registers used in the design of stream ciphers.

One way to add nonlinearity is by employing a nonlinear feedback shift register
(NFSR). NFSRs are similar to LFSRs except that, as the name implies, the feedback is
a nonlinear function on the cells of the array. Figure 1.3b depicts a model of an NFSR.
Another option to add nonlinearity is to “combine” the output sequences of several
LFSRs using a nonlinear function. This construction is known as combination generator
and the nonlinear function is also called the combining function. An alternative is to
use a nonlinear function that takes as input the values of some cells from an LFSR and
the output sequence is then given by the output of the function. This construction is
known as filter generator and the nonlinear function is also called the filtering function.
Figures 1.4a and 1.4b showmodels of a combination and filter generator, respectively.

.

LFSR1

LFSR2

. . .

LFSRn−1

LFSRn

Nonlinear
function

(a) Combination generator.

. . . .

+ + . . . +

Nonlinear function

(b) Filter generator.

Figure 1.4. Some keystream generator constructions employing LFSRs.

Modern stream ciphers combine LFSRs, NFSRs, the constructions above and other
elements in different ways to generate the keystream. Nowadays, the use of stream
ciphers is much lower compared to block ciphers. The latter may work as stream
ciphers by employing certain modes of operations. However, dedicated stream ciphers
are still needed when particularly high throughput is required in software or excep-
tionally low resource usage is required in hardware.

1.3.2 Block ciphers
A block cipher performs encryption and decryption in blocks of symbols. Let n be
the length of the blocks. The cipher specifies an encryption algorithm that uses the
secret key (and some additional parameters like an initialisation vector) to compute
the length-n ciphertext from a given length-n plaintext. The cipher also specifies the
decryption algorithm to recover the plaintext corresponding to the given ciphertext
and secret key (and additional required parameters). The whole plaintext is divided
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in blocks of length n and encrypted block by block according to amode of operation (see
for example [SP17; KL14; NIS] for more details). If the length of the plaintext is not
a multiple of n, then it is padded (i.e., data is added to the plaintext) so that all blocks
have length n. Figure 1.5 shows, in a general level, encryption and decryption using a
block cipher.

.Block cipher
encryption

k

p1 p2 . . . pn

Encryption

Block cipher
decryption

k

p1 p2 . . . pn

Decryption

c1 c2 . . . cn

pn+1 . . . p2n

...
pℓ X . . . X

. . .
...
. . .

Figure 1.5. Encryption and decryption using a block cipher with the secret key k. The
plaintext is divided in blocks of length n; padding is required when the length ℓ of the
plaintext is not a multiple of n. The mode of operation will dictate the encryption and
decryption process when the amount of data is larger than one block.

It is important for the security of a block cipher that every bit in the input affects
many bits in the output, ideally every bit. A technique towards achieving this is the
confusion-diffusion approach. The idea is to have two simple layers of operations that
shuffle and mix the input data. One layer corresponds to the confusion part and the
other to the diffusion part of the process. Applying these two layers together corres-
ponds to what is called a round. Several rounds are applied iteratively, thus helping
ensure that one bit of the input affects many output bits.

A Substitution-permutation network (SPN) is a practical construction that follows
the confusion-diffusion approach. An SPN makes use of a set of fixed permutations
called S-boxes and their outputs are mixed according to a given mixing permutation.
Each round in an SPN takes as input a block of data and its own round key. All round
keys are derived from the secret key, also called master key in this context. At a high
level, the input block is mixedwith the corresponding round key, then the S-boxes and
mixing permutation are applied to produce the output block. The output of a round is
fed as the input block to the next round along with its corresponding round key. It is
customary that the output of the final round undergoes a final mixing step to produce
the final output of the SPN. Given the secret key, any SPN is invertible. Figure 1.6
shows the high level structure of the first two rounds of an SPN.

Feistel networks are another approach for designing block ciphers. Compared to an
SPN, a Feistel network may use functions that are not invertible. This characteristic
allows the cipher to have “less structure” compared to the inherent structure an SPN
has due to the usage of invertible components only. S-boxes and mixing permutations
may be used as well, however, any type of functions can be employed. A Feistel net-
work is also composed of rounds andmakes use of round keys derived from the secret
(master) key. The length-n input to the i-th round is divided into two halves, denoted
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. k1 mixing

k2 mixing

S1

S1

S2

S2

S3

S3

S4

S4

input block

Figure 1.6. Model of a substitution-permutation network.

Li−1 and Ri−1. The output (Li,Ri) of that round is given by

Li = Ri−1 and Ri = Li−1 ⊕ fi(ki,Ri−1),

where ki is the round key for the i-th round. Figure 1.7 depicts the high level overview
of the first three rounds of a Feistel network.

.

f1+
k1

f2+
k2

f3+
k3

L0 R0

L3 R3

Figure 1.7. Model of a Feistel network.

1.4 Public-key cryptosystems
As mentioned before, public-key cryptosystems make use of different keys, a public
encryption key ke and a secret decryption key kd. It is required that obtaining kd

from ke is computationally infeasible. Additionally, the encryption function should
be easy to compute, while the decryption function (i.e., its inverse) should be hard
to compute for anyone not knowing the corresponding decryption key. A function
that is easy to compute but hard to invert is called a one-way function. Even though
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decryption alone is hard, knowing the decryption key makes it possible to recover the
plaintext from the ciphertext. The decryption key can then be considered as a trapdoor.
A function that is one-way but becomes easy to invert with the knowledge of certain
information is called a trapdoor function. The security of public-key cryptosystems is
based on problems believed to be hard and conjectured one-way functions based on
those problems.

1.4.1 Integer factorisation and discrete logarithm
The security of many public-key cryptosystems rely on problems from number theory
that are believed to be hard. In this context, hard means that there are no known
polynomial-time algorithms for solving them. Rivest, Shamir and Adleman created
one of the best known public-key cryptosystems, the RSA cryptosystem [RSA78],
whose security is based on the hardness of factoring large integers. Another cryptosys-
tem based on integer factorisation is the Rabin cryptosystem [Rab79]. The ElGamal
cryptosystem [ElG85a; ElG85b] and many elliptic curve cryptosystems base their se-
curity on the difficulty of the discrete logarithm problem.

The best known algorithms for solving the problems above are nonpolynomial in
time. However, they are better than brute force and must be considered when assess-
ing the security of cryptosystem relying on those problems. Among the algorithms for
integer factorisation, we canmention Pollard’s p−1 algorithm, Pollard’s rho algorithm
and the number field sieve. For the discrete logarithm, we have the Pohlig-Hellman al-
gorithm, the baby-step/giant-step algorithm and the index calculus algorithm, among
others. For further details on these algorithms, we refer to the existing literature, for
example [KL14; SP17; Buc04].

1.4.2 Post-quantum public-key cryptosystems
The algorithms in Section 1.4.1 belong to a class called classical algorithms since they
are performed by conventional digital (or classical) computers. If large-scale quantum
computers are built, theywill be able to efficiently solve problems that are hard for clas-
sical computers. Particularly, theywould solve the factorisation anddiscrete logarithm
problems in polynomial time [Sho97]. Hence, many of the public-key cryptosystems
currently in use would be broken. Post-quantum or quantum-resistant cryptography
refers to cryptographic systems that are secure against attacks by both quantum and
classical computers. The impact on the security of symmetric-key cryptography will
not be as serious. Grover’s quantum search algorithm [Gro96] provides a quadratic
speed-up compared to search algorithms on classical computers. Doubling the key
size would be sufficient to preserve security. Additionally, exponential speed up for
search algorithms seemsunfeasible, which indicates that symmetric-key cryptography
is still serviceable in the post-quantum era [Ben+97].

The search for algorithms believed to be resistant against classical and quantum
attacks has beenmainly focused on public-key cryptography. We give a brief overview
of the main classes of post-quantum cryptographic systems:

• Lattice-based cryptography. Cryptosystems in this class employ objects called
lattices. These cryptosystems enjoy strong provable security proofs based on
worst-case hardness, relatively efficient implementations and simplicity. Some
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efficient constructions for practical use, however, lack a supporting security
proof.

• Code-based cryptography. These are cryptosystems in which the underlying
one-way function uses an error-correcting code. While encryption and decryp-
tion are efficient, the main disadvantage of most code-based primitives is the
very large key sizes.

• Multivariate polynomial cryptography. These schemes are based on the hard-
ness of solving systems of multivariate polynomials over finite fields. Many
multivariate cryptosystems have been proposed and several have been broken.
Multivariate cryptography has been more successful for signature schemes.

• Isogeny-based cryptography. This class of cryptosystems employ isogenies on
supersingular elliptic curves. Even though the discrete logarithmproblem can be
efficiently solved using a quantum computer, there is no known quantum attack
for the isogeny problem on supersingular curves. One of the disadvantages is
that there has not been enough analysis to havemuch confidence in their security.

• Hash-based signatures. Hash-based signatures are digital signatures construc-
ted using hash functions. Their security relies on the collision resistance of the
hash function.

The Post-Quantum Cryptography Standardization process, organised by the Na-
tional Institute of Standards and Technology (NIST), is perhaps one of the most im-
portant efforts in post-quantumpublic-key cryptography. The goal of this process is to
evaluate and standardise one or more quantum-resistant public-key cryptographic al-
gorithms. At the time ofwriting thismanuscript, the process is at the final third round,
and according to the report from the previous round, NIST expects to select a small
number of candidates from round three for standardisation by early 2022. Regarding
encryption systems and key exchange, there are 3 lattice-based and 1 code-based pro-
posals. Among the alternate finalists for encryption systems and key exchange, there
are 2 lattice-based, 2 code-based and 1 isogeny-based proposals.

Overview
Chapter 2 provides the foundations for the remaining chapters. We give the relevant
results and statements without proofs. Results on finite fields, polynomials over finite
fields, probability and statistics are presented first. Then, we introduce relevant results
on Boolean functions, LFSRs, LFSR sequences and the required background on coding
theory.

The main topic of this manuscript is cryptanalysis of LFSRs-based stream ciphers.
Particularly, we focus on key recovery attacks against the filter generator in Chapter 3.
We first present this device with more detail. There are different classes of key recov-
ery attacks targeting the filter generator. Fast correlation attacks are, perhaps, among
the most important class of attacks. We describe the original idea and briefly present
some subsequent variations. We also describe some deterministic attacks, which are
interesting due to how these cryptanalytic techniques exploit the characteristics of the
filter generator. The approach and techniques in algebraic attacks are different from
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the ones studied in this manuscript, however, we briefly present them due to their
general relevance.

In Chapter 4, we present a new key recovery attack against the filter generator.
This chapter is based on joint work with Semaev. First, we model the attack as a more
general problem: finding the solution of multiple systems of linear equations with as-
sociated probability distributions on the set of solutions. A first attempt to solving this
problem is the multivariate correlation attack. This can be seen as a generalisation of
the original correlation attack by Siegenthaler [Sie85]. The drawback of the multivari-
ate attack is its high time complexity. We then introduce a new method with lower
time complexity, the test-and-extend algorithm. This novel algorithm requires (i) the
computation of relations modulo B, where B is a matrix over a finite field, and (ii) a set
of probability distributions induced by these relations. The relations can be seen as
a generalisation of parity-checks used in fast correlation attacks. Different techniques
for computing the distributions associated to these relations are presented. We apply
our new algorithm to some hard instances of the filter generator and conclude the
chapter showing a theoretical application against the Grain-v1 cipher [HJM07].

Chapter 5 is on new decoders for quasi-cyclic moderate density parity-check (QC-
MDPC) codes over a finite field Fp. This chapter is based on joint work with Guo and
Johansson. We first provide the required background on p-aryMDPC schemes. Then,
wepresent a bit-flippingdecoding algorithm for a particular instance of these schemes.
We improve the decoding failure rate of the algorithm by varying thresholds. We also
introduce two techniques to obtain these thresholds. We then show our experimental
results of applying the novel decoder to the chosen p-ary QC-MDPC instance.

The contributions of this work are:

• Newmethods for cryptanalysis of LFSR-based stream ciphers. Namely, the mul-
tivariate correlation attack and the test-and-extend algorithm.

• We introduce relations modulo a matrix B and two procedures to obtain them.
Also, various techniques to compute the probability distributions induced by
these relations are shown.

• New numerical and theoretical results on cryptanalysis of hard instances of the
filter generator. Particularly, our new test-and-extend algorithm allows success-
ful recovery of the LFSR’s initial state using a low number of keystream bits (see
Section 4.7.3) compared to published attacks.

• An improvement in the number of keystream bits required to recover the LFSR’s
initial state for Grain-v1 with a trade-off on time complexity. This is done with
the multivariate correlation attack.

• Computation of linear approximations to Grain-v1 with higher correlation than
that reported in [Tod+18].

• To the best of our knowledge, a new highly parallelisable method to compute the
FFT of a large input vector.

• A novel decoding algorithm for the p-ary MDPC scheme. The basic idea is to
vary the decision thresholds at each iteration.
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• Two methods for obtaining the thresholds for the decoder. The first one uses
a theoretical analysis analogous to the one done by Gallager [Gal62] for LDPC
codes. The second is a heuristic approach and it yielded the best decoding res-
ults.
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Preliminaries

In this chapter, we present definitions and known results that are fundamental
throughout this monograph. The results are presented without proofs. Section 2.1
introduces the relevant algebraic objects and some of their properties. We give the
necessary background on probability and statistics in Section 2.2. Section 2.3 contains
the definitions and results on Boolean functions. In Section 2.4, linear feedback shift
registers and their sequences are discussed. Then, the basics of coding theory are
presented in Section 2.5. The background for Chapter 5 on the McEliece cryptosystem
and MDPC codes is in Section 5.1. We do not present that content here since it is not
required in the other chapters. We refer the reader to the different sources throughout
this chapter and Section 5.1 for further details and proofs.

2.1 Algebra
We will assume familiarity with basic algebraic structures and maps between them.
Particularly, we assume background on groups, rings and polynomials. However, here
we state relevant definitions and results for the remaining sections and chapters. We
refer to the existing literature, e.g. [LN96; Lan02], for a thorough treatment of the
different topics covered here.

2.1.1 Definitions
Let (R,+, ·) be a ring. We will refer to the operations + and · as addition and multi-
plication, respectively, and we will simply use R to denote (R,+, ·). Let a,b ∈ R. The
additive inverse of awill be denoted −a, b+ (−a)will be written b− a, and a · bwill
be written ab.

A ring R is called commutative if commutativity holds for multiplication, i.e., ab =
ba for all a,b ∈ R. A ring R is called ring with identity if it has an identity with respect

13
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to multiplication, i.e., there is an element e such that ae = ea = a for all a ∈ R.
Unless otherwise stated, a ringwill be a commutative ringwith identity. In the rest,

R will denote a ring. We use 0 to represent the zero element of a ring, i.e., its identity
element with respect to addition. The (multiplicative) identity will be denoted by 1.
In general, 1 might be equal to 0 in R; in that case, R is the zero ring and it contains only
the zero element. We will assume that 1 6= 0.

Definition 2.1.1. A subring of R is a subset S of R that is itself a ring under + and ·.

Definition 2.1.2. An ideal of R is a subset I of R that is a subring of R and for all a ∈ I

and r ∈ R, ar ∈ I.

Definition 2.1.3. The smallest ideal of R containing an element a ∈ R is the ideal
(a) = {ar : r ∈ R}. It is the ideal generated by a. If an ideal I of R is generated by one
element, I is called a principal ideal.

Definition 2.1.4. Let I be an ideal of R. The quotient ring of R modulo I, denoted by
R/I, is the ring with sum and multiplication given by (a + I) + (b + I) = (a + b) + I

and (a+ I)(b+ I) = (ab) + I, respectively.

Definition 2.1.5. If there exists a positive integer n such that nr = 0 for every r ∈ R,
then the least such positive integer n is called the characteristic of R. If no such integer
n exists, R has characteristic 0.

A polynomial over R is an expression of the form

a0 + a1x
1 + · · ·+ anx

n,

wheren is a nonnegative integer, ai ∈ R and x is a symbol not belonging toR, called the
indeterminate. The arithmetic of polynomials over a ring R is analogous to that of (the
more familiar) polynomials with real or complex coefficients; see for example [LN96]
for precise definitions. The zero polynomial, denoted by 0, is the polynomial whose
coefficients are all equal to 0. Let f(x) =

∑n

i=0 aix
i be a polynomial over R that is not

the zero polynomial. Then, an 6= 0 is called the leading coefficient, a0 the constant term
and n the degree of f(x). If f(x) is the zero polynomial, its degree is −∞. Polynomials
of degree ⩽ 0 are called constant polynomials. A monic polynomial is a polynomial with
leading coefficient equal to 1.

Definition 2.1.6. The set of polynomials over a ring R together with polynomial sum
and multiplication form a ring called the polynomial ring over R and it is denoted by
R[x].

Definition 2.1.7. A field F is a commutative ring such that the nonzero elements of F
form a group under multiplication. If F contains a finite number of elements, F is a
finite field.

Definition 2.1.8. Let F be a field. A subfield of F is a subset K of F that is itself a field
under + and ·. F is called an extension (field) of K. If K 6= F, K is a proper subfield of F.

Definition 2.1.9. A field containing no proper subfields is called a prime field.

Definition 2.1.10. The intersection of all subfields of a field F is again a subfield of F.
It is called the prime subfield of F and it is a prime field.
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In the rest, F will denote a field. If F is an extension of K, then F may be viewed as
a vector space over K.

Definition 2.1.11. Let F be an extension of K. The dimension of the vector space F over
K is called the degree of F over K.

Definition 2.1.12. A polynomial f ∈ F[x] is said to be irreducible over F, or irreducible in
F[x], if f has positive degree and f = gh with g,h ∈ F[x] implies that either g or h is a
constant polynomial.

Definition 2.1.13. An element a ∈ F is called a root, or a zero, of the polynomial f ∈ F[x]
if f(a) = 0.

Definition 2.1.14. LetK be a subfield of F and θ ∈ F. If θ satisfies a polynomial equation
anθ

n + · · ·+a1θ+a0 = 0 with ai ∈ K not all being 0, then θ is said to be algebraic over
K.

Definition 2.1.15. If θ ∈ F is algebraic over K, then the unique monic polynomial g ∈
K[x] generating the ideal J = {f ∈ K[x] | f(θ) = 0} of K[x] is called theminimal polynomial
of θ over K.

Definition 2.1.16. Let F be an extension of K and f ∈ K[x] be of positive degree. Then
f is said to split in F if f can be written as a product of linear factors in F[x], i.e., if there
exist elements α1, . . . ,αn ∈ F such that

f(x) = a(x− α1) · · · (x− αn),

where a is the leading coefficient of f. The field F is a splitting field of f over K if f splits
in F.

A splitting field F of f over K is the smallest field containing all the roots of f, i.e.,
no proper subfield of F that is an extension of K contains all the roots of f.

2.1.2 Finite fields and polynomials over finite fields
Theorem 2.1.17 ([LN96, Corollary 1.45]). A finite field has prime characteristic.

Particularly, if p ∈ Z is prime, the finite field with p elements has characteristic p.

Theorem 2.1.18 ([LN96, Theorem 1.78]). Let F be a field of prime characteristic p. The
prime subfield of F is isomorphic to the finite field with p elements.

Theorem 2.1.19 ([LN96, Lemma 2.1, Theorem 2.2, Theorem 2.5]).

• Let F be a finite field containing a subfield K with q elements. Then F has qm elements,
wherem is the degree of F over K.

• Let F be a finite field. Then F has pn elements, where the prime p is the characteristic of
F and n is the degree of F over its prime subfield.

• For every prime p and every positive integer n there exists a finite field with pn elements.
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Let p be a prime integer. The finite field with p elements will be denoted by Fp.
The finite field with q = pn elements will be denoted by Fq. An extension field of Fq

of degreem will be denoted by Fqm .
Let p be the characteristic of Fq, where q = pn, and let f ∈ Fp[x] be irreducible of

degree n. The elements of Fq can be represented as polynomials in Fp[x] of degree
less than n. Then, we may regard Fq as the ring Fp[x]/(f).
Theorem 2.1.20 ([LN96, Theorem 2.8]). For every finite field Fq the multiplicative group
F∗
q of nonzero elements of Fq is cyclic.

Definition 2.1.21. A generator of the cyclic group F∗
q is called a primitive element of Fq.

Definition 2.1.22. Let f ∈ Fq[x] be a nonzero polynomial. If f(0) 6= 0, the least positive
integer e for which f(x) divides xe − 1 is called the order of f (sometimes also called
the period of f or the exponent of f). If f(0) = 0, then f(x) = xhg(x), where h ∈ N and
g ∈ Fq[x] with g(0) 6= 0 are uniquely determined; the order of f is then defined to be
the order of g.
Theorem 2.1.23 ([LN96, Corollary 3.4]). If f ∈ Fq[x] is an irreducible polynomial over Fq

of degreem, then the order of f divides qm − 1.
Definition 2.1.24. A polynomial f ∈ Fq[x] of degreem is called a primitive polynomial
over Fq if it is the minimal polynomial over Fq of a primitive element of Fqm .

A primitive polynomial over Fq of degree m can be described as a monic polyno-
mial which is irreducible over Fq and has a root α ∈ Fqm that is a primitive element of
Fqm .
Theorem 2.1.25 ([LN96, Theorem 3.16]). A polynomial f ∈ Fq[x] of degree m is a prim-
itive polynomial over Fq if and only if f is monic, f(0) 6= 0, and the order of f is equal to
qm − 1.

The remaining definitions and results are applicable to an arbitrary field F. In the
context of this manuscript, we are interested in the case that F is a finite field.
Definition 2.1.26. Let n be a positive integer. The splitting field of xn− 1 over a field F

is called the n-th cyclotomic field over F and denoted by F(n). The roots of xn − 1 in F(n)

are called the n-th roots of unity over F and the set of all these roots is denoted by E(n).
Theorem 2.1.27 ([LN96, Theorem 2.42]). Let n be a positive integer and F a field of char-
acteristic p. If p does not divide n, then E(n) is a cyclic group of order n with respect to
multiplication in F(n).
Definition 2.1.28. Let F be a field of characteristic p and n a positive integer not divis-
ible by p. Then a generator of the cyclic group E(n) is called a primitive n-th root of unity
over F.
Definition 2.1.29. Let F be a field of characteristic p, n a positive integer not divisible
by p and ζ a primitive n-th root of unity over F. Then the polynomial

Cn(x) =

n∏
s=1

gcd(s,n)=1

(x− ζs)

is called the n-th cyclotomic polynomial over F.
The polynomial Cn(x) is independent of the choice of ζ. It has degree ϕ(n) and its

roots are all the ϕ(n) different primitive n-th roots of unity over F, where ϕ is Euler’s
totient function.
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2.2 Probability and Statistics

2.2.1 Basic definitions
Definition 2.2.1. A sigma algebra of a set S, denoted by S, is a collection of subsets of S
satisfying the following properties:

• ∅ ∈ S.

• If A ∈ S, then AC ∈ S, where AC = S \A is the complement of A.

• If A1,A2, · · · ∈ S, then
⋃∞

i=1 Ai ∈ S.

Definition 2.2.2. The sample space of an experiment is the set of all possible outcomes
for that experiment. An event is a subset of the sample space.

The terms set and event may be used interchangeably. Let A be an event. If the
outcome of an experiment is in the set A, we say that the event occurs.

Definition 2.2.3. Two eventsA and B aremutually exclusive ifA and B are disjoint, i.e.,
A ∩ B = ∅. The events A1,A2, . . . are pairwise mutually exclusive if they are pairwise
disjoint, i.e., Ai ∩Aj = ∅ for all i 6= j.

Definition 2.2.4. Let S be a sample space and S a sigma algebra of S. A probability
function is a function P with domain S satisfying the following properties:

• P(A) ⩾ 0 for all A ∈ S.

• P(S) = 1.

• If A1,A2, · · · ∈ S are pairwise disjoint, then P(
⋃∞

i=1 Ai) =
∑∞

i=1 P(Ai).

If S is a finite set, a probability function can equivalently be defined as follows
[CB02, Theorem 1.2.6]: Let S = {s1, . . . , sn} and S a sigma algebra of S. Let p1, . . . ,pn

be nonnegative numbers that sum to 1. For any A ∈ S, define

P(A) =
∑

{i:si∈A}

pi,

where the sum over an empty set is defined to be 0.

Definition 2.2.5. Let A and B be events in S, and P(B) > 0. Then, the conditional
probability of A given B, denoted by P(A|B), is

P(A|B) =
P(A ∩ B)

P(B)
.

Conditional probabilities can be understood as the situation in which the original
sample space S has been updated to the sample space B. The probability of any event
A is then adjusted with respect to B.

Definition 2.2.6. Two events A and B are independent if P(A ∩ B) = P(A)P(B). A
collection of events A1, . . . ,An are mutually independent if P(

⋂k

j=1 Aij) =
∏k

j=1 P(Aij)
for any subcollection Ai1 , . . . ,Aik .
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If A and B are independent events, from the definition of conditional probability,
we have that P(A|B) = P(A). That is, the occurrence ofB does not affect the probability
of the event A.

The probability of the events A1, . . . ,An occurring at the same time is P(A1 ∩ · · · ∩
An). We will use P(A1, . . . ,An) to denote P(A ∩ · · · ∩An).

Definition 2.2.7. A random variable is a function defined on a sample space into R.

When a randomvariable is defined, a new sample space is also defined, namely, the
image of the random variable. Let S be a sample space, let P be a probability function
of S and let us define a random variable X with image X. The induced probability
function PX on (the sample space) X is defined as follows: For any set A ⊂ X,

PX(X ∈ A) = P({s ∈ S : X(s) ∈ A}).

We will use uppercase letters to denote random variables and lowercase letters to
denote the realised values of the variables. We will also simply write P(·) instead of
PX(·).

Definition 2.2.8. A random variable X is discrete if its image is countable (i.e., a finite
set or a countably infinite set). If the image of X is uncountably infinite, then X is a
continuous random variable.

Definition 2.2.9. Let X and Y be random variables. If, for every A ⊂ R, P(X ∈ A) =
P(Y ∈ A), then X and Y are identically distributed.

Remark that if X and Y are identically distributed random variables, they are not
necessarily equal, i.e., it does not imply that X = Y.

Definition 2.2.10. The cumulative distribution function (cdf ) of a random variable X is
defined by

FX(x) = P(X ⩽ x), for all x.

The cdf FX completely determines the probability distribution of a randomvariable
X. If the random variables X and Y are identically distributed, then FX(x) = FY(x) for
every x [CB02, Theorem 1.5.10].

Definition 2.2.11. The probability mass function (pmf ) fX of a discrete random variable
X is

fX(x) = P(X = x), for all x.
The probability density function (pdf ) fX of a continuous random variable X is the func-
tion that satisfies

FX(x) =

∫x

−∞ fX(y)dy, for all x.

The pmf or pdf contains the same information as the cdf. Hence, either FX(x) or
fX(x) can be used to describe a probability distribution. If X has a distribution given
by FX(x) (or fX(x)), it is customary to write X ∼ FX(x) (or X ∼ fX(x)); similarly, if X
and Y have the same distribution, we may write X ∼ Y.

Definition 2.2.12. Let f(x) be a probability distribution with sample space X. The
support of f(x) is the set {x ∈ X : f(x) > 0}.
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Any function of a random variable is also a random variable. Let X be a random
variable with sample space X and let Y = g(X) with sample space Y. Also, let g−1

denote the inverse map of g, defined by g−1(A) = {x ∈ X : g(x) ∈ A}, where A ⊂ Y.
The probability distribution of Y can be described in terms of that of X: For any set A,

P(Y ∈ A) = P(g(X) ∈ A) = P(X ∈ g−1(A)).

Definition 2.2.13. The expected value or mean of a random variable X, with image X, is

E[X] =

{∑
x∈X xfX(x) =

∑
x∈X xP(X = x) if X is discrete,∫∞

−∞ xfX(x)dx if X is continuous.

Definition 2.2.14. The variance of a random variable X is

Var(X) = E[(X− E[X])2].

The non-negative square root of Var(X) is the standard deviation of X.

In general, the expected value or variance of a random variable may not exist. In
the rest, we will not consider that case. The expected value is linear, i.e., for any two
random variables X and Y, and a constant a, E[aX+ Y] = aE[X] + E[Y]. Then, we have
that

Var(X) = E[X2 − 2XE[X] + E[X]2]

= E[X2] − 2E[X]E[X] + E[X]2

= E[X2] − E[X]2;

since E[X] is a constant, E[E[X]] = E[X] and the second equality holds.

Definition 2.2.15. Let X and Y be random variables. The covariance of X and Y is

Cov(X, Y) = E[(X− E[X])(Y − E[Y])].

Expanding the product in the definition of covariance, we have that

Cov(X, Y) = E[XY] − E[X]E[Y].

Notice that Cov(X,X) = Var(X). If Cov(X, Y) = 0, X and Y are said to be uncorrelated.
If X and Y are independent random variables, then Cov(X, Y) = 0 [CB02, Theorem
4.5.5].

Definition 2.2.16. An n-dimensional random vector, or multivariate random variable, is a
function defined on a sample space that takes values in Rn.

The sample space of a random vector (X1, . . . ,Xn) is a subset of Rn.

Definition 2.2.17. A random vector is a discrete random vector if its sample space is
countable, and it is a continuous random vector if its sample space is uncountably
infinite.

Wewill use bold letters to denote the multivariate case. For example, Xwill denote
the random vector (X1, . . . ,Xn) and x will denote the realised value (x1, . . . , xn).
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Definition 2.2.18. Let X = (X1, . . . ,Xn) be a random vector. The joint cumulative distri-
bution function (joint cdf ) of X is defined by

FX(x) = P(X1 ⩽ x1, . . . ,Xn ⩽ xn).

If X is a discrete random vector, its joint probability mass function (joint pmf ) is the
function

fX(x) = P(X1 = x1, . . . ,Xn = xn).
If X is a continuous random vector, its joint probability density function (joint pdf ) is the
function fX that satisfies

FX(x) =
∫x1

−∞ · · ·
∫xn

−∞ fX(x)dx1 . . .dxn.

Let X = (X1, . . . ,Xn) be a random vector. The probability distribution of each Xi

is described by its pmf or pdf fXi
(x). In the context of the joint pmf or joint pdf, the

function fXi
(x) is called the marginal pmf or marginal pdf of Xi. The concept of the

marginal distribution can be extended to a subset of variables.

Definition 2.2.19. Let X1, . . . ,Xn be random vectors with joint pdf or joint pmf
fX1,...,Xn

(x1, . . . , xn). Let the marginal pdf or pmf of Xi be denoted by fXi
(xi). Then,

X1, . . . ,Xn are mutually independent random vectors if, for every (x1, . . . , xn),

fX1,...,Xn
(x1, . . . , xn) =

n∏
i=1

fXi
(xi).

If all Xi have dimension one, then they are mutually independent random variables.

Definition 2.2.20. If the random variables X1, . . . ,Xn are mutually independent and
the marginal pmf or marginal pdf of each Xi is the same function, then X1, . . . ,Xn

are called independent and identically distributed random variables. This is commonly
abbreviated as i.i.d. random variables.

Definition 2.2.21. The expected value of a random vector X = (X1, . . . ,Xn) is the vector

E[X] = (E[X1], . . . ,E[Xn]).

Definition 2.2.22. The covariancematrix of a randomvectorX = (X1, . . . ,Xn) is then×n
matrix over Rwhose entry in the i-th row and j-th column is Cov(Xi,Xj), 1 ⩽ i, j ⩽ n.
That is,

Cov(X) =


Var(X1) Cov(X1,X2) · · · Cov(X1,Xn)

Cov(X2,X1) Var(X2) · · · Cov(X2,Xn)
... ... . . . ...

