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REVIEWS

Membrane models for molecular simulations of 
peripheral membrane proteins
Mahmoud Moqadama,b‡, Thibault Tubiana a,b‡, Emmanuel E. Moutoussamyb,c 

and Nathalie Reutera,b

aDepartment of Chemistry, University of Bergen, Bergen, Norway; bComputational Biology Unit, 
Department of Informatics, University of Bergen, Bergen, Norway; cDepartment of Biological 
Sciences, University of Bergen, Bergen, Norway

ABSTRACT
Peripheral membrane proteins (PMPs) bind temporarily to the surface of 
biological membranes. They also exist in a soluble form and their tertiary 
structure is often known. Yet, their membrane-bound form and their 
interfacial-binding site with membrane lipids remain difficult to observe 
directly. Their binding and unbinding mechanism, the conformational 
changes of the PMPs and their influence on the membrane structure are 
notoriously challenging to study experimentally. Molecular dynamics 
simulations are particularly useful to fill some knowledge-gaps and 
provide hypothesis that can be experimentally challenged to further 
our understanding of PMP-membrane recognition. Because of the time- 
scales of PMP-membrane binding events and the computational costs 
associated with molecular dynamics simulations, membrane models at 
different levels of resolution are used and often combined in multiscale 
simulation strategies. We here review membrane models belonging to 
three classes: atomistic, coarse-grained and implicit. Differences 
between models are rooted in the underlying theories and the refer-
ence data they are parameterized against. The choice of membrane 
model should therefore not only be guided by its computational effi-
ciency. The range of applications of each model is discussed and 
illustrated using examples from the literature.
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1. Introduction

Peripheral membrane proteins (PMP) are soluble proteins that bind tran-
siently to the surface of biological membranes (Figure 1) where they accom-
plish their functions [1]. Unlike transmembrane (TM) proteins, they do not 
span the entire lipid bilayer but interact with the membrane through 
a collection of protruding hydrophobic residues located on loops or amphi-
pathic helices [2–6] which, according to the text-book model, are often 
surrounded by positively charged amino acids lysines and arginines [7]. 
The term peripheral protein encompasses proteins performing various 
critical functions including enzymes involved in lipid metabolism or 
blood coagulation, membrane remodelling machines such as BAR domains 
[8] or ESCRTIII [9], lipid-transfer proteins and well-known membrane- 
targeting domains such as C1, C2, FYVE, PH, PX, ENTH and GLA [10,11], 
to name a few.

Peripheral proteins bind biological membranes with an exquisite resolu-
tion in time and space, often thanks to a fine-tuned lipid specificity achieved 
using amino acid motifs exposed on their surface. The residence times of 
peripheral proteins vary depending on their function, and for example the 
residence time of a bacterial phospholipase C on small unilamellar vesicles 
was estimated to 379 ± 49 ms, in agreement with earlier estimations for 
a highly related PLC [13] or for human phospholipase Cγ2 [14]. The turn- 
over rates for membrane-associated proteins in clathrin-mediated endocy-
tosis have been estimated to a few seconds [15]. Accordingly, PMPs bind 
membrane through different mechanisms. Some bind a lipid head to a deep 
pocket, some bind thanks to a covalent lipid anchor and some have neither, 
relying on displaying on their surface the necessary structural and sequence 
motif to bind to membrane lipids. In this review, the region interacting with 
the membrane lipids is referred to as the interfacial-binding site or IBS. The 
associated amino acids motifs on the surface of membrane-targeting 
domains have been the subject of numerous studies [11] but other PMPs 
are not that well characterized. Besides phosphoinositides a number of other 
lipids are also recognized by membrane targeting domains (and other 
PMPs) but we are only starting to grasp the chemical complexity of these 
interactions as the complexity of biological membranes is slowly uncovered 
[16,17].

Because they most often exist in a soluble form, obtaining structures of 
PMPs has historically been easier than for TM proteins. While progresses in 
structure determination of TM proteins has led to a rapid increase of the 
number of structures available in public databases, the number of structures 
of proteins with weaker membrane association is comparatively small [18]. 
This applies to bitopic and monotopic TM proteins, and to PMPs. Due to 
the transient nature of their interaction to membranes, most structural 
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biology methods are excluded as a direct source of information, and we lack 
information on the location of the IBS, and about potential conformational 
changes happening upon membrane association for example. Moreover, the 
IBSs of peripheral proteins are more challenging to predict from sequence 
or structure than transmembrane protein segments. The structure and 
amino acid composition of these interfaces is not as characteristic as those 
of transmembrane regions, which often consist in helical bundles enriched 
in hydrophobic residues, making them easily predictable from amino acid 
sequence only [19]. The prototypical IBS is described as a combination of 
lysines and arginines and only a few hydrophobic amino acids [1]. 
Peripheral proteins are indeed restricted in terms of the hydrophobic 
patches they can expose on their surface and still retain solubility. Such 
a mix of polar and hydrophobic residues on the surface of the protein is not 
easy to discriminate from the rest of the protein surface and even less so, 
from the primary sequence. Moreover, even if the role of unspecific electro-
static interactions has been demonstrated for several protein families [7,20], 
recent studies report more complex and subtle recognition mechanisms for 
some proteins. That includes weak electrostatic interactions, cation-pi inter-
actions (Figure 2) [3,21,22] between aromatic amino acids and phosphati-
dylcholine-containing lipids, roles of ions in mediating lipid–protein 
interactions [23], or the importance of macrodipoles [20,24,25]. In sum-
mary, while we have high quality structural data of some peripheral proteins 
in their soluble forms, their IBS is seldomly clearly identified and their 
binding mechanism remain elusive.

Molecular dynamics (MD) simulations have proven useful in predicting 
IBS of PMPs and modelling PMP binding to lipid bilayers [26–28]. MD 
simulations simulate the behavior of a molecular system by solving the 
Newton’s equation of motion for each particle constituting the system. 
The system simulated usually consists of several molecules and in MD 
simulations of PMPs, it is natural to include at least the protein itself, 
a bilayer formed by lipids relevant to the cellular membrane being modeled, 
water molecules solvating both sides of the membrane and relevant ions. For 
a regular size enzyme like a phospholipase D from recluse spider venom 
(285 amino acids) that we recently simulated, 256 POPC lipids and 22,613 
water molecules were needed plus 4 ions, so a system totaling nearly 110,000 
atoms.

