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Abstract
In this paper we study the class of mathematical programs with complementarity constraints
MPCC. Under the Linear Independence constraint qualification MPCC-LICQ we state a
topological as well as an equivalent algebraic characterization for the strong stability (in
the sense of Kojima) of an M-stationary point for MPCC. By allowing perturbations of the
describing functions up to second order, the concept of strong stability refers here to the
local existence and uniqueness of an M-stationary point for any sufficiently small perturbed
problem where this unique solution depends continuously on the perturbation. Finally, some
relations to S- and C-stationarity are briefly discussed.

Keywords Mathematical programs with complementarity constraint · M-stationarity ·
Strong stability · Algebraic characterization · MPCC-LICQ
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1 Introduction

In this paper we consider the following mathematical program with complementarity
constraints (MPCC):

Pcc(f, r, s) : min
x∈M[r,s] f (x) (1.1)

with

M[r, s] = {
x ∈ R

n : min{rm(x), sm(x)} = 0, m ∈ L
}
,
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where L = {1, . . . , l}, l ∈ N and all describing functions f : Rn → R and rm, sm : Rn →
R, m ∈ L, are assumed to be twice continuously differentiable. There are many applica-
tions where MPCC is used, we refer e.g. to [23, 28]. The results of this paper refer to the
particular structure imposed by the complementarity constraints. In order to keep the pre-
sentation as less technical as possible we did not include additional equality and inequality
constraints which are usually used in standard nonlinear optimization. However, all results
presented here can be straightforwardly extended to this more general case with these
standard constraints.

In this paper we deal with the concept of strong stability to an M-stationary point for
MPCC under the Linear Independence constraint qualification for MPCC (MPCC-LICQ).
Recall that MPCC-LICQ holds at a feasible point if the gradients of the active constraints
at this point are linearly independent.

The concept of strong stability of a stationary point for a standard nonlinear program was
introduced by Kojima [21]. It refers to the local existence and uniqueness of a stationary
point for each sufficiently small locally perturbed problem where perturbations up to sec-
ond order (function values, first and second derivative) are allowed. Moreover, this unique
stationary point of the perturbed problem depends continuously on the underlying pertur-
bation. Obviously, these “well-posedness” features (existence, uniqueness and continuity
on perturbation) play an important role in sensitivity analysis and parametric optimization.
Besides the topological definition of strong stability, Kojima [21] proved an equivalent alge-
braic characterization using second order information and applying matrix analysis. This
algebraic characterization can be used to decide whether or not a stationary point is strongly
stable. We refer to related papers [20, 25, 26] on properties on strongly stable stationary
points.

The goal of this paper is twofold. First, we introduce the strong stability of an
M-stationary point for MPCC. Then, under MPCC-LICQ, we prove an equivalent alge-
braic characterization of this property. Note that since we only consider complemen-
tarity constraints, here, the constraint qualifications MPCC-LICQ and MPCC-MFCQ
are identic. In general, they are different due to the presence of additional inequality
constraints.

It is well-known that there exist several stationarity concepts for MPCC. Among them
are A-, B-, C-, M- and S-stationarity; for an overview and discussion we refer to [29].
There exist already results on strongly stable C-stationary points for MPCC [4–6, 17] where
this particular interest is motivated by the fact that C-stationarity is related to changes of
topological properties of the underlying problem [15, 16]. However, in this paper we choose
the stronger concept of M-stationarity which excludes more (but not all) decent directions
than the concept of C-stationarity.

We would like to mention some other related papers: there are many references on sta-
tionarity concepts, optimality conditions, sensitivity and other properties for MPCC, see
e.g. [1, 3, 10, 18, 24, 27]. Moreover, we refer to some papers where solution methods for
MPCC are discussed [2, 8, 11, 19, 22].

This paper is organized as follows. Section 2 provides some notations used later on.
In Section 3 we recall the concept of strong stability of a stationary point for a standard
nonlinear program. Section 4 contains the new results: We state a topological and, under
MPCC-LICQ, an equivalent algebraic characterization of a strongly stable M-stationary
point for MPCC. Some final remarks are given in Section 5.
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2 Some Basic Notations

Most of the presentation of basic notations in this section is taken from [5]. For w ∈ R
n let

w = (w1, . . . , wn) and define

I 0(w) = {i ∈ {1, . . . , n} : wi = 0},
I ∗(w) = {i ∈ {1, . . . , n} : wi �= 0}.

For x̄ ∈ R
n and δ > 0 the closed Euclidean ball centered at x̄ with radius δ will be

denoted by B(x̄, δ) and the Euclidean sphere centered at x̄ with radius δ by S(x̄, δ). We
abbreviate the sentence “V is a neighborhood of x̄” by letting V(x̄) to be the set of all
neighborhoods of x̄. This allows us to write the aforementioned sentence as “V ∈ V(x̄)”.

