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WELL-POSEDNESS AND DISCRETIZATION FOR A CLASS OF
MODELS FOR MIXED-DIMENSIONAL PROBLEMS WITH

HIGH-DIMENSIONAL GAP\ast 

ERLEND HODNELAND\dagger , XIAOZHE HU\ddagger , AND JAN M. NORDBOTTEN\S 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . In this work, we show the underlying mathematical structure of mixed-dimensional
models arising from the composition of graphs and continuous domains. Such models are becoming
popular in applications, in particular, to model the human vasculature. We first discuss the model
equations in the strong form, which describes the conservation of mass and Darcy's law in the
continuum and network as well as the coupling between them. By introducing proper scaling, we
propose a weak form that avoids degeneracy. Well-posedness of the weak form is shown through
standard Babu\v ska--Brezzi theory. We also develop the mixed formulation finite-element method
and prove its well-posedness. A mass-lumping technique is introduced to derive the two-point flux
approximation (TPFA) type discretization as well, due to its importance in applications. Based on
the Babu\v ska--Brezzi theory, error estimates can be obtained for both the finite-element scheme and
the TPFA scheme. We also discuss efficient linear solvers for discrete problems. Finally, we present
some numerical examples to verify the theoretical results and demonstrate the robustness of our
proposed discretization schemes.
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1. Introduction. Coupled fluid flow in networks and porous domains arise in
various applications, including blood flow in the human body as well as wells in geo-
logical applications. Such models are referred to as mixed-dimensional when the net-
work flow is simplified to a family of one-dimensional domains along with the network
edges.1 Moreover, when the coupling between the network and the domain exceeds
two topological dimensions, the model is referred to as having a high-dimensional
gap [21, 19]. A high-dimensional gap thus arises when the flow in the network is
connected to a domain of dimension d \geq 2 through its leaf nodes or when the flow in
the network is connected to a domain of dimension d \geq 3 through its edges.

In this paper, we consider the problem composed of flow in one or more trees,
coupled with a (porous) domain. This setting is motivated by blood flow in the
brain, wherein the networks are the arterial and venous trees, and the domain is the
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Fig. 1. Illustration of a characteristic mixed-dimensional geometry associated with blood flow
in the brain. This illustration is based on the the data-set used in the full-brain simulation study
in section 5.3. The arterial tree is indicated in red and the venous tree in blue. Note the complex
geometry of the outer boundary of the brain (i.e., the domain \Omega ).

subresolution capillary bed. This context is shown in Figure 1, which we will return
to in the numerical results. Recognizing that the leaf nodes in the tree (referred to
as ``terminals"" hereafter) are in applications an artifact of limited imaging resolution,
we consider in our equations a mesoscale model wherein fluid is distributed into the
porous domain in a support region near the terminals. Such models have recently
been introduced in [15] and also considered in [16, 24], and are attractive also from a
mathematical perspective, as they avoid the singularities which otherwise characterize
the coupled equations. In this work, we will not adopt the precise models used in
[15, 16] directly, as they consider an explicitly given structure of fluid distribution
between the network and the porous domain. In contrast, we will use a more canonical
formulation, where the flow resistance is given, and the fluid distribution from the
terminal is calculated.

Previous mathematical analysis of models with a high-dimensional gap has to a
large extent been focused on how to handle the singularities arising when the cou-
pling is ``pointwise"" between the network and the domain (see, e.g., [11, 17, 13]). In
contrast, the model discussed herein has to our knowledge not been subjected to math-
ematical analysis before. In the absence of singularities, we exploit in this paper the
framework recently developed for problems with a low-dimensional gap [6] and define
mixed-dimensional variables and operators for the coupled problem. Together with
appropriately defined integration and inner products, we then observe that we have
available tools such as a mixed-dimensional Stokes' theorem, integration by parts,
and Hilbert spaces. This forms the building blocks for our well-posedness results and
numerical analysis.

The main results of the paper are thus as follows:
\bullet A general, nonsingular model for a class of problems with a high-dimensional
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gap.
\bullet Well-posedness theory for both the continuous and the finite-dimensional
problems.

\bullet Convergence results for mixed finite-element approximation and a finite vol-
ume variant.

\bullet Numerical validation and application to a high-resolution data-set of a real
human brain.

We structure the paper as follows. In section 2, we present the model equations
in both strong and weak forms and show well-posedness. In sections 3 and 4, we state
and analyze the finite-element and finite volume approximations, respectively. The
theoretical results are validated in section 5. Finally, we give some conclusions in
section 6.

2. Model equations. In this section, we discuss the basic geometric setup and
model equations for coupled network-Darcy flow in the brain. We will both introduce
the strong form and then derive the weak form by introducing proper spaces.

2.1. Geometry. We are concerned with a domain \Omega \subset \BbbR n (which models the
capillaries). In addition, we are concerned with a finite collection of rooted trees \scrT 
with node (vertex) set \scrN \scrT and edge set \scrE \scrT (which model resolved arteries and veins).
The arterial and venous trees are considered disjoint and, therefore, form a forest
\scrF with node set \scrN = \cup \scrT \in \scrF \scrN \scrT and edge set \scrE = \cup \scrT \in \scrF \scrE \scrT . We will refer to the
composite (mixed-dimensional) problem domain of both \Omega and \scrF as the disjoint
union \frakB = \Omega \sqcup \scrF .

We further distinguish the nodes of the forest as follows. The node set \scrN can be
subdivided into three disjoint subsets, the first and last of which are assumed to be
nonempty: root nodes \scrN R, interior nodes \scrN I , and terminal nodes \scrN T . Note that \scrN =
\scrN R \cup \scrN I \cup \scrN T and we use \scrN \scrT ,R = \scrN \scrT \cap \scrN R, \scrN \scrT ,I = \scrN \scrT \cap \scrN I , and \scrN \scrT ,T = \scrN \scrT \cap \scrN T

to denote the root nodes, interior nodes, and the terminal nodes of a given tree \scrT ,
respectively. Naturally, we also have \scrN \scrT = \scrN \scrT ,R \cup \scrN \scrT ,I \cup \scrN \scrT ,T . We further divided
the root nodes \scrN R into two disjoint sets \scrN D, which consists of the Dirichlet root
nodes, and \scrN N , which consists of the Neumann root nodes. The Dirichlet root nodes
will be treat explicitly as Dirichlet (essential) boundary conditions, and the Neumann
root nodes will be implicitly handled through the right-hand side of the conservation
laws on the graph as Neumann (natural) boundary conditions. Following the same
convention, \scrN \scrT ,D and \scrN \scrT ,N denote the Dirichlet or Neumann root nodes of a given
tree \scrT , respectively. Note that each tree can only have one root. Therefore, we
can subdivide the forest into two disjoint subforests, i.e., Dirichlet rooted forest \scrF D,
which contains all the Dirichlet rooted trees \scrT D, and Neumann rooted forest \scrF N ,
which contains all the Neumann rooted trees \scrT N . Naturally, \scrN \scrF D

= \cup \scrT \in \scrF D
\scrN \scrT and

\scrN \scrF N
= \cup \scrT \in \scrF N

\scrN \scrT . Furthermore, we define \scrN \scrF D,R = \scrN \scrF D
\cap \scrN R, \scrN \scrF D,I = \scrN \scrF D

\cap \scrN I ,
\scrN \scrF D,T = \scrN \scrF D

\cap \scrN T , \scrN \scrF N ,R = \scrN \scrF N
\cap \scrN R, \scrN \scrF N ,I = \scrN \scrF N

\cap \scrN I , and \scrN \scrF N ,T =
\scrN \scrF N

\cap \scrN T . We denote the set of neighbors of the node i as \scrN i and the set of all the
edges meeting at i \in \scrN as \scrE i. Note that | \scrN i| = 1 and | \scrE i| = 1 if i \in \scrN R \cup \scrN T . These
concepts are illustrated for n = 2 in Figure 2.

2.2. Strong form. As primary variables we choose the domain pressure poten-
tial pD(\bfitx ) : \Omega \mapsto \rightarrow \BbbR and the node pressure potential pN : \scrN \mapsto \rightarrow \BbbR . Furthermore, we
consider the fluid mass fluxes denoted in the domain as \bfitq D(\bfitx ) : \Omega \mapsto \rightarrow \BbbR n, fluid mass
flow from node i to j denoted as qNi,j : \scrN \times \scrN \mapsto \rightarrow \BbbR , and fluid mass flow transferring

from terminal node i to point \bfitx denoted as qTi (\bfitx ) : \Omega \mapsto \rightarrow \BbbR . This last variable models
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Fig. 2. Schematic illustrating the mixed-dimensional geometry \frakB and its subdivision into a
continuous domain and a forest. Also shown is the coupling between the trees and the model domain.

the flow in unresolved arteries and veins and is a novel component of this work.
First, we consider the model equations for mass conservation, and they are given

as follows based on the above definitions and notation:

(Conservation of mass in the domain) \nabla \cdot \bfitq D  - 
\sum 
i\in \scrN T

qTi = rD in \Omega ,

(2.1)

(Conservation of mass at interior nodes)  - 
\sum 
j\in \scrN i

qNj,i = rNi for all i \in \scrN I \cup \scrN N ,

(2.2)

(Conservation of mass at terminal nodes)

\int 
\Omega 

qTi (\bfitx )d\bfitx  - qN\scrN i,i = rNi for all i \in \scrN T .

(2.3)

Here, the signs in (2.1)--(2.3) are chosen such that the right-hand-side terms, rD, rNi ,
i \in \scrN I \cap \scrN N \cap \scrN T , represent sources added to the system. Moreover, although both
qNi,j and qNj,i are used in (2.2) for notational convenience, they should be understood
as one unknown with a sign difference.
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Next, we verify the global conservation of mass based on (2.1)--(2.3) as follows:

(Stokes' theorem)

\int 
\partial \Omega 

\bfitq D \cdot \bfitn d\bfitx =

\int 
\Omega 

\nabla \cdot \bfitq D d\bfitx ,

(By (2.1)) =
\sum 
i\in \scrN T

\int 
\Omega 

qTi (\bfitx ) d\bfitx +

\int 
\Omega 

rD d\bfitx ,

(By (2.3)) =
\sum 
i\in \scrN T

qN\scrN i,i +
\sum 
i\in \scrN T

rNi +

\int 
\Omega 

rD d\bfitx ,

(By (2.2)) =
\sum 
i\in \scrN D

qNi,\scrN i
+

\sum 
i\in \scrN N\cup \scrN I\cup \scrN T

rNi +

\int 
\Omega 

rD d\bfitx ,

where the last step is also known as the graph-Stokes' theorem [12], which is the
counterpart of the Stokes' theorem on graphs.