Cov(Xn,X1) Cov(Xn,X2) · · · Var(Xn)

 .

2.2.2 Some probability distributions
Here we present some common probability distributions. These distributions are
defined by a function depending on certain parameters. The characteristics of the
distributions vary according to the values of the parameters. If f(·) is the function
defining a probability distribution (i.e., the pmf/pdf or cdf), it is customary to write
f(·|θ) to emphasize the parameter θ.
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Discrete uniform distribution

Letn0,n1 ∈ Z such thatn1 ⩾ n0, and letn = n1−n0+1. The discrete uniform distribution
is the distribution with pmf given by

f(x|n0,n1) =
1
n
, x = n0, . . . ,n1.

If a (discrete) random variable X has a discrete uniform distribution, then

E[X] =
n0 + n1

2 and Var(X) = n2 − 1
12 .

Normal distribution

The normal distributionwith parameters µ and σ2, denoted byN(µ,σ2), is the continu-
ous distribution with pdf

f(x|µ,σ2) =
1

σ
√
2π

e−
1
2(

x−µ
σ )

2

.

The parameters µ and σ2 are, respectively, the mean and the variance of the distribu-
tion; σ ⩾ 0 is the standard deviation. The standard normal distribution is the special case
with µ = 0 and σ2 = 1. If X ∼ N(µ,σ2), then

E[X] = µ and Var(X) = σ2.

We will use P(N(µ,σ2) < x) to denote the pdf, i.e.,

P(N(µ,σ2) < x) =
1

σ
√
2π

∫x

−∞ e−
1
2(

y−µ
σ )

2

dy.

Let X ∼ N(µ,σ2). If Z = (X − µ)/σ, then Z ∼ N(0, 1), i.e., Z has a standard normal
distribution. Conversely, if Z ∼ N(0, 1), then X = σZ+ µ ∼ N(µ,σ2).

Multivariate normal distribution

The multivariate normal distribution is a continuous distribution with parameters µ ∈
Rn, the mean, and Q ∈ Rn×n, the covariance matrix, and is denoted by N(µ,Q). It is
a generalisation of the univariate normal distribution to higher dimensions. The pdf
of a multivariate normal distribution is

f(x|µ,Q) =
1

(2π)n/2|Q|1/2
e−

(x−µ)TQ−1(x−µ)
2 ,

where |Q| is the determinant of Q. The covariance matrix is symmetric and positive
semi-definite. When |Q| = 0,Q−1 does not exist and for such singular distributions, the
probability mass is concentrated on a linear subspace of Rn; the probabilities of sin-
gular distributions can still be computed (see [GB09], for example). Let X ∼ N(µ,Q),
then the mean and variance are given, respectively, by

E[X] = µ and Cov(X) = Q.
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2.2.3 Central limit theorem
Theorem 2.2.23 (Central limit theorem [Bil95]). Let X1, . . . ,Xn be a sequence of i.i.d.
random variables with E[Xi] = µ and finite Var(Xi) = σ2, i = 1, . . . ,n. Define Sn =
X1 + · · ·+ Xn, then

lim
n→∞P

(
Sn − nµ

σ
√
n

< x

)
→ P(N(0, 1) < x),

i.e., Sn−nµ

σ
√
n

has a limiting standard normal distribution.

In simple words, the central limit theorem (CLT) says that the sum of many i.i.d.
random variables will be approximately normally distributed (even if the original
variables are not normally distributed). The following result is a variant when the
random variables are independent but not identically distributed:

Theorem 2.2.24 (Lyapunov’s CLT [Bil95]). Let X1, . . . ,Xn be a sequence of independent
random variables with E[Xi] = µi and finite Var(Xi) = σ2

i, i = 1, . . . ,n. Define Sn =
X1 + · · ·+ Xn and s2n =

∑n

i=1 σ
2
i. If for some positive δ, Lyapunov’s condition

lim
n→∞

1
s2+δ
n

n∑
i=1

E
[
|Xi|

2+δ
]
= 0

holds, then

lim
n→∞P

(
Sn −

∑n

i=1 µi

sn
< x

)
→ P(N(0, 1) < x).

2.2.4 Random sample and hypothesis testing
Definition 2.2.25. The random variables X1, . . . ,Xn are called a random sample of size n
from the population f(x) if X1, . . . ,Xn are i.i.d. random variables with pdf or pmf f(x).

The joint pdf or pmf of a sample X1, . . . ,Xn is given by

f(x1, . . . , xn) =
n∏

i=1
f(xi),

where all themarginal densities f(x) are the same function sinceX1, . . . ,Xn are identic-
ally distributed. If the population pdf or pmf can be parametrised by θ, the joint pdf
or pmf is

f(x1, . . . , xn|θ) =
n∏

i=1
f(xi|θ),

where the same value of θ is used in each term in the product.

Definition 2.2.26. LetX1, . . . ,Xn be a randomsample of sizen fromapopulation. Also,
let T(x1, . . . , xn) be a real-valued or vector-valued function whose domain includes
the sample space of (X1, . . . ,Xn). Then, the random variable or random vector Y =
T(X1, . . . ,Xn) is called a statistic.
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A hypothesis is a statement about a population. The goal of a hypothesis test is
to decide, based on a sample from the population, which of two complementary hy-
potheses is true. These hypotheses are called the null hypothesis and the alternative
hypothesis. They are denoted by H0 and H1, respectively. Let θ be a parameter, then
H0 : θ = θ0 and H1 : θ = θ1, where θ0, θ1 are some possible values for θ.

Definition 2.2.27. A hypothesis test is a rule that specifies:

• The sample values for which the decision is to accept H0 as true.

• The sample values for which H0 is rejected and H1 is accepted as true.

A hypothesis test is typically specified in terms of a test statistic T(X1, . . . ,Xn), which
is a function of the sample X1, . . . ,Xn.

Definition 2.2.28. Let f(x|θ) denote the joint pdf or pmf of the sampleX = (X1, . . . ,Xn).
Then, given that X = x is observed, the function of θ defined by

L(θ|x) = f(x|θ) =
n∏

i=1
f(xi|θ)

is called the likelihood function.

The likelihood is equal to the probability that an outcome x is observed when the
value of the parameter is θ. It is therefore equal to a probability density over x, not
over the parameter θ.

Likelihood-based tests are widely used in hypothesis testing (e.g., likelihood ratio
test). In simple terms, we accept H0 if k · L(θ0|x) > L(θ1|x), for some k ⩾ 0. According
to the Neyman-Pearson lemma [NP33], this is a most powerful test; we refer the reader
to existing texts, e.g. [CB02], for further details.

2.3 Boolean functions
Wewill use F2 to denote the finite field with two elements and Fn

2 to denote the vector
space of dimensionn over F2. The symbol+will be used to denote addition in general.
The symbol ⊕ will be used to specifically denote addition over F2. If it is clear by the
context, + and ⊕might be used interchangeably for addition over F2.

Definition 2.3.1. A Boolean function is a function f : Fn
2 → F2. It is customary to say

that f is a function inn variables. The set of alln-variable Boolean functions is denoted
by BFn.

Definition 2.3.2. Let f and g be Boolean functions on Fn
2 . The Hamming weight wH(f)

of f is the size of the set {x ∈ Fn
2 : f(x) 6= 0}, the support of f. The Hamming distance

dH(f,g) between f and g is the size of the set {x ∈ Fn
2 : f(x) 6= g(x)}; it is equal to

wH(f⊕ g).

Definition 2.3.3. An affine function is a Boolean function with algebraic degree at most
1, i.e.,

f(x) = anxn ⊕ · · · ⊕ a1x1 ⊕ a0, ai ∈ F2.
A linear function is an affine function with a0 = 0.
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Definition 2.3.4. Let a Boolean function f be viewed as a function valued in Z. The
Fourier-Hadamard transform is the linear mapping that maps f to the function f̂ defined
on Fn

2 by
f̂(u) =

∑
x∈Fn

2

f(x)(−1)u·x,

where u · x denotes some inner product in Fn
2 . The Fourier-Hadamard spectrum of f is

the string of all values f̂(u), where u ∈ Fn
2 .

We will use the dot product as the inner product in Fn
2 , i.e., u · v =

⊕n

i=1 uivi.
The fast Fourier-Hadamard transform (FFT) is an efficient algorithm to compute f̂; it is
shown in Algorithm 2.1. The FFT takes as input a vector (table) with the values of
f for all x ∈ Fn

2 ordered in lexicographical order with respect to x, i.e., its entries are
(f(0, . . . , 0, 0), f(0, . . . , 0, 1), . . . , f(1, . . . , 1, 0), f(1, . . . , 1, 1)). The complexity of the FFT is
O(N log2N) arithmetic operations [Car21], where N = 2n.

Algorithm 2.1 Fast Fourier-Hadamard transform
Input: Vector F of values f(x) for all x ∈ Fn

2 in lexicographical order with respect to x.
Output: Fourier-Hadamard spectrum of f.

Let Fi,j denote a vector of 2i integers, where 0 ⩽ j ⩽ 2n−i − 1 for all i = 0, . . . ,n.
Also, let F = (F0, . . . , F2n−1) and F0,j = Fj, j = 0, . . . , 2n − 1.

1: for i = 1, . . . ,n do
2: for j = 0, . . . , 2n−i − 1 do
3: Fi,j = (Fi−1,2j + Fi−1,2j+1, Fi−1,2j − Fi−1,2j+1)
4: end for
5: end for
6: return Fn,0

Definition 2.3.5. The sign function of a Boolean function f is

fχ(x) = (−1)f(x).

Definition 2.3.6. The Walsh transform of a Boolean function f, denoted by Wf, is the
Fourier-Hadamard transform of its sign function, i.e.,

Wf(u) =
∑
x∈Fn

2

(−1)f(x)⊕u·x.

The Walsh spectrum of f is the string of all valuesWf(u), where u ∈ Fn
2 .

Definition 2.3.7. A Boolean function f in n variables is balanced if its outputs are
equally distributed over {0, 1}. In other words, f maps 2n−1 vectors in Fn

2 to 0 and
the other 2n−1 vectors to 1.

From the definition of the Walsh transform, f is balanced if and only if Wf(0) = 0.

Definition 2.3.8. The bias (also correlation or imbalance) of a Boolean function f is

E(f) = Wf(0) =
∑
x∈Fn

2

(−1)f(x).
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Definition 2.3.9. The nonlinearity of a Boolean function f, denoted by nl(f), is the
minimum Hamming distance between f and affine functions.

The nonlinearity can be computed using the Walsh transform [Car21]:

nl(f) = 2n−1 −
1
2 max

u∈Fn
2
|Wf(u)|.

Hence, a function has high nonlinearity if and only if all values of its Walsh spectrum
have low magnitudes. The value maxu∈Fn

2
|Wf(u)| is called the linearity of f.

Definition 2.3.10. Let f be a Boolean function and a ∈ Fn
2 . The derivative of f in direction

a is the function Daf(x) = f(x)⊕ f(a+ x).

Definition 2.3.11. The autocorrelation function of a Boolean function f is the function

∆f(a) = WDaf(0) =
∑
x∈Fn

2

(−1)f(x)⊕f(a+x),

where a ∈ Fn
2 .

2.4 Linear feedback shift registers and sequences
Let F be a finite field. A feedback shift register is a state machine which produces a
sequence of elements of F. The device consists of n cells or stages and receives a clock
input to update the content of the cells and produce an output. The state of the register
is the value of the cells viewed as a length-n vector; (st, st+1, . . . , st+n−1) is the state at
time t. The cells are initially loaded with n elements of F; they define the initial state.
At every clock cycle, the content of the first cell is the output. To update the state,
the content of the i-th cell is transferred into the (i − 1)-th cell, i = 2, . . . ,n, while the
content of the n-th cell is computed as a function of the current state by the feedback
function f. Figure 2.1 depicts a feedback shift register.

. st+n−1st+n−2. . .st+2st+1st

f

Figure 2.1. Feedback shift register.

Definition 2.4.1. A feedback shift register is linear if its feedback function is linear, i.e.,
it can be expressed as

f(x1, . . . , xn) = c1x1 + · · ·+ cnxn,
where c1, . . . , cn ∈ F.

Unless otherwise stated, wewill assume that the feedback shift registers are binary,
i.e., the output sequence consists of elements ofF2. The rest of this section is focused on
linear feedback shift registers; theywill be referred to as LFSRs. The feedback function
is then a linear Boolean function in n variables.
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Definition 2.4.2. A linear recurrence is an equation of the type

st+n = c1st+n−1 + c2st+n−2 + · · ·+ cnst. (2.1)

Any sequence satisfying (2.1) is called a linear recurring sequence.

Theorem 2.4.3 ([Gol17, Theorem 2.2]). Let the sequence s1, s2, . . . , sN denote the succes-
sion of values for a given cell of an LFSR. Then, sN satisfies a linear recurrence where the
coefficients ci are elements of F2 and do not depend on N.

Given the operation of a shift register, the sequence of values of the first cell and
all the other cells are the same, except for a shift or delay. This shift is of one position
with the second cell, two positions with the third cell and so on. Thus, all cells of an
LFSR satisfy the same linear recurrence. This means that the output sequence and the
whole state satisfy the recurrence. The output sequence generated by an LFSR will be
denoted as {st}t⩾1. The coefficients ci of the linear recurrence satisfied by {st}t⩾1 are
called the feedback coefficients of the LFSR that generated it.

Definition 2.4.4. The feedback polynomial or connection polynomial of a sequence {st}t⩾1
and of the LFSR which produced it is the degree-n polynomial

f(x) = 1−
n∑

i=1
cix

i,

where ci are the coefficients of the linear recurrence satisfied by {st}t⩾1. The charac-
teristic polynomial of the sequence {st}t⩾1 and of the LFSR which produced it is the
reciprocal of the feedback polynomial, i.e.,

f∗(x) = xnf(1/x) = xn −

n∑
i=1

cix
n−i.

Definition 2.4.5. A length-n LFSR is non-singular if the degree of its feedback polyno-
mial is equal to n (i.e., if the feedback coefficient cn is not zero).

Definition 2.4.6. Let s1, s2, . . . be a sequence of elements of a nonempty set S. If there
exists integers p > 0 and n0 ⩾ 0 such that sn+p = sn for all n > n0, then the sequence
is called ultimately periodic and p is called the period of the sequence. The smallest
number among all possible periods of an ultimately periodic sequence is called the
least period of the sequence.

Definition 2.4.7. Anultimately periodic sequence s1, s2, . . . with least periodp is called
periodic if sn+p = sn holds for all n ⩾ 1.

Theorem 2.4.8 ([Gol17, Theorem 2.1]). The sequence {st}t⩾1 generated by a non-singular
length-n LFSR is periodic with period p ⩽ 2n − 1.

Theorem 2.4.9 ([Gol17, Theorem 2.3]). The period of {st}t⩾1 is the smallest positive integer
p for which its feedback polynomial divides xp − 1.

Definition 2.4.10. A sequence generated by a length-n LFSR has maximum length if its
period is p = 2n − 1.
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Theorem 2.4.11 ([Gol17, Theorem 2.4]). If the sequence generated by an LFSR has max-
imum length, its feedback polynomial is irreducible.

We are interested in sequences with maximum length. In order to obtain such
sequences, irreducibility of the feedback polynomial is a necessary condition, but not
sufficient. When the feedback polynomial f(x) of {st}t⩾1 is irreducible, then the period
of {st}t⩾1 is equal to the exponent of f(x) [Gol17].
Theorem 2.4.12 ([Gol17, Theorem 3.1]). If a sequence has an irreducible feedback polyno-
mial of degree n, the period of the sequence is a factor of 2n − 1.
Theorem 2.4.13 ([Gol17, Theorem 3.2]). Every factor a of 2n − 1 which is not a factor of
any number 2s − 1 with s < n occurs as the exponent of irreducible polynomials of degree n.
Precisely, there are ϕ(a)/n irreducible polynomials of degree n with exponent a, where ϕ is
Euler’s totient function.

When 2n − 1 is prime (a Mersenne prime), every irreducible polynomial of degree
n corresponds to a sequence of maximum length (by theorem 2.4.12). When 2n − 1
is not prime, maximum-length sequences are generated by irreducible polynomials
of degree n with “maximum exponents” (exponents equal to 2n − 1), i.e., primitive
polynomials of degree n. The factors ofCp(x), the p-th cyclotomic polynomial, are the
irreducible polynomials of order p. Particularly, the factors of C2n−1(x) have degree n
and there are ϕ(2n − 1)/n of them [Gol17]. The feedback polynomial being primitive
is the necessary and sufficient condition for {st}t⩾1 to have maximum length.
Definition 2.4.14. A pseudo-noise sequence, or PN sequence, is a maximum-length linear
recurring sequence over F2. I.e., s1, s2, . . . , with si ∈ F2, is a PN sequence if and only if
it is a sequence which satisfies a linear recurrence

st =

n∑
i=1

cist−i,

where ci ∈ F2, and has period p = 2n − 1.
Any sequence generated by an LFSR with feedback polynomial f is also generated

by any LFSR whose feedback polynomial is a multiple of f [Can11]. Also, there is a
sequence generated by an LFSR with feedback polynomial f which can be generated
by a shorter LFSR if and only if f is not irreducible over F2 [Can11].
Definition 2.4.15. Let {st}t⩾1 be any linear recurring sequence. The characteristic poly-
nomial of the shortest LFSR which generates {st}t⩾1 is called the minimal polynomial of
the sequence.
Definition 2.4.16. The degree of the minimal polynomial of a linear recurring se-
quence is the linear complexity of the sequence. It is equal to the length of the shortest
LFSR which generates the sequence.

The operation of a length-n LFSR can be seen as a linear operator on its states. Let
(st, st+1, . . . , st+n−1)

T be the state of the LFSR at time t ⩾ 1. The n× nmatrix

M =


0 1 0 · · · 0
0 0 1 · · · 0
... ... ... . . . ...
0 0 0 · · · 1
cn cn−1 cn−2 · · · c1


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“implements” the operation of the LFSR:

M · (st, st+1, . . . , st+n−1)
T =

(
st+1, st+2, . . . , st+n−1,

n∑
i=1

cist+n−i

)
= (st+1, st+2, . . . , st+n−1, st+n)

is the state of the LFSR at time t+1. Therefore, any state at time t ⩾ 1 can be expressed
in terms of the initial state as

ST
t = Mt−1 · ST

1 (2.2)
and each symbol st, t ⩾ 1, can be written as a linear combination

st = ht,1s1 + ht,2s2 + · · ·+ ht,nsn, (2.3)

where ht,j ∈ F2 are given by the first row ofMt−1.

2.5 Error-correcting codes
It is possible for digital information to be corrupted by noise when transmitted over
a communication channel (or kept in a storage medium). Error-correcting codes may
be used to overcome this. The main idea is to encode the information sequence, or
message, u = (u0 . . .uk−1) ∈ Fk

2 to obtain a codeword v = (v0 . . . vn−1) ∈ Fn
2 , where

k < n. The codeword is then sent through the noisy communication channel. At the
other end of the channel, the received sequence r = (r0 . . . rn−1) ∈ Fn

2 , is decoded to
obtain an estimate û of the original message. This process is depicted in Figure 2.2.
The codeword contains the information sequence and some redundancy in order to
detect and correct errors. If û 6= u, then a decoding error occurs.

.u Encoder v r Decoder ûChannel

Figure 2.2. Usage of error-correcting codes to transmit information.

Alternatively, the output of decoding may be an estimate v̂, and decoding error
means that v̂ 6= v. Define the error vector e = (e0 . . . en−1) ∈ Fn

2 as e = r− v. Then, the
decoder may equivalently output an estimate ê and ê 6= emeans a decoding error.

There are different noisy communication channel models. Here, we will only con-
sider the binary symmetric channel (BSC). It is a binary-input and binary-output channel
model, where the probability of transmission error is given by the crossover probability
ϵ. The BSC is a memoryless channel because an output symbol depends only on its
corresponding transmitted symbol. Figure 2.3 depicts a BSC.

.0 0

1 1

1− ϵ

ϵ

ϵ

1− ϵ

vi ri

Figure 2.3. Binary symmetric channel with crossover probability ϵ.

In the rest of this section, we will continue using boldface letters to denote vectors.
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2.5.1 Linear codes
Here we briefly introduce linear codes. In the discussion above, we assumed inform-
ation to be binary. Linear codes will be presented in a more general setting where
the information symbols are elements of a finite field Fp. We refer to [MS81] for a
thorough presentation of these codes.

Definition 2.5.1. Let p be a prime integer. An [n,k]-linear code C of length n and dimen-
sion k is a k-dimensional subspace of Fn

p . The rate of C is k/n.

Let C be an [n,k]-linear code. A vector v ∈ C is called a codeword. The size of C is
the number of codewords, i.e., |C| = pk. It is customary to call C a binary code when
p = 2, and p-ary otherwise. In the rest, we will assume C to be an [n,k]-linear code.

Definition 2.5.2. A generator matrix of C, denoted by G, is a k × n matrix whose rows
are the vectors of a basis of C. This matrix defines the code as

C = {uG | u ∈ Fk
p}.

A generator matrix G is called systematic if the information symbols u0 . . . ,uk−1
appear unchanged at the beginning of the codeword, i.e., G has the form

G = (Ik |M),

where Ik is the k× k identity matrix.

Definition 2.5.3. A parity-check matrix of C, denoted byH, is an r×nmatrix, r = n−k,
that defines C as

C = {v ∈ Fn
p | HvT = 0},

i.e., C is the kernel of H.

A generator matrix G and a parity-check matrix H of C are related by

GHT = 0 or HGT = 0.

Let r = n − k. If C has a systematic matrix G = (Ik |M), that code has a parity-check
matrix H = (−MT | Ir), where Ir is the r × r identity matrix. Given a parity-check
matrix H, a generator matrix can be obtained as follows: take H into the form (M | Ir)
using row operations, then G = (Ik | −MT ). The syndrome of v ∈ Fn

p , relative to H, is
defined as HvT . Notice that the syndrome of v is zero if and only if v ∈ C.

Definition 2.5.4. The dual code of C, denoted by C⊥, is the linear code spanned by the
rows of any parity-check matrix of C.

Definition 2.5.5. A linear code is cyclic if every cyclic shift of a codeword is also a
codeword. A linear code is quasi-cyclic (QC) if there exists an integer n0 such that a
cyclic shift by n0 positions of a codeword is also a codeword.

Let C be quasi-cyclic codewithn = n0ℓ, for some integer ℓ. Then, the generator and
parity-check matrices of C can be constructed by circulant blocks of size ℓ × ℓ. Only
one vector completely determines a given block (e.g., the first row or first column).
Hence, only one vector per block is needed to completely determine the generator and
parity-check matrices.

In the remaining of this section, we return to binary codes, i.e., the symbols are
elements of F2.
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2.5.2 Low-density parity-check codes
A low-density parity-check (LDPC) code is a linear code defined by a sparse parity-check
matrix with constant low row weight. Here we focus on the notions of LDPC codes
relevant to thismanuscript. We refer to the original paper [Gal62] or [JZ15] for further
details.

The parity-check matrix of a regular [n, j,w]-LDPC code is such that each column
contains a small fixed number j of 1’s and each row contains a small fixed numberw of
1’s. For example, the following matrix is a parity-check matrix for a regular [12, 2, 3]-
LDPC code:

H =



0 1 0 0 0 0 0 0 1 1 0 0
0 0 0 1 0 0 0 1 0 0 0 1
1 0 0 0 0 1 1 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 1 0
1 0 0 0 0 1 0 0 0 0 0 1
0 0 1 1 0 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 0 1 1 0 0 0


.

Irregular LDPC codes admit matrices where the number of 1’s in the rows/columns
varies; here, we assume LDPC codes to be regular.

Given an r × n parity-check matrix H, a generator matrix G of size k × n can be
obtained as for linear codes above. If u = (u0, . . . ,uk−1) is the information sequence,
the corresponding codeword is

v = uG.

Decoding - Gallager’s bit-flipping and iterative algorithms

Gallager introduced two decoding schemes for LDPC codes in [Gal62]. Let the code-
word v = (v0 . . . vn−1) be sent through a BSC and r = (r0 . . . rn−1) be the received
sequence. The parity-checks for a symbol ri are given by the rows of H whose i-th
entry is 1.

The bit-flipping algorithm is shown in Algorithm 2.2. As the name implies, this
algorithm flips the values of the symbols ri according to the number of parity-checks
that are satisfied. At each iteration, the parity checks are computed with the decided
value v̂ and the process stops when all parity-checks are satisfied or after a number of
iterations.

Algorithm 2.2 Gallager’s bit-flipping algorithm
1: Set v̂ = r.
2: repeat
3: For each v̂i, i = 0, . . . ,n− 1, count the number of unsatisfied parity-checks.
4: Flip the value of the bits v̂i with largest number of unsatisfied parity-checks.
5: until all parity-checks are satisfied or the maximum number of iterations is

reached.
6: Return v̂ if all parity-checks are satisfied, ⊥ otherwise.

Gallager’s iterative algorithm is a decoding technique in the so-called belief propaga-
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tion algorithms. It considers the log likelihood ratios

log P(vt = 0|r,S)
P(vt = 1|r,S) ,

where S is the event that the transmitted symbols satisfy the j parity-check constraints
on vt, 0 ⩽ t < n. We do not give the details of the algorithm and refer to the original
paper [Gal62] or [JZ15] for details. Algorithm 3.6 in Section 3.2.2 is based closely on
Gallager’s iterative algorithm.

2.5.3 Convolutional codes
Here we briefly present convolutional codes; we focus only on codes whose character-
istics are relevant for this manuscript. We refer to [JZ15] for an in-depth treatment of
these codes.

Convolutional codes can be thought of as linear codes where the infinite information
sequence

u = u0u1 · · · = u
(1)
0 u

(2)
0 . . .u(k)

0 u
(1)
1 u

(2)
1 . . .u(k)

1 . . .
is encoded by a binary convolutional encoder of rate R = k/n, k ⩽ n, into the infinite
code sequence

v = v0v1 · · · = v
(1)
0 v

(2)
0 . . . v(n)

0 v
(1)
1 v

(2)
1 . . . v(n)

1 . . . .
Here we will assume that k = 1, then ui = ui ∈ F2.

A convolutional encoder consists of a shift register of memory (or length) m and
generates n output sequences, denoted by v

(i)
0 v

(i)
1 . . . , i = 1, . . . ,n. The initial state of

the shift register is the zero state; the feedback symbol at each clock cycle is computed
from the current state and the current information symbol according to the linear feed-
back. The output sequences are generated linearly from the state of the shift register
and feedback symbol. The code sequence is obtained by interleaving the n output
sequences. Figure 2.4 depicts an example model of a convolutional encoder. We will
focus on convolutional encoders without feedback.

.+. . .u1u0 . . .

+ . . . +

v
(1)
0 . . . v(n)

0 v
(1)
1 . . . v(n)

1 . . .

+ . . .

+ . . . +

...
...

...
...

v
(1)
0 v

(1)
1 . . .

v
(n)
0 v

(n)
1 . . .

Figure 2.4. Example model of a convolutional encoder.

When the encoder has no feedback, we may write

vt = (v
(1)
t . . . v(n)

t ) = f(ut,ut−1, . . . ,ut−m),

where f : Fm+1
2 → Fn

2 is required to be linear. Due to the linearity of f, we can express
vt as

vt = utG0 + ut−1G1 + · · ·+ ut−mGm,
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where each Gi, 0 ⩽ i ⩽ m, is a binary matrix of size 1 × n. Then, the code sequence
can be written as

v0v1 · · · = (u0u1 . . . )G,

where

G =

G0 G1 · · · Gm 0
G0 G1 · · · Gm

0 . . . . . . . . . . . .

 .

The matrix G is the generator matrix and Gi, 0 ⩽ i ⩽ m, are called the generator
submatrices.

Let the encoder state at time t, denoted by σt, be the content of the shift register:

σt = ut−1ut−2 . . .ut−m.

An encoder has, therefore, at most 2m different states at time t. We now create a graph
called trellis: consider all possible states σt, t = 0, 1, . . . , as vertices in a graph, and
add an edge between σt and σt+1 if and only if there is an information symbol ut that
at time t updates the state σt to σt+1; also, label each edge from σt to σt+1 with vt.
For example, the encoder of rate R = 1/2 in Figure 2.5 has the corresponding trellis
in Figure 2.6. A convolutional code may also be called a trellis code since the set of
codeword sequences corresponds with the set of paths in the trellis.

.ut

+ v
(2)
t

+ + v
(1)
t

Figure 2.5. Example of a convolutional encoder of rate R = 1/2.
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Figure 2.6. Example of a trellis code of rate R = 1/2.

Decoding - Viterbi algorithm

Suppose that a codeword v is sent through a BSC and the sequence r is received. The
Viterbi algorithm [Vit67]may be used for efficientmaximum likelihooddecoding. The
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algorithm traverses the trellis and decides a value v̂ for the codeword v that maximises
the likelihood P(r|v). The Viterbi metric is given by

µ(r,v) =
∑
t

µb(rt,vt) =
∑
t

∑
i

µs(r
(i)
t , v(i)t ),

where µs, the Viterbi symbol metric, is a well-chosen function that counts the number
of matched symbols in the current branch of the trellis (see for example [JZ15]). The
quantity µb(rt,vt) is called the Viterbi branch metric. Algorithm 2.3 shows the Viterbi
algorithm. Let r be a sequence of length N generated by a convolutional encoder of
rate k/n, the time complexity of the Viterbi algorithm on r is O(nN2k).

Algorithm 2.3 Viterbi algorithm
1: Assign the Viterbi metric 0 to the initial node. Set t = 0.
2: for each node at level t+ 1 do
3: For each predecessor at level t, find the sum of that predecessor’s Viterbi metric

and the branch metric of the connecting branch.
4: Get the maximum of the sums above and assign it to the current node. Label

the node with the shortest path to it.
5: end for
6: If the end of the trellis is reached, set v̂ to the value of a path with largest Viterbi

metric and return v̂. Otherwise, increment t and go to step 2.

2.5.4 Turbo codes
Here we briefly present turbo codes [BGT93] which informally may be defined as a
“concatenation” of convolutional codes. The important feature of turbo codes is their
iterative decoding techniques: multiple decoders operate on the received sequence to
give soft decisions, i.e., estimates based on probabilities. We present turbo codes with
characteristics relevant to this manuscript; we refer to [BGT93; JZ15] for a thorough
treatment of these codes.

A turbo code encoder of rate R = 1/(n+ 1) consists of n parallel identical convolu-
tional encoders, referred to as constituent encoders, and n permutors. The encoder takes
as input the length N information sequence u = u0 . . .uN−1. Each of the permutors
takes the information sequence and generates a permuted version u(i) = πi(u), where
πi is a permutation of N symbols. Each sequence u(i) is then fed to the i-th convolu-
tional encoder which produces the parity sequence v(i) = v

(i)
0 . . . v(i)N−1. Let v(0) = u.

The code sequence is obtained as

v = v0v1 . . . vN−1,

where vt = v
(0)
t v

(1)
t . . . v(n)

t , t = 0, . . . ,N− 1. Figure 2.7 depicts a model of a turbo code
encoder.

Decoding - BCJR algorithm

Suppose that a codeword v is sent through a BSC and the sequence r = r0r1 . . . rN−1

is received, where rt = r
(0)
t r

(1)
t . . . r(n)

t , t = 0, . . . ,N − 1. Decoding for turbo codes
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.u

π1 Encoder 1

π2 Encoder 2

...
...

