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ROBUST LINEAR DOMAIN DECOMPOSITION SCHEMES FOR
REDUCED NONLINEAR FRACTURE FLOW MODELS\ast 

ELYES AHMED\dagger \S , ALESSIO FUMAGALLI\ddagger , ANA BUDI\v SA\dagger , EIRIK KEILEGAVLEN\dagger ,

JAN M. NORDBOTTEN\dagger , AND FLORIN A. RADU\dagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . In this work, we consider compressible single-phase flow problems in a porous medium
containing a fracture. In the fracture, a nonlinear pressure-velocity relation is prescribed. Using a
non-overlapping domain decomposition procedure, we reformulate the global problem into a nonlinear
interface problem. We then introduce two new algorithms that are able to efficiently handle the
nonlinearity and the coupling between the fracture and the matrix, both based on linearization by
the so-called L-scheme. The first algorithm, named MoLDD, uses the L-scheme to resolve for the
nonlinearity, requiring at each iteration to solve the dimensional coupling via a domain decomposition
approach. The second algorithm, called ItLDD, uses a sequential approach in which the dimensional
coupling is part of the linearization iterations. For both algorithms, the computations are reduced
only to the fracture by precomputing, in an offline phase, a multiscale flux basis (the linear Robin-to-
Neumann codimensional map), that represent the flux exchange between the fracture and the matrix.
We present extensive theoretical findings X and in particular, t. The stability and the convergence
of both schemes are obtained, where user-given parameters are optimized to minimize the number of
iterations. Examples on two important fracture models are computed with the library PorePy and
agree with the developed theory.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . porous medium, reduced fracture models, generalized Forchheimer's laws, mor-
tar mixed finite element, multiscale flux basis, nonlinear interface problem, nonoverlapping domain
decomposition, L-scheme

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 76S05, 65N30, 65N12

\bfD \bfO \bfI . 10.1137/19M1268392

1. Introduction. Fractures are ubiquitous in porous media and strongly affect
the flow and transport. Several energy and environmental applications including car-
bon sequestration, geothermal energy, and groundwater contamination involve flow
and transport problems in a porous medium containing fractures. Typically, frac-
tures are thin and long formations that correspond to a fast pathway along which the
medium properties, such as permeability or porosity, differ from the adjacent forma-
tions (the rocks) [6, 19, 36, 41]. Specifically, the permeability of the fracture can be
significantly higher than that of the host rock. As a consequence, while flow in the
host rock can be well represented by the linear Darcy's law, flow in the fractures can
potentially exhibit nonlinear effects. Models for such flow will thus be nonlinear, but
with the nonlinear effects confined to specific parts of the domain, moreover, these
regions are characterized by an extreme aspect ratio.

In this paper, we consider models with fracture flow represented by an unstready
Forchheimer's law [35, 36], as an extension of the model in [2, 36]. Our approach can
straightforwardly be broadened to cover viscosity models for generalized Newtonian
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584 AHMED ET AL.

fluids [23, 24]. We also refer to [1, 4, 37, 38, 49] for extensions to other flow models.
To limit complications relating to mesh construction and computational cost, we
represent the fracture as a lower-dimensional object embedded in the full domain, as
introduced in [6, 14], and we refer to the resulting model as mixed dimensional. We
then apply a domain decomposation (DD) approach, with the fracture forming an
interface between subdomains. The domain decomposition approach is beneficial for
both modeling, discretization, and the formulation of nonlinear and linear solvers

Considerable research efforts have been conducted to mixed-dimensional fracture
models. Several numerical schemes for steady-state models have been proposed, such
as the cell-centered finite volume scheme [31], the extended finite element method
[21], the mimetic finite difference [8], the block-centered finite difference method [40],
and the mixed finite element (MFE) methods [15, 20, 25, 41]. Herein, we discretize
the generalized mixed-dimensional Forchheimer problem with a mortar MFE method
(MMFEM) [10, 29, 50], combined with backward Euler in time. See also [13] for a
review on fracture models and discretization approaches.

While the dimension reduction reduces the number of cells necessary to represent
the fracture, the computational cost in solving the discrete nonlinear problem can
still be significant, in particular, for complex fracture geometries. This calls for the
construction of efficient solvers, and domain decomposition facilitates the exploitation
of both the geometric structure of the problem, and the spatial localization of nonlin-
earities. See, for example, the application of DD to reduced Darcy [6, 33] and Darcy--
Forchheimer [26] fracture models. In this work, we develop DD schemes [2, 6, 43] to
solve the nonlinear problem resulting from our discretization. To exploit the geometric
structure of the problem, we reformulate it as an interface problem by eliminating the
subdomain variables, obtaining a nonlinear system to solve at each time step. That is,
the resulting problem posed only on the fracture is a superposition of a nonlinear local
flow operator within the fracture and a linear nonlocal one (Robin-to-Neumann type)
handling the flux contributions from the subdomains. For this problem, two schemes
are proposed, both based on the so-called L-scheme method, a robust quasi-Newton
method with a parameter L > 0 mimicking the Jacobian [39, 44]. Our two approaches
differ in the way they handle the nonlinearity, and in the degree of coupling between
the fracture interface and the surrounding subdomains.

The first algorithm named the monolithic LDD (MoLDD) scheme employs the L-
scheme as a linearization procedure. At each L-scheme iteration, an inner algorithm
is used to solve the linear interface problem [27]. It can be a direct or an iterative
method (e.g., a Krylov method). The action of the interface operator requires solving
subdomain problems with Robin boundary conditions on the fracture. This algorithm
is Jacobian-free, solving subdomain problems can be done in parallel, and is later
shown to be unconditionally stable. We also obtain the condition number estimates
of the inner DD system, the contraction estimates, and rates of convergence for the
outer scheme. However, there is still a computational overhead associated with its
nonlocal part [1, 2, 27], that is, the subdomain solves. Increasing the nonlinearity
strength, the number of subdomains and refining the grids all lead to an increase in
the number of iterations and the number of subdomain solves.

More recently, the L-scheme has gained attention as an efficient solver to treat
simultaneously nonlinear and coupling effects in complex problems [16, 45]. Building
on this idea, we propose the second algorithm, referred as the iterative LDD (ItLDD)
scheme. In ItLDD, the L-scheme is now synchronizing linearization and domain de-
composition through a one-loop algorithm [5, 17]. At each iteration it has the cost of
the sequential approach, yet it converges to the fully monolithic approach. This way
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ROBUST DD FOR NONLINEAR FRACTURE FLOW MODELS 585

we reduce the computational cost as no inner DD solver is required and only a modest
number of subdomain solves that can be done in parallel are needed at each iteration.
This algorithm increases local to non-local cooperation and saves computational time
if one process is dominating the whole problem. This approach differs from the one
commonly used in DD methods for nonlinear interface problems [3, 12].

The second contribution of this paper concerns the robust and efficient implemen-
tation of the two LDD schemes. The dominant computational costs in these schemes
comes from the subdomain solves and, to reduce this, we use the multiscale flux basis
framework from [29]. The fact that the nonlinearity in the system appears within
the local operator on the fracture motivates that the linear non-local contribution
from the subdomains can be expressed as a superposition of multiscale basis func-
tions [2, 28, 29], in the spirit of reduced basis [11, 32, 48]. This multiscale flux basis
consists of the flux (velocity trace) response from each fracture pressure degrees of
freedom. They are computed by solving a fixed number of steady Robin subdomain
problems, equal to the number of fracture pressure degrees of freedom per subdomain.
An inexpensive linear combination of the multiscale flux basis functions then replaces
the subdomain solves in any inner/outer iteration of the algorithms. This step of
freezing the contributions from the rock matrices can be cheaply evaluated and easily
implemented in the algorithms. It permits reusing the same basis functions to com-
pare MoLDD with ItLDD, to simulate various linear and nonlinear models for flow in
the fracture and to vary the fracture permeability. In the case of a fixed time step, the
multiscale flux basis is constructed only once in the offline phase. Numerical results
are computed with the library PorePy [34].

In section 2 the model problem is presented. The approximation of problem (2.6)
using the MMFEM in space and a backward Euler scheme in time is given in section 3.
Also, the reduction of this mixed-dimensional scheme into a nonlinear interface one
is introduced. The LDD-schemes are formulated in section 4. In sections 5 and 6, the
analysis of the schemes is presented. Section 7 describes the implementation based on
the multiscale flux basis framework. Finally, we show the performance of our methods
on several numerical examples in section 8 and draw the conclusions in section 9.

2. Model problem. Let \Omega be a bounded domain in \BbbR d, d \in \{ 2, 3\} , with Lip-
schitz continuous boundary \Gamma := \partial \Omega . Furthermore, let T be the final time simulation
and I := (0, T ). Suppose that \gamma \subset \Omega is a (d  - 1)-dimensional non-self-intersecting
surface of class C2 that divides \Omega into two subdomains: \Omega = \Omega 1 \cup \Omega 2 \cup \gamma , where
\gamma := \partial \Omega 1 \cap \partial \Omega 2 and \Gamma i := \partial \Omega i \cap \partial \Omega , i \in \{ 1, 2\} . Assume the flow in I\times \Omega i, i \in \{ 1, 2\} ,
is given by

K - 1
i ui +\nabla pi = 0 in I \times \Omega i,(2.1a)

\partial tpi +\nabla \cdot ui = fi in I \times \Omega i,(2.1b)

pi = 0 in I \times \Gamma i,(2.1c)

pi(\cdot , 0) = p0i in \Omega i,(2.1d)

and in I \times \gamma by the following equations:

\xi (u\gamma ) +K - 1
\gamma u\gamma +\nabla \tau p\gamma = 0 in I \times \gamma ,(2.2a)

\partial tp\gamma +\nabla \tau \cdot u\gamma = f\gamma + (u1 \cdot n1 + u2 \cdot n2) in I \times \gamma ,(2.2b)

p\gamma = 0 in I \times \partial \gamma ,(2.2c)

p\gamma (\cdot , 0) = p0\gamma in \gamma ,(2.2d)
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586 AHMED ET AL.

where the transmission conditions for i \in \{ 1, 2\} are

 - ui \cdot ni + \alpha \gamma pi = \alpha \gamma p\gamma on I \times \gamma .(2.3)

Here, \nabla \tau denotes the (d - 1)-dimensional gradient operator in the plane of \gamma , K\gamma is the
hydraulic conductivity tensor in the fracture, Ki is the hydraulic conductivity tensor
in the subdomain \Omega i, and ni is the outward unit normal vector to \partial \Omega i, i \in \{ 1, 2\} .
The function \xi is a nonlinear function extending the classical Forchheimer flow to
more general laws. The coefficient \alpha \gamma is proportional to the normal component of the
fracture permeability and inversely proportional to the fracture width/aperture. The
functions f\gamma and fi, i \in \{ 1, 2\} , are source terms in the fracture and in the matrix,
respectively. For simplicity, we have imposed a homogeneous Dirichlet condition on
the boundary \partial \Omega . Finally, p0\gamma and p0i , i \in \{ 1, 2\} , are initial conditions.

The system (2.1)--(2.3) is a mixed-dimensional model for flow in fractured porous
media: (2.1a)--(2.1b) are Darcy's law and mass conservation equations in the subdo-
main \Omega i, while (2.2a)--(2.2b) are generalized Forchheimer's law and mass conservation
in the fracture of codimension one. Together these equations form a nonstandard
transmission problem where the fracture system sees the surrounding matrix system
through the source term u1 \cdot n1+u2 \cdot n2 in (2.2b) and the matrix system communicates
to the fracture through Robin interface conditions (2.3). Note that the restriction to
only one fracture is made to simplify the presentation, but the model and the analysis
below can easily be extended to fracture networks [2, 41].

2.1. Assumptions on the data and weak formulation. Let D \subseteq \Omega . For
s \geq 0, | | \cdot | | s,D stands for the usual Sobolev norm on Hs(D). If s = 0, | | \cdot | | D is simply
the L2 norm and (\cdot , \cdot )D stands for the L2 scalar product. We define the weak spaces
in \Omega i for i \in \{ 1, 2\} as

Vi :=
\bigl\{ 
v \in H(div,\Omega i) : v \cdot ni \in L2(\gamma )

\bigr\} 
and Mi := L2(\Omega i),

where we have implicitly considered the trace operator of v \cdot ni. Moreover, we intro-
duce their global versions by V :=

\bigoplus 2
i=1 Vi and M :=

\bigoplus 2
i=1Mi. The mixed spaces

on the fracture \gamma , are V\gamma := H(div\tau , \gamma ) and M\gamma := L2(\gamma ). For simplicity of notation,
we introduce the jump J\cdot K given by Ju \cdot nK := u1 \cdot n1 + u2 \cdot n2. and the functions K
and f in \Omega 1 \cup \Omega 2 such that Ki := K| \Omega i and fi := f | \Omega i , i \in \{ 1, 2\} . We assume the
following.

(A1) \xi : \BbbR \rightarrow \BbbR is C1, strictly increasing, and Lipschitz continuous, i.e., there
exist \xi m > 0 and L\xi such that \xi m \leq \xi \prime (u) \leq L\xi < \infty . Otherwise, we ask

for a bounded flux in (2.1)--(2.3), i.e, u \in [L\infty (\Omega )]
d
when \xi is an increasing

function (\xi \prime \geq 0), and let L\xi := sup| \bfu | \leq C\xi 
\xi \prime (u), where C\xi := sup\bfx \in \Omega | u(x)| .

(A2) K : \BbbR d \rightarrow \BbbR d is assumed to be constant in time and bounded; there exist
c\bfK > 0 and C\bfK such that \zeta TK - 1(x)\zeta \geq c\bfK | \zeta | 2 and | K - 1(x)\zeta | \leq C\bfK | \zeta | for
a.e. x \in \Omega 1 \cup \Omega 2 \forall \zeta \in \BbbR d.

(A3) K\gamma : \BbbR d - 1 \rightarrow \BbbR d - 1 is assumed to be constant in time and bounded; there exist
c\bfK ,\gamma > 0 and C\bfK ,\gamma such that \zeta TK - 1

\gamma (x)\zeta \geq c\bfK ,\gamma | \zeta | 2 and | K - 1
\gamma (x)\zeta | \leq C\bfK ,\gamma | \zeta | 

for a.e. x \in \gamma \forall \zeta \in \BbbR d - 1.
(A4) The Robin parameter \alpha \gamma is a strictly positive constant: \alpha \gamma > 0.
(A5) The initial conditions are such that p0i \in L2(\Omega i), i \in \{ 1, 2\} , and p0\gamma \in L2(\gamma ).

