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Demosponges are a well-known source of a plethora of bioactive compounds. In
particular, they are able to form a skeleton by direct deposition of silica in a process
catalyzed by silicatein. Herein, we isolated biosilicas from five different Atlantic deep-sea
sponges Geodia atlantica (GA), Geodia barretti (GB), Stelletta normani (SN), Axinella
infundibuliformis (AI), and Phakellia ventilabrum (PV) to explore the bioactivity and
osteogenic capacity of its silica-based materials. We chemically characterized the
isolated biosilicas and evaluated them for their bioactivity to deposit Ca and P on their
surface (by immersion in simulated body fluid, SBF). GB-, SN-, AI-, and PV-based
biosilicas did not generate a stable calcium phosphate (CaP) layer over time in the
presence of SBF, however, the GA-derived one was able to form a CaP surface layer
(at a Ca/P ratio of ∼1.7, similar to the one observed for hydroxyapatite), that was stable
during the 28 days of testing. In addition, no cytotoxicity toward L929 and SaOs2 cells
was observed for the GA-based biosilica up to a concentration of 10 mg/mL. Overall,
the GA-based biosilica presents the characteristics to be used in the development of
biomaterials for bone tissue engineering (BTE).

Keywords: bioactivity, biosilica, bioceramics, tissue engineering, deep-sea sponges

INTRODUCTION

The marine environment is a source of a wide range of compounds, which have been subject
of intense research due to their potential biomedical application. It has been reported the
extracted and purified marine-origin chemicals present antibiotic, anticancer, anti-inflammatory
and antiviral activities, among many others (Marris, 2006). In addition, silica-based chemical
structures, as the ones found in marine sponges (Thakur and Müller, 2004; Venkatesan et al.,
2016), have the potential to be used as bioactive and osteogenic biomaterials relevant for bone tissue
engineering (BTE) applications.

The most common way used by marine sponges to produce their biosilica-based skeleton
is through deposition/assembly catalyzed by silicatein (i.e., α, β, and γ isoforms). During this
process, siliceous spicules are formed through the direct deposition of silica along the axial
direction of the silicatein filaments (Cha et al., 1999; Müller et al., 2008; Ehrlich et al., 2010a).
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Biosilica represents the main component of the matrix of these
spicules (Ehrlich et al., 2010b; Kulakovskaya et al., 2012; Wang
et al., 2012); however, collagen, being the predominant protein
in the organic matrix of marine sponges, is also present. In
this sense, sponge spicules are regarded as a composite material
(Schröder et al., 2008). In addition, several reports demonstrated
that biogenic polyphosphates (linear inorganic polymers) are also
involved in the formation of biosilica (Kulaev et al., 2005).

The hierarchical organization of sponge skeletons and
spicules containing amorphous silica (classes Demospongiae,
Hexactinellida, and Homoscleromorpha) or calcium carbonate
(class Calcarea) inspired researchers to use them in the
development of biomaterials for BTE (Silva et al., 2012; Barros
et al., 2014; Odatsu et al., 2015; Lewandowska-Łańcucka et al.,
2015; Antoniac et al., 2016; Wysokowski et al., 2018). The
use of this biosilica has been considered as a promising
biomimetic approach to recapitulate the inorganic part of the
bone extracellular matrix (ECM) (Dudik et al., 2018).

It has been shown that biosilica promotes osteoblast
proliferation and function (Wang et al., 2013). In fact, Schröder
et al. reported that the silica-containing bioactive surfaces
generated through silicatein-mediated catalysis induce the
formation of hydroxyapatite (HA) crystals under SaOs2 cell
culture (Schröder et al., 2005). Wiens et al. (2010a,b) also revealed
the osteogenic potential of biosilica in their studies, showing
that it is able to promote the formation of HA crystals and
increase the gene expression of SaOs2 cells. More recently,
Barros et al. demonstrated that ceramic structures obtained upon
calcination of marine sponges (i.e., Petrosia ficiformis, Agelas
oroides, and Chondrosia reniformis) are non-cytotoxic and have
the potential to be used as substitutes of synthetic Bioglass
(Barros et al., 2016).