...

πn Encoder n

v

v(0)

v(1)

v(2)

v(n)

Figure 2.7. Model a turbo code encoder.

is done by iteratively executing n a posteriori probability (APP) decoders, one for each
of the constituent codes. Each constituent decoder uses a priori probabilities P(ut = 0),
t = 0, . . . ,N − 1, to produce the so-called a posteriori probability for all symbols ut. At
each iteration, a decoder computes the a posteriori probabilities and these are used
as a priori probabilities for the next decoder. The probabilities computed at the last
iteration are an approximation of P(ut = 0|r), t = 0, . . . ,N − 1; these probabilities are
used to decide a value v̂. Figure 2.8 shows a turbo decoder with two constituent codes.

.APP decoder 1

APP decoder 2
Decision
(last iter.) v̂

r(0)

r(1)

r(2)

Figure 2.8. Example of a decoder for a turbo code with two constituent codes.

The BCJR algorithm [Bah+74] is one of themost popularAPPdecoding algorithms
for convolutional codes. This algorithm is commonly chosen as the constituent de-
coder for turbo decoders. Given the input sequences r(0) and r(i), the BCJR algorithm
computes the probabilities

P(ut = 0|r(0), r(i)), t = 0, . . . ,N− 1.

We refer to the original source [Bah+74] or [JZ15] for the details of the algorithm.
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Cryptanalysis of the filter generator

The goal of a key recovery attack against a stream cipher is to get the secret key used to
generate the given keystream. The secret key is used to initialise various components
of the cipher. On devices employing linear feedback shift registers (LFSRs), the key is
used to derive their initial states. A filter generator is an example of such devices.

In this chapter wewill focus on key recovery attacks against the filter generator, i.e.,
to recover the initial state of the LFSRgiven the keystream. Wepresent different known
techniques to perform these type of attacks. In the context of this manuscript, fast
correlation attacks and deterministic attacks are the most relevant. Algebraic attacks
are not directly related with our work, however, we briefly present them due to their
general relevance.

3.1 The device
Let Fq be a finite field. A filter generator is a keystream generator consisting of an
LFSR over Fq of length n and a function f : Fℓ

q → Fq, called the filtering function. The
LFSR’s feedback taps are defined by its degree-n primitive feedback polynomial

g(x) = c0 − c1x− c2x
2 − · · ·− cnx

n,

where ci ∈ Fq and c0 = 1. In general, g(x) may not be primitive, however, we will
assume it is so that the LFSR sequence has maximum period (see Section 2.41). The
state of the LFSR at time i is Si = (si, si+1, . . . , si+n−1). The inputs to f are the values in
the LFSR cells with indices k1, . . . , kℓ, where 0 ⩽ k1 < · · · < kℓ ⩽ n − 1. Alternatively,
the inputs may be specified by k1 and the spacings γ1, . . . ,γℓ−1, where γi = ki+1 − ki.

1Section 2.4 focuses on binary LFSRs, i.e., over F2. However, many results there can be generalised
to LFSRs over arbitrary finite fields; see for example [LN96].

35
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The keystream symbol zi at time i is computed as

zi = f(si+k1 , . . . , si+kℓ
).

We will focus on binary filter generators. Then, g(x) ∈ F2[x], f is a Boolean function
in ℓ variables and si, zi ∈ F2 may be referred to as bits. Figure 3.1 shows a model of a
filter generator.

. si+n−1. . .si+kℓ
. . .si+k2. . .si+k1. . .si+1si

+ + . . . +

f(x1, . . . , xℓ)

x1 x2 xℓ

zi

Figure 3.1. Model of a filter generator.

A key recovery attack against the filter generator consists in recovering the LFSR’s
initial state used to produce a given keystream. The feedback polynomial g(x), the
filtering function f and the indices k1, . . . , kℓ are considered to be known information.
The available length-N keystream sequence will be denoted by {zi}1⩽i⩽N. The output
sequence of the LFSR will be denoted by {si}1⩽i⩽N.

3.2 Fast correlation attacks
Fast correlation attacks are a class of key recovery attacks against stream ciphers. They
are applicable when the cipher’s keystream generator employs LFSRs. The general
idea is to exploit the correlation between the keystream and the sequence produced
by one of the LFSRs. An important fact about nonlinear Boolean functions is that lin-
ear correlations always exist [Sie84]. For a filter generator, we assume the correlation
between the LFSR sequence and the keystream is given by the correlation probability

p = Pr(zi = si) = 1/2+ ϵ, ϵ 6= 0.

The quality of the correlation can bemeasured by |ϵ|. If it is close to 1/2, the correlation
is good and the cipher is weak against fast correlation attacks. However, when |ϵ| is
close to zero, the correlation is low and fast correlation attacksmay be inefficient. More
generally, the correlation may be given by p = Pr(zi = si+j1 + · · ·+ si+jw) = 1/2+ ϵ.

Fast correlation attacks can be seen as a decoding problem. Any length-N sequence
s1, . . . , sN produced by the LFSR is a codeword of a linear code C of length N and
dimension n defined by g(x). Recall that each si can be written in terms of the initial
state S1 = (s1, . . . , sn) as si =

∑n

j=1 hi,jsj (see (2.3)). The n×N generator matrix of C
is

G =


h1,1 h2,1 . . . hN,1
h1,2 h2,2 . . . hN,2
... ... . . . ...

h1,n h2,n . . . hN,n

 (3.1)
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and (s1, . . . , sN) = S1G. The keystream z1, . . . , zN is the result of transmitting s1, . . . , sN
over a binary symmetric channel (BSC) with crossover probability 1 − p (see Figure
2.3), and we have that

(z1, . . . , zN) = (s1, . . . , sN) + (e1, . . . , eN),

where ei ∈ F2 and Pr(ei = 1) = 1− p. The attack recovers the initial state of the LFSR
(i.e., the information symbols) by decoding the keystream relative to the code C.

A parity-check equation, or simply a parity-check, is a polynomial

h(x) = 1+ xj1 + · · ·+ xjw−1 ≡ 0 mod g(x).

The number of nonzero terms in a parity-check is its weight. If the weight is small, the
parity-check is said to have low-density or low-weight. The LFSR sequence bits satisfy
the linear relation

si + si−j1 + · · ·+ si−jw−1 = 0.
Since the parity-checks hold for the LFSR sequence, evaluating these equations with
the keystream bits leak information that can be used to recover the LFSR’s initial state.
Fast correlation attacks employ low-density parity-checks. The feedback polynomial
and the amount of available keystream bits affect the number of low-density parity-
checks that can be obtained.

Generally, fast correlation attacks consist of (i) obtaining low-density parity-checks
and (ii) recovering the initial state/decoding using these equations. Obtaining the
parity-checks may be considered the pre-computation phase of the attack, while re-
covering the initial state/decoding may be considered the main phase.

Some characteristics of the filter generator may render fast correlation attacks less
efficient. The feedback polynomial should be primitive and with high degree. This is
to achieve maximum period and high linear complexity of the LFSR sequence. Also,
the weight of g(x) should not be low. This will make it harder to find many useful
parity-checks. The filtering function f should be balanced to guarantee good statistical
properties on the keystream. Also, f should have high nonlinearity in order to reduce
the correlation probability.

We briefly present the original fast correlation attack by Meier and Staffelbach
[MS89] in Section 3.2.1. The initial algorithms in [MS89] have led to attacks employing
different tools and approaches. Section 3.2.2 briefly describes some of the various con-
tributions in fast correlation attacks. An overview of the many developments can be
found in [Ågr+12] and [Mei11] aswell. More recently, Todo et al. [Tod+18] presented
an attack based on a “commutative” property of parity-checks. We brieflydescribe this
attack in Section 3.2.3. Section 3.2.4 contains a summary of the time complexity and
some reported results of the attacks described here.

3.2.1 The original idea
The original fast correlation attack was presented by Meier and Staffelbach in [MS89]
as an improvement of the correlation attack by Siegenthaler [Sie85]. The latter is
presented as a key recovery attack against the combination generator (see Figure 1.4a).
It exploits the correlation between the output of the combining function f (i.e., the
keystream) and one of the inputs xi of f (the output sequence of the i-th LFSR). Let
the combination generator consist of m LFSRs of length ni, i = 1, . . . ,m. The worst
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case for a brute force attack has complexityO(
∏m

i=1(2ni − 1)) (since the all zero initial
state is ignored). Siegenthaler’s attack performs exhaustive search over all initial states
for a target LFSR. The complexity is then reduced to O(N

∑m

i=1 2ni) [Sie85]. We refer
to the original paper for the details and analysis. Fast correlation attacks attempt to
recover the LFSR’s initial state without trying all possible values.

Recall that the output sequence of the LFSR satisfies a relation

si = c1si−1 + c2si−2 + · · ·+ cnsi−n, (3.2)

where the coefficients cj are determined by the feedback polynomial g(x). Let w be
the number of nonzero cj, 1 ⩽ j ⩽ n. Then, (3.2) can be rewritten as the following
equation with w+ 1 terms: ∑

{j: 0⩽j⩽n,cj ̸=0}

si−j = 0. (3.3)

Equation (3.3) is a parity-check of weight w + 1. These parity-checks are valid for
shifted versions of the LFSR sequence and can be written as∑

{j: 0⩽j⩽n,cj ̸=0}

st−j = 0

for t = k+1, . . . ,N, where k = max({j : 1 ⩽ j ⩽ n, cj 6= 0}). Therefore, each si appears
in approximately w + 1 parity-check equations. Every multiple of g(x) yields a valid
parity-check. Particularly, for exponents 2k, we have that g(x)2k = g(x2

k

). Thus, we
can get more parity-checks of weight w+ 1 if N is large enough. From the analysis in
[MS89], the average number m of parity-checks that can be found for each si is

m ≈ log2

(
N

2n

)
(w+ 1).

The m parity-checks for each si can be written as

si + b
(1)
i = 0,

si + b
(2)
i = 0,

...
si + b

(m)
i = 0,

where each b
(j)
i =

∑w

k=1 sik for somew different terms of the LFSR sequence. By using
the terms of the keystream instead of those of the LFSR sequence in the equations
above, we get

L
(j)
i = zi + y

(j)
i , j = 1, . . . ,m,

where y(j)
i =

∑w

k=1 zik for the corresponding w different terms of the keystream. No-
tice that L(j)

i is not necessarily equal to 0.
Recall that the keystream is correlated to the LFSR sequence with probability

p = Pr(zi = si) 6= 1/2.
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Let s = Pr(b(j)
i = y

(j)
i ). This probability is a function of p and w, and s = s(p,w) can

be computed by the following recursion:

s(p,w) = ps(p,w− 1) + (1− p)(1− s(p,w− 1)),
s(p, 1) = p.

(3.4)

For each zi, some number h of the equations L(j)
i hold (are equal to 0) andm−h do not

hold (are equal to 1). This allows us to compute the a posteriori probability of zi = si:

p∗ = Pr
(
zi = si | h equations L(j)

i hold
)

=
psh(1− s)m−h

psh(1− s)m−h + (1− p)(1− s)hsm−h
. (3.5)

Algorithm 3.1 One-pass algorithm by Meier and Staffelbach
Input: The keystream {zi}1⩽i⩽N and the parity-check equations.
1: Compute p∗ for each zi.
2: Choose the n bits zi having the highest values p∗ and set this to be the reference

guess I0, i.e., si = zi.
3: Try modifications of I0 with Hamming distance 0, 1, 2, . . . to find the initial state.

For each modification of I0, generate the keystream and check it against {zi}1⩽i⩽N.

Algorithm 3.1 shows the one-pass algorithm (algorithm A) from [MS89]. I0 is
the reference guess obtained by selecting the n bits zi with highest p∗. Assuming
that exactly r bits in I0 are incorrect, the maximum number of trials in step 3 is
A(n, r) =

∑r

i=0
(
n

i

)
⩽ 2H(θ)n where H(·) is the binary entropy function and θ = r/n.

The complexity of the algorithm is estimated to be O(2cn) for 0 ⩽ c ⩽ 1 [MS89], and
under favourable conditions c � 1. Meier and Staffelbach show that the value of c
decreases with largeN and p far from 1/2. This algorithm is suitable when the weight
of g(x) is small (< 10) and p is close to 0.75.

A second method proposed by Meier and Staffelbach makes several passes over
the sequence {zi}1⩽i⩽N. This approach updates the probabilities p∗ and “flips” some
of the keystream bits to recover the LFSR sequence and, therefore, the initial state.

Assume that the bits zi have different probabilities pi. Then, a generalisation of the
equations to compute s and p∗ is needed. For equations (3.4), this generalisation is

s(p1, . . . ,pw,w) = pws(p1, . . . ,pw−1,w− 1) + (1− pw)(1− s(p1, . . . ,pw−1,w− 1)),
s(p1, 1) = p1.

For zi, let s(j) = s(pi1 , . . . ,piw ,w), where ik are the indices of the w terms in y
(j)
i for

equation L
(j)
i . Also, let J be the set of indices j of all the equations L(j)

i and let H be the
set of indices j of the equations L(j)

i that hold. Then, the generalisation of equation (3.5)
is

p∗ = Pr
(
zi = si | h equations L(j)

i hold
)

=
pi

∏
j∈H s(j)

∏
j∈J\H(1− s(j))

pi

∏
j∈H s(j)

∏
j∈J\H(1− s(j)) + (1− pi)

∏
j∈H(1− s(j))

∏
j∈J\H s(j)

.
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Algorithm 3.2 shows the iterative algorithm (algorithm B) from [MS89]. It uses
two thresholds: pthr andNthr. We present the equations to compute the two thresholds;
we refer to the original paper for the details on how to obtain these equations. Let

I(p,m,h) =
(

h∑
i=0

(
m

i

)
(1− p)(1− s)ism−i

)
−

(
h∑

i=0

(
m

i

)
psi(1− s)m−i

)
and let hmax be the value of h that maximises I(p,m,h) for the given p and m. Then

pthr =
1
2 (p∗(p,m,hmax) + p∗(p,m,hmax + 1))

and

Nthr =

(
h∑

i=0

(
m

i

)(
psi(1− s)m−i + (1− p)(1− s)ism−i

))
N.

pthr is used to determine the number of keystream bits that should be flipped. When
this number is larger or equal toNthr, the corresponding bits zi are flipped, otherwise,
the computation of p∗ is iterated. The complexity of the algorithm is estimated to grow
linearly with the length of the LFSR, i.e., is of order O(n) [MS89]. This algorithm is
suitable when the weight of g(x) is small (< 10, preferably 2 or 4) even when p is very
close to 0.5.

Algorithm 3.2 Iterative algorithm by Meier and Staffelbach
Input: The keystream {zi}1⩽i⩽N and the parity-check equations.

Let α(≈ 5) be the number of iterations.
1: Compute the thresholds pthr and Nthr.
2: for r = 1, 2, . . . do
3: for i = 1, . . . ,α do
4: For each zi, compute p∗ and assign pi = p∗.
5: Compute Nw = |{i | pi < pthr}|.
6: if Nw ⩾ Nthr then
7: break
8: end if
9: end for
10: Complement all bits zi with pi < pthr and reset all probabilities pi to p.
11: if If all bits zi satisfy the parity-checks then
12: break
13: end if
14: end for
15: Terminate with si = zi, i = 1, . . . ,N.

The efficiency of both algorithms depend on the weight of the parity-checks, the
correlation probability p andN. Given a fixed value of p, the algorithms present better
performance when low-density parity-checks are employed. We refer to the original
paper [MS89] for a more detailed description and analysis of the algorithms.

3.2.2 Some techniques for fast correlation attacks
We now present some of the various contributions in fast correlation attacks. Some of
them introduce methods to obtain parity-checks from general feedback polynomials.
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The attack by Meier and Staffelbach requires g(x) to have low weight. Recall that g(x)
has degree n, the state of the LFSR at time i is Si = (si, si+1, . . . , si+n−1), the LFSR
output sequence is s1, . . . , sN and the keystream sequence is z1, . . . , zN. Also, a parity-
check is a low-weight multiple h(x) of g(x) such that h(0) = 1. Given the keystream,
the maximum admissible degree of the parity-checks is N − 1. Finally, recall that the
correlation probability between the keystream and the LFSR sequence is p = Pr(zi =
si) = 1/2+ ϵ, ϵ 6= 0.

Finding parity-checks - A method by Golić

In [MS89], Meier and Staffelbach briefly discuss a method to find parity-checks from
arbitrary polynomials. In [Gol96a], however, Golić points out an erroneous assump-
tion in that method and introduces a new one which finds all parity-checks with
weight at most 2k+1. Golić’s method is presented in Algorithm 3.3. A bmatchmeans
two different residues such that

(xi1 + · · ·+ xik) + (xi
′
1 + · · ·+ xi

′
k) ≡ b (mod g(x)).

For b = 0, the parity-checksmay be divided by a suitable power of x to satisfyh(0) = 1.

Algorithm 3.3 Finding parity-checks - Golić
Input: g(x), maximum degreem and a positive integer k.
Output: All polynomial multiples of g(x) of degree at most m with weight at most

2k+ 1.
1: Compute and store all residues xi mod g(x), i = 1, . . . ,m.
2: Compute and store the residues xi1 + · · · + xik mod g(x) for all

(
m

k

)
combinations

1 ⩽ i1 < · · · < ik ⩽ m.
3: Sort the residues above and find the 0 and 1 matches.

Let m = N and S =
(
N

k

)
. Golić’s algorithm has space complexity O(S) and time

complexity O(S log S).

Attack based on convolutional codes

Johansson and Jönsson [JJ99b] model the attack as a decoding problem. Recall that,
in this setting, s1, . . . , sN is a codeword and z1, . . . , zN is the received sequence at the
other end of a BSC with crossover probability 1− p. Let GLFSR be the n×N generator
matrix (3.1) of the linear code obtained from the LFSR. Notice that the initial state of
the LFSR appear as the first n symbols of the codeword. Hence, GLFSR is in systematic
form and can be written

GLFSR = (InZ), (3.6)

where In is the n× n identity matrix.
Let w be a small positive integer and B > 0 be the memory parameter. Johansson

and Jönsson find parity-checks that involve a symbol si, i ⩾ B+1, a linear combination
of the B previous symbols si−1, . . . , si−B and at most w other symbols. These parity-
checks are written

si +

B∑
j=1

cisi−j +

⩽w∑
j=1

sij = 0. (3.7)
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To exemplify a way to get parity-checks, rewrite the generator matrix as

GLFSR =

(
IB+1 ZB+1

0n−B−1 Zn−B−1

)
.

Parity-checks ofweightw outside of the firstB+1 positions, can be obtained by finding
linear combinations of up to w columns of the sub-matrix Zn−B−1 that yield the zero
vector. Particularly, when w = 2, sorting the columns of GLFSR by the last n − B − 1
entries and finding collisions will yield parity-checks.

Assume m parity-checks have been found for sB+1. Due to the structure of the
LFSR, these parity-checks are valid for any other index i by shifting the symbols in-
volved in the parity-checks. Hence, the parity-checks are written

si +

B∑
j=1

cj,1si−j + b1 = 0,

...

si +

B∑
j=1

cj,msi−j + bm = 0,

where bk =
∑⩽w

j=1 sij is the sum of at most w different terms.
Johansson and Jönsson create a convolutional encoder of rate R = 1/(m + 1) and

memory Bwhose generator matrix is

G =

G0 G1 · · · GB 0
G0 G1 · · · GB

0 . . . . . . . . . . . .

 ,

where G0 =
(
1 1 · · · 1

)
and Gj =

(
0 cj,1 cj,2 · · · cj,m

)
for j = 1, . . . ,B. Then,

the codeword sequence is

v = · · · vivi+1 · · · = · · · v(0)i · · · v
(m)
i v

(0)
i+1 · · · v

(m)
i+1 · · · ,

where vi has the form v
(0)
i v

(1)
i . . . v(m)

i = siG0 + si−1G1 + · · · + si−BGB. The received
sequence can be constructed from z1, . . . , zN as

r = · · · riri+1 · · · = · · · r(0)i · · · r
(m)
i r

(0)
i+1 · · · r

(m)
i+1 · · · ,

where r(0)i = zi and r
(j)
i =

∑⩽w

k=1 zik for j = 1, . . . ,m.
To recover the initial state, it suffices to correctly decode n consecutive information

symbols. The Viterbi algorithm [Vit67] is used for decoding. Johansson and Jönsson
execute the algorithm over J > n information symbols. Algorithm 3.4 summarises the
technique in [JJ99b] using w = 2 and J = n + 10B. The time complexity of the attack
is O

(
Jm2B

)
. In the original paper, the performance of the algorithm is analysed with

some numerical results. If B is small, the capability of the method decreases. For a
given B, the efficiency of the attack depends on p and N.
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Algorithm 3.4 Viterbi decoding by Johansson and Jönsson
Input: Set of parity-checks, keystream sequence.
Output: Initial state of the LFSR.
1: Create the received sequence r.
2: Let Pr(v(0)i = r

(0)
i ) = 1 − p and Pr(v(j)i = r

(j)
i ) = (1 − p)2 + p2, for i = B + 1 to

n+ 10B.
3: For each possible state (initial value) s, let log Pr(s = (z1, z2, . . . , zB)) be the initial

metric. Use the Viterbi algorithm to decode r from i = B to J. Compute the initial
state of the LFSR from the decoded information sequence (ŝ5B+1, . . . , ŝ5B+n).

Attack based on turbo codes

Johansson and Jönsson [JJ99a] extend their own ideas from the attack above by using
turbo codes. Recall that turbo codes “concatenate” convolutional codes. For decoding,
themain idea is to use an a posteriori probability (APP) decoder (i.e., an algorithm that
outputs a posteriori probabilities for all information symbols) for each constituent code.
The output of the first APP decoder is used as a priori probabilities for the second APP
decoder. These are then taken as a priori for the next decoder and so on. This process
continues until convergence or until reaching a maximum number of iterations.

Johansson and Jönsson use M ⩾ 2 different convolutional codes in their attack.
The first one is obtained as in the attack above using convolutional codes. The sub-
sequent codes are obtained by permuting index positions of the first one in the in-
terval B + 1 . . . J, for some value J; Johansson and Jönsson use J = n + 10B, where
B is the memory of the convolutional encoders. For the first code, the authors use
parity-checks (3.7). For the other codes, new parity-checks must be re-computed.
This increases the time complexity during pre-computation, however, it is not a big
problem when the weight isw = 2. The BCJR algorithm [Bah+74] is used as the APP
decoder. The time complexity of the attack is O

(
6MJm2B

)
, where m is the number

of parity-check equations. We refer the reader to [JJ99a] for in-depth details on the
re-computation of parity-checks and decoding for this attack.

Attack based on reducing the dimension of the underlying code

In the formulation as a decoding problem, fast correlation attacks associate a binary
linear [N,n]-codeC to the LFSR. Chepyzhov et al. [CJS01] employ instead a newbinary
linear [N2,k]-code, where k < n and N2 is defined below. The k information symbols
of this code coincide with the first k symbols of the initial state of the LFSR. Hence,
by decoding this new code we can recover k symbols of the LFSR’s initial state. The
remaining symbols can be recovered by repeating the process for the next k bits.

Let each si be written in terms of the initial state (see (2.3)):

si = hi,1s1 + hi,2s2 + · · ·+ hi,nsn, i = 1, . . . ,N. (3.8)

We search in (3.8) for all N2 distinct pairs of equations such that

hi,k+1 = hj,k+1, hi,k+2 = hj,k+2, . . . , hi,n = hj,n, 1 ⩽ i 6= j ⩽ N.

For all these pairs, the sum si + sj can be written as

si + sj = (hi,1 + hj,1)s1 + (hi,2 + hj,2)s2 + · · ·+ (hi,k + hj,k)sk.
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Notice that this sum is a linear combination of the first k symbols s1, . . . , sk only and
does not depend on sk+1, . . . , sn. Let {i1, j1}, {i2, j2}, . . . , {iN2 , jN2} be the indices of all the
pairs. Then, we get a new [N2,k]-code C2 whose information symbols are si, . . . , sk.
The corresponding codewords are computed as

(si1 + sj1 , si2 + sj2 , . . . , siN2
+ sjN2

),

the received word is
(zi1 + zj1 , zi2 + zj2 , . . . , ziN2

+ zjN2
)

and the crossover probability of the corresponding BSC is

p2 = 2p(1− p) = 1/2− 2ϵ2.

To recover s1, . . . , sk, we need to decode C2 with the crossover probability p2. De-
coding is done through exhaustive search of all 2k codewords of C2 and the one closest
to the received sequence is the decoded sequence. The authors also present a gener-
alisation where, instead of finding pairs, they search for sums of w equations that
depend on the target k information symbols only. Then, the crossover probability is
given by pw = 1/2−2w−1ϵw. Experimental results show that usingw = 3, 4 improves
the attack. The time complexity of this method is O

(
2kk 2

(2ϵ)2w

)
.

Attack based on low-density parity-check codes

Canteaut and Trabbia [CT00] find parity-checkswithweightw as shown inAlgorithm
3.5. The space complexity is O(N) and the time complexity is O

((
N−1
w−2
))
.

Algorithm 3.5 Finding parity-checks - Canteaut and Trabbia
Input: g(x), weight w.
Output: All polynomial multiples of g(x) with weight w and degree < N.
1: Compute all residues qi(x) = xi mod g(x), i = 1, . . . ,N − 1. Store them in a table

defined by
T [a] = {i | qi(x) = a}

for some a.
2: for each set of w− 2 elements of {1, . . . ,N− 1} do
3: Compute A = 1+ qi1(x) + · · ·+ qiw−2(x).
4: For j ∈ T [A], 1+ xi1 + · · ·+ xiw−2 + xj is a multiple of g(x)with weight w.
5: end for

Using the parity-checks, the initial state is recovered by a decoding technique
based on Gallager’s iterative algorithm [Gal62]. This method employs the probability
Pr(si = 1 | {zj}1⩽j⩽N, S), where S is the event that all parity-checks involving si are sat-
isfied. Algorithm 3.6 shows the decoding procedure in [CT00]. Canteaut and Trabbia
apply their method using parity-checks of weight 4 and 5. The time complexity of
the attack is O (5(w− 1)mN), where m is the number of parity-checks used. Given a
weight w, the required keystream length N for successful recovery of the initial state
is a function of w and p.
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Algorithm 3.6 Decoding by Canteaut and Trabbia
Input: Set of parity-checks, keystream sequence.
Output: Initial state of the LFSR.
1: For i = 0 to N− 1, initialise L[i] = log p

1−p
.

2: repeat
3: for i = 0 to N− 1 do
4: L ′[i] = (−1)ziL[i].
5: For every parity-check si +

∑
j∈J sj involving si,

L ′[i] = L ′[i] +

(∏
j∈J

(−1)zj
)
min
j∈J

L[j].

6: zi =

{
0 if L ′[i] > 0
1 otherwise

, and L[i] = |L ′[i]|.

7: end for
8: until convergence

Attack based on reconstruction of linear polynomials

Johansson and Jönsson [JJ00] model the problem of recovering the LFSR’s initial state
as a polynomial reconstruction problem. Let each si be written in terms of the initial
state (s1, . . . , sn) (see (2.3)):

si = hi,1s1 + hi,2s2 + · · ·+ hi,nsn, i = 1, . . . ,N.

Define the initial state polynomial U(x) as

U(x) = U(x1, x2, . . . , xn) = s1x1 + s2x2 + · · ·+ snxn.

Then, each si can be expressed as the evaluation of U(x) as

si = U(hi,1,hi,2, . . . ,hi,n).

Let (e1, . . . , en) be a noise vector, where ei ∈ F2 are independent random variables
with Pr(ei = 0) = 1/2+ ϵ. Johansson and Jönsson model the correlation between the
LFSR and keystream sequences as

(z1, . . . , zn) = (s1, . . . , sn) + (e1, . . . , en),

getting
(z1, z2, . . . , zN) = (U(X1) + e1,U(X2) + e2, . . . ,U(XN) + eN) ,

where Xi are known n-tuples for all 1 ⩽ i ⩽ N. The attack is then reformulated to
determining the unknown polynomial U(x) given the noisy observations (z1, . . . , zN)
of U(x) evaluated at the different points X1, . . . ,XN.

To solve the polynomial reconstruction problem, Johansson and Jönsson base their
method on the work of Goldreich et al. [GRS95]. However, a direct application of the
latter is not possible due to some restrictions in the inputs. To overcome this, Johansson
and Jönsson employ sums of the noisy observations. The noise is such that

Pr(zi = U(Xi)) = 1/2+ ϵ, 1 ⩽ i ⩽ N,
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where Xi are known random vectors of length n for all 1 ⩽ i ⩽ N. SinceU(x) is linear,
we have that

Pr(zi + zj = U(Xi + Xj)) = Pr(zi + zj = U(Xi) +U(Xj))

= 1/2+ 2ϵ2,

and in general

Pr
(

w∑
j=1

zij = U

(
w∑
j=1

Xij

))
= 1/2+ 2w−1ϵw.

Let ẑ =
∑w

j=1 zij and X̂ =
∑w

j=1 Xij . Any ẑ is a noisy observation of U(X̂) and we can
write

U(X̂) = ẑ+ e,
where e ∈ F2 is a random variable with Pr(e = 0) = 1/2 + 2w−1ϵw. Algorithm 3.7
shows the technique in [JJ00].

Algorithm 3.7 Polynomial reconstruction by Johansson and Jönsson
Input: Keystream z1, . . . , zN, (X1, . . . ,XN) and constants w, k and m.
Output: Target k values of the initial state of the LFSR.

Pre-computation
1: Select m different vectors V1, . . . ,Vm of length (n− k).
2: for each Vi do
3: Find all linear combinations X̂(i) =

∑w

j=1 Xij such that X̂(i) = (x̂1, . . . , x̂k,Vi) ,
for arbitrary values x̂1, . . . , x̂k, and store (X̂(i), ẑ(i)), where ẑ(i) =

∑w

j=1 zij . Let
mi be the number of such pairs.

4: end for
Computation

5: for all 2k possible values (ŝ1, . . . , ŝk) do
6: For each Vi, iterate over all mi stored pairs (X̂(i), ẑ(i)) to compute the number

num of times that
k∑

j=1
ŝjx̂j = ẑ(i).

Update dist = dist+ (mi − 2 · num)2.
7: If dist is the highest value so far, store (ŝ1, . . . , ŝk) and set dist = 0.
8: end for
9: Output (ŝ1, . . . , ŝk)with the highest value dist.

Write X̂(i) = (x̂1, . . . , x̂k, vk+1, . . . , vn). Since U(X̂(i)) = ẑ(i) + e, we have that

k∑
j=1

sjx̂j +

n∑
j=k+1

sjvj = ẑ(i) + e

and rewrite it as
k∑

j=1
(sj + ŝj)x̂j +

n∑
j=k+1

sjvj + e =

k∑
j=1

ŝjx̂j + ẑ(i). (3.9)
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for some value of (ŝ1, . . . , ŝk). Notice that W =
∑n

j=k+1 sjvj in (3.9) is a fixed binary
random variable for all X̂(i)’s. We have two cases:

• Correct hypothesis (s1, . . . , sk = ŝ1, . . . , ŝk). Here,
∑k

j=1(sj + ŝj)x̂j = 0 and the
probability of the right hand side of (3.9) to be zero is Pr(W + e = 0) = 1/2 ±
2w−1ϵw depending on whether W = 0 or W = 1. Then, num has a binomial
distribution Bin(mi,p) with p = 1/2± 2w−1ϵw.