The source terms are such that fi \in L2(0, T ;L2(\Omega i)), i \in \{ 1, 2\} , and f\gamma \in 
L2(0, T ;L2(\gamma )). For simplicity we further assume that f and f\gamma are piecewise
constant in time with respect to the temporal mesh introduced.
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Remark 2.1 (on assumptions). The Lipschitz continuity of \xi is not true when
the function \xi (therefore the flux) is unbounded, as is the case for the generalized
Forchheimer's law. However, for bounded flux u, this can be verified. Otherwise, this
assumption can be recovered by truncating the original function \xi . Obviously, the
solution of the truncated problem will not in general solve the original one. See, for
example, [42].

We introduce the bilinear forms ai : Vi \times Vi \rightarrow \BbbR , bi : Vi \times Mi \rightarrow \BbbR , and
ci :Mi \times Mi \rightarrow \BbbR , i \in \{ 1, 2\} ,

ai(u,v) := (K - 1u,v)\Omega i
+ \alpha  - 1

\gamma (u \cdot ni,v \cdot ni)\gamma ,(2.4)

bi(u, q) := (\nabla \cdot u, q)\Omega i
, ci(p, q) := (p, q)\Omega i

.

On the fracture, we define the bilinear forms a\gamma : V\gamma \times V\gamma \rightarrow \BbbR , b\gamma : V\gamma \times M\gamma \rightarrow \BbbR ,
and c\gamma :M\gamma \times M\gamma \rightarrow \BbbR ,

a\gamma (u,v) := (K - 1
\gamma u,v)\gamma , b\gamma (u, \mu ) := (\nabla \tau \cdot u, \mu )\gamma , c\gamma (\lambda , \mu ) := (\lambda , \mu )\gamma .(2.5)

With the above notations, a weak solution of (2.1)--(2.3) is given in the following.

Definition 2.2 (mixed-dimensional weak solution). Assume that (A1)--(A5)
hold true. We say that (u, p) \in L2(0, T ;V)\times H1(0, T ;M) and (u\gamma , p\gamma ) \in L2(0, T ;V\gamma )\times 
H1(0, T ;M\gamma ) form a weak solution of (2.1)--(2.3) if it satisfies weakly the initial con-
ditions (2.1d) and (2.2d), and for each i \in \{ 1, 2\} ,

ai(u,v) - bi(v, p) + (p\gamma ,v \cdot ni)\gamma = 0 \forall v \in Vi,(2.6a)

ci(\partial tp, q) + bi(u, q) = (f, q)\Omega i
\forall q \in Mi,(2.6b)

(\xi (u\gamma ),v)\gamma + a\gamma (u\gamma ,v) - b\gamma (v, p\gamma ) = 0 \forall v \in V\gamma ,(2.6c)

c\gamma (\partial tp\gamma , \mu ) + b\gamma (u\gamma , \mu ) - (Ju \cdot nK , \mu )\gamma = (f\gamma , \mu )\gamma \forall \mu \in M\gamma .(2.6d)

Remark 2.3. In this paper we assume that a weak solution of Definition 2.2 exists.
For the steady-state model and the classical Forchheimer's law, the existence and
uniqueness of a weak solution were shown in [36]. That of the linear case, i.e., \xi := 0,
was studied in [33]. Throughout the paper, we will also consider the case of continuous
pressure across \gamma by letting \alpha \gamma \rightarrow \infty in (2.3). For this, we will use Definition 2.2 for
the weak formulation changing in (2.4) to be ai(u,v) := (K - 1u,v)\Omega i

and Vi :=
H(div,\Omega i) for i \in \{ 1, 2\} .

3. The domain decomposition formulation. As explained earlier, it is nat-
ural to solve the mixed-dimensional problem (2.6) using domain decomposition tech-
niques, especially as these methods make it possible to take different time grids in the
subdomains and in the fracture.

3.1. Discretization in space and time. We introduce in this section the par-
titions of \Omega and (0, T ), basic notation, and the mortar MFE discretization of the
mixed-dimensional problem (2.6).

Let \scrT h,i be a partition of the subdomain \Omega i into either d-dimensional simplicial
or rectangular elements. Moreover, we assume that these meshes are such that \scrT h =
\cup 2
i=1\scrT h,i forms a conforming finite element mesh on \Omega . We also let \scrT h,\gamma be either

a partition of the fracture \gamma induced by \scrT h or slightly coarser. Denote h as the
maximal mesh size of both \scrT h and \scrT h,\gamma . For an integer N \geq 0, let (\tau n)0\leq n\leq N denote
a sequence of positive real numbers corresponding to the discrete time steps such that
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T =
\sum N

n=1 \tau 
n. Let t0 := 0, and tn :=

\sum n
j=1 \tau 

j , 1 \leq n \leq N , be the discrete times.

Let In := (tn - 1, tn], 1 \leq n \leq N .
For the approximation of scalar unknowns, we introduce Mh :=Mh,1\times Mh,2 and

Mh,\gamma , where Mh,i, i \in \{ 1, 2\} , and Mh,\gamma are the spaces of piecewise constant functions
associated with \scrT h,i, i \in \{ 1, 2\} , and \scrT h,\gamma , respectively. For the vector unknowns, we
introduce Vh := Vh,1 \times Vh,2 and Vh,\gamma , where Vh,i, i \in \{ 1, 2\} and Vh,\gamma , are the
lowest-order Raviart--Thomas--N\'ed\'elec finite elements spaces associated with \scrT h,i, i \in 
\{ 1, 2\} , and \scrT h,\gamma , respectively. Thus, Vh\times Mh \subset V\times M and Vh,\gamma \times Mh,\gamma \subset V\gamma \times M\gamma .
For all of the above spaces,

(3.1) \nabla \cdot Vh =Mh and \nabla \tau \cdot Vh,\gamma =Mh,\gamma ,

and there exists a projection \~\Pi i : H
1/2+\epsilon (\Omega i) \cap Vi \rightarrow Vh,i, i \in \{ 1, 2\} , for any \epsilon > 0,

satisfying among other properties [28] that for any u \in H1/2+\epsilon (\Omega i) \cap Vi

(\nabla \cdot (u - \~\Pi iu), q)\Omega i
= 0 \forall q \in Mh,i,(3.2)

((u - \~\Pi iu) \cdot ni,v \cdot ni)\partial \Omega i = 0 \forall v \in Vh,i.(3.3)

We also note that if u \in H\epsilon (\Omega i) \cap Vi, 0 < \epsilon < 1, \~\Pi iu is well-defined [47] and

| | \~\Pi iu| | \Omega i
\lesssim | | u| | \epsilon ,\Omega i

+ | | \nabla \cdot u| | \Omega i
.(3.4)

We introduce \scrQ h,i, the L
2-projection onto Vh,i \cdot ni and denote \scrQ T

h,i : Vh,i \cdot ni \rightarrow Mh,\gamma 

as the L2-projection from the normal velocity trace on the subdomains onto the mortar
space Mh,\gamma . Thus, for all \lambda \in Mh,\gamma ,

(3.5) | | \lambda | | \gamma \lesssim | | \scrQ h,1\lambda | | \gamma + | | \scrQ h,2\lambda | | \gamma 

can be verified if the mesh on the fracture \scrT h,\gamma matches the one resulting from the
surrounding subdomains, or if \scrT h,\gamma is chosen slightly coarser [9, 15]. Note that (3.1)
can be satisfied by choosing any of the usual MFE pairs. The condition (3.5) can be
satisfied even if the space Mh,\gamma is not much richer than the space of normal traces on
\gamma of elements of Vh [28, 29].

The fully discrete scheme of the mixed-dimensional formulation (2.6) based on
the MMFEM in space and the backward Euler scheme in time is defined through the
following.

Definition 3.1 (the mixed-dimensional scheme). At each time step n \geq 1,
assuming (pn - 1

h,\gamma , p
n - 1
h ) is given, we look for (un

h, p
n
h) \in Vh \times Mh and (un

h,\gamma , p
n
h,\gamma ) \in 

Vh,\gamma \times Mh,\gamma such that, for i \in \{ 1, 2\} ,

ai(u
n
h,v) - bi(v, p

n
h) =  - (pnh,\gamma ,v \cdot ni)\gamma \forall v \in Vh,(3.6a)

ci(p
n
h  - pn - 1

h , q) + \tau nbi(u
n
h, q) = \tau n(fn, \mu )\Omega i

\forall q \in Mh,(3.6b)

(\xi (un
h,\gamma ),v) + a\gamma (u

n
h,\gamma ,v) - b\gamma (v, p

n
h,\gamma ) = 0 \forall v \in Vh,\gamma ,(3.6c)

c\gamma (p
n
h,\gamma  - pn - 1

h,\gamma , \mu ) + \tau nb\gamma (u
n
h,\gamma , \mu ) - \tau n(Jun

h \cdot nK , \mu )\gamma = \tau n(fn\gamma , \mu )\gamma (3.6d)

\forall \mu \in Mh,\gamma .
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3.2. Reduction into an interface problem. Following the algorithm in [2],
we reduce the mixed-dimensional scheme in Definition 3.1 to a nonlinear interface one
on \gamma . For i \in \{ 1, 2\} , we let

pnh,i = p\ast h,i(\lambda 
n
h,\gamma ) + \=pnh,i and un

h,i = u\ast 
h,i(\lambda 

n
h,\gamma ) + \=un

h,i, 1 \leq n \leq N,(3.7)

where for \lambda nh,\gamma \in Mh,\gamma , (u
\ast 
h,i(\lambda 

n
h,\gamma ), p

\ast 
h,i(\lambda 

n
h,\gamma )) \in Vh,i \times Mh,i solves

ai(u
\ast 
h,i(\lambda 

n
h,\gamma ),v) - bi(v, p

\ast 
h,i(\lambda 

n
h,\gamma )) =  - (\lambda nh,\gamma ,v \cdot ni)\gamma \forall v \in Vh,i,(3.8a)

ci(p
\ast 
h,i(\lambda 

n
h,\gamma ), q) + \tau nbi(u

\ast 
h,i(\lambda 

n
h,\gamma ), q) = 0 \forall q \in Mh,i,(3.8b)

and (\=un
h,i, \=p

n
h,i) \in Vh,i \times Mh,i solves

ai(\=u
n
i ,v) - bi(v, \=p

n
h,i) = 0 \forall v \in Vh,i,(3.9a)

ci(\=p
n
h,i  - pn - 1

h,i , q) + \tau nbi(\=u
n
h,i, q) = \tau n(fn, \mu )\Omega i

\forall q \in Mh,i,(3.9b)

(\=p0h,i, \mu )\Omega i
= (p0h,i, \mu )\Omega i

\forall \mu \in Mh,i.(3.9c)

Define the forms s\gamma ,i : Mh,\gamma \times Mh,\gamma \rightarrow \BbbR , i \in \{ 1, 2\} , s\gamma : Mh,\gamma \times Mh,\gamma \rightarrow \BbbR , and
gn\gamma :Mh,\gamma \rightarrow \BbbR as

s\gamma ,i(\lambda 
n
h,\gamma , \mu ) := (\scrS RtN

\gamma ,i (\lambda nh,\gamma ), \mu )\gamma :=  - (u\ast 
h,i(\lambda 

n
h,\gamma ) \cdot ni, \mu )\gamma ,(3.10a)

s\gamma (\lambda 
n
h,\gamma , \mu ) := (\scrS RtN

\gamma (\lambda nh,\gamma ), \mu )\gamma :=

2\sum 
i=1

s\gamma ,i(\lambda 
n
h,\gamma , \mu ),(3.10b)

gn\gamma (\mu ) := (gn\gamma , \mu )\gamma :=

2\sum 
i=1

(\=un
h,i \cdot ni, \mu )\gamma ,(3.10c)

where \scrS RtN
\gamma ,i : Mh,\gamma \rightarrow Mh,\gamma , 1 \leq i \leq 2, and \scrS RtN

\gamma :=
\sum 2

i=1 \scrS RtN
\gamma ,i are Robin-to-

Neumann type operators. Consequently, the operator \scrS RtN
\gamma ,i is linear. It is possible to

verify that the nonlinear mixed-dimensional scheme (3.6) is equivalent to the nonlinear
interface scheme.

Definition 3.2 (the reduced scheme). For n \geq 1 and \lambda n - 1
h,\gamma , find (un

h,\gamma , \lambda 
n
h,\gamma ) \in 

Vh,\gamma \times Mh,\gamma such that

(\xi (un
h,\gamma ),v)\gamma + a\gamma (u

n
h,\gamma ,v) - b\gamma (v, \lambda 

n
h,\gamma ) = 0 \forall v \in Vh,\gamma ,(3.11a)

c\gamma (\lambda 
n
h,\gamma  - \lambda n - 1

h,\gamma , \mu ) + \tau nb\gamma (u
n
h,\gamma , \mu ) + \tau ns\gamma (\lambda 

n
h,\gamma , \mu ) = \tau n(fn\gamma + gn\gamma , \mu )\gamma (3.11b)

\forall \mu \in Mh,\gamma .

4. Robust L-type DD (LDD) schemes. In this section, we propose two it-
erative approaches based on the L-scheme to solve (3.11). The first approach entails
an inner-outer procedure of the form linearize \rightarrow solve the DD \rightarrow update, so that the
L-scheme is used for the outer loop and an inner solver (direct or iterative) for the
inner loop. The second approach is a one-loop procedure in which the L-scheme acts
iteratively and simultaneously on the linearization and DD. For the presentation of
the algorithms, we shall denote the time step simply by \tau , keeping in mind it may
depend on n.
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4.1. An MoLDD scheme. The MoLDD scheme for (3.11) reads as follows:

Algorithm 4.1 (The MoLDD scheme). Given n = 0, (\lambda 0h,\gamma , p
0
h) \in Mh,\gamma \times Mh,

stabilization parameter L\gamma > 0, and tolerance \epsilon > 0,
Do

1. Increase n := n+ 1.
2. Choose an initial approximation un, - 1

h,\gamma \in Vh,\gamma of un
h,\gamma . Set k :=  - 1.

3. Do

(a) Increase k := k + 1.