Interactions between particles are described using a so-called force field. 
In molecular mechanics (MM) atomistic force fields, each atom is repre-
sented by a single particle carrying a point charge, following the Born 
Oppenheimer approximation. As we will see in this review, there also exists 
force fields using a coarser description of the simulated molecules where 
a group of atoms can be represented by a single particle for the sake of the 
simulation.

4 M. MOQADAM ET AL.



A generic atomistic FF for biomolecules expresses the potential of the 
system as a sum of bonded terms and non-bonded terms. Bonded terms 
include harmonic potentials for bond stretching and valence angle bending, 
and a cosine function for torsions. Non-bounded interactions are accounted 
for by pairwise terms; a coulombic potential for interactions between point 
charges and a Lennard Jones potential for van der Waals interactions (Cf 
equation 1). 
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Non-bounded interactions are the computational bottleneck in MD simula-
tions, as they scale in principle as a function of N2, where N is the number of 
particles simulated. In practice, the use of cut-off schemes and neighbour 
lists reduces the number of pairwise interactions to be estimated at each 
integration step and decreases the computational cost associated with the 
calculation of the coulombic and Lennard Jones terms. Even though MD 
simulations remain expensive for large systems and on long timescales, such 
as PMP association to -or desorption from- a membrane. For the 110,000 
atoms system described above, using NAMD (v 2.13) [29] and the 

Figure 2. Tyrosine-choline π-cation interactions in Bacillus thurigiensis phosphatidylinositol- 
specific phospholipase C anchored at the surface of a PC lipid bilayer. Reprinted from [3], with 
permission from ACS Publications.
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CHARMM36 force field [30–32], we simulated 100 nanoseconds per day on 
1024 cores of the newest high-performance computer in Norway at the time 
of writing (Betzy: BullSequana XH2000, ranked 61st on the top500 list in 
November 20201).

A number of schemes exist to more efficiently explore the phase space; 
enhanced sampling and biasing methods such as replica exchange MD [33], 
accelerated MD [34], umbrella sampling [35] and steered MD [36] to name 
a few. In steered MD for example, an external force, represented by a new 
term in the potential, is applied to a group of atoms.

Atomistic MD simulations are particularly useful to describe interactions 
between the protein residues and the interfacial lipid groups [2,3,37–40]. 
Moreover, the improvements brought to atomistic force fields in the last 
decade have among enabled simulations of a wider array of lipids [41]. Yet 
capturing the spontaneous membrane association of some PMPs is elusive 
with conventional atomistic MD simulations. One of the reasons is the slow 
lateral lipid diffusion (D) which is typically on the order of 10−8 cm2.s−1 at 
ambient temperature [39,42]. Therefore, during a regular atomistic MD 
simulation (hundreds of nanosecond to microseconds), the bilayer may 
appear relatively static preventing efficient sampling of lipid–PMP interac-
tions. In order to overcome this problem, different membrane models can 
be used. There exist indeed a variety of membrane models amenable to 
simulations. It is common to use a multiscale strategy taking advantage of 
the computational efficiency of the earliest membrane models, and of the 
more recent improved accuracy of lipids force fields. The first membrane 
model we are aware of dates back to 1988 and was used by Edholm and 
Jähnig to simulate a transmembrane helix from glycophorin [43]. They 
could simulate one time-step in 0.3 s on a CRAY-1 supercomputer. That 
model and the following ones represent the membrane as a hydrophobic 
slab with a polar layer on either sides and are meant to compute the 
energetic of solvation of membrane proteins in or at the surface of mem-
branes. In essence, coarse-grained (CG) models are somewhat related to the 
spirit of the implicit models as they too are parameterized against partition 
coefficients, but CG models present the clear advantage of treating the lipids 
as individual molecules. CG models are computationally efficient but lack 
the ability to describe the fine details of protein–lipid interactions that might 
be needed to explain selective protein-membrane binding. For this, one 
needs atomistic force fields [41,44].

Biological membranes consist mainly of glycerophospholipids but con-
tain also other molecules, including cholesterol, proteins, etc. [45]. Lipid 
bilayers form a complex chemical environment, with a hydrophobic core 
and a polar interfacial region, and their physico-chemical and mechanical 
properties influence, and are influenced by the membrane-associated pro-
teins. Accounting for the chemical complexity of the interfacial region, lipid 
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diffusion, lateral pressure, curvature stress, electrostatic properties (trans-
membrane, surface and dipole potentials) and more, is extremely challen-
ging for models that also need to be computationally efficient. In what 
follows we describe membrane models relevant for simulations of peripheral 
membrane proteins and how the different levels of resolution of these 
models are suited to address different aspects of the mechanism of periph-
eral membrane binding of proteins. We illustrate the use of these methods 
with a number of selected examples from which peptides and transmem-
brane proteins are excluded. The latter have been extensively reviewed 
elsewhere recently [27,46,47].

2. Membrane models for molecular dynamics simulations

2.1 Atomistic models

The main atomistic force fields for MD simulations of lipid bilayers are 
CHARMM, AMBER, OPLS-AA, Slipids, and GROMOS. They are derived 
from atomistic force fields for proteins and other biomolecules and repre-
sent lipid molecules in all-atom (AA) detail or in a united-atom (UA) 
fashion where hydrogens on non-polar chemical groups are not explicitly 
represented, thus speeding up the simulations. The reader is referred to e.g. 
Refs. [41,44] and references therein for a detailed account of the develop-
ment efforts. Here, we briefly overview the most popular AA and UA force 
fields [48], including the atomistic Highly Mobile Membrane-Mimetic 
(HMMM) [49].

2.1.1 All-atoms force fields
The CHARMM (Chemistry at HARvard Macromolecular Mechanics) force 
field for lipids is widely used in simulations of lipid bilayers, and compatible 
with the CHARMM force field for proteins [31,32,50]. CHARMM describes 