We now propose constitutive laws for the flow. As our exposition is primarily con-
cerned with the geometric complexity, we herein only consider linear constitutive laws,
although it is reasonable that nonlinear extensions may be required in applications
(see, e.g., [25]). We therefore introduce material parameters, all of which are assumed
to be nonnegative (precise bounds are given later). For each edge e(i, j) \in \scrE , we assign
a conductivity kNe(i,j), which can be considered as the edge weights in a certain sense.

In the domain, for each \bfitx \in \Omega we assign a permeability tensor kD(\bfitx ) : \Omega \mapsto \rightarrow \BbbR n\times n.
For each terminal node i \in \scrN T , we assign connectivity function kTi (\bfitx ) : \Omega \mapsto \rightarrow \BbbR .
Now based on the assumption that the potential flow is linear, we have the following
constitutive laws:

(Potential flow in the domain (Darcy)) \bfitq D =  - kD(\bfitx )\nabla pD in \Omega ,

(2.4)

(Potential flow in network (Poiseuille)) qNi,j =  - kNe(i,j)
\bigl( 
pNj  - pNi

\bigr) 
for e(i, j) \in \scrE ,

(2.5)

(Potential flow from network to brain) qTi (\bfitx ) =  - kTi (\bfitx )
\bigl( 
pD  - pNi

\bigr) 
for i \in \scrN T .

(2.6)

The coefficient functions kTi (\bfitx ), i \in \scrN T , represent redistribution in a small region
around the terminal node i and thus can be assumed to have compact support in
some domain Bi \subseteq \Omega .

Remark 2.1. In practice, the characteristic length scale of Bi is comparable to
the distance to the nearest neighbor, i.e.,

(2.7) diam(Bi) = \scrO 
\biggl( 
min
j\in \scrN T

| \bfitx i  - \bfitx j | 
\biggr) 
.

Moreover, the grid is frequently given by the voxel resolution of the image and the
terminals are due to a finite resolution effect, and thus

(2.8) min
j\in \scrN T

| \bfitx i  - \bfitx j | = \scrO (h) ,

where h is the mesh size. The constants hidden in the \scrO notation in (2.7) and (2.8)
are usually between 2 and 10 in practical applications in which we are interested.
Consequentially, qTi (\bfitx ) is also compactly supported in Bi. While these considerations
could be applied to further refine some of the constants in the proofs below, we will
not exploit these details in this paper.
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In addition to the conservation laws and constitutive laws, we also need boundary
conditions to close the system. For the sake of simplicity, we only consider the case
of homogeneous Neumann data on \partial \Omega and the Dirichlet root nodes \scrN D, i.e.,

(2.9) \bfitq D \cdot \bfitn = 0 on \partial \Omega and pNi = 0, i \in \scrN D.

We want to point out that our results and analysis below also hold for other types
of boundary conditions as well, only at the cost of extra notation. The choice of
Neumann data on \partial \Omega is in a sense the most difficult case, as the inf-sup proofs can be
simplified considerably in the case where there is a measurable subset of the boundary
with Dirichlet data.

We close this subsection by the observation that by definition, qNi,j =  - qNj,i. There-
fore, although the total number of qNi,j is 2| \scrE | , we only use half of them as the un-

knowns, i.e., one unknown, qNi,j or q
N
j,i, for each edge e(i, j) \in \scrE . The choice is arbitrary.

In this work, we choose the one that follows the direction from the root node to the
terminal nodes. This direction is also the assigned orientation of the corresponding
edge e(i, j) \in \scrE (i.e., if we choose qNi,j , which means the fluid mass flows from node i
to node j, the edge e(i, j) is oriented such that it starts at node i and ends at node
j). This allows us to define the following signed incidence matrix \scrG \in \BbbR | \scrE | \times | \scrN | such
that

(2.10) \scrG \ell ,i =

\left\{     
1 if flow on edge \ell starts at node i,

 - 1 if flow on edge \ell ends at node i,

0 otherwise.

We want to point out that the signed incidence matrix represents a discrete gradient
on the graph and its transpose serves as a discrete divergence.

2.3. Mixed-dimensional formulation and scaling. The model equations
given above contain essentially three expressions of fluxes (\bfitq D, qT , and qN ) and two
expressions of potentials (pD and pN ). It will simplify the following exposition and
analysis considerably to treat these as mixed-dimensional variables on \frakB , on which
we define mixed-dimensional operators.

Therefore, let the mixed-dimensional pressure be denoted as p : \frakB \rightarrow \BbbR and
defined as the doublet of pressures p := [pD, pN ]. Equivalently, the mixed-dimensional
flux is defined as the triplet q := [\bfitq D, qT , qN ]. Now we define the mixed-dimensional
divergence operator \frakD \cdot as follows:

(2.11) \frakD \cdot q = \frakD \cdot [\bfitq D, qT , qN ] := [uD, uN ],

where

(2.12) uD := \nabla \cdot \bfitq D  - 
\sum 
i\in \scrN T

qTi and uNi =

\Biggl\{ 
 - 
\sum 

j\in \scrN i
qNj,i, i \in \scrN I \cup \scrN N ,\int 

Bi
qTi (\bfitx ) d\bfitx  - qN\scrN i,i

, i \in \scrN T .

Similarly, we define the mixed-dimensional gradient \frakD as

(2.13) \frakD p = \frakD [pD, pN ] := [\bfitv D, vT , vN ],

where

(2.14) \bfitv D := \nabla pD and vTi (\bfitx ) := pD(\bfitx ) - pNi , i \in \scrN T , and vN = \scrG pN .
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In addition, we introduce the function \frakK which contains all the material functions
kD, kTi (\bfitx ), i \in \scrN T , and k

N
e(i,j), e(i, j) \in \scrE , in (2.4) to (2.6), such that

\frakK  - 1[\bfitq D, qT , qN ] := [(kD) - 1\bfitq D, (kT ) - 1qT , (kN ) - 1qN ],

where kN = diag(kNe(i,j)). It is now straightforward to verify that with these defini-

tions, the conservation laws (2.1)--(2.3) can be summarized as

(2.15) \frakD \cdot q = r,

where r \equiv [rD, rN ]. Furthermore, the constitutive laws (2.4)--(2.6) can be summarized
as

(2.16) q =  - \frakK \frakD p.

While the physical model formulation is satisfactory for nondegenerate kTi (\bfitx ),
i \in \scrN T , it will be beneficial to rescale the coupling flux to avoid considering a
degenerate inner product when kTi (\bfitx ) \rightarrow 0 for some points or region in Bi. To

that aim, we introduce the square root of the transfer coefficient kSi (\bfitx ) =
\sqrt{} 
kTi (\bfitx ),

i \in \scrN T , and the scaled transfer mass flux qSi (\bfitx ) : \Omega \mapsto \rightarrow \BbbR , i \in \scrN T , is defined

as qSi (\bfitx ) =
\bigl( 
kSi (\bfitx )

\bigr)  - 1
qTi (\bfitx ). Thus, we replace (2.1), (2.3), and (2.6) with

(Conservation of mass in brain tissue) \nabla \cdot \bfitq D  - 
\sum 
i\in \scrN T

kSi q
S
i = rD in \Omega ,

(2.17)

(Conservation of mass at terminal nodes)

\int 
Bi

kSi q
S
i (\bfitx )d\bfitx  - qN\scrN i,i = rNi for all i \in \scrN T ,

(2.18)

(Potential flow from network to brain) qSi (\bfitx ) =  - kSi (\bfitx )
\bigl( 
pD  - pNi

\bigr) 
for i \in \scrN T ,

(2.19)

respectively. In this setting, we allow for degeneracy of the coupling term in the sense
that we allow kSi (\bfitx ) \mapsto \rightarrow 0. However, we require that kSi is bounded from above, i.e.,
kSi (\bfitx ) \leq CkS for i \in \scrN T and \bfitx \in \Omega . Furthermore, for all i, we require it to hold that\int 

Bi

kSi d\bfitx = ckS
i
\geq ckS > 0,

where ckS is a generic constant. We note that a similar scaling has been applied pre-
viously to handle degeneracies occurring in mantle dynamics [2] and flows in fractured
porous media [7].

Equivalently, we denote the scaled mixed-dimensional flux on \frakB as qS \equiv [\bfitq D, qS ,
qN ] and the scaling S such that

S - 1[\bfitq D, qT , qN ] := [\bfitq D, (kS) - 1qT , qN ].

Thus, qS = Sq, and we can introduce the rescaled divergence and gradients as \frakD S \cdot :=
\frakD \cdot S and \frakD S := S\frakD , respectively. The rescaled conservation equations are then
summarized as

(2.20) \frakD S \cdot qS = r.
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The rescaled conservation equations are summarized as

(2.21) qS =  - \frakK S\frakD Sp,

where \frakK S = S - 1\frakK S - 1, and thus

(2.22) (\frakK S) - 1[\bfitq D, qS , qN ] := [(kD) - 1\bfitq D, qS , (kN ) - 1qN ].

Note in particular that (\frakK S) - 1 applied to qS has unit weight and therefore does not
degenerate.

2.4. Weak form. In this subsection, we derive the weak formulation of the
system. The development will be equally valid for both the original model, (2.15)
and (2.16), as well as the rescaled model, (2.20) and (2.21). Thus, we will omit the
superscript S on the mixed-dimensional operators and variables to reduce notational
overload. Nevertheless, in order to allow for degeneracies, we will always have the
rescaled equations in mind, and thus when we need to specifically refer to qS , and
consider the coefficient kS to appear in the differential operator as opposed to the
material law.

We first introduce proper function spaces on \frakB . We begin by defining a mixed-
dimensional square-integrable space for pressure as follows:

L2(\frakB ) := L2(\Omega )\times l2(\scrN \setminus \scrN D),

where L2(\Omega ) is the standard L2 space defined on domain \Omega and l2(\scrN \setminus \scrN D) denotes
the vector space \BbbR | \scrN \setminus \scrN D| that is defined on the node set \scrN \setminus \scrN D and equipped with
the standard 2-norm, i.e., the Euclidean norm. For flux, we consider a space with
bounded mixed-dimensional divergence as follows:

H(div,\frakB ) := H(div,\Omega )\times 
\prod 

i\in \scrN T

L2(Bi)\times l2(\scrE ),

where H(div,\Omega ) is the space defined on \Omega such that the functions and their divergence
are both square-integrable. In addition, L2(Bi) are standard L

2 spaces defined on Bi,
i \in \scrN T , and l

2(\scrE ) is the vector space \BbbR | \scrE | that is defined on edge set \scrE and equipped
with the standard 2-norm.