(b) Compute (un,k
h,\gamma , \lambda 

n,k
h,\gamma ) \in Vh,\gamma \times Mh,\gamma such that, for all (v, \mu ) \in Vh,\gamma \times 

Mh,\gamma ,

(\xi (un,k - 1
h,\gamma ) + L\gamma (u

n,k
h,\gamma  - un,k - 1

h,\gamma ),v)\gamma + a\gamma (u
n,k
h,\gamma ,v) - b\gamma (v, \lambda 

n,k
h,\gamma ) = 0,

(4.1a)

c\gamma (\lambda 
n,k
h,\gamma  - \lambda n - 1

h,\gamma , \mu ) + \tau b\gamma (u
n,k
h,\gamma , \mu ) + \tau s\gamma (\lambda 

n,k
h,\gamma , \mu ) = \tau (fn\gamma + gn\gamma , \mu )\gamma .

(4.1b)

while \| (un,k
h,\gamma , \lambda 

n,k
h,\gamma ) - (un,k - 1

h,\gamma , \lambda n,k - 1
h,\gamma )\| \gamma \geq \epsilon \| (un,k - 1

h,\gamma , \lambda n,k - 1
h,\gamma )\| \gamma .

4. Update the subdomain solutions via (3.7).
while n \leq N .

The advantages of Algorithm 4.1 are multiple: (i) the algorithm is Jacobian-free
and independent of the initialization; (ii) we can reuse the existing d- and (d  - 1)-
dimensional codes for solving the linear Darcy problem; and (iii) the optimal conver-
gence rate is obtained with a stabilization amount determined through L\gamma .

The MoLDD scheme involves the solution of a linear Darcy interface problem (4.1)
at each iteration. We introduce the linear operators AL,\gamma : Vh,\gamma \rightarrow Vh,\gamma and B\gamma :
Vh,\gamma \rightarrow Mh,\gamma , defined as (AL,\gamma u,v)\gamma := a\gamma (u,v) + L\gamma (u,v)\gamma \forall u,v \in Vh,\gamma , and
(B\gamma u, q) := b\gamma (u, q) \forall v \in Vh,\gamma \forall q \in Mh,\gamma . (4.1) becomes

\scrA DD

\left[  un,k
h,\gamma 

\lambda n,kh,\gamma 

\right]  :=

\left[  AL,\gamma BT
\gamma 

B\gamma \scrS RtN
\gamma + I/\tau 

\right]  \left[  un,k
h,\gamma 

\lambda n,kh,\gamma 

\right]  =

\Biggl[ 
L\gamma u

n,k - 1
h,\gamma  - \xi (un,k - 1

h,\gamma )

gn\gamma + fn\gamma + \lambda n - 1
h,\gamma /\tau 

\Biggr] 
:= \scrF \gamma ,

(4.2)

which can be solved using a direct or a Krylov type method, such as GMRES or
MINRES. Regardless of the choice of inner method, we need to evaluate the action
of the Robin-to-Neumann type operator \scrS RtN

\gamma via (3.10), representing physically the
flow contributions from the subdomains by solving Robin subdomain problems (3.8).
We summarize the evaluation of the interface operator by the following steps.

Algorithm 4.2 (Evaluating the action of \scrS RtN
\gamma ).

1. Enter interface data \lambda h,\gamma .
2. For i = 1 : 2

(a) Project mortar pressure onto subdomain boundary, i.e., \varphi h,\gamma ,i = \scrQ h,i(\lambda h,\gamma ).
(b) Solve the subdomain problem (3.8) with Robin data \varphi h,\gamma ,i.
(c) Project the resulting flux onto the space Mh,\gamma , i.e.,

\scrS RtN
\gamma ,i (\lambda h,\gamma ) =  - \scrQ T

h,iu
\ast 
h,i(\varphi h,\gamma ,i) \cdot ni.

EndFor
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3. Compute the flow contribution from the subdomains to \gamma given by the flux jump
across the fracture,

\scrS RtN
\gamma (\lambda h,\gamma ) =

\sum 
i\in \{ 1,2\} 

\scrS RtN
\gamma ,i (\lambda h,\gamma ).

The evaluation of \scrS RtN
\gamma dominates the total computational costs in Algorithm 4.1

(step 2(b) of Algorithm 4.2). The number of subdomain solves required by this

method at each time step n \geq 1 is approximately equal to
\sum Nn

Lin

k=1 N
k
DD, where NLin

is the number of iterations of the L-scheme, and Nk
DD denotes the number of inner

DD iterations. To set up the right-hand-side term fn\gamma , we need to solve once in the
subdomains at each time step n \geq 1.

4.2. An ItLDD scheme. An alternative to the MoLDD scheme is to let the
L-scheme act iteratively not only on the nonlinearity, but also on the fracture-matrix
coupling. An additional stabilization term is then required for the interdimensional
coupling.

Algorithm 4.3 (The ItLDD scheme). Given n = 0, (\lambda 0h,\gamma , p
0
h) \in Mh,\gamma \times Mh,

the stabilization parameters (L\gamma ,p, L\gamma ,u) > 0, and the tolerance \epsilon > 0.
Do

1. Increase n := n+ 1.
2. Choose an initial approximation (un, - 1

h,\gamma , \lambda n, - 1
h,\gamma ) \in Vh,\gamma \times Mh,\gamma of (un

h,\gamma , \lambda 
n
h,\gamma ).

Set k :=  - 1.
3. Do

(a) Increase k := k + 1.

(b) Compute (un,k
h,\gamma , \lambda 

n,k
h,\gamma ) \in Vh,\gamma \times Mh,\gamma such that, for all (v, \mu ) \in Vh,\gamma \times 

Mh,\gamma ,

(\xi (un,k - 1
h,\gamma ) + L\gamma ,u(u

n,k
h,\gamma  - un,k - 1

h,\gamma ),v)\gamma + a\gamma (u
n,k
h,\gamma ,v) - b\gamma (v, \lambda 

n,k
h,\gamma ) = 0.

(4.3a)

(4.3b)

c\gamma (\lambda 
n,k
h,\gamma  - \lambda n - 1

h,\gamma , \mu ) + \tau L\gamma ,p(\lambda 
n,k
h,\gamma  - \lambda n,k - 1

h,\gamma , \mu )\gamma + \tau s\gamma (\lambda 
n,k - 1
h,\gamma , \mu )

+ \tau b\gamma (u
n,k
h,\gamma , \mu ) = \tau (fn\gamma + gn\gamma , \mu )\gamma ,

while \| (un,k
h,\gamma , \lambda 

n,k
h,\gamma ) - (un,k - 1

h,\gamma , \lambda n,k - 1
h,\gamma )\| \gamma \geq \epsilon \| (un,k - 1

h,\gamma , \lambda n,k - 1
h,\gamma )\| \gamma .

4. Update the subdomain solutions via (3.7).
while n \leq N .

The linear problem (4.3) can again be solved by a direct or iterative method, and
it requires applying the operator \scrS RtN

\gamma via Algorithm 4.2, at each time step n \geq 1.
The advantages of Algorithm 4.3 are (i) at each iteration k \geq 1, the systems in the
fracture and the rock matrices cooperate sequentially in one loop; (ii) the optimal
convergence rate is obtained with precise stabilization parameters (L\gamma ,p, L\gamma ,u); and
(iii) existing codes for d- and (d  - 1)-dimensional Darcy problems can be cheaply
reused.

5. Analysis of MoLDD-scheme. The complete analysis of Algorithm 4.1 will
be carried out in two steps: (i) we first study the stability of the iterate DD scheme
(inner solver) and estimate the condition number, and (ii) we prove the convergence
of the LDD scheme (outer solver), show the well-posedness of the discrete scheme,
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estimate the convergence rate, and subsequently determine the optimal stabilization
parameter. A key point in the analysis of the methods below are inverse inequalities.

Lemma 5.1 (inverse inequalities). There exist positive constants CdTr, Cinv > 0
depending only on the shape regularity of the mesh such that

| | uh \cdot n| | \partial \Omega i
\leq CdTrh

 - 1/2| | uh| | \Omega i
\forall uh \in Vh,i,(5.1)

| | \nabla \tau \cdot uh,\gamma | | \gamma \leq Cinvh
 - 1| | uh,\gamma | | \gamma \forall uh,\gamma \in Vh,\gamma .(5.2)

5.1. Analysis of the DD step. To simplify, we rewrite (4.1): find (un,k
h,\gamma , \lambda 

n,k
h,\gamma )

\in Vh,\gamma \times Mh,\gamma so that

\scrA \gamma ((u
n,k
h,\gamma , \lambda 

n,k
h,\gamma ), (v, \mu )) + s\gamma (\lambda 

n,k
h,\gamma , \mu ) = \scrF n,k - 1

\gamma (v, \mu ) \forall (v, \mu ) \in Vh,\gamma \times Mh,\gamma ,

(5.3)

where \scrA \gamma is the linearized flow system on the fracture and s\gamma is the flow contribution
from the rock matrices

\scrA \gamma ((uh,\gamma , \lambda h,\gamma ), (v, \mu ))(5.4a)

:= a\gamma (uh,\gamma ,v) + L\gamma (uh,\gamma ,v)\gamma +
1

\tau 
(\lambda h,\gamma , \mu )\gamma + b\gamma (uh,\gamma , \mu ) - b\gamma (v, \lambda h,\gamma ),

\scrF n,k - 1
\gamma (v, \mu ) := (\xi (un,k - 1

h,\gamma ) + L\gamma u
n,k - 1
h,\gamma ,v)\gamma + (fn\gamma + gn\gamma , \mu )\gamma .(5.4b)

The first result concerns the properties of the coupling term s\gamma .

Lemma 5.2 (properties of the DD operator). The interface bilinear form s\gamma is
symmetric positive and semidefinite on L2(\gamma ), and there exists a constant C1 > 0
independent of h such that, for all \lambda h,\gamma \in Mh,\gamma ,

(5.5)

\biggl( 
C1

C\bfK \surd 
c\bfK 

+
1

\surd 
\alpha \gamma 

\biggr)  - 2

| | \lambda h,\gamma | | 2\gamma \leq s\gamma (\lambda h,\gamma , \lambda h,\gamma ) \leq \alpha \gamma | | \lambda h,\gamma | | 2\gamma .

Proof. Recalling (3.10) and taking v = u\ast 
h,i(\mu ) and q = p\ast h,i(\mu ) in (3.8), s\gamma can

be expressed as

s\gamma (\lambda h,\gamma , \mu ) =

2\sum 
i=1

\{ ai(u\ast 
h,i(\lambda h,\gamma ),u

\ast 
h,i(\mu )) + ci(p

\ast 
h,i(\lambda h,\gamma ), p

\ast 
h,i(\mu ))\} .(5.6)

It is now easy to see that the bilinear form s\gamma is symmetric and positive semidefinite
on L2(\gamma ). We now show that if s\gamma (\lambda h,\gamma , \lambda h,\gamma ) = 0, then \lambda h,\gamma = 0 on Mh,\gamma . Note
that s\gamma (\lambda h,\gamma , \lambda h,\gamma ) = 0 implies that u\ast 

h,i(\lambda h,\gamma ) = p\ast h,i(\lambda h,\gamma ) = 0. Again, (3.8) implies
(\scrQ h,i\lambda h,\gamma ,v \cdot ni)\gamma = (\lambda h,\gamma ,v \cdot ni)\gamma = 0 for any v \in Vh,i. Thus, we can find some v so
that v \cdot ni = \scrQ h,i\lambda h,\gamma and then | | \scrQ h,i\lambda h,\gamma | | \gamma = 0. Finally, (3.5) shows that \lambda h,\gamma = 0
on \gamma . We now infer the upper bound on s\gamma . The assumption (A2) directly implies

(5.7) c\bfK | | uh,i| | 2\Omega i
+ \alpha  - 1

\gamma | | uh,i \cdot ni| | 2\gamma \leq ai(uh,i,uh,i) \forall uh,i \in Vh,i.

The definition (3.10) of s\gamma gives

s\gamma (\lambda h,\gamma , \lambda h,\gamma ) \leq 
2\sum 

i=1

| | u\ast 
h,i(\lambda h,\gamma ) \cdot ni| | \gamma | | \lambda h,\gamma | | \gamma (5.8)

\leq 
2\sum 

i=1

\alpha 1/2
\gamma ai(u

\ast 
h,i(\lambda h,\gamma ),u

\ast 
h,i(\lambda h,\gamma ))

1/2| | \lambda h,\gamma | | \gamma .
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This result together with (5.6) leads to the upper bound in (5.5). We prove the
lower bound by induction. We let (\psi i, ri), i \in \{ 1, 2\} , be the solution of the auxiliary
subdomain problem

ri +Ki\nabla \psi i = 0 in \Omega i, \psi i = 0 on \Gamma i,

\nabla \cdot ri = 0 in \Omega i, ri \cdot ni = \scrQ h,i\lambda h,\gamma on \gamma .

For fracture network with immersed fractures or for subdomains with \Gamma i = \emptyset , \lambda h,\gamma 
approximates the pressure on \gamma determined up to a constant. This constant is fixed
by a zero mean value constraint for Mh,\gamma [9, 25]. Thus, the auxiliary problem is well-

posed since (ri \cdot ni, 1)\partial \Omega i
= (\scrQ h,i\lambda h,\gamma , 1)\partial \Omega i

= 0. Now, we choose v = \~\Pi iri in (3.8),
to obtain

| | \scrQ h,i\lambda h,\gamma | | 2\gamma (5.9)

= (\lambda h,\gamma , \~\Pi iri \cdot ni)\gamma 

=  - ai(u\ast 
h,i(\lambda h,\gamma ),

\~\Pi iri) + bi(\~\Pi iri, p
\ast 
h,i(\lambda h,\gamma ))

=  - ai(u\ast 
h,i(\lambda h,\gamma ),

\~\Pi iri)

\leq CC\bfK | | u\ast 
h,i(\lambda h,\gamma )| | \Omega i | | ri| | 1/2,\Omega i

+ \alpha  - 1
\gamma | | u\ast 

h,i(\lambda h,\gamma ) \cdot ni| | \gamma | | \scrQ h,i\lambda h,\gamma | | \gamma 
\leq CC\bfK | | u\ast 

h,i(\lambda h,\gamma )| | \Omega i
| | \scrQ h,i\lambda h,\gamma | | \gamma + \alpha  - 1

\gamma | | u\ast 
h,i(\lambda h,\gamma ) \cdot ni| | \gamma | | \scrQ h,i\lambda h,\gamma | | \gamma 

\leq 
\biggl( 
C
C\bfK \surd 
c\bfK 

+
1

\surd 
\alpha \gamma 

\biggr) \sqrt{} 
ai(u\ast 

h,i(\lambda h,\gamma ),u
\ast 
h,i(\lambda h,\gamma ))| | \scrQ h,i\lambda h,\gamma | | \gamma ,

where we used (5.7), assumption (A2), and the elliptic regularity (3.4) and | | ri| | 1/2,\Omega i
\lesssim 

| | \scrQ h,i\lambda h,\gamma | | \gamma . The bound (5.10) in combination with (5.6)--(5.7) and (3.5) delivers the
lower bound in (5.5).

