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Abstract—Multilevel Modelling approaches allow for an ar-
bitrary number of abstraction levels in typing chains. In this
paper, a transformation of a multi-level typing chain into a single
all-covering representing model is proposed. This comprehensive
model is of equal size as the most concrete model in the chain and
encodes all typing information in its labels, such that the typing
chain can completely be restored. This guideline for maintaining
multi-level typing chains in respective implementations of multi-
level typing environments is based on a categorical equivalence
theorem, which we generalize to a more convenient graph-
oriented version.

Index Terms—Multi-Level Modeling, Model Typing, Category
Theory.

I. INTRODUCTION AND MOTIVATION

The framework of Multi-Level Modeling (MLM) [1], [2]
extends the traditional Model-Driven Software Engineering 4-
layer approach of UML 2 by allowing an arbitrary number
of abstraction levels of software artefacts with type-instance-
relations between them. This yields a sequence of graphical
artefacts each component being an instance of components of
adjacent higher levels, a typing chain. Amongst the different
tool-based approaches for maintaining typing chains and for
implementing operations on them, e.g. [3], [4], there are some,
which already aim at a common consensus for a formal
underpinning. One aspect of such a consensus describes a
typing chain no longer as a collection of artefacts being inter-
related by typing mappings, but rather treat them as a single
artefact (deep characterisation, potency). E.g., [5] provides a
formal foundation based on category theory, where operations
on models are multi-level coupled model transformations.

Whereas [5] achieves precision and reusability of rule
definitions still by inherent multilevelness of domains, we go
one step further: We transform a typing chain into a single all-
covering representing model, in which all typing information
is encoded and from which the typing chain can uniquely be
reconstructed. By showing how to algorithmically internalise
typings into this all-covering artefact on the one hand and
reconstruct and unfold the typing chain on the other hand,
we provide a guideline for maintaining multi-level typing
chains in respective implementations of multi-level typing
environments. Concretely, this paper’s main innovations are:
• For each typing chain G we explain, how to calculate an

all-covering compressed representation in a single model

M , in fact a single graph or graph-like structure, in which
the entire typing chain structure is hidden. This model
has the same size as the model on the chain’s lowest
abstraction level w.r.t. the number of nodes and edges.
It essentially codes all used typing information along the
chain in the labels of the nodes and edges. Thus there is
only little increase w.r.t. disk space. Whereas the labeling
of the nodes is just a list of all direct typing assignments,
the labeling of the edges is such that the source-target-
arrangement of the nodes and edges along all levels of
the typing chain are implicitely coded in the all-covering
graph and need not be repeated. Moreover the typing
morphisms’ operation compatibility is encoded in the
all-covering model and is accordingly and automatically
rebuilt during reconstruction.

• Correctness of the correspondence between G and M
is based on a fundamental and hence precisely verified
categorical equivalence. As a second innovation, we
present and prove a novel graph-based formulation of this
equivalence, which is much more convenient for its use in
practical applications. This graph-based formulation will
also be the guidance for our future work in the area.

• Formalisations are to some extent based on a different
view on model structures: Besides the usual instance
semantics principle1, we also utilize the interpretation
semantics principle2, cf. [6].

With these innovations, this paper’s contributions can be bene-
ficial for any kind of operations on multilevel typed structures,
e.g. the management of multilevel typed graph transformations
[5], [7]: Instead of working with morphisms between complete
typing chains and extending a multi-level typed DPO rule [8]
to a diagram in the category of typing chains, we can support
multilevel coupled model transformations [5], e.g. computa-
tions of pushouts, pushout complements etc, by a reduction to
the classical one-level methodology. Such a reduction might
also be helpful in model analysis, but presumably not in user
management.

Our approach is not yet complete due to the following
limitations:

1Each object has a type.
2Each type is interpreted as a set of valid instances.



• Whereas typing morphisms in typing chains are usually
allowed to be partial [7], we still assume direct typings
between adjacent model levels to be total mappings. Thus,
we consider the present paper as a proof-of-concept –
“part one” – of our entire project. Certainly, the goal is
to extend the results to partial mappings in a second part.
We think, it is very likely that there is a straightforward
generalisation, see the short discussion in Sect. VII.

• So far, we did not consider tooling, because we first want
to complete the internalisation algorithm also for partial
typings (in “part two” of our work), see above.

We also note that the transformation of typing chain G into
model M is a reversible one-to-one operation, only whenever
all typings are surjective, i.e. in case of full meta-model
footprints. This limitation, however, is very natural, if the
entire typing chain shall be encoded in a graph, which is
structurally similar to the model on the lowest level of the
typing chain. We additionally explain, how to fully reconstruct
in case of non-surjectivity with little extra effort.