We associate the mixed-dimensional space L2(\frakB ) with the following inner prod-
uct:

(p,w) = ([pD, pN ], [wD, wN ]) :=

\int 
\Omega 

pDwD d\bfitx +
\sum 

i\in \scrN \setminus \scrN D

pNi w
N
i \forall p,w \in L2(\frakB ).

Similarly, we introduce the following inner product on H(div,\frakB ):

(q, v) = ([\bfitq D, qS , qN ], [\bfitv D, vS , vN ]) :=

\int 
\Omega 

\bfitq D \cdot \bfitv D d\bfitx +
\sum 
i\in \scrN T

\int 
Bi

qSi v
S
i d\bfitx +

\sum 
e(i,j)\in \scrE 

qNi,jv
N
i,j .

It is important to note that the inner products are defined such that integration
by parts holds for the mixed-dimensional operators (both original and rescaled cases).

Lemma 2.2 (integration by parts). For any q \in H(div,\frakB ) and p \in L2(\frakB ), we
have

(2.23) (\frakD p, q) + (p,\frakD \cdot q) =
\int 
\partial \Omega 

pD\bfitq D \cdot \bfitn d\bfitx +
\sum 
i\in \scrN D

pNi q
N
\scrN i,i.
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Proof. By a direct calculation (using the rescaled operators and variables, the
derivation for the original case is the same), we have that

(p,\frakD \cdot q) =
\int 
\Omega 

pD

\Biggl( 
\nabla \cdot \bfitq D  - 

\sum 
i\in \scrN T

kSi q
S
i

\Biggr) 
d\bfitx  - 

\sum 
i\in \scrN I\cup \scrN N

pNi
\sum 
j\in \scrN i

qNj,i

+
\sum 
i\in \scrN T

pNi

\biggl( \int 
Bi

kSi q
S
i d\bfitx  - qN\scrN i,i

\biggr) 
= - 

\int 
\Omega 

\nabla pD \cdot \bfitq D d\bfitx +

\int 
\partial \Omega 

pD\bfitq D \cdot \bfitn d\bfitx  - 
\sum 

e(i,j)\in \scrE 

(pNi  - pNj )qNi,j

+
\sum 
i\in \scrN D

pNi q
N
Ni,i  - 

\sum 
i\in \scrN T

\int 
Bi

kSi (p
D  - pNi )qSi d\bfitx 

=

\int 
\partial \Omega 

pD\bfitq D \cdot \bfitn d\bfitx +
\sum 
i\in \scrN D

pNi q
N
Ni,i  - (\frakD p, q),

which completes the proof.

To derive the weak formulation, we need to incorporate the boundary conditions.
Recall that we consider \bfitq D \cdot \bfitn = 0 on \partial \Omega ; therefore, we define the following function
space with boundary conditions:

H0(div,\frakB ) := H0(div,\Omega )\times 
\prod 

i\in \scrN T

L2(Bi)\times l2(\scrE ) \subset H(div,\frakB ),

where H0(div,\Omega ) := \{ \bfitq D \in H(div,\Omega ) | \bfitq D \cdot \bfitn = 0 on \partial \Omega \} . In addition, with any
material function \frakK , we introduce a weighted inner product on H(div,\frakB ) as follows:

(q, v)\frakK  - 1 := (\frakK  - 1q, v).

Using the above function spaces and notation, together with the mixed-dimensional
integration by parts formula (2.23) and the homogeneous Dirichlet boundary con-
ditions (2.9) on \scrN D, i.e., pNi = 0, i \in \scrN D, we have the following weak form for
the conservation laws (2.20) and constitutive laws (2.21): Find q \in H0(div,\frakB ) and
p \in L2(\frakB ) such that

(q, v)\frakK  - 1  - (p,\frakD \cdot v) = 0 \forall v \in H0(div,\frakB ),(2.24)

 - (\frakD \cdot q,w) =  - (r,w) \forall w \in L2(\frakB ).(2.25)

Note that due to the integration by parts formula, if nonhomogeneous boundary data
is considered, this would appear as extra right-hand-side terms in (2.24).

2.5. Well-posedness. In this subsection, we focus on the well-posedness of the
weak formulation (2.24)--(2.25). As in the previous subsection, it is understood that we
are considering the rescaled formulation, even though the superscript S is suppressed.
We first introduce the following norm on L2(\frakB ),

(2.26) \| p\| 2L2(\frakB ) := (p, p),

and the following norm on H(div,\frakB ),

(2.27) \| q\| 2H(div,\frakB ) := \| q\| 2\frakK  - 1 + \| \frakD \cdot q\| 2L2(\frakB ),
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where

(2.28) \| q\| 2\frakK  - 1 := (q, q)\frakK  - 1 .

We emphasize that the weights in this norm do not degenerate for the rescaled equa-
tions since the unit weight is applied to qS ; see (2.22).

The next lemma shows that the bilinear forms in the weak formulation (2.24)--
(2.25) are continuous.

Lemma 2.3 (continuity of (2.24)--(2.25)). For any q, v \in H(div,\frakB ) and w \in 
L2(\frakB ), we have

(q, v)\frakK  - 1 \leq \| q\| H(div,\frakB )\| v\| H(div,\frakB ),

(\frakD \cdot q,w) \leq \| q\| H(div,\frakB )\| w\| L2(\frakB ).

Proof. The continuity of both bilinear forms follows directly from the Cauchy--
Schwarz inequality and the definitions of the norms (2.27) and (2.26).

Now we show the ellipticity of the inner product (\cdot , \cdot )\frakK  - 1 on the kernel of the
mixed-dimensional divergence operator \frakD \cdot in the following lemma.

Lemma 2.4 (ellipticity of (2.24)--(2.25)). If q \in H(div,\frakB ) satisfies

(2.29) (\frakD \cdot q,w) = 0 \forall w \in L2(\frakB ),

then

(2.30) (q, q)\frakK  - 1 = \| q\| 2H(div,\frakB ).

Proof. Since \frakD \cdot q \in L2(\frakB ), from (2.29), we have

\| \frakD \cdot q\| L2(\frakB ) = 0.

Therefore, (2.30) follows directly from the above identity and the definition of the
norm (2.27).

Next, we discuss the inf-sup condition of the bilinear form (r,\frakD \cdot q) in the following
lemma.

Lemma 2.5 (inf-sup condition of (2.24)--(2.25)). There exists a constant \beta > 0
such that, for any given function r \in L2(\frakB ),

(2.31) sup
q\in H0(div,\frakB )

(r,\frakD \cdot q)
\| q\| H(div,\frakB )

\geq \beta \| r\| L2(\frakB ).

Here, the inf-sup constant \beta depends on | Bi| = measure(Bi), the maximal number
of overlaps between Bi, the structure of the trees \scrT \in \scrF , the domain \Omega , and the
constants ckS and CkS .

Proof. Assume r = [rD, rN ] \in L2(\frakB ) is given. We first aim to construct q =
[\bfitq D, qS , qN ] \in H0(div,\frakB ) such that \frakD \cdot [\bfitq D, qS , qN ] = [rD, rN ].

The first step is to construct qN based on the forest \scrF . Based on the signed
incidence matrix \scrG (2.10), we omit those columns that correspond to the Dirichlet
root nodes to obtain the signed incidence matrix with boundary conditions \scrG \scrF . Then
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we consider the following mixed-formulation graph Laplacian problem: Find q\scrF \in \BbbR | \scrE | 

and \psi \scrF \in \BbbR | \scrN |  - | \scrN D| such that

\frakK  - 1q\scrF  - \scrG \scrF \psi \scrF = 0,(2.32)

\scrG T
\scrF q\scrF = r\scrF .(2.33)

Here, for trees \scrT \in \scrF N , we set (r\scrF )i = rNi , i \in \scrN \scrT ,N \cup \scrN \scrT ,I , and for i \in \scrN \scrT ,T ,
we choose (r\scrF )i such that

\sum 
i\in \scrN \scrT 

(r\scrF )i = 0. The choice is not unique, and here we
choose

(2.34) (r\scrF )i = rNi  - 
\sum 

i\in \scrN \scrT 
rNi

| \scrN \scrT ,T | 
, i \in \scrN \scrT ,T , \scrT \in \scrF N .

For trees \scrT \in \scrF D, we set (r\scrF )i = rNi , i \in \scrN \scrT ,T \cup \scrN \scrT ,I , and for i \in \scrN \scrT ,T , we set

(r\scrF )i = rNi +
1

| \scrN \scrF D,T | 

\int 
\Omega 

rD d\bfitx +
1

| \scrN \scrF D,T | 
\sum 

i\in \scrN \scrF N

rNi , i \in \scrN \scrF D,T .

The reason for such a choice will be made clear later in the proof when we construct
\bfitq D. Note that, since the degree of node i \in \scrN \scrT ,T is one, once (r\scrF )i is fixed, we
naturally have (q\scrF )e(\scrN i,i) =  - (r\scrF )i. With this choice of r\scrF , the mixed-formulation
graph Laplacian problem (2.32)--(2.33) is well-posed in the sense that \psi \scrF is unique
(up to a constant on the trees \scrT \in \scrF N ) and q\scrF is uniquely defined. Once q\scrF is
obtained, we define qN by qNi,j = (q\scrF )e(i,j), e(i, j) \in \scrE .