Let Ck(Rn,Rm) be the space of k−times continuously differentiable mappings with
domain R

n and codomain R
m. For f ∈ C2(Rn,R) denote the partial derivative of f at

x̄ ∈ R
n with respect to xi by ∂f (x̄)

∂xi
, i = 1, . . . , n. In addition, Dxf (x̄) stands for its gradient

taken as a row vector and D2
xf (x̄) for its Hessian at x̄.

For the strong stability we need a seminorm for functions. Let V ∈ V(x̄) and F̄ ∈
C2(Rn,Rm). Following [21], denote

‖F̄‖V = max

{
sup
x∈V

max
i

{|F̄i (x)|} , sup
x∈V

max
i,j

{∣∣∣∣
∂F̄i(x)

∂xj

∣∣∣∣

}
, sup
x∈V

max
i,j,k

{∣∣∣∣
∂2F̄i (x)

∂xj ∂xk

∣∣∣∣

}}
,

(2.1)
where the indices i and j, k are varying in the sets {1, . . . , m} and {1, . . . , n}, respectively.

3 Strong Stability for Standard Nonlinear Programs

In this section we recall the concept of a strongly stable stationary point for a standard
nonlinear program. This result was introduced by Kojima [21] and we will use it in the next
section for the algebraic characterization of the strong stability of an M-stationary point for
a mathematical program with complementarity constraint.

Consider a standard nonlinear program with finitely many equality and inequality
constraints given as

Psn(f, h, g) : min
x∈Msn[h,g] f (x),

where

Msn[h, g] =
{
x ∈ R

n

∣∣∣∣
hi(x) = 0, i ∈ I,

gj (x) ≥ 0, j ∈ J

}

with finite index sets I and J as well as functions f ∈ C2(Rn,R), hi ∈ C2(Rn,R), i ∈ I

and gj ∈ C2(Rn,R), j ∈ J . For a feasible point x̄ ∈ Msn[h, g] let the index set of active
inequality constraints be given as

J 0
g (x̄) = {j ∈ J : gj (x̄) = 0}.

For two standard nonlinear programs P 1, P 2 we write P 1 = P 2 if they are defined
by the same functions f , hi, i ∈ I and gj , j ∈ J . Moreover, if two problems P 1 =
Psn(f 1, h1, g1) and P 2 = Psn(f 2, h2, g2) have the same number of equality and inequality
constraints, then the subtraction of these problems is defined by the following expression

P 1 − P 2 := Psn(f 1 − f 2, h1 − h2, g1 − g2).
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Recall that a point x̄ ∈ R
n is called a stationary point for P = Psn(f, h, g) if there exist

λi ∈ R, i ∈ I and μj ∈ R, j ∈ J such that

DxLsn(x̄, λ, μ) = 0T , hi(x̄) = 0, i ∈ I, min{μj , gj (x̄)} = 0, j ∈ J, (3.1)

where 0 denotes the origin (column vector) in R
n and

Lsn(x, λ, μ) = f (x) −
∑

i∈I

λihi(x) −
∑

j∈J

μjgj (x)

is the Lagrange function for P . Let the set of stationary points for P be denoted by �(P )

and the set of (λ, μ) satisfying (3.1) by L(P, x̄). Recall also that the Linear Independence
constraint qualification (LICQ) is said to hold at x̄ ∈ Msn[h, g] if the vectors

Dxhi(x̄), i ∈ I, Dxgj (x̄), j ∈ J 0
g (x̄)

are linearly independent. If LICQ holds at a local minimizer x̄ for P , then x̄ is also a sta-
tionary point for P . Note that we can generically assume that LICQ holds at any feasible
point [13].

As already mentioned, the concept of strong stability of a stationary point was introduced
by Kojima [21] and it is related to the maximum modulus of the differences between the
values of the functions, and their first and second order derivatives. For this concept we use
the following seminorm: given x̄ ∈ R

n, V ∈ V(x̄) and P = Psn(f, h, g), we define

‖P ‖V = ‖(f, h, g)‖V ,

where the right-hand-side is obtained from (2.1) by choosing F̄ = (f, h, g). Then, for
P̄ = Psn(f̄ , h̄, ḡ) and δ > 0 define

BV (P̄ , δ) = {P : ‖P − P̄ ‖V ≤ δ},
where P and P̄ have the same number of equality and inequality constraints. Now, we recall
Kojima’s definition of a strongly stable stationary point.

Definition 3.1 [21] Let P̄ = Psn(f̄ , h̄, ḡ). A point x̄ ∈ �(P̄ ) is called strongly stable if
there exists a real number δ̄ > 0 such that for all δ ∈ (0, δ̄] there exists a real number ε > 0
such that for every P ∈ BB(x̄,δ̄)(P̄ , ε) it holds that

|�(P ) ∩ B(x̄, δ̄)| = |�(P ) ∩ B(x̄, δ)| = 1.