It is interesting to study the robustness of Algorithms 4.1 and 4.3 for the limiting
case \alpha \gamma \rightarrow \infty in the transmission conditions (2.3), which corresponds to a continuous
pressure over the fracture interface.

Lemma 5.3 (parameter robustness (\alpha \gamma \rightarrow \infty )). In the case of continuous pressure
across \gamma , there exists a constant C2 > 0 such that, for all \lambda h,\gamma \in Mh,\gamma ,

(5.10) C2c\bfK C
 - 2
\bfK | | \lambda h,\gamma | | 2\gamma \leq s\gamma (\lambda h,\gamma , \lambda h,\gamma ) \leq C2

dTrc
 - 1
\bfK h - 1| | \lambda h,\gamma | | 2\gamma .

Proof. Recalling the definition (3.10) of s\gamma and using (5.1), we have

0 \leq s\gamma (\lambda h,\gamma , \lambda h,\gamma ) \leq 
2\sum 

i=1

| | u\ast 
h,i(\lambda h,\gamma ) \cdot ni| | \gamma | | \lambda h,\gamma | | \gamma (5.11)

\leq 
2\sum 

i=1

CdTrh
 - 1/2| | uh,i(\lambda h,\gamma )| | \Omega i | | \lambda h,\gamma | | \gamma .

This result together with (5.6) and (5.7) leads to the upper bound in (5.10). By
inspection of the proof of Lemma 5.2, starting as in (5.10) we promptly get the lower
bound of (5.10).

In the following, we denote by | | \cdot | | s,\gamma the induced seminorm from s\gamma on L2(\gamma ),

(5.12) | | \mu | | s,\gamma := s\gamma (\mu , \mu )
1/2 \forall \mu \in L2(\gamma ).
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We will also consider the following discrete norms:

| | (vh,\gamma , \mu h,\gamma )| | 20,\tau , \star := | | K - 1
2

\gamma vh,\gamma | | 2\gamma + | | L
1
2
\gamma vh,\gamma | | 2\gamma + | | \tau  - 1

2\mu h,\gamma | | 2\gamma ,(5.13a)

| | vh,\gamma | | 2\bfV h,\gamma 
:= | | K - 1

2
\gamma vh,\gamma | | 2\gamma + | | L

1
2
\gamma vh,\gamma | | 2\gamma + | | \tau 1

2\nabla \tau \cdot vh,\gamma | | 2\gamma ,(5.13b)

| | \mu h,\gamma | | 2Mh,\gamma 
:= | | \mu h,\gamma | | 2s,\gamma + | | \tau  - 1

2\mu h,\gamma | | 2\gamma ,(5.13c)

| | (vh,\gamma , \mu h,\gamma )| | 21,\tau , \star := | | vh,\gamma | | 2\bfV h,\gamma 
+ | | \mu h,\gamma | | 2Mh,\gamma 

.(5.13d)

The following estimates are obtained.

Lemma 5.4 (inverse energy estimates). There holds for all (uh,\gamma , \lambda h,\gamma ) \in Vh,\gamma \times 
Mh,\gamma ,
(5.14)

| | (uh,\gamma , \lambda h,\gamma )| | 1,\tau , \star \leq 
\sqrt{} 

max((1 + Cinvc\bfK ,\gamma \tau h - 2), (1 + \alpha \gamma \tau ))| | (uh,\gamma , \lambda h,\gamma )| | 0,\tau , \star .

Furthermore, if \alpha \gamma \rightarrow \infty , there holds
(5.15)

| | (uh,\gamma , \lambda h,\gamma )| | 1,\tau , \star \leq 
\sqrt{} 
max((1 + Cinvc\bfK ,\gamma \tau h - 2), (1 + C2

dTrc
 - 1
\bfK \tau h - 1))| | (uh,\gamma , \lambda h,\gamma )| | 0,\tau , \star .

Proof. With (5.2) and (5.5), we obtain (5.14). If \alpha \gamma \rightarrow \infty , we make use of (5.10)
to get (5.15).

The following results are immediately verified.

Lemma 5.5 (boundedness on A\gamma ). There holds for all (uh,\gamma , \lambda h,\gamma ), (vh,\gamma , \mu h,\gamma ) \in 
Vh,\gamma \times Mh,\gamma ,

(5.16) \scrA \gamma ((uh,\gamma , \lambda h,\gamma ), (vh,\gamma , \mu h,\gamma )) \leq | | (uh,\gamma , \lambda h,\gamma )| | 1,\tau , \star | | (vh,\gamma , \mu h,\gamma )| | 1,\tau , \star .

Lemma 5.6 (positivity on A\gamma ). There holds for all (uh,\gamma , \lambda h,\gamma ) \in Vh,\gamma \times Mh,\gamma ,

(5.17) \scrA \gamma ((uh,\gamma , \lambda h,\gamma ), (uh,\gamma , \lambda h,\gamma )) = | | K - 1
2

\gamma uh,\gamma | | 2\gamma + | | L
1
2
\gamma uh,\gamma | | 2\gamma + | | \tau  - 1

2\lambda h,\gamma | | 2\gamma .

The above results are then used to prove the following stability estimate for
A\gamma + s\gamma .

Theorem 5.7 (stability results). For

1

6(1 + \tau \alpha \gamma )2
| | (uh,\gamma , \lambda h,\gamma )| | 1,\tau , \star (5.18)

\leq sup
(\bfv h,\gamma ,\mu h,\gamma )\in \bfV h,\gamma \times Mh,\gamma 

\scrA \gamma ((uh,\gamma , \lambda h,\gamma ), (vh,\gamma , \mu h,\gamma )) + s\gamma (\lambda h,\gamma , \mu h,\gamma )

| | (vh,\gamma , \mu h,\gamma )| | 1,\tau , \star 
,

if \alpha \gamma \rightarrow \infty , we have

1

6(1+C2
dTrc

 - 1
\bfK 

\tau 
h )

2
| | (uh,\gamma , \lambda h,\gamma )| | 1,\tau , \star (5.19)

\leq sup
(\bfv h,\gamma ,\mu h,\gamma )\in \bfV h,\gamma \times Mh,\gamma 

\scrA \gamma ((uh,\gamma , \lambda h,\gamma ), (vh,\gamma , \mu h,\gamma ))+s\gamma (\lambda h,\gamma , \mu h,\gamma )

| | (vh,\gamma , \mu h,\gamma )| | 1,\tau , \star 
.

Proof. Let us first recall the inf-sup condition; given \lambda h,\gamma \in Mh,\gamma , we construct
rh,\gamma \in Vh,\gamma such that

b\gamma (rh,\gamma , \lambda h,\gamma ) = | | \lambda h,\gamma | | 2\gamma , and | | \lambda h,\gamma | | \gamma \leq C(\gamma )| | rh,\gamma | | \gamma .(5.20)
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Let \Psi \gamma \in H2
0 (\gamma ) satisfy  - \Delta \tau \Psi \gamma = \tau  - 1\lambda h,\gamma . Take r\gamma =  - \nabla \tau \Psi \gamma and let rh,\gamma =

\Pi h,\gamma r\gamma , where \Pi h,\gamma is the Raviart--Thomas projection onto Vh,\gamma [15, 36]. Then \nabla \tau \cdot 
rh,\gamma = \Pi h,\gamma \nabla \tau \cdot r\gamma = \tau  - 1\lambda h,\gamma and b\gamma (rh,\gamma , \lambda h,\gamma ) = | | \tau  - 1

2\lambda h,\gamma | | 2\gamma . Finally, | | rh,\gamma | | 2\gamma \leq 
C| | r\gamma | | 21,\gamma \leq C| | \Psi \gamma | | 22,\gamma \leq C(\gamma )| | \tau  - 1

2\lambda h,\gamma | | 2\gamma . Set \delta 1, \delta 2 > 0 and let vh,\gamma = uh,\gamma  - \delta 2rh,\gamma 
and \mu h,\gamma = \lambda h,\gamma + \delta 1\tau \nabla \tau \cdot uh,\gamma , where rh,\gamma is from (5.20). We get

\scrA \gamma ((uh,\gamma , \lambda h,\gamma ), (vh,\gamma , \mu h,\gamma )) + s\gamma (\lambda h,\gamma , \mu h,\gamma )(5.21)

= \{ \scrA \gamma ((uh,\gamma , \lambda h,\gamma ), (uh,\gamma , \lambda h,\gamma )) + s\gamma (\lambda h,\gamma , \lambda h,\gamma )\} 
+ \delta 1\{ \scrA \gamma ((uh,\gamma , \lambda h,\gamma ), \tau (0,\nabla \tau \cdot uh,\gamma )) + s\gamma (\lambda h,\gamma , \tau \nabla \tau \cdot uh,\gamma )\} 
 - \delta 2\{ \scrA \gamma ((uh,\gamma , \lambda h,\gamma ), (rh,\gamma , 0))\} .

For the first term on the right-hand side of (5.21), we obtain using estimate (5.17)
together with (5.12),

\scrA \gamma ((uh,\gamma , \lambda h,\gamma ), (uh,\gamma , \lambda h,\gamma )) + s\gamma (\lambda h,\gamma , \lambda h,\gamma )

= | | K - 1
2

\gamma uh,\gamma | | 2\gamma + | | L
1
2
\gamma uh,\gamma | | 2\gamma + | | \tau  - 1

2\lambda h,\gamma | | 2\gamma + | | \lambda h,\gamma | | 2s,\gamma .

For the second term, we get for all \epsilon 1 > 0,

\scrA \gamma ((uh,\gamma , \lambda h,\gamma ), \tau (0,\nabla \tau \cdot uh,\gamma )) + s\gamma (\lambda h,\gamma , \tau \nabla \tau \cdot uh,\gamma )

= | | \tau 1
2\nabla \tau \cdot uh,\gamma | | 2\gamma + (\lambda h,\gamma ,\nabla \tau \cdot uh,\gamma )\gamma 

+ s\gamma (\lambda h,\gamma , \tau \nabla \tau \cdot uh,\gamma ) \geq | | \tau 1
2\nabla \tau \cdot uh,\gamma | | 2\gamma  - | | \tau 1

2\nabla \tau \cdot uh,\gamma | | \gamma | | \tau  - 
1
2\lambda h,\gamma | | \gamma 

 - \alpha \gamma \tau | | \tau 
1
2\nabla \tau \cdot uh,\gamma | | \gamma | | \tau  - 

1
2\lambda h,\gamma | | \gamma 

\geq 
\biggl( 
1 - \epsilon 1

(1 + \tau \alpha \gamma )

2

\biggr) 
| | \tau 1

2\nabla \tau \cdot uh,\gamma | | 2\gamma  - (1 + \tau \alpha \gamma )

2\epsilon 1
| | \tau  - 1

2\lambda h,\gamma | | 2\gamma ,

where we have used the continuity of s\gamma , i.e., s\gamma (\lambda h,\gamma , \mu h,\gamma ) \leq | | \lambda h,\gamma | | s,\gamma | | \mu h,\gamma | | s,\gamma \leq 
\alpha \gamma | | \lambda h,\gamma | | \gamma | | \mu h,\gamma | | \gamma . For the last term, using (A2) together with (5.20) (first equation),
we obtain for all \epsilon 2 > 0,

\scrA \gamma ((uh,\gamma , \lambda h,\gamma ), (rh,\gamma , 0))

\leq 1

2\epsilon 2
(| | K - 1

2
\gamma uh,\gamma | | 2\gamma + | | L

1
2
\gamma uh,\gamma | | 2\gamma ) +

\epsilon 2
2
(| | K - 1

2
\gamma rh,\gamma | | 2\gamma + | | L

1
2
\gamma rh,\gamma | | 2\gamma ),

 - b\gamma (rh,\gamma , \lambda h,\gamma )

\leq 1

2\epsilon 2
(| | K - 1

2
\gamma uh,\gamma | | 2\gamma + | | L

1
2
\gamma uh,\gamma | | 2\gamma ) +

\epsilon 2
2
(C\bfK ,\gamma + L\gamma )C(\gamma )| | rh,\gamma | | 2\gamma  - | | \tau  - 1

2\lambda h,\gamma | | 2\gamma .

Thus, with (5.20) (second equation),

 - \delta 2\scrA \gamma ((uh,\gamma , \lambda h,\gamma ), (rh,\gamma , 0)

\geq \delta 2

\biggl( 
1 - \epsilon 2

C(\gamma )(C\bfK ,\gamma + L\gamma )

2

\biggr) 
| | \tau  - 1

2\lambda h,\gamma | | 2\gamma  - \delta 2
2\epsilon 2

(| | K - 1
2

\gamma uh,\gamma | | 2\gamma + | | L
1
2
\gamma uh,\gamma | | 2\gamma ).
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Collecting the previous results we get

\scrA \gamma ((uh,\gamma , \lambda h,\gamma ), (vh,\gamma , \mu h,\gamma )) + s\gamma (\lambda h,\gamma , \mu h,\gamma )

\geq 
\biggl( 
1 - \delta 2

2\epsilon 2

\biggr) \Bigl( 
| | K - 1

2
\gamma uh,\gamma | | 2\gamma + | | L

1
2
\gamma uh,\gamma | | 2\gamma 

\Bigr) 
+ \delta 1

\biggl( 
1 - \epsilon 1

(1 + \tau \alpha \gamma )

2

\biggr) 
| | \tau 1

2\nabla \tau \cdot uh,\gamma | | 2\gamma 

+

\biggl( 
1 - \delta 1

(1 + \tau \alpha \gamma )

2\epsilon 1

\biggr) 
| | \tau  - 1

2\lambda h,\gamma | | 2\gamma + | | \lambda h,\gamma | | 2s,\gamma 

+ \delta 2

\biggl( 
1 - \epsilon 2

C(\gamma )(C\bfK ,\gamma + L\gamma )

2

\biggr) 
| | \tau  - 1

2\lambda h,\gamma | | 2\gamma .