From the mixed-formulation (2.32)--(2.33), we have the following estimates:

(2.35) \| \scrG T
\scrF q\scrF \| 2 = \| r\scrF \| 2 and (\frakK  - 1q\scrF , q\scrF ) \leq (\lambda \scrF min)

 - 1\| r\scrF \| 2,

where \lambda \scrF min is the smallest nonzero eigenvalue of the weighted graph Laplacian of the
forest \scrF , i.e, \scrL \scrF = \scrG T

\scrF \frakK \scrG \scrF . We comment that \lambda \scrF min is bounded below by the so-called
Cheeger constant of the graph, so it depends on the structure of the trees \scrT in the
forest \scrF . Note that

\| r\scrF \| 2 =
\sum 

i\in \scrN I\cup \scrN N

(rNi )2 +
\sum 

i\in \scrN \scrF D,T

((r\scrF )i)
2 +

\sum 
i\in \scrN \scrF N,T

((r\scrF )i)
2

and, due to the choice (2.34), the last term on the right-hand side can be bounded by

(2.36)
\sum 

i\in \scrN \scrF N,T

((r\scrF )i)
2 \leq CN

\sum 
i\in \scrN \scrF N

(rNi )2

with CN = 2
\bigl( 
max\scrT \in \scrF N

| \scrN \scrT | 
| \scrN \scrT ,T | + 1

\bigr) 
. Similarly, by the Cauchy--Schwarz inequality,

the second term on the right-hand side can be bounded as follows:

(2.37)
\sum 

i\in \scrN \scrF D,T

((r\scrF )i)
2 \leq CD

\left[  \sum 
i\in \scrN \scrF D,T

(rNi )2 +
\sum 

i\in \scrN \scrF N

(rNi )2 +

\int 
\Omega 

(rD)2 d\bfitx 

\right]  ,
where CD = 3max

\bigl\{ 
1, | \Omega | 

| \scrN \scrF D,T | ,
| \scrN \scrF N

| 
| \scrN \scrF D,T | 

\bigr\} 
.
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Therefore, combining the estimates (2.35), (2.36), and (2.37) and the definitions
of \scrG \scrF and qN , the following estimate holds:

\sum 
e(i,j)\in \scrE 

(kNe(i,j))
 - 1| qNi,j | 2 \leq CqN

\Biggl[ \sum 
i\in \scrN I\cup \scrN N

(rNi )2 +
\sum 
i\in \scrN T

(rNi )2 +

\int 
\Omega 

(rD)2 d\bfitx 

\Biggr] 
,

(2.38)

where CqN = (\lambda \scrF min)
 - 1(CN + CD + 1).

Next, we construct qS from qN and rN so that (2.18) is satisfied exactly; i.e., we
define, for each terminal node i \in \scrN T ,

(2.39) qSi (\bfitx ) =
qN\scrN i,i

+ rNi
cki

, \bfitx \in Bi.

From the construction, we have

\sum 
i\in \scrN T

\int 
Bi

| qSi (\bfitx )| 2 d\bfitx \leq 2| Bi| 
c2
kS

\Biggl[ \sum 
i\in \scrN T

| rNi | 2 +
\sum 
i\in \scrN T

| qN\scrN i,i| 
2

\Biggr] 

\leq C1
qS

\left[  \sum 
i\in \scrN T

| rNi | 2 +
\sum 

i\in \scrN \scrF N

| rNi | 2 +
\int 
\Omega 

(rD)2 d\bfitx 

\right]  ,(2.40)

where C1
qS = 2| Bi| 

c2
kS

(CN +CD). Here we use the fact that qNNi,i
=  - (r\scrF )i for i \in \scrN T by

our construction of qN and the estimates (2.36) and (2.37) in the last step. Similarly,
we also have

(2.41)
\sum 
i\in \scrN T

\int 
Bi

| kSi qSi | 2 d\bfitx \leq C2
qS

\left[  \sum 
i\in \scrN T

| rNi | 2 +
\sum 

i\in \scrN \scrF N

| rNi | 2 +
\int 
\Omega 

(rD)2 d\bfitx 

\right]  

with C2
qS = 2

CkS

ckS
(CN + CD + 1).

Finally, we consider the following mixed-formulation Laplacian problem:

(kD) - 1\bfitq D +\nabla \psi = 0,(2.42)

\nabla \cdot \bfitq D = rD +
\sum 
i\in \scrN T

kSi q
S
i(2.43)
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with boundary condition \bfitq D \cdot \bfitn = 0 on \partial \Omega . This problem is well-posed because\int 
\Omega 

rD d\bfitx +
\sum 
i\in \scrN T

\int 
Bi

kSi (\bfitx )q
S
i (\bfitx ) d\bfitx 

=

\int 
\Omega 

rD d\bfitx +
\sum 
i\in \scrN T

\int 
Bi

kSi (\bfitx )
qN\scrN i,i

+ rNi
cki

d\bfitx 

=

\int 
\Omega 

rD d\bfitx +
\sum 
i\in \scrN T

\bigl( 
qN\scrN i,i + rNi

\bigr) 
=

\int 
\Omega 

rD d\bfitx +
\sum 

i\in \scrN \scrF N,T

\bigl( 
qN\scrN i,i + rNi

\bigr) 
+

\sum 
i\in \scrN \scrF D,T

\bigl( 
qN\scrN i,i + rNi

\bigr) 
=

\int 
\Omega 

rD d\bfitx +
\sum 

\scrT \in \scrF N

\sum 
i\in \scrN \scrT 

\Biggl( 
 - rNi +

\sum 
i\in \scrN \scrT 

rNi
| \scrN \scrT ,T | 

+ rNi

\Biggr) 

+
\sum 

i\in \scrN \scrF D,T

\left(   - rNi  - 1

| \scrN \scrF D,T | 

\int 
\Omega 

rD d\bfitx  - 1

| \scrN \scrF D,T | 
\sum 

i\in \scrN \scrF N

rNi + rNi

\right)  
= 0,

which verifies the consistency of the data with respect to the pure Neumann boundary
condition \bfitq D \cdot \bfitn = 0 on \partial \Omega . Furthermore, the following estimate holds:\int 

\Omega 

| \nabla \cdot \bfitq D| 2 d\bfitx =

\int 
\Omega 

| rD +
\sum 
i\in \scrN T

kSi q
S
i | 2 d\bfitx 

\leq 2

\int 
\Omega 

| rD| 2d\bfitx + 2NBi

\sum 
i\in \scrN T

\int 
Bi

| kSi qSi | 2 d\bfitx 

\leq C1
\bfitq D

\left[  \int 
\Omega 

| rD| 2 d\bfitx +
\sum 
i\in \scrN T

| rNi | 2 +
\sum 

i\in \scrN \scrF N

| rNi | 2
\right]  ,(2.44)

where C1
\bfitq D = 2

\bigl( 
NBiC

2
qS + 1

\bigr) 
and NBi is the maximal number of the overlapping

between the Bi, i \in \scrN T . Similarly, we also have\int 
\Omega 

(kD) - 1| \bfitq D| 2 d\bfitx \leq C - 1
p

\int 
\Omega 

| rD +
\sum 
i\in \scrN T

kSi q
S
i | 2 d\bfitx 

\leq C2
\bfitq D

\left[  \int 
\Omega 

| rD| 2 d\bfitx +
\sum 
i\in \scrN T

| rNi | 2 +
\sum 

i\in \scrN \scrF N

| rNi | 2
\right]  ,(2.45)

where C2
\bfitq D = C - 1

p C1
\bfitq D and Cp is the weighted Poincare constant, i.e, Cp(v, v) \leq 

((kD)\nabla v,\nabla v).
Now [\bfitq D, qS , qN ] has been constructed based on [rD, rN ] and it satisfies

(2.46) \frakD \cdot [\bfitq D, qS , qN ] = [rD, rN ],
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and we have

\| [\bfitq D, qS , qN ]\| 2H(div,\frakB ) = \| [\bfitq D, qS , qN ]\| 2\frakK  - 1 + \| \frakD \cdot [\bfitq D, qS , qN ]\| 2\frakL 2

=

\int 
\Omega 

(kD) - 1| \bfitq D| 2 d\bfitx +
\sum 
i\in \scrN T

\int 
Bi

| qSi | 2 d\bfitx 

+
\sum 

e(i,j)\in \scrE 

(kNe(i,j))
 - 1| qNi,j | 2 + \| [rD, rN ]\| L2(\frakB ).

Now, based on (2.38), (2.40), and (2.45), we can derive that

(2.47) \| [\bfitq D, qS , qN ]\| 2H(div,\frakB ) \leq C\beta \| [rD, rN ]\| 2L2(\frakB )

with C\beta = 2C2
\bfitq D + 2C1

qS + CqN + 1. Then the inf-sup condition (2.31) holds with

\beta = C - 1
\beta .

Remark 2.6. The inf-sup proof shows the importance of using the scaled equa-
tions (2.20) and (2.21) in the case where kT goes to zero. Indeed, for the nonscaled
equations, a similar approach would lead to an inf-sup constant depending on the
pointwise lower bound on inf\bfitx \in Bi

(kTi (\bfitx )), which may not be positive. In contrast,
as seen in the proof above, for the scaled equations, inf-sup constant depends on the
much less restrictive integrated bound ckS

i
.

We now have the following well-posedness results.

Theorem 2.7 (well-posedness of (2.24)--(2.25)). The weak formulation (2.24)
and (2.25) is well-posed with respect to the norms (2.27) and (2.26).

Proof. The result follows directly from the standard theory for saddle point prob-
lems; see, e.g., [5] and Lemmas 2.3, 2.4, and 2.5.

3. Finite-element approximation. In this section, we propose the finite-
element approximation for solving the weak formulation (2.24)--(2.25). The coupling
between the graph and the porous domain, as well as the heterogeneous nature of
the parameters found in applications, suggests that it is natural to consider low-order
approximations. As a consequence, we only consider the lowest-order approximation
here, recognizing that higher-order spaces can be introduced in the mixed formulation.

3.1. Mixed finite-element method. Given a mesh \scrM of the domain \Omega , e.g.,
triangles/quadrilaterals in 2D and tetrahedrons/cuboids in 3D, we consider the stan-
dard RT0/P0 finite element for approximating the fluid flux \bfitq D and pressure PD in
the domain and denote them by Hh(div,\scrM ) and P0(\scrM ), respectively. For node pres-
sure potentials pN , we use vertex degrees of freedom (DOFs) of the graph. For fluid
flux on the tree edges, we use edge DOFs of the graph. For the fluid flux transfer-
ring from terminal i to point \bfitx , it appears natural to consider the piecewise constant
finite element on \scrM i (denoted as P0(\scrM i)), which is the restriction of \scrM to Bi, i.e.,
\scrM i = \scrM \cap Bi. In summary, we consider the conforming finite-element space

Hh(div,\frakB ) := Hh(div,\scrM )\times 
\prod 

i\in \scrN T

P0(\scrM i)\times l2(\scrE ) \subset H(div,\frakB )

and its corresponding finite-element space with boundary conditions,

Hh,0(div,\frakB ) := Hh,0(div,\scrM )\times 
\prod 

i\in \scrN T

P0(\scrM i)\times l2(\scrE ) \subset H0(div,\frakB ),
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where Hh,0(div,\scrM ) := \{ \bfitq D
h \in Hh(div,\scrM ) | \bfitq D

h \cdot \bfitn = 0 on \partial \Omega \} , and

\frakL 2
h := P0(\scrM )\times l2(\scrN \setminus \scrN D) \subset L2(\frakB ).