• Incorrect hypothesis (s1, . . . , sk 6= ŝ1, . . . , ŝk). In this case,
∑k

j=1(sj+ ŝj)x̂j 6= 0. This
results in num having a binomial distribution Bin(mi,p)with p = 1/2.

In order to distinguish the two distributions, a square distance (mi − 2 · num)2 is used,
which considers the difference of the number of times

∑k

j=1 ŝjx̂j = ẑ(i) holds and the
number of times it does not hold. Let mi = m1 for all i. The time complexity of the
pre-computation part is O

(
N⌈w/2⌉) and O

(
mm1k2k

)
for the main computation. The

authors also present an algorithm which selects a candidate (ŝ1, . . . , ŝk) and extends it
to obtain a set of surviving candidates. This other algorithm employs the same pre-
computation and has time complexityO (mm1k2nc), c < 1, for the main computation.
Givenw, k andm, the success of the attack depends on p; see [JJ00] for further details.

Attack based on list decoding

The attack by Mihaljević et al. [MFI02] is based on list decoding [Eli57], where the
decoder outputs a list of possible candidate codewords. Decoding is referred to as list-
of-ℓ decoding when the list is composed of ℓ candidates. The authors perform a partial
exhaustive search on the first B information bits and target to decode D > n− B bits.

Given the partial exhaustive search, the first B bits of the initial state are assumed
to be known and parity-checks can include any number of those bits. Mihaljević et al.
obtain parity-checks as in another attack proposed by the same authors [MFI01]; we
donot show thatmethodhere. The complexity of findingparity-checks isO

(
D
(
N−n

2
))
.

If employingmemory proportional toO(N−n), the complexity becomesO(D(N−n)).
The number of parity-checks involving a symbol si is expected to bem = sB−n

(
N

2
)
.

Algorithm 3.8 Attack based on list decoding by Mihaljević et al.
Input: Keystream z1, . . . , zN, set of parity-checks, number of bitsM for correlation check, cor-

relation threshold T and parameters B and D.
Output: Initial state of the LFSR.
1: Choose a new value (ŝ1, . . . , ŝB) for the first B bits of the initial state. If no new value can

be chosen, terminate.
2: Evaluate the parity-checks for the target bits si, i = B+ 1, . . . ,D.
3: Create two most-reliable estimators as follows:

• Select the n − B positions corresponding to the bits with the most satisfied parity-
checks. Assume they are correct and compute the information bits ŝB+1, . . . , ŝn.

• Select the n−B positions corresponding to the bits with the most unsatisfied parity-
checks. Assume they are incorrect and compute the information bits ŝB+1, . . . , ŝn.

4: For each of the estimators above, generate ŝ1, . . . , ŝM and compute the distance S =∑M
i=1(ŝi + zi). If S ⩽ T , return (ŝ1, . . . , ŝn) as the initial state, otherwise, goto Step 1.
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Algorithm 3.8 summarises the attack to recover the initial state. The attack employs
list-of-2B+1 decoding to get a list of candidates and the distance S =

∑M

i=1(ŝi + zi) to
select the true candidate. Mihaljević et al. employ parity-checks of weight 3. Letm be
the number of parity-checks andM a parameter specifying the number of bits needed
for correlation check. The time complexity is O

(
2B((D− B)m+ (M− n)wt(g))

)
.

Improving the search for parity-checks and their evaluation

Chose et al. [CJM02] presented algorithmic improvements for fast correlation attacks.
Particularly, a newmethod for finding parity-checks and an application of the Fourier-
Hadamard transform to efficiently evaluate them with the keystream bits. As in the
attack byMihaljević et al. above, the first B bits of the LFSR’s initial state are recovered
by exhaustive search and the rest by decoding some D > n− B target bits.

The weight-w parity-checks associated to a symbol si contain other w − 1 output
bits and a combination of the B guessed bits; they are written as follows:

si = si1 + · · ·+ siw−1 +

B∑
j=1

ci,I,jsj,

where I = [i1, . . . , iw−1]. Let s = (s1, . . . , sn),A(s) =
∑n

j=1 ajsj for some fixed constants
aj, and w ′ ∈ {w,w − 1}. Parity-checks are obtained using Algorithm 3.9. This match-
and-sort algorithm finds equations of the form

A(s) = si1 + · · ·+ siw ′ +

B∑
j=1

ci,I,jsj.

In the first two loops, we compute the formal sum of l2 bits and l4 bits in terms of
the initial state, and store those expressions in tables U and V , respectively. Let S be a
subset of the n − B unknown bits (i.e., initial state bits not recovered by brute force).
We find matching indices u from U and formal sums of A(s) and l1 bits (in terms of
the initial state), and store them in tableC. Thesematches are required to be equal to a
value s ′ in the subset S. Similarly, we search formatches in the subset S between indices
v from V and formal sums of l3 bits. For each match, we find collisions within indices
c from table C, this time on the full set of n−B unknown bits. The authors suggest to
use w ′

4 log2N bits for S to maximise memory usage. Whenw is odd,w ′ = w− 1, A(s)
represents one of the target bits si and the algorithm is executed for each of theD target
bits. Whenw is even,w ′ = w,A(s) = 0 and one application of the algorithm yields the
parity-checks for all bits, not only the targeted ones. The expected number of parity-
checks for a symbol si is m ≈ 2B−n

(
N

w−1
)
. The time complexity is O

(
N⌈w/2⌉ logN

)
and the space complexity is O

(
N⌊(w+1)/4⌋).

Now, let B = B1 + B2. Then, all parity-checks involving a given zi can be rewritten
as

zi = zi1 + · · ·+ ziw−1 +

B1∑
j=1

ci,I,jsj︸ ︷︷ ︸
t1i,I

+

B1+B2∑
j=B1+1

ci,I,jsj︸ ︷︷ ︸
t2i,I

.

(Since keystream bits appear in the equation above, equality holds with some prob-
ability.) Let c2 = (c2,1, . . . , c2,B2) be a vector of length B2 and group the parity-checks
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Algorithm 3.9 Finding parity-checks - Chose et al.
Input: g(x), weight w ′ and A(s).
Output: Parity-checks of weight w ′ for A(s).
1: Evenly split w ′ as w ′ = l1 + l2 + l3 + l4 with l1 ⩾ l2 and l3 ⩾ l4.
2: for all possible values of l2 bits (j1, . . . , jl2) do
3: Formally compute sj1 + · · ·+ sjl2

=
∑n

k=1 uksk and let u = (u1, . . . ,un).
4: Set U[u] = {j1, . . . , jl2}.
5: end for
6: for all possible values of l4 bits (m1, . . . ,ml4) do
7: Formally compute sm1 + · · ·+ sml4

=
∑n

k=1 vksk and let v = (v1, . . . , vn).
8: Set V[v] = {m1, . . . ,ml4}.
9: end for
10: Let S be a subset of the n− B unknown bits and πS be the projection on these bits.
11: for all possible values s ′ of the bits in S do
12: for all possible values of l1 bits (i1, . . . , il1) do
13: Formally compute A(s) + si1 + · · ·+ sil1

=
∑n

k=1 cksk and let c = (c1, . . . , cn).
14: Search for u in U such that πS(u+ c) = s ′.
15: Set C[u+ c] = {i1, . . . , il1 , j1, . . . , jl2}.
16: end for
17: for all possible values of l3 bits (k1, . . . , kl3) do
18: Formally compute sk1 + · · ·+ skl3

=
∑n

k=1 dksk and let d = (d1, . . . ,dn).
19: Search for v in V such that πS(v+ d) = s ′ and let t = v+ d.
20: Search for c in C such that πn−B(c+ t) = 0.
21: Output {A(s), i1, . . . , il1 , j1, . . . , jl2 ,k1, . . . , kl3 ,m1, . . . ,ml4 , c+ t}.
22: end for
23: end for

into sets
Mi(c2) = {I | ci,I,B1+j = c2,j, j = 1, . . . ,B2},

i.e., Mi(c2) contains parity-checks that depend on the same last B2 guessed variables.
If X1 is a fixed guessed value for the first B1 bits of the initial state of the LFSR, t1i,I can
be computed. Define the function fi(c2) as

fi(c2) =
∑

I∈Mi(c2)

(−1)t1i,I .

The Fourier-Hadamard transform of fi(c2) is

f̂i(X2) =
∑
c2

fi(c2)(−1)c2·X2 =
∑
c2

 ∑
I∈Mi(c2)

(−1)t1i,I

 (−1)c2·X2

=
∑
I

(−1)t1i,I+t2i,I .

Hence, f̂i(X2) gives the difference between the predicted number of zeros and ones
for zi when the B guessed bits have value (X1,X2). Therefore, a single computation of
the Fourier-Hadamard transform evaluates the difference for all possible values X2 of
the B2 bits. Choosing B2 = log2 m, the complexity of evaluating the parity-checks is
O(2BD log2 m). Meanwhile, the straightforward approach has complexity O(2BDm).
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Chose et al. employ a variation of the decoding procedure used byMihaljević et al.
above. The time complexity of decoding is

O

(
2BD log2m+ (1+ pe(2B − 1))

(
L− B− δ

δ

)
1

(2p− 1)2

)
,

where pe is the probability of accepting a wrong solution and δ is a parameter. We
refer to the original paper for in-depth details on this attack.

Attack using low rate codes

Molland et al. [MMH03] introduce a technique for finding parity-checks based on the
generalised birthday problem presented by Wagner [Wag02]. They also propose a
quick metric decoding technique which is able to use a very big number m of parity-
checks.

Using the samen×NmatrixGLFSR as in (3.6) and for a givenB, 1 ⩽ B ⩽ n, Molland
et al. search for weight-w parity-checks

c1s1 + c2s2 + · · ·+ cBsB = si1 + si2 + · · ·+ siw . (3.10)

The authors present a method with complexity O(Nw−1 logN) for finding all such
parity-checks. However, they state that not all parity-checks are required for the attack
to succeed. Hence, they employ a more efficient method fixing w = 4 to obtain only
a subset of all the parity-checks. Let the columns of the matrix GLFSR be g1, . . . ,gN.
Algorithm 3.10 shows the method by Molland et al. The matrix G2 has N2 = N2

2n−B+1

columns. The time complexity is O (N2 logN2).

Algorithm 3.10 Finding parity-checks - Molland et al.
Input: GLFSR, B and B4 < B.
Output: Parity-checks of weight w = 4.
1: Sort the n×N matrix GLFSR according to the last n− B positions.
2: Find all pairs gi1 ,gi2 of columns of GLFSR such that f = gi1 + gi2 is zero in the last

n− B positions. Add column f to a matrix G2 and store the indices i1, i2.
3: Sort the n×N2 matrix G2 according to the last n− B4 positions.
4: Find all pairs fj1 , fj2 of columns ofG2 such that fj1 +fj2 = gi1 +gi2 +gi ′1

+gi ′2
is zero

in the last n−B4 positions. The first B positions of fj1 +fj2 correspond to c1, . . . , cB.
Output c1, . . . , cB and i1, i2, i3, i4.

For the decoding stage, Molland et al. use a method similar to that in the attack
by Johansson and Jönsson based on convolutional codes [JJ99b]. The authors improve
the storage of the parity-checks and their evaluation to compute the metrics for the
Viterbi decoder. Notice that for all m parity-checks (3.10) there are only 2B different
versions for the left hand side. Whenm� 2B, many equations will have the same left
hand side type defined by c1, . . . , cB. Let E and sum be tables with 2B entries. As each
parity-check is found, let

e = c1 + 2c2 + 22c3 + · · ·+ 2B−1cB,
s = (zi1 + · · ·+ ziw) mod 2
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and update E(e) = E(e) + 1 and sum(e) = sum(e) + s. After having found all parity-
checks, E(e) is the number of equations of type e and sum(e) is the number of those
equations whose right hand side sum to 1. Let ŝ = (ŝ1, . . . , ŝB) be a guess for the first
B bits of the initial state. If c1ŝ1 + · · · + cBŝB = 1 for a type e equation, the number
of equations that hold is sum(e) and the metric for ŝ is updated by sum(e). When
c1ŝ1 + · · · + cBŝB = 0, the number of equations that hold is E(e) − sum(e) and the
metric is updated by E(e) − sum(e). This way, the equations are tested in one step
instead of E(e). The complexity of the whole decoding stage employing the Viterbi
decoder is O

(
Tm+ T22B

)
.

Attack exploiting the knowledge of the filtering function

Leveiller et al. [Lev+03] introduce an attack which considers the characteristics of the
LFSR and the filtering function to compute a posteriori probabilities (APP) for decod-
ing. The authors present two algorithms to compute these probabilities: SOJA-1 and
SOJA-2. Decoding is done by using one of their proposed algorithms: SOJA-Gallager,
a modified version of Gallager’s iterative algorithm, or SOJA-threshold, a threshold
decoder.

Let a weight-w parity-check be written as

si1 + · · ·+ siw = 0

and let Eb(i) be the set of parity-checks containing si. Recall that parity-checks hold
for shifted versions of the LFSR sequence as well. Following the notation by Leveiller
et al., let X(i) = (X1(i), . . . ,Xℓ(i)) be the input vector to the filtering function f at time i.
Then, a vectorial parity-check is a set E of vectors X(i1), . . . ,X(iw) such that their sum is
zero. The set of vectorial parity-checks containing X(i) will be denoted by Ev(i). The
equations in Eb(i) are computed using the method in [CT00] (see algorithm 3.5). The
vectorial parity-checks are then computed from Eb(i). Notice that |Ev(i)| ≈ |Eb(i)|

ℓ
.

Let E = {X(i1), . . . ,X(iw)} and JE = {j : X(j) ∈ E}. Define

zE = {zj : j ∈ JE} and zE = {zj : j ∈ JE for all E ∈ Ev(i)}.

We abuse notation in the definitions above andwemean the set of bits zj, not the actual
values 0 or 1. The APP computed by SOJA-1 is

Pr(X(i) = x | zE, f) =
∏

E∈Ev(i) Γ
i(x)∑

y

∏
E∈Ev(i) Γ

i(y)
,

where
Γ i(x) = Pr(X(i) = x | zE, f).

Let ϕu be a linear function given by ϕu : X(i)→ u · X(i), where u ∈ Fℓ
2 and u · X(i) =∑ℓ

j=1 ujXj(i). Then, we can also get the APP

Pr(u · X(i) = 1 | z, f) =
∑

x:ϕu(x)=1

∏
E∈Ev(i) Γ

i(x)∑
y

∏
E∈Ev(i) Γ

i(y)
.

Now, in SOJA-2, consider vectorial parity-checks X(i1) + · · · + X(iw) = 0, the idea
is to enumerate the input vectors that satisfy the parity-checks, then evaluate the
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proportions of 1s and 0s corresponding to each component thus obtaining the APPs
Pr(si = 1) on the input bits. Let m = |Eb(i)|, then the complexity of SOJA-1 is
O
(
ℓ22ℓ+1 + m

ℓ
N2ℓ−1) while the complexity of SOJA-2 is O

(
ℓ2ℓ +Nm

)
. Leveiller et al.

show how to compute Γ i(x) and the APP for SOJA-2; we refer to the original paper
[Lev+03] for the details.

Let Λ(si) be the a posteriori probability assigned to si. SOJA-Gallager initialises
APP(0)(si) and Obs(si) to Λ(si) for all i = 1, . . . ,N. Then, for a fixed number θ of
iterations, APP(k)(si) is updated for all i as

APP(k)(si) ≈ Obs(si)×
∏

e∈Eb(t)

1−
∏

sj∈e:j ̸=i(1− 2 · APP(k−1)(si))

2 .

Finally, if APP(θ)(si) > 0.5, zi is decoded as 1, and 0 otherwise. SOJA-threshold con-
siders theK bits with themost reliable a posteriori probabilitiesΛ(si), i.e., if |Λ(si)−0.5|
is close to 0 or 1. For each of theK bits, zi is decoded as 1whenΛ(si) > 0.5 anddecoded
as 0 when Λ(si) < 0.5.

Algorithm 3.11 shows the general attack method in [Lev+03].

Algorithm 3.11 SOJA attack by Leveiller et al.
Input: Keystream z1, . . . , zN, set of parity-checks.
Output: Initial state of the LFSR.
1: Using SOJA-1 or SOJA-2, compute the a posteriori probabilities APP(si) associated

to the LFSR sequence bits.
2: Compute the initial state by decoding with SOJA-Gallager or SOJA-threshold.
3: Output the initial state of the LFSR.

Attack based on finding zero inputs of the filtering function

The attack by Didier [Did07] is related to the one above by Leveiller et al. since the
former also exploits the knowledge of the function f. The main idea is to identify
when the filtering function f has as input the zero vector. The ℓ bits involved in those
zero vectors are equal to zero. By expressing these bits in terms of the initial state, we
construct a system of linear equations which is used to recover the initial state.

Let a vectorial parity-check of weight w+ 1 be

Xi + Xi1 + · · ·+ Xiw = 0

and define

PX = Pr
(
f(Xi1) + · · ·+ f(Xiw) = 0 |

w∑
j=1

Xij = X

)
,

i.e., the probability that zi1 + · · ·+ ziw = 0 knowing that Xi = X. Didier shows that for
even w, (i) P0 > 0.5 and P0 ⩾ PX, for all X 6= 0, and (ii) there is always a gap between
P0 and the other PX’s if f has a good autocorrelation property. The idea is to use many
parity-checks to compute a good approximation of PXi

associated to a position i. If the
gap between P0 and the other PX is large enough, the indices i for which Xi = 0 are
detected. Parity-checks of weight w+ 1 = 2w ′ + 1 are used; they are computed using
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the method in [CJM02] (see Algorithm 3.9) with complexity O
(
2N/2+(w ′−1)ℓ+1). The

main stage of the attack has complexityO
(
dN/ℓe2ℓ+2+2ℓ(w ′−1)). Algorithm 3.12 shows

the attack by Didier.

Algorithm 3.12 Attack by Didier
Input: Keystream z1, . . . , zN, set of vectorial parity-checks.
Output: Initial state of the LFSR.
1: Approximate PXi

for the first L = dN
ℓ
e2ℓ keystream bits by counting how many

parity-checks are satisfied by the keystream bits. Among the L bits, only the ones
for which zi = f(0) have to be considered.

2: Assume that the dN/ℓe bits with the highest PXi
correspond to positions where

Xi = 0. Construct a system of linear equations with those bits expressed in term
of the initial state.

3: Solve the system of equations and output the initial state of the LFSR.

3.2.3 Attack by Todo et al.
Let st = st1 + · · ·+ stw−1 be a parity-check. Since every si can be expressed as a linear
combination of the initial state S1, a parity-check may be written as

st = 〈S1,at1〉+ · · ·+
〈
S1,atw−1

〉
= 〈S1,at〉 ,

where at1 , . . . ,atw−1 ∈ Fn
2 , at =

∑w−1
i=1 ati and 〈·, ·〉 denotes the dot product. Let et be

the error generated by the filtering function. Then zt = st+et. So, Todo et al. [Tod+18]
write parity-checks as

et = 〈S1,at〉+ zt.

Let p = Pr(et = 1), then the correlation is defined as c = 1− 2p.
The error et may not be highly biased. However, high correlation may be observed

by summing optimally chosen linear masks Γi ∈ Fn
2 . Assume that

e ′
t =

∑
i∈Ts

〈St+i, Γi〉+
∑
i∈Tz

zt+i

may be highly biased for some Ts, Tz and Γi, where St+i is the LFSR state at time t+ i.
Using equation (2.2), we get

e ′
t =

〈
S1, Γ ×Mt−1〉+ ∑

i∈Tz

zt+i, (3.11)

where Γ =
∑

i∈Ts
(Γi ×Mi) and M is the matrix implementing the LFSR (see Section

2.4). Then, parity-checks are given by (3.11), p = Pr(e ′
t = 1) and the correlation c is

redefined from this value of p. Assuming thatN parity-checks are available, we guess
the initial state, compute s1, . . . , sN from that guess and evaluate

∑N

t=1(−1)e ′
t . When

the correct initial state is guessed, the sum follows a normal distribution N(Nc,N).



54 3. Cryptanalysis of the filter generator

Otherwise, we assume that the sum behaves at random and it follows a normal distri-
bution N(0,N). We have

N∑
t=1

(−1)e ′
t =

N∑
t=1

(−1)〈S,Γ×Mt−1〉+∑
i∈Tz

zt+i

=
∑
x∈Fn

2

 ∑
t∈{1,...,N|Γ×Mt−1=x}

(−1)
∑

i∈Tz
zt+i

 (−1)⟨S,x⟩.

Then, in a similar way as Chose et al. [CJM02], from

w(x) =
∑

t∈{1,...,N|Γ×Mt−1=x}

(−1)
∑

i∈Tz
zt+i

we compute ŵ using the fast Fourier-Hadamard transform (FFT); ŵ(S) corresponds
to the value of the sum when S is guessed.

Let F2n = F2[x]/(g) and α ∈ F2n such that g(α) = 0 and it is a primitive element of
F2n . Also, let Ai ∈ Fn

2 denote the first row of Mi, i ⩾ 0. The vector Ai is represented
by αi ∈ F2n . Let Γ ∈ Fn

2 be represented by γ ∈ F2n . The important remark is that the
vector Γ ×M is represented by γα and Γ ×Mi by γαi. Now, letMγ be an n×nmatrix
over F2 such that its j-th row is the vector representation of γαj−1. Then, αiγ is the
representation of Ai ×Mγ. Since γαi = αiγ, we have that Γ ×Mi = Ai ×Mγ. Given
this “commutative” feature,〈

S1, Γ ×Mt−1〉 = 〈S1,At−1 ×Mγ〉 =
〈
S1 ×MT

γ,At−1
〉

and equation (3.11) is equivalent to

e ′
t =

〈
S1 ×MT

γ,At−1
〉
+

∑
i∈Tz

zt+i.

Assume high correlation is observed when guessing S1 and parity-checks are gen-
erated from Γ ×Mt−1. Then, the same high correlation is observed when guessing
S1 ×MT

γ and parity-checks are generated from At−1.
A linear mask may equivalently be represented by Γ ∈ Fn

2 or γ ∈ F2n . Linear
masks which yield high correlation are referred to as highly biased linear masks. Let
parity-checks be generated from Γ ×Mt−1 and assume we guess an incorrect initial
state S ′

1 = S1 ×MT
γ ′ . Then〈

S ′
1, Γ ×Mt−1〉 = 〈S1 ×MT

γ ′ ,At−1 ×Mγ

〉
= 〈S1,At−1 ×Mγγ ′〉 ,

i.e., it is equivalent to using the linear mask γγ ′ instead of γ. If γ and γγ ′ are highly
biased linear masks, guessing S1 ×MT

γ ′ also yields high correlation. Based on this,
Todo et al. introduce a newwrong-key hypothesis: Assume that there arem highly biased
linear masks γ1, . . . ,γm and parity-checks are generated from At (with the same Tz). Then,
we observe high correlation when S1 ×MT

γi
is guessed for any i ∈ {1, . . . ,m}. Otherwise, we

assume the correlation is 0.
Let γ1, . . . ,γm be highly biased linear masks. The attack by Todo et al. is presented

in Algorithm 3.13. It consists of three steps: constructing parity-checks, computing
the FFT and removing the linear masks. Parity-checks are constructed from At and
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∑
i∈Tz

zt+i. The FFT is used to evaluate 〈S,At〉+
∑

i∈Tz
zt+i and those Swith correla-

tion higher than a threshold th are chosen. Applying the FFT to all possible values of S
has high time complexityn2n. Todo et al. bypassβ bits (i.e., set those bits to a constant
value) and guess only n − β bits. The chosen solutions have the form S1 ×MT

γi
. For

each solution, we try all γi to remove MT
γi

from S. This method recovers the correct
initial state for some γi and an incorrect one for other masks. If the expected number
of times the correct S1 appears is greater than that for incorrect ones, S1 is uniquely
determined. The parameters β and th are chosen such that this is the case. We refer
to the original paper [Tod+18] for a more detailed description and analysis.

Algorithm 3.13 Attack by Todo et al.
Input: Keystream z1, . . . , zN, number β of bypassed bits, correlation threshold th.
Output: Initial state of the LFSR.
1: Construct parity-check equations from At and

∑
i∈Tz

zt+i.
2: Apply the FFT to evaluate

∑N

t=1(−1)⟨S,At−1⟩+
∑

i∈Tz
zt+i , where the β bypassed bits

of S are fixed to a constant (i.e, only n− β bits are guessed).
3: Pick those solutions Swith correlation greater than th. Each solution has the form

S = S1 ×MT
γi
. RemoveMT

γi
by exhaustively guessing γi and recover S1.

Let mp be the number of masks with positive correlation and mm be the number
of masks with negative correlation. The total number of masks ism = mp +mm. The
time complexity of the attack is estimated [Tod+18] asN+(n−β)2n−β+m2n−βϵ1+
(m2

p + m2
m)2−βϵ2, where ϵ1 = Pr(N(0,N) > th) and ϵ2 = Pr(N(Nc,N) > th). The

term (m2
p + m2

m)2−βϵ2 is negligible and considering N = (n − β)2n−β = m2n−βϵ1,
the time complexity is 3(n−β)2n−β and the required number of parity-checks isN =
(n− β)2n−β.

3.2.4 Summary of fast correlation attacks and some results
Table 3.1 shows a summary of the time complexity of the attacks described above.
Recall that p = Pr(si = zi) = 1/2 + ϵ and m denotes the number of weight-w parity-
check equations used. In [JJ99b] and [JJ99a], the parameter B < n is the memory (of
the convolutional code) and J = n+10B. In [CJS01], k < n is a complexity parameter.
In [JJ00], m is the number of samples, m1 is the cardinality of the subset of parity-
checks used and k is a parameter. In [MFI02], B is the number of bits in the partial
brute force andD,M are parameters. In [CJM02], B is the number of bits in the partial
brute force, pe is the probability of accepting a wrong solution, and D > n − B and a
small δ are parameters. In [MMH03], B < n is the memory,N2 =

N2

2n−B+1 and T ≈ n is a
parameter. In [Lev+03], θ is a parameter for the number of iterations while decoding.
In [Did07],w = 2w ′+1. The parameter β in [Tod+18] is the number of bypassed bits.

Recall that when modelled as a decoding problem, the crossover probability of the
associated BSC is 1 − p. Table 3.2 contains some numerical results of the fast correl-
ations attacks above. The table shows only some of the best reported results for the
given values. Entries with ∗ in the second column are theoretical results only. Many
of these attacks use the same degree-40 polynomial of weight 17 from [JJ99b]. For
the other experiments, most authors employ randomly chosen feedback polynomials.
The symbol ? in the third column indicates that neither g is explicitly presented nor
its weight is reported. The authors in [Lev+03] used coprime spacings for the inputs
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Attack
Complexity

Pre-computation Computation

[JJ99b] O
((

N−J
w−1

))
O
(
Jm2B

)
[JJ99a] O

(
M
(
N−J
w−1

))
O
(
6MJm2B

)
[CJS01] O

(
N2) O

(
2kk 2

(2ϵ)2w

)
[CT00] O

((
N−1
w−2

))
O (5(w− 1)mN)

[JJ00] O
(
N⌈w/2⌉

)
O
(
mm1k2k

)
or O (mm1k2nc) ,c < 1

[MFI02]
O
(
D
(
N−n

2
))

or
O
(
2B((D−B)m+ (M−n)wt(g))

)
O (D(N−n))

[CJM02] O
(
N⌈w/2⌉ logN

)
O
(
2BD log2 m+ (1+ pe(2B − 1))

(
L−B−δ

δ

) 1
(2p−1)2

)
[MMH03] O (N2 logN2) O

(
Tm+ T22B

)
[Lev+03] same as [CT00]

O
(
ℓ22ℓ+1 + m

ℓ N2ℓ−1)+ dec or O
(
ℓ2ℓ +Nm

)
+ dec,

dec = O (θNm) orO(N)

[Did07] O
(
2N/2+(w′−1)ℓ+1

)
O
(
⌈N/ℓ⌉2ℓ+2+2ℓ(w′−1)

)
[Tod+18] O

(
(n−β)2n−β

)
O
(
2(n−β)2n−β

)
Table 3.1. Summary of the time complexity of fast correlation attacks.

to f, i.e., gcd(γ1, . . . ,γℓ−1) = 1. For more details, we refer to the original sources. The
attack in [Tod+18] was not applied to the filter generator, but to ciphers in the Grain
family [Hel+08]. Due to this, those results are omitted in Table 3.2. Ciphers in the
Grain family contain an LFSR, an NFSR and an output function. Section 4.8 presents
more details and the results in [Tod+18].

Attack deg(g) wt(g) w 1− p N

[JJ99b] 40 17 2 0.260 4 · 104
40 17 2 0.400 4 · 105

[JJ99a] 40 17 2 0.300 4 · 104
40 17 2 0.410 4 · 105

[CJS01]
60 ? 3 0.300 6.3 · 104
60 ? 3 0.400 6 · 105
70 ? 3 0.350 1.12 · 106

[CT00] 40 17 4 0.440 4 · 105
40 17 5 0.482 3.6 · 105

[JJ00]
40 17 2 0.450 4 · 105
60 13 3 0.320 1.5 · 105
60 13 2 0.430 4 · 107

[MFI02]

40 17 3 0.469 4 · 105
40 17 3 0.490 3.6 · 105

∗89 ? 3 0.469 ≈ 2.5 · 1011
∗89 ? 3 0.478 ≈ 1012
∗89 ? 3 0.480 ≈ 4 · 1012

[CJM02]
40 17 4 0.469 8 · 104

∗40 17 4 0.490 8 · 104
∗89 ? 4 0.469 228

[MMH03] 60 ? 4 0.430 1.5 · 107
60 ? 4 0.470 1 · 108

[Lev+03] 40 17 5 0.375 1.7 · 104
100 3 3 0.4375 3 · 104

[Did07]
53 ? 5 0.4375 ≈ 4 · 105
59 ? 5 0.4531 ≈ 1.45 · 106
61 ? 5 0.4531 ≈ 2.1 · 106

Table 3.2. Some numerical results of fast correlation attacks.
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3.3 Deterministic attacks
This class of attacks exploit information about the filter generator, such as the feed-
back polynomial, the filtering function and its inputs from the LFSR. The efficiency of
deterministic attacks can be diminished by designing the filter generator with certain
characteristics. Additionally to the requirements in the previous section, it is recom-
mended to choose k1, . . . , kℓ such that the input spacings to the filtering function f are
coprime and its memory is as close to n as possible. The memory is defined [Lev+01]
as

Γ = 1+
∑ℓ−1

i=1 γi

gcd(γ1, . . . ,γℓ−1)
= 1+ kℓ − k1

gcd(γ1, . . . ,γℓ−1)
,

where γi = ki+1 − ki are the input spacings. Golić presents in [Gol96b] an extensive
list of design criteria to make the filter generator resistant to various attacks.

3.3.1 Some deterministic attacks

Initial direction by Anderson

The work by Anderson [And95] is among the first ones in this class. It is based on the
augmented function of f, which captures dependencies between the keystream bits and
the input bits that generated them.

