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Abstract
The Non-Uniform k-center (NUkC) problem has recently been formulated by
Chakrabarty et al. [ICALP, 2016; ACM Trans Algorithms 16(4):46:1–46:19, 2020] as
a generalization of the classical k-center clustering problem. In NUkC, given a set of n
points P in a metric space and non-negative numbers r1, r2, . . . , rk , the goal is to find
the minimum dilation α and to choose k balls centered at the points of P with radius
α · ri for 1 ≤ i ≤ k, such that all points of P are contained in the union of the chosen
balls. They showed that the problem is NP-hard to approximate within any factor even
in tree metrics. On the other hand, they designed a “bi-criteria” constant approxima-
tion algorithm that uses a constant times k balls. Surprisingly, no true approximation
is known even in the special case when the ri ’s belong to a fixed set of size 3. In this
paper, we study the NUkC problem under perturbation resilience, which was intro-
duced by Bilu and Linial (Comb Probab Comput 21(5):643–660, 2012). We show that
the problem under 2-perturbation resilience is polynomial time solvable when the ri ’s
belong to a constant-sized set. However, we show that perturbation resilience does not
help in the general case. In particular, our findings imply that even with perturbation
resilience one cannot hope to find any “good” approximation for the problem.

Keywords Non-Uniform k-center · Stability · Clustering · Perturbation resilience

1 Introduction

Stability is a popular notion, which has been used in literature in the context of beyond
worst case analysis. The general idea is to impose extra constraints on the inputs
such that the (stable) instances that satisfy those constraints can capture the instances
that appear in real life applications. In other words, we would like to exclude the
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“unrealistic” instances from consideration and obtain optimistic bounds for algorithms
on the remaining inputs. For example, a major collection of work along this line have
focused on designing polynomial time algorithms for NP-complete problems under
different stability conditions. Bilu and Linial [10] introduced a notion of stability,
which they termed as ψ-perturbation resilience for some ψ > 1. Informally, an
instance is called ψ-perturbation-resilient if the optimal solution remains same even
after the instance is perturbed by a factor of ψ .

Recently, researchers have shown a great interest in studying geometric clustering
problems under perturbation resilience. An instance of a clustering problem is ψ-
perturbation-resilient if the optimal clustering is unique and remains unchanged under
ψ-factor perturbation of the input distances. Awasthi et al. [6] showed that the standard
center based clustering problems (e.g. k-center, k-median) can be solved in polynomial
time under ψ-perturbation-resilience for ψ ≥ 3. In any such center based clustering
problem, the clustering is obtained by assigning a point to its nearest center. In other
words, the clustering is induced by the Voronoi partition of the points w.r.t. the chosen
centers. Subsequently, Balcan and Liang [8] designed a polynomial time algorithm for
these clustering problems underψ-perturbation-resilience forψ ≥ 1+√

2, improving
the bound of Awasthi et al. [6]. Later, Balcan et al. [7] improved the bound for k-center
to 2. On the other hand, they showed that k-center under ψ-perturbation-resilience
cannot be solved in polynomial time forψ < 2, unlessNP = RP. They also considered
themore general asymmetric k-center problem,where the distances are not necessarily
symmetric (but satisfy triangle inequality). The problem is known to not admit a
constant approximation unless NP ⊆ DTIME(nlog log n), where n is the input size [15].
Surprisingly, Balcan et al. [7] showed that asymmetric k-center under 2-perturbation-
resilience can be solved in polynomial time. Angelidakis et al. [4] gave a generic
polynomial time algorithm for clustering problems with center based objectives (e.g.
k-center, k-median, and k-means) under 2-perturbation-resilience. Recently, Cohen-
Addad and Schwiegelshohn [16] proved that a simple local search scheme yields
optimal solutions for problems like k-median and k-means, under ψ-perturbation-
resilience forψ > 3. Chekuri and Gupta [14] showed that an LP relaxation of k-center
under 2-perturbation-resilience admits an integral solution. They also proved the same
result for k-center with outliers. Balcan and Liang [8] introduced a weaker stability
assumption called (ψ, ε)-perturbation-resilience, where the optimal solution under
ψ-perturbation can differ in at most ε fraction of the points from the original optimal
clustering (see Preliminaries for the formal definition). Assuming that each cluster
contains more than 2εn points, Balcan et al. [7] showed that k-center under (3, ε)-
perturbation-resilience can be solved in polynomial time, where n is the number of
input points.

The increasing interest in studying perturbation resilient clustering has given rise
to several open directions. One such interesting direction is to study clustering prob-
lems, where the clustering is not necessarily induced by Voronoi partition. One such
clustering problem is Non-Uniform k-center (NUkC). In NUkC, we are given a set of
n points P in a metric space, non-negative integers r1, r2, . . . , rk , and the goal is to
find the minimum dilation α and to choose k balls centered at the points of P with
radius α · ri for 1 ≤ i ≤ k, such that all points of P are contained in the union of the
chosen balls. We refer to any feasible solution of this problem composed of the chosen
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Fig. 1 The optimal clusters are
contained in the two disks in the
Euclidean plane. The centers of
balls are shown by boxes. The
Voronoi partition w.r.t. the
centers contains two subsets of
points lying on the different
sides of the vertical bisector line

balls as a feasible placement. From a feasible placement, a clustering is retrieved in the
following way – each point is assigned to a fixed ball that contains the point, and then
for each ball, the points that are assigned to that ball form a cluster. Figure 1 shows
that, the optimal clustering for an instance of NUkC is not the same as the Voronoi
partition w.r.t. the centers of the balls in the optimal placement. The NUkC problem
was formulated by Chakrabarty et al. [13] as a generalization of the well-studied k-
center clustering problem, where all ri ’s are equal. Apart from clustering, NUkC has
several applications in vehicle routing, sensor placement, and so on. For example, in
vehicle routing, we need to find k depot locations corresponding to k vehicles having
different speeds, such that any customer can be served by some vehicle as quickly as
possible.

As mentioned before, k-center is a special case of NUkC where all the input radii
are equal. We call this version of the problem as NUkC with one radius class. In
general, all the radii might not be equal. But, we can consider only distinct radii from
the input and associate a multiplicity parameter ki , with each such radius ri , which
denotes the number of balls of radius ri that can be chosen. Then the problem can be
formulated equivalently in the following way.

Definition 1 (NUkC with t radii classes) Given a set of n points P in a metric space,
t ≤ k distinct radii r1 > r2 > · · · > rt and non-negative integers k1, . . . , kt such
that

∑t
i=1 ki = k, the goal is to find the minimum dilation α and to choose ki balls

centered at the points of P with radius α · ri for all 1 ≤ i ≤ t , such that the union of
the chosen balls contains all the input points.

We note that k-center with outliers is a special case of NUkC with 2 radii classes
where the radius r2 = 0. Using a reduction from the Firefighters problem [1],
Chakrabarty et al. [13] proved that NUkC is NP-hard to approximate within any
γ � 2poly(n) factor even in tree metrics. On the other hand, they designed a (c1, c2)
bi-criteria approximation for the problem for large constants c1 and c2, i.e., if the
algorithm is allowed to use c1 · ki balls of type i (thus c1 · k in total), it can produce a
solution with dilation at most c2 times the optimal dilation. They also gave a (1+√

5)-
approximation for NUkC with two radii classes. For k-center with outliers, they gave
an improved 2-approximation. However, even when the number of distinct radii is 3,
no true approximation is known.

The motivation behind the study of NUkC under perturbation resilience is that, in
many applications, the distance function is heuristic. In fact, when the points represent
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structures like images, proteins, documents, etc., it is very hard to find the true distance
function, and various standard distance/ dissimilarity measures are used. If one solves
a clustering problem with such a heuristic distance function and expects good results,
then they implicitly assume that the optimal solution of the problem is not sensitive
to small perturbations of the distance function. The perturbation resilience condition
is a natural way to make this implicit assumption precise. Additionally, the separation
between the clusters forces an optimal clustering to be unique.

Our Results In this paper, we obtain the following results.