Using the finite-element spaces introduced above, the mixed finite-element approx-
imation of (2.24)--(2.25) is as follows: Find qh := [\bfitq D

h , q
S
h , q

N
h ] \in Hh,0(div,\frakB ) and

ph := [pDh , p
N
h ] \in \frakL 2

h such that

(qh, vh)\frakK  - 1  - (ph,\frakD \cdot qh) = 0 \forall vh \in Hh,0(div,\frakB ),(3.1)

 - (\frakD \cdot qh,wh) =  - (r,wh) \forall wh \in \frakL 2
h.(3.2)

Remark 3.1. By considering a test function wh which is constant on a Bi, we
verify from (2.17) and (2.18) that the physical flux qT = kSi q

S
i is conserved. We note

that the lowest-order mixed finite-element approximation is locally conservative even
when applied to scaled variables, in contrast to the situation observed when similar
scalings are applied in the physical dimensions of \Omega (see, e.g., [2]).

3.2. Well-posedness. In this subsection, we consider the well-posedness of the
mixed finite-element approximation (3.1)--(3.2). It is essentially the same as the well-
posedness analysis for the weak formulation in section 2.5, and our presentation will
therefore be brief.

Since we use conforming finite-element spaces, the continuity result (Lemma 2.3)
holds naturally on the discrete level.

Lemma 3.2 (continuity of (3.1)--(3.2)). For any qh, vh \in Hh,0(div,\frakB ) and wh \in 
\frakL 2
h, we have

(qh, vh)\frakK  - 1 \leq \| qh\| H(div,\frakB )\| vh\| H(div,\frakB ),

(\frakD \cdot qh,wh) \leq \| qh\| H(div,\frakB )\| wh\| L2(\frakB ).

For the ellipticity (Lemma 2.4), using the fact that the finite-dimensional spaces
are conforming in the sense that qh \in Hh,0(div,\frakB ), then it holds that \frakD \cdot qh \in \scrL 2

h,
and then the continuous results hold on the discrete level.

Lemma 3.3 (ellipticity of (3.1)--(3.2)). If qh \in Hh(div,\frakB ) satisfies

(3.3) (\frakD \cdot qh,wh) = 0 \forall wh \in \frakL 2
h,

then

(3.4) (qh, qh)\frakK  - 1 = \| qh\| 2H(div,\frakB ).

Moreover, the inf-sup condition (Lemma 2.5) can be derived in a similar fashion
on the discrete level as well with a slightly different inf-sup constant.

Lemma 3.4 (inf-sup condition of (3.1)--(3.2)). There exists a constant \beta > 0
such that, for any given function rh \in L2

h(\frakB ),

(3.5) sup
qh\in Hh,0(div,\frakB )

(rh,\frakD \cdot qh)
\| qh\| H(div,\frakB )

\geq \widetilde \beta \| rh\| L2(\frakB ).

Here, the inf-sup constant \widetilde \beta depends on | Mi| = measure(\scrM i), the maximal number
of overlaps between Bi, the structure of the trees \scrT \in \scrF , the domain \Omega , and the
constants ckS and CkS .
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Proof. Given [rDh , r
N
h ] \in L2

h(\frakB ), the construction of [\bfitq D
h , q

S
h , q

N
h ] \in Hh,0(div,\frakB ) is

similar to the construction presented in the proof of Lemma 2.5. qNh can be constructed
exactly the same as the construction of qN . Then qSh can be defined as (2.39) as well
since such a construction also makes sure that qSh \in 

\prod 
i\in \scrN T

P0(\scrM i). The construction

of \bfitq D
h should be obtained by solving (2.42)--(2.43) with a mixed finite-element method

using Hh,0(div,\scrM ) and P0(\scrM ). Such a construction also makes sure that

\frakD \cdot [\bfitq D
h , q

S
h , q

N
h ] = [rDh , r

N
h ]

and

\| [\bfitq D
h , q

S
h , q

N
h ]\| H(div,\frakB ) \leq C\widetilde \beta \| [rDh , rNh ]\| \frakL 2 .

Therefore, the inf-sup condition (3.5) follows directly.

Thus, the well-posedness of the mixed finite-element approximation (3.1)--(3.2)
follows from Lemmas 3.2, 3.3, and 3.4.

Theorem 3.5 (well-posedness of (3.1)--(3.2)). The weak formulation (3.1)--(3.2)
is well-posed with respect to the norms (2.27) and (2.26).

3.3. Convergence. Based on Lemmas 3.2, 3.3, and 3.4 and applying the general
theory of Galerkin methods (see [8, 5]), we immediately give a quasi-optimality error
estimate.

Theorem 3.6. Suppose that q \in H0(div,\frakB ) and p \in L2(\frakB ) satisfy the weak
formulation (2.24)--(2.25); then the finite-element solution qh \in Hh,0(div,\frakB ) and
ph \in \frakL 2

h of the mixed finite-element approximation (3.1)--(3.2) satisfy that

\| q - qh\| H(div,\frakB ) + \| p - ph\| L2(\frakB )

\leq c

\biggl( 
inf

vh\in Hh,0(div,\frakB )
\| q - vh\| H(div,\frakB ) + inf

wh\in \frakL 2
h

\| p - wh\| L2(\frakB )

\biggr) 
,(3.6)

where the constant c depends on \beta .

As usual, to obtain the final convergence result, we use interpolations to bound the
right-hand side of the above error estimate (3.6). Here, we choose \bfitv D

h = \pi div\bfitq 
D, where

\pi div : H1(\Omega ) \mapsto \rightarrow Hh(div,\scrM ) is the standard interpolation given by the Hh(div,\scrM )
DOFs, vSh = \pi 0q

S , where \pi 0 denotes the standard piecewise constant interpolation,
and vNh = qN . With those choices and the classical error estimates for interpolations,
together with the Cauchy--Schwarz inequality, we naturally have

\| [\bfitq D, qS , qN ] - [\pi div\bfitq 
D, \pi 0q

S , qN ]\| H(div,\frakB ) \leq ch

\Biggl( 
\| \bfitq D\| 21 + \| \nabla \cdot \bfitq D\| 21 +

\sum 
i\in \scrN T

\| qSi \| 21

\Biggr) 1
2

.

Similarly, by choosing wD
h = \pi 0p

D and wN
h = pN , we have

\| [pD, pN ] - [\pi 0p
D, pN ]\| L2(\frakB ) \leq ch\| pD\| 1.

Therefore, we have the overall convergence result for the finite-element method (3.1)--
(3.2) as follows.
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Corollary 3.7. Suppose that q \in H0(div,\frakB ) and p \in L2(\frakB ) satisfy the weak
formulation (2.24)--(2.25); then the finite-element solution qh \in Hh,0(div,\frakB ) and
ph \in \frakL 2

h of the mixed finite-element approximation (3.1)--(3.2) satisfy that

\| q - qh\| H(div,\frakB ) + \| p - ph\| L2(\frakB ) \leq ch

\Biggl( 
\| \bfitq D\| 1 + \| \nabla \cdot \bfitq D\| 21 +

\sum 
i\in \scrN T

\| qSi \| 1 + \| pD\| 1

\Biggr) 
,

where the constant c depends on \beta and the quasi uniformity of the mesh \scrM .

Remark 3.8. In Corollary 3.7, we require \nabla \cdot \bfitq D \in H1(\Omega ) because the conver-
gence analysis is derived by following the standard Babu\v ska--Brezzi theory. As is well
known for the error analysis of the fixed-dimensional mixed finite-element method
for a second-order elliptic problem, this regularity requirement can be relaxed in the
mixed-dimensional setting as well; i.e., we have the following error estimates:

\| q - qh\| H(div,\frakB ) + \| p - ph\| L2(\frakB ) \leq ch

\Biggl( 
\| \bfitq D\| 1 + \| rD\| 1 +

\sum 
i\in \scrN T

\| qSi \| 1 + \| pD\| 1

\Biggr) 
.

Due to space constraints, we omit the derivation here but comment that it is essentially
the same as the derivation for the fixed-dimensional case as shown in [5].

4. Mass lumping and two-point flux approximation scheme. In practice,
when the triangulation of the domain \Omega is uniform, it is possible to simplify the
discretization scheme and use two-point flux approximation (TPFA) to discretize the
PDE system given by the conservation laws (2.17), (2.2), (2.18) and the constitutive
laws (2.4), (2.5), (2.19). This is particularly relevant for medical applications, where
the data is frequently specified on voxels (i.e., regular Cartesian grids in 3D).

In this section, we therefore discuss the TPFA scheme for our coupled network-
Darcy model through its relationship with the mixed finite-element approximation (3.1)
and (3.2) discussed in section 3.

4.1. TPFA scheme. On a given mesh \scrM , similar to standard diffusion prob-
lems, the TPFA scheme can obtained by applying mass lumping to the mixed finite-
element scheme (3.1)--(3.2) and then eliminating the flux qh. To this end, we de-
fine the following inner product on the finite-element spaces Hh(div,\frakB ) for qh and
vh \in Hh(div,\frakB ):

(qh, vh)\frakK  - 1,h :=
\sum 
\tau \in \scrM 

\sum 
f\in \partial \tau 

\omega f

\bigl( 
\bfitq D \cdot \bfitn f

\bigr) \bigl( 
\bfitv D \cdot \bfitn f

\bigr) 
+
\sum 
i\in \scrN T

\int 
Bi

qSi v
S
i d\bfitx +

\sum 
e(i,j)\in \scrE 

\Bigl( 
kNe(i,j)

\Bigr)  - 1

qNi,jv
N
i,j ,(4.1)

where \omega f =
\bigl( 
kD\tau 
\bigr)  - 1 df

2| f | with kD\tau being the average of kD on the element \tau \in \scrM 
and df being the distance between the face f \in \partial \tau and the cell center of \tau . Now we
define the mass lumping finite-element scheme as follows: Find qh \in Hh,0(div,\frakB ) and
ph \in L2

h(\frakB ) such that

(qh, vh)\frakK  - 1,h  - (ph,\frakD \cdot vh) = 0 \forall vh \in Hh,0(div,\frakB ),(4.2)

 - (\frakD \cdot qh,wh) =  - (r,wh) \forall wh \in \frakL 2
h.(4.3)
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Based on the inner product (4.1), we define a discrete gradient \frakD h : L2
h(\frakB ) \mapsto \rightarrow 

Hh(div,\frakB ) via integration by parts (Lemma 2.2), for any vh \in Hh(div,\frakB ) and ph \in 
L2
h(\frakB ), such that

(\frakD hph, vh)\frakK  - 1,h :=  - (ph,\frakD \cdot vh) +
\int 
\partial \Omega 

pDh \bfitv D
h \cdot \bfitn d\bfitx +

\sum 
i\in \scrN D

(pNh )i(v
N
h )\scrN i,i.