Let m be a parameter and let Fm : Fm+kℓ

2 → Fm
2 be defined as

Fm : (x1, . . . , xm+kℓ
) 7→ (f(x1+k1 , . . . , x1+kℓ

), f(x2+k1 , . . . , x2+kℓ
), . . . , f(xm+k1 , . . . , xm+kℓ

)),

where k1, . . . , kℓ are the input spacings to the filtering function f. Let

s
(m)
t = (st, . . . , st+m−1) and z

(m)
t = (zt, . . . , zt+m−1)

denotem consecutive LFSR and keystream bits, respectively, at time t. Then, we have
that z(m)

t = Fm

(
s
(m+kℓ)
t

)
. Anderson considers the case ki+1 = ki+1 for i = 1, . . . , ℓ−1,

i.e., ki are consecutive integers. The function Fℓ is called the augmented function of f
and z

(ℓ)
t = Fℓ

(
s
(2ℓ−1)
t

)
.

The idea in Anderson’s attack is to analyse the dependence between a keystream
bit zt and the corresponding ℓ input bits st+ki

, and also how each input bit influences
ℓ different keystream bits. In total, 2ℓ − 1 input bits will affect ℓ keystream bits. The
attack analyses the truth table of Fℓ, which is constructed from that of f. The objective
is to find, for each output value of Fℓ, whether there are constant values for some of
the inputs or very high correlations in the inputs. The initial state is then recovered by
solving a system of linear equations from the bits that have a fixed value and highest
correlations. Anderson concludes that a careful choice of f should be made in order
to avoid this attack.

Inversion attacks

Golić presented the inversion attack in [Gol96b] and it has two variants: forward and
backward attack. The applicability of these variants depends on whether the filtering
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function f is linear in the first or last input variable, respectively. Being linear in the
first or last variable means that

f(x1, . . . , xℓ) = x1 + f1(x2, . . . , xℓ) or f(x1, . . . , xℓ) = xℓ + f2(x1, . . . , xℓ−1),

for some Boolean functions f1 or f2, respectively. Assuming linearity in the first vari-
able, we have that

st+k1 = zt + f1(st+k2 , . . . , st+kℓ
). (3.12)

Assume gcd(γi) = 1, then Γ = kℓ − k1 + 1. The (forward) attack consists in guessing
the initial value of the Γ − 1memory bits sk1+1, . . . , skℓ+1, then compute the value of the
remaining n− Γ + 1 initial state bits using the given keystream and (3.12). Therefore,
the sequence bits {st}

N
t=n+1 can be obtained by the definition of the LFSR. Finally, a

new keystream sequence is computed and compared against the original one, thus
finding the initial state when both coincide. The time complexity is O(2Γ−1). Górska
and Górski [GG02] propose guessing n − m bits instead of Γ − 1, where m denotes
the largest gap between cells of the LFSR which have taps to the filtering function or
connection polynomial.

The generalised inversion attack by Golić et al. [GCD00] works if f is not linear in
x1 and xℓ. It employs trees to recover the initial state and critical branching processes
[Har63; AN72] for the probabilistic analysis. Again, assume gcd(γi) = 1. The attack
represents the value of the Γ − 1 memory bits sk1+1, . . . , skℓ+1 as the root of a tree
with maximum depth n − Γ + 1. Each node in this tree represents a memory state
of Γ − 1 bits. The main idea is to expand a tree to level t according to the solutions
of zt = f(st+k1 , . . . , st+kℓ

). The value of zt is known and the values for st+k1 , . . . , st+kℓ

are determined by the current node. The number of solutions (one, two or none)
indicates the number of new nodes to add from the current one. When a tree reaches
the maximum depth, the keystream is recomputed and compared against the given
keystream to check whether the correct initial state was found. In the worst case,
all possible 2Γ−1 different values for the memory bits are checked, i.e, 2Γ−1 trees are
processed. Golić et al. show that the number of survivor nodes at the last level of the
trees is linear in n. Let M = Γ − 1, the time complexity of the attack is O

(
q−1
n−M2M

)
,

where qn−M ≈ 1−
(
1− 2

p(n−M)

)2M
and p depends on f.

{0, 1}-metric Viterbi decoding technique

The technique by Leveiller et al. [Lev+01] is another deterministic attack. It is based
on a trellis that is derived from the function f and the output bits zi. Let Γ be the
memory of the filter generator and the function f to be balanced. Each section of the
trellis consists of 2Γ states/vectors representing the LFSR state bits which contain the
inputs to f. Each vector on one section of the trellis is connected to two vectors on
the other section as follows: let v = (v1, v2, . . . , vΓ ), then it is connected to the vec-
tors (v2, . . . , vΓ , 0) and (v2, . . . , vΓ , 1) on the other section. The latter vectors are the
successors of v. The mapping on the trellis transitions (i.e, the edges connecting the
vectors) are labelled with the value of f applied to the successor state. Algorithm 3.14
shows the basic version of the attack. The time complexity is O

(
2Γ
)
.

Leveiller et al. present a generalisation of the basic attack in which they check not
only the left-most bit of the states in the trellis, but a linear combination of the bits
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Algorithm 3.14 {0, 1}-metric Viterbi decoding by Leveiller et al.
Input: Keystream z1, . . . , zN.
Output: Initial state of the LFSR.
1: Initialise Ndec = 0. Half of the states in the trellis correspond to z1, discard all the

invalid states and store the survivor ones.
2: for t = 2, 3, . . . do
3: According to the bit zt, the survivor states at time t − 1 and the mapping on

the transitions, store the new valid states matching zt along with the label of the
mappings.

4: if the left-most bit of all survivors is a constant equal to b then
5: Set st = b and increment Ndec by 1.
6: if Ndec ⩾ n and the set of decoded bits contain n independent bits then
7: Terminate the iteration.
8: end if
9: end if

10: end for
11: Solve the system of equations and output the initial state of the LFSR.

of the survivor states. This generalisation requires the computation of the Fourier-
Hadamard transform on vectors of length Γ , hence the complexity of the attack in-
creases by a factor of O(Γ2Γ ). This, however, allows the recovery of the initial state
using less keystream bits. Both, the basic and generalised attack also have forward
and backward variants. By combining both variants, more information is obtained at
a given time t, which reduces even more the required length of the keystream. We
refer to the original paper [Lev+01] for further details.

3.3.2 Summary of deterministic attacks and some results
Table 3.3 contains a summary of the time complexity and some results of the determ-
inistic attacks above. The symbol ? in the fifth column indicates that the degree of f
was not reported. For more details, we refer to the original sources.

Attack deg(g) wt(g) ℓ deg(f) memory Γ N Complexity

[GCD00]

100 5 5 ? 5 100
O
(
q−1
n−M2M

)
, where M = kℓ − k1 = Γ − 1,100 5 5 ? 16 100

100 5 10 ? 10 100
qn−M ≈ 1−

(
1− 2

p(n−M)

)2M
and p depends on f100 5 10 ? 16 100

[Lev+01]
100 5 5 3 5 185

O
(
2Γ
)

100 5 5 3 9 182
100 5 8 4 8 268

Table 3.3. Summary and some results of deterministic attacks.

3.4 Algebraic attacks
This type of attacks model the cipher as a system of multivariate equations. Following
the notation in [CM03], L denotes the transition function, which corresponds to the
action of the matrixM here, i.e., Si = L(Si−1) = Li−1(S1). Then, the keystream is given
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by 
z1 = f(s0, . . . , sn−1)

z2 = f(L(s0, . . . , sn−1))

z3 = f(L2(s0, . . . , sn−1))
...

and the initial state can be recovered by solving the equations above. The complexity
of these attacks is greatly influenced by the degree of the algebraic system.

The original idea in [CM03] is to solve the system of equations for a subset of
keystream bits zi using low-degree multiples of f. Let g,h be multivariate polyno-
mials of low degree such that f(x)g(x) = h(x). Then, for each keystream bit we get
f(Si)·g(Si) = h(Si). The attack finds relations like this for sufficientlymany keystream
bits to get an overdetermined system of multivariate equations of low degree. Finding
the relations can be seen as a pre-computation step in algebraic attacks; solving the
system of equations is then the online step.

Fast algebraic attacks were introduced in [Cou03] as an improvement to the ori-
ginal algebraic attacks. One key difference is that the fast version employs relations
involving several keystream bits, not only one. This idea is similar to the augmen-
ted function defined in [And95]. As the number m of keystream bits considered in
the relations increases, finding the relations becomes harder. Curtois proposed in
[Cou03] a general and a fast method for the pre-computation step. In [Arm04; HR04],
the authors present further improvements on the pre-computation step. In [Can06],
Canteaut describes algebraic attacks andpresents some open questions regarding their
complexity and cryptographic properties of Boolean functions under these attacks.
Over F2, the existence of low-degree relations is closely related to the existence of low-
degree annihilators of f or (f+ 1) [MPC04]. An annihilator of the Boolean function f is
another Boolean function g such that f(x)g(x) = 0.
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ciphers

In this chapter we present a new cryptanalytic method which may be used against
LFSR-based stream ciphers. Particularly, we focus on the filter generator and Grain-v1
[HJM07]. This is the result of joint work with Semaev [CS21].

Filter generators are described in Section 3.1. Let Si be the LFSR state at time i as a
column vector andM be the matrix implementing the LFSR (see Section 2.4), i.e.,

Si =


si
si+1
...

si+n−1

 and M =


0 1 · · · 0
... ... . . . ...
0 0 · · · 1
cn cn−1 · · · c1

 .

Then, Si = Mi−1S1 for all i ⩾ 1. Let Λ be the ℓ × n matrix that “selects” the inputs to
f, i.e., si+k1

...
si+kℓ

 = ΛSi, where Λ =

ek1+1
...

ekℓ+1


and ej = (0 . . . 010 . . . 0), j = 1, . . . ,n, and the only 1 is in position j from the left. Let

Ai = ΛMi−1.

Then, the keystream bit at time i is zi = f(si+k1 , . . . , si+kℓ
) = f(AiX), where X = S1.

We assign a uniform probability distribution on the pre-image of zi (i.e., the set of all
possible values a ∈ Fℓ

2 such that zi = f(a)) and all other values get probability 0. That
defines a probability distribution for a random variable Xi on the values of AiX. We
assume X to be uniformly distributed on Fn

2 and Xi to be independent. Let N bits of

61
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the keystream be available. Then, the key recovery attack on the filter generator is to
find the value X = xwith maximum probability under the condition that

AiX = Xi, i = 1, . . . ,N. (4.1)

With the description above, the key recovery attack is a particular case of the prob-
lem of finding solutions to systems of linear equations with associated probability
distributions on the set of right hand sides. This problem is of a general nature not
relevant to LFSRs and is stated in Section 4.1. We first solve this problem with the
multivariate correlation attack in Section 4.2, which is a generalisation of the correla-
tion attack by Siegenthaler [Sie85]. The multivariate correlation attack, however, has
high time complexity. In Section 4.3, a more efficient method is presented. This novel
method requires the computation of relations modulo B (see Section 4.4), where B is
a matrix over a finite field, and a set of probability distributions induced by these
relations. Relations modulo B can be seen as a generalisation of parity-checks used
in fast correlation attacks. Section 4.5 presents different techniques for computing
the probability distributions induced by relations modulo B. The analysis of the new
method is in Section 4.6. The experimental results of applying our new technique
to some hard instances of the filter generator are reported in Section 4.7. Section 4.8
focuses on a practical application against a toy Grain-like cipher and a theoretical
application against Grain-v1. The idea of the method and theoretical results in the
first six sections are due to Semaev.

4.1 The problem to solve
Let Ai, i = 1, . . . ,N, be matrices of size ℓi × n and rank ℓi over a finite field Fq, where
ℓi are small compared to n. Let X be a vectorial random variable with values in Fn

q and
Xi be vectorial random variables with values in Fℓi

q , i = 1, . . . ,N. We assume that X is
uniformly distributed. Also, let Pr(Xi = a) = Pi(a) for some probability distributions
Pi on Fℓi

q . We consider a system of equations

A1X = X1, . . . ,ANX = XN. (4.2)

The task is to find X = xwith the largest conditional probability

Pr (X = x |A1X = X1, . . . ,ANX = XN) ;

such x is called a solution to (4.2). It is equivalent to maximising the likelihood
Pr (X1 = A1x, . . . ,XN = ANx). If Xi are independent, we may maximise

N∑
i=1

ln Pr(Xi = Aix) =

N∑
i=1

ln Pi(Aix),

for Pi(Aix) 6= 0. The variables X,X1, . . . ,XN will be assumed to be independent, unless
otherwise stated.

A particular case of this problem is the equations (4.1) from the key recovery attack
against the filter generator. Multiple right hand side equation systems introduced in
[RS08] are also a particular case of the problem.
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4.2 Multivariate correlation attack
Our task is to find a solution given A1, . . . ,AN and P1, . . . ,PN. For each x ∈ Fn

q , we
decide whether xi = Aix were taken from the distributions Pi or from the uniform
distributions on Fℓi

q . Let us consider the statistic S(x) =
∑N

i=1 ln Pi(xi) and let β
be a prescribed success probability. When xi are taken from the distributions Pi, a
threshold c such that Pr(S(x) ⩾ c) = β is computed. Then, x survives if

Pi(xi) 6= 0, i = 1, . . . ,N, (4.3)

S(x) =

N∑
i=1

ln Pi(xi) ⩾ c (4.4)

simultaneously hold. We now define asymptotic distributions of the statistic S(x) in
two cases. Assume that xi are taken independently in both cases. The two hypothesis
are:

H0. When xi are taken from the distributions Pi, i = 1, . . . ,N,

µ0,i =
∑
y∈Fℓi

q

Pi(y) ln Pi(y) and σ2
0,i =

∑
y∈Fℓi

q

Pi(y) ln2
Pi(y) − µ2

0,i

are the expectation and the variance of ln Pi(xi), respectively. Then,

µ0 =

N∑
i=1

µ0,i and σ2
0 =

N∑
i=1

σ2
0,i

are the expectation and variance of S(x), respectively. Let Pi be close to the uni-
form distributions on their support. Then, the Lyapunov condition is satisfied
for S(x). For large enough N, the distribution of S(x) approximately follows
the normal distribution N(µ0,σ2

0) by the Lyapunov Central Limit Theorem (see
Section 2.2.3).

H1. Let Ki denote the size of the support of Pi. When xi are taken from the uniform
distributions on Fℓi

q , i = 1 . . . ,N,

µ1,i =
∑

y∈Fℓi
q ,Pi(y) ̸=0

ln Pi(y)

Ki

and σ2
1,i =

∑
y∈Fℓi

q ,Pi(y)̸=0

ln2
Pi(y)

Ki

− µ2
1,i

are the expectation and the variance of ln Pi(xi), respectively. Then

µ1 =

N∑
i=1

µ1,i and σ2
1 =

N∑
i=1

σ2
1,i

are the expectation and variance of S(x), respectively. Under the condition that
Pi(xi) 6= 0, i = 1, . . . ,N, the distribution of S(x) approximately follows the nor-
mal distributionN(µ1,σ2

1) by the Lyapunov Central Limit Theorem.
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The threshold c is computed from

β = Pr(N(µ0,σ2
0) ⩾ c).

The probability of an incorrect x passing the tests (4.3) and (4.4) is

α =

(
N∏
i=1

Ki

qℓi

)
Pr(N(µ1,σ2

1) ⩾ c).

The number of incorrect survivors is αqn on the average. We may get multiple can-
didate solutions (i.e., survivors), however, the solution is unique for large enough N.
The time complexity of this straightforward attack is O(Nqn) operations.

Siegenthaler’s attack [Sie85] is a particular case for q = 2, ℓi = 1 and there are
only two different distributions among Pi. In that case, only (4.4) works to test the
candidate solutions. If the distributions Pi are uniform on their supports, the statistic
S(x) is a constant and only (4.3) works to test the candidate solutions. An example is
the equations (4.1) for the filter generator in Section 4.7. The method is then reduced
to brute force on the LFSR’s initial state.

4.2.1 The number of equations

Let the distributions P1, . . . ,PN be permutations of the same distribution. Given a
desired success probability β and the number of survivors αqn, we can estimate the
number of necessary equations N and define the threshold c. Since

µ0 = Nµ0,1, σ2
0 = Nσ2

0,1, and µ1 = Nµ1,1, σ2
1 = Nσ2

1,1,

we can find c and N from the equations

α

N∏
i=1

qℓi

Ki

= Pr(N(Nµ1,1,Nσ2
1,1) ⩾ c) and

β = Pr(N(Nµ0,1,Nσ2
0,1) ⩾ c).

4.2.2 Improved complexity

Let every probability distribution Pi be close to uniform such that Pi(y) = q−ℓi +
o(q−ℓi), and ξ be a primitive q-th root of unity. The Fourier spectrum of Pi is given by
the values

Wi,a =
∑
y∈Fℓi

q

Pi(y)ξ
−a·y,
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where a ∈ Fℓi
q and a · y denotes the dot-product of a and y. By the inverse of the

Fourier transform we have that

Pi(y) = q−ℓi
∑
a∈Fℓi

q

Wi,aξ
a·y

= q−ℓi

Wi,0ξ
0·y +

∑
a∈Fℓi

q :a ̸=0

Wi,aξ
a·y


= q−ℓi

1+
∑

a∈Fℓi
q :a̸=0

Wi,aξ
a·y

 .

By assumption, Pi(y) are close to q−ℓi , so
∑

a ̸=0Wi,aξ
a·y are small. Since ln(1+ ε) ≈ ε

for small ε, we have

ln Pi(y) = ln

1+
∑

a∈Fℓi
q :a ̸=0

Wi,aξ
a·y

− ℓi ln q ≈
∑

a∈Fℓi
q :a̸=0

Wi,aξ
a·y − ℓi ln q.

Therefore,

N∑
i=1

ln Pi(Aix) ≈
N∑
i=1

∑
a∈Fℓi

q :a̸=0

Wi,aξ
a·Aix −

N∑
i=1

ℓi ln q =
∑
b∈Fn

q

C(b)ξb·x − ln q

N∑
i=1

ℓi,

where C(b) =
∑N

i=1
∑

a∈Fℓi
q :a̸=0,aAi=b

Wi,a.
For each Pi, its Fourier spectrum is computed with O(ℓiq

ℓi) operations using the
fast Fourier transform (FFT). All values C(b) are then computed with O(

∑N

i=1 q
ℓi)

operations. Finally,
∑

b C(b)ξ
b·x for all x ∈ Fn

q are computed with O(nqn) opera-
tions using the FFT again. We have to keep all values C(b) in order to apply the FFT.
Therefore, the space complexity is qn. Overall, the time complexity of the attack is
O(

∑N

i=1 ℓiq
ℓi + nqn) operations. This can be seen as a multivariate extension of the

method by Chose et al. [CJM02].

4.3 Test-and-extend algorithm
Herewe present a newmethod for finding solutions to equations (4.2). Let 〈V〉 denote
the linear space spanned by the rows of a matrix V .

Definition 4.3.1. Let Br be a matrix over Fq of size r×n and rank r, where 1 ⩽ r ⩽ n.
A set of indices I ⊆ {1, . . . ,N} such that

〈Ai, i ∈ I〉 ∩ 〈Br〉 6= 〈0〉 (4.5)

is called a relation modulo Br and |I| is called the weight of the relation. If the weight is
small, the relation is said to be short.
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Let tr,I > 0 be the dimension of the space (4.5). This space is spanned by the rows
of a matrix Tr,IBr, where Tr,I is a matrix of size tr,I × r and rank tr,I. If |I| is small, we
may efficiently compute a conditional probability distribution pr,I as

pr,I(v) = Pr ((Tr,IBr)X = v |AiX = Xi, i ∈ I) , v ∈ Ftr,I
q . (4.6)

Let Y = BrX and YI denote a random variable on Ftr,I
q with the distribution pr,I. Also,

let Ir be a set of relations modulo Br. Then,

Tr,IY = YI, I ∈ Ir,

is a system of equations of the same type as (4.2), but with smaller dimension r ⩽ n.
Since X is uniformly distributed on Fn

q , the random variable Y is uniformly distributed
on Fr

q. The multivariate correlation method in Section 4.2 is applied to solve the new
system. That is, br = BrX is tested with

pr,I(br,I) 6= 0, I ∈ Ir, (4.7)
Sr(br) =

∑
I∈Ir

ln pr,I(br,I) ⩾ cr, (4.8)

where br,I = Tr,Ibr and cr is a threshold defined by the success probability β. We may
use the FFT to compute the values of the statistic Sr if the probabilities pr,I(v) are close
to q−tr,I . For matrices Br of large rank r, we need to run over qr vectors br, which
might still be inefficient. To overcome this, we use a test-and-extend algorithm.

The new method comprises two stages: pre-computation (Section 4.3.1) and main
computation (Section 4.3.2). The latter has two variants: a simple tree search and a
hybrid variant combining the FFT and a tree search. The success probability of the
new method, and its time and data complexity are shown in Section 4.6.

4.3.1 Pre-computation
First, we choose a sequence of matrices B1, . . . ,Bn. Each matrix Br has size r × n and
rank r. Also, these matrices have the property that for r = 1, . . . ,n − 1, Br is the
submatrix of Br+1 comprising its first r rows, i.e.,

Br+1 =

(
Br

∗

)
.

For eachmatrixBr, we obtain a set Ir of relationsmoduloBr with small weight⩽ d.
Then, we compute their probability distributions pr,I. In Section 4.4 we show how to
obtain relations modulo Br. In Section 4.5 we show how to compute the distributions
(4.6).

Finally, we compute a set of thresholds cr, r = 1, . . . ,n, such that the correct solu-
tion is found with the desired success probability β. That defines the statistical tests
(4.7) and (4.8) for r = 1, . . . ,n. The computation of these thresholds is shown in
Section 4.6.1.

4.3.2 Main computation
In this stage, we may apply two variants of the test-and-extend algorithm: Tree search
and Hybrid variant.
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Tree search

Let b = (a1,a2, . . . ,an) ∈ Fn
q . For r = 1, . . . ,n, we denote br = (a1,a2, . . . ,ar), so that

bn = b. We will use a predicate Rr. We say Rr(br) = 1 if both conditions (4.7) and
(4.8) are satisfied, and Rr(br) = 0 otherwise. The task is to find b such that

R1(b1) = 1, . . . ,Rn(bn) = 1. (4.9)

We do this by traversing a tree in depth-first search, where br is tested at level r. If
Rr(br) = 0, that branch is not explored and the search backtracks. If Rr(br) = 1, then
br is extended to br+1, the value Rr+1(br+1) is checked to either backtrack or extend
again, and the search continues in that fashion. Whenever Rn(bn) = 1, the value of bn

is a solution to (4.9). In this way, we can find all the solutions to (4.9). Generally, the
tree search finds candidate solutions to (4.2).

Hybrid variant

First, we choose a parameter r0, such that 1 ⩽ r0 ⩽ n, and we compute the values of
the statistic Sr0(br0) for all br0 ∈ Fr0

q . Ideally, this is done with the FFT as in Section
4.2.2. Then, the candidates br0 are ranked (i.e., sorted) according to the values Sr0(br0).
Finally, we perform the tree search starting at level r0. That is, as in the variant above,
the candidates br0 are tested and extended to candidate solutions br0+1, which in turn
are tested, further extended and so on. The tree search is done following the ranking
of the candidates br0 .

4.4 Relations modulo Br

Let Br be an r×nmatrix of rank r and I = {i1, . . . , id} be a short relation modulo Br of
weight d. We present two methods to find short relations.

4.4.1 Brute force
Given a relation I, (4.5) is equivalent to the system of homogeneous linear equations∑

i∈I

viAi = vBr, (4.10)

where the variables are vectors vi ∈ Fℓi
q , i ∈ I, and v ∈ Fr

q such that v 6= 0. The system
incorporates n equations in

∑
i∈I ℓi + r variables from Fq. We have to solve

(
N

d

)
such

systems to find all relations of weight ⩽ dmodulo Br.
Let ℓi = ℓ for i = 1, . . . ,N. We may expect to find at least one relation if N >

(d/e)q
n−dℓ−r+1

d . There are qℓd − 1 non-zero vectors in the left hand sides of (4.10) for
every I if dependencies between the rows of Ai, i ∈ I, are neglected. The probability
that one random vector hits the space 〈Br〉 is qr−n. If a vector belongs to 〈Br〉, then its
multiples by non-zero constants belong to 〈Br〉 too. For ℓd+r < n, the probability that
two non-collinear vectors for the same I hit 〈Br〉 is negligible. The average number of
relations (4.10) is around (

N

d

)
(qℓd − 1)

qn−r(q− 1) . (4.11)

For small d and large N, we have
(
N

d

)
≈ Nd

d! . That implies the bound for N.
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4.4.2 Lattice reduction

Assume that q is a small prime number. Let A be a vertical concatenation of the
matrices A1, . . . ,AN. Thus, A is a matrix with m =

∑N

i=1 ℓi rows, n columns and
integer entries. Let L denote a lattice of all integer vectors v of length m such that
vA ∈ 〈Br〉modulo q. Clearly, if (4.10) holds, then

(0, . . . , 0, vi1 , 0 . . . , 0, vid , 0 . . . , 0) ∈ L.

That is a relatively short vector in the lattice since its norm is ⩽ q

2 (
∑

i∈I ℓi)
1/2.

The rank of the lattice L ism and the volume is qn−r, the basis is easy to construct.
A reduction algorithm (e.g., LLL [LLL82]) is applied to compute the reduced basis.
Then, we extract short vectors and check whether short relations are found. Since we
may want many short relations, the initial basis of L is modified and the reduction
algorithm is applied again.

4.5 Computing the distributions pr,I

We now present four different methods to compute the probabilities (4.6). To simplify
notation, let I = {1, . . . ,d} and C denote the event AiX = Xi, i ∈ I. Let V be a matrix of
size t×n and rank t such that the rows of V are in the space generated by the rows of
A1, . . . ,Ad. Then

pr,I(v) = Pr(VX = v | C),

where V = Tr,IBr. The results are summarised in Table 4.1, where R =
∑d

i=1 q
ℓi

and ℓi = rank(Ai). The term R appears in all methods because the corresponding
computations depend on all

∑d

i=1 q
ℓi probability values.

Method Formula Complexity Comments

Section 4.5.1 (4.12) dqn + R -

Section 4.5.2 (4.13) dqrank(A) + R A = (A1, . . . ,Ad)

Section 4.5.3 (4.15) dqrank(W) + R 〈A1〉, . . . , 〈Ad〉 lin. indep. mod 〈W〉 and 〈V〉 ⊆ 〈W〉

Section 4.5.4 (4.16) dq2·rank(V) + R A1, . . . ,Ad lin. indep.

Table 4.1. Summary of the methods for computing Pr(VX = v | C).

The first three methods are universal and the third one is the fastest of the three.
The convolution method in Section 4.5.4 may be even faster, and it works if the rows
of A1, . . . ,Ad are linearly independent. Remark that, even if A1, . . . ,Ad are linearly
independent, the matrix W of smallest rank such that 〈A1〉, . . . , 〈Ad〉 are linearly in-
dependent modulo 〈W〉 and 〈V〉 ⊆ 〈W〉 may be A = (A1, . . . ,Ad). For instance, let
A1,A2,A3 be linearly independent rows (ℓ1 = ℓ2 = ℓ3 = 1) and V = A1+A2+A3. Then
W = (A1,A2,A3) and rank(W) = 3. So, the method from Section 4.5.4 is faster in that
case.
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4.5.1 Basic formula
By the conditional probability formula,

pr,I(v) =
Pr(VX = v,C)

Pr(C) .

Since X,X1, . . . ,Xd are independent and X is uniformly distributed on Fn
q , we have

Pr(VX = v,C) =
∑

x:Vx=v

Pr(X = x,X1 = A1x, . . . ,Xd = Adx)

=
1
qn

∑
x:Vx=v

d∏
j=1

Pj(Ajx), (4.12)

where the sum is over x ∈ Fn
q such thatVx = v. In order to computepr,I(v), it is enough

to compute only Pr(VX = v,C) for each v ∈ Ft
q since Pr(C) =

∑
v Pr(VX = v,C). The

whole computation takes dqn operations.

4.5.2 Change of variables
Let k = dimFq

〈A1, . . . ,Ad〉 and letU be a matrix of size k×n constructed with linearly
independent rows of A1, . . . ,Ad. Then Aj = A ′

jU and V = V ′U for some matrices A ′
j

and V ′. Let Z = UX. So, AjX = A ′
jZ and VX = V ′Z are uniformly distributed as well

and (4.12) implies

Pr(VX = v,C) = 1
qk

∑
z:V ′z=v

d∏
j=1

Pj(A
′
jz), (4.13)

where the sum is over z ∈ Fk
q such that V ′z = v. There are at most qk terms in the

sums (4.13) for all v and each term is a product of d numbers. Therefore, the cost of
computing pr,I is dqk operations.

4.5.3 Independence in A1, . . . ,Ad modulo 〈W〉 ⊇ 〈V〉
This methodmay be efficient even if k = dimFq

〈A1, . . . ,Ad〉 is large. LetW be a matrix
of size l× n over Fq and of rank l. The linear spaces

〈A1〉, . . . , 〈Ad〉 (4.14)

are called linearly independent modulo 〈W〉 if
∑d

i=1 ai ∈ 〈W〉 and ai ∈ 〈Ai〉 imply
ai ∈ 〈W〉. We will show how to construct a matrix W of lowest rank such that 〈V〉 ⊆
〈W〉 and (4.14) are linearly independent modulo 〈W〉. Then, we will give a formula to
compute

Pr(WX = w,C)

for every w ∈ Fl
q. The probabilities Pr(VX = v,C) are then easy to deduce. The

complexity of the computation is dqrank(W) operations.
Let U be a linear space of tuples (b1, . . . ,bd), where bi ∈ 〈Ai〉, such that

b1 + · · ·+ bd ∈ 〈V〉.
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Let U be a space generated by all b1, . . . ,bd such that (b1, . . . ,bd) ∈ U. Then W is a
matrix whose rows are a basis of U. Let us prove that (4.14) are linearly independent
modulo such W. Let

∑d

i=1 ai ∈ 〈W〉 and ai ∈ 〈Ai〉. We need to show that ai ∈ 〈W〉.
We have

∑d

i=1 ai ∈
∑d

i=1 bi + 〈V〉, for some bi ∈ 〈Ai〉 ∩ 〈W〉 by the definition of
W. Then

∑d

i=1(ai − bi) ∈ 〈V〉 and therefore (ai − bi) ∈ 〈W〉. Hence, ai ∈ 〈W〉 for
i = 1, . . . ,d. The spaces (4.14) are linearly independent. The rank of W is the lowest
by construction. The following statement is then true.

Lemma 4.5.1. W is a lowest rank matrix such that 〈V〉 ⊆ 〈W〉 and (4.14) are linearly
independent.

We now show how to construct a basis ofU by solving a system of linear equations.
Let bi1, . . . ,biti be a basis for 〈Ai〉/〈V〉, i = 1, . . . ,d. So bi =

∑ti
j=1 γijbij ∈ 〈Ai〉/〈V〉

for γi1, . . . ,γiti ∈ Fq. Therefore (b1, . . . ,bd) ∈ U if and only if

d∑
i=1

ti∑
j=1

γijbij ∈ 〈V〉.

We take a set of linearly independent solutions. Each solution results in (b1, . . . ,bd)
and such bi with the rows of V generate the spaceU. We thus construct the matrixW.

We now show how to compute Pr(WX = w,C). Let l = rank(W) and K be a matrix
of size n × (n − l) and of rank n − l such that WK = 0. Then Wx = w if and only if
x = x0 + Ky, where y is a column vector of length n − l and Wx0 = w. Let Vi be the
linear space spanned by the columns of AiK and

ϕ : Fn−l
q → V1 × . . .× Vd

be a linear mapping defined by ϕ(y) = (y1, . . . ,yd), where yi = AiKy.