Figure 3. Phenol-tetramethylammonium potential energy surface obtained with quantum 
mechanics calculations, the CHARMM36 force field and the CHARMM-WYF modification of 
the Lennard-Jones potential. Reprinted from [56], with permission from ACS Publications.
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hydrogen atoms explicitly. The CHARMM force field for lipids has been 
continuously improved from the initial CHARMM22 lipid parameter set 
[51,52] developed in the 1990s to the most recent update CHARMM36 [30]. 
Briefly CHARMM27 [53] and CHARMM27r [54,55] suffered from 
a number of limitations, including too high torsional barriers along the 
lipid tails (C27), overstabilization of gauche states (C27), and the tendency 
of saturated phosphatidylcholine bilayers to transition into the gel phase 
above the experimental phase transition temperature (C27r). This could be 
avoided by applying surface tension. Extensive parameterization efforts of 
the lipid parameter set have led to CHARMM36 which can be used without 
the need for an external surface tension, and faithfully reproduce the 
physico-chemical properties of a wide variety of lipid bilayers including 
glycerophospholipids (saturated, unsaturated, branched, containing cycles) 
with various headgroups (phosphatidylcholine PC, phosphatidylacid PA, 
phosphatidylglycerols PG, phosphatidylinositol PI, phosphatidylserine PS), 
glycolipids, lipopolysaccharides, sphingolipids, ceramides, and a range of 
sterols. Noteworthy are also our efforts to improve the description of cation- 
π interactions between choline heads and aromatic amino acids [56,57] 
observed between PC lipids and tyrosine or tryptophane residues of several 
peripheral protein [2,3,21,58,59]; modifications of the CHARMM36 
Lennard-Jones potential between choline and aromatics resulted in 
a better agreement for cation-pi interactions (see Figure 3). The parameters 
are available in the CHARMM-WYF parameter set.

AMBER (Assisted Model Building with Energy Refinement), like 
CHARMM, treats all hydrogen atoms explicitly [60]. Compared to the 
CHARMM force fields, AMBER force fields were generally less used for 
membrane protein simulations due to the lack of a specific parameter set for 
lipids [61]. The general AMBER force field, known as GAFF (Generalized 
Amber Force Field) [62] and meant for simulation of arbitrary organic 
molecules was extended to include lipid parameters in 2007 [63]. This 
parameter set suffered from some of the same limitations as the 
CHARMM27 parameter set. In 2012, two somewhat improved force fields 
were released; GAFFlipid [64] and Lipid11 [65] (Lipid11 was released with 
AMBER12). Subsequent efforts focusing on head and tail groups charges, 
Lennard-Jones and dihedral angles parameters resulted in 2014 in Lipid14 
[66] a modular lipid force field for tensionless lipid phospholipid simula-
tions and compatible with the AMBER protein force field. Slipids [67,68] 
(Stockholm Lipids) is another force field compatible with AMBER, but it 
originates from efforts [69,70] to improve the CHARMM27r parameter set. 
The Slipids force field is available for saturated and unsaturated glyceropho-
spholipids (PC, PS, PE, PG), sphingolipids (sphingomyelin), and 
cholesterol.

8 M. MOQADAM ET AL.



The OPLS-AA (Optimized Parameters for Liquid Simulations All Atom) 
[71] force field was developed with emphasis on reproducing the experi-
mental thermodynamical and partitioning properties of short chain hydro-
carbons alkanes, and now includes parameters for several classes of 
biomolecules. It was recently extended to better model long chain hydro-
carbons [72], and lead to a parameter set called L-OPLS that has expanded 
its repertoire of lipids to include PC, PE, unsaturated lipids and cholesterol 
[73], as well as plasmalogens and PE headgroups [74]. Yet, so far, the 
availability of lipids in the L-OPLS force field has not been as diverse as 
that of the CHARMM36 and the AMBER-compatible force fields.

2.1.2 United-atoms force fields
Compared to the AA force fields for lipids, the united-atom model claimed 
to provide a better balance between accuracy and computational cost in 
membrane modelling [48]. Among currently available UA lipid force fields, 
GROMOS (GROningen MOlecular Simulation package) [75–77] has the 
most popular ones and offers the largest variety of lipids. In the GROMOS 
force fields, nonpolar CH, CH2, and CH3 groups of hydrocarbons are 
considered as a single particle. The protein force field is parameterized 
against thermodynamic properties of aliphatic chains to enthalpies and 
free energies of solvation in polar and apolar environments [78]. There 
are two main classes of GROMOS force field: those with the original 
GROMOS non-bonded parameters [77,79] and the ones with Berger mod-
ifications [80,81]. In the Berger modifications, in addition to the modifica-
tion of non-bonded interaction parameters, a Ryckaert-Bellemans potential 
(cosn(ψ)) is used to describe torsions of the hydrocarbon chains [77,82]. The 
Berger lipid parameters are recommended to maximize the lipid bilayer 
sampling due to its fast diffusion and good simulation efficiency [83]. 
Although Berger lipid is one of the most popular lipid force fields the 
combination of Berger/GROMOS force fields overestimates the protein 
lipid interactions and consequently results in drastic changes of lipid prop-
erties upon protein insertion [84].

2.1.3 Highly Mobile Membrane-Mimetic Model
HMMM [49,86] uses an AA force field, namely CHARMM36 [30], but 

represents the lipid bilayer with short-tailed (ST) surfactant-like lipids and 
a liquid phase for the membrane core, thus increasing lateral lipid diffusion.

In 2011, Arcario et al., used a biphasic solvent model to simulate the 
membrane insertion of a coagulation protein, namely the GLA domain of 
human protein C [86]. MD simulations with a full tail (FT) atomistic lipid 
bilayer did not lead to spontaneous binding of the GLA domain, and one 
had to resort to steered MD [36] for the protein to anchor at the bilayer 
interface [87]. With the biphasic solvent model though, the protein did bind 
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the bilayer spontaneously within the early nanoseconds of simulation at 
a similar depth of anchoring and orientation similar to that obtained with 
the enhanced sampling simulation. In this model, the lipid bilayer was 
replaced by a single layer of 1,1-dichloroethane (DCLE).

In 2012, the biphasic solvent was enhanced by adding two extra layers of 
surfactant-like ST lipids on each side of the organic solvent phase (Figure 4) 
[49]. In this updated HMMM membrane representation, the bilayer core is 
represented by a DCLE layer, and the surfactant-like molecule is divaler-
ylphosphatidylserine (DVPS), a saturated ST lipid with five acyl tail carbons. 
A mixture of DVPS with DCLE forms a bilayer-like structure within 20 ns in 
a MD simulation, and the lateral diffusion of this membrane model is five 
times higher than a FT model composed of 1,2-dioleoyl-sn-glycero-3-phos-
pho-L-serine. The performance of the HMMM representation to model the 
spontaneous insertion of a PMP was assessed by 10 simulations (replicas) of 
a GLA domain that all converge toward the conformation observed in 
steered MD [87].