Now, let us choose the parameters \epsilon i and \delta i such that all the norms in the previous
inequality are multiplied by positive coefficients. We choose \epsilon 1 = 1/(1+\tau \alpha \gamma ) and \delta 1 =
1/(1+ \tau \alpha \gamma )

2, and then \epsilon 2 = 2/[C(\gamma )(C\bfK ,\gamma + L\gamma )] and \delta 2 = 2/[C(\gamma )(C\bfK ,\gamma + L\gamma ) + 1],
to get

\scrA \gamma ((uh,\gamma , \lambda h,\gamma ), (vh,\gamma , \mu h,\gamma )) + s\gamma (\lambda h,\gamma , \mu h,\gamma )

\geq C(\gamma )(C\bfK ,\gamma + L\gamma ) + 2

2(C(\gamma )(C\bfK ,\gamma + L\gamma ) + 1)

\Bigl( 
| | K - 1

2
\gamma uh,\gamma | | 2\gamma + | | L

1
2
\gamma uh,\gamma | | 2\gamma 

\Bigr) 
+

1

2(1 + \tau \alpha \gamma )2
| | \tau 1

2\nabla \tau \cdot uh,\gamma | | 2\gamma +
1

2
| | \tau  - 1

2\lambda h,\gamma | | 2\gamma + | | \lambda h,\gamma | | 2s,\gamma .

Thus,

\scrA \gamma ((uh,\gamma , \lambda h,\gamma ), (vh,\gamma , \mu h,\gamma )) + s\gamma (\lambda h,\gamma , \mu h,\gamma ) \geq (4 + 4\tau \alpha \gamma )
 - 2| | (uh,\gamma , \lambda h,\gamma )| | 21,\tau , \star .

(5.22)

From the choice of vh,\gamma and \mu h,\gamma , we have that

| | (vh,\gamma , \mu h,\gamma )| | 1,\tau , \star \leq | | (uh,\gamma , \lambda h,\gamma )| | 1,\tau , \star + \delta 1| | (0, \tau \nabla \tau \cdot uh,\gamma )| | 1,\tau , \star + \delta 2| | (rh,\gamma , 0)| | 1,\tau , \star .

With simple calculations, it is inferred that

\delta 1| | (0, \tau \nabla \tau \cdot uh,\gamma )| | 1,\tau , \star \leq (1 + \tau \alpha \gamma )
 - 3

2 | | (uh,\gamma , \lambda h,\gamma )| | 1,\tau , \star ,(5.23a)

\delta 2| | (rh,\gamma , 0)| | 1,\tau , \star \leq 
2
\sqrt{} 
C(\gamma )(C\bfK ,\gamma + L\gamma ) + 1

C(\gamma )(C\bfK ,\gamma + L\gamma ) + 2
| | (uh,\gamma , \lambda h,\gamma )| | 1,\tau , \star .(5.23b)

This implies that we have | | (vh,\gamma , \mu h,\gamma )| | 1,\tau , \star \leq 3| | (uh,\gamma , \lambda h,\gamma )| | 1,\tau , \star . This together
with (5.22) leads to (5.18). For \alpha \gamma \rightarrow \infty , we repeat the same proof while using (5.10)
instead of (5.5) to get (5.19).

Lemma 5.8 (well-posedness of the DD scheme). The domain decomposition scheme
(5.3) is well-posed, and all eigenvalues of the induced system \scrA \gamma +s\gamma are bounded away
from zero.

Proof. This directly follows from nonsingularity of \scrA \gamma +s\gamma and estimates in The-
orem 5.7.

Let us comment on the robustness of the stability estimate in Theorem 5.7. First,
(5.18) states that, regardless of the choice of the space and time discretization, the
stability constant with respect to | | (uh,\gamma , \lambda h,\gamma )| | 1,\tau , \star is independent of the coefficients
K, K\gamma , and the stabilization parameter L\gamma . One can also show that this estimate is
asymptotically robust and bounded independently of (\tau , \alpha \gamma , h) \rightarrow 0 and the stability
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constant tends to 1/6. The only issue can happen when having a large coefficient
\alpha \gamma , but this case is resolved in (5.19). Therein, as the ratio \tau /h \rightarrow 0, the stability
constant is approximately 1/6.

Following the approach of Ern and Guermond [22], we now provide an estimate for
the condition number of the stiffness matrix associated with the domain decomposition
system \scrA \gamma + s\gamma . This condition number estimate is important in our analysis as
any algorithm is stable if every step is well-conditioned. This will also encourage the
development of the flux basis framework in section 7. Let us first introduce some basic
notation in order to provide the definition of the condition number. We recall the
stiffness matrix \scrA DD introduced in (4.2) associated with the domain decomposition
scheme (5.3),

(\scrA DDV,W )N := \scrA \gamma ((uh,\gamma , \lambda h,\gamma ), (vh,\gamma , \mu h,\gamma )) + s\gamma (\lambda h,\gamma , \mu h,\gamma )(5.24)

for all (uh,\gamma , \lambda h,\gamma ), (vh,\gamma , \mu h,\gamma ) \in Vh,\gamma \times Mh,\gamma , where (V,W )N :=
\sum N

i=1 ViWi denotes
the inner product in \BbbR N and | V | 2N := (V, V )N is the corresponding Euclidean norm.
The condition number is defined by \kappa (\scrA DD) := | \scrA DD| N | \scrA DD|  - 1

N , where

| \scrA DD| N := sup
V \in \BbbR N\setminus \bfzero 

sup
W\in \BbbR N\setminus \bfzero 

(\scrA DDV,W )N
| V | N | W | N

= sup
V \in \BbbR N\setminus \bfzero 

| \scrA DD| N
| V | N

.

We recall the following estimate that holds true for a conforming, quasi-uniform mesh
\scrT h [22]; there exists c\mu , C\mu > 0 such that the following equivalence holds

c\mu h
d/2| V | N \leq | | V | | 0,\tau , \star \leq C\mu h

d/2| V | N .(5.25)

Theorem 5.9 (condition number estimate). The condition number \kappa (\scrA DD) of
(5.3) is bounded as

(5.26) \kappa (\scrA DD) \lesssim 6(1 + \tau \alpha \gamma )
2 max((1 + Cinvc\bfK ,\gamma \tau h

 - 2), (1 + \alpha \gamma \tau )).

Furthermore, if \alpha \gamma \rightarrow \infty ,

(5.27) \kappa (\scrA DD) \lesssim 6(1+C2
dTrc

 - 1
\bfK \tau h - 1)2 max((1+Cinvc\bfK ,\gamma \tau h

 - 2), (1+C2
dTrc

 - 1
\bfK \tau h - 1)).

Proof. By definition (5.24), using (5.14) and (5.25), we have for all V,W \in \BbbR N ,

(\scrA DDV,W )N \leq | | (uh,\gamma , \lambda h,\gamma )| | 1,\tau , \star | | (vh,\gamma , \mu h,\gamma )| | 1,\tau , \star ,
\leq max((1 + Cinvc\bfK ,\gamma \tau h

 - 2), (1 + \alpha \gamma \tau ))| | (uh,\gamma , \lambda h,\gamma )| | 0,\tau , \star | | (vh,\gamma , \mu h,\gamma )| | 0,\tau , \star ,
\lesssim max((1 + Cinvc\bfK ,\gamma \tau h

 - 2), (1 + \alpha \gamma \tau ))h
d| V | N | W | N .

Consequently, | \scrA DD| N \lesssim max((1 + Cinvc\bfK ,\gamma \tau h
 - 2), (1 + \alpha \gamma \tau ))h

d. On the other hand,

(\scrA DDV,W )N \geq 
\bigl[ 
6(1 + \tau \alpha \gamma )

2
\bigr]  - 1| | (uh,\gamma , \lambda h,\gamma )| | 1,\tau , \star | | (vh,\gamma , \mu h,\gamma )| | 1,\tau , \star ,

\geq 
\bigl[ 
6(1 + \tau \alpha \gamma )

2
\bigr]  - 1| | (uh,\gamma , \lambda h,\gamma )| | 0,\tau , \star | | (vh,\gamma , \mu h,\gamma )| | 0,\tau , \star 

\gtrsim hd
\bigl[ 
6(1 + \tau \alpha \gamma )

2
\bigr]  - 1| V | N | W | N ,

hence | V | N \lesssim 6(1 + \tau \alpha \gamma )
2h - d| \scrA DDV | N . Setting V = \scrA  - 1

DDW , we conclude that
| \scrA  - 1

DD| N \lesssim 6(1+\tau \alpha \gamma )
2h - d. Combining estimates for | \scrA  - 1

DD| N and | \scrA DD| N we get (5.26).
The estimate (5.27) for \alpha \gamma \rightarrow \infty is obtained similarly by using (5.15) and (5.19).
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5.2. Convergence of the MoLDD scheme. The second step of our analysis is
to prove the convergence of Algorithm 4.1. The idea is to show that this algorithm is
a contraction and then apply the Banach fixed-point theorem [44]. For that purpose,

define \delta k\bfu ,h = un,k
h,\gamma  - un,k - 1

h,\gamma and \delta k\lambda ,h = \lambda n,kh,\gamma  - \lambda n,k - 1
h,\gamma .

Theorem 5.10 (convergence of MoLDD scheme). Assuming that Assumptions
(A1)--(A5) hold true and that L\gamma (\zeta ) = L\xi /2(1 - \zeta ) with a parameter \zeta \in [0, 1), Algo-
rithm 4.1 defines a contraction given by

| | \delta k\lambda ,h| | 2\gamma + \tau | | \delta k\lambda ,h| | 2s,\gamma +

\biggl( 
L\gamma 

2
+ c\bfK ,\gamma 

\biggr) 
\tau | | \delta k\bfu ,h| | 2\gamma \leq 

\biggl( 
L\gamma 

2
 - \zeta \xi m

\biggr) 
\tau | | \delta k - 1

\bfu ,h | | 2\gamma ,(5.28)

and the limit is the unique solution of (3.11).

Proof. By subtracting (4.1) at step k from the ones at step k  - 1, we obtain

(\xi (un,k - 1
h,\gamma ) - \xi (un,k - 2

h,\gamma ),v)\gamma + L\gamma (\delta 
k
\bfu ,h  - \delta k - 1

\bfu ,h ,v)\gamma + a\gamma (\delta 
k
\bfu ,h,v) - b\gamma (v, \delta 

k
\lambda ,h) = 0

(5.29a)

x\forall v \in Vh,\gamma ,

c\gamma (\delta 
k
\lambda ,h, \mu ) + \tau b\gamma (\delta 

k
\bfu ,h, \mu ) + \tau s\gamma (\delta 

k
\lambda ,h, \mu ) = 0 \forall \mu \in Mh,\gamma .

(5.29b)

Taking v = \tau \delta k\bfu ,h in (5.29a), \mu = \delta k\lambda ,h in (5.29b), and summing the equations, we get

| | \delta k\lambda ,h| | 2 + \tau | | \delta k\lambda ,h| | 2s,\gamma + \tau a\gamma (\delta 
k
\bfu ,h,v) + \tau (\xi (un,k - 1

h,\gamma ) - \xi (un,k - 2
h,\gamma ), \delta k\bfu ,h)\gamma 

+ L\gamma \tau (\delta 
k
\bfu ,h  - \delta k - 1

\bfu ,h , \delta 
k
\bfu ,h)\gamma = 0.

Following [46], we let \zeta \in [0, 1) and split the third term while applying the lower
bound of K - 1

\gamma :

| | \delta k\lambda ,h| | 2\gamma + \tau | | \delta k\lambda ,h| | 2s,\gamma + c\bfK ,\gamma \tau | | \delta k\bfu ,h| | 2\gamma + \zeta \tau (\xi (un,k - 1
h,\gamma ) - \xi (un,k - 2

h,\gamma ), \delta k - 1
\bfu ,h )\gamma 

+ L\gamma \tau (\delta 
k
\bfu ,h  - \delta k - 1

\bfu ,h , \delta 
k
\bfu ,h)\gamma 

+ (1 - \zeta )\tau (\xi (un,k - 1
h,\gamma ) - \xi (un,k - 2

h,\gamma ), \delta k - 1
\bfu ,h )\gamma + \tau (\xi (un,k - 1

h,\gamma )

 - \xi (un,k - 2
h,\gamma ), \delta k\bfu ,h  - \delta k - 1

\bfu ,h )\gamma \leq 0.

We use the identity 2(a  - b)a = a2  - b2 + (a  - b)2 for a, b \in \BbbR together with the
monotonicity and Lipschitz continuity of \xi given by (A1) to get

| | \delta k\lambda ,h| | 2\gamma + \tau | | \delta k\lambda ,h| | 2s,\gamma + c\bfK ,\gamma \tau | | \delta k\bfu ,h| | 2\gamma + \zeta \xi m\tau | | \delta k - 1
\bfu ,h | | 2\gamma 

+
(1 - \zeta )

L\xi 
\tau | | \xi (un,k - 1

h,\gamma ) - \xi (un,k - 2
h,\gamma )| | 2\gamma 

+
L\gamma 

2
\tau | | \delta k\bfu ,h| | 2\gamma +

L\gamma 

2
\tau | | \delta k\bfu ,h  - \delta k - 1

\bfu ,h | | 2\gamma 

\leq L\gamma 

2
\tau | | \delta k - 1

\bfu ,h | | 2\gamma  - \tau (\xi (un,k - 1
h,\gamma ) - \xi (un,k - 2

h,\gamma ), \delta k\bfu ,h  - \delta k - 1
\bfu ,h )\gamma .

We apply Young's inequality | ab| \leq (2\delta ) - 1a2 + 2\delta  - 1b2 for a, b, \delta \in \BbbR , \delta > 0, for the
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last term on the right-hand side to obtain

| | \delta k\lambda ,h| | 2\gamma + \tau | | \delta k\lambda ,h| | 2s,\gamma + c\bfK ,\gamma \tau | | \delta k\bfu ,h| | 2\gamma + \zeta \xi m\tau | | \delta k - 1
\bfu ,h | | 2\gamma +

(1 - \zeta )

L\xi 
\tau | | \xi (un,k - 1

h,\gamma )

 - \xi (un,k - 2
h,\gamma )| | 2\gamma +

L\gamma 

2
\tau | | \delta k\bfu ,h| | 2\gamma +

L\gamma 

2
\tau | | \delta k\bfu ,h  - \delta k - 1

\bfu ,h | | 2\gamma 

\leq L\gamma 

2
\tau | | \delta k - 1

\bfu ,h | | 2\gamma +
L\gamma 

2
\tau | | \delta k\bfu ,h  - \delta k - 1

\bfu ,h | | 2\gamma 

+
1

2L\gamma 
\tau | | \xi (un,k - 1

h,\gamma ) - \xi (un,k - 2
h,\gamma )| | 2\gamma .