A wide range of bioceramic-based strategies, typically using
calcium phosphates (CaP) and/or bioactive glasses, or polymers
(e.g., naturally derived collagen type I), as well as hybrid
materials, created by the mixture of bioceramics and polymeric
structures, have been developed targeting BTE (Rezwan et al.,
2006; Fu et al., 2011; Amorim et al., 2014; Fernandes et al.,
2016). In the case of bioactive silica-based glasses, they are
able to bind and integrate into the bone tissue through the
formation of a silica gel layer. It is reported that this layer
attracts and stimulates osteoprogenitor cells to proliferate and to
differentiate into osteoblasts, which, in turn, start the synthesis
and deposition of ECM and its mineralization (Blunt et al., 2005;
Blunt et al., 2010). Fabrication of glass and glass-ceramic scaffolds
with architectures mimicking the 3D interconnected porosity of
natural bone has been explored (Rezwan et al., 2006; Rahaman
et al., 2011; Kaur et al., 2014). In general, adequate mechanical
strength and controlled degradation rates are two of the most
relevant properties for application to a BTE strategy.

Within the use of composites as biomaterials for BTE, marine
building blocks are establishing a representative role (Silva
et al., 2012), namely following the studies reporting the use of:
collagen combined with calcium phosphates (Elango et al., 2016;
Diogo et al., 2018, 2020); biosilica from sponges (Müller et al.,
2004), but also from diatoms (Le et al., 2018); polyphosphates
inspired in the materials found in sponges (Wang et al., 2018);

among many others. Interest in marine biomaterials for BTS has
been associated with the sustainable production methodologies,
namely benefiting from strategies proposed for the valorization
of marine by-products, such as fish bones and skins, but also due
to the absence of ethical or health constraints, which are usually
associated with the use of mammal-derived components.

Herein, we focus on the evaluation of the biomedical potential
of biosilica derived from five North Atlantic deep-sea sponge
species of the class Demospongiae, namely Geodia atlantica
(GA), Geodia barretti (GB), Stelletta normani (SN) (order
Tetractinellida), and Axinella infundibuliformis (AI), Phakellia
ventilabrum (PV) (order Axinellida). We report on their
physicochemical characterization, bioactivity (herein referred as
the ability to promote the formation of CaP layer on the surface
of the biosilicas) and cytotoxicity under in vitro conditions,
as a screening methodology to develop marine-based biosilica
structures with potential to be used in BTE.

MATERIALS AND METHODS

Materials
Sponge Samples
Sponge samples of the species Geodia atlantica (GA), Geodia
barretti (GB), Stelletta normani (SN), Axinella infundibuliformis
(AI), and Phakellia ventilabrum (PV) were collected in Korsfjord,
Norway, using a triangular dredge, at depths between 332 and
97 m for GA, GB, PV and between 292 and 226 m for SN and
AI. Upon collection, samples were fragmented and preserved
in 99% ethanol. Taxonomic identifications were made from the
analyses of external and internal morphological characteristics.
Representative fragments, i.e., comprising both the sponge
ectosome (external part) and choanosome (inner part), were
selected for further materials processing and characterization.

Chemicals
Sodium chloride (PanReac AppliChem, Spain), sodium hydrogen
carbonate (Merck, Germany), potassium chloride (VWR
International, Portugal), di-potassium hydrogen phosphate
trihydrate (Merck, United Kingdom), Tris(hydroxymethyl)-
aminomethane, magnesium chloride hexahydrate and calcium
chloride (Sigma-Aldrich, Portugal), sodium sulfate (Sigma-
Aldrich, Australia), hydrochloric acid (Fisher Scientific,
United Kingdom) were used for preparation of simulated body
fluid (SBF). All the reagents were ACS reagent grade. 1,000 mg/L
Ca ICP standard solution (Alfa Aesar, Germany) and 1,000 mg/L
P ICP standard solution (Merck, Germany) were used for
preparation of calibration standards. Ultrapure water was used
throughout the study.