Lemma 4.5.2. The mapping ϕ is surjective and

Pr(WX = w,C) = Pr(WX = w,A1X = X1, . . . ,AdX = Xd)

=
|Kerϕ|
qn

d∏
i=1

∑
yi∈Vi

Pi(wi + yi), (4.15)

where wi = Aix0.

Proof. Let’s prove that ϕ is surjective. If not, then the values of ϕ belong to a proper
subspace of V1 × . . . × Vd. So there are vi ∈ Fℓi

q such that
∑

i viAiKy = 0 for every
y ∈ Fn−l

q and there are non-zero vectors among v1A1K, . . . , vdAdK. The equality∑
i viAiKy = 0 holds for any y if and only if (

∑
i viAi)K = 0, and so

∑
i viAi ∈ 〈W〉.

By the definition ofW, the latter implies viAi ∈ 〈W〉. Hence v1A1K = · · · = vdAdK = 0,
which is a contradiction. Therefore ϕ is surjective.

By (4.12),

Pr(WX = w,C) = 1
qn

∑
x:Wx=w

d∏
i=1

Pi(Aix) =
1
qn

∑
y:x=x0+Ky

d∏
i=1

Pi(Aix0 +AiKy),
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where the first sum is over x ∈ Fn
q such thatWx = w and over y ∈ Fn−ℓ

q in the second
sum, and where x = x0 + Ky. Hence,

Pr(WX = w,C) = |Kerϕ|
qn

∑
y1,...,yd

d∏
i=1

Pi(wi + yi) =
|Kerϕ|
qn

d∏
i=1

∑
yi

Pi(wi + yi),

where the sums are over yi ∈ Vi for i = 1, . . . ,d. ■

Let r be the rank of the system of linear equations ϕ(y) = (0, . . . , 0). So |Kerϕ| =
qn−l−r. The values

∑
yi∈Vi

Pi(wi+yi)may be pre-computed for any i andwi ∈ Fℓi
q . It

takes atmost
∑d

i=1 q
ℓi operations. After that, the cost isdql operations. Then, the over-

all cost is dql+
∑d

i=1 q
ℓi operations. Recall that l = rank(W) ⩽ k = dimFq

〈A1, . . . ,Ad〉.
If l < k, this method is more efficient than that in Section 4.5.2.

4.5.4 Convolution formula
Let the rows in A1, . . . ,Ad be linearly independent. Since 〈V〉 ⊆ 〈A1, . . . ,Ad〉, we can
represent V =

∑d

i=1 ViAi, where Vi are matrices of size (t× ℓi). This representation is
unique and may be found by solving a system of linear equations.

Lemma 4.5.3.

Pr(VX = v |A1X = X1, . . . ,AdX = Xd) = Pr
(

d∑
i=1

ViXi = v

)
. (4.16)

Proof. Since the rows in A1, . . . ,Ad are linearly independent, A1X, . . . ,AdX are inde-
pendent uniformly distributed random variables. By the conditional probability for-
mula,

Pr(VX = v |A1X = X1, . . . ,AdX = Xd) =
Pr
(∑d

i=1 ViAiX = v,A1X = X1, . . . ,AdX = Xd

)
Pr(A1X = X1, . . . ,AdX = Xd)

=
Pr
(∑d

i=1 ViXi = v,A1X = X1, . . . ,AdX = Xd

)
Pr(A1X = X1, . . . ,AdX = Xd)

,

where

Pr (A1X = X1, . . . ,AdX = Xd) =

d∏
i=1

Pr(AiX = Xi) =

d∏
i=1

1/qℓi = q−
∑d

i=1 ℓi

and

Pr
(

d∑
i=1

ViXi = v,A1X = X1, . . . ,AdX = Xd

)
=

∑
v1,...,vd:∑d
i=1 Vivi=v

d∏
i=1

Pr(AiX = vi)

d∏
i=1

Pi(vi)

= q−
∑d

i=1 ℓi
∑

v1,...,vd:∑d
i=1 Vivi=v

d∏
i=1

Pi(vi)

= q−
∑d

i=1 ℓi Pr
(

d∑
i=1

ViXi = v

)
.
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The sum is over v1, . . . , vd such that
∑d

i=1 Vivi = v. Therefore,

Pr(VX = v |A1X = X1, . . . ,AdX = Xd) = Pr
(

d∑
i=1

ViXi = v

)
.

■

It takes qℓi linear algebra operations to compute the distribution of ViXi. Then,
Pr
(∑d

i=1 ViXi = v
)
may be computed iteratively by a convolution type formula be-

causeViXi are independent. That takes dq2t operations. The overall cost of computing
the distribution Pr(VX = v | C) is

∑d

i=1 q
ℓi + dq2·rank(V). According to Section 4.5.3,

〈W〉 = 〈V1A1, . . . ,VdAd〉 since the rows in A1, . . . ,Ad are linearly independent. The
cost to compute the conditional distribution Pr(WX = w |A1X = X1, . . . ,AdX = Xd)

is
∑d

i=1 q
ℓi + dqrank(W). The conditional distribution on VX may be computed within

the same cost since 〈V〉 ⊆ 〈W〉. So, the convolution method is preferable if the rows
A1, . . . ,Ad are linearly independent and rank(V) < rank(W)/2.

4.6 Analysis of the test-and-extend algorithm
To simplify notation, we assume that I1 = I2 = · · · = In = I. Given the construction
of the matrices B1, . . . ,Bn and the definition of a relation, every relation I for Br is
a relation for Br+1. So, Ir ⊆ Ir+1. However, a relation I modulo Br+1 may not be a
relation modulo Br. In the latter case, we can still consider such I ∈ Ir+1 as a trivial
relation for Br, i.e., it spans 〈0〉 in (4.5). Then, tr,I = 0 and pr,I(0) = 1 for such I. Thus,
we can formally augment the set Ir with I ∈ Ir+1 \ Ir and get Ir = Ir+1.

4.6.1 Success probability of the algorithm
The execution of the algorithm is successful if br = BrX is not rejected for every r =
1, . . . ,n, where X is the correct solution. The success probability is defined by

β = Pr(Sr(br) ⩾ cr, 1 ⩽ r ⩽ n |A1X = X1, . . . ,ANX = XN).

We will show how to compute the thresholds c1, . . . , cn given β. Let

S =

 S1(b1)
...

Sn(bn)

 =
∑
I∈I

SI, SI =

 ln p1,I(b1,I)
...

ln pn,I(bn,I)

 , c =

c1
...
cn

 ,

where br,I = Tr,Ibr by the definition of Sr in (4.8). The inequalities Sr(br) ⩾ cr may
be written S ⩾ c by considering entry-wise comparison. Then

β = Pr(S ⩾ c |AiX = Xi, i = 1, . . . ,N).

Since Br is a submatrix of Br+1 in its first r rows, we can choose the matrices Tr,I
such that Tr,I is a submatrix of Tr+1,I in its first tr,I rows and first r columns:

Tr+1,I =

(
Tr,I ∗
∗ ∗

)
.
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Then, br,I = Tr,Ibr is a subvector of br+1,I = Tr+1,Ibr+1 in its first tr,I entries. The mean
of SI is

µI =


µ1,I
µ2,I
...

µn,I

 , µr,I =
∑
v

pr,I(v) ln pr,I(v),

where v runs over Ftr,I
q . The mean of S is therefore µ =

∑
I∈I µI. Let QI be the covari-

ance matrix of SI. The entry in row i and column j of QI, j ⩾ i, is∑
v

pj,I(v) ln pi,I(vi) ln pj,I(v) − µi,Iµj,I,

where v runs over Ftj,I
q and vi is the vector in the first ti,I entries of v. This is because

j ⩾ i and bi,I = Ti,Ibi is the vector in the first ti,I coordinates of bj,I = Tj,Ibj.
The distribution of SI only depends on the distribution of Xi, i ∈ I. If any distinct

I1, I2 ∈ I are disjoint, then SIj , Ij ∈ I, are independent and the covariance matrix
of S is Q =

∑
I∈IQI. In practice, the sets I are small (of size at most d) randomly

looking subsets of {1, . . . ,N}. They are mostly pairwise disjoint. For the same reason,
for large enough |I|, the sum S =

∑
I∈I SI approximately follows the multivariate

normal distribution N(µ,Q). Given β, we can compute the threshold c such that
Pr(N(µ,Q) ⩾ c) = β.

4.6.2 Number of nodes in the tree
The complexity of the algorithm is defined by the number of nodes visited during the
tree search. At level r a current node br is tested with (4.7) and (4.8). The number of
nodes br to test at level r is the number of survivors br−1 times q. We now show how
to compute the number of incorrect survivors br.

Let X be taken from the uniform distribution on Fn
q . Therefore, br = BrX is uni-

formly distributed on Fr
q and br,I = Tr,Ibr is uniformly distributed on Ftr,I

q . Let Er,I
denote the event pr,I(br,I) 6= 0. Also, let Kr,I denote the size of the support of pr,I,
i.e., the number of v ∈ Ftr,I

q such that pr,I(v) 6= 0. Clearly, Pr(Er,I) = Kr,I/q
tr,I . Let Er

be the joint event {Er,I, I ∈ I}. If any distinct I1, I2 ∈ I are disjoint, the events Er,I are
independent. In practice this is likely to happen, so we may assume

εr = Pr(Er) =
∏
I∈I

Kr,I/q
tr,I .

Let

S(r) =

S1(b1)
...

Sr(br)

 =
∑
I∈I

SI(r), SI(r) =

ln p1,I(b1,I)
...

ln pr,I(br,I)

 , c(r) =

c1
...
cr

 ,

where br,I = Tr,Ibr and ci are found from Pr(N(µ,Q) ⩾ c) = β as in Section 4.6.1. The
current br passes the tests up to level r if and only if Er holds and S(r) > c(r). The
probability of this event is

Pr(S(r) > c(r),Er) = Pr(Er) · Pr(S(r) > c(r) | Er).
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We show how to compute α(r) = Pr(S(r) > c(r) | Er). Let µr,I =

µ1,I
...

µr,I

 and Qr,I be

the mean vector and the covariance matrix of SI(r), respectively. Since bj,I is a vector
in the first tj,I entries of br,I, then

µj,I =

∑
vr
ln pj,I(vj)

Kr,I
,

where the sum is over all vr ∈ Ftr,I
q such that pr,I(vr) 6= 0 and vj is the vector comprising

the first tj,I entries of vr. Notice that pr,I(vr) 6= 0 implies pj,I(vj) 6= 0. The entry in row
i and column j of the covariance matrix Qr,I is

∑
vr

ln pi,I(vi) ln pj,I(vj)

Kr,I
− µi,Iµj,I,

where the sum is over all vr such that pr,I(vr) 6= 0. For large |I|, the random variable
S(r) =

∑
I∈I SI(r) approximately follows amultivariate normal distributionN(µr,Qr),

where µr =
∑

I∈I µr,I and Qr =
∑

I∈IQr,I. Therefore

α(r) ≈ Pr(N(µr,Qr) > c(r)).

Hence, the number of incorrect br which pass the test at level r is approximately

εr · α(r) · qr.

4.6.3 Time and space complexity

Pre-computation

The worst-case time complexity for computing relations of weight d is given by the
brute force method. It is

(
N

d

)
linear algebra operations since it requires solving

(
N

d

)
systems of linear equations. The search for relations is fully parallelisable.

For small d, the distributions pr,I are relatively easy to compute (see Table 4.1)
and more likely to be non-uniform. We do not expect many useful relations if N is
moderate and r is small. For larger r, we can obtain a great number of useful relations.
On the other hand, for larger d, the time complexity to compute the distributions pr,I
increases and the distributions tend to be uniform. We do not know beforehand the
best technique to compute each of the distributions pr,I. For all I ∈ I, we have that
rank(A1, . . . ,Ad) ⩽

∑d

i=1 ℓi, where ℓi = rank(Ai). Let ℓi = ℓ for 1 ⩽ i ⩽ N. With the
method in Section 4.5.2, wemay (very) roughly estimate theworst-case time complex-
ity for computing the distributions asO(|I|(dqdℓ + dqℓ)) operations. For each relation
I, we need to keep at most qtr,I probability values for a given r. The highest number
is when r = n. Let tn,I = tn for all I ∈ I. Then, the worst-case space complexity for
storing the distributions is about O(|I|qtn). The computation of the distributions pr,I
is fully parallelisable as well.
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Tree search

We need |Ir| arithmetic operations to compute the statistic Sr in (4.8) for each visited
node at level r. So, the complexity of the tree search is

n−1∑
r=0

εr · α(r) · qr+1 · |Ir+1|

arithmetic operations, where we set ε0 = 1,α(0) = 1. We do not require additional
space for the tree search.

Hybrid variant

This variation requires space of order qr0 to execute the FFT. We can use a large num-
ber of relations in Ir0 , up to qr0 , within the cost of one application of the FFT. In our
experiments, that reduces the time complexity of the tree search. However, since the
number of relations Ir0 is large, there may be dependencies between the summands in
the definition (4.8) of the statistic for r = r0. Therefore, a normal approximation to the
distribution of Sr0 , as in Section 4.6.1, may not be accurate and the time complexity of
this variation is generally difficult to estimate.

4.7 Application to the filter generator

In this section we apply our test-and-extend algorithm in Section 4.3 to some instances
of the filter generator.

Let N bits of the keystream be available. At the beginning of this chapter, the
matrices

Ai = ΛMi−1,

i = 1, . . . ,N, were constructed. The keystream bits are written as zi = f(AiX), where
X = S1. Let f−1(zi) denote the pre-image of zi under f (the set of all possible values
a ∈ Fℓ

2 such that zi = f(a)). The probability distribution

Pi(a) =

{
1

|f−1(zi)|
if a ∈ f−1(zi),

0 otherwise,

is defined for a random variable Xi on the values ofAiX. We assume X to be uniformly
distributed on Fn

2 and Xi to be independent. Then, the key recovery attack on the filter
generator is to find the value X = x with maximum probability under the condition
that

AiX = Xi, i = 1, . . . ,N.

For the experiments in the following sections, we used the statistical software R [R
C21] and the package mvtnorm [Gen+21; GB09] to get the vector c (see Section 4.6.1)
which defines the tests (4.8), and the probabilities α(r) (see Section 4.6.2).
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4.7.1 Matrices Br and relations in the experiments
We generate the n × n matrix Bn of rank n and the matrices Br, r = 1, . . . ,n − 1, are
just the corresponding sub-matrices of Bn consisting of the first r rows. We generate
Bn by randomly taking linearly independent vectors from aAi, i = 1, . . . ,N, where
a = (a1, . . . ,aℓ) and the linear Boolean function a1x1 + · · · + aℓxℓ is one of the best
linear approximations to the filtering function f. The vector aAi belongs to the space
generated by the rows of Ai. So, there are at least r relations modulo Br of weight 1,
thus providing with a few good distributions pr,I. This choice proved to be successful
for the attack.

The complexity of the tree search, for both variations, is influenced by the number
of relations in each set Ir (see Section 4.6.3). Therefore, we can afford using only a
bounded number of relations in practice. The relations I ∈ Ir can be ranked according
to the size of the support and the entropy of their distributions pr,I on Ftr,I

q , and filter
out the inferior ones. Recall that the size of the support of pr,I is denoted by Kr,I. The
normalised q-ary entropy is

H(pr,I) = −
∑

v∈F
tr,I
q

pr,I(v) logq
pr,I(v) − tr,I,

Let I, J ∈ Ir. We say that I is a better distinguisher than J (i.e., further away from being
uniform) if

Kr,I

qtr,I
<

Kr,J

qtr,J

or if
H(pr,I) < H(pr,J) when Kr,I

qtr,I
=

Kr,J

qtr,J
.

For each r, the bestmr relations are kept in Ir, wheremr are parameters. For each I ∈
Ir, the entropy of pr,I is computed withO(qtr,I) operations. Ranking (i.e., sorting) the
relations in Ir has complexityO(mr logmr). Let tr,I = tr for all I ∈ Ir. Then, choosing
the best relations in Ir has complexityO(mrq

tr +mr logmr). The computation of the
entropy for all I ∈ Ir is fully parallelisable.

Let I be a relation modulo Br. Then, the index j ∈ I is called irrelevantmodulo Br if
vj = 0 for every solution vi, i ∈ I, and v 6= 0 to (4.10). That means that the distribution
pr,I does not depend on Xj, even if j ∈ I. The other indices in I are called relevant
modulo Br. Two relations are equivalent modulo Br if their set of relevant indices
modulo Br are equal.

The sets Ir, r = 1, . . . ,n, are constructed as follows. We obtain a large set I of
relations from a fixed matrix Br0 . For each Br, r = 1, . . . ,n, we get the classes of
equivalent relations modulo Br, apply the ranking criteria above to those equivalence
classes and choose a suitable number of them to create Ir. We try to choose the rela-
tions such that I ∩ J = ∅ for distinct I, J ∈ Ir, i.e., pairwise disjoint relations. In that
case, the distribution of the statistic Sr may be well approximated with the Central
Limit Theorem. In practice, not all relations in Ir are pairwise disjoint. However, our
experimental results show that the approximation is still good in that case. Also, the
sets Ir are chosen to be disjoint. Hence, the tests (4.7) and (4.8) may be considered in-
dependent for r = 1, . . . ,n. In particular, the statistics Sr, r = 1, . . . ,n, are independent
and the covariance matrix Q for their joint distribution is diagonal. That allows our
experimental results to be as close as possible to the theoretical analysis based on the
normal approximation to the distribution of Sr.



4.7. Application to the filter generator 77

4.7.2 Detailed toy example
Let the keystream z1, . . . , z11 = 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0 be produced by the following
filter generator:

• g(x) = x7 + x6 + x5 + x2 + 1,

• f(x1, x2, x3) = x1 + x1x2 + x2x3,

• (k1,k2,k3) = (0, 2, 5).

We decided not to have contiguous indices ki and we chose k3 = 5 instead of 6 to
maximise the memory Γ (see Section 3.3).

We compute the matrices Ai = ΛMi−1, i = 1, . . . , 11, with

M =



0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
1 1 1 0 0 1 0


and Λ =

e1
e3
e6

 =

1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 0

 :

A1 =

1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 0

 , A2 =

0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1

 , A3 =

0 0 1 0 0 0 0
0 0 0 0 1 0 0
1 1 1 0 0 1 0

 ,

A4 =

0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 1 1 1 0 0 1

 , A5 =

0 0 0 0 1 0 0
0 0 0 0 0 0 1
1 1 0 1 1 1 0

 , A6 =

0 0 0 0 0 1 0
1 1 1 0 0 1 0
0 1 1 0 1 1 1

 ,

A7 =

0 0 0 0 0 0 1
0 1 1 1 0 0 1
1 1 0 1 0 0 1

 , A8 =

1 1 1 0 0 1 0
1 1 0 1 1 1 0
1 0 0 0 1 1 0

 , A9 =

0 1 1 1 0 0 1
0 1 1 0 1 1 1
0 1 0 0 0 1 1

 ,

A10 =

1 1 0 1 1 1 0
1 1 0 1 0 0 1
1 1 0 0 0 1 1

 , A11 =

0 1 1 0 1 1 1
1 0 0 0 1 1 0
1 0 0 0 0 1 1

 .

Next, we assign the probability distributions to the random variables Xi. Table 4.2
shows the truth table of f. Following the same order of vectors as in Table 4.2, the
distributions P(0) = (1/4, 1/4, 1/4, 0, 0, 0, 1/4, 0) and P(1) = (0, 0, 0, 1/4, 1/4, 1/4, 0, 1/4)
correspond to f(a) = 0 and f(a) = 1, respectively, where a ∈ F3

2. Hence, the distribu-
tions of Xi are Pi = P(0), for i = 2, 4, 5, 6, 7, 8, 9, 11, and Pi = P(1), for i = 1, 3, 10.

a (0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) (1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1)
f(a) 0 0 0 1 1 1 0 1

Table 4.2. Truth table of f(x1, x2, x3) = x1 + x1x2 + x2x3.

We now get the matrices B1, . . . ,B7. B7 is constructed by randomly taking linearly
independent vectors from (1, 1, 0)Ai, i.e., x1 + x2 is used as the linear approximation
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to f. We obtained

B7 =



0 0 0 0 1 0 1
1 0 1 0 0 0 0
0 1 0 1 0 0 0
1 1 1 0 0 0 0
1 1 1 0 0 0 1
0 0 0 0 1 1 1
0 0 1 0 1 0 0


.

We used brute force with B3 for finding relations of weight d = 2 and we obtained
45 relations:

I =


{1, 2}, {1, 3}, {1, 5}, {1, 6}, {1, 7}, {1, 8}, {1, 9}, {1, 10}, {1, 11},
{2, 3}, {2, 4}, {2, 5}, {2, 6}, {2, 7}, {2, 9}, {2, 10}, {2, 11}, {3, 4},
{3, 6}, {3, 7}, {3, 9}, {3, 10}, {3, 11}, {4, 5}, {4, 6}, {4, 8}, {4, 10},
{4, 11}, {5, 6}, {5, 7}, {5, 8}, {5, 9}, {5, 11}, {6, 7}, {6, 10}, {7, 8},
{7, 9}, {7, 10}, {7, 11}, {8, 9}, {8, 10}, {8, 11}, {9, 10}, {9, 11}, {10, 11}

 .

Let us show how the set of relevant indices change for different Br. Take the relations
I1 = {1, 2} and I6 = {1, 8}. The corresponding matrices Ai involved in these relations
are

A1 =

1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 0

 , A2 =

0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1

 , A8 =

1 1 1 0 0 1 0
1 1 0 1 1 1 0
1 0 0 0 1 1 0

 .

For the first three levels, we have

• Level 1: (
0
)
B1 =

(
0 0 0

)
A1 +

(
0 0 0

)
A2,(

0
)
B1 =

(
0 0 0

)
A1 +

(
0 0 0

)
A8;

• Level 2: (
0 1

)
B2 =

(
1 1 0

)
A1 +

(
0 0 0

)
A2,(

0 1
)
B2 =

(
1 1 0

)
A1 +

(
0 0 0

)
A8;

• Level 3: (
0 1 0
0 0 1

)
B3 =

(
1 1 0
0 0 0

)
A1 +

(
0 0 0
1 1 0

)
A2,(

0 1 0
0 0 1

)
B3 =

(
1 1 0
0 0 0

)
A1 +

(
0 0 0
0 1 1

)
A8.

That is, I1 and I6 are trivial relations for level 1 (i.e., they span 〈0〉). The only relevant
index of I1 and I6 at level 2 is 1, hence they are equivalent modulo B2. Finally, they are
no longer equivalent at level 3 since their set of relevant indices with B3 are distinct;
actually, they are not equivalent in all subsequent levels.
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The probability distributions (4.6) for the relations in I abovewere computed using
B7. After ranking the relations in the sets Imodulo Br, we heuristically created

I1 = {{5, 7}, {1, 5}} ,
I2 = {{1, 6}, {1, 7}, {2, 5}} ,
I3 = {{8, 10}, {2, 11}, {3, 7}, {4, 8}} ,
I4 = {{2, 4}, {4, 6}, {2, 6}, {2, 7}, {2, 10}} ,
I5 = {{5, 11}, {1, 2}, {2, 9}, {7, 11}, {6, 7}, {1, 11}, {4, 5}, {10, 11}, {1, 8}, {5, 8}} ,
I6 = {{1, 10}, {3, 4}, {5, 9}, {8, 11}, {4, 10}, {3, 6}, {3, 9}} ,
I7 = {{8, 9}} .

Then, we computed the covariance matrix and mean vector for the multivariate dis-
tributions as in Sections 4.6.1 and 4.6.2. Using β = 0.9, we obtained the vector of
thresholds

c = (−2.8344,−8.8069,−15.4057,−17.0976,−39.5219,−28.2609,−4.0000).

The tree search found a unique candidate solution b = (0, 0, 1, 0, 0, 1, 1)T . Figure 4.1
depicts the tree traversal for this example. Then, B7X = b and solving this linear
system yields X = (1, 0, 1, 1, 0, 1, 0)T , which is the correct initial state. Figure 4.2 shows
the theoretical and experimental number of survivors at each level of the tree search.
According to Section 4.6.3, the theoretical time complexity is O(25.80735) while the ex-
perimental one isO(25.12928). Since this example is very small, we computed these com-
plexities following the exact equation in Section 4.6.3. With bigger instances, however,
the complexity is determined by the level rwith the highest number of survivors. This
is because in our experiments such level r also has the maximum value of |Ir|.
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Figure 4.1. Tree traversal for the toy example. Filled nodes represent the survivor nodes.
Non-filled nodes represent rejected nodes whose branch is not traversed.

We also applied the hybrid variant with r0 = 3 using all 45 relations modulo B3.
That is, we computed the value of the statistic S3(b3) for all b3 ∈ F3

2 using the FFT,
sorted the candidates at that level and applied the tree search in that order. The result
of ordering according to the value of the statistic was

(0, 1, 0), (1, 1, 0), (1, 1, 1), (0, 1, 1), (0, 0, 1), (1, 0, 0), (0, 0, 0), (1, 0, 1).
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Figure 4.2. Number of survivors for the toy example.

Neither of the first four candidates survived at level 4. The fifth candidate is the one
corresponding to the correct initial state, which we recovered, and the tree search
stopped at this point. Figure 4.2 also shows the number of survivors following this
hybrid method (FFT + tree search). For most of the relations, we have that ℓi = 2. The
complexity of the FFT isO

(∑45
i=1 ℓi · 2ℓi + 3 · 23

)
≈ O

(
28.58496

)
(see Section 4.2.2). The

complexity of the tree search part is O(25.42626). Hence, the complexity of the hybrid
variant is given by the FFT. Due to the size of this example, the simple tree search is
more efficient. For bigger instances, however, the hybrid variant yields the best results.

4.7.3 Experimental results
Wenow present results of the newmethod applied to four instances of the filter gener-
ator. Themethod requires a significantly lower number of keystream bits compared to
fast correlation attacks, methods based on the Berlekamp-Massey algorithm [Mas69]
and Fast Algebraic Attacks [CM03; Cou03]. So, we compare the efficiency of the new
method with brute force. The latter requires 2n − 1 trials of the LFSR initial state. For
each candidate, we clock the LFSR and generate N bits of the keystream. Therefore,
brute force takes essentiallyN2n operations.

In the first two experiments, n = 40 and the filtering functions f depend on ℓ = 5
and 7 variables, respectively. We were able to explicitly recover the LFSR initial state
with N = 5 000 keystream bits and significantly faster than brute force. The best
complexity was achieved with the hybrid variant: 232.06 and 235.19 additions of reals,
respectively, to compute the values of the statistics. The results closely fit the theor-
etical prediction. In the last two experiments, n = 64 and 80, respectively, ℓ = 5 and
N = 10 000. The tree search was executed up to some intermediate level. The com-
plexity was then extrapolated to the whole tree. Again, the best result was achieved
with the hybrid variant: 257.39 and 270.95 additions of reals, respectively.
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In the experiments below, we used instances of the filter generator which employ
“components” from the existing literature, such as the degree-40 feedback polyno-
mial in [JJ99b] and the filtering Boolean function from Grain-v1 [HJM07] (see Section
4.8.3). In the first three experiments, we used feedback polynomials with high weight
and input indices ki that maximise the memory (see Section 3.3). In the last experi-
ment, we follow closely the definition of Grain-v1, but maximise the memory when
choosing the last input to the filtering function. Under various criteria (for example
[Gol96b]), the devices are hard instances of the filter generator.

Experiment 1

We used N = 5 000 keystream bits generated by the following device:

• g(x) = x40+x38+x33+x32+x29+x27+x25+x21+x19+x17+x12+x11+x9+x5+x3+x+1,

• f(x1, . . . , x5) = x2+x5+x1x4+x3x4+x4x5+x1x2x3+x1x3x4+x1x3x5+x2x3x5+x3x4x5,

• (k1, . . . , k5) = (0, 7, 15, 26, 39).

The polynomial g is a common choice in the literature. The filtering function f is the
one used in Grain-v1. Notice that the input spacings to f are coprime and span the
whole register.

For this experiment, we used x1 + x3 + x4 as the linear approximation to f. We
used brute force with B10 for finding relations of weight d = 3. By equation (4.11),
the expected number of relations is 219.27730 and we obtained 571 986 ≈ 219.12562. Next,
we heuristically created I by selecting 15 000 relations and computed their probability
distributions (4.6)withB40. After sorting the relations, we heuristically chose to create
Ir such that |Ir| = 50 for r = 1, . . . , 10, |Ir| = 150 for r = 11, . . . , 20 and |Ir| = 300
for r = 21, . . . , 40. We then computed the covariance matrix and mean vector for the
multivariate distributions to get the vector c of thresholds with β = 0.9.

The simple tree search found a unique solution corresponding to the correct initial
state. Figure 4.3 shows the number of theoretical and experimental survivors from
the tree search. The maximum of theoretical survivors is 228.58805 at B30. For the ex-
perimental survivors, it is 228.34194 at B30. Since |I30| = 300 ≈ 28.22881, the theoretical
complexity is O(236.81686) and in practice it was O(236.57075).

We applied the hybrid variant with r0 = 20 using 2 269 ≈ 211.14784 relations. These
are all relations in I mod B20 whose support have a non-uniform probability distribu-
tion (at level 20). The correct initial state was recovered after executing the tree search
on 32 603 ≈ 214.99271 candidate solutions. Figure 4.3 shows the number of survivors
with the hybrid variant. We have that ℓi = 1 for almost all relations. Then, the com-
plexity of the FFT isO

(∑2269
i=1 ℓi · 2ℓi + 20 · 220

)
≈ O

(
224.32224

)
. The maximum number

of survivors is 223.83588 at B30. Since |I30| = 300 ≈ 28.22881, the complexity of the tree
search is O(232.06469). Hence, the complexity of the hybrid variant is given by the tree
search part. Notice that the hybrid variant performs better in this case compared to
the simple tree search.

Experiment 2

We used N = 5 000 keystream bits generated by the following device:
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Figure 4.3. Number of survivors for experiment 1.

• g(x) = x40+x38+x33+x32+x29+x27+x25+x21+x19+x17+x12+x11+x9+x5+x3+x+1,

• f(x1, . . . , x7) = 1+x1+x2+x3+x4+x5+x6+x1x7+x2(x3+x7)+x1x2(x3+x6+x7),

• (k1, . . . , k7) = (0, 3, 8, 15, 26, 31, 39).

This device is taken from [Lev+03]. The authors did not specify the input spacings
to f, but they reported that k1, . . . , k7 are taken to be coprime. In our case, they are
coprime and span the whole register.

For this experiment, we used x1+x4+x5+x6+x7 as the linear approximation to f. We
used brute force withB5 for finding relations of weight d = 3. The expected number of
relations is 220.27730 and we obtained 1 185 783 ≈ 220.17740. Next, we heuristically created
I by selecting 15 000 relations and computed their probability distributions (4.6) with
B35. After sorting the relations, we heuristically chose to create Ir such that |Ir| = 50
for r = 1, . . . , 10, |Ir| = 150 for r = 11, . . . , 20 and |Ir| = 300 for r = 21, . . . , 40. We then
computed the covariance matrix and mean vector for the multivariate distributions to
get the vector c of thresholds with β = 0.9.

The simple tree search found 14 solutionswhich included the one corresponding to
the correct initial state. Figure 4.4 shows the number of theoretical and experimental
survivors from the tree search. The maximum of theoretical survivors is 230.30912 at
B32. For the experimental survivors, it is 227.83228 at B32. Since |I32| = 300 ≈ 28.22881, the
theoretical complexity is O(238.53793) and in practice it was O(236.06109).