1. Polynomial time exact algorithm for NUkC with a constant number of radii classes
under “2-perturbation-resilience” and “(3, ε)-perturbation-resilience when each
cluster containsmore than εn+1points”.Our algorithm reduces theNUkCproblem
to a version of Firefighters problem on trees (formally defined in Sect. 4). Under
the stability assumptions, we can show that a feasible solution of NUkC maps to a
feasible solution of Firefighters problem and vice versa. Here, in particular, we use
the “well-separated” structure of the clusters in the optimal clustering that follows
due to stability. The reduction has the property that if NUkC has t distinct radii
classes, then the height of the constructed tree instance is t + 1. Then we show
that using a dynamic programming based scheme, the Firefighters problem can be
solved in polynomial time for constant height tree instances. Thus we also obtain a
polynomial time algorithm for NUkC under perturbation resilience with a constant
number of radii classes. We note that the algorithms for center based clustering
problems in [4,8,14] are also based on tree computation and dynamic programming.
However, the structure of the tree we compute is very different. We also note that
our result under 2-perturbation-resilience is tight, as even for k-center it is unlikely
to obtain a polynomial time algorithm under ψ-perturbation-resilience for ψ < 2.
To prove the result for (3, ε)-perturbation-resilience, we assume that each cluster
contains more than εn + 1 points. We note that such a lower bound is necessary,
as in its absence even k-center is NP-hard [7] under (ψ, ε)-perturbation-resilience
for all ψ ≥ 1 and ε > 0.

2. Inapproximability of NUkC within a factor of γ under ψ-perturbation-resilience
for any 2poly(n) � γ ≥ 1and ψ ≤ γ , unless NP = RP. Our result implies that, for
any 2poly(n) � ψ, γ ≥ 1, even with ψ-perturbation-resilience one cannot hope to
find a γ -approximation for the problem. This shows that the complexity of NUkC
remains unchanged under perturbation-resilience. Our result should be contrasted
with the polynomial time algorithm for asymmetric k-center under 2-perturbation-
resilience, as asymmetric k-center is another candidate problem which is hard to
approximate within a constant factor. To prove the result, we use a chain of reduc-
tions starting from the satisfiability problem to the NUkC problem in tree metrics
under perturbation resilience assumption. The last reduction in the chain is from
a version of the Firefighters problem which shows that NUkC is hard to approxi-
mate within a factor of γ in tree metrics for any γ . Our reduction is similar to the
reduction in [13]. Then, we argue that the constructed tree instances ofNUkC are γ -
perturbation-resilient, and hence the similar hardness follows even for NUkC under
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γ -perturbation-resilience. We also extend this hardness result to Euclidean metric
of dimension d for d ≥ 1 using a classical tree embedding result of Gupta [21].

Themain contribution of this paper is twofold. The first one is to be able to establish
an exact connection between NUkC under perturbation resilience and the Firefighters
problem on trees. To establish this connection, we need to prove that perturbation
resilience implies that the optimal clusters are “well-separated”. Similar properties
have been proved in the context of other problems (e.g., k-center). Our contribution
is to be able to extend these proofs for NUkC as well. However, the extension is non-
trivial, and one need sufficiently good amount of extra work, as here we need to deal
with non-uniform radii. We note that Chakrabarty et al. [13] also showed a reduction
from NUkC to Firefighters. However, their Linear Programming based reduction is
very different. Our second contribution is the tight hardness result for the problem. This
result along with the polynomial time algorithm gives the complete picture for NUkC
under perturbation resilience. To prove this result we are faced with the following
challenges. In any such hardness construction, one needs to show that the instances of
NUkC to which we map, are perturbation resilient. Thus, we need to show that these
instances have unique optimal solution and the optimal solution does not change with
some perturbation of the distances. Chakrabarty et al. [13] showed a reduction from
Firefighers to NUkC. However, using their distance function it is not straightforward
to show that the constructed instances are insensitive to the perturbation of distances.
Nevertheless, we consider a similar distance function and show the reduction works
out well with this modification. To prove the uniqueness of the optimal solutions, we
reduce a “unique” version of 3SAT to a “unique” version of Firefighters using a chain
of reductions.

Related Work and Open Questions Other optimization problems have also been
studied under stability assumptions [4,17,19,25,26]. Also different stability assump-
tions have been introduced and well-studied in the literature [5,24,27]. Most of the
clustering problemsmentioned here areNP-hard, but admit some constant approxima-
tions, e.g., see [3,12,20,22] and the references therein. It would be interesting to see
if one can obtain a constant approximation for NUkC with a constant number of radii
classes without any perturbation resilience assumptions. Also, one can study similar
hard clustering problems (e.g., k-clustering [9]) under perturbation resilience.

Organization In Sect. 2, we define some notations that we use throughout the paper,
andmake a few observations that will be useful later. In Sect. 3, we list some properties
implied due to perturbation resilience of the input instances. Then in Sect. 4, we discuss
the algorithm for NUkC with any constant number of classes and prove its correctness
by using the properties proved in the previous section. Lastly, in Sect. 5, we prove the
hardness results for the general problem.

2 Preliminaries

We denote an instance of NUkC with t radii classes on metric d by (P, d, t). Note
that the radii (ri ) and multiplicity (k j ) parameters remain implicit in this notation. But,
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Fig. 2 Examples demonstrating
the definition of perturbation
resilience. The top-right (resp.
bottom-right) instance is a
2-perturbed instance of the
top-left (resp. bottom-left)
instance. The points in same
optimal cluster are shown by
same shape and color (Color
figure online)

references to these parameters will become clear from the context. A ball with center
p ∈ P and radius r , denoted by B(p, r), is the set of points {q ∈ P | d(p, q) ≤ r}.
A set of balls covers a set of points if the union of the balls contains all the points.
Recall that a feasible placement is a feasible solution of the problem composed of the
chosen balls that cover all the input points. A feasible NUkC clustering C of the input
set of points P is a partition {C1, . . . ,Ck}, such that there is a feasible placement �

with the property that for all i , Ci is a subset of a ball in the placement. We say that
the clustering C is induced by the placement �. The radius of a cluster C w.r.t. any
distance function d, denoted by c-radius(C, d), is minp∈P maxq∈C d(p, q). Note that
no ball centered at a point p ∈ P of radius smaller than c-radius(C, d) can cover all
the points of C . For a placement with dilation α, a ball with radius αri (resp. < αri
and ≥ αri ) is called an ri (resp. < ri and ≥ ri ) -ball.

Consider a metric space P with metric d : P × P → R≥0. A metric d1 is called a
ψ-perturbation of d if for any p, q ∈ P , d(p, q)/ψ ≤ d1(p, q) ≤ d(p, q).1 In this
paper, all perturbations we consider satisfy the metric properties.

Definition 2 An instance I = (P, d, t) of NUkC is called ψ-perturbation-resilient
(ψ-PR) if for any metric ψ-perturbation d1 of d, the unique optimal NUkC clustering
of I ′ = (P, d1, t) is identical to the unique optimal clustering of I.

Note that in general, optimal clustering of NUkC might not be unique. We refer
to the instance I ′ as a ψ-perturbed instance of I. For more clarity, we describe the
notion of ψ-perturbation-resilience in the context of NUkC using two examples in
Fig. 2 (top-left and bottom-left). In all our examples, the number of clusters k = 2
and the number of radii classes t = 1. For the instance shown at the top-left figure, let
r1 = 10. We claim that this instance is 2-perturbation-resilient. To see this note that
here the optimal dilation is 1, and the optimal clusters are {a, c} and {b, d}. Moreover,
even if all the distances are perturbed by a factor of 2, the distance between a and c
(resp. b and d) can be at most 10. Hence, the dilation of the previous clustering for
the perturbed instance would be at most 1. But, as all the distances between a and
b, a and d, c and b, and c and d are 50, in any 2-perturbation of the distances, the
distance between the two points in any of these four pairs would be at least 25. Thus

1 One can also define ψ-perturbation by both increasing and decreasing the distances - the two definitions
are equivalent modulo some factor, as one can always scale the input distances appropriately.
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if both of the points in such a pair remain in same cluster, the dilation must be at least
2.5. As there is a clustering of dilation at most 1, in optimal clustering, both of these
points cannot lie in the same cluster. Hence, the optimal clustering is unique and same
as the one before. The top-right figure shows a 2-perturbed instance with the same
optimal clustering. Now, consider the instance in the bottom-left figure. Let r1 = 15.
We claim that this instance is not 2-perturbation-resilient. To prove this we show a
2-perturbed instance where the optimal clustering is different. Note that in the original
instance, the optimal dilation is 1, and the optimal clusters are {a, c} and {b, d}. The
2-perturbed instance we consider is shown in the bottom-right figure. Note that in the
perturbed instance the optimal clustering is {{a, b}, {c, d}} with dilation 10/15=2/3.
This is because any other clustering has a dilation at least 1.