Extraction of Bioceramics From
Deep-Sea Sponges
The marine sponges were calcinated in a furnace
(FornoCeramica, Portugal) at 800◦C for 6 h in order to
remove the whole organic components thereby extracting the
inorganic part. Prior to the calcination process, the samples were
cut into pieces and washed repeatedly with ultrapure water.
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FIGURE 1 | (A) GA, GB, SN, AI, and PV marine sponge specimens and corresponding sponge pieces before calcination. (B) Corresponding sponge-derived
biosilicas obtained upon calcination and close-up of each calcined sponge piece. (C) SEM images showing silica-based spicules obtained upon calcination.

TABLE 1 | Quantification of the chemical elements present in the biosilicas
obtained from the different marine sponges.

Sponge species Composition (Wt%)

O Si Ca Na P Mg K S Al

GA—Geodia
atlantica

54.0 37.5 1.9 2.5 1.6 0.9 1.3 0.4 –

GB—Geodia
barretti

53.3 38.4 1.2 3.2 0.7 0.8 0.8 0.2 1.3

SN—Stelletta
normani

53.7 36.6 2.7 1.9 1.1 1.0 0.8 0.8 1.4

AI—Axinella
infundibuliformis

54.8 35.1 2.7 2.0 1.5 1.7 0.8 1.1 0.3

PV—Phakellia
ventilabrum

53.3 39.2 1.9 1.2 0.7 0.7 0.9 0.6 1.5

Bioactivity Assessment
The biosilicas obtained from the different marine sponges were
immersed in SBF. The SBF was prepared according to the
procedure described by Kokubo and Takadama (2006). The initial
concentrations of calcium and phosphorus ions in SBF were 2.5
and 1 mmol/L, respectively. The samples were immersed in SBF
using plastic tubes, under a powder-to-liquid ratio of 1.5 mg:

FIGURE 2 | XRD powder patterns of the biosilicas obtained from the tested
marine sponges.

1 mL (Jones et al., 2001; Yu et al., 2012; Greasley et al., 2016),
using aliquots of 15 mg of each biosilica per 10 mL of SBF.
Samples were placed in a thermostatic water bath at 37◦C, for 6 h,
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FIGURE 3 | Changes in Ca (A) and P (B) concentrations in the SBF solutions after immersion of the different biosilicas during 28 days.

1, 3, 7, 14, and 28 days under constant agitation (i.e., 60 rpm).
Three samples of each biosilica were used per test, with average
values reported. At each time point the SBF was separated from
the solid and used to determine the Ca and P concentrations. The
solid was washed with distilled water, dried at 37◦C and assessed
microscopically.

Characterization of the Biosilica Surface
Scanning Electron Microscopy and Energy
Dispersive X-Ray Spectroscopy
Scanning electron microscopy (SEM) was carried out on a
JSM-6010 LV microscope (JEOL, Japan) equipped with an
energy dispersive (EDS) x-ray spectroscope (Oxford Instruments,
United Kingdom) under a working distance of 10–12 mm
and a beam energy of 10.0 kV. The low vacuum mode
allowed non-conductive biosilicas (samples before grinding) to
be observed and analyzed without conductive coating. Powders
of biosilicas before and after immersion in SBF were platinum
coated (apx. 2 nm) prior to the analysis. EDS analysis was
performed at four points using a beam energy of 15.0 kV and
a magnification of 500×. EDS spectra were analyzed using the

Aztec software from Oxford Instruments) and presented as a
semi-quantitative evaluation.

Fourier Transform Infrared Spectroscopy
Fourier transform infrared spectroscopy (FTIR) spectra were
collected on an IR Prestige-21 spectrometer (Shimadzu, Japan)
as an average of 32 scans, a wavenumber range between 4,000
and 400 cm−1 and a resolution of 4 cm−1. A press (Pike,
United States) was used to prepare transparent pellets containing
biosilica powders mixed with potassium bromide.