By choosing L\gamma = L\xi /2(1 - \zeta ), we immediately obtain (5.28). The inequality (5.28)

implies that the sequence \delta n,k\lambda ,h\rightarrow 0 in L2(\gamma ) and \delta k\bfu ,h\rightarrow 0 in L2(\gamma ). Now we choose

\mu = \nabla \tau \cdot \delta k\bfu ,h in (5.29b) to obtain

\tau | | \nabla \tau \cdot \delta k\bfu ,h| | 2\gamma =  - c\gamma (\delta k\lambda ,h,\nabla \tau \cdot \delta k\bfu ,h) - \tau s\gamma (\lambda 
n,k
h,\gamma ,\nabla \tau \cdot \delta k\bfu ,h),

\leq | | \delta k\lambda ,h| | \gamma | | \nabla \tau \cdot \delta k\bfu ,h| | \gamma + \tau \alpha \gamma | | \delta k\lambda ,h| | \gamma | | \nabla \tau \cdot \delta k\bfu ,h| | \gamma .

Thus,

\tau | | \nabla \tau \cdot \delta k\bfu ,h| | \gamma \leq (\alpha \gamma \tau + 1)| | \delta k\lambda ,h| | \gamma .(5.30)

Hence, by (5.28), we have | | \nabla \tau \cdot \delta k\bfu ,h| | \gamma tends to 0 in L2(\gamma ). This shows that \delta k\bfu ,h tends
to 0 in H(div\tau , \gamma ).

Since (5.28) defines a contraction, by the Banach fixed-point theorem we can con-
clude that the sequence generated by the algorithm converges to the unique solution
of the problem (3.11).

Corollary 5.11 (optimal MoLDD convergence rate). If \xi m > 0, the minimum
of the convergence rate of Algorithm 4.1 is reached for the optimal parameter

(5.31a) \zeta \ast = argmin
0<\zeta <1

\rho (\zeta ) = 1 +
L\xi \xi m  - 

\sqrt{} 
(L\xi \xi m)2 + 4L\xi \xi 2mc\bfK ,\gamma + 4L\xi \xi mc2\bfK ,\gamma 

4\xi mc\bfK ,\gamma 
,

where \rho (\zeta ) is the convergence rate from (5.28),

(5.31b) \rho (\zeta ) =
L\gamma  - 2\xi m\zeta 

L\gamma + 2c\bfK ,\gamma 
< 1.

Therefore, the optimal stabilization parameter is given by

(5.31c) L\gamma ,opt =
L\xi 

2(1 - \zeta \ast )
.

Proof. Plugging L\gamma = L\xi /2(1 - \zeta ) into the contraction estimate (5.28) leads to

(5.32) | | \delta k\bfu ,h| | 2\gamma \leq \rho (\zeta )| | \delta k - 1
\bfu ,h | | 2\gamma , where \rho (\zeta ) =

L\xi  - 4(1 - \zeta )\xi m\zeta 

L\xi + 4(1 - \zeta )c\bfK ,\gamma 
< 1,

which clearly can be minimal when choosing the optimal value of \zeta . To calculate \zeta \ast ,
we differentiate (5.32) with respect to \zeta and infer the resulting roots and we find that
the minimum of (5.32) is obtained for the optimal choice given by (5.31a). Replacing
the resulting value back into L\gamma (\zeta ) gives (5.31c).
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Lemma 5.12 (well-posedness of the mixed-dimensional problem). There exists a
unique solution to the mixed-dimensional problem (3.6).

Proof. Problem (3.11) is equivalent to (3.6). Since we know from Theorem 5.10
that (3.11) has a unique solution, this equivalence implies that (3.6) is uniquely solv-
able.

The rate of convergence (5.31b) depends only on the strength of the nonlinearity
by means of the Lipschitz constant L\xi , the lower bound \xi m, and the fracture per-
meability K\gamma . Particularly, the rate is independent of the fracture-matrix coupling
parameter \alpha \gamma , the mesh size h, and the time step \tau . Moreover, the convergence of
the MoLDD scheme is global, i.e., independent of the initialization and particularly
of the inner DD solver. Nevertheless, it is beneficial if one starts MoLDD scheme
iterations with the solution of the last time step.

6. Analysis of the ItLDD scheme. We turn now to the analysis of the ItLDD-
scheme (Algorithm 4.3). In contrast to the MoLDD scheme, in which two levels of
calculations (linearization+DD) are necessary to achieve the required solution, the
ItLDD scheme simultaneously treats the nonlinearity and DD. Thus, the next result
is to be understood as the convergence for the combined linearization-DD processes.
We again denote \delta k\bfu ,h := un,k

h,\gamma  - un
h,\gamma and \delta k\lambda ,h := \lambda n,kh,\gamma  - \lambda nh,\gamma .

Theorem 6.1 (convergence of the ItLDD scheme). Assuming that Assump-
tions (A1)--(A5) hold true and that L\gamma ,u(\zeta ) = L\xi /2(1 - \zeta ), where \zeta is a parameter to
be optimized in [0, 1), and L\gamma ,p \geq \alpha \gamma , the ItLDD scheme given by Algorithm 4.3, is
linearly convergent, there holds\biggl( 

1 + \tau 
L\gamma ,p

2

\biggr) 
| | \delta k\lambda ,h| | 2\gamma +

\tau 

2
| | \delta k\lambda ,h| | 2s,\gamma +

\biggl( 
L\gamma ,u

2
+c\bfK ,\gamma 

\biggr) 
\tau | | \delta k\bfu ,h| | 2\gamma (6.1)

\leq 
\biggl( 
L\gamma ,u

2
 - \zeta \xi m

\biggr) 
\tau | | \delta k - 1

\bfu ,h | | 2\gamma +\tau 
L\gamma ,p

2
| | \delta k - 1

\lambda ,h | | 2\gamma .

Proof. By subtracting (4.1) at the iteration k from (3.11), we obtain

(\xi (un,k - 1
h,\gamma ) - \xi (un

h,\gamma ),v)\gamma + L\gamma ,u(\delta 
k
\bfu ,h  - \delta k - 1

\bfu ,h ,v)\gamma + a\gamma (\delta 
k
\bfu ,h,v) - b\gamma (v, \delta 

k
\lambda ,h) = 0

(6.2a)

\forall v \in Vh,\gamma ,

c\gamma (\delta 
k
\lambda ,h, \mu ) + \tau L\gamma ,p(\delta 

k
\lambda ,h  - \delta k - 1

\lambda ,h , \mu )\gamma + \tau s\gamma (\delta 
k - 1
\lambda ,h , \mu ) + \tau b\gamma (\delta 

k
\bfu ,h, \mu ) = 0 \forall \mu \in Mh,\gamma .

(6.2b)

Taking v = \tau \delta k\bfu ,h in (6.2a) and \mu = \delta k\lambda ,h in (6.2b), and summing up the equations
gives

| | \delta k\lambda ,h| | 2\gamma \tau L\gamma ,p(\delta 
k
\lambda ,h  - \delta k - 1

\lambda ,h , \delta 
k
\lambda ,h)\gamma + \tau s\gamma (\delta 

k - 1
\lambda ,h , \delta 

k
\lambda ,h)

(6.3)

+ \tau (\xi (un,k - 1
h,\gamma ) - \xi (un

h,\gamma ), \delta 
k
\bfu ,h)\gamma + L\gamma ,u\tau (\delta 

k
\bfu ,h  - \delta k - 1

\bfu ,h , \delta 
k
\bfu ,h)\gamma + \tau a\gamma (\delta 

k
\bfu ,h, \delta 

k
\bfu ,h) = 0.

For any \zeta \in [0, 1), this is equivalent to

| | \delta k\lambda ,h| | 2\gamma + \tau L\gamma ,p(\delta 
k
\lambda ,h  - \delta k - 1

\lambda ,h , \delta 
k
\lambda ,h)\gamma + \tau s\gamma (\delta 

k
\lambda ,h, \delta 

k
\lambda ,h) + \tau \zeta (\xi (un,k - 1

h,\gamma ) - \xi (un
h,\gamma ), \delta 

k - 1
\bfu ,h )\gamma 

(6.4)

+ \tau (1 - \zeta )(\xi (un,k - 1
h,\gamma ) - \xi (un

h,\gamma ), \delta 
k - 1
\bfu ,h )\gamma + L\gamma ,u\tau (\delta 

k
\bfu ,h  - \delta k - 1

\bfu ,h , \delta 
k
\bfu ,h)\gamma + \tau a\gamma (\delta 

k
\bfu ,h, \delta 

k
\bfu ,h)

=  - \tau s\gamma (\delta k - 1
\lambda ,h  - \delta k\lambda ,h, \delta 

k
\lambda ,h) - \tau (\xi (un,k - 1

h,\gamma ) - \xi (un
h,\gamma ), \delta 

k
\bfu ,h  - \delta k - 1

\bfu ,h )\gamma .
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We apply the lower bound in the last term of the left-hand side and then use the
monotonicity and Lipschitz continuity of the operator \xi , followed by the Cauchy--
Schwarz and Young's inequalities in the second term of the right-hand side, to get

(6.5)\Bigl( 
1 + \tau 

L\gamma ,p

2

\Bigr) 
| | \delta k\lambda ,h| | 2\gamma + \tau | | \delta k\lambda ,h| | 2s,\gamma + \tau 

L\gamma ,p

2
| | \delta k\lambda ,h

 - \delta k - 1
\lambda ,h | | 2\gamma + c\bfK ,\gamma \tau | | \delta k\bfu ,h| | 2\gamma + \zeta \xi m| | \delta k - 1

\bfu ,h | | 2\gamma +
L\gamma ,u

2
\tau | | \delta k\bfu ,h| | 2\gamma 

+
(1 - \zeta )

L\xi 
\tau | | \xi (un,k - 1

h,\gamma ) - \xi (un
h,\gamma )| | 2\gamma 

+
L\gamma ,u

2
\tau | | \delta k\bfu ,h  - \delta k - 1

\bfu ,h | | 2\gamma 

\leq L\gamma ,u

2
\tau | | \delta k - 1

\bfu ,h | | 2\gamma +
L\gamma ,p

2
\tau | | \delta k - 1

\lambda ,h | | 2\gamma 

+
L\gamma ,u

2
\tau | | \delta k\bfu ,h  - \delta k - 1

\bfu ,h | | 2\gamma  - \tau s\gamma (\delta 
k - 1
\lambda ,h  - \delta k\lambda ,h, \delta 

k
\lambda ,h) +

1

2L\gamma ,u
\tau | | \xi (uk - 1

h,\gamma ) - \xi (un
h,\gamma )| | 2\gamma .

By the continuity of s\gamma we get

| s\gamma (\delta k - 1
\lambda ,h  - \delta k\lambda ,h, \delta 

k
\lambda ,h)| \leq | | \delta k\lambda ,h| | s,\gamma | | \delta k\lambda ,h  - \delta k - 1

\lambda ,h | | s,\gamma \leq \alpha 1/2
\gamma | | \delta k\lambda ,h| | s,\gamma | | \delta k\lambda ,h  - \delta k - 1

\lambda ,h | | \gamma .
(6.6)

Applying Young's inequality to (6.6), plugging the result into (6.5), and choosing
L\gamma ,u = L\xi /2(1 - \zeta ) gives

(6.7)\biggl( 
1 + \tau 

L\gamma ,p

2

\biggr) 
| | \delta k\lambda ,h| | 2\gamma + \tau | | \delta k\lambda ,h| | 2s,\gamma + \tau 

L\gamma ,p

2
| | \delta k\lambda ,h  - \delta k - 1

\lambda ,h | | 2\gamma +

\biggl( 
L\gamma ,u

2
+ c\bfK ,\gamma 

\biggr) 
\tau | | \delta k\bfu ,h| | 2\gamma 

\leq 
\biggl( 
L\gamma ,u

2
 - \zeta \xi m

\biggr) 
\tau | | \delta k - 1

\bfu ,h | | 2\gamma + \tau 
L\gamma ,p

2
| | \delta k - 1

\lambda ,h | | 2\gamma + \tau 
\alpha \gamma 

2
| | \delta k - 1

\lambda ,h  - \delta k\lambda ,h| | 2\gamma +
\tau 

2
| | \delta k\lambda ,h| | 2s,\gamma .

We let L\gamma ,p \geq \alpha \gamma , to obtain the estimate (6.1). We repeat the same techniques as

in (5.30), to get that | | \nabla \tau \cdot \delta k\bfu ,h| | \gamma tends to 0 in L2(\gamma ). This shows that \delta n,k\lambda ,h tends to

0 in L2(\gamma ) and \delta k\bfu ,h tends to 0 in H(div\tau , \gamma ).

Our contraction estimate shows that the strength of the nonlinearity and the
matrix-fracture (DD) coupling controls the convergence rate. In practice, the con-
traction factor is better if we take into account the energy norm \tau | | \delta k\lambda ,h| | 2s,\gamma /2 using
the bound (5.5). Since we assume L\gamma ,p \geq \alpha \gamma , we have to study the robustness of the
algorithm when \alpha \gamma \rightarrow \infty .

Lemma 6.2 (contraction robustness). Assuming continuous pressure across \gamma 
(\alpha \gamma \rightarrow \infty ), then letting L\gamma ,u(\zeta ) = L\xi /2(1 - \zeta ) with \zeta to be chosen in [0, 1), and L\gamma ,p \geq 
C2

dTr/(c\bfK h), the contraction (6.1) holds true for the ItLDD scheme in Algorithm 4.3.

Proof. Recall the estimate (6.5) which holds true in that case. We then estimate
the coupling term | s\gamma (\delta k\lambda ,h  - \delta k - 1

\lambda ,h , \delta 
k
\lambda ,h)| with the help of (5.10):

| s\gamma (\delta k\lambda ,h  - \delta k - 1
\lambda ,h , \delta 

k
\lambda ,h)| \leq | | \delta k\lambda ,h| | s,\gamma | | \delta k\lambda ,h  - \delta k - 1

\lambda ,h | | s,\gamma ,(6.8)

\leq CdTrc
 - 1/2
\bfK h - 1/2| | \delta k\lambda ,h| | s,\gamma | | \delta k\lambda ,h  - \delta k - 1

\lambda ,h | | \gamma .