Note that, due to the boundary conditions \bfitv D
h \cdot \bfitn = 0 on \partial \Omega and (pNh )i = 0, i \in \scrN D,

we simply have (\frakD hph, vh)\frakK  - 1,h =  - (ph,\frakD \cdot vh). Then the mass lumping mixed-
formulation (4.2) and (4.3) can be written as follows: Find qh \in Hh,0(div,\frakB ) and
ph \in L2

h(\frakB ) such that

(qh, vh)\frakK  - 1,h + (\frakD hph, vh)\frakK  - 1,h = 0 \forall vh \in Hh,0(div,\frakB ),

(\frakD hwh, qh)\frakK  - 1,h =  - (r,wh) \forall wh \in \frakL 2
h.

The above formulation allows us to eliminate qh and obtain the TPFA scheme as
follows: Find ph \in L2

h(\frakB ) such that

(4.4) (\frakD hph,\frakD hwh)\frakK  - 1,h = (rh,wh) \forall wh \in \frakL 2
h.

Next, we will explain the TPFA scheme (4.4) using matrix notation. The matrix
form of the mass lumping finite-element scheme (4.2)--(4.3) can be written as\left(      

\sansD D \sanszero \sanszero \sansG DD \sanszero 
\sanszero \sansD S \sanszero \sansG SD \sansG SN

\sanszero \sanszero \sansD N \sanszero \sansG NN

\sansG T
DD \sansG T

SD \sanszero \sanszero \sanszero 
\sanszero \sansG T

SN \sansG T
NN \sanszero \sanszero 

\right)      
\left(      
\sansq Dh
\sansq Sh
\sansq Nh
\sansp Dh
\sansp Nh

\right)      =

\left(      
\sanszero 
\sanszero 
\sanszero 

 - \sansr D

 - \sansr N

\right)      ,

where \sum 
\tau \in \scrM 

\sum 
f\in \partial \tau 

\omega f

\bigl( 
\bfitq D \cdot \bfitn f

\bigr) \bigl( 
\bfitv D \cdot \bfitn f

\bigr) 
\mapsto \rightarrow \sansD D,

\sum 
i\in \scrN T

\int 
Bi

qSi v
S
i d\bfitx \mapsto \rightarrow \sansD S ,

\sum 
e(i,j)\in \scrE 

\Bigl( 
kNe(i,j)

\Bigr)  - 1

qNi,jv
N
i,j \mapsto \rightarrow \sansD N ,

 - 
\int 
\Omega 

pD \nabla \cdot \bfitv D d\bfitx \mapsto \rightarrow \sansG DD,
\sum 
i\in \scrN T

\int 
Bi

kSi v
S
i p

D d\bfitx \mapsto \rightarrow \sansG SD,

\sum 
i\in \scrN T

\biggl( \int 
Bi

kSi v
S
i d\bfitx 

\biggr) 
pNi \mapsto \rightarrow \sansG SN , and

\sum 
i\in \scrN I\cup \scrN N

\Biggl( \sum 
j\in \scrN i

vNj,i

\Biggr) 
phi +

\sum 
i\in \scrN T

vN\scrN i,ip
N
i \mapsto \rightarrow \sansG NN .

Since \sansD D, \sansD s, and \sansD \sansN are diagonal matrices, we can eliminate them by block Gaussian
elimination and end up with a linear system that only involves solving for \sansp Dh and \sansp Nh
as follows:

\biggl( 
\sansG T
DD \sansG T

SD \sanszero 
\sanszero \sansG T

SN \sansG T
NN

\biggr) \left(  \sansD D \sanszero \sanszero 
\sanszero \sansD S \sanszero 
\sanszero \sanszero \sansD N

\right)   - 1\left(  \sansG DD \sanszero 
\sansG SD \sansG SN

\sanszero \sansG NN

\right)  \biggl( \sansp Dh
\sansp Nh

\biggr) 
=

\biggl( 
\sansr D

\sansr N

\biggr) 
,

which is exactly the matrix form of the TPFA scheme (4.4).
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4.2. Well-posedness. Next we consider the well-posedness of the TPFA scheme
(4.4). As we showed in the previous section, the TPFA scheme (4.4) is obtained
from the mass lumping mixed-formulation (4.2)--(4.3) by block Gaussian elimination.
Therefore, we first show the well-posedness of the mass lumping mixed-formulation
(4.2)--(4.3), and then the well-posedness of the TPFA scheme (4.4) follows directly.

Since the only difference between the mixed-formulation (3.1)--(3.2) and the mass
lumping mixed-formulation (4.2)--(4.3) is the inner product used for Hh(div,\frakB ), we
first introduce the norm induced by the inner product (4.1) as

\| qh\| 2\frakK  - 1,h := (qh, qh)\frakK  - 1,h \forall qh \in Hh(div,\frakB )

and show that it is spectrally equivalent to the norm (2.28) in the following lemma.

Lemma 4.1. For any qh \in Hh(div,\frakB ), we have

(4.5) c1\| qh\| 2\frakK  - 1,h \leq \| qh\| 2\frakK  - 1 \leq c2\| qh\| 2\frakK  - 1,h,

where c1 > 0 and c2 > 0 are constants only depending on the shape regularity of the
mesh \scrM .

Proof. Based on the standard result (see, e.g., [14]), we have

\=c1
\sum 
\tau \in \scrM 

\sum 
f\in \partial \tau 

\omega f

\bigl( 
\bfitq D
h \cdot \bfitn f

\bigr) 2 \leq 
\int 
\Omega 

\bigl( 
kD
\bigr)  - 1 | \bfitq D

h | 2 d\bfitx \leq \=c2
\sum 
\tau \in \scrM 

\sum 
f\in \partial \tau 

\omega f

\bigl( 
\bfitq D
h \cdot \bfitn f

\bigr) 2
,

where the positive constants \=c1 and \=c2 depend only the shape regularity of the mesh
\scrM . Then the spectral equivalence (4.5) follows directly from the definitions of the
norms.

Define

(4.6) \| qh\| 2Hh(div,\frakB ) := \| qh\| 2\frakK  - 1,h + \| \frakD \cdot qh\| 2L2(\frakB ).

We have the following lemmas concerning the continuity, ellipticity, and inf-sup con-
dition for the mass lumping mixed-formulation (4.2)--(4.3).

Lemma 4.2 (continuity of (4.2)--(4.3)). For any qh, vh \in Hh(div,\frakB ) and wh \in 
\frakL 2
h, we have

(qh, vh)\frakK  - 1,h \leq \| qh\| Hh(div,\frakB )\| vh\| Hh(div,\frakB ),

(\frakD \cdot qh,wh) \leq \| qh\| Hh(div,\frakB )\| wh\| L2(\frakB ).

For the ellipticity, again using the fact that, for qh \in Hh(div,\frakB ), \frakD \cdot qh \in \scrL 2
h, we

have the following lemma.

Lemma 4.3 (ellipticity of (4.2)--(4.3)). If qh \in Hh(div,\frakB ) satisfies

(\frakD \cdot qh,wh) = 0 \forall wh \in \frakL 2
h,

then

(qh, qh)\frakK  - 1,h = \| qh\| 2Hh(div,\frakB ).

Moreover, the inf-sup condition can be derived from the inf-sup condition (Lemma 3.4)
and the spectral equivalence lemma (Lemma 4.1).
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Lemma 4.4 (inf-sup condition of (4.2)--(4.3)). There exists a constant \beta > 0
such that, for any given function rh \in L2(\frakB ),

(4.7) sup
qh\in Hh,0(div,\frakB )

(rh,\frakD \cdot qh)
\| qh\| Hh(div,\frakB )

\geq \beta \| rh\| L2(\frakB ).

Here, the inf-sup constant \beta depends on | \scrM i| = measure(\scrM i) = \scrO (hn), the maximal
number of overlaps between Bi, the structure of the trees \scrT \in \scrF , the domain \Omega , the
constants ckS and CkS , and the shape regularity of the mesh \scrM .

Proof. The inf-sup condition (4.7) can be derived from the inf-sup condition (3.5)
and the spectral equivalence result (4.5).

Now the well-posedness of the mass lumping mixed-formulation (4.2)--(4.3) follows
from Lemmas 4.2, 4.3, and 4.4.

Theorem 4.5 (well-posedness of (4.2)--(4.3)). Mass lumping mixed-formulation
(4.2)--(4.3) is well-posed with respect to the norms (4.6) and (2.26).

Finally, the well-posedness of the TPFA scheme (4.4) follows directly from The-
orem 4.5 and the equivalence between the TPFA scheme (4.4) and the mass lumping
mixed-formulation (4.2)--(4.3). The result is summarized in the following theorem.

Theorem 4.6 (well-posedness of (4.4)). The TPFA scheme (4.4) is well-posed.

4.3. Convergence. Regarding the convergence result of the TPFA scheme, since
we use the mass-lumping technique to derive it, existing theoretical tools developed
in [3, 9] can be adopted here. For the sake of the simplicity, in this subsection, we
assume that kD is constant on each element \tau \in \scrM and the mesh \scrM is uniform (e.g.,
rectangle/equilateral triangle in 2D, rectangular cuboid/regular tetrahedra in 3D).
Under those conditions, as shown in [3], for \tau \in \scrM ,

\sum 
f\in \partial \tau \omega f

\bigl( 
\bfitq D \cdot \bfitn f

\bigr) \bigl( 
\bfitv D \cdot \bfitn f

\bigr) 
used in definition (4.1) provides a numerical integration formula of

\int 
\tau 
(kD) - 1\bfitq D\bfitv D d\bfitx ,

and such a numerical integration is exact for constant functions on each element \tau .
Moreover, the following perturbation result holds for \bfitq D,\bfitv D \in Hh,0(div,\scrM ):
(4.8)\bigm| \bigm| \bigm| \bigm| \int 

\tau 

(kD) - 1\bfitq D\bfitv D d\bfitx  - 
\sum 
f\in \partial \tau 

\omega f

\bigl( 
\bfitq D \cdot \bfitn f

\bigr) \bigl( 
\bfitv D \cdot \bfitn f

\bigr) \bigm| \bigm| \bigm| \bigm| \leq ch2\tau \| \bfitq D\| H(div,\tau )\| \bfitv D\| H(div,\tau ).