We applied the hybrid variant with r0 = 20 using 261 ≈ 28.02790 relations. These are
all relations in I mod B20 whose support have a non-uniform probability distribution
(at level 20). The correct initial state was recovered after executing the tree search on
259 039 ≈ 217.98280 candidate solutions. Figure 4.4 shows the number of survivors with
the hybrid variant. As in the first experiment, the complexity of the FFT is negligible
compared to the tree search part. The maximum number of survivors is 226.95707 at B32.
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Figure 4.4. Number of survivors for experiment 2.

Since |I30| = 300 ≈ 28.22881, the complexity isO(235.18588). Hence, the hybrid variant also
performs better in this application compared to the simple tree search.

Experiment 3

We used N = 10 000 keystream bits generated by the following device:

• g(x) = x64+x62+x55+x49+x44+x42+x37+x24+x23+x20+x16+x15+x10+x8+x6+x2+1,

• f(x1, . . . , x5) = x2+x5+x1x4+x3x4+x4x5+x1x2x3+x1x3x4+x1x3x5+x2x3x5+x3x4x5,

• (k1, . . . , k5) = (0, 22, 43, 61, 63).

The polynomial g was chosen at random with high weight. The function f is the one
used in Grain-v1. Notice that the input spacings to f are coprime and span the whole
register.

For this experiment, we used x4 + x5 as the linear approximation to f. We used
brute force with B32 for finding relations of weight d = 3. The expected number of
relations is 220.27774 and we obtained 1 172 961 ≈ 220.16172. Next, we heuristically created
I by selecting 100 000 relations and computed their probability distributions (4.6)with
B64. After sorting the relations, we heuristically chose to create Ir such that |Ir| = 100
for r = 1, . . . , 20, |Ir| = 250 for r = 21, . . . , 30, |Ir| = 400 for r = 31, . . . , 50 and |Ir| = 500
for r = 51, . . . , 64. We then computed the covariance matrix and mean vector for the
multivariate distributions to get the vector c of thresholds with β = 0.9.

We first estimated the theoretical complexity of the tree search and, given the num-
ber of expected survivors, we decided to execute it up to level 36 only. Figure 4.5 shows
the number of theoretical and partial experimental survivors from the tree search. The
maximum of theoretical survivors is 250.66962 at B52. Since |I52| = 500 ≈ 28.96578, the the-
oretical complexity is O(259.63540). At level 36, we got 235.75151 survivors experimentally
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and 235.72974 survivors theoretically. Let δ = 35.75151 − 35.72974 = 0.02177. Since
the number of experimental survivors follows very closely the theoretical curve, we
expect the experimental complexity to be about O(259.63540+δ) = O(259.65717).
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Figure 4.5. Number of survivors for experiment 3.

We applied the hybrid variant with r0 = 20 using 1 115 ≈ 210.12282 relations. These
are all relations in I mod B20 whose support have a non-uniform probability distri-
bution (at level 20). Due to the potential high number of survivors, we executed
the tree search part up to level 36 as well. For this partial experiment, however, we
knew in advance the candidate at level 20 corresponding to the correct initial state.
Otherwise, we would not have been able to know where to stop the tree search and
it would be equivalent to brute force all candidates at level 20. Figure 4.5 shows the
number of survivors with the hybrid variant. We got 232.42058 survivors at level 36.
Hence, the hybrid variant also performs better than the simple tree search. As in the
previous experiments, the complexity of the FFT is negligible compared to the tree
search part. Let us assume that the number of survivors for the hybridmethod follows
the behaviour of the simple tree search, as in the previous experiments. In the worst
case, the tree search part of the hybrid variant will not reject any candidates up to level
52, i.e., 248.42058 survivors. Since |I52| = 500 ≈ 28.96578, the worst case complexity is about
O(257.38636).

Experiment 4

We used N = 10 000 keystream bits generated by the following device:

• g(x) = x80 + x62 + x51 + x38 + x23 + x13 + 1,

• f(x1, . . . , x5) = x2+x5+x1x4+x3x4+x4x5+x1x2x3+x1x3x4+x1x3x5+x2x3x5+x3x4x5,

• (k1, . . . , k5) = (3, 25, 46, 64, 79).
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The polynomial g, the function f and the indices ki are taken from the definition of
Grain-v1. In that cipher, the last input to f comes from the NFSR; here we wired that
input to the last cell of the LFSR (k5 = 79) to maximise the memory.

For this experiment, we used x4 + x5 as the linear approximation to f. We used
brute force with B40 for finding relations of weight d = 3. The expected number of
relations is 212.27774 and we obtained 49 657 ≈ 215.59971. Next, we heuristically created I

by selecting all the 49 657 relations and computed their probability distributions (4.6)
with B80. After sorting the relations, we heuristically chose to create Ir such that |Ir| =
50 for r = 1, . . . , 20, |Ir| = 200 for r = 21, . . . , 45, |Ir| = 400 for r = 46, . . . , 60 and
|Ir| = 500 for r = 61, . . . , 80. We then computed the covariance matrix and mean
vector for the multivariate distributions to get the vector c of thresholds with β = 0.9.

We estimated the theoretical complexity of the tree search first and, given the num-
ber of expected survivors, we decided to execute it up to level 36 only. Figure 4.6 shows
the number of theoretical and partial experimental survivors from the tree search. The
maximum of theoretical survivors is 263.89885 at B65. Since |I65| = 500 ≈ 28.96578, the the-
oretical complexity is O(272.86463). At level 36, we got 234.72253 survivors experimentally
and 235.72505 survivors theoretically. Let δ = 34.72253− 35.72505 = −1.00252. Since the
number of experimental survivors follows very closely the theoretical curve, we can
expect the experimental complexity to be about O(272.86463+δ) = O(271.86211).
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Figure 4.6. Number of survivors for experiment 4.

We applied the hybrid variant with r0 = 20 using 9 845 ≈ 213.26517 relations. These
are all relations in I mod B20 whose support have a non-uniform probability distribu-
tion (at level 20). Due to the potential high number of survivors, we executed the tree
search up to level 36 as well. As in the third experiment above, we knew in advance
the candidate at level 20 corresponding to the correct initial state. Figure 4.6 shows
the number of survivors with the hybrid variant. We got 232.98229 survivors at level
36. Hence, the hybrid variant also performs better than the simple tree search. As
in the previous experiments, the complexity of the FFT is negligible compared to the
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tree search part. Let us assume that the number of survivors for the hybrid method
follows the behaviour of the simple tree search, as in the previous experiments. In the
worst case, the tree search part of the hybrid method will not reject any candidates up
to level 65, i.e., 261.98229 survivors. Since |I65| = 500 ≈ 28.96578, the worst case complexity
is about O(270.94807).

Analysis of experimental results

The relations (4.5) may be seen as a generalisation of the parity-checks used in FCAs.
Some of these attacks perform a partial brute force on a subset Ω of the LFSR’s initial
state, e.g. [CJM02]. We call the parity-checks used in [CJM02] parity-checks modulo
Ω. According to [CJM02], the expected number of weight-d parity-checks modulo Ω

given the length-N keystream is about 2|Ω|−n
(

N

d−1
)
. With the same weight, the set of

relations modulo Br, for an appropriate matrix Br, incorporates parity-checks modulo
Ω, where |Ω| = r. However, for the same number of keystream bits, the expected
number (4.11) of relations modulo Br is significantly higher. Table 4.3 compares these
numbers for some explicit parameters.

n d N r = |Ω| # parity-checks modΩ

40 3 5 · 103
0 0
15 0
25 28.58

40 3 8 · 104
0 0
15 26.58
25 216.58

89 3 228 32 0
(a) Expected number of parity-checks modΩ of weight d.

n d N ℓ r # relations mod Br

40 3 5 · 103
5 0 29.28
5 15 224.28
5 25 234.28

40 3 5 · 103
7 0 215.28
7 15 230.28
7 25 240.28

40 3 8 · 104 5 15 236.29
7 15 242.29

89 3 228 5 32 213.42
7 32 245.42

(b) Expected number of relations mod Br of weight d.

Table 4.3. Comparison of the expected number of parity-checks and relations.

That explains why our method requires less keystream bits to recover the LFSR
initial state compared to fast correlation attackswhile still faster than brute force. In the
first two experiments we successfully applied our method withN = 5 · 103 keystream
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bits, while the attack in [Lev+03] requires 1.7 · 104 bits; see row 9 in Table 3.2. This is
the best comparison for those experiments since we have that 1 − p = 0.375 for both
filtering functions. The third experiment can be compared to the attacks in [CJS01] and
[JJ00]. Even though the parameters n and 1 − p are not the same, we can notice that
our method requires less keystream bits when compared to the entries with n = 60 in
rows 3 and 5 of Table 3.2. The closest comparison for the fourth experiment may be
the result with n = 70 from [CJS01]; see row 3 in Table 3.2. In our experiment, the
length of the LFSR is larger and our method requires less keystream bits.

The complexity of the deterministic attack by Golić et al. [GCD00] is O
(
q−1
n−Γ2Γ

)
,

whereqn−Γ is a correction factor. This factor is practically equal to 1 in our experiments
and the complexity is O

(
2Γ
)
. The results in [GCD00] were obtained using a degree-

100 weight-5 feedback polynomial and filtering functions with 5 and 10 variables.
The authors used input spacings not spanning the whole register and with rather
low memory. The hardest instance corresponds to an input spacing yielding memory
15. The attack in [Lev+01] has complexity O

(
2Γ
)
as well. The experimental results

correspond to devices using the same feedback polynomial as Golić et al. but differ-
ent filtering functions. The memory of the devices is rather low as well; the hardest
instance reported has memory 9. The devices in our first three experiments would
render these attacks equivalent to brute force since their memory is equal to the length
of the LFSR. For the fourth experiment, the complexity of these attacks would be 277
while our simple tree search and hybrid variants have complexity 271.86211 and 270.94807,
respectively.

4.8 Application to Grain ciphers

Ciphers in the Grain family [Hel+08] are designed to be small and easy to imple-
ment in hardware. The family comprises the Grain-v1 [HJM07; Hel+08] and Grain-
128a [Ågr+11] ciphers. They are bit oriented synchronous stream ciphers. Their main
components are an LFSR, an NFSR and an output function. The output function con-
sists of a nonlinear Boolean functionh and linear terms added toh. A general overview
is given in Figure 4.7. Before generating the keystream, the cipher is initialisedwith the
key and the initialisation vector (IV), and clocked in a special configuration without
producing any keystream. Grain-128a is a new version of Grain-128 [Hel+06; Hel+08]
that is resistant against the initial attacks on the latter. Grain-128a also adds support for
optional authenticated encryption. Grain-v1 is part of the eSTREAM portfolio [Eur]
and Grain-128a is standardised by ISO/IEC [Tec15]. Grain-v1 supports an 80-bit key
and a 64-bit IV. Grain-128a and Grain-128 support a 128-bit key and a 96-bit IV. With
the introduction of Grain-128a, the use of Grain-128 is discouraged.

In [Tod+18], Todo et al. present a new key recovery attack (see Section 3.2.3) and
apply it to Grain-v1, Grain-128 and Grain-128a (in stream cipher mode only). This at-
tack is more efficient than previous attacks against Grain-v1 (e.g., [Zha+14; ZXM18]).
Against Grain-128, this is the first attack targeting the keystream generator. Previous
attacks [DS11; Din+11] targeted the initialisation of the cipher. For full Grain-128a
(i.e., no reduced number of clocks in the initialisation), this is the first cryptanalysis
reported.

In this section we show how to construct a system of equations (4.2) for the toy
Grain-like cipher described in [Tod+18] and Grain-v1. For both ciphers, we also find



88 4. New cryptanalysis of LFSR-based stream ciphers

.LFSR

+

+NFSR

+

h

+

zi

Figure 4.7. Overview of the components in the Grain family of ciphers.

linear combinations of LFSR bits with higher correlation than that indicated by Todo
et al. The FFT is used to find such linear combinations. First, we present a method
to compute the FFT with long input vectors. Then, we report our results on the
ciphers. Particularly, for Grain-v1, the FFT is applied to a vector of length 237 and we
successfully recover the LFSR’s initial state using the multivariate correlation attack
(see Section 4.2) requiring N = 253.5 keystream bits. That is significantly lower than
the required 275.11 bits in [Tod+18]. However, the time complexity of our attack is
higher. The test-and-extend algorithm was not applied in this case.

4.8.1 Computing the Fourier transform
Let f : Fn

2 → Z, where n = n1 + n2 with n1 > 0 and n2 > 0. Then, by the definition of
the Fourier-Hadamard transform

f̂(u) =
∑
x∈Fn

2

f(x)(−1)u·x

=
∑

x1∈Fn1
2

∑
x2∈Fn2

2

(−1)(u1u2)·(x1x2)f(x1x2)

=
∑

x1∈Fn1
2

∑
x2∈Fn2

2

(−1)u1·x1(−1)u2·x2f(x1x2)

where u1 ∈ Fn1
2 , u2 ∈ Fn2

2 and u1u2, x1x2 denote concatenation of vectors. Let

gu1(x2) =
∑

x1∈Fn1
2

(−1)u1·x1f(x1x2),

then

f̂(u) =
∑

x2∈Fn2
2

(−1)u2·x2
∑

x1∈Fn1
2

(−1)u1·x1f(x1x2)

=
∑

x2∈Fn2
2

(−1)u2·x2gu1(x2) = ĝu1(u2). (4.17)

That is, we obtain the Fourier-Hadamard spectrum of f by computing the Fourier-
Hadamard spectrum of gu1 for all 2n1 possible values of u1. For a fixed value of u1, we
obtain the Fourier-Hadamard spectrum of gu1 by evaluating gu1 in all possible values
for x2 (2n operations) and then applying the FFT on a vector of length 2n2 (n22n2
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operations). Hence, the complexity for f̂ is 2n1(2n +n22n2) = 2n(2n1 +n2) operations.
Similarly, let gu2(x1) =

∑
x2∈Fn2

2
(−1)u2·x2f(x1x2), then

f̂(u) =
∑

x1∈Fn1
2

(−1)u1·x1
∑

x2∈Fn2
2

(−1)u2·x2f(x1x2)

=
∑

x1∈Fn1
2

(−1)u1·x1gu2(x1) = ĝu2(u1) (4.18)

and a similar analysis as above shows that the complexity is 2n(2n2 + n1) operations.
The time complexity using equations (4.17) or (4.18) is higher compared to using

directly the FFT (n2n operations). However, the variant above may be of interest
when space (i.e., memory/storage) is constrained. The FFT operates on a vector with
2n elements. In some cases we might not have access to that amount of space. For
example, to compute the Fourier-Hadamard spectrum on 234 elements, each one re-
quiring 26 = 64 bits, the total requirement is 240 bits (1 TiB). If we are interested in
certain points u (e.g., where f̂(u) 6= 0 or |f̂(u)| ⩾ t for a threshold t), we can choose n1
and n2 such that the computations of ĝu1 (or ĝu2) can be done with the available space
and discard the irrelevant data. We can also parallelise the computation. It is easy
to distribute the computation of all possible values of u1 (or u2) among all available
processors. This is additional to the parallelisation in the implementation of the FFT
used to compute ĝu1 (or ĝu2).

4.8.2 Grain toy cipher
The cipher consists of an LFSR and an NFSR of size 24 bits. Let (st, . . . , st+23) and
(bt, . . . ,bt+23) represent the state of the LFSR and NFSR, respectively, at time t. The
LFSR and NFSR feedbacks are given by

st+24 = st + st+1 + st+2 + st+7,
bt+24 = st + bt + bt+5 + bt+14 + bt+20bt+21 + bt+11bt+13bt+15,

respectively. The keystream bit is

zt = h(st+3, st+7, st+15, st+19,bt+17) +
∑
j∈A

bt+j, (4.19)

where A = {1, 3, 8} and

h(st+3, st+7, st+15, st+19,bt+17) = st+7 + bt+17 + st+3st+19 + st+15st+19 + st+19bt+17+

st+3st+7st+15 + st+3st+15st+19 + st+3st+15bt+17+

st+7st+15bt+17 + st+15st+19bt+17.

Assume the N-bit keystream z1, . . . , zN is given. Let X = (s1, s2, . . . , s24)T be the
unknown LFSR initial state and

AtX = (st+3, st+7, st+15, st+19, st+8, st+12, st+20, st+24, st+17, st+21,
st+29, st+33, st+27, st+31, st+39, st+43, st+1 + st+3 + st+8)

T ,
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where At is a 17 × 24-matrix. That is, AtX incorporates 17 linear functions in X. We
will construct a multivariate probability distribution on AtX for a random variable Xt

and get a system of equations AtX = Xt, t = 1, . . . ,N as in Section 4.1.
Let T = {0, 5, 14, 24} as in [Tod+18]. We may have two distributions on AtX de-

pending on the bit Zt =
∑

i∈T zt+i. From the definition of the NFSR feedback∑
i∈T,j∈A

bt+j+i =
∑
j∈A

st+j +
∑
j∈A

(bt+20+jbt+21+j + bt+11+jbt+13+jbt+15+j).

So, (4.19) implies

Zt+
∑
i∈T

h(st+3+i, st+7+i, st+15+i, st+19+i,bt+17+i) +
∑
j∈A

st+j =∑
j∈A

(bt+20+jbt+21+j + bt+11+jbt+13+jbt+15+j) (4.20)

and
st+17 +

∑
i∈T

bt+17+i = bt+37bt+38 + bt+28bt+30bt+32. (4.21)

The distribution of Xt onAtX is then computed as a uniform distribution conditioned
by the relations (4.20) and (4.21). The distribution is non-uniform. To be specific, let
a = (a1, . . . ,a17) be a 17-bit vector, we want to compute Pr(AtX = a). By AtX = a,
(4.20) and (4.21) the following 22 bits of

u = (Zt,a1, . . . ,a17,bt+17,bt+22,bt+31,bt+41) (4.22)

uniquely define 3 bits of

v = (bt+22,
∑
j∈A

(bt+20+jbt+21+j + bt+11+jbt+13+jbt+15+j),bt+37bt+38 + bt+28bt+30bt+32).

(4.23)
So, ϕ(u) = v for a 22-bit to 3-bit mapping ϕ. Each v has the same number 219 of pre-
images u under ϕ. The distribution pv on (4.23) is pre-computed by running over
15 variables involved in the right hand side. This induces a distribution 2−19pϕ(u) on
(4.22). Under the condition that Zt is fixed by ε = 0 or 1 we have

Pr(Xt = a | Zt = ε) = 2−18
∑

bt+17 ,bt+22,bt+31,bt+41,Zt=ε

pϕ(u),

where the sum is over all values of bt+17,bt+22,bt+31,bt+41 and Zt = ε. Therefore
AtX = Xt, t = 1, . . . ,N.

We apply the FFT-based method in Section 4.2.2 to recover X. By Section 4.2, we
find the parameters of the limit distributions as

µ0,1 = −11.782815, σ2
0,1 = 0.00137196

and
µ1,1 = −11.784191, σ2

1,1 = 0.00138229.
By formulae in Section 4.2.1, for c = −358 013.3911 andN = 30 382 ≈ 214.89, the number
of incorrect survivors is < 1 on the average and the success probability β = 0.9999.
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The condition (4.3) is fulfilled. The FFT is used to compute the values of the statistic in
(4.4), thus recoveringX. The complexity of the attack is proportional to 217N+24·224 ≈
231.89 operations; this was verified experimentally. The internal state of the cipher is 48
bits long. According to [Tod+18], with N = 223.25 the whole state may be recovered
with time complexity (number of operations) and space complexity of orderN.

Let p0 and p1 be a probability distribution, then δ = p0 − p1 is its correlation. With
the Fourier-Hadamard transform we find all linear combinations of the entries ofAtX

with non-zero correlations. Table 4.4 shows the absolute value of the non-zero correl-
ations δ and the number of linear combinations Nδ with the same δ. The data does
not depend on Zt. In [Tod+18], it is stated that there are 1024 linear combinations
with highest absolute value of the correlation 2−10.41503. However, that is not correct
according to Table 4.4. There are linear combinations with even a higher correlation.
The reason for the discrepancy is the relation (4.21) which was ignored in [Tod+18].

δ Nδ

9437184
233 = 2−9.83007... 128

6291456
233 = 2−10.41503... 768

4718592
233 = 2−10.83007... 512

3145728
233 = 2−11.41503... 3968

1572864
233 = 2−12.41503... 3584

Table 4.4. Correlations for toy Grain-like cipher.

For instance, the absolute value of the correlation of

st+7 + st+19 + st+12 + st+24 + st+17 + st+21 + st+31 + st+43 + st+1 + st+3 + st+8 (4.24)

is 2−9.83007. We verified experimentally the correlation value as follows. Let s denote
(4.24)with t = 0. We randomly chose 230 different initial states for the cipher (i.e, LFSR
and NFSR initial states). For each initial state, we computed Z0 = z0 + z5 + z14 + z24,
and when Z0 = 0, we computed s and kept track of the number of times s = 0. We got
that Z0 = 0 occurred 536 879 412 ≈ 229.000022 times and among those, s = 0 occurred
268 737 466 = 228.001622 times. With this, p0 = 228.001622/229.000022 and we obtained δ =
2−9.816232 as experimental correlation.

Using the FFT for computing the statistic

We employ N = 30 382 keystream bits. All probability distributions on AtX, t =
1, . . . ,N, are permutations of the same distribution P. The latter is a distribution on
F17
2 and its support is the whole vector space. The different probability values of P and

their frequencies are in Table 4.5. We have that 2−17 ≈ 7.6294 ·10−6. According to Table
4.5, we may consider P to be close to uniform.

With the values µ0,1, σ2
0,1 and µ1,1, σ2

1,1 above, the parameters of the distribution of
S(x) under the hypotheses H0 and H1 are

µ0 = Nµ0,1 = −357 985.47, σ2
0 = Nσ2

0,1 = 41.68



92 4. New cryptanalysis of LFSR-based stream ciphers

Prob. value 29/4194304 ≈ 61/8388608 ≈ 1/131072 ≈ 67/8388608 ≈ 35/4194304 ≈
6.9141 · 10−6 7.2718 · 10−6 7.6294 · 10−6 7.9870 · 10−6 8.3447 · 10−6

Frequency 8192 8192 98304 8192 8192

Table 4.5. Probability values and frequencies of the distributions for the toy Grain-like
cipher.

and
µ1 = Nµ1,1 = −358 027.29, σ2

1 = Nσ2
1,1 = 41.99,

respectively (see Section 4.2.1). In our cryptanalysis above, we computed, for all x ∈
F24
2 , an approximate to S(x) with the FFT (as in Section 4.2.2), denoted by S̄(x). This

computation corresponds to hypothesis H1, because we use the same keystream and
“choose” different initial states of the LFSR, all of them incorrect except one. Figure
4.8a shows the probability density of N(µ1,σ2

1) and the histogram with the density of
the computed values of S̄(x). Figure 4.8b shows the corresponding histogram for the
exact values of S(x) (i.e., using equation (4.4)) along with the probability density of
N(µ1,σ2

1).
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(a) Probability density of S̄(x).
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(b) Probability density of S(x).

Figure 4.8. Probability density of the values of the statistics S(x) and S̄(x) under hypo-
thesis H1.
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The distribution of S(x) practically followsN(µ1,σ2
1). The distribution of the estim-

ate S̄(x), however, is not that close to N(µ1,σ2
1). This is due to the error introduced by

using ln(1+ϵ) ≈ ϵ for small ϵ in the computation of S̄(x) (see Section 4.2.2). Since we
use S(x) to rank the candidates, we analysewhether this difference affects the outcome
for our application. Let x0 be the correct initial state of the LFSR. When computing the
exact values of S(x), we get

S(x0) = −357 986.31 and |{x ∈ F24
2 : S(x) ⩾ S(x0)}| = 1.

That is, the correct initial state is ranked first; this agrees with the number of incorrect
survivors being < 1 in the cryptanalysis above. When using the FFT, we get

S̄(x0) = −357 964.92 and |{x ∈ F24
2 : S̄(x) ⩾ S̄(x0)}| = 1.

So, even though using the FFT does not produce the exact values of S(x), we get the
same “quality” for the values S̄(x), at least for this application. We attribute this to the
probability distribution P actually being close to uniform.

4.8.3 Grain-v1
We apply a similar method to Grain-v1. The cipher consists of an LFSR and an NFSR
of size 80 bits. Let (st, . . . , st+79) and (bt, . . . ,bt+79) represent the state of the LFSR and
NFSR, respectively, at time t. The LFSR and NFSR feedbacks are given by

st+80 = st + st+13 + st+23 + st+38 + st+51 + st+62,
bt+80 = st + bt+62 + bt+60 + bt+52 + bt+45 + bt+37 + bt+33 + bt+28 + bt+21 + bt+14+

bt+9 + bt + bt+63bt+60 + bt+37bt+33 + bt+15bt+9 + bt+60bt+52bt+45+

bt+33bt+28bt+21 + bt+63bt+45bt+28bt+9 + bt+60bt+52bt+37bt+33+

bt+63bt+60bt+21bt+15 + bt+63bt+60bt+52bt+45bt+37+

bt+33bt+28bt+21bt+15bt+9 + bt+52bt+45bt+37bt+33bt+28bt+21,

respectively. The keystream bit is

zt = h(st+3, st+25, st+46, st+64,bt+63) +
∑
j∈A

bt+j, (4.25)

where A = {1, 2, 4, 10, 31, 43, 56} and

h(st+3, st+25, st+46, st+64,bt+63) = st+25 + bt+63 + st+3st+64 + st+46st+64 + st+64bt+63+

st+3st+25st+46 + st+3st+46st+64 + st+3st+46bt+63+

st+25st+46bt+63 + st+46st+64bt+63.

Let X = (s1, s2, . . . , s80)T be the unknown LFSR initial state and

AtX = (st+3, st+25, st+46, st+64, st+17, st+39, st+60, st+78, st+24, st+67, st+85, st+31,
st+53, st+74, st+92, st+40, st+62, st+83, st+101, st+48, st+70, st+91, st+109, st+55,
st+77, st+98, st+116, st+63, st+106, st+124, st+65, st+87, st+108, st+126, st+105, st+144,
st+1 + st+2 + st+4 + st+10 + st+31 + st+43 + st+56),
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where At is a 37 × 80-matrix. That is, AtX incorporates 37 linear functions in X. We
will construct a multivariate probability distribution on AtX for a random variable Xt

and get a system of equations AtX = Xt, t = 1, . . . ,N, as in Section 4.1.
Following [Tod+18], let T = {0, 14, 21, 28, 37, 45, 52, 60, 62, 80}. We may have two

distributions on AtX depending on Zt =
∑

i∈T zt+i. From the definition of the NFSR∑
i∈T,j∈A

bt+i+j =
∑
j∈A

st+j +
∑
j∈A

g ′(b(t+j)), (4.26)

where

g ′(b(t)) = bt+33 + bt+9 + bt+63bt+60 + bt+37bt+33 + bt+15bt+9 + bt+60bt+52bt+45+

bt+33bt+28bt+21 + bt+63bt+45bt+28bt+9 + bt+60bt+52bt+37bt+33+

bt+63bt+60bt+21bt+15 + bt+63bt+60bt+52bt+45bt+37+

bt+33bt+28bt+21bt+15bt+9 + bt+52bt+45bt+37bt+33bt+28bt+21.

So (4.25) and (4.26) imply

Zt +
∑
i∈T

h(st+3+i, st+25+i, st+46+i, st+64+i,bt+63+i) +
∑
j∈A

st+j =
∑
j∈A

g ′(b(t+j)) (4.27)

and
st+63 +

∑
i∈T

bt+63+i = g ′(b(t+63)). (4.28)

Let a = (a1, . . . ,a37) be a 37-bit vector, we want to compute Pr(AtX = a). By (4.27)
and (4.28), the following 48 bits of

u = (Zt,a1, . . . ,a37,bt+63,bt+77,bt+84,bt+91,bt+100,bt+108,bt+115,bt+123, (4.29)
bt+125,bt+143)

uniquely define 9 bits of

v = (bt+77,bt+84,bt+91,bt+100,bt+108,bt+115,bt+123,
∑
j∈A

g ′(b(t+j)),g ′(b(t+63))). (4.30)

So, ϕ(u) = v for a 48-bit to 9-bit mappingϕ. Each v has 239 pre-images u underϕ. The
distribution pv on (4.30) incorporating 64 variables is pre-computed. This induces a
distribution 2−39pϕ(u) on (4.29). The last entry in AtX above incorporates 6 different
variables (st+31 appears in position 12 as well). Hence, under the condition that Zt is
fixed by ϵ = 0 or 1, we have

Pr(Xt = a | Zt = ϵ) = 2−38
∑

bt+63,bt+77 ,bt+84,bt+91
bt+100,bt+108,bt+115,bt+123

bt+125,bt+143,Zt=ϵ

pϕ(u).

The distribution pv was pre-computed as follows. The expression for (4.30) incorpor-
ates 64 variables. Some of the variables are fixed by constants, then

∑
j∈A g ′(b(t+j))

and g ′(b(t+63)) are represented as sums of “independent” polynomials with fewer
variables. Independence means that each of the rest variables appears in one poly-
nomial only. The distributions relevant to the independent polynomials are com-
puted separately. Finally, they are combined to get pv. We computed pv by fixing
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bt+38,bt+46,bt+64,bt+65,bt+71 and bt+91. The largest computation corresponded with
a polynomial in 23 variables.

By Section 4.2, we find the parameters of the limit distributions as

µ0,1 = −25.646445680717974846, σ2
0,1 = 3.204164923186231 · 10−15

and
µ1,1 = −25.646445680717978051, σ2

1,1 = 3.204164923189462 · 10−15.
By formulae in Section 4.2.1, for c = −326687075514236406.749337 and N = 253.5, the
number of incorrect survivors is < 1 on the average and the success probability is
β = 0.9991. The condition (4.3) is fulfilled. The FFT is used to compute the values of
the statistic in (4.4), thus recovering X with time complexity proportional to 237N +
80 · 280 ≈ 290.5 operations. Then, we can guess some bits of the NFSR’s initial state and
employ equation (4.25) to recover the whole 160-bit initial state. The key for Grain-v1
is 80-bit long, therefore, the complexity of this attack is higher than brute force. On the
other hand, the number of keystream bits required to obtain the LFSR’s initial state is
low. According to [Tod+18], with N = 275.11 the whole state may be recovered with
time complexity and space complexity of orderN.

Applying the Fourier-Hadamard transform to f(v) = pv, we find linear combina-
tions of the entries of AtXwith non-zero correlations. A direct application of the FFT
would require space for 237 elements. Due to this, we adopt the strategy in Section
4.8.1. For this application, we chose n2 = 9 and we parallelised the computation of the
29 possible values for u2. Each computation of the FFT is therefore applied to a vector
of length 228. Since each element is stored on a 64-bit precision floating-point number,
the total memory requirement is around 234 bits. For each value of u2, we only kept
the values of u1 such that |f̂(u)| > 2−36, where u = (u1,u2). In other words, we only
kept the linear combinations of AtX given by u whose correlation’s absolute value is
greater than 2−36. The authors in [Tod+18] found 442 368 such linear combinations,
however, we found 443 264. As in the toy cipher above, we attribute this discrepancy to
the omission of (4.28) in [Tod+18]. There are 171 different correlation values among
the 443 264 linear combinations we found. Table 4.6 shows some of the highest and
lowest values. As an example,

st+3 + st+25 + st+64 + st+39 + st+60 + st+78 + st+24 + st+85 + st+53 + st+92 + st+62+

st+83 + st+101 + st+70 + st+109 + st+77 + st+116 + st+63 + st+106 + st+124 + st+87+

st+126 + st+105 + st+144 + st+1 + st+2 + st+4 + st+10 + st+31 + st+43 + st+56

has the highest correlation 2−35.46890046.