We also consider another notion of perturbation resilience introduced by Balcan
and Liang [8], where the optimal clustering is allowed to be different by a few points
when the distances are perturbed. Here we rewrite this notion in terms of NUkC. Two
clusterings C = {C1, . . . ,Ck} and C′ = {C ′

1, . . . ,C
′
k} are called ε-close if at most

εn points are clustered differently in the two clusterings, i.e., the minimum value of∑k
i=1 |Ci\C ′

f (i)| over all permutations f of {1, 2, . . . , k} is at most εn.

Definition 3 An instanceI = (P, d, t)ofNUkC is called (ψ, ε)-perturbation-resilient
((ψ, ε)-PR) if for any metric ψ-perturbation d1 of d, any optimal NUkC clustering of
I ′ = (P, d1, t) is ε-close to any optimal clustering of I.

This is again a well-studied stability criterion [2]. Note that when ε = 0, any
optimal NUkC clustering of I ′ must be same as any optimal clustering of I. This
implies that optimal clustering of I and I ′ are unique and we obtain the definition of
ψ-PR. Thus, if an instance of NUkC is ψ-PR, then it is also (ψ, 0)-PR, and hence any
hardness result for NUkC under ψ-PR trivially follows for NUkC under (ψ, ε)-PR.
Now, we have the following simple observation, which will be useful later in proving
the properties of the PR instances.

Observation 1 Consider anNUkC instanceI = (P, d, t) that admits a unique optimal
clusteringO. Let C be any cluster inO. Also, consider an optimal placement�where
C is covered by a ball B. Then, the following two properties hold.

– The center p of the ball B must belong to C.
– For any two points u, v that lie in two different clusters of O, both of u, v cannot
be contained in B.

Proof – Suppose p belongs to the cluster C ′ such that C �= C ′. Construct another
clustering O′ by selecting all the clusters in O except C and C ′, and the clusters
C∪{p} andC ′\{p}. It is not hard to see thatO′ is also a feasible clustering induced
by �. As � is an optimal placement, O′ is also an optimal clustering, which
contradicts the uniqueness of the optimal clustering of I. Hence, the statement
follows.

– Suppose B contains both u and v. We construct a new clustering O′, which is
identical to O except, in O′, we move the points u, v to the cluster C . Note that
the clustering O′ can be induced by the placement �, as the ball B that covers
C ∈ O also contains u, v. Hence, O′ is an optimal clustering for I different than
O, which is a contradiction, and thus the statement follows.
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�
WLOG we can assume that the optimal dilation of a ψ-PR or a (ψ, ε)-PR instance

of NUkC is 1. Like in the general case without perturbation resilience, in this case
also the assumption can be introduced by scaling ri values by a guessed value of the
optimal dilation α.

Lemma 1 Suppose there is a polynomial time algorithm A for the NUkC problem
with t radii classes under ψ-PR (resp. (ψ, ε)-PR) with the properties that (i) for an
instance which admits a feasible placement of balls with dilation 1, A returns “yes”
and a feasible clustering, and (ii) for an instance which does not admit a feasible
placement of balls with dilation 1, A returns “no”. Then, the NUkC problem with t
radii classes under ψ-PR (resp. (ψ, ε)-PR) can be solved in polynomial time.

Proof Consider any instance I = (P, d, t) of the NUkC problem with t radii classes
underψ-PR (resp. (ψ, ε)-PR). Let α be the optimal dilation. Note that we do not know
the value of α. However, as the input metric is finite, there are only polynomial number
of guesses for α. We use the following procedure to obtain the optimal clustering for
I. In each step, we guess a value α′ for the optimal dilation in the increasing order
of the values. We construct a new instance I ′ from I by only changing the radius ri
to α′ · ri for all i . Then, we apply the algorithm A on the constructed instance. If A
returns “no”, we repeat the process with a different guess. Otherwise, the procedure
terminates.We return the same clustering returned byA as the solution for the instance
I.

Now, we argue about the correctness of the procedure. First, we claim that I ′ is aψ-
PR (resp. (ψ, ε)-PR) instance. Before proving this claim we discuss its consequences.
Note that if there is no feasible solution for I with dilation α′, then with ki balls of
radius α′ · ri for all i it is not possible to cover the input points. Hence, in this case,
for the constructed instance, there is no feasible solution with dilation 1. Thus, the
algorithm correctly returns “no” assuming I ′ is a ψ-PR (resp. (ψ, ε)-PR) instance. If
there is a feasible solution for I with dilation α′, then with ki balls of radius α′ · ri for
all i one can cover the input points. Thus, in that case, for the constructed instance,
there is a feasible solution with dilation 1. Hence,A correctly returns “yes” assuming
I ′ is ψ-PR (resp. (ψ, ε)-PR). Thus, when α′ = α, A returns “yes” and the returned
clustering is optimal for I. Now, we prove the claim.

Claim I ′ is a ψ-PR (resp. (ψ, ε)-PR) instance.

Proof First, we show that the optimal clustering of I ′ is unique. Note that the optimal
dilation of I ′ is α/α′. Suppose optimal clustering of I ′ is not unique. Then, there
are two different clusterings where the points can be covered using ki balls of radius
(α/α′) · α′ · ri = α · ri from each class i . It follows that there are two different
optimal clusterings for I. But, this is a contradiction, and thus the optimal clustering
of I ′ is unique. Note that the optimal clusterings of I and I ′ are identical. Let C be
that clustering. Now, consider any ψ-perturbation d1 of the input metric d and the ψ

perturbed instance I ′
1 of I ′. Let I1 = (P, d1, t) be the corresponding ψ perturbed

instance of I. Also, let C′
1 be the optimal clustering of I ′

1 with dilation α′
1. For the

sake of contradiction, suppose C′
1 is not identical (resp. ε-close) to C. We argue that C′

1
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is also an optimal clustering of I1. But, this is a contradiction, as I1 is a ψ perturbed
instance of I and I is a ψ-PR (resp. (ψ, ε)-PR) instance. Now, note that a placement
that induces the clustering C′

1 of I ′
1 uses ki balls of radius α′

1 · α′ · ri from each class
i . Thus, C′

1 is a clustering for I1 with dilation α′
1 · α′. It is sufficient to argue that this

dilation is optimal for I1. Suppose the optimal dilation is < α′
1 · α′. Then, using ki

balls of radius < α′
1 · α′ · ri from each class i all the points can be covered. Hence,

there is a clustering for I ′
1 with dilation < α′

1, which is a contradiction, and hence the
claim follows. �

Finally, as the number of guesses for α is a polynomial, the procedure terminates
in polynomial time. �

3 Properties of Perturbation Resilience

In this section, we show that perturbation resilience imposes useful structure on the
optimal solution. First, we consider the instances under (ψ, ε)-perturbation resilience
with ψ = 3 and prove an interesting property of the optimal clustering.

Lemma 2 Consider any optimal placement � for a (3, ε)-PR NUkC instance I =
(P, d, t)with optimal dilation 1 where the size of each optimal cluster is> εn+1. Let
C1 and C2 be two clusters induced by two balls of � with radii ri and r j , respectively
with ri ≥ r j . Then, for any p ∈ C1 and q ∈ C2, d(p, q) > ri .

Proof Let O be an optimal clustering of I that is induced by � and contains C1,C2
as clusters. For the sake of contradiction, suppose there are two points p ∈ C1 and
q ∈ C2 such that d(p, q) ≤ ri . Then, we show that there is a 3-perturbation d ′ of d
such that an optimal clustering of I ′ = (P, d ′, t) is not ε-close to O. But, this gives
a contradiction to the assumption that I is a (3, ε)-PR instance, and hence the lemma
follows.