The set of strongly stable stationary points for P̄ is denoted by �S(P̄ ).

Note that in the previous definition strong stability is stated as a topological property
which cannot be straightforwardly checked in general. In this regard, Kojima [21] did
not only provide the concept of a strongly stable stationary point, but also an equivalent
algebraic characterization of it under the well-known Mangasarian-Fromovitz constraint
qualification. In the remainder of this section we recall this characterization for the case that
LICQ holds at the considered point. For that we assume:

• P̄ = Psn(f̄ , h̄, ḡ) with Lagrange function L̄sn and x̄ ∈ �(P̄ ).
• LICQ holds at x̄.
• (λ̄, μ̄) are the uniquely determined Lagrange multipliers, that is, L(P̄ , x̄) = {(λ̄, μ̄)}.
• For each index set J̄ with

I ∗(μ̄) ⊂ J̄ ⊂ J 0
ḡ (x̄) (3.2)
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Let C(J̄ ) ∈ R
n×(n−|I |−|J̄ |) be a matrix whose columns form a basis of the space

Tx̄(h̄, ḡ, J̄ ) =
{
z ∈ R

n

∣∣∣∣
Dxh̄i(x̄)z = 0, i ∈ I,

Dxḡj (x̄)z = 0, j ∈ J̄

}
.

The latter means that C(J̄ ) is a so-called basis matrix of Tx̄(h̄, ḡ, J̄ ). Note that, by
Sylvester’s law, the number

sign det
(
C(J̄ )T D2

xL̄
sn(x̄, λ̄, μ̄) C(J̄ )

)

does not depend on the particular choice of C(J̄ ). Now, we recall Kojima’s result.

Proposition 3.1 [21] Assume that LICQ holds at x̄ ∈ �S(P̄ ). Then, the following two
conditions are equivalent.

(i) x̄ ∈ �S(P̄ ).
(ii) sign det

(
C(J̄ )T D2

xL̄
sn(x̄, λ̄, μ̄) C(J̄ )

)
is constant and nonvanishing for all J̄ satisfy-

ing (3.2).

Remark 3.1 We use the convention that det
(
C(J̄ )T D2

xL̄
sn(x̄, λ̄, μ̄) C(J̄ )

)
> 0 whenever

Tx̄(h̄, ḡ, J̄ ) = {0}.

We mention that under the Linear Independence constraint qualification, Kojima’s
concept of strong stability is equivalent to Robinson’s concept of strong regularity for
generalized equations [25]; see e.g. [12]. In the following section we will use the results pre-
sented in the current section in the context of mathematical programs with complementarity
constraints.

4 Strong Stability for M-stationary Points

This section contains our main result which is the algebraic characterization of strong sta-
bility of M-stationary points for MPCC. Here, we return to the mathematical program
P = Pcc(f, r, s) defined in (1.1). The equality and subtraction of problems are defined
analogously to those in Section 3. Moreover, for x̄ ∈ M[r, s] we define the active index sets:

Īr (x̄) = {m ∈ L : rm(x̄) = 0} ,

Īs(x̄) = {m ∈ L : sm(x̄) = 0} ,

Ir (x̄) = {m ∈ L : rm(x̄) = 0, sm(x̄) > 0} ,

Is(x̄) = {m ∈ L : rm(x̄) > 0, sm(x̄) = 0} ,

Irs(x̄) = {m ∈ L : rm(x̄) = 0, sm(x̄) = 0} .

We recall the definition of an M-stationary point for P .

Definition 4.1 A point x̄ ∈ M[r, s] is called an M-stationary point for P if there exists
(ρ, σ ) ∈ R

2l such that

DxLcc(x̄, ρ, σ ) = 0T , (4.1)

ρm · rm(x̄) = σm · sm(x̄) = 0, m ∈ L, (4.2)

ρm > 0, σm > 0 or ρm · σm = 0, m ∈ L, (4.3)
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where
Lcc(x, ρ, σ ) = f (x) −

∑

m∈L

[ρmrm(x) + σmsm(x)]

is the MPCC-Lagrange function for P . We denote the set of M-stationary points by �M(P )

and the set of Lagrange vectors (ρ, σ ) ∈ R
2l satisfying (4.1)–(4.3) by LM(P, x̄).

We also recall that the Linear Independence constraint qualification for P (MPCC-
LICQ) holds at x̄ ∈ M[r, s] if the vectors

Dxri(x̄), i ∈ Īr (x̄),Dxsj (x̄), j ∈ Īs (x̄)

are linearly independent. It is well-known that any local minimizer for P at which MPCC-
LICQ holds is also an M-stationary point for P , see e. g. [3, Theorem 3.9].