X-Ray Diffraction
X-ray diffraction (XRD) analysis was executed on a XRD
diffractometer (Bruker D8 Advance, Germany), operating using
a Cu-Kα radiation in θ/2θ mode, in the range between 6◦ and
70◦, using a step increment of 0.04◦ and an acquisition time
of 1 s per step.

Thermogravimetric Analysis
Thermogravimetric analysis of the sponge samples was carried
out on Simultaneous Thermogravimetric Analyzer STA7000
(Hitachi, Japan) under a temperature range from 23 to 800◦C

Frontiers in Marine Science | www.frontiersin.org 4 May 2021 | Volume 8 | Article 637810

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-637810 May 16, 2021 Time: 13:18 # 5

Dudik et al. Bioactivity of Sponge-Derived Biosilica

FIGURE 4 | SEM micrographs of the biosilicas obtained from GA and GB before immersion in SBF (A,B), after 7 days of immersion in SBF (C,D), and after 28 days
of immersion in SBF (E,F). Scale bar: 5 µm.

and a heating rate of 10◦/min in an oxygen atmosphere. For each
biosilica, it was used a sample weight of 8–10 mg.

Inductively Coupled Plasma Optical Emission
Spectrometry
Inductively coupled plasma—optical emission spectrometry
(ICP-OES) was used to determine the Ca and P concentrations
present in the SBF before and after the immersion of the
biosilicas. The ICP-OES analysis was performed on a ICP
spectrometer (HORIBA JY 2000-2, United States), using the
absorption wavelengths of λ = 317.93 nm and λ = 214.91 nm
for Ca and P, respectively. Concentrations of Ca and P were
calculated from standard calibration curves prepared using
standard solutions from 0 to 10 ppm.

Cytotoxicity Studies
The cytotoxicity of the biosilicas was evaluated following an
established protocol based on ISO/EN 10 993 standard (ISO
10993-5, 2009) guidelines, using an immortalized mouse lung
fibroblast cell line (L929) and Sarcoma cell line (SaOs2)
purchased from the European Collection of Cell Cultures.
In brief, biosilicas (100, 50, and 10 mg/mL; 3 samples
from the biosilica obtained from the same sponge were
used throughout the analysis) were incubated in DMEM
culture medium (Dulbecco’s Modified Eagle’s Medium—low
glucose) with 10% heat-inactivated fetal bovine serum (FBS;
Biochrom AG, Germany) and 1% antibiotic/antimycotic solution
(containing a final concentration of penicillin 100 units/mL
and streptomycin 100 mg/mL; Gibco, United Kingdom), for
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TABLE 2 | Chemical composition of the surface of the biosilicas after 28 days of
immersion in simulated body fluid (SBF).

Sponge species Composition (Wt%)

O Si Ca Na P Mg K S Al

GA—Geodia
atlantica

54.3 15.4 18.6 0.4 10.6 0.7 – – –

GB—Geodia
barretti

55.0 37.9 2.2 1.1 1.9 0.5 0.3 – 0.9

SN—Stelletta
normani

56.6 39.4 0.7 0.7 0.3 0.5 0.4 – 1.4

AI—Axinella
infundibuliformis

54.8 40.3 1.2 0.8 0.9 1.2 0.5 – 0.2

PV—Phakellia
ventilabrum

56.0 42.0 0.8 0.3 0.4 0.2 0.3 – –

24 h in a water bath at 37◦C and 60 rpm. The leachables
of each sample were collected and filtered using a 0.22 µm
syringe filter. L929 and SaOs2 cells (11,000 cells.cm−2) were
cultured in a 96-well plate in DMEM and after 24 h, the media
were replaced by the collected biosilica extracts. Cell viability
was evaluated by AlamarBlue assay after 24 and 72 h. The
percentage of reduced AlamarBlue was calculated according to
the manufacturer instructions (Bio-Rad). The results presented
were normalized to the absorbance obtained for control cells
cultured in DMEM (positive control) and correspond to the
average of three measurements (±standard deviation).