Summary and future work
New methods for cryptanalysis of LFSR-based stream ciphers were presented. The
cryptanalysis is modelled as a more general problem of finding solutions to systems
of linear equations with associated probability distributions on the set of right hand
sides. First, we introduced the multivariate correlation attack, which is a general-
isation of the correlation attack by Siegenthaler [Sie85]. Then, the test-and-extend
algorithm was shown. This novel method has lower time complexity and comprises
two stages, pre-computation and main computation. In the pre-computation stage,
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δ Nδ

2−35.46890046... 64

2−35.50019546... 64

2−35.54760452... 128

2−35.55461504... 640

2−35.57682560... 64

(a) Highest correlations > 2−36 for Grain-v1.

δ Nδ

2−35.98275923... 128

2−35.98646706... 1280

2−35.99121484... 256

2−35.99186310... 640

2−35.99726377... 640

(b) Lowest correlations > 2−36 for Grain-v1.

Table 4.6. Some values of the correlations for Grain-v1.

we find relations modulo B, which can be seen as a generalisation of parity-checks
used in fast correlation attacks, and compute the probability distributions induced by
these relations. For the second stage, there are two variants: tree search and hybrid
variant. The first one finds the initial state of the LFSR (in general, candidate solutions
to the systems of linear equations) by traversing a tree along with a statistical test to
decide which branches to discard. The second variant also traverses a tree, however,
the tree search is started at a further level on the tree following the ranking given by
the statistic associated to the nodes.

We applied the test-and-extend algorithm to a variety of hard instances of the filter
generator. In the first two experiments, we successfully recovered the initial state of
the LFSR used to generate the given keystream. For the other experiments, our crypt-
analytic results are theoretical only since the time complexity is high. In all cases, the
hybrid variant outperformed the simple tree search. This newmethod allows success-
ful recovery of the initial state requiring a lower number of keystream bits compared
to other published attacks. We also applied the multivariate correlation method to
the toy Grain-like cipher from [Tod+18] and Grain-v1. Compared to the method in
[Tod+18], we successfully recovered the LFSR’s initial state for the toy cipher using
less keystreambits. On the other hand, the time complexity to recover thewhole cipher
state (LFSR and NFSR states) is higher using our method. The results are similar for
Grain-v1. Our method requires 253.5 keystream bits to recover the LFSR’s initial state,
sensibly less than 275.11 bits for the attack in [Tod+18]. However, the time complexity
to recover the whole state of the cipher is higher. In the case of Grain-v1, our results
are theoretical. Additionally, for both ciphers, we found linear combinations of LFSR
sequence bits with high correlation. The correlations are higher than those reported
in [Tod+18]. The results on that paper could be improved using the correlation we
found, but we do not follow that direction here. The correlations for Grain-v1 were
obtained by computing the FFT on a large input vector; we used a simple method to
parallelise this computation (see Section 4.8.1), which, to our knowledge, has not been
reported.

Immediate future directions are to use the test-and-extend algorithm for Grain-v1
as well as to apply ourmethods to other LFSR-based stream ciphers, e.g., other ciphers
in the Grain family. Also, these new methods may be used for cryptanalysis of block
ciphers. As for Grain-v1, we need to get the corresponding matrices Ai and construct
a multivariate probability distribution on the system of equations AiX, where X is the
initial state of the cipher. Also, it would be interesting to analyse the performance of
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the newmethods for solving random systems of equations, i.e., systems not describing
a cipher.
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Decoders for p-ary QC-MDPC codes

In this chapter, we present decoders for p-ary quasi-cyclic moderate density parity-
check (QC-MDPC) codes with low decoding failure rate. These decoders are the
result of joint work with Guo and Johansson [CGJ19]. p-ary MDPC codes [GJ16] are
an extension of binary MDPC codes [Mis+13] to fields of characteristic p. Here, we
focus on decoding for a particular quasi-cyclic instance of the p-ary MDPC scheme,
which is similar to that in Ouroboros-E [Den+18]. Our new decoding algorithm is a
bit-flipping decoder and the performance is improved by varying thresholds for the
different iterations. The new decoder is a general decoding method for p-ary MDPC-
like schemes. Thus, it can be used to improve Ouroboros-E or future p-ary MDPC-
based primitives.

In Section 5.1, we present the basics on MDPC schemes. A bit-flipping decoder for
an instance of the p-ary QC-MDPC scheme is presented in Section 5.2. We improve
this decoder in Section 5.3, where we present the essential idea of varying thresholds
and twomethods for computing them. Section 5.4 shows the results of the application
of the new decoder to some parameters for the chosen p-ary QC-MDPC instance.

5.1 Preliminaries

5.1.1 McEliece cryptosystem and MDPC variants
Code-based cryptography is believed to be resistant against attacks using a quantum
computer. McEliece proposed in [McE78] one of the first code-based cryptosystems,
which uses Gopppa codes [Ber73; MS81]. The security of the McEliece cryptosystem
relies on the hardness of the general decoding problem for linear codes, which is NP-
complete [BMT78], and the indistinguishability of the code family. The latter is the
weakest problem and depends on the chosen family of codes. Let n = 2ℓ and let F
denote a family of binary irreducible length-n Goppa codes of dimension k ⩾ n − tℓ

99
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capable of correcting up to t errors. The McEliece cryptosystem is defined as follows:

• Key generation

– Select randomly and uniformly a codeC from F. LetG0 be a k×n generator
matrix of C in reduced row echelon form and H be a corresponding parity-
check matrix.

– Select a random dense k × k non-singular matrix S and a random n × n

permutation matrix P. Compute G = SG0P.
– Return the public key G and private key H.

• Encryption
Letm ∈ Fk

2 be the plaintext.

– Randomly generate e ∈ Fn
2 with Hamming weight t.

– Compute c = mG+ e.
– Return the ciphertext c.

• Decryption
Let c ∈ Fn

2 be the ciphertext and Ψ be a decoding algorithm for C.

– Compute c ′ = Ψ(H, cP−1) = mS and m = c ′S−1.
– Return the plaintext m.

The McEliece cryptosystem has efficient encryption and decryption procedures.
The main disadvantage is the large key sizes. The use of quasi-cyclic (QC) codes has
allowed to reduce the size of the keys [Gab05; Ber+09; MB09]. However, algebraic
attacks are successful due to the algebraic structure of these codes [Fau+10]. One
way to overcome this is to increase the chosen value of the parameters since algebraic
attacks present exponential complexity. Another approach is to use codes with no
algebraic structure.

Low-density parity-check (LDPC) codes (see Section 2.5.2) are codes with no al-
gebraic structure that admit a sparse parity-check matrix. The main problem of em-
ploying LDPC codes in the McEliece scheme is that the low-weight parity-check rows
can be seen as low-weight codewords in the dual of the public code. An effective
attack consists in building a sparse parity-check matrix by finding dual low-weight
codewords [MRS00]. The authors in [BC07] propose fixes to avoid the attack, however,
another successful attack was presented in [OTD10]. An improved variant of LDPC-
McEliece is suggested in [BBC08].

Definition 5.1.1. An [n,k]-linear code admitting a sparse parity-check matrix with
constant row weight w is an [n,k,w]-moderate density parity-check (MDPC) code.

LDPC andMDPC codes are different only in theweightw of the rows in the parity-
check matrix. LDPC codes have small values for w (e.g., less than 10).

Misoczki et al. [Mis+13] propose the use of MDPC codes in the McEliece scheme.
The authors observed that moderately increasing the length and the rowweight of the
secret sparse parity-checkmatrix is enough to avoidmessage and key recovery attacks.
Misoczki et al. considerMDPC codes to have rowweights which scale inO(

√
n logn),

where n is the code length. The codes in [Mis+13] are constructed as follows:
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• [n,k,w]-MDPC code
Let r = n − k. Generate a parity-check matrix H ∈ Fr×n

2 by randomly selecting
vectors hi ∈ Fn

2 , i = 1, . . . , r, and setting the i-th row of H to be hi. With very
high probability H has full rank and the rightmost r× r block is invertible, after
swapping some columns if needed.

• [n,k,w]-QC-MDPC code
Let r = n− k and n = n0r. Then, the parity-check matrix has the form

H = (H0 | H1 | · · · | Hn0−1) ,

where Hi is an r × r circulant block. The first row of H is defined by randomly
selecting a vector h ∈ Fn

2 with weight w. The other rows of H are obtained from
the r − 1 quasi-cyclic shifts of h. Each block Hi has row weight wi, such that
w =

∑n0−1
i=0 wi. Assuming that Hn0−1 is non-singular, the generator matrix is

constructed as

G =

 I

(H−1
n0−1 ·H0)

T

...
(H−1

n0−1 ·Hn0−2)
T

 .

The algebra of r×r binary circulant matrices is isomorphic to F2[X]/〈Xr−1〉. The
matrix/vector operations can then be treated as operations in this polynomial
ring.

The McEliece variant in [Mis+13] uses either of the codes above and is defined as
follows:

• Key generation

– Generate a parity-check matrixH for a t-error-correcting [n,k,w]-MDPC or
[n,k,w]-QC-MDPC code.

– Generate a corresponding generator matrixG in reduced row echelon form.
– Return the public key G and private key H.

• Encryption
Let m ∈ Fk

2 be the plaintext.

– Randomly generate e ∈ Fn
2 with Hamming weight ⩽ t.

– Compute c = mG+ e.
– Return the ciphertext c.

• Decryption
Let c ∈ Fn

2 be the ciphertext and Ψ be a decoding algorithm for the code in Key
generation.

– Compute c ′ = Ψ(H, c) = mG and recoverm from the first k positions of c ′.
– Return the plaintext m.
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5.1.2 p-ary MDPC variant
In [GJ16], Guo and Johansson extend the MDPC scheme from a binary field to a field
of characteristic p. This allows to further reduce the size of the keys compared to the
binary MDPC. The main structure of the p-ary scheme is similar to the binary one.
However, in the p-ary scheme, the error vectors e are ideally taken from a discrete
Gaussian distribution. Also, the Euclidean metric is used instead of the Hamming
weight. The length-n codes of dimension k in [GJ16] are constructed as follows:

• p-ary MDPC code
Let r = n− k. Randomly select vectors hi ∈ Fn

p , i = 1, . . . , r, withwsig significant
entries, such that w1 entries are chosen from {−1, 1}, w2 entries are chosen from
{−2, 2} and the others are 0. Construct the parity-check matrix H ∈ Fr×n

p by
setting the i-th row of H to be hi.

• p-ary QC-MDPC code
Let r = n− k and n = n0r. Then, the parity-check matrix has the form

H = (H0 | H1 | · · · | Hn0−1) ,

where Hi is an r × r circulant block. The first row of H is defined by randomly
selecting a vector h ∈ Fn

p with wsig significant entries, such that w1 entries are
chosen from {−1, 1}, w2 entries are chosen from {−2, 2} and the others are 0. The
other rows of H are obtained from the r− 1 quasi-cyclic shifts of h. Letwsig,i de-
note the number of significant entries in each blockHi. Then,wsig =

∑n0−1
i=0 wsig,i.

Each block of H is isomorphic to a polynomial hi(X) ∈ Fp[X]/〈Xr − 1〉.

The p-ary MDPC variant in [GJ16] uses either of the codes above and is defined as
follows:

• Key generation

– Generate a parity-check matrix H for a p-ary MDPC or p-ary QC-MDPC
code.

– Generate a corresponding generator matrixG in reduced row echelon form.
G should be a dense matrix, otherwise, generate a new parity-check matrix
H.

– Return the public key G and private key H.

• Encryption
Letm ∈ Fk

p be the plaintext.

– Randomly generate e ∈ Fn
p according to a discrete Gaussian distribution.

Other distributions are also possible.
– Compute c = mG+ e.
– Return the ciphertext c.

• Decryption
Let c ∈ Fn

p be the ciphertext.
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– Compute the syndrome vector s = cHT = eHT and use a decoder to extract
the noise e. Recoverm from the first k positions of mG.

– Return the plaintext m.

5.2 A bit-flipping decoder for p-ary QC-MDPC codes
Misoczki et al. [Mis+13] presented a decoder for their binary MDPC codes. The de-
coder is based on the bit flipping algorithm for LDPC codes by Gallager [Gal62] (see
Section 2.5.2). The error-correction capability of the latter increases linearly with the
length of the code and decreases somewhat linearly with the weight of the parity-
checks. Hence, there is a degradation going from LDPC to MDPC codes.

Guo and Johansson [GJ16] proposed a new iterative decoder for their p-aryMDPC
codes. The p-ary MDPC scheme can be seen as an extension of McEliece MDPC into
the Euclideanmetric, or as anNTRU-type [HPS98] lattice-based schemewith iterative
decoding. A specific instantiation of the p-ary MDPC scheme was used by Deneuville
et al. to construct Ouroboros-E [Den+18], a lattice-based key-exchange protocol.

The goal of using iterative decoding techniques in lattice-based cryptography is to
reduce the alphabet size while good error performance is maintained. This technique
can enhance efficiency and security. On one hand, it allows to propose a smaller public
key size; on the other hand, lattice reduction algorithms like sieving and enumeration
can be less efficientwhen the alphabet is small – these attack algorithms are considered
to be the main threat nowadays.

We now consider an instance similar to that of Ouroboros-E. The p-ary QC-MDPC
code has length n and dimension k. The parity-check matrix has two blocks of size
k × k. Other parameter sets can be based on secure parameter suggestions from
NTRU-based or Ring-LWE-based [LPR10] cryptosystems, e.g., choosing a non-prime
alphabet size (denoted by q instead of p for the general setting), or using the ring
R = Zq[X]/〈Xk + 1〉 rather than the quasi-cyclic structure. Safe parameters include q

a prime, k a power of 2 and R = Zq[X]/〈Xk + 1〉, or q a power of 2, k a prime and
R = Zq[X]/〈Xk − 1〉. Let d be a positive integer, and define Id = {−d, . . . , 0, . . . ,d},
h
(d)
0 = b q

2d+1e(1, 0, . . . , 0) and h
(d)
1 = b q

(2d+1)2 e(1, 0, . . . , 0). The p-ary MDPC instance is
defined as:

• Key generation

– Given a parameter d, compute h0 = h
(d)
0 + ĥ0 and h1 = h

(d)
1 + ĥ1, where

ĥ0, ĥ1 ∈ Ikd are chosen randomly. We assume that the ring Zq[X]/〈Xk − 1〉 is
employed and require the sum of the coefficients to be 0 for ĥ0 and ĥ1.

– ComputeH = (H0|H1), whereH0 andH1 are matrices obtained by perform-
ing k− 1 cyclic shifts of h0 and h1, respectively. If H0 is singular, regenerate
h0 and h1.

– Compute G = (I |H−1
0 H1).

– Return the public key G and private key H.

• Encryption
Let m ∈ Fk

q be the plaintext.
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– Randomly choose a vector e from Ind .
– Compute c = mG+ e.
– Return the ciphertext c.

• Decryption
Let c ∈ Fn

q be the ciphertext.

– Get mG using a decoder to remove the noise e from c. Recover m from the
first k entries ofmG.

– Return the plaintext m.

Algorithm 5.1 shows the decoder for the scheme above with d = 1. The decoder is
close to the noisy p-ary bit-flipping decoder for Ouroboros-E, with adjustments for the
p-ary MDPC. The decoder takes as inputs the ciphertext c, the parity-check matrix H

and a parameter iter specifying the number of iterations. The algorithm outputs the
error vector e if decoding was successful, or ⊥ (decoding error) otherwise. The main
idea is to recover the error e by iteratively updating the value of each entry ei according
to a decision rule. When the correct value of e is found, we have that s−HeT = 0, where
s = HcT . If the computed error e is such that s−HeT 6= 0 after iter iterations, decoding
was unsuccessful.

Algorithm 5.1 p-ary bit-flipping
Input: The ciphertext c, the private key H and the number of iterations iter
Output: The error e if success, ⊥ otherwise
1: e = 0 ∈ Zn

q

2: Compute the syndrome s = HcT

3: p = s

4: for i = 1 to iter do
5: e ′ = Decide(p)
6: e = e+ e ′

7: Transform(e)
8: p = s−HeT

9: if pj = 0 for all j ∈ {1, . . . , k} then
10: return e

11: end if
12: end for
13: return ⊥

Algorithm 5.2 details the updating decision rule for recovering e. Recall that each
parity-check (row) ofH has two significant entries, namely, theh(1)

0 andh
(1)
1 parts ofh0

and h1, respectively. Each of these entries is sampled from {−1, 0, 1}, and thus we have
9 different signal points to consider, i.e., {−1, 0, 1}× {−1, 0, 1}. We spread these 9 points
throughout [0,q] (mod q) as shown in figure 5.1a. In order to update e for the h

(1)
0

part, the set [0,q] (mod q) is divided into 3 intervals. These intervals are determined
by q

6 ,
q

2 and 5q
6 , and each one has 3 signal points and an associated update value, as

shown in Figure 5.1b. Notice that any of these intervals has “length” q

3 and three signal
points which represent the possible update values for the h(1)

1 part. Updating e for the
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h
(1)
1 part is done in a similar way as for h(1)

0 . We divide the set [0, q3 ] (mod q

3 ) into
3 intervals determined by q

18 ,
q

6 and 5q
18 , each one having 1 signal point, as shown in

Figure 5.1c.

Algorithm 5.2 Decide
Input: Vector p
Output: Vector e ′ resulting from applying the decision rule to p

1: e ′ = 0
2: for j = 1 to k do
3: if pj ∈ [dq6 e, b

q

2 c] then
4: e ′

j = 1
5: else if pj ∈ [dq2 e, b

5q
6 c] then

6: e ′
j ← −1

7: end if
8: if (pj mod bq3 e) ∈ [d q18e, b

q

6 c] then
9: e ′

k+j ← 1
10: else if (pj mod bq3 e) ∈ [dq6 e, b

5q
18 c] then

11: e ′
k+j ← −1

12: end if
13: end for
14: return e ′

.

(a) Signal points across [0,q]
(mod q).

.

0

−1 1

q
5q
6

2q
3 q

2

q

3

q

6

(b) Intervals of [0,q] (mod q)
with their signal points and as-
sociated values for h(1)

0 .

.

0

−1 1

q

35q
18

2q
9 q

6

q

9

q

18

(c) Intervals of [0, q3 ] (mod q
3 )

with their signal points and as-
sociated values for h(1)

1 .

Figure 5.1. Graphical representation of the decoding decision rule. When d = 1, there are
9 signal points to consider.

The vector e is updated in line 6 of Algorithm 5.1. Notice that the addition of e
and e ′ may lead to coefficients equivalent to 2 or −2. We thus employ the function
Transform to ensure the resulting vector is valid, i.e., from In1 . In [Den+18], the
function Transform sets a coefficient to be −1 if it is 2 and 1 if it is −2.

5.3 The new decoders
In this section we show an enhanced version of the decoding algorithm for the p-ary
MDPC scheme in Section 5.2. The performance is improved using varying thresholds
for different iterations, as the bit-flipping decoders in [Gal62; Mis+13].
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5.3.1 The idea behind the new decoders
The decision rule in Algorithm 5.2 keeps the same interval bounds for all iterations
in the main loop of Algorithm 5.1. We propose to update these bounds. For this,
we introduce a threshold thr(i) that determines the new interval bounds in iteration
i, i = 1, . . . , iter. Figure 5.2 depicts how the intervals might change throughout the
main loop. When an entry pj does not lie within any of the intervals for 1 and −1, we
are not able to decide the value for e ′ at the corresponding position, and we set it to
zero. Algorithm 5.3 shows the new decision rule using the proposed thresholds. In
Sections 5.3.2 and 5.3.3 we propose new methods for computing thr(i).

.

0

−1 1
(a) i = 1

.

0

−1 1
(b) i = 2

. . . .

0

−1 1
(c) i = iter− 1

.

0

−1 1
(d) i = iter

Figure 5.2. Intervals used for iterations i = 1, . . . , iter in the new decoding procedure.

Algorithm 5.3 DecideThr(p)
Input: Vector p
Output: Vector e ′ resulting from applying the decision rule to p

1: e ′ = 0
2: Compute thr(i)
3: for j = 1 to k do
4: if pj ∈ [dq6 e+ thr(i), bq2 c− thr(i)] then
5: e ′

j = 1
6: else if pj ∈ [dq2 e+ thr(i), b 5q6 c− thr(i)] then
7: e ′

j = −1
8: end if
9: if (pj mod bq3 e) ∈ [d q18e+ thr(i), bq6 c− thr(i)] then
10: e ′

k+j = 1
11: else if (pj mod bq3 e) ∈ [dq6 e+ thr(i), b 5q18 c− thr(i)] then
12: e ′

k+j = −1
13: end if
14: end for
15: return e ′

Note that this new proposal is a generalisation of the previous decoder: when
thr(i) = 0, it is equivalent to using the interval thresholds as in Algorithm 5.2.
Moreover, Algorithm 5.3 can be further generalised: at iteration i, instead of choosing
thr(i) only, it is possible to choose different thresholds for the upper and lower bounds
of each of the intervals.

5.3.2 Gallager-B type decoder
Here we estimate the error probability and derive a series of theoretical values for the
decoding thresholds. The analogue in the Hamming metric is the tree-based analysis
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in [Gal62].
First, we assume that the noise random variable in each iteration is Gaussian with

mean 0 (due to the intuition from the central limit theorem) since it is a sum of many
small-noise variables with mean 0. For a fast estimation, we ignore the independence
issue that may occur in the decoding process. We track the change of the average error
variance in each iteration.

Every entry pj in p is a sum of the contribution ejbq3 e+ ek+jbq9 e and a second part
called noise, denoted Nj, where Nj = (ĥ

[j]
0 , ĥ[j]

1 )eT and ĥ
[j]
i means ĥi cyclically shifted

j steps. The noise variance σ2
0 is initially 4n

9 = 8k
9 . We now only record the probability

that a signal point (ej, ek+j) is wrongly decoded to its neighbour in the torus, e.g., (0,0)
to (0,-1) or (0,1); (1,1) to (-1,-1) or (1,0). Let us denote

πi+1,+ = erfc
( q

18 + thri+1√
2σi

)
,

and
πi+1,− = erfc

( q

18 − thri+1√
2σi

)
.

Let e be the original error vector and ê(i) be the guessed error vector in the i-th
iteration. We have ê(0) = 0 and we get

p(i) = s−Hê(i) = H(e− ê(i)),

which is the input to the DecideThr() procedure in the i-th iteration.
We know that for 1 ⩽ j ⩽ k, ej and ek+j are distributed uniformly in I1 = {−1, 0, 1}

before the first iteration. If ek+j = 0, the coefficient ej is almost certainly correctly
decoded. If the signal point is (0, 1) with probability 1/9, then the probability to
wrongly decode ej to 1 is 0.5π1,+. If the signal point is (1,−1) with probability 1/9,
then the probability to wrongly decode ej to 0 is 0.5π1,−. If the signal point is (1, 1)
with probability 1/9, then the probability to wrongly decode ej to 0 is 0.5(π1,− − π1,+)
and to −1 is 0.5π1,+. We can compute the error variance by symmetry for the rest
signal points. The noise variance introduced by the first part of the error vector can be
estimated as 2

3 ·
2k
9 (π1,− + 2π1,+). Similarly, we estimate the noise variance introduced

by the second part of the error vector as 2
3 ·

6k
9 (π1,−+ 2π1,+). We can compute the noise

variance σ2
1 as σ2

1 =
2
3 ·

8k
9 (π1,− + 2π1,+).

Since the error occurring in the first k positions is much easier to correct than the
errors in the last k positions, we track only the noise variance from the last k positions
of the error vector, from the second iteration. Let πi denote the probability that the
decision on the position ê

(i)
k+j is correct. Thus, we have that

πi+1 = πi(1− πi+1,+) + (1− πi)(1− πi+1,−),

and π0 = 1/3.
Finally, we can iteratively estimate the value of the remaining noise in the (i+1)-th

iteration, σ2
i+1, as

σ2
i+1 =

2k
3 · (πiπi+1,+ + (1− πi)(πi+1,− + 1.5πi+1,+)) , (5.1)
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for i ⩾ 1. We can also alternatively introduce a new parameter1 cλ > 1 to have better
performance heuristically, i.e., we compute σ2

i+1 by

σ2
i+1 = cλ ·

2k
3 · (πiπi+1,+ + (1− πi)(πi+1,− + 1.5πi+1,+)) , (5.2)

for i ⩾ 1.
We choose the thresholds thr(i) such that the noise variance σ2

i isminimised, which
can be solved numerically. We denote by G1 and G2 the decoders using thresholds
computed from Equations (5.1) and (5.2), respectively.

5.3.3 Heuristic decoder
Herewe present three heuristic decoders calledH1,H2 andH3, respectively. The three
decoders are similar to their Hamming counterpart from [HP03; Mis+13] for MDPC-
McEliece.

Let A be the set of nine signal points, i.e.,

A := {0, bq/9e, b2q/9e, . . . , b8q/9e}.

In the i-th iteration of H1, we compute

thr(i)max =
q

18 − min
j∈{1,...,k},
a∈A\{0}

|p
(i)
j − a|,

to make a parity-check equation with its updated syndrome p(i)
j closest to a non-zero

signal point corrected (flipped). The threshold in the i-th iteration is

thr(i) = max(0, thr(i)max − δ), (5.3)

where a positive constant δ determined by simulation is used to reduce the required
number of iterations in the average case.

The decoder H2 is a variant of H1 and provides comparable (or even better) error
performance in some simulations. In the i-th iteration, we compute

thr
(i)
min = min

j∈{1,...,k},
a∈A

|p
(i)
j − a|.

The threshold in the i-th iteration is

thr(i) = thr
(i)
min + δ (5.4)

for a positive constant δ determined by simulation.
The decoder H3 is also a variant of H1 and provides the best error performance in

simulations. We choose δ = δ0, for some value δ0. In the i-th iteration, we compute
thr

(i)
max and thr(i) as inH1. If decoding is unsuccessful, decrease the value of δ by 1 and

restart the process. This is repeated until decoding is successful or δ = 0 (decoding
failure).

1We have cλ > 1 since the error contribution of the first k positions is omitted in Equation (5.1).
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5.4 Experimental results
Here we give the experimental results using the decoders presented in Sections 5.3.2
and 5.3.3. We compare the proposed decoders with the reference decoder [Den+18].
Note that the values of k and q are only chosen for testing the error performance.

For G1, we computed the theoretical thresholds as in Section 5.3.2; the thresholds
and variances obtained are shown in Table 5.1 when cλ = 1.00. For G2, we computed
the thresholds varying the value of cλ from 1.0 to 2.0 by steps of 0.01. We heuristically
chose to use for our experiments the values shown in Table 5.1, with cλ > 1.00. For
both, G1 and G2, let i be the smallest integer such that thr(i) = 0. Then we have that
thr(j) = 0 for j ⩾ i. However, in the experiments we kept on using the last non-zero
threshold up to iteration iter

2 , i.e., thr(j) = thr(i−1) for j = i, . . . , iter2 and thr(j) = 0 for
j = iter

2 +1, . . . , iter. If we had notmade this, both decoders would have been different
to that in [Den+18] in the first i− 1 iterations only.

k q cλ
i = 1 i = 2 i = 3

thr(i) σ2
i thr(i) σ2

i thr(i) σ2
i

491 345 1.00 8 288.32 7 123.64 4 31.30
491 345 1.01 8 288.32 7 124.87 5 32.18
491 345 1.24 8 288.32 7 153.31 6 54.80
491 345 1.31 8 288.32 7 161.96 6 62.49
491 360 1.00 8 269.43 7 101.18 4 15.16
491 360 1.17 8 269.43 7 118.38 5 24.94
491 360 1.43 8 269.43 7 144.69 6 43.97
491 360 1.66 8 269.43 7 167.97 6 64.39

k q cλ
i = 4 i = 5 i ⩾ 6

thr(i) σ2
i thr(i) σ2

i thr(i) σ2
i

491 345 1.00 2 0.12 0 0.0000 0 0.00
491 345 1.01 2 0.14 0 0.0000 0 0.00
491 345 1.24 3 2.71 0 0.0000 0 0.00
491 345 1.31 4 4.72 1 5.65×10−5 0 0.00
491 360 1.00 1 3.70×10−5 0 0.00 0 0.00
491 360 1.17 2 0.01 0 0.00 0 0.00
491 360 1.43 3 0.65 0 0.00 0 0.00
491 360 1.66 4 4.15 1 4.36×10−20 0 0.00

Table 5.1. Computed theoretical thresholds for the Gallager-like decoders.

For the heuristic decoders, we first executed some moderate size experiments (100
MDPC instances and 1 000 decoding executions per instance) to determine the best
values of δ. We used these values to execute the experiments reported here.

Table 5.2 summarises the results obtained from the experiments. One experiment
comprises the randomgeneration of 10 000MDPC instances and 1 000 decoding execu-
tions per instance. The entries in the table show the number of decoding errors among
107 decoding executions. For decoder G2, columns cλ,2, cλ,3 and cλ,4 show the results
when using the thresholds in the 2nd, 3rd and 4th rows of Table 5.1, respectively, for
the different values of k and q. In general, our proposals have better performance than
the reference decoder. The heuristic decoders present the best decoding failure rate.
Decoder H3 presents a very low failure rate with the parameters in table 5.2. We also
executed this decoder with k = 491,q = 375 obtaining 0 decoding errors for iter = 20.

We noted in the experiments that the execution time of the reference decoder was
significantly higher than that of the decoders we propose. This difference in perform-
ance is due to the number of iterations required to finish the decoding procedure in
the average case.
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k q iter [Den+18] G1 G2 H1 H2 H3
cλ,2 cλ,3 cλ,4 δ = 16 δ = 17 δ = 2 δ = 3 δ0 = ⌊ q

18⌉
491 345 100 271 11 14 17 27 4 5 2 6 0
491 345 75 405 19 24 17 22 10 13 5 11 0
491 345 50 992 60 53 49 98 29 23 27 28 0
491 345 25 14543 909 949 911 1309 346 367 402 402 12
491 360 100 5 1 2 3 1 1 1 0 0 0
491 360 75 4 2 2 3 2 4 2 1 1 0
491 360 50 17 10 11 2 11 5 8 1 5 0
491 360 25 267 163 131 122 188 44 32 32 48 2

Table 5.2. Decoding failure rate (×10−7) of experiments for different parameters. Each
experiment comprises the random generation of 10 000 MDPC instances and 1 000 decod-
ing executions per instance.

Summary and future work
We presented novel iterative decoders for the p-ary MDPC scheme by varying the
thresholds used in each iteration. These thresholds are determined either by numer-
ically optimising the error level in the next iteration, as was done by Gallager [Gal62],
or by applying heuristic methods. We have demonstrated improved decoding per-
formance by simulation. Particularly, our heuristic decoders presented the best error
failure rate (see Table 5.2).

We identify two more interesting problems to be further investigated. Firstly, to
propose a better worst-case decoder, as was studied in [CS16] for the binary MDPC.
Also, to test the heuristic independence assumption made in [GJ16] for proposing
parameters with an arbitrarily small decryption error probability. The latter can be
crucial to resist the potential reaction attack [GJS16; Fab+17] that is already a threat
to the MDPC/LDPC-based cryptosystems.
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