In the remainder of this paper we assume that:

• P̄ = Pcc(f̄ , r̄, s̄) is a fixed MPCC with MPCC-Lagrange function L̄cc and x̄ ∈ M[r̄ , s̄]
is the point under consideration.

• MPCC-LICQ holds at x̄ for P̄ .
• If x̄ ∈ �M(P̄ ), then (ρ̄, σ̄ ) is the corresponding uniquely determined Lagrange vector,

i.e. LM(P̄ , x̄) = {(ρ̄, σ̄ )}.
For (ρ̄, σ̄ ) we define the sets

I ρ̄ = I 0(ρ̄) ∩ Ir̄s̄ (x̄),

I σ̄ = I 0(σ̄ ) ∩ Ir̄s̄ (x̄).

In the previous section we recalled the concept of strong stability of a stationary point
for standard nonlinear programs. Now, we generalize it to M-stationary points for MPCC.
Analogously to Section 3, we define an appropriate seminorm. Given V ∈ V(x̄) and P =
Pcc(f, r, s), let

‖P ‖V = ‖(f, r, s)‖V ,

where the right-hand-side is obtained from (2.1) by choosing F̄ = (f, r, s). For δ > 0 let

BV (P̄ , δ) = {P : ‖P − P̄ ‖V ≤ δ}.
Denote for a given V ∈ V(x̄) the set of all neighborhoods of P̄ by WV (P̄ ).

Definition 4.2 A point x̄ ∈ �M(P̄ ) is called strongly stable if there exists δ̄ > 0 such that
for all δ ∈ (0, δ̄] there exists ε > 0 such that for P ∈ BB(x̄,δ̄)(P̄ , ε) it holds that

|�M(P ) ∩ B(x̄, δ̄)| = |�M(P ) ∩ B(x̄, δ)| = 1.

The set of strongly stable M-stationary points for P̄ is denoted by �MS(P̄ ).

Note that Definitions 3.1 and 4.2 are analogous. Obviously, the distinctions between them
are given by the class of programs and the stationarity concept under consideration. Now,
we present two examples which illustrate M-stationary points that are not strongly stable.

Example 4.1 (c.f. [17, Example 2.1]) Let n = 2, x̄ = (0, 0)T and consider the problem P̄

given by

min x2
1 + x2

2

s.t. min{x1, x2} = 0.

Note that x̄ is an M-stationary point with ρ̄ = σ̄ = 0, see Fig. 1a.
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Fig. 1 Not strongly stable case: two M-stationary points after a sufficiently small perturbation

For ε > 0 sufficiently small, consider the perturbation

min(x1 − ε)2 + (x2 − ε)2

s.t. min{x1, x2} = 0.

It is not hard to see that both (ε, 0)T and (0, ε)T are M-stationary points, see Fig. 1b.
Consequently, 0 is not a strongly stable M-stationary point.

Example 4.2 Let n = 2, x̄ = (0, 0)T and consider the problem P̄ given by

min −x1 + x2
2 + 1

s.t. min{x1, x2} = 0.

Note that x̄ is an M-stationary point with ρ̄ = −1 and σ̄ = 0, see Fig. 2a.
For ε > 0 sufficiently small, consider the perturbation

min −x1 + (x2 + ε)2 + 1

s.t. min{x1, x2} = 0.

After a straightforward calculation, it follows that 0 is the only point satisfying (4.2) in
Definition 4.1, see Fig. 2b. However, it is not hard to see that 0 is not an M-stationary point
for the perturbed problem. Thus, 0 is not a strongly stable M-stationary point for P̄ .

Examples 4.1 and 4.2 provide some hints for obtaining necessary conditions for strong
stability. These will be used when proving the forthcoming Theorem 4.1. Since the proof
of the following lemma uses only continuity arguments, we present a short proof of its first
statement and skip the proof of the second one.

Fig. 2 Not strongly stable case: no M-stationary points after a sufficiently small perturbation
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Lemma 4.1 Assume that MPCC-LICQ holds at x̄ ∈ �M(P̄ ). Then, there exist V ∈ V(x̄)

and W ∈ WV (P̄ ) such that for all P ∈ W and all x ∈ V ∩ �M(P ) we have that

(1) MPCC-LICQ holds at x for P .
(2) The uniquely determined (ρ, σ ) ∈ LM(P, x) satisfies that

• I ∗(ρ̄) ⊂ I ∗(ρ), I ∗(σ̄ ) ⊂ I ∗(σ ).
• ρi · ρ̄i > 0, i ∈ I ∗(ρ̄), σj · σ̄j > 0, j ∈ I ∗(σ̄ ).