D
ow

nl
oa

de
d 

03
/1

6/
22

 to
 1

29
.1

77
.1

69
.2

28
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

602 AHMED ET AL.

We apply Young's inequality to (6.6) and replace the result in (6.5), while choosing
L\gamma = L\xi /2(1 - \zeta ):

(6.9)\biggl( 
1 + \tau 

L\gamma ,p

2

\biggr) 
| | \delta k\lambda ,h| | 2\gamma + \tau | | \delta k\lambda ,h| | 2s,\gamma + \tau 

L\gamma ,p

2
| | \delta k\lambda ,h  - \delta k - 1

\lambda ,h | | 2\gamma +

\biggl( 
L\gamma ,u

2
+ c\bfK ,\gamma 

\biggr) 
\tau | | \delta k\bfu ,h| | 2\gamma 

\leq 
\biggl( 
L\gamma ,u

2
 - \zeta \xi m

\biggr) 
\tau | | \delta k - 1

\bfu ,h | | 2\gamma +
L\gamma ,p

2
\tau | | \delta k - 1

\lambda ,h | | 2\gamma +
C2

dTr

c\bfK 
h - 1 \tau 

2
| | \delta k - 1

\lambda ,h  - \delta k\lambda ,h| | 2\gamma +
\tau 

2
| | \delta k\lambda ,h| | 2s,\gamma .

Choosing L\gamma ,p \geq C2
dTr/(c\bfK h) gives the contraction (6.1). The rest of the proof is as

in Theorem 6.1.

Finally, we give alternative convergence results when (h, 1/\alpha \gamma ) \rightarrow 0, leading to
an extremely large stabilization parameter L\gamma ,p which deteriorates the convergence
rate of the ItLDD scheme. These results are important to show the robustness of the
ItLDD scheme for extreme physical or discretization situations.

Proposition 6.3 (alternative convergence results). If L\gamma ,p = 0 and L\gamma ,u =
L\xi /2(1 - \zeta ) with \zeta \in [0, 1), Algorithm 4.3 is convergent under the constraint on the
time step \tau \leq 1/\alpha \gamma . The following estimate for Algorithm 4.3 holds true and defines
a contraction \Bigl( 

1 - \alpha \gamma 

2
\tau 
\Bigr) 
| | \delta k\lambda ,h| | 2\gamma +

\biggl( 
L\gamma ,u

2
+ c\bfK ,\gamma 

\biggr) 
\tau | | \delta k\bfu ,h| | 2\gamma (6.10)

\leq 
\biggl( 
L\gamma ,u

2
 - \zeta \xi m

\biggr) 
\tau | | \delta k - 1

\bfu ,h | | 2\gamma +
\alpha \gamma 

2
\tau | | \delta k - 1

\lambda ,h | | 2\gamma .

Moreover, if \alpha \gamma \rightarrow \infty , Algorithm 4.3 is convergent as \tau /h \leq c\bfK /C
2
dTr(=: C - 1

\gamma ,s) holds
true, and the resulting estimate is a contraction given by\biggl( 

1 - C\gamma ,s

2

\tau 

h

\biggr) 
| | \delta k\lambda ,h| | 2 +

\biggl( 
L\gamma ,u

2
+ c\bfK ,\gamma 

\biggr) 
\tau | | \delta k\bfu ,h| | 2(6.11)

\leq 
\biggl( 
L\gamma ,u

2
 - \zeta \xi m

\biggr) 
\tau | | \delta k - 1

\bfu ,h | | 2 + C\gamma ,s

2

\tau 

h
| | \delta k - 1

\lambda ,h | | 2.

Proof. We let L\gamma ,p = 0 in the estimate (10) to get

| | \delta k\lambda ,h| | 2\gamma + \tau (b\gamma (u
n,k - 1
h,\gamma ) - b\gamma (u

n
h,\gamma ), \delta 

k
\bfu ,h)\gamma + L\gamma ,u\tau (\delta 

k
\bfu ,h  - \delta k - 1

\bfu ,h , \delta 
k
\bfu ,h)\gamma + \tau a\gamma (\delta 

k
\bfu ,h, \delta 

k
\bfu ,h)

=  - \tau s\gamma (\delta k - 1
\lambda ,h , \delta 

k
\lambda ,h).

With the same techniques used to get (6.5), we get for L\gamma ,u = L\xi /2(1 - \zeta ) with
\zeta \in [0, 1), \biggl( 

1 + \tau 
L\gamma ,p

2

\biggr) 
| | \delta k\lambda ,h| | 2\gamma + \tau | | \delta k\lambda ,h| | 2s,\gamma +

\biggl( 
L\gamma ,u

2
+ c\bfK ,\gamma 

\biggr) 
\tau | | \delta k\bfu ,h| | 2\gamma (6.12)

\leq 
\biggl( 
L\gamma ,u

2
 - \zeta \xi m

\biggr) 
\tau | | \delta k - 1

\bfu ,h | | 2\gamma  - \tau s\gamma (\delta 
k - 1
\lambda ,h , \delta 

k
\lambda ,h).

The coupling term on the right-hand side is now estimated as

s\gamma (\delta 
k - 1
\lambda ,h , \delta 

k
\lambda ,h)| \leq \alpha \gamma | | \delta k - 1

\lambda ,h | | \gamma | | \delta k\lambda ,h| | \gamma ,

D
ow

nl
oa

de
d 

03
/1

6/
22

 to
 1

29
.1

77
.1

69
.2

28
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ROBUST DD FOR NONLINEAR FRACTURE FLOW MODELS 603

where we used (5.5). Applying Young's inequality and inserting the result into (6.12),
we get (6.10). The second estimate (6.11), when \alpha \gamma \rightarrow \infty , is similar to (6.10), but
with using (5.10) to bound the coupling term.

The constraint on \tau /h is less restrictive than the constraint on L\gamma ,p in Lemma 6.2.
Moreover, the constraint \tau \leq 1/\alpha \gamma may have the same implication on the convergence
rate as taking L\gamma ,p \geq \alpha \gamma in Theorem 6.1. In practice, the choice between the two
constraints may depend on the situation. All the results show a strong correlation
between the Robin parameter \alpha \gamma , the time step \tau (or \tau /h), and the stabilization
parameter L\gamma ,p.

7. Implementation of LDD schemes using multiscale flux basis. Last,
we propose an implementation of the interdimensional map \scrS RtN

\gamma based on the con-
struction of a multiscale mortar flux basis [2, 28]. We want to solve the reduced
scheme in Definition 3.2 for different physical and L-scheme parameters, for varia-
tions of non-Darcy flow problems by changing the nonlinearity \xi , and to compare the
two LDD schemes. In section 4, we have seen that the dominant computational cost
of both Algorithms 4.1 and 4.3 comes from the subdomain solves by evaluating the
action of \scrS RtN

\gamma using Algorithm 4.2 (step 2(b)). We have also seen that the condition
number (5.26)--(5.27) of the linearized interface problem grows with refining the grids
or increasing \alpha \gamma . Therefore, in the case of a large number of iterations, we want to
have an efficient method to evaluate the action of \scrS RtN

\gamma .
The construction of the interdimensional mapping is achieved by precomputing

and storing the flux subdomain responses, called the multiscale flux basis (MFB),
associated with each fracture pressure degree of freedom on each subdomain [29]. Let

(\Phi \ell 
h,\gamma )

\scrN h,\gamma 

\ell =1 be a set of basis functions on Mh,\gamma , where \scrN h,\gamma is the dimension of Mh,\gamma .

Then, each function \lambda h,\gamma \in Mh,\gamma can be represented as \lambda h,\gamma =
\sum \scrN h,\gamma 

\ell =1 \lambda \ell h,\gamma \Phi 
\ell 
h,\gamma . The

MFB functions corresponding to (\Phi \ell 
h,\gamma )

\scrN h,\gamma 

\ell =1 are computed as follows.

Algorithm 7.1 (Assembly of the MFB).

1. Enter the basis (\Phi \ell 
h,\gamma )

\scrN h,\gamma 

\ell =1 . Set \ell := 0.
2. Do

(a) Increase \ell := \ell + 1.
(b) Project \Phi \ell 

h,\gamma on the subdomain boundary, \lambda \ell h,i = \scrQ h,i(\Phi 
\ell 
h,\gamma ).

(c) Solve problem (3.8) in each subdomain \Omega i.
(d) Project the resulting flux onto the pressure space on the fracture,

\Psi \ell 
h,\gamma ,i :=  - \scrQ T

h,iu
\ast 
h,i(\lambda 

\ell 
h,i) \cdot ni.

While \ell \leq \scrN h,\gamma .

Hence, the action of \scrS RtN
\gamma is given by

(7.1) \scrS RtN
\gamma (\lambda h,\gamma ) =

2\sum 
i=1

\scrS RtN
\gamma ,i (\lambda h,\gamma ) =

2\sum 
i=1

\scrN h,\gamma \sum 
\ell =1

\lambda \ell h,\gamma \scrS RtN
\gamma ,i (\Phi \ell 

h,\gamma ) =

2\sum 
i=1

\scrN h,\gamma \sum 
\ell =1

\lambda \ell h,\gamma \Psi 
\ell 
h,\gamma ,i.

This holds true at any time step and at any iteration of MoLDD or ItLDD. The use
of MFB removes the dependence between the total number of subdomain solves and
the number of their iterations.

Remark 7.2 (fracture network). For the case of a fracture network, say \gamma =
\cup i \not =j\gamma ij , where \gamma ij is the fracture between the subdomain \Omega i and \Omega j , the previous
basis reconstruction is then applied independently on each fracture.
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Remark 7.3 (inner solver). Our numerical examples have a single one-dimensional
fracture and, thus, we only use the direct methods to solve the interface system. For
large-scale problems with many fractures or in three spatial dimensions, we emphasize
the need for an iterative solver, such as GMRES. However, we see from Theorem 5.9
that the condition number of the DD system depends on h and \alpha \gamma , which in turn
influences the number of iterations of the iterative solver. To retain robustness, we
can use a preconditioner [7, 18] or a coarse mortar space that is compensated by
taking higher-order mortars [9, 50].

8. Numerical examples. In this section, we present several test cases to show
how the schemes behave (1) for different values for numerical and physical parame-
ters (2) with coarsening/refining mortar grids (3) on extensions to other governing
equations. We subsequently study the value of L\gamma ,opt in the MoLDD scheme and the
relationship between L\gamma ,u and L\gamma ,p in the ItLDD scheme. The performance of schemes
is measured in the overall number of iterations needed for each scheme to reach the
stopping criteria. In the implementation of both schemes, we consider that the so-
lution has converged if the relative error of the fracture solution is less than 10 - 5, if
the value at the previous iteration step is not below machine precision. Otherwise
we use the absolute error. We use a direct method (LU decomposition) to solve the
linearized interface problem since the size of the system is relatively small.

To keep the presentation simple, we consider the domain and several parameters
in common in all the examples in relation to the first test case in [41]. The domain
\Omega := (0, 2) \times (0, 1) is intersected with a fracture defined as \gamma := \{ x = 1\} . On the
boundaries of the rock matrix \{ x = 0\} and \{ x = 2\} we impose pressure boundary
conditions with values 0 and 1, respectively. We set a zero flux boundary condition on
the rest of \partial \Omega . The boundary of the fracture at the tips \{ y = 1\} \cap \partial \gamma and \{ y = 0\} \cap \partial \gamma 
inherits the pressure boundary conditions from the rock matrix. The examples are
set on the time interval I = (0, 1) with homogeneous pressure initial condition. As
for the physical parameters, we take the permeability matrix for the bulk Ki = I,
while the source terms fi and f\gamma are equal to zero. First, we consider the Forchheimer
flow model where the nonlinear term is \xi (u\gamma ) = \beta | u\gamma | u\gamma . The parameter \beta is a fluid
dependent nonnegative scalar known as the Forchheimer coefficient, and | \cdot | denotes
the Euclidean vector norm | u\gamma | 2 = u\gamma \cdot u\gamma . It is straightforward to see that \xi is a
simply increasing function and satisfies condition (A1). For more details see [30, 36]
and references therein.

8.1. Stability with respect to the user-given parameters. We first study
the performances of MoLDD and ItLDD solvers by varying the time step \tau , the mesh
size h, and the L-scheme parameters (L\gamma ,u, L\gamma ,p). We let K\gamma = 1, \alpha \gamma = 104 and
\beta = 1 and according to the theoretical results, the L-scheme parameters are given by
L\gamma ,u \approx 1 and L\gamma ,p = 103. Results in Table 1 report the number of iterations required
by the two LDD solvers while varying the mesh size h and time step size \tau . Each
column of the tables represent results for a time step n.

Regardless of the choice of scheme, we can observe that the number of iterations
is independent of the mesh size and slightly dependent on the time step size. The
reason for the latter might be related to the fact that we consider the solution at
the previous iteration as the initial guess for the next iteration. Thus, by decreasing
the time step size, the variation of the solution between steps varies less and so does
the number of iterations. Overall, the sequential ItLDD and the monolithic MoLDD
solvers behave similarly; one can also see a slightly better result for the iterative solver
in Table 1 (left). Note that any comparison of the two solvers does not make sense for
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Table 1
Results for the example of subsection 8.1. Top two tables correspond to solving with the MoLDD

scheme, while bottom two correspond to solving with the ItLDD scheme. On the left we report the
number of iterations by varying the mesh size h for a fixed time step \tau = 2 - 4, while on the right
depending on the time step size \tau for a fixed mesh size h = 2 - 5.

h\setminus n 1 2 3 4 5
2 - 1 17 12 11 10 9
2 - 3 17 11 10 9 8
2 - 5 17 11 10 9 8

\tau 
2 - 2 17 11 10 9
2 - 3 17 10 9 9 8 8 7 6
2 - 4 16 10 9 9 9 8 8 8 7 7 7 6 6 6 5 5

h\setminus n 1 2 3 4 5
2 - 1 17 8 7 7 6
2 - 3 17 9 8 7 7
2 - 5 17 9 8 7 7

\tau 
2 - 2 17 9 8 7
2 - 3 17 10 9 8 8 7 6 6
2 - 4 16 10 9 9 9 8 8 8 7 7 7 6 6 6 5 5

0.0 0.5 1.0 1.5 2.0 2.5
Lγ,u

5

10

15

20

25

]

(a) MoLDD scheme

L γ
,u

0.0
0.5

1.0
1.5

2.0

log(Lγ,p) 2.53.03.54.0

]
10

20

30

40

50

60

(b) ItLDD scheme

Fig. 1. Results for the example of subsection 8.1. We report the number of iterations \sharp for
different values of L\gamma ,u, and L\gamma ,p. In both cases we report the third time step.

the simple reason that the amounts of stabilization fixed by L\gamma ,p and L\gamma ,u are not yet
optimal. Another explanation is that the amount of stabilization in the monolithic
solver MoLDD is set solely by L\gamma ,u, in contrast to the iterative solver ItLDD where
L\gamma ,p and L\gamma ,u are used.