The permeability of the HMMM membrane was validated using the 
degree of hydration and ions penetration and showed good agreement 
with AA FT lipid bilayers [49]. Using potential of mean force (PMF) 
calculations, Pogorelov et al [88]. assessed the free energy of transfer of 
sidechain analogs of ten selected amino acids (I, A, Y, W, E, N, S, C, D and 
K) to a HMMM membrane. They reported good agreement with existing 
experimental, atomistic and coarse-grained free energy profiles although 
they did highlight some differences. First, D was slightly more stable in the 
DCLE layer than it would be between FT lipid tails. Aromatic residues (F, 
Y and W) diverge from the reference in the tail and DCLE region and 
especially so for TRP; their stability in the membrane core is overestimated 
by the HMMM PMFs. Most noticeably, HMMM fails to capture the mini-
mum in the interfacial region with positive PMFs for ASN and SER, while 
the CYS analog has its minimum in the membrane core. The deviations 
from reference PMFs in the core region are likely due to two factors: the 
polar nature of DCLE leading to dipole-dipole interactions with polar 
groups and its fluidity allowing sidechain tumbling in the bilayer core.

HMMM was also used to characterize the membrane-binding site of the 
catalytic domain of cytochrome P450 3A4 (CYP3A4) [89], an enzyme well- 
known for its involvement in xenobiotics and endogenous compound 
metabolism [90,91]. The simulations revealed reorientations of side chains 
upon membrane binding, which promote the opening of access tunnels 
leading to the active site of CYP3A4

Naturally simulations with HMMM cannot account for effects due to the 
nature of lipid tails, differences between e.g. phospholipids and sphingoli-
pids, or the presence of sterols. Also, the HMMM membrane model is not 
meant to reproduce mechanical properties (compressibility or bending) of 
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lipid bilayers. The HMMM builder [92,93] in the CHARMM-GUI [94] can 
be used to generate simulation input files with the HMMM model.

2.1.4 All-atoms/united-atoms MD simulations of lipid transfer proteins
The yeast Osh4 proteins are members of a family of lipid transfer proteins 

(LTPs) with oxysterol-binding protein (OSBP)-related domain (ORDs) as 
their lipid transfer domains. Osh4 transfer cholesterol from the endoplasmic 
reticulum (ER) to the plasma membrane (PM) in yeast cells. The atomistic 
details of membrane-binding mechanism of Osh4 to charged and 
uncharged lipid membrane models have been characterized computation-
ally [26,96]. AA MD simulations using CHARMM36 force field on an 
Anton supercomputer [97] showed that Osh4 binds strongly to anionic 
membranes in a single binding conformation. The binding event involved 
contact and interaction from six regions of the protein to the membrane. On 
the contrary, the Osh4 binds weakly and transiently to uncharged mem-
branes with zwitterionic lipids and consequently does not form a stable 
binding conformation [26]. The studies also revealed that the phenylalanine 
loop is one of the most important binding regions of Osh4 stabilizing the 
protein–membrane interaction [26,96]. Interestingly, an AA MD simulation 

Figure 5. Schematic atomistic representation of the α-tocopherol transfer protein interacting 
with a DOPC/DOPE phospholipid bilayer (grey). The mobile gate (purple) at the entrance of the 
cavity interacts with the PIP2 headgroup (red) and the lipids. The neighbouring motif is 
coloured in blue, and the α-tocopherol molecule bound to the protein in yellow. The head of 
PIP2 facilitates anchoring of α-TTP to the membrane. Rendered with 3DProteinImaging [12]. 
PDB ID: 3W67 [95].

12 M. MOQADAM ET AL.



on the oxysterol-binding protein-related protein, Osh6p, also showed that 
a corresponding loop in Osh6p has a similar critical role for anchoring the 
protein to anionic membrane. The Osh6p is a yeast LTP that transfers PS 
from the ER to the PM via PS/phosphatidylinositol 4-phosphate (PI4P) 
exchange cycles [98]. The Osh6p is a yeast LTP that transfers PS from the 
ER to the PM via PS/phosphatidylinositol 4-phosphate (PI4P) exchange 
cycles. The study used the CHARMM36 force field and the GROMACS 
MD simulation engine and showed that Osh6p reduces its avidity for 
anionic membranes once it captures PS or PI4P in the lipid-binding pocket. 
The authors proposed an electrostatic switching mechanism that controls 
the lipid transfer activity of Osh6p between the ER and the PM.

Cholesteryl ester transfer protein (CETP) is another important transfer 
protein responsible for transferring cholesteryl esters (CE), triglycerides, 
and phospholipids (PLs) from high-density lipoproteins (HDL) to low- 
density lipoproteins and very low-density lipoproteins. A multiscale AA 
and CG MD simulation study of a CETP-lipoprotein complex revealed that 
CETP binds to the surface of HDL-like lipid droplets through its charged 
amino acids and tryptophan residues [99]. The binding induces the forma-
tion of a small hydrophobic patch on the surface of the droplet and opens 
a route from the core of the CE lipid droplet to the binding pocket in CETP. 
This route is caused by a conformational change in CETP alternating 
between opened and closed states [99]. Another AA MD simulation 
revealed a different CETP-HDL interaction mechanism with a detailed 
picture of the interactions between the protein and the components of the 
HDL [100]. The study reported an upright penetration of CETP into the 
HDL particle surface, the migration of CE from the HDL core to the CETP 
opening, and transfer of CE from the opening to the binding pocket of 
CETP [100]. Both above-mentioned CETP AA simulations used 
GROMOS53A6 UA force field [76] for the protein, and Berger parameters 
[80] for lipids. AA MD simulations with the CHARMM force field have also 
been used to investigate the CE transfer pathway through CETP. The study 
revealed that the hydrophobic tunnel inside CETP is sufficient to allow a CE 
molecule to completely transfer through the entire tunnel. The predicted 
rate and transfer time through the tunnel were comparable with those 
obtained through physiological measurements [101].

The α-tocopherol transfer protein (α-TTP) is a liver cytosolic transport 
protein that facilitates the transport of α-tocopherol to liver-secreted plasma 
lipoproteins and plays an important role in the efficient recycling of plasma 
vitamin E [102] (see Figure 5). A combination of AA and CG MD study 
using the AMBER FF99SB with LIPID11 FF and MARTINI CG FF inves-
tigated the interaction and the binding of α-TTP to phosphatidylinositol 
phosphate lipids (PIPs), when the protein was embedded in a lipid bilayer 
mimicking the plasma membrane composition: DOPC and DOPE lipids 
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plus either a PI(4,5)P2 or a PI(3,4)P2 molecule [103]. The simulations 
revealed that enrichment of membranes with PIP2 molecules facilitates the 
anchoring of α-TTP to the membrane surface [103]. The results showed that 
protein binding occurs by direct interaction of the negatively charged PIP2 
headgroup with the positively charged residues present at the protein near 
the opening of the ligand-binding cavity. Detailed AA simulations also 
revealed additional contacts between the protein and membrane. An exam-
ple of such contacts was the formation of H-bonds between protein and the 
polar heads of DOPC lipids. These H-bonds were formed after protein 
anchoring to PIP2 and could not be observed in CG simulations [103].