To construct the 3-perturbation d ′ of d, we at first construct another metric d1.
Later we will scale d1 to construct d ′. Let B1 = B(c1, ri ) and B2 = B(c2, r j ) be
the balls in � that induce C1 and C2, respectively. Then, for any s ∈ C2, d(p, s) ≤
d(p, q) + d(q, s) ≤ ri + 2r j ≤ 3ri . Also, for any w ∈ C1, d(p, w) ≤ 2ri . First, we
construct a complete graph G with vertex set equal to P , and for any edge (u, v), its
length is defined by the function l as follows.

l(u, v) =
{
3ri if u = p, v ∈ (C1 ∪ C2)\{c1} and d(u, v) ≥ ri
3 · d(u, v) otherwise

The distance d1 is the shortest path metric onG. Note that, as mentioned before, for
any v ∈ (C1∪C2)\{c1}, d(p, v) ≤ 3ri . Thus, it is not hard to see that, for any u, v ∈ P ,
d(u, v) ≤ d1(u, v) ≤ 3 · d(u, v). Now, let us define the metric d ′. For any two points
u, v, d ′(u, v) = d1(u, v)/3. Hence, for any u, v ∈ P , d(u, v)/3 ≤ d ′(u, v) ≤ d(u, v).
It follows that d ′ is a metric 3-perturbation of d, and thus the optimal clustering of I ′
is ε-close to O.

Now, let I1 = (P, d1, t) and O1 be an optimal clustering of I1. As scaling does
not change optimality of a clustering (for a formal proof see the proof of Lemma 1),
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O1 is also an optimal clustering of the instance I ′ = (P, d ′, t). Thus O1 is ε-close to
O. Next, we prove the following claim.

Claim The optimal dilation of I1 is 3.
Proof As for any u, v ∈ V , d1(u, v) ≤ 3 ·d(u, v), the optimal dilation of I1 is at most
3. We prove that this dilation is at least 3. Suppose the dilation is less than 3.

Let�′ be any placement with dilation less than 3 that induces the optimal clustering
O1 of I1. Then, we show that O1 is also a feasible clustering of I with dilation less
than 1. But, this is a contradiction, and hence the claim follows. Next, given �′, we
show the existence of a placement for I with dilation less than 1 that induces O1.

Consider any cluster C ′ ∈ O1, and suppose it gets covered by an rl -ball B =
B(w, r) in �′. Let x be any point in C ′. Now, consider the distance d1. Let π be
any shortest path between w and x . We claim that π cannot contain the edge (p, v)

for any v ∈ (C1 ∪ C2)\{c1} with d(p, v) ≥ ri . For the sake of contradiction, say π

contains (p, v). Note that d1(p, v) = 3ri . As π contains (p, v), d1(w, p) ≤ r − 3ri .
Now, consider any point u ∈ (C1 ∪ C2)\{c1}. If d(p, u) ≥ ri , d1(p, u) = 3ri .
Otherwise, d(p, u) < ri , and thus d1(p, u) = 3 · d(p, u) < 3ri . Thus, d1(w, u) ≤
d1(w, p)+d1(p, u) ≤ r .Hence, all the points of (C1∪C2)\{c1} are in B. But, asC1,C2
contain more than εn+1 points, it follows that there is an optimal clustering of I1 that
is not ε-close to O. Thus, we get a contradiction. Hence, π does not contain (p, v),
and thus from the definition of the metric d1, it follows that d1(w, x) = 3 · d(w, x).
Thus, a ball centered at w and having radius r/3 can cover the points of C ′ in I. Now,
note that r < 3rl , and thus r/3 < rl . Hence, it is sufficient to use an rl -ball with less
than 1 factor expansion to cover the points of C ′ in I. In our new placement for I, we
use the rl -ball B(w, r/3) corresponding to each such cluster C ′. Clearly, the dilation
of the new placement is less than 1. �

Now, we show a clusteringO2 of I1 that contains exactly k clusters, has dilation 3
and is not ε-close to O. O2 contains all the clusters in O except C1 and C2, and the
clusters (C1 ∪ C2)\{c1}, {c1}. Note that for any s ∈ (C1 ∪ C2)\{c1}, d(p, s) ≤ 3ri .
Thus, (C1 ∪C2)\{c1} can be covered by a ball of radius 3ri . It follows that the dilation
of O2 is at most 3 and hence it is an optimal clustering. Clearly, the two clusterings
O and O2 differ in > εn points, as |C1| > εn + 1 and |C2| > εn + 1. Now, for
the same reason mentioned before, O2 is also an optimal clustering of the instance
I ′ = (P, d ′, t). Hence, d ′ is the desired 3-perturbation. This completes the proof of
the lemma. �

In the proof of the above lemma, one could have defined d ′ directly without going
via d1. However, for simplicity of exposition, we have followed this approach. Indeed,
this approach shows that if one defines ψ-perturbation by increasing the (instead of
decreasing) distances, the lemma still holds.A proof can directly use the 3-perturbation
d1 in that case.

Note that, as a 3-PR instance is also a (3, 0)-PR instance, the above lemma trivially
follows for 3-PR instances. In the following, we will show that the above mentioned
property of the optimal clustering follows even for any 2-PR instance.

Lemma 3 Consider any optimal placement� for a 2-PRNUkC instanceI = (P, d, t)
with optimal dilation 1. Let C1 and C2 be two clusters induced by two balls of � with
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radius ri and r j , respectively, where ri ≥ r j . Then, for any p ∈ C1 and q ∈ C2,
d(p, q) > ri .

Proof Let O be the optimal clustering induced by the placement �. Also, let B1
and B2 be the balls that induce the clusters C1 and C2, respectively. For the sake of
contradiction, suppose there exist two points p ∈ C1, q ∈ C2 such that d(p, q) ≤ ri .
The idea is to show that there is a metric d1 that is a 2-perturbation of d such that
I ′ = (P, d1, t) has different optimal clustering than O. But, this is a contradiction,
and thus the lemma follows.

Let ct be the center of the ball Bt for t ∈ {1, 2}. Then, d(c1, q) ≤ d(c1, p) +
d(p, q) ≤ 2ri . We define the distance function d1 in the following way. First, we
construct the complete graph with vertex set equal to P , and for any edge (u, v), its
length is defined by the function l.

l(u, v) =
{
min{d(u, v), ri } if u = c1 and v = q
d(u, v) otherwise

We note that, for any u, v, d(u, v)/2 ≤ l(u, v) ≤ d(u, v). The distance function d1
is defined by the shortest path distance between any pair of vertices. It is not hard to
verify the following observation.

Observation 2 d1 is a metric 2-perturbation of d.

Hence, the instance I ′ = (P, d1, t) has the same optimal clusteringO. Next, we prove
a claim that the optimal dilation of I ′ is also 1.

Claim The optimal dilation of I ′ is 1.

Proof As for any u, v ∈ V , d1(u, v) ≤ d(u, v), the optimal dilation of I ′ is at most 1.
We prove that this dilation is at least 1. Suppose the dilation is less than 1.