Proof (1). By a continuity argument on the derivatives of the active constraints, it follows
that there exists a compact V ∈ V(x̄) such that MPCC-LICQ holds for all x ∈ V ∩ M[r̄ , s̄].
Now, suppose contrarily to (1) that there exist sequences P k with ‖P k − P̄ ‖V → 0 and
xk ∈ V ∩ �M(P k) such that MPCC-LICQ does not hold at xk for P k . Hence, for all k ∈ N

there exists (αk, βk) ∈ R
2l with ‖(αk, βk)‖ = 1 such that

∑

m∈L

[
αk

mrk
m(xk) + βk

msk
m(xk)

]
= 0, (4.4)

αk
m · rk

m(xk) = βk
m · sk

m(xk) = 0, m ∈ L. (4.5)

By the compactness of V and ‖(αk, βk)‖ = 1, after perhaps reducing to appropriate sub-
sequences, assume that xk → x0 for some x0 ∈ V ∩ M[r̄ , s̄] and that (αk, βk) → (ᾱ, β̄)

with ‖(ᾱ, β̄)‖ = 1. Now, letting k → +∞ in (4.4) and (4.5) we get that MPCC-LICQ
does not hold at x0 and, therefore, a contradiction to the fact that MPCC-LICQ holds for all
x ∈ V ∩ M[r̄ , s̄].

Next, we present an auxiliary result and a necessary condition for strong stability.

Lemma 4.2 Assume that f̄ ∈ C∞(Rn,R). If f̄ (0) = 0 and Dxf̄ (0) = 0, then there exist
vij ∈ C∞(R1,R), i, j = 1, . . . , n such that

f̄ (x) =
n∑

i,j=1

vij (x)xixj .

Proof It follows immediately from Steps 1 and 2 in the proof of [13, Theorem 2.7.2].

Theorem 4.1 Assume that MPCC-LICQ holds at x̄ ∈ �MS(P̄ ). Then, the following
conditions hold:

• I ρ̄ ∩ I σ̄ = ∅.
• ρ̄m ≥ 0, σ̄m ≥ 0, m ∈ Ir̄s̄ (x̄).

Proof Let x̄ ∈ �MS(P̄ ) and recall that, consequently, (4.3) in Definition 4.1 holds for
(ρ, σ ) = (ρ̄, σ̄ ). Now, suppose contrarily that there exists an index m0 ∈ Ir̄s̄ (x̄) such that
one of the following conditions is fulfilled:

• ρ̄m0 = σ̄m0 = 0.
• ρ̄m0 < 0, σ̄m0 = 0.
• ρ̄m0 = 0, σ̄m0 < 0.

After perhaps adding sufficiently small positive constants to the functions r̄m, m ∈ I ρ̄ \{m0}
and s̄m, m ∈ I σ̄ \ {m0}, assume that I ρ̄ ∩ I σ̄ = {m0}. Next, we will perform several
sufficiently small perturbations of f̄ . Since C∞(Rn,R) is a dense subset of C2(Rn,R) [7,
Theorem 2.4], there exists f 1 ∈ C∞(Rn,R) sufficiently close to f̄ such that f 1(x̄) = f̄ (x̄),
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Dxf
1(x̄) = Dxf̄ (x̄) and D2

xf
1(x̄) = D2

x f̄ (x̄). Analogously, we obtain functions r1 ∈
C∞(Rn,Rl ) and s1 ∈ C∞(Rn,Rl ) sufficiently close to r̄ and s̄, respectively. Note that after
performing this perturbation the Lagrange vector at x̄ for P 1 = Pcc(f 1, r1, s1) remains the
same.

Moreover, by MPCC-LICQ, for our local consideration we perform a coordinate trans-
formation by choosing as new coordinates a basis of Rn which contains the gradients of the
active constraints at x̄; see e.g. [14, 16, 17] where such a coordinate transformation is called
standard diffeomorphism. As a consequence, we can restrict ourselves to the following
situation: f 1 ∈ C∞(R2,R), x̄ = (0, 0)T , f 1(0, 0) = 0 and the problem P 1 becomes

min f 1(x1, x2)

s.t. min{x1, x2} = 0.

Note that now it holds that

∂f 1(0, 0)

∂x1
= ρ̄ = ρ̄m0 ,

∂f 1(0, 0)

∂x2
= σ̄ = σ̄m0 .

Next, we distinguish two cases.

Case 1: ρ̄ = σ̄ = 0. A contradiction to this case follows by observing that the two
C-stationary points obtained in the proof of Case 2 in [17, Theorem 3.1] are
also M-stationary f completeness we provide here the details of this proof. By
Lemma 4.2, we get

f 1(x1, x2) = v11(x1, x2)x
2
1 + v12(x1, x2)x1x2 + v22(x1, x2)x

2
2

for some v11, v12, v22 ∈ C∞(R2,R). By possibly adding sufficiently small
quadratic terms to f 1 we assume v11(x1, x2) �= 0 and v22(x1, x2) �= 0.