Finally, we recall that with the use of the MFB, the computational costs of the
two solvers is practically the same. The main cost is done offline, which is mostly
related to the number of mortar degrees of freedom. As an example, the computa-
tional cost needed to draw the results for h = 2 - 5 of the two right tables in Ta-
ble 1 is approximately equal to 96 subdomain solves (Number of degrees of freedom \ast 
Number of subdomains + 2N), where two solves per time step are required to form
the right-hand side in (4.1) (for MoLDD) and (4.3) (for ItLDD). Without MFB, the

cost should be
\sum N

n=1

\sum Nn
Lin

k=1 N
k
dd + 2N , where Nn

Lin is the number of iterations of the
L-scheme, and Nk

dd denotes the number of DD iterations. Thus, if we assume a fixed
Nk

dd throughout the simulation, say Nk
dd = 2, this number will be at least 1012 sub-

domain solves, so that with MFB we make a save of approximately 91\% of the total
subdomain solves.

In Figure 1(a), we plot the number of iterations of the user-given L\gamma ,u in the
MoLDD solver. We consider 100 values of L\gamma ,u, from 0 to 2.5 with uniform step 0.025.
The other parameters are fixed as follows: \beta = 1, h = 0.125, and \tau = 0.2. The graph
in this figure behaves very similarly to what is usually observed for the L-type schemes
(a typical V-shape graph), highlighting a numerically optimal value L\gamma ,opt between
0.5 and 1. The number of iterations increases for small and large values of L\gamma ,u. This
behavior is common for all time steps. We expect such a behavior when choosing
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Table 2
Results for the example of subsection 8.2 reporting the number of iterations by varying the

parameter \beta (top) and by varying \alpha \gamma (bottom). Left tables correspond to solving with the MoLDD
solver, while the right ones correspond to solving with the ItLDD solver.

\beta \setminus n 1 2 3 4 5
0.1 17 9 8 7 7
1 17 9 8 7 7
100 9 8 7 6 5

\beta \setminus n 1 2 3 4 5
0.1 17 11 10 9 8
1 17 11 10 9 8
100 14 10 9 9 8

\alpha \gamma \setminus n 1 2 3 4 5
102 17 9 8 7 7
104 17 9 8 7 7
106 17 9 8 7 7
108 17 9 8 7 7

\alpha \gamma \setminus n 1 2 3 4 5
102 17 11 10 9 9
104 17 11 10 9 8
106 17 11 10 9 8
108 17 11 10 9 8

L\gamma ,u close to zero because it directly influences the contraction factor in (5.28). We
can also see that the identified parameter L\gamma ,opt \approx 1 is close to the optimal one. In
Figure 1(b), we show the performance of the ItLDD solver with regards to changing
parameters L\gamma ,u and L\gamma ,p. We consider L\gamma ,u taking 50 values uniformly distributed
on the interval (0, 2.5), while L\gamma ,p = 10x, where the x are 21 equidistant values on the
interval (2.2, 4.2) with step 0.1. We can observe on the surface plots that there is a
global minimum that determines the optimal choice for L\gamma ,u and L\gamma ,p. For example,
the minimum number of iterations for this flow model is 5 for L\gamma ,u between 0.59
and 1.1 and log(L\gamma ,p) between 2.8 and 3, in all time steps. Similarly to MoLDD,
the number of iterations required by the ItLDD solver increases when the L-scheme
parameters assume low values. Particularly, the scheme diverges when L\gamma ,p \leq 102.
In the analysis of the scheme we require that L\gamma ,p \geq \alpha \gamma , but the lower values also
allow a good convergence behavior, concluding that the theoretical lower bound is
possibly too strict, but it certainly exists. Therefore, in practice, we can slightly
relax the bounds on the L-scheme parameters to still obtain good performance of the
solver. It is also relevant to mention that the normal permeability constant \alpha \gamma = 104

is sufficiently large to apply the limit case results in Lemma 6.2.
Crucially, the computational cost needed to draw Figures 1(a) and 1(b), is exactly

equal to only one realization with fixed (L\gamma ,u, L\gamma ,p), confirming the utility of the MFB
on fixing the total cost and avoiding any computational overhead if these parameters
are not optimal.

8.2. Robustness with respect to the physical parameters. We want to
show now the robustness of the algorithms with respect to \alpha \gamma and \beta ; \alpha \gamma controls
the strength of the fracture-matrix coupling, while \beta controls the strength of the
nonlinearity. We fix the mesh size h = 0.125 and the time step \tau = 2 - 3.

In Table 2 (top), we study the dependency of the number of iterations on the
Forchheimer coefficient \beta . The LDD solvers show a weak dependency of the number of
iterations on the values of \beta , giving slightly better results for larger values. Overall, the
MoLDD solver performs slightly better then the ItLDD. Bear in mind that changing
\beta directly influences L\gamma ,u. This shows that this parameter should be optimized in
accordance with the given value of \beta . Again, we suggest that the decrease in number
of iterations over time steps may be due to using the previous iteration solution as the
initial guess in the subsequent iteration. Moreover, all the simulations in Table 2 (top)
are run with a fixed computational cost, due to using MFB. Thus, strengthening or
changing the nonlinearity effects that may increase the number of iterations if L\gamma ,u or
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Fig. 2. p \in [0, 1] and \bfu for the example in subsection 8.2 with \beta = 102 and \alpha \gamma = 104.

Table 3
Results for the example of subsection 8.3 reporting the number of iterations for conforming

and nonconforming (coarse scale) grids on the fracture. Left table corresponds to solving with the
MoLDD scheme, while the right one corresponds to solving with the ItLDD scheme.

\sharp cells\setminus n 1 2 3 4 5
8 3 3 3 3 2
16 3 3 3 3 2
64 3 3 3 3 2

\sharp cells\setminus n 1 2 3 4 5
8 11 10 10 9 9
16 11 10 10 9 9
64 18 15 15 15 14

L\gamma ,p are not carefully set, has no practical effects on the total computational cost. We
can conclude that the two solvers remain robust when strengthening the nonlinearity
effects. In Table 2 (bottom), we show the dependency of the number of iterations
on the Robin parameter \alpha \gamma . Clearly, the number of iterations remains stable when
strengthening or weakening matrix-fracture coupling, confirming and concluding the
robustness of both schemes with respect to \alpha \gamma . The computational cost in Table 2
(bottom) shows any change of \alpha \gamma requires recomputing the MFB. However, this cost
remains fixed when running and comparing the two LDD solvers for a fixed \alpha \gamma . An
example of a solution is reported in Figure 2.

8.3. Flexibility of coarsening/refining the mortar grids. In this set of
simulations, we consider the case of weak interdimensional coupling by fixing \alpha \gamma = 1
with a low permeable fracture with K\gamma = 10 - 4I. We fix the following parameters:
h = 2 - 5 (on the matrix), L\gamma ,u = 1, L\gamma ,p = 2 \cdot 102, and \beta = 1. We allow for a coarse
scale of the mortar grids on the fracture; h\gamma = 2 - 3, h\gamma = 2 - 4, h\gamma = 2 - 5, where the
last choice corresponds to matching grids on the fracture. In Table 3, we plot the
resulting number of iterations required by each LDD solver. Particularly, we can see
that the sequential ItLDD solver in the matching grids has more difficulty converging,
so the effectiveness of the MFB is more pronounced. The monolithic solver MoLDD
seems to be more robust with refining of the mortar grids. Here, the computational
cost of the construction of the interdimensional operator benefits from fewer mortar
degrees on the fracture.

Example of a solution is depicted in Figure 3, where we can see that conform-
ing and nonconforming grids (with h\gamma = 2 - 3) on the fracture give indistinguishable
results.

8.4. Extension to other flow models: The Cross model. The aim of this
test case is to show that our LDD solvers can be applied to more general flow models.
On the fracture, we assume the Cross flow model to relate p\gamma and u\gamma . We have the

D
ow

nl
oa

de
d 

03
/1

6/
22

 to
 1

29
.1

77
.1

69
.2

28
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

608 AHMED ET AL.

Fig. 3. p \in [0, 1] and \bfu for the example in subsection 8.3 with \bfK \gamma = 10 - 4I, \beta = 1, and \alpha \gamma = 1.
With fine (left) and coarse (right) mortar grids.

L γ
,u

0.0
0.5

1.0
1.5

2.0

log(Lγ,p) 2.53.03.54.0

]

10
20

30

40

50

60

70

(a) ItLDD scheme (b) p and \bfu 

Fig. 4. Results for the example of subsection 8.4. On the left, we report the number of iterations
\sharp for different values of L\gamma ,u and L\gamma ,p, for the third time step. On the right, p \in [0, 1] and \bfu for
the example in subsection 8.4 with \omega = 1, c\omega = 1, and r = 1.5.

nonlinear term given by

\xi (u\gamma ) =
(\omega 0  - \omega \infty )u\gamma 

1 + c\omega | u\gamma | 2 - r
.

The parameters 0 \leq \omega \infty < \omega 0, c\omega , and r are positive scalars related to the rheology
of the considered liquid. In (2.2a), K\gamma is now replaced by \omega \infty . We let \omega := \omega \infty  - \omega 0

and set \omega 0 = 2, \omega \infty = 1, c\omega = 1, and r = 1.5. It is possible to verify that \xi satisfies
the assumption (A1). See [23, 24] and the references therein.

We choose the iterative solver ItLDD and recompute the simulations of subsec-
tions 8.1 and 8.2 for the Cross flow model. We set then L\gamma ,u = L\xi /2 = 0.5 and
L\gamma ,p = \alpha \gamma = 103 as derived from the theory. The results (not shown) demonstrate
first the stability of the ItLDD solver with respect to the parameters h and \tau . Cru-
cially, all the simulations in this example do not require additional computational
cost (except fracture solves), as we use the same MFB inherited from the Forch-
heimer model. We set h = 2 - 5 with slightly coarse grids on the fracture h\gamma = 2 - 4

and \tau = 2 - 4.
In Figure 4(a), we show the results for the ItLDD solver on a set of realizations

of (L\gamma ,u, L\gamma ,p). The results do not differ greatly compared to the case of the Forch-
heimer's flow model. The convexity of the surface plots in all time steps is clear giving
away an optimal combination of values for L\gamma ,u and L\gamma ,p. For example, we can find a
minimum of 5 iterations for L\gamma ,u between approximately 0.73 and 1.57, and L\gamma ,p be-
tween 102.8 and 103. Note that the parameters prescribed by the theoretical results,
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Table 4
Results for the example of subsection 8.4. On the left the number of iterations by varying the

values of \omega ; in the center when c\omega changes, while, on the right, for different values of r.

\omega \setminus n 1 2 3 4 5
0.1 15 11 10 9 8
1 10 9 8 8 8
2.5 30 19 16 14 12

c\omega \setminus n 1 2 3 4 5
1 10 9 8 8 7
10 11 9 9 8 7
100 16 11 10 9 8

r\setminus n 1 2 3 4 5
1 10 9 9 8 7
1.5 10 9 8 8 7
4.5 17 11 10 9 8

L\gamma ,u = 0.5 and L\gamma ,p = 103 form a good candidate in this simulation. Finally, we
mention that we can use an optimization process, as detailed in [46], in order to get
the optimal values. Precisely, the fact that the choice of the stabilization parameters
is independent of the mesh size, one can then run the LDD solver on a coarse spatial
mesh and one time step, and study the stabilization parameters in specific intervals
centered around the theoretical values. The parameters that give the lowest number
of iterations are then used for the real computations. This ``brute-force"" optimization
is simple to do in practice when using the MFB.

In Table 4, we consider testing the dependency of the number of iterations on
the rheology parameters of the flow model. We provide results of several tests on \omega ,
c\omega , and r. While testing for one of the parameters, the other two are fixed to either
\omega = 1, c\omega = 1 or r = 1.5. We can observe that \omega strongly influences the performance
of both methods making it difficult to converge when \omega gets larger, that is, when
the nonlinearity is stronger. For larger values of \omega the number of iterations increases
drastically, suggesting the necessity to adjust the L-scheme parameters as well as to
use the MFB. The number of iterations was less dependent of the parameter c\omega . This
parameter itself contributes less to the strength of the nonlinearity in comparison to \omega ,
and, thus, influencing less the performance of the solver. Finally, we can again notice
a moderate dependency of number of iterations on parameter r. This is especially
shown when r > 2 and the exponent on the vector norm of u\gamma becomes negative.
Thus, the nonlinear flow function \xi is exponential in the values of u\gamma and accounts for
the very fast flow in the fractures. We finally recall that the robustness study drawn
in Table 4 has the cost of one realization with fixed parameters, confirming the role
of the MFB in our solvers. For the robustness of LDD solvers with respect to the
matrix-fracture coupling effects induced by the parameter \alpha \gamma , we have seen that both
solvers are robust when strengthening or weakening the coupling effects (results not
shown). Example of a solution is reported in Figure 4(b).

9. Conclusions. In this study, we have presented two new strategies to solve a
compressible single-phase flow problem in a porous medium with a fracture. In the
porous medium, we have considered the classical Darcy relation between the veloc-
ity and the pressure while, in the fracture, a general nonlinear law. We employ the
L-scheme to handle the nonlinearity term, but also to treat the interdimensional cou-
pling in the second proposed algorithm. To further achieve computational speed-up,
the linear Robin-to-Neumann codimensional map is constructed in an offline phase
resulting in a problem reduced only to the fracture interface. This approach allows us
to change the fracture parameters, or the fracture flow model in general, without the
need to recompute the problem associated with the rock matrix. We have shown the

D
ow

nl
oa

de
d 

03
/1

6/
22

 to
 1

29
.1

77
.1

69
.2

28
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

610 AHMED ET AL.

existence of optimal values for the L-scheme parameters, which are validated through
several numerical tests. Future developments can be explored towards domain de-
composition in time, where fast and slow fractures are solved asynchronously.
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