Phosphatidylinositol-transfer proteins (PITPs) are LTPs that can cata-
lyze the inter-membrane transfer of PI and PC in vitro [104]. AA MD 
simulations using OPLS force field [105] have also been employed to 
study the binding of the mammalian StART-like PI/PC transfer protein 
PITPα to membrane bilayers [106]. The study revealed that association of 
PITPα with the membrane is spontaneous and captured the partial 
extraction of PC from bilayer into the PITPα hydrophobic pocket. 
Steered MD and umbrella sampling simulations were also employed to 
study phospholipid loading and unloading, respectively, by PITPα. This 
work also revealed that the presence of PITPα on the bilayer significantly 
reduces the free energy of desorption of PI and PC, implying the 
remarkable role of PITPα in facilitating lipid loading and unloading 
processes [106].

Fatty acid-binding proteins (FABPs) are another class of LTPs. They can 
transfer free fatty acids and other detergent-like compounds between cel-
lular compartments. An UA MD simulation using the GROMOS96 force 
field with the G53A6 parameter set was used to investigate the binding and 
orientation of the fatty acid-binding protein ReP1-NCXSQ to anionic 
membrane in low and high ionic strength using Na+ and NaCl, respectively, 
for neutralizing the systems [25]. The results revealed the electrostatic 
nature of the binding of the protein to the membrane. The authors per-
formed several simulations with different initial configurations (orientations 
and distances) of protein with respect to the membrane. The study showed 
that in anionic membranes the protein electric macrodipole alignment 
follows the electric field generated by the negatively charged lipid interface. 
They also observed that in the presence of high ionic strength the approach 
of the protein to the membrane was slower than in low ionic strength, 
indicating that the effect of the membrane electric field on the orientation 
was shielded by the presence of the soluble ions. They concluded that these 
observations show that a combination of dipole–electric field interaction 
and local interactions influence the binding and orientation of the ReP1- 
NCXSQ protein in the interface [25].
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2.2. Coarse grained models

CG models simplify a molecular system by decreasing the number of 
particles being treated explicitly during the simulations, thus drastically 
reducing computation time compared to all atoms models. Also, 
a significant advantage over simpler models, such as implicit models (Cf 
section 2.3) is the treatment of lipids as individual molecules, allowing for 
a higher level of resolution in the membrane itself. This is beneficial for 
simulations of lipid mixtures and realistic models of the complexity and 
diversity of cell membranes. There exist many CG models for simulations of 
lipid systems [107–113]. Not all include a compatible protein model though. 
We focus here on three CG models that have proven useful to simulate 
peripheral membrane binding.

2.2.1 MARTINI
The history of the MARTINI force field starts with a model that was meant 
for the simulations of lipids [114,115]. This model was parameterized to 
reproduce thermodynamics properties such as oil/water partition coeffi-
cients. This top-down approach is more similar in its spirit to the implicit 
membrane models than to the atomistic force fields, usually parameterized 
to reproduce structural data. The lipid model was later extended to proteins 
[116] and has since then been continuously expanding with new capability 
to become what is currently the most used CG force field for simulations of 
biomolecules. MARTINI uses on average one bead to represents 4 heavy 
atoms and their associated hydrogens (4:1 mapping). Smaller beads are also 
available (3:1. and 2:1 mapping) for particular cases. The beads differ by 
their polarity or hydrophilicity. There are eighteen types of beads in 
MARTINI 2.2 [117], and they are sorted in four different groups: 
Q (charged), P (polar), N (intermediate) and C (apolar). MARTINI 2.2P is 
a variant with polarized side chains. The latest version of the force field, 
MARTINI 3, counts 29 bead types and 7 groups, adding groups for halo- 
compounds (X), divalent ions (D) and a separate group for water (W). 
Interactions between beads are represented by a Lennard-Jones potential 
and parameterized based on thermodynamics data. Non-bonded interac-
tions are short-ranged with a cut-off at 11 Å. Local geometry is maintained 
through bonded terms parameterized on atomistic simulation data. In 
addition, elastic network models should be used to maintain the packing 
of large biomolecules such as protein or DNA [118]. MARTINI-Dry is 
a version with an implicit solvation model [119].

With ca. 4 times less particles than an atomistic simulation and shorter- 
range non-bonded potentials, there are fewer interactions to compute lead-
ing to the high computational efficiency of MARTINI. Time-steps for 
simulation can be of 20–30 fs instead of 1–4 fs for an atomistic simulation. 

ADVANCES IN PHYSICS: X 15



The coarse graining implies a number of limitations one should be aware of, 
including the non-directionality of H-bonds, missing conformational 
entropy (but reduced enthalpy as a compensation), and the restricted flex-
ibility of biomolecules. Timescale of simulated events, and therefore kinetics 
information, should be interpreted carefully as the atomistic frictions are 
absent. Driving forces should also be interpreted with care, and tempera-
ture-dependence cannot be correctly reproduced. Electrostatic screening is 
implicit as the dielectric constant is the same whatever the polarity of the 
media is (εr = 15), though there is a workaround with the polarizable water 
model; two charges are added to the water bead [120].

Although the top-down thermodynamics-based parameterization of 
MARTINI reminds of the parameterization of some implicit membrane 
models, the level of resolution of interfacial protein-lipid interactions is 
higher. Comparing MARTINI 2.2P CG simulations with MD using AA 
CHARMM36, we showed that the CG simulations successfully reproduce 
the IBS, depth of anchorage and orientation of seven different PMPs [121]. 
In combination with AA simulations, MARTINI is a powerful membrane 
model to predict IBS, shed light on binding mechanism and map protein- 

Figure 6. Bar domains structures (N-BAR:1ZWW [134], F-BAR:2V0O [135], I-BAR:1Y20 [136]) 
coloured by subunit. Rendered with 3DProteinImagning [12].
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lipid interactions, as illustrated for example by the study from Charlier et al. 
on interfacial binding of the HIV-1 matrix protein [122], or the study by 
Koivuniemi et al. of a cholesteryl ester transfer protein [99]. MARTINI has 
also been used for simulations of the GRP1 PH domain which, combined to 
umbrella sampling PMFs, were used to evaluate the free energy of binding of 
the PH domain to phosphatidylinositol phosphates-containing 
bilayers [123].