Then, an appropriate local coordinate transformation leaves the feasible set of
P 1 unchanged while the objective function becomes

f 2(x1, x2) = c1x
2
1 + v(x1, x2)x1x2 + c2x

2
2 ,

where c1, c2 ∈ R \ {0} and v ∈ C∞(R2,R). For ε > 0 sufficiently small let

f ε(x1, x2) = c1(x1 − ε)2 + v(x1, x2)x1x2 + c2(x2 − ε)2

and consider the problem P ε which is obtained by substituting f 2 by f ε . Note
that

Dxf
ε(ε, 0) = (0, εv(ε, 0) − 2c2ε),

Dxf
ε(0, ε) = (εv(0, ε) − 2c1ε, 0).

Hence, we obtain two different points (ε, 0)T , (0, ε)T ∈ �M(P ε) which
contradicts that x̄ ∈ �MS(P̄ ).

Case 2: ρ̄ < 0, σ̄ = 0. Choose f 2 ∈ C∞(R2,R) such that f 1 − f 2 is a small multiple
of x2

2 and that

∂2f 2(0, 0)

∂x2
2

�= 0.
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Let P 2 denote the problem that results from substituting f 1 by f 2 in P 1.
Furthermore, for ε ∈ R with

ε
∂2f 2(0, 0)

∂x2
2

< 0 (4.6)

consider the perturbation f ε of f 2 given by

f ε(x1, x2) = f 2(x1, x2) − εx2

and let P ε be the resulting perturbed problem. Choose V ∈ V(0, 0) and W ∈
WV (P 2) as in Lemma 4.1. We will get a contradiction to x̄ ∈ �MS(P̄ ) by
showing that

�M(P ε) ∩ V = ∅ (4.7)

for any ε such that P ε ∈ W and that (4.6) holds. Suppose contrarily that there
exists (xε

1, xε
2)T ∈ �M(P ε) ∩ V with corresponding Lagrange vector (ρε, σ ε).

By Lemma 4.1, it follows that ρε < 0 and, by M-stationarity, that σε = 0.
Therefore, we have

xε
1 = 0,

∂f 2(xε
1, xε

2)

∂x2
= ε. (4.8)

Now, consider the mapping G ∈ C2(R2 × R,R2) given as

G(x1, x2, t) =
(

x1,
∂f 2(x1, x2)

∂x2
− t

)T

(4.9)

with t ∈ R. Since DxG(0, 0, 0) is nonsingular, the Implicit Function Theorem
yields a uniquely determined and continuously differentiable solution x̂1(t), x̂2(t)

for t near the origin with

G(x̂1(t), x̂2(t), t) = 0,

x̂1(0) = x̂2(0) = 0.

By (4.8) and (4.9) we get xε
2 = x̂2(ε) and a straightforward calculation provides

∂x̂2(0)

∂t

∂2f 2(0, 0)

∂x2
2

= 1.

Hence, by the previous expression and (4.6), we obtain ∂x̂2(0)
∂t

ε < 0 and, therefore
xε

2 < 0. This contradicts the feasibility of (xε
1, xε

2)T and completes the proof of
this case. Note that the proof of the case ρ̄ = 0, σ̄ < 0 runs analogously.

Obviously, Examples 4.1 and 4.2 correspond in the previous proof to Cases 1 and 2,
respectively. In particular, Figs. 1 and 2 illustrate the local changes of the set of M-stationary
points after a sufficiently small translation of the graph of f̄ .

In Theorem 4.1 we presented a necessary condition for the strong stability of an M-
stationary point. Our goal is now to state an equivalent algebraic characterization for it. For
this, following [27], we consider a relaxed program for P̄ at x̄ which we denote here by P̄ rel.
Moreover, we consider the perturbation P rel of P̄ rel which is a standard nonlinear program
given as

P rel : min
x∈M rel[r,s]

f (x)
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with

M rel[r, s] =
⎧
⎨

⎩
x ∈ R

n

∣∣∣∣∣∣

rm(x) = 0, sm(x) ≥ 0, m ∈ Ir̄ (x̄)

rm(x) ≥ 0, sm(x) = 0, m ∈ Is̄ (x̄)

rm(x) ≥ 0, sm(x) ≥ 0, m ∈ Ir̄s̄ (x̄)

⎫
⎬

⎭
,

where the functions f , r and s are assumed to be near f̄ , r̄ and s̄, respectively.

Remark 4.1 Let P̄ = Pcc(f̄ , r̄, s̄) and consider its perturbation P = Pcc(f, r, s). Note that
P rel does not depend only on the functions that describe P , but also on those describing P̄

as well as on the point x̄.