Statistical Analysis
The data obtained from the ICP analysis and cytotoxicity
tests were expressed as mean ± standard deviation (SD). The
statistical analysis of the cytotoxicity study was performed by
using the Shapiro-Wilk test (p < 0.05) to check if the data
presented a normal distribution. The data did not follow a normal
distribution and, as a consequence, were analyzed using the
Mann-Whitney test. The statistically significant differences are
represented with ∗ for p < 0.05 and ∗∗ for p < 0.01.

RESULTS AND DISCUSSION

Characterization of the Biosilica Samples
Biosilica structures were obtained after calcination of the sponges
(Figures 1A,B, before and after treatment) as described in the
methods section. In all the cases, the biosilicas were fragile
3D structures composed of siliceous spicules with different
sizes and shapes (Figure 1B). The elimination of the organic
matrix resulted in an amount of loose spicules, indicating that
the spicules were embedded into the organic matrix which,
upon calcination, lost its solid support. Moreover, SEM analysis
confirmed that all the spicules were cracked after the calcination
step, probably due to the degradation of the organic components,
such as proteins (e.g., silicateins and collagen) that occurs during
the heating process (Figure 1C). The microscopic observation of
the biosilicas obtained from GA and GB revealed the presence
of different types of spicules, such as sterrasters (microscleres,

spherical) and dichotriaenes (megascleres), which have been
previously reported and reviewed (Cárdenas et al., 2013).

Thermogravimetric analysis showed that the organic portion
of the marine sponges were removed upon calcination at 800◦C
during 6 h, with the silica content of these sponges accounting
to about 50–60% of their dry mass (Supplementary Figure 1,
example of TG and DTG curves obtained for GB). The weight
loss observed in the lower temperature region (i.e., Tmax∼ 100◦C,
weight loss ∼ 8%) is attributed to water desorption. Further
weight loss in the temperature region between 200 and 544◦C
with a total mass loss of about 40% corresponds to the thermal
decomposition of the sponge’s organic components.

EDS, XRD, and FTIR analysis showed that the inorganic part
of the marine sponges is mainly composed of silicates, compatible
with biosilica spicules. However, EDS data revealed that they also
contained traces of other elements, such as Ca, Na, P, Mg, K, and
S. Moreover, Al was also found, but only in the biosilicas obtained
from GB, SN, AI, and PV (Table 1). The elemental composition
of the biosilicas demonstrates their inherent ability to bind to
other essential cations, such as Ca2+, Mg2+, K+, Na+, and Al3+.
In their FTIR spectra (Supplementary Figure 2), the shoulder at
apx. 1,650 cm−1 can be attributed to adsorbed water. The bands
at 1,099 and 790 cm−1 are assigned to the O-Si-O asymmetrical
and symmetrical stretching vibrations, respectively, from the Si-
O-Si network. The broad band at ∼3,425 cm−1 corresponds
to the stretching vibrations of −OH from the Si-OH moieties
(Khan et al., 2017).

The XRD powder patterns (Figure 2) of the biosilicas obtained
upon calcination revealed the presence of the most intense peak
at 22◦ 2θ and less intense peaks between 28 and 65◦ 2θ, which
correspond to Cristobalite crystalline phase (COD 9015087)
(Xue et al., 2015), confirming that the main structural inorganic
component of the sponges are silicates.

Assessment of Bioactivity
To assess the bioactivity of the generated biosilicas (herein
referred as the ability of the biosilicas to promote the deposition
of CaP layer on their surface), samples were immersed in SBF for
different timeframes. At each timepoint, the solution was filtered
and analyzed by ICP to determine the Ca and P concentrations.
After separation of the biosilica materials from the SBF solution,
their surface morphology was analyzed by SEM, while EDS was
used to quantify the Ca and P concentrations present in the
inorganic structures formed on the surface of the biosilicas.