Let �′ be any placement with dilation less than 1 that induces the clustering O of
I ′. Then, we show that there is a placement for I with dilation less than 1. But, this
is a contradiction, and hence the claim follows. Consider any cluster C ∈ O that gets
covered by an rt -ball B = B(w, r) in �′. Let x be any point in C . Now, consider
the distance d1. Let π be any shortest path between w and x . We claim that π cannot
contain the edge (c1, q). For the sake of contradiction, say π contains (c1, q). But, this
implies d1(w, c1) ≤ d1(w, x) ≤ r and d1(w, q) ≤ d1(w, x) ≤ r . Thus, B contains
both c1 and q. Now, by the first property of Observation 1, c1 belongs to C1. Thus, by
the second property of Observation 1, we obtain a contradiction, as q ∈ C2. Hence, π
does not contain (c1, q). It follows that d1(w, x) ≥ d(w, x). Thus, the radius of the
ball needed to cover the points of C in I is at most r . Hence, it is sufficient to use an
rt -ball with at most r/rt < 1 factor expansion to cover the points of C in I. Now, we
construct a placement for I by selecting the same balls to cover the clusters that are
used in �′. Clearly, the dilation of this placement is less than 1. �

Next, we show that there is a different clusteringO′ of I ′ with exactly k clusters that
achieves the optimal dilation. This gives rise to a contradiction, and thus d(p, q) > ri .
Now, there are two cases. In the first case, q is the only point in C2, and thus C2\{q}
is empty. In this case, we pick a non-singleton cluster C from O\{C1} and choose a
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point s ∈ C . Such a cluster exists WLOG. Then, we defineO′ to be the set of clusters
inO exceptC,C1 andC2, and the clustersC1∪{q}, {s} andC\{s}. In the second case,
q is not the only point in C2, and thus C2\{q} is not empty. In this case, O′ is defined
to be the set of clusters in O except C1 and C2, and the clusters C1 ∪ {q},C2\{q}. It
is not hard to see that C1 ∪ {q} can be covered by the ball B(c1, ri ). Also, if C2\{q}
is not empty, then B(c2, r j ) covers the points in C2\{q}. Hence, in all the cases, it is
trivial to verify that the dilation of the new clustering is 1. �

Note that, in the above proof, to show that O′ has dilation 1, we argue that there
is a placement with dilation 1. The balls in the placement might not be disjoint (both
B(c1, ri ) and B(c2, r j ) cover q). But, for the sake of just showing the optimality of
the clustering, it is sufficient to show the existence of such a placement.

4 NUkCwith a Constant Number of Radii Classes

In this section, we show a polynomial time reduction from NUkC to the Constrained
Resource Minimization for Fire Containment on Trees problem.

Definition 4 (Constrained Resource Minimization for Fire Containment on Trees
(CRMFC-T)). Given a rooted tree T = (V , E) with height t + 1, a set of forbid-
den nodes F ⊆ V , and integers k1, . . . , kt , the goal is to decide if there is a collection
of non-root nodes U ⊆ (V \F) such that (a) for every leaf-root path π , U contains at
least one node from π , and (b) |U ∩ Li | ≤ ki for 1 ≤ i ≤ t , where Li is the layer i
nodes of T , i.e., the nodes at distance exactly i from the root.

Given any instance I = (P, d, t) of NUkC under 2-PR or (3, ε)-PR (the size of
each optimal cluster is more than εn + 1), we will show how to construct an instance
I ′ of CRMFC-T such that I has a feasible placement with dilation 1 iff I ′ has a
feasible solution. Also, from a feasible solution for I ′, a feasible solution for I can be
computed in polynomial time. In the constructed instance I ′, the height of the tree is
one more than the number of radii classes in NUkC. We show that CRMFC-T can be
solved in polynomial time if the height of the input tree is a constant. From Lemma 1,
it follows that the perturbation resilient version of NUkC can be solved in polynomial
time if the number of classes is a constant. Thus, we obtain the following theorem.

Theorem 1 NUkC under 2-PR (or (3, ε)-PR, where the size of each optimal cluster is
more than εn + 1) can be solved in polynomial time if the number of radii classes is
a constant.

4.1 Tree Construction

Let G be the complete graph that defines the distances between the input points. Note
that we are also given the input radii r1 > r2 > · · · > rt . We construct the tree T in t
rounds that contains t levels other than the root level. We denote the nodes at level i by
Li for i ∈ {0, . . . , t}. L0 contains a singleton node—the root of the tree. For i ≥ 1, in
i th round, we construct the nodes Li and connect them with the nodes in Li−1. Each
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node v in T corresponds to a connected subgraph Gv of G. The root corresponds to
G itself. Also, each node is marked with either yes or no denoting if the node can be
selected or it is in the forbidden set.

For each index i ∈ {1, . . . , t}, in i th round, we consider all the nodes v ∈ Li−1
and the subgraph Gv corresponding to v. We remove all the edges with weight more
than ri from Gv . Let G1

v, . . . ,G
l
v be the connected components formed from Gv due

to the removal of these edges. We add l children of v to Li corresponding to these
connected l subgraphs. For each such child u, if there is a node w in Gu , such that for
all node x in Gu , d(w, x) ≤ ri , we label u with yes. Otherwise, we label u with no
(forbidden). Lastly, for each level i ≥ 1, the number of nodes that can be chosen from
Li in CRMFC-T is set to ki . The following lemma establishes the connection between
the two instances I and I ′.

Lemma 4 I has a feasible placement with dilation 1 iff I ′ has a feasible solution to
CRMFC-T.

Proof First, suppose there is a feasible solution to I ′. For each chosen node v, v must
be a yes node. Let i be the integer such that v ∈ Li . Then, the points in Gv can
be covered by an ri ball centered at some point in Gv . We choose this ball in our
placement. Note that we select at most ki balls of radius ri for all i . We prove that
each point is covered in the constructed placement. Consider any point p. The way
we construct the tree, each point can lie in the connected subgraph Gv of exactly one
node v of L j for all j . Let π be the root-leaf path in T , such that for any v ∈ π , p is
in Gv . Now, there must be a node along π that is chosen in the solution of CRMFC-T.
Let u be such a node. As we place a ball of radius ri that covers all the points of Gu ,
p gets covered. Thus, I has a feasible placement with dilation 1.

Now, suppose I has a feasible placement with dilation 1. Let O be the clustering
induced by the placement. Now, consider any clusterC ∈ O, which is covered by a ball
of radius r j . Thus, c-radius(C, d) ≤ r j . The way the tree T is constructed it follows
that all the points in C remain in the same connected subgraph Gv corresponding to
a unique vertex v ∈ Li for each i ≤ j . Let Gu be the subgraph corresponding to
level j − 1. As I is a 2-PR (resp. (3, ε)-PR) instance, from Lemma 3 (resp. Lemma
2), we know that, for any p ∈ C and q ∈ P\C , d(p, q) > r j . Thus, when the
edges with weight more than r j are removed from Gu , p and q cannot remain in the
same component. But, as c-radius(C, d) ≤ r j all the points of C remain in the same
component. Also, by the first property of Observation 1, the center of the r j -ball that
covers C must lie in C . It follows that there is a yes node C(v) ∈ L j such that GC(v)

contains only the points of C as vertices. For each cluster C ∈ O, we select the yes
node C(v) in the solution to CRMFC-T. It is not hard to see that we choose at most
k j nodes from L j . Now, consider any root-leaf path π in T corresponding to a leaf l.
Let p be a point in Gl . Also, let p be a point in the cluster C ∈ O. Then, there must
be a yes node C(v) in π such that GC(v) contains only the points of C . As we choose
v in our solution, we have at least one node from the path π . Hence, the constructed
solution is feasible. �
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4.2 The Algorithm for CRMFC-T

In this section, we design a dynamic programming based algorithm that decides the
feasibility of any instance of CRMFC-T. The algorithm runs in polynomial time when
the height of the tree is a constant. Let T be the input tree having height t , i.e., T has
t +1 levels L0, . . . , Lt . L0 contains only the root of T . Let ni = |Li |. We also assume
that the nodes of Li are ordered for all i ≥ 1, i.e., Li = {vi1, . . . , vini }. For j ≤ l, let
F(i, j, l) be the union of the induced subtrees of T rooted at the vertices vi j , . . . , vil .
We construct the tree T (i, j, l) from F(i, j, l) by connecting the roots of the subtrees
to a common root.