The following auxiliary result relates locally the M-stationary points of a perturbed
MPCC to the stationary points of the corresponding perturbed relaxed program.

Lemma 4.3 Assume that MPCC-LICQ holds at x̄ ∈ �M(P̄ ). If I ρ̄ ∩ I σ̄ = ∅ and ρ̄m ≥ 0,
σ̄m ≥ 0, m ∈ Ir̄s̄ (x̄), then there exist V ∈ V(x̄) and W ∈ WV (P̄ ) such that

�M(P ) ∩ V ′ = �(P rel) ∩ V ′ (4.10)

for all V ′ ⊂ V and all P ∈ W .

Proof Choose V ∈ V(x̄) and W ∈ WV (P̄ ) as in Lemma 4.1. First, we show the inclusion

�M(P ) ∩ V ⊂ �(P rel) ∩ V (4.11)

for all P ∈ W . If �M(P ) ∩ V = ∅, then (4.11) immediately follows. Now, for P ∈ W

choose a point x ∈ �M(P ) ∩ V and note that x ∈ M rel[r, s]. Moreover, by Lemma 4.1, we
obtain ρm ≥ 0, σm ≥ 0, m ∈ Ir̄s̄ (x̄) for (ρ, σ ) ∈ LM(P, x) and, therefore, x ∈ �(P rel)∩V .
Thus, (4.11) holds. Next, we show that

�(P rel) ∩ V ⊂ �M(P ) ∩ V (4.12)

for all P ∈ W . If �(P rel) ∩ V = ∅, then (4.12) immediately follows. Now, choose x ∈
�(P rel) ∩ V and let (ρ, σ ) ∈ L(P rel, x) be the uniquely determined Lagrange vector.
By continuity and I ρ̄ ∩ I σ̄ = ∅, we get Iρ ∩ Iσ = ∅. By the latter and using (4.2),
we have x ∈ M[r, s]. Since (ρ, σ ) ∈ L(P rel, x), it follows that (4.3) holds and, hence,
x ∈ �M(P ) ∩ V . Consequently, (4.12) holds. By (4.11) and (4.12), it follows that

�M(P ) ∩ V = �(P rel) ∩ V . (4.13)

Finally, by (4.13), for V ′ ⊂ V we obtain

�M(P ) ∩ V ′ = �M(P ) ∩ V ∩ V ′ = �(P rel) ∩ V ∩ V ′ = �(P rel) ∩ V ′,
which completes the proof.

Now, we state an equivalent characterization of strong stability for an M-stationary point.

Theorem 4.2 Assume that MPCC-LICQ holds at x̄ ∈ �M(P̄ ). Then, the following two
conditions are equivalent.

(i) x̄ ∈ �MS(P̄ ).
(ii) x̄ ∈ �S(P̄ rel) and I ρ̄ ∩ I σ̄ = ∅.

Proof (i) ⇒ (ii). By Theorem 4.1, we obtain

I ρ̄ ∩ I σ̄ = ∅, ρ̄m ≥ 0, σ̄m ≥ 0,m ∈ Ir̄s̄ (x̄). (4.14)
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According to Lemma 4.3, there exist V ∈ V(x̄) and W ∈ WV (P̄ ) such that (4.10) holds for
all V ′ ⊂ V and all P ∈ W . By (i) and (4.10), it follows that

|�M(P ) ∩ V ′| = |�(P rel) ∩ V ′| = 1 (4.15)

and, therefore, x̄ ∈ �S(P̄ rel).
(ii) ⇒ (i). By the definition of P̄ rel and (ii), we get (4.14). We use again Lemma 4.3 for

obtaining (4.15) and, consequently, x̄ ∈ �MS(P̄ ). This completes the proof.

The main result of this paper is an algebraic characterization for the strong stability of
an M-stationary point by taking first and second order information of (f̄ , r̄, s̄) into account.
For this, we need a notation that is analogous to that at the end of Section 3. For each index
sets J̄ 1, J̄ 2 with

I ∗(ρ̄) ∪ Ir̄ (x̄) ⊂ J̄ 1 ⊂ Īr̄ (x̄),

I ∗(σ̄ ) ∪ Is̄ (x̄) ⊂ J̄ 2 ⊂ Īs̄ (x̄)
(4.16)

let C(J̄ 1, J̄ 2) ∈ R
n×(n−|J̄ 1|−|J̄ 2|) be a matrix whose columns form a basis of the space

Tx̄(r̄, s̄, J̄
1, J̄ 2) =

{
z ∈ R

n

∣∣∣∣
Dxr̄m(x)z = 0, m ∈ J̄ 1

Dxs̄m(x)z = 0, m ∈ J̄ 2

}
.