2.2.2 Residue-Based Coarse Grained model
The Residue-Based Coarse Grained model (RBCG) [124] is a protein CG 
model which can be used with the MARTINI CG lipids [114,115]. RBCG 
uses the same lipid mapping but for proteins, the RBCG graining is coarser 
than MARTINI models with only two beads per amino acids: one for the 
backbone and one for the sidechain. The protein RBCG model counts 20 
types of beads (19 side chains beads and one backbone bead) sorted in one 
of the 4 classes used for the MARTINI models [114,115]. RBCG is available 
for simulations with the NAMD simulation package [29] and a plugin in 
VMD [125] can be used to generate a RBCG system. While the integration 
timestep can be chosen between 30 and 50 fs for simulations of lipid 
bilayers, a 25 fs time step has been used for protein-containing systems 
[124]. To maintain the tertiary structure, a harmonic potential with a force 
constant of 5 kcal.mol−1.Å2 is added between the backbone beads that are 
not bonded otherwise. This was parametrized against a 20 ns atomistic 
simulation of the BAR peripheral domain [126]. For simulations of BAR 
domains, the authors found that a dielectric constant εr = 1 resulted in the 
best agreement between all-atom and RBCG simulations, even though 
higher values of dielectric constant are used in other studies [114,124,127].

2.2.3 Shape-Based Coarse Grained model
The Shape-Based Coarse Grained (SBCG) model is a coarser model than 
RBCG and aims to simulate the movements of proteins assemblies from 
large-scale interactions. While its first application was to viral capsids [128] 
and bacterial flagellum [129], it has also proven useful to study membrane 
curvature induction by the BAR domains [126,130].

The graining level can be adjusted and various mapping have been used 
so far: from 150 atoms per beads [126,128,130] and up to 500 atoms per 
beads [129]. To faithfully model the shape of the protein, the Topology 
Representing Network is used to position the beads [131–133]. The atom- 
beads mapping is then based on a Voronoi diagram, and the charge and 
mass of the beads are equal to the total charge and mass of the Voronoi cell. 
The topology of the system during simulations is maintained by a harmonic 
distance restraint between beads. Obviously, this type of coarse graining 
prevents conformational changes and protein refolding [128].
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Conversely to the MARTINI or RBCG models, the lipid graining is not 
done for individual lipids. Rather, a SBCG lipid represents several lipids 
and consists of two beads (one for the heads and one for the tails) 
connected by a harmonic bond. For DOPC, one SBCG lipid represents 
on average 2.2 lipid molecules. The solvent is treated implicitly with 
a Langevin term to account for water viscosity, but there are beads for 
Na+ and Cl− counterions. While a dielectric constant of 80 was used for 
simulations of viral capsid systems [128] and flagellum [129], εr was set to 
1 for simulations of a peripheral BAR domain [126,130] for the same 
reason as those invoked for RBCG.

An integration time step of 100 fs can be used [126,130] and SBCG 
topology systems can be generated using VMD [125].

2.2.4 Coarse grained modelling of sensing and induction of membrane 
curvature by BAR domains

Thanks to their computational efficiency and the fact that they account 
for individual lipids, CG force fields have been the method of choice to 
model membrane remodelling events. BIN/amphiphysin/Rvs (BAR) 
domains are long, mostly helical dimeric PMPs that can vary in length, 
curvature, and membrane affinity depending on the BAR classification 
[137]. N-BAR has the highest positive curvature and can form tubules that 
are 20 to 60 nm wide [138,139]. F-BAR has the lowest positive curvature and 
forms wider tubules (60 to 100 nm) [138], and I-BAR has a negative 
curvature generating membrane protrusions [140] (Figure 6). A given 
BAR domain protein can either act on the membrane shape or sense the 
curvature of the membrane depending mainly on two parameters: local 
protein concentration and membrane curvature [137,141,142].

In 2008, Arkhipov et al. studied the membrane sculpting by an N-BAR 
domain using methods covering four different levels of resolution [126]: AA 
simulations with a single BAR domain protein, RBCG simulations with 
6 BAR domains to explore the local and global curvature of the membrane, 
longer SBCG simulations to model the global membrane curvature with 
6 BAR domains, and a custom continuum elastic membrane model. The 
authors evaluated the effect of two different arrangements of 6 N-BAR 
domains (aligned or staggered [139]) over an initially planar membrane. 
The use of RBCG reduced the number of particles to be simulated down to 
~200,000, and to

~4 000 particles with SBCG instead of several million atoms with an 
atomistic model, thus allowing extremely long simulations (up to 5 µs in 
SBCG). While the staggered arrangement in RBCG led to a global mem-
brane curvature (curvature radius ~400 Å) comparable to experimentally 
observed values [143], the aligned arrangement led to the highest local 
membrane curvature (~150 Å) under each BAR-domains. Interestingly, 
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the SBCG simulations also showed the formation of a global curvature for 
the aligned system after 1 µs but with a lower curvature radius (up to 
1000 Å).

In 2013, the same team reported a spectacular investigation of the mem-
brane tubulation process by the F-BAR domain [144] using more than 30 
SBCG simulations of 3 µs each to find the F-BAR lattice yielding the highest 
membrane curvature. Lattices with lower densities produced smaller mem-
brane curvature and denser lattices achieve higher curvature. However, at 
very high density (over 10 dimers per 1000 nm2), the F-BARs dimers 
hindered each other access to the membrane yielding a lower curvature.

Using the lattice that achieved the highest curvature radius as a starting 
point, they increased the number of F-BAR domains to 68 and they per-
formed two 350 µs SBCG simulations with a large patch of lipids ( 380x17 
nm). Each system is composed of 21,800 beads, in comparison, the equiva-
lent atomistic model would contain more than 15 million atoms. In both 
simulations, they could observe that the curvature of the membrane 
increased from the sides towards the centre to finally form a tubular struc-
ture with a radius of 60–90 nm.

For very large systems like the ones described above, the coarseness level 
of the SBCG model allows simulations at time-scales that cannot be reached 
with ‘finer’ CG force fields, even with the most recent HPC technology or 
GPU scaling [145–149]. In 2019, Iqbal Mahmood et al. reported simulations 
of the F-BAR domain with the MARTINI model reaching 2 µs for 
a 14 F-BAR-membrane system and 10 µs for a system with 6 F-BAR plus 
membrane [150] to study their capacity to curve the membrane or sense its 
curvature. The advantage of using a finer-grained CG was the need to take 
into account the flexibility of the F-BAR domains, which the SBCG does not 
account for. Since the SBCG method does not allow intrinsic conforma-
tional change within the F-BAR domain [144], this recent study emphasized 
the flexibility of the F-BAR domain to match a variety of membrane 
curvature. They could show that F-BAR dimers assemble to bend the 
membrane collectively, but most interestingly, their simulation revealed 
the F-BAR curvature sensing property. It appears that F-BAR prefers 
a curvature that is consistent with the experimental curvature of striated 
tubes (53 ± 18 nm) and pearling vesicles (35 ± 5 nm) [151].