ICP analysis of the SBF solutions, at the different timepoints
of the evaluation of the bioactivity (Figure 3), demonstrated that
the concentration of Ca and P in the SBF solution increased
for several samples up to day 1 (increase of Ca concentration
for the biosilicas generated from GA, SN, AI, and increase of P
concentration for GA-based biosilica). This could be explained
by the diffusion of Ca and P ions present in the biosilica samples
into the SBF. Afterwards, for the GB-, SN-, AI-, and PV-derived
biosilicas, a decrease of Ca and P concentration was observed
between day 1 and day 7, followed by a stabilization up to day
28, showing that these ions were responsible for the formation
of a CaP layer on their surfaces. The GA-based biosilicas had an
overall higher consumption of Ca and P from SBF leading to its
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FIGURE 5 | SEM micrographs of the biosilicas obtained from SN, AI, and PV before immersion in SBF (A,B), after 7 days of immersion in SBF (C,D), and after 28
days of immersion in SBF (E,F). Scale bars: 5 and 10 µm.
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FIGURE 6 | EDS spectra of GA-derived biosilica before and after immersion in SBF (for 28 days).

deposition on the biosilica surface between day 3 and day 28 (as
shown in the SEM analysis, Figure 4).

The formation of the CaP layer on the biosilica surface was
monitored by SEM and EDS. SEM observation showed that, after
immersion in SBF for 28 days, GA-based biosilicas presented
the formation of cauliflower structures typical of hydroxyapatite
(HA) on the surface of both types of spicules (Figure 4).
Moreover, the EDS analysis (Table 2) showed that the detected
CaP structures present a Ca/P ratio of ∼1.7, which is similar to
the one expected to be present in HA, confirming its presence
in the biosilica surface (Bailey et al., 2009). In contrast to these
results, GB-based biosilicas, after immersion in SBF for 7 days,
presented dispersed CaP structures only on the rod-like spicules,
that noticeably decrease through the 28 days of the evaluation of
bioactivity (Figure 4).

In the case of the spicules obtained from the SN, PV-, and
AI-based biosilicas the formation of dispersed CaP deposits was
observed on their surface throughout the whole 28 days of testing.
However, especially in the case of the SN-derived biosilica, an
additional reduction of CaP deposits was detected after 28 days
of immersion (Figure 5), confirming that the generated CaP
structures are not stable over longer timeframes.

In general, the SEM/EDS data are consistent with the results
obtained by ICP, revealing a significant and stable increase in Ca
and P content only on the surface of GA-based biosilica after
immersion in SBF for 28 days (Figure 6 and Table 2). In fact,
it has been previously reported that the bioactivity of biosilicas is
correlated with their chemical composition (Barros et al., 2016),
where the presence of Ca, Mg, and P promotes the nucleation
and growth of HA on their surface, while biosilicas that do not

contain Ca, Mg, nor P, did not show any inherent bioactivity.
We did not confirm this trend in the biosilicas obtained from
the species herein studied, as all of them presented similar values
of Ca/Mg/P concentrations, however, it is relevant to point out
that the GA-based biosilica (the one with higher bioactivity) is, in
fact, the one that had the higher concentration of P in its initial
composition (Table 1). Our results give a strong evidence that the
GA-based biosilica should be able to promote the regeneration
of bone tissue and, consequently, it is highly relevant for the
development of BTE strategies. However, this evaluation was
executed using chemical methodologies that do not guarantee per
si the cytocompatibility of the tested biosilica formulations.