Let feasible(T (i, j, l), li , li+1, . . . , lt ) be the function that decides if there is a
feasible solution to CRMFC-T for the tree T (i, j, l) by selecting at most lm nodes
from level m, where i ≤ m ≤ t . Note that computing the function feasible(T =
T (1, 1, n1), k1, . . . , kt ) solves the CRMFC-T problem. We consider the following
recursive definition of feasible(). In the base case, if i = t − 1, the function can be
computed in polynomial time. Otherwise, if li is 0, let j ′ be the minimum index such
that vi+1, j ′ is a child of vi j and l ′ be themaximum index such that vi+1,l ′ is a child of vil .
In this case, feasible(T (i, j, l), li , li+1, . . . , lt )=feasible(T (i +1, j ′, l ′), li+1, . . . , lt ).
Otherwise, there must be a minimum index j ≤ j1 ≤ l such that a yes node vi j1 is
selected to be in the solution. For such a fixed j < j1 < l, let j ′ be the minimum
index such that vi+1, j ′ is a child of vi j and l ′ be the maximum index such that vi+1,l ′
is a child of vi, j1−1. In this case, if there are values l1i+1, . . . , l

1
t , l

2
i , l

2
i+1, . . . , l

2
t such

that l2i = li − 1, lm = l1m + l2m for all i + 1 ≤ m ≤ t , and both feasible(T (i +
1, j ′, l ′), l1i+1, . . . , l

1
t ) and feasible(T (i, j1 + 1, l), l2i , l

2
i+1, . . . , l

2
t ) return yes, then

feasible(T (i, j, l), li , li+1, . . . , lt ) also returns yes. Otherwise if for all j1 there are
no such values, feasible(T (i, j, l), li , li+1, . . . , lt ) returns no. The corner cases when
j1 = j or j1 = l can be handled similarly.
It is not hard to verify that feasible(T (i, j, l), li , li+1, . . . , lt ) correctly decides

whether there is a feasible solution or not for T (i, j, l). To compute the feasible()
function for all possible values one can use a simple dynamic programming based tech-
nique. In particular, one can store the values of the function for all possible parameters
in a table. The table is filled up in a bottom-upmanner, where the values corresponding
to a level j subtree is computed before computations of the values corresponding to a
level i subtree for i < j . It is not hard to see that the procedure would take polynomial
time and space for a constant t .

5 Hardness of Approximation

In this section, we will prove the following theorem.

Theorem 2 For any constant c and any γ ≤ cn
c
, NUkC under γ -PR is hard to approx-

imate in polynomial time within a factor of γ , unless NP = RP.

To prove this theorem, we use a chain of reductions that involves the following
problems.

1-in-3SAT [28]
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INSTANCE: An ordered pair (B,C) consisting of a set B of Boolean variables and
a set C of clauses over B having three literals each in conjunctive normal form.

QUESTION: Is there a truth assignment for B such that every clause in C contains
exactly one true literal?

RESOURCEMINIMIZATION FOR FIRECONTAINMENT oNTREES (RMFC-
T) [18,23]

INSTANCE: A rooted tree T and an integer m.
QUESTION: Is there a set N of non-root nodes such that every root-leaf path

contains a node from N and for any integer j ≥ 1, |N ∩ L j | ≤ m, where L j is the set
of nodes at distance exactly j from the root?

The chain of reductions that we use consists of the following reductions: (1) 3SAT
to 1-in-3SAT, (2) 1-in-3SAT to RMFC-T, and (3) RMFC-T to NUkC. Note that NUkC
under PR has a unique optimal solution. As we would like to show hardness for the PR
version of NUkC, we will consider “Unambiguous” version of all these problems. For
“Unambiguous” version of 3SAT and 1-in-3SAT, if an instance has a feasible solution,
the solution is unique. For “Unambiguous” version of RMFC-T, if an instance has a
feasible solution, the solution has a specific structure that we will define shortly. For
the reduction from 3SAT to 1-in-3SAT, we ensure that the reduction preserves the
number of solutions. Such a reduction is called a parsimonious reduction. To refer to
the Unambiguous version of a problem we add a prefix ‘U-’ to the problem name.
Next, we discuss the details of the reductions.

In a celebrated work, Valiant and Vazirani [29] showed that U-3SAT is hard, unless
NP = RP. Schaefer [28] showed a reduction from 3SAT to 1-in-3SAT to prove the
NP-hardness of the latter problem. As noted in [11] the reduction is parsimonious. We
use the same reduction (now from U-3SAT to U-1-in-3SAT) to prove the hardness of
U-1-in-3SAT, unless NP = RP.

Next, we discuss the reduction from 1-in-3SAT to RMFC-T. First, we define the
Unambiguous version of RMFC-T. For a vertex v of a rooted tree T , let leaves(Tv)

be the set of leaves at the subtree rooted at v. For any two feasible solutions S1 and
S2 of RMFC-T, S1 and S2 are called equivalent, if the two sets ∪v∈S1 { leaves(Tv)}
and ∪v∈S2 { leaves(Tv)} are identical. U-RMFC-T is same as RMFC-T except if the
input instance has more than one feasible solutions, then all the feasible solutions are
pairwise equivalent. The reduction from U-1-in-3SAT to U-RMFC-T appears towards
the end of this section. The reduction is a non-trivial adaptation of the reduction due
to Finbow et al. [18] from a version of 3SAT (RESTRICTED NAE 3-SAT) to the
RMFC-T problem. We summarize our finding in the following lemma.

Lemma 5 Given a tree T , it is not possible to distinguish between the following two
cases in polynomial time, unless NP = RP.

– YES: There is a solution to the U-RMFC-T instance with m = 1.
– NO: There is no solution to the U-RMFC-T instance with m = 1.

To complete the chain of reductions, nowwe discuss the last reduction. In particular,
we show a reduction from RMFC-T to NUkC that proves the following theorem.

Theorem 3 For any constant c and any γ ≤ cn
c
, NUkC is NP-hard to approximate

within a factor of γ in tree metrics.
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Note that this theorem has already been proved in [13]. However, it is not straight-
forward to show that the instances of NUkC they construct are perturbation resilient.
Using a similar construction, we will argue that the instances of NUkC to which
the instances of RMFC-T map are perturbation resilient. However, to ensure that the
constructed instance of NUkC has a unique optimal solution, we will consider the
Unambiguous version of RMFC-T.

5.1 Proof of Theorem 3

To prove the theoremwe show a reduction fromU-RMFC-T. Asmentioned before, the
reduction is similar to the reduction used by Chakrabarty et al. [13]. The construction
is as follows. Let h be the height of the tree. We set P to be the leaves of the given
tree T , i.e., P = Lh . For any edge (u, v) of T such that u ∈ Lh and v ∈ Lh−1, assign
a weight (γ + 1)/2 to (u, v). For any edge (u, v) of T such that u ∈ Li and v ∈ Li−1
for i ≤ h − 1, assign a weight ((γ + 1)h−i+1 − (γ + 1)h−i )/2 to (u, v). Then the
distance function d is the shortest-path metric on P induced by the weights of T . We
set t = h, rt = 0 and for any 1 ≤ j < t , r j = (γ + 1)t− j . Also k1 = . . . = kt = 1.
Now we have the following observation.

Observation 3 For any two leaves u, u′ with a common ancestor v ∈ L j , d(u, u′) ≤
r j .

Proof

d(u, u′) ≤ d(u, v) + d(v, u′)
= ((γ + 1)/2 + ((γ + 1)2 − (γ + 1))/2 + . . . +

((γ + 1)h− j − (γ + 1)h− j−1)/2) + ((γ + 1)/2+
((γ + 1)2 − (γ + 1))/2 + . . . + ((γ + 1)h− j − (γ + 1)h− j−1)/2)

= r j .

�
We note that the weight of any edge is bounded by (γ + 1)h−1 = cO(nch) and

thus can be represented using O(nch) number of bits. It follows that the construction
can be done in polynomial-time. We denote the constructed instance of NUkC by I .
For simplicity, we use the terms point and leaf interchangeably. The following lemma
completes the proof of Theorem 3 which follows from the construction and the fact
that the feasible solutions for T are pairwise equivalent.

Lemma 6 If T is the “YES” case of Lemma 5, then the optimum dilation of I is 1.
If T is the “NO” case of Lemma 5, then the optimum dilation of I is more than γ .
Moreover, I has a unique optimal clustering.

Proof Let T be a “YES” instance and N be a solution for T . We construct a solution
for I from N as follows. For any v ∈ N , let j be the integer such that v ∈ L j . We
select a leaf u from the subtree rooted at v and place a ball of radius r j . We note that at
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most 1 ball of radius ri is selected for all i , as |N ∩ Li | ≤ 1. Now consider any point
w ∈ P . Then there must be a node v in N along the path between w and the root. Let
v ∈ L j . Now the way we place the balls there must be a leaf u in the subtree rooted at
v such that a ball of radius r j is opened at u. As v is a common ancestor of u and w,
from Observation 3, it follows that d(u, w) ≤ r j . Hence the ball B(u, r j ) covers w.