Theorem 4.3 Assume that MPCC-LICQ holds at x̄ ∈ �M(P̄ ). Then, the following two
conditions are equivalent.

(i) x̄ ∈ �MS(P̄ ).
(ii) I ρ̄ ∩ I σ̄ = ∅, ρ̄m ≥ 0, σ̄m ≥ 0, m ∈ Ir̄s̄ (x̄) and

sign det
(
C(J̄ 1, J̄ 2)T D2

x L̄
cc

(x̄, ρ̄, σ̄ ) C(J̄ 1, J̄ 2)
)

is constant and nonvanishing for all J̄ 1, J̄ 2 satisfying (4.16).

Proof A moment of reflexion shows that after reordering constraints the Lagrange func-
tion for P̄ rel is L̄

cc
. Moreover, the family of all matrices C(J̄ ) with J̄ satisfying (3.2) for

P̄ rel, and the family of all C(J̄ 1, J̄ 2) with J̄ 1, J̄ 2 satisfying (4.16) are the same. Thus, by
Proposition 3.1 and Theorem 4.2, the desired result follows.

Remark 4.2 Note that condition (ii) in Theorem 4.3 is purely algebraic and does not explic-
itly use the relaxed program. Furthermore, an alternative proof to Theorem 4.3 can be given
by using Theorem 4.1 and [17, Theorem 3.1]. The latter is an algebraic characterization of
strong stability for C-stationary points.

Now, we present an example where Theorem 4.3 is applied.

Example 4.3 Let n = 4, x̄ = (0, 0, 0, 0)T and consider the problem P̄ given by

min x2
1 + x2 + x2

3 +x4

s.t.

min{x1, x2} = 0,

min{x3, x4} = 0,
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Note that ρ̄1 = ρ̄2 = 0, σ̄1 = σ̄2 = 1 and D2
xL̄

cc(x̄, ρ̄, σ̄ ) = diag(2, 0, 2, 0). Obviously,
I ρ̄ ∩ I σ̄ = ∅ and for J̄ 1 = J̄ 2 = {1, 2} we use Remark 3.1 to get

sign det
(
C(J̄ 1, J̄ 2)T D2

xL̄
cc(x̄, ρ̄, σ̄ ) C(J̄ 1, J̄ 2)

)
= 1. (4.17)

Moreover, the matrices C(J̄ 1, J̄ 2) with Tx̄(r̄, s̄, J̄
1, J̄ 2) �= {(0, 0, 0, 0)T } are

⎛

⎜⎜
⎝

1
0
0
0

⎞

⎟⎟
⎠ ,

⎛

⎜⎜
⎝

0
0
1
0

⎞

⎟⎟
⎠ ,

⎛

⎜⎜
⎝

1 0
0 0
0 1
0 0

⎞

⎟⎟
⎠

and a straightforward calculation yields (4.17). Thus, by Theorem 4.3, it follows that x̄ ∈
�MS(P̄ ). However, note that if we swap x2 and x3 in the constraints of P̄ , then x̄ is not a
strongly stable M-stationary point for the resulting problem.

5 Final Remarks

We conclude this paper by presenting some final remarks.

Remark 5.1 Each M-stationary point is also a C-stationary one, but not vice versa; this is
nicely illustrated in [17, Example 2.1 and Remark 4.2]. As shown in [16] as a generaliza-
tion of classical Morse theory, the topological structure of the feasible level set of MPCC
is changing if and only if a level is passed that contains a C-stationary point. Therefore,
this topological structure (e.g. the number of connected components of the feasible set) is
changing when the level of an M-stationary point is passed. Such changes play a crucial
role for numerical solution methods via global optimization or homotopy methods.

Remark 5.2 We refer to S-stationarity under MPCC-LICQ which is described by

ρ̄m ≥ 0, σ̄m ≥ 0, m ∈ Ir̄s̄ (x̄).

Obviously, an S-stationary point is also M-stationary but not vice versa. By Theorem 4.2,
the strong stability of an M-stationary point x̄ implies that x̄ is also a strongly stable S-
stationary point where the latter is defined analogously. Moreover, if x̄ is a local minimizer,
then x̄ is an S-stationary point. This property is closely related to the discussion in [9] where
S-stationarity is considered as the most appropriate stationarity concept for both optimality
conditions and sensitivity analysis.

Remark 5.3 Since we assumed that MPCC-LICQ holds at the point x̄ ∈ �M(P̄ ) under
consideration, the corresponding Lagrange vector (ρ̄, σ̄ ) is uniquely determined. A moment
of reflection shows that, if x̄ ∈ �MS(P̄ ), then the properties of strong stability (existence,
uniqueness and continuous dependence on the perturbation) is not only satisfied for x but
also for the pair (x, (ρ, σ )).
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