Evaluation of Cytotoxicity
To guarantee that the proposed formulations can indeed be used
under the biological environment, we tested the cytotoxicity of
the developed sponge-based biosilicas. L929 and SaOS2 cells were
cultured in the presence of extracts from the biosilicas generated
from the sponges GA, GB, SN, AI, and PV. In the cases of
GB, SN, AI, and PV, a cellular metabolic activity was detected
between 65 and 100%, demonstrating the non-cytotoxic behavior
of the biosilica originating from these sponges (Figure 7). The
GA-based biosilica was non-cytotoxic only at a concentration of
10 mg/mL, being toxic for the highest concentrations, i.e., 50
and 100 mg/mL. The non-cytotoxic behavior of the herein tested
biosilicas (which is concentration dependent in the case of GA)
suggest their potential use in the BTE. Of note, the metabolic
activity of the SaOs2, when in contact with GB− (10 mg/mL) and
SN-based (100 mg/mL) biosilicas after 72 h, is higher than the
control experiment.
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FIGURE 7 | Viability of L929 (A) and SaOs2 (B) cells, measured using the AlamarBlue assay, when cultured in contact with different concentrations of the extracts
from the sponge-based biosilicas, i.e., 10, 50, and 100 mg/mL. Metabolic activity was evaluated after 24 and 72 h of cell culture. The data are presented as mean ±
SD and the statistical differences are represented with ∗ for p < 0.05 and ∗∗ for p < 0.01.

Barros et al. (2016) previously evaluated the suitability
of different biosilicas as substitutes of synthetic Bioglass, by
assessing the metabolic activity of L929 cells in the presence
of extracts from biosilicas of the species Petrosia ficiformis,
Agelas oroides, and Chondrosia reniformis. In all the cases the
cell metabolic activity was between 80 and 100% confirming
their non-cytotoxic character. In addition, Gabbai-Armelin
et al. (2019) showed that extracts from biosilica obtained from
Tedania ignis and Dragmacidon reticulatum marine sponges,
at a concentration of 50 mg/mL, promoted the increment
of cell viability. Our results showed that the presence of
biosilica from the GB, SN, AI, and PV sponges is non-
cytotoxic. The only biosilica with limited cell compatibility (i.e.,
the GA-derived biosilica) demonstrates a higher concentration

of CaP structures on their surface after immersion in SBF.
A possible explanation for the observed toxicity is the
increment of pH generated from the release of cations from
the biosilica structure, as has been observed for Bioglass
(Brückner et al., 2016). In fact, we observed an increase
in the pH of the medium after 3 days of incubation in
the presence of biosilica particles, showing the highest value
for GA-based biosilica (Supplementary Table 1). This result
is consistent with the higher susceptibility of the cells to
the extracts obtained from this type of biosilica, especially
at higher concentrations, i.e., 100 and 50 mg/mL. In fact,
this type of observation has been also reported by Wanandi
et al. (2017) showing that the release of cations leads to the
alkalinization of the culture medium, which, in turn, causes
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cell death. Importantly, when reducing the concentration of
the biosilica to 10 mg/mL, the cell viability is not affected.
Moreover, the concentration of cations in the medium after 3
days of incubation (Supplementary Table 2), shows a significant
reduction of P and Ca content in the medium (due to the
deposition of CaP) while significantly increasing the Si content
(a known promoter of osteogenesis) (Götz et al., 2019). These
differences in the composition of the medium is consistent with
the higher bioactivity of GA-derived biosilica and its ability to
promote new bone formation. Overall, our results indicate that
the GA-derived biosilica are suitable to be further tested in the
context of BTE and regeneration.

CONCLUSION

In this study, biosilicas were obtained by calcination of five North
Atlantic deep-sea sponges, i.e., Geodia atlantica (GA), Geodia
barretti (GB), Stelletta normani (SN), Axinella infundibuliformis
(AI), and Phakellia ventilabrum (PV), and their bioactivity
was evaluated by incubation in SBF. Our results showed that
the GB-based biosilica has a reduced capacity to promote the
deposition of stable CaP structures. In addition, the SN-, AI-,
and PV-based biosilicas demonstrated the capacity to generate
some CaP domains in their surface, however, they are not
stable over longer periods of time (i.e., 28 days). Overall, the
biosilica obtained from GA presented the highest bioactivity,
and it is not cytotoxic at a concentration of 10 mg/mL. Based
on our findings we conclude that the GA-based biosilica (at
a concentration up to 10 mg/mL) has potential to be used in
BTE applications.
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