2.3. Implicit models

The first membrane implicit models were developed early [43,152–154] to 
model the stability of transmembrane segments or the complexity of the 
water–lipid interface when computational resources did not allow atomistic 
simulations of lipid bilayers. Some implicit membrane models were typically 
building on implicit solvent models [155–157].
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Implicit models typically approximate membranes by a hydrophobic slab 
surrounded by a polar environment while the protein remains described by 
an atomistic model. Protein–lipid interactions are modelled by a mean-field 
approach. Because of their computational efficiency implicit membrane 
models are particularly useful in cases where extensive sampling is needed, 
such as simulating landing of proteins on membrane surfaces, IBS predic-
tion, free energy calculations, or whenever one needs multiple simulation of 
a system to probe the effect of a particular parameter in the simulation.

Implicit membrane models have been extensively used for modelling the 
folding and/or insertion of peptides in membranes [158–160] or the struc-
ture and stability of transmembrane segments [161]. However, they have 
been used relatively less for simulations of peripheral proteins. Yet, and 
despite their simplicity, they have proven useful to predict interfacial- 
binding sites and identify hot-spots by characterizing the energetic contri-
butions of individual amino acids to the overall free energy of transfer from 
water to membrane, at a fraction of the cost of atomistic or CG simulations.

Here, we distinguish between two types of implicit methods; those using 
continuum dielectric theory, such as the Poisson-Boltzman (PB) theory- 
based models and those using an empirical approach based on residue- 
specific transfer-free energies from water to apolar solvents, such as the 
Implicit Membrane Model 1 (IMM1) and present examples of their utilisa-
tion for the modelling of peripheral membrane proteins. We refer the reader 
to the excellent review articles by Grossfield [162] and Feig [163] for detailed 
descriptions of the underlying theories.

2.3.1 Models based on the Poisson-Boltzmann and Generalized Born theories
For a solute consisting of a set of spherical particles carrying charges (e.g. 
a protein) embedded in a low dielectric environment the resolution of the 
PB equation provides a rigorous framework to calculate the electrostatic 
contribution to the free energy of solvation (see e.g. [164,165].). Methods 
based on these theories have naturally been applied to evaluate the 
electrostatic-free energy of solvation of proteins or peptides in membranes 
[166]. The solvation-free energy is actually addressed by solving this non- 
linear partial differential equation for the different states. However, the 
full PB equation being a non-linear differential equation, its resolution has 
to be done numerically and is computationally expensive. Even the line-
arized PB equation, which is valid for weak electrostatic potentials is still 
fairly computationally intensive, at least compared to other implicit mod-
els. There exist efficient tools numerically solving the PB equation for 
biomolecular systems, such as APBS [167] or DELPHI [168,169], among 
others. Yet, because of the computational costs and the challenges linked 
to rigorous calculations of the derivatives, the PB theory has been applied 
mainly to one or a few structures and is not tractable for use in molecular 
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simulations. Yet it can be useful when applied as postprocessing of 
selected trajectory frames. Note that non-polar interactions to account 
for van der Waals solute-solvent interactions and cavity creation (solvent- 
solvent) can be added using a term depending on the solvent-accessible 
surface of the protein. A particularly interesting application relevant for 
this review is the evaluation of the electrostatic-free energy of interaction 
between lipid bilayers and peripheral proteins [20,38,170,171]. This can be 
calculated as the difference between the electrostatic-free energy of the 
protein-membrane complex and the sum of the electrostatic-free energies 
of the protein and membrane infinitely far apart from each other. In this 
case the membrane lipids and protein are the solute – and treated with an 
atomistic model – while water and ions are treated by the continuum 
dielectric. Mulgrew-Nesbitt et al. have dissected the contributions of 
positively charged amino acids to the interaction of proteins with mem-
brane surfaces, and evaluated the role of electrostatics for a large number 
of such proteins [7], and found qualitatively good agreement with experi-
mental data. Still, it is important to remember that this type of calculation 
has limitations pertaining mostly to the static character of the protein and 
lipid bilayers and the rigidity of the protein and bilayer. The membrane 
surface potential is also badly modelled by these approaches.

An attempt to simplify the complexity of the PB-based computations 
resulted in the development of popular Generalized-Born (GB) models. The 
GB models are based on the same principles, i.e. a description of the solvent 
or membrane as a continuum model, but use specific simplifying assump-
tions for the solvation-free energy to allow a closed-form approximated 
solution to be obtained. The GB formulation allows the use of analytical 
derivatives and is tractable for MD simulations, but the choice of method for 
the computation of the Born radii is decisive for the efficiency of the method 
(Cf [162,163]. and references therein). A rising interest in modelling of 
membrane proteins resulted in a number of adaptation and modification 
of GB methods to represent multiple dielectric environments and success-
fully applied to membranes [172–174].

GBSW, Generalized Born with a switching function [175], has been 
applied to describe the interactions between diacylglycerol derivatives and 
the C1b domain of protein kinase C δ (PKCδ), which are dependent of the 
interactions of PKCδ C1 with the membrane. The DAG analogues were 
docked in the C1 domain and the complexes were subjected to molecular 
simulations in the presence of a membrane modeled with GBSW to describe 
the ligands binding mode [176].

GBSW-GCS includes a Gouy Chapman Stern term to describe anionic 
lipids [177]. It was successfully used to predict the binding orientation of the 
DNA-repair protein RecA to anionic membranes, calculate binding free 
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energies and correctly predict mutations weakening the affinity of RecA for 
anionic membranes [178]. The orientations obtained with the GBSW-CGS 
membrane model were subsequently used as starting structures in atomistic 
simulations [178,179].

2.3.2 Implicit Membrane Model 1
IMM1 [180] and its extension IMM1-GC [181] to charged membranes are 
implemented in CHARMM [182] and compatible with the CHARMM19 
force field. IMM1 and IMM1-GC are models for simulations of proteins in 
zwitterionic and anionic membranes, respectively. IMM1 is based on the 
EEF1 (effective energy function) model for water-soluble proteins, which 
uses a linear distance-dependent dielectric constant [155]. The ionic side- 
chains are neutralized and a Gaussian solvent exclusion term is added to the 
energy function of the CHARMM19 force field [183].