Based on the above result, we can easily verify that, for qh, vh \in Hh(div,\frakB ),

| (qh, vh)\frakK  - 1  - (qh, qh)\frakK  - 1,h| \leq ch2\| qh\| H(div,\frakB )\| vh\| H(div,\frakB ).

Now we can use the theory developed in [22] and conclude the convergence result of
the TPFA scheme in the following theorem.

Theorem 4.7. Suppose that q \in H0(div,\frakB ) and p \in L2(\frakB ) satisfy the weak
formulation (2.24)--(2.25); then the finite-element solution qh \in Hh,0(div,\frakB ) and
ph \in \frakL 2

h of the mass lumping mixed finite-element approximation (4.2)--(4.3) satisfy

\| q - qh\| H(div,\frakB ) + \| p - ph\| L2(\frakB ) \leq ch

\Biggl( 
\| \bfitq D\| 1 + \| \nabla \cdot \bfitq D\| 1 +

\sum 
i\in \scrN T

\| qSi \| 1 + \| pD\| 1

\Biggr) 
,

(4.9)

where the constant c depends only on \beta , kD, the maximal number of the overlap
between \scrM i, maxi\{ | \scrM i| \} , and the quasi uniformity of the mesh \scrM .
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Consequentially, this also implies the convergence result of the TPFA scheme
because of the equivalence between the TPFA scheme (4.4) and the mass lumping
mixed-formulation (4.2)--(4.3).

Remark 4.8. As pointed out in Remark 3.8, the regularity requirement \nabla \cdot \bfitq D \in 
H1(\Omega ) can be relaxed here as well and similar convergence analysis still holds.

Remark 4.9. As shown in [3, 9], similar results hold for some more general meshes.
For example, the perturbation result (4.8) hold for general triangles in 2D with order
h instead of order h2. However, this still leads to the error estimate (4.9) based on
the same procedure. For general triangulation in 3D, convergence analysis for the
standard mixed-formulation Poisson problem with mass lumping was derived based
on a different approach in [9]. We can also adopt a similar approach to derive the
convergence result for our mass lumping mixed finite-element scheme as well to obtain
the error estimate (4.9) for general triangulation.

5. Numerical results. In this section, we include three numerical results to
validate and explore the discretization and solver presented above. In particular, the
first case contains the simplest possible geometry in 2D, on which we compare the
discretization to a series solution (Bessel functions). In the second case, we have a
more complex geometry embedded in 4D, which can be seen as a prototype of the
geometries relevant for applications. In both the first and the second cases, we perform
convergence studies for both the discretization and multigrid solver. Finally, in the
third case, we apply the methodology to a real data-set, based on the human brain.

The error is measured in the norms proposed in the analysis; in particular, we
measure the L2 norm of pressure and the k - 1/2-weighted norm of flux. As is common
for finite volume and mixed finite-element methods, we use cell-centered quadrature
when evaluating the L2 norm in the domain, which allows us to exhibit the usual
superconvergence behavior for these methods on smooth problems.

Due to the prevalence of image data for the applications of interest, all the nu-
merical experiments are conducted on uniform Cartesian grids and the TPFA scheme
is used. To solve the resulting linear system, we use the algebraic multigrid (AMG)
preconditioned flexible GMRes (FGMRes) method, as detailed in section SM1 of the
supplementary materials. Here, an unsmoothed aggregation AMG method is used as
the preconditioner. More precisely, one step of the V-cycle AMG method is applied
with one step of the Gauss--Seidel method for both pre- and postsmoothing. The
FGMRes method is terminated when the \ell 2 norm of the initial residual is reduced by
a factor of 10 - 6. The solver performance for all three cases below is also reported in
the supplementary materials. The implementations are in MATLAB [20], and code is
available from the authors on request. All runs are conducted on a Linux workstation
using 40 Intel Xeon CPU processors (E5-2698 v4) at 2.20GHz clock speed, with 256
Gb RAM.

5.1. Case 1: Comparison to convergent series solution. Our first case is
constructed such that a series solution (in terms of well-known Bessel functions) is
available. The full derivation of the series solution is available in the accompanying
supplement file M136254SupMat.pdf [local/web 1.19MB], an illustration of the ge-
ometry, and the series solution is provided in Figure 3. Throughout this subsection,
we consider the series solution as the exact solution of the equations since arbitrary
precision can be obtained using well-established implementations of table values [1].

The main features of the solution is a simple two-node tree, where node 0 is
a Dirichlet boundary node and node 1 is a terminal node. Correspondingly, there
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Fig. 3. Top: Illustration of domain for Case 1, with transfer function kT (red) and source
term rD (blue). The source term, which is actually a sink in this setup, has been scaled by 102 for
visualization purposes. Bottom: Illustration of pressure (black) and radial flux (blue) in the domain
as a function of distance from the origin. Note that for the pressure, we have plotted pD(r) - pD(0.5)
in order to facilitate visual comparison. In both figures, Case 1A is represented by solid lines and
1B by dashed-dotted lines.

is a single edge in the network, which contains the network flux. The solution is
constructed with a transfer function kT that has compact support on a disc of radius
r1 from the origin. We consider two variants of the case: Case 1A has a smoothly
degenerating transfer function such that (in terms of radial coordinates) kT (r) \rightarrow 0
as r \rightarrow r1, while Case 1B has a constant kT within the disc (and zero outside), and
thus kT \sim H(r1  - r), where H denotes the Heaviside function. To drive the system,
a quadratic source term is provided in the region r2 < r \leq r3.

We conduct numerical experiments with unit values, such that the domain \Omega is
the unit square centered at the origin, the domain and network permeabilities are unit
valued, and the scaling of source term rD = 1. The transfer function kT has a unit
maximum value at the origin for both Cases 1A and 1B, and thus in the notation of
the accompanying supplement file M136254SupMat.pdf [local/web 1.19MB], kT0 = 1.
As stated, we consider two versions. For Case 1A, we consider a degenerating transfer
function kT , with r0 = 0.1, r1 = 0.2, r2 = 0.3, r3 = 0.4. For Case 1B, we let the
transfer function abruptly go to zero by keeping all radii as in Case 1A, except for
r0 = 0.2.

An important aspect of the implementation is the accuracy with which the right-
hand side and the inner products involving kS are evaluated. In the results reported
here, we have used a fourth-order accurate numerical quadrature.

The convergence results of Cases 1A and 1B are presented in Tables 1 and 2. We
show the convergence history separated into components similar to the analysis, i.e.,
domain, scaled terminal flux, and network.

First note that for this example, since the network contains a single throat and
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Table 1
Convergence of Case 1A. The upper part of the table gives convergence information for the

pressure variables pD and pN , while the lower part of the table gives the convergence information
for the flux variables \bfitq D, qS , and qN .

Variable 1/h Error D Rate D Error S Rate S Error N Rate N
16 1.81e-07 4.91e-09
32 4.12e-08 2.13 1.59e-10 4.95

p 64 1.03e-08 1.99 1.23e-11 3.70
128 2.63e-09 1.98 3.69e-13 5.06
256 6.55e-10 2.00 4.88e-15 6.24
512 1.64e-10 2.00 2.59e-16 4.24

Average 2.02 4.84
16 1.68e-05 2.38e-07 4.91e-09
32 8.29e-06 1.02 4.98e-08 2.26 1.59e-10 4.95

q 64 4.11e-06 1.01 1.25e-08 1.99 1.23e-11 3.70
128 2.06e-06 0.99 3.05e-09 2.04 3.69e-13 5.06
256 1.03e-06 0.99 7.64e-10 2.00 4.88e-15 6.24
512 5.19e-07 0.99 1.91e-10 2.00 2.59e-16 4.24

Average 1.00 2.06 4.84

Table 2
Convergence of Case 1B. For the complete legend, see Figure 1.

Variable 1/h Error D Rate D Error S Rate S Error N Rate N
16 2.02e-07 4.91e-09
32 3.37e-08 2.59 1.59e-10 4.95

p 64 8.06e-09 2.06 1.23e-11 3.70
128 2.03e-09 1.99 3.55e-13 5.11
256 5.94e-10 1.77 2.69e-15 7.05
512 1.37e-10 2.11 4.88e-16 2.46

Average 2.11 4.65
16 1.65e-05 1.35e-06 4.91e-09
32 8.54e-06 0.95 2.00e-07 2.76 1.59e-10 4.95

q 64 4.21e-06 1.02 3.02e-08 2.73 1.23e-11 3.70
128 2.11e-06 1.00 7.70e-09 1.97 3.55e-13 5.11
256 1.05e-06 1.00 6.54e-10 3.56 2.69e-15 7.05
512 5.26e-07 1.00 1.84e-10 1.83 4.88e-16 2.46

Average 1.00 2.57 4.65

the domain has Neumann boundary conditions, global conservation of mass implies
that qNh will be exact up to the quadrature error in the evaluation of rD, and similarly
for pNh . Thus, the fourth-order convergence of these variables is expected.

As for the remaining variables, we observe in both Case 1A and Case 1B optimal
second-order convergence of pDh and first-order convergence of \bfitq D

h . In this example,
the scaled terminal flux qSh is essentially just the weighted difference between pDh and
pNh , and thus it inherits the (slower) convergence rate of the two, i.e., second-order.
By comparing the two cases, we see that there is no influence of the degeneracy of kS .