Now let T be a “NO” instance and the optimum dilation of I be at most γ . Consider
such a solution S corresponding to the instance I . We construct a solution N for U-
RMFC-T on T using S as follows. For any 1 ≤ j ≤ t , let u be the point where the ball
(of radius at most γ r j ) corresponding to r j is placed. Let v be the ancestor of u that is
in L j . We add v to N . Note that, as S contains only one ball corresponding to the value
ri , |N ∩ Li | ≤ 1 for all i . Now consider any leaf w. We show that N contains a node
along the w-root path. Let B be a ball in S that covers w. Also let B be corresponding
to the value r j and is centered at the point u. Suppose v is the ancestor of u that is in
L j . As the radius of the ball at u is at most γ r j < r j−1, a point that is not contained
in the subtree rooted at v cannot be covered by B. Hence w must be contained in the
subtree rooted at v and thus w-root path contains v ∈ N . But this implies that N is a
solution for T corresponding to the “YES” case and thus T must be a “YES” instance.
But this is a contradiction and thus the optimum dilation of I must be more than γ .

As the feasible solutions for T are pairwise equivalent, it follows due to argument
above that these feasible solutions getmapped to a unique optimal clustering of dilation
1. Similarly, the unique optimal clustering of dilation 1 gets mapped to a feasible
solution of T . It follows that I has a unique optimal clustering. �

5.2 Hardness of Perturbation Resilient Version of NUkC

To show the hardness of the γ -perturbation-resilient version of NUkC, we prove that
the constructed instances of U-NUkC in the reduction from U-RMFC-T to U-NUkC
in tree metrics are γ -PR. First, we remind the reader of the tree metric d∗ we used
there. We are given a parameter γ and a tree Tγ with height h whose leaves are at the
same distance from the root. The points in the metric space correspond to all the leaves
of Tγ . Let n be the number of leaves. Also, let Li be the nodes of Tγ at level i for
1 ≤ i ≤ h. For an edge (u, v) of T such that u ∈ Lh and v ∈ Lh−1, we assign a weight
l(u, v) = (γ +1)/2 to (u, v). For each u ∈ Li , v ∈ Li−1 for i ≤ h−1 such that (u, v)

is an edge in Tγ , we assign a weight l(u, v) = ((γ + 1)h−i+1 − (γ + 1)h−i )/2. For
any two leaves w,w′, d∗(w,w′) is the length of the shortest path between w and w′,
i.e., if the least common ancestor of w,w′ is in L j , then d∗(w,w′) = (γ + 1)h− j . We
set t = h, rt = 0 and for any 1 ≤ j < t , r j = (γ + 1)t− j . Also, k1 = . . . = kt = 1.
Let L(γ ) be the set of leaves of Tγ . As the distance between any two points and the
r j ’s are of the form (γ + 1)i for some i , we have the following observation.

Observation 4 The optimal dilation of the instance I = {L(γ ), d∗, t} is (γ + 1)i for
some integer i ≥ 0.

As we have shown before, for any constant c and any γ ≤ cn
c
, U-NUkC is hard to

approximate within a factor of γ for the metric space (Tγ , d∗), unless NP = RP. Next,
we prove the following lemma.
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Lemma 7 The instance I = {L(γ ), d∗, t} is γ -PR.

Proof Let O be the optimal clustering of I and α be its dilation. Consider any γ -
perturbation d ′ of d∗. We prove that the optimal clustering O′ of the instance I ′ =
{L(γ ), d ′, t} is same as O. Suppose for the sake of contradiction that O′ is not same
asO. As d ′ is a γ -perturbation (the distances are non-increasing), the dilation ofO′ is
at most α. We show that O′ is also a feasible clustering for I with dilation at most α.

Consider any non-singleton cluster C ∈ O′ with center c1 that is covered by an
r j -ball for j < t . Then, for all pairs of points p, q ∈ C , d ′(p, q) ≤ αr j . This is true, as
all the points are leaves of the tree. From Observation 4, it follows that αr j = (γ +1)i

for some i . As d ′ is a γ -perturbation of d∗, d∗(p, q) ≤ γ · d ′(p, q) < (γ + 1)i+1.
Now, the way Tγ is constructed, there is no distance values strictly between (γ + 1)i

and (γ + 1)i+1. Hence, d∗(p, q) ≤ (γ + 1)i = αr j , and the ball B(c1, αr j ) covers
the points of the cluster C w.r.t. d∗. It follows that O′ is also a feasible clustering for
I with dilation at most α. But, as per our assumptionO andO′ are different, and thus
the optimal clustering of I is not unique. This is a contradiction, and henceO andO′
must be same. �

5.3 Hardness in the EuclideanMetric

For Euclidean metric, we prove the following theorem.

Theorem 4 For any constant κ and any β ≤ κnκ
, NUkC under β-PR is hard to

approximate within a factor of β in the Euclidean metric of dimension d for any
d ≥ 1, unless NP = RP.

This result is in turn based on the following theorem due to Gupta [21].

Theorem 5 [21] Any weighted tree T with L leaves can be embedded in polynomial
-time into d-dimensional Euclidean space with O(dL1/(d−1) min{log L, d}1/2) dis-
tortion.

The idea is to show that if there is a polynomial-time β-approximation for NUkC
under β-PR in the Euclidean metric for any constant κ and any β ≤ κnκ

, then there
is also a polynomial-time γ -approximation for NUkC under γ -PR in tree metrics for
any γ ≤ cn

c
, where c is a constant. But, by Theorem 2 this is a contradiction, and

hence the proof of the theorem follows. To obtain the γ -approximation in tree metrics
we embed the tree metric into Euclidean metric of dimension d using the algorithm
of Theorem 5. Then, we use the algorithm for Euclidean metric to obtain a solution
for the embedded instance. Lastly, we map this solution back to the tree metric with
sufficient expansion of the balls. For a suitable choice of β, one can show that the
constructed solution is a γ -approximation.

Let X and Y be two finite metric spaces with metrics d and d ′, respectively. Let
f : X → Y be a map. Then, the contraction of f is defined as,

Dc( f ) = max
x,y∈X

d(x, y)

d ′( f (x), f (y))
.
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The expansion of f is similarly defined as,

De( f ) = max
x,y∈X

d ′( f (x), f (y))

d(x, y)
.

The distortion of f , D( f ) = Dc( f ) · De( f ). We need Theorem 5 due to Gupta [21]
for proving the hardness result. Next, we prove Theorem 4.

Proof Suppose there is a polynomial-time β-approximation for NUkC under β-PR in
the Euclidean metric for any constant κ and any β ≤ κnκ

. Then, we show that there
is a polynomial-time γ -approximation for NUkC under γ -PR in tree metrics for any
γ ≤ cn

c
, where c is a constant. But, by Theorem 2 this is a contradiction, and hence

the proof of the theorem follows.
Now, consider a constant c and any γ ≤ cn

c
. Also, consider any instance of NUkC

under γ -PR in the tree metric induced by the weighted tree T . We show how to get
a γ -approximate solution for T using the approximation algorithm for the Euclidean
metric. Let 
 = O(dn1/(d−1) log n). First, we embed the tree T into d-dimensional
Euclidean space R

d using the algorithm of Theorem 5. Let f : T → R
d be the

embedding. Also, let d and d f denote the tree and the Euclidean metric, respectively.
We fix β such that β ≤ γ /
, and compute a β-approximate solution S of NUkC under
β-PR for the Euclidean instance. Thereafter, we construct a solution S′ for the problem
on T from the solution S in the following way. For any node x of T , if S contains a
ball centered at f (x) with radius r , then we add the ball at x of radius Dc( f ) · r to S′,
where Dc( f ) is the contraction of f . First, we show that the solution S′ constructed
in this way covers all the nodes of T . Consider any node x of T . Then, there is a ball
in S centered at some point f (y) that covers f (x). Let r be the radius of this ball. It
follows that S′ contains the ball B centered at y having radius Dc( f ) · r . Now,

d(x, y) ≤ Dc( f ) · d f ( f (x), f (y)) ≤ Dc( f ) · r .