IMM1-GC extends IMM1 using the Gouy-Chapman theory [184] for the 
diffuse electrical double layer and thus allows for interactions between 
a charged bilayer and the amino acids of the protein to be accounted for. 
The model has been extended to include a transmembrane voltage potential 
[185], a dipole potential for symmetric bilayers [186], the description of 
pores for transmembrane proteins with internal aqueous pores [159,187]. 
The IMM1 model can also model the effect of lateral pressure and curvature 
stress in flat [188] as well as in spherical and tubular membranes [189]. Mori 
et al. developed an implicit micelle model called IMIC [190] based on IMM1 
where a superellipsoid function was used to model the micelle shape. They 
could show that the model faithfully reproduced structure and dynamics of 
transmembrane proteins obtained from AA MD simulations.

Simulations using IMM1 as membrane model have been used to predict 
the membrane-binding site of a human membrane-bound neutrophil pro-
tease called Proteinase 3 (PR3) [191], and showed that the hydrophobic 
insertion of aromatic amino acids contributes significantly to the free energy 
of transfer of Proteinase 3 to zwitterionic bilayers [40]. This was unlike its 
homologue the human Neutrophil Elastase (NE) that, according to simula-
tions, inserted fewer hydrophobic amino acids. The modelling results con-
curred with subsequent Surface Plasmon Resonance experiments showing 
that the affinity of NE for POPC bilayers was lower than that of PR3 and 
driven mostly by electrostatics interactions. IMM1-GC was also used to 
identify the amino acids that are key to the protein–membrane interaction; 
those were verified experimentally using site-directed mutagenesis and 
protein expression in cell lines [192].

Implicit models such as IMM1 are also very useful to generate starting 
structures for atomistic simulations of peripheral binders. Simulations with 
IMM1-GC were used to predict the orientation of Bacillus Thurigiensis 
phosphatidylinositol-specific phospholipase C which was used as starting 
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structure for atomistic simulations [3]. We also used IMM1 to predict the 
orientation and depth of anchorage of the C-terminus helices of the 
N-terminal acetyltransferase Naa60. We could identify the amino acids 
contributing the most to the free energy. The predicted orientation was 
used to initiate atomistic simulations while the predicted hot-spots for 
membrane binding were used to design mutants that were tested in vitro 
[37]. More recently, Nepal et al.reported an innovative study of the ESCRT 
III subunit Snf7 where they could compare the energetics of the binding of 
monomers and oligomers of the subunit Snf7 to flat and negatively curved 
membranes. By doing this they could predict which curvature yields stron-
gest binding [193].

Implicit models like IMM1 are extremely computationally efficient and 
provide information about the thermodynamics of protein–membrane 
interactions, which can be helpful to identify interactions hotspots and 
design protein variants that can be further tested experimentally. That 
being said, and because implicit models do not explicitly describe interac-
tions between lipids and amino acids but rather rely on a model where long- 
range electrostatics and the hydrophobic effect drive membrane binding, 
they are not the method of choice for proteins with fine-tuned lipid specifi-
cities or lipid-binding cavities.

3. Conclusion and perspectives

As stated in the introduction section, there exists ample structural data of 
PMPs but their membrane-bound state remains an elusive molecular assem-
bly for structural biology techniques. It results in a lack of experimental data 
on the membrane-bound PMPs and leaves unanswered questions about the 
exact location of the IBS on the PMP structures, the amino acids key to the 
protein–lipid interactions (hot-spots), protein structural changes upon 
membrane binding, or structural changes to the membrane to name a few.

As demonstrated by the many examples referred to in section 2 of this 
review, MD simulations have proven extremely useful to address those 
questions and more. Indeed, molecular simulations have shed light on the 
dynamics of many PMPs and the thermodynamics of the protein–mem-
brane interactions providing unvaluable mechanistic insights, something 
MD simulations are particularly good at, irrespective of the type of protein. 
A drawback with MD simulations though is the associated computational 
cost, scaling as a function of N2 where N is the number of particles 
simulated.

Molecular simulations of PMPs thus call for models representing mem-
branes at different levels of resolution and many studies combine several 
models: implicit and atomistic, CG and atomistic, different CG levels, etc. 
There is no golden rule for which model(s) can be combined with which 
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other(s) as long as the scales covered by the different models are relevant for 
the time and size scales of the system under investigation. In general, 
multiscale strategies should take full advantage of the wide range of models 
available.

In addition, different types of simulations and analyses may be needed. 
Simulations at different time-scales are used to address the variety of ques-
tions asked about PMPs – from HMMM or implicit simulations to predict 
the IBS and obtain a good model of the membrane-bound state, to atomistic 
equilibrium simulations of a few 100 ns for predicting lipid–protein inter-
actions in the membrane-bound state, potentially followed by FEP calcula-
tions to characterize hot-spot residues. Sometimes microsecond-long 
simulations are needed for the association of a large PMP with a complex 
bilayer, and the subsequent membrane remodelling. Moreover, the sizes of 
the proteins or protein assemblies may vary from a few hundred amino 
acids to many thousands. Likewise, the dimensions and complexity of the 
lipid bilayer needed to have a realistic membrane model vary tremendously 
from one PMP to another.

In this review, we have described membrane models from those with the 
highest level of details – all atoms force fields with full description of the 
lipids and other membrane components – to the simplest ones, the implicit 
membrane models. We have illustrated what the different models are most 
adequate for using examples of the literature. It is important to note that the 
differences between models are not only relevant for their computational 
efficiency, but also for the type of information they can provide depending 
on which reference data they are parameterized against.

The emerging complexity of biological membranes is pointing at a more 
complex picture for PMP-membrane recognition mechanisms than the old 
model based on a balance between unspecific long-range electrostatics and 
hydrophobic insertion. There are large variations in the mechanisms 
employed by PMPs to achieve membrane binding and lipid specificity, 
and we are just starting to understand the subtle interplay between PMPs 
and membrane lipids. While the value of the low-resolution models is clear 
and undisputed given nowadays computational capabilities, high-resolution 
models are and will remain crucial to uncover the details of PMP-membrane 
interactions. Emerging methods that can reduce the computational costs of 
MD simulations that represent proteins and lipids at – at least – the 
atomistic level of details thus hold promises for future larger scale MD 
simulations of PMPs [194,195].

Note

1. https://www.top500.org/system/179861/
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