5.2. Case 2: A prototypical four-dimensional case. Our second example is
chosen to illustrate a typical case encountered in the modeling of tissue. The physical
domain is three-dimensional; however, due to the biomedical properties involved,
the physical domain represents two or more continua (biomedically speaking, this
corresponds to arterial and venal compartments, etc.). The continua are ordered, and
communication between the compartments is only allowed between neighbors in the
ordering. As such, the continua represent a discretization of an elliptic equation in a
fourth dimension. The mathematical structure of the resulting system is thus one of

D
ow

nl
oa

de
d 

03
/1

6/
22

 to
 1

29
.1

77
.1

69
.2

28
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
C

C
B

Y
 li

ce
ns

e 



© 2021 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

MIXED-DIMENSIONAL PROBLEMS OF HIGH-DIMENSIONAL GAP 2241

Fig. 4. Illustration of domain for Case 2. The arterial network and arterial three-dimensional
domain are shaded by red colors, while the venous network and network three-dimensional domain
are shaded by blue colors. The two three-dimensional domains together form a 2-point discretization
of a four-dimensional domain, where the flow in the fourth dimension is indicated by arrows between
the two three-dimensional domains.

a four-dimensional elliptic equation, coupled to networks, and is naturally covered by
the methods proposed and analyzed in this paper.

To explore this concept, and validate the performance of our methods, we consider
the following concrete problem, as illustrated schematically in Figure 4. Let the
model domain be the unit 4-cube. We consider Neumann boundary conditions on all
faces of the domain. Furthermore, we consider two trees, which are named ``arterial
tree"" and ``venous tree,"" respectively, to conform with applications and the next
subsection. Each consists of four nodes connected in the shape of a ``Y""; in each
tree, one node is a Dirichlet boundary node (pND = 1 and pND = 0 in arterial and
venous Dirichlet nodes, respectively), while two nodes are terminal nodes. The arterial
terminal nodes i are associated with transfer functions kTi (x) = kT (| x - yi| 3)H(1/2 - 
x4), where | x - xi| 23 =

\sum 
j=1...3(xj  - yi,j)2 is the distance in the first three coordinates

from the 3-points yi, x4 is the coordinate in the fourth dimension, and kT are the
transfer functions from section 5.1 with r0 = 0.1 and r1 = 0.2. Conversely, the venous
terminal nodes are associated with transfer functions kTi (x) = kT (| x  - yi| 3)H(x4  - 
1/2). For the arteries, the transfer functions are centered on 3-points yi defined
by [0.43, 0.25, 0.5] and [0.37, 0.75, 0.5], while for the veins, the transfer functions are
centered on [0.63, 0.25, 0.5] and [0.57, 0.75, 0.5].

We discretize the domain with an anisotropic Cartesian grid in the sense that the
first three dimensions are discretized by a regular isotropic Cartesian grid. The fourth
dimension is discretized by only two grid cells. This resulting system is equivalent
to the common two-compartment model, where the cells in the fourth dimension
with x4 < 0.5 correspond to the arterial compartment and the remaining cells to
the venous compartment. In accordance with the practice in applications, we will
emphasize grid refinement over model refinement and only consider refinement of
the first three dimensions. Moreover, we will in accordance with the applications
decompose the domain flux into two parts qD \rightarrow [qD, qP ], where the flux in the fourth
dimension qP is referred to as ``perfusion."" Model parameters are otherwise set to
unity, kD = kP = kN = 1, where kP is the permeability constant of the flux in the
fourth direction.

The convergence results for this case are presented in Table 3. All errors are
reported relative to a numerical solution calculated with a resolution of h = 256 - 1,
and convergence rates are therefore reported for grids up to a resolution of h = 128 - 1.
As expected, we observe quasi-optimal convergence rates in all variables. In contrast
to Case 1, we no longer have the artificial exact solutions in the network, where
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Table 3
Convergence results for Case 2. All variables are reported as in Table 1, with the (perfusion)

flux in the fourth dimension additionally reported as qP .

Variable 1/h Error D Rate D Error T Rate T Error N Rate N Error P Rate P
p 16 3.42e-05 3.86e-06

32 8.60e-06 1.99 6.20e-07 2.64
64 2.21e-06 1.96 1.84e-07 1.75
128 6.36e-07 1.80 4.20e-08 2.13

Average 1.92 2.17
q 16 1.12e-03 2.45e-02 2.01e-06 2.49e-05

32 4.09e-04 1.45 1.11e-02 1.14 3.24e-07 2.64 6.25e-06 1.99
64 1.55e-04 1.40 5.02e-03 1.15 9.60e-08 1.75 1.60e-06 1.97
128 4.99e-05 1.64 2.03e-03 1.31 2.20e-08 2.12 4.42e-07 1.85

Average 1.49 1.20 2.17 1.94

we observe second-order convergence, as inherited from the interaction between the
terminal nodes and the second-order accurate pressure in the domain.

5.3. Case 3: Full-brain simulation study. As a final test case, we consider
the application to a real data-set associated with blood flow in the human brain. As
a modeling concept, we use the same general structure as illustrated in Figure 4. The
data-set and parameterization are described in detail in [15] and are illustrated in
Figure 1 of the introduction. Here we summarize the main features: the data con-
tains two trees, corresponding to a segmentation of the arterial and venous systems,
containing 355 and 1222 nodes, respectively. For the finest simulations, we consider
full resolution MRI acquisitions, which after co-registration to the finest resolution
image is a Cartesian grid with 346\times 448\times 319 grid cells, representing a brick-shaped
field of view of 177 \times 224 \times 160mm3. The actual domain \Omega is a four-dimensional
extrusion of the three-dimensional subset of the field of view from a T1-weighted MR
acquisition which contains segmentation of the brain acquired with the human brain
segmentation software FreeSurfer [10]. Thus, the mathematical formulation is a four-
dimensional model in the sense of the previous subsection, and after discretizing the
fourth dimension by two cells, the full model contains 17.5 million grid cells. The
domain \Omega is furthermore divided into two subdomains by the FreeSurfer segmenta-
tion (anatomically: white matter \Omega WM and gray matter \Omega GM ), with permeability in
the three physical dimensions set to an isotropic value of kD = 10 - 11m2. The per-
meability kD acting in the fourth dimension (anatomically: the perfusion coefficient)
is anisotropic relative to the physical dimensions and is in the white matter set to
kP = 10 - 6m\cdot s\cdot kg - 1, x \in \Omega WM , and in gray matter is set to kP = 1.6\cdot 10 - 6m\cdot s\cdot kg - 1,
x \in \Omega GM . The transfer permeability is set according to (SM2.1), with r1 = 30mm,
r0 = r1/2, and k

T
0 = 10 - 4.

The arterial and venous vessel trees are extracted down to voxel resolution from
time of flight (TOF) and quantitative susceptibility mapping (QSM), respectively.
Within both these MR acquisitions, a crude segmentation of the vessels is obtained
by local adaptive thresholding, leading to a large number of disconnected structures
identified by a connected component analysis (bwlabeln). These binary satellites are
connected with the main structure by repeatedly solving a boundary value problem
around the main structure S for each satellite. Hence, the solution of the eikonal
equation | \nabla T | = f(x) - 1, T (x \in S) = 0 for the arrival time T (x) provides a geodesic
distance map from x to the main structure. The eikonal equation was solved using
the fast marching method [23]. The function f(x) is user-supplied and is known as
the speed of the arrival time field. Within TOF we use the image itself as the speed
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function and for QSM the inverted image due to low contrast within vessels. The
speed is set to zero outside the brain, possibly leading to curved geodesic trajectories,
which is the reason why the signed distance function is not used. The arrival time
itself is not of interest here, but rather the backtracking by the steepest descent
method in the arrival time field from the satellite to the main structure providing
a most probable path connecting these two structures with each other. The current
approach favors probable paths to be aligned with dark- or bright-contrast structures
that partly disappear within the images due to noise in the data. While backtracking,
visited points are added to the main structure with a suitable vessel radius. Finally,
the process of solving the eikonal equation is repeated for each satellite, ultimately
providing a connected structure, i.e., the arterial or venous vessel tree. For a more
comprehensive description of how satellites are connected to the main structure, we
refer the readers to [15].

The now connected binary trees are converted into abstract graphs using built-in
MATLAB routines for skeletonization (bwskel), leafs (terminals and roots), and node
detection bwmorph3 with options ``endpoints"" and ``branchpoints."" Root nodes are
user-defined in terms of coordinates. Vessel length is the geodesic distance along the
edge between two connecting nodes (modified bwdistgeodesic for anisotropic data),
and the average vessel diameter is fitted by a Euclidean distance function around the
centerline (modified bwdist for anisotropic data). The edge flow permeability kN

is assigned individually for each edge based on the Hagen--Poiseulle law, using local
estimates of vessel diameter and vessel length measured in the binary vessel trees.
Both arterial and venous trees are modeled with Dirichlet root nodes as the main
arterial inlets and main venous outlets. The only properties of the vessel trees that
are needed for the simulation experiments are the edge flow permeability kN within
a connectivity matrix and the terminal positions within the field of view.

The full-brain data contains many important qualitative properties, including
connectivity of the trees after preprocessing of the initially disjoint trees and connec-
tivity of the brain geometry. These properties ensuring well-posedness, as well as the
connected representation of grey and white matter, are not trivially preserved when
coarsening the data. Thus, instead of reporting relative results on a grid sequence for
this case (which due to the above would have limited real value), we summarize the
calculated solution on the image resolution in Figure 5 (the subfigures of this figure
are shown in full size in section SM3 of the supplementary materials). While the quan-
titative aspects of the calculated results depend on parameters that are at present not
fully justified by clinical measurements, the computational times reported in Tables
SM1--SM3 of the supplementary materials verify that the proposed methods allow for
efficient simulations at imaging resolution, preserving the qualitative properties of the
solution corresponding to biomedical expectations.

6. Conclusions. We have proposed a mixed-dimensional mathematical model,
closely related to models used for modeling fluid flow in human vasculature. We
show the well-posedness of this model on the continuous level and develop suitable
numerical discretizations of both mixed finite-element and finite volume types. These
are shown to be stable and convergent.

Our theoretical results are complemented by numerical examples, which demon-
strate superconvergence of the method in terms of the pressure variable on smooth
solutions and also verify the stability and applicability of the method to large scale
real-world data-sets.

In the future, we plan to investigate other numerical schemes for solving our
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Fig. 5. Simulation results for Case 3, showing the pressure solution for the trees and domain,
as well as the transfer flux qD and the component of the domain flux associated with the fourth
dimension, denoted as qP in the text. Full-size versions of the subfigures are available in section
SM3 of the supplementary materials.

proposed model. Examples of relevant generalizations are those that arise from con-
sidering different network dynamics. One possible example is the nonlocal network
dynamics proposed in [4]. Moreover, nonlinear network models are relevant in order
to treat the deformation of the vascular wall and nonlinear blood rheology.
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