Hence, the ball B contains x , and thus S′ is a feasible solution. Now, we show that
the dilation α(S′) of the balls in S′ is at most γ times the optimum dilation. To this
end, let OPT and OPT f be the optimum dilation for the tree and the Euclidean
instance, respectively. Then, the dilation α(S′) is at most β · OPT f · Dc( f ). Now, as
the distances between the points can get expanded by a factor of at most De( f ) due to
the embedding, OPT f ≤ De( f ) · OPT . Here De( f ) is the expansion of f . Hence,

α(S′) ≤ β · De( f ) · OPT · Dc( f ) = β · D( f ) · OPT ≤ β · 
 · OPT ≤ γ · OPT .

This completes the proof of the theorem. �

5.4 Reduction fromU-1-in-3SAT to U-RMFC-T

Finbow et al. [18] showed a reduction from Restricted NAE 3-SAT to RMFC-T.
As per the definition of Restricted NAE 3-SAT, if the input instance has a feasible
assignment, then it must at least have two. Thus, it cannot have a unique feasible
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(i) (ii) (iii)

Fig. 3 (i) A ladder tree. (ii) A bell tree. (iii) A snake tree. Dashed segments denote paths

solution. This is the reason behind our selection of the problem 1-in-3SAT, which can
have a unique feasible solution. However, the reduction is motivated by the one in
[18]. For consistency, we borrow some of their notations.

Given an instance I of U-1-in-3SAT, we construct a rooted tree T with root r in
multiple steps. Also, we choose the parameterm = 1. Before discussing the reduction,
we have a few definitions to set up the stage. Throughout this discussion, we will use
the operation root a copy of a rooted tree (T , r) at a vertex x of a graph G. This means
we construct a new graph from the disjoint union of G and T by identifying x and r .
A vertex v of a tree is said to be defended by a vertex u if the root to v path contains
u. For any path, we assume that its root is one of the degree one vertices. Also, the
length of a path is defined as the number of edges contained in it.

A ladder treeL T (n) is a path having 2n+1 vertices such that the middle vertex of
the path is identified as the root of the tree. See Fig. 3(i). Thus, the root ofL T (n) has
two branches each being a path of length n. A bell treeBT (n,m) is formed by rooting
a ladder treeL T (n−m) at an endpoint of a path having m edges. The other endpoint
of the path becomes the root of the bell tree. See Fig. 3(ii). Thus, in the figure, the
distance (in terms of edges) between a and b is m and the distance between a and a
leaf is n. A snake tree S T (n,m) is formed by rooting an m − 1 length path at the
root of a bell tree BT (n,m + 1). The root of the bell tree (or the path) becomes the
root of the snake tree. Note that a snake tree has exactly one degree 3 vertex. See Fig.
3(iii). Thus, in the figure, the distance between a and b ism, and the length of the path
between a and a leaf such that the path contains b is n. A rooted tree T is called full if
all leaves occur at the same level. A rooted tree T is called complete if every internal
vertex has exactly two children. One simple observation is that a complete and full
binary tree of height h ≥ 0 has 2h+1 − 1 vertices, and among those 2h are leaves.

Now, we describe the construction. We are given the U-1-in-3SAT instance
I=(B,C) with the set of variables B = {b1, . . . , bb} and the set of clauses C =
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Fig. 4 Figure showing the constructed tree after the first phase

{C1, . . . ,Cn}. Let p = �log n�+2. Thus, 2p ≥ 4n. We are going to construct a tree T
which is initialized to the root vertex r . For each 1 ≤ i ≤ b, root two paths of length
i at the root r of T . Call the degree one vertices of these two paths bi and bi . Root
a complete and full binary tree of height p at bi and bi for each i . From each leaf of
these trees root a path of length b− i . Call the leaves of these paths tbi ,1, . . . , tbi ,2p and
tbi ,1, . . . , tbi ,2p . Note that all the leaf nodes are now at a distance b+ p from r . Root two

paths of length b+ 1 at r , and call the degree one vertices of these paths b0 and b0. So
far the construction is exactly the same as the one in [18]. In the following, we modify
their construction to adapt it for our setting. From b0 and b0 root a complete and full
binary tree of height p and p + 1, respectively, and call their leaves tb0,1, . . . , tb0,2p
and tb0,1, . . . , tb0,2p+1 . This completes the first phase of the construction (see Fig. 4).

In the second phase, we add clause gadgets by rooting special tree structures at the
leaves of T constructed so far. For each 1 ≤ j ≤ n, and for each literal l of C j , root
the snake treeS T (4n+3, 4 j −2) at tl, j . For 1 ≤ τ ≤ 3, let q be the τ th literal ofC j .

RootS T (4n+ 3, 4 j − 2+ τ) at tq, j . Also, root the bell treeBT (4n+ 3, 4 j + 1) at r
for each 1 ≤ j ≤ n. For 1 ≤ i ≤ 2p, add two children xi and yi of tb0,i . In each such
added child, root the ladder treeL T (4n + 1). For 1 ≤ i ≤ 2p+1, add two children xi
and yi of tb0,i . In each such added child, root the ladder L T (4n). At each remaining
leaf of T (as mentioned before) where no tree structure has been rooted so far, root
L T (4n + 3). This completes the construction.

Now, let us give an intuitive description of the clause gadgets. Note that our main
goal is to defend all the leaves. Consider the clause C j = (b1 ∨ b2 ∨ b3). In a feasible
solution, exactly one literal of C j must be true, say b1. Now suppose in the solution
of U-RMFC-T we select the vertices corresponding to true literals, i.e., b1, b2 and
b3. Note that we have added one snake tree corresponding to each complemented
literal of C j . Thus, all the vertices in the snake trees corresponding to b2 and b3 are
already defended. In this case, we can defend the degree three vertex (and all of its
descendants) of the snake tree corresponding to b1 by choosing the degree three vertex
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Fig. 5 Figure showing parts of the three snake trees and the bell tree corresponding to the literals of C j .
The circled vertices are selected in the solution

itself. If more than one literal are true, then we need to defend vertices of at least two
snake trees instead for which we would have to pick more than one vertices from a
level. Now, we have also added three other snake trees one for each literal of C j . As
the snake tree corresponding to b1 is already defended by b1, we just need to defend
the leaves of the remaining two. We can defend them by selecting the parent of the
degree three vertex from the corresponding snake tree. In this way, we can also defend
the last added bell tree by selecting its degree three vertex (see Fig. 5). The alignments
of these degree three vertices and their parents help us pick them in different levels.
Note that if none of the literals are true, then we would need to defend the leaves of
the three snake trees corresponding to the literals and in that case it is not possible to
defend the leaves of the bell tree corresponding to C j .

The argument behind the correctness of the reduction is similar to the one in [18].
The forward direction is simple. First, defend the vertices corresponding to true literals,
i.e., if bi (resp. bi ) is true, defend bi (resp. bi ) at time i for 1 ≤ i ≤ b. At time b + 1,
defend b0. From time b + 2 to b + p + 1, defend the unprotected descendant of b0
which is not on the path from r to x1. At time b + p + 2, defend x1. From time
b + p + 3 to b + p + 4n + 3, defend the tree greedily by picking a vertex at each
level that contains the maximum number of nodes in the subtree rooted at it. The other
direction is nontrivial, but similar counting arguments as in [18] should be used for
the proof. It follows that the U-1-in-3SAT formula is satisfiable if and only if all the
leaves of T can be defended by selecting exactly one vertex from each level.

Finally, we show that all the feasible solutions are pairwise equivalent as claimed.
This actually follows from the construction. Fix the unique feasible assignment to the
U-1-in-3SAT formula. Then, while finding a feasible solution for U-RMFC-T from
the assignment in the above, in all the steps one need to select a unique vertex except
when one needs to choose the parent of the degree three vertices ofS T (4n+3, 4 j+1)
and BT (4n + 3, 4 j + 1) both of which lie at the same level. However, irrespective
of the selection, the set of leaves remains same. Thus, even though the solutions
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are different, the corresponding sets of leaves are same, and hence the solutions are
pairwise equivalent.
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