The paper is organised as follows: After having presented
a running example in Sect. II, preliminary topic centered
definitions are contained in Sects III and IV. Sect. V presents
the internalisation algorithm and the theorem it is based upon
(Theorem 5.1), its iteration and hence the transformation from
G to M is described in Sect. VI. We conclude with remarks
about related and future work in Sect. VII and provide an
appendix (Sect. VIII) for the proof of the main theorem.

II. RUNNING EXAMPLE

To illustrate all theoretical results, we use an example, which
is inspired by a bigger case study presented in [9] and deal-
ing with the definition of behaviour for simple, autonomous
robots, see the typing chain in Fig. 1. The most abstract
level M1 prescribes the basic modeling formalism - binary
navigable associations from an owner class to a target class.
According to M2, any DSL shall consist of transitions that
have preceding and succeeding tasks. One of these languages
(M3) specifies transitions from an initial task to two alternative
movements (go forward or go back)3. In a concrete process
M4 a forward move succeeds the initial task.

To ease reading, these models are depicted in a concrete
syntax in the right column, e.g. transition instances are dis-
played as grey circles (•), pre and succ are differentiated by
their font type, colors are used accordingly, in M4 instantiated
elements are written in the usual “instance”:“type”-notation.

The typing chain’s abstract syntax, i.e. the model’s repre-
sentations according to their respective metamodels (typing),
is shown in the left column. The typing mapping between the
models is given via blue small rectangles between the adjacent
levels, e.g. from in M3 has type pre in M2. Edge typings are
not explicitely given, but can be derived from the necessary
edge-node-compatibilities4.

We adopt here the algebraic view on graphical structures,
where a signature (this term will be defined precisely in

3The condition, which decides the alternative, is omitted.
4 [9] additionally annotate edges with their respective type.

Fig. 1. Typing Chain in Abstract and Concrete Syntax

Sect. IV) guides the structures of all used artefacts (models): In
the typing chain M4

τ3→ M3
τ2→ M2

τ1→ M1 in the left column
of Fig. 1, all models conform to an overall signature Σ0 shown
in the top of Fig. 1, where E / N are abbreviations for edges
and nodes and src / tgt specify that each edge possesses a
source and target node. For each model Mi, its set of nodes is
coloured yellow, the set of (reified) edges is colored red. The
source / target of an edge is the node reached by the outgoing
solid / dashed line.5

Of course, the forthcoming theoretical results admit an
arbitrary guiding structure Σ0, e.g. so-called ”E-Graphs” [8],
in which a distinction is made between complex and primitive
data types, or even the MOF-model for Ecore6.

Asking, which objects x of a given sort (node or edge)
are present, is unusual in software engineering, because one
physically does not assign to a class the set of all its instances

5The similarity of model M1 and signature Σ0 is discussed in Remark 5.1.
6https://www.omg.org/spec/MOF/2.5.1/PDF



(e.g. at runtime). Instead, there is the assignment of a type to
an object x (in Java, e.g., by calling x.getClass()). However,
the two viewpoints are equivalent, and we will - on a formal
level - switch back and forth between them.

III. PRELIMINARIES

For a self-contained study we start with some basic categori-
cal background and some close-by concepts: A category C is a
collection of objects, written |C|, and for each pair A,B ∈ |C|
a set MorC(A,B) of morphisms from A to B. There is the
identity morphism idA ∈ MorC(A,A) for each A ∈ |C| and
there is the usual neutral and associative composition operator
◦ : MorC(A,B) × MorC(B,C) → MorC(A,C). As usual,
f ∈ MorC(A,B) will be written f : A→ B and composition
of f ∈ MorC(A,B) and g ∈ MorC(B,C) is written g ◦ f .

We omit the precise definition of the term ”collection”, since
it is not important for the forthcoming considerations. We only
note that each set is also a collection, but not vice versa, see
[10] for further details7.

A special category arises, if one fixes an object T ∈ |C| and
considers morphisms τ : M → T for varying objects M . This
so-called comma category C ↓ T has objects these morphisms,
i.e. objects M typed over T . Morphisms of C ↓ T are type
compatible C-morphisms: If τ : M → T and τ ′ : M ′ → T
are two typed structures, a type compatible morphism is any
f : M →M ′, for which τ ′ ◦ f = τ .

A functor F : C → D consists of two mappings, one
for mapping objects (of C to D), the other for mapping
morphisms, such that identities and composition are preserved.
We say that two categories C and D are equivalent, written

C ∼= D

if there is a functor F : C → D, which can essentially be
inverted, i.e. there is a functor F−1 := G : D→ C, such that
the composites F ◦G and G ◦F are isomorphically related to
identities (on C and D, resp.): G(F (C)) and F (G(D)) must
not be equal, but are isomorphic to C, D, resp.8

IV. DEFINITIONS

Diagrammatic models in Software-Engineering are based on
graphs. Hence, on a higher (mathematical) level, we need a
specifying concept for the modeling domain in its entirety. To
distinguish between this (meta-)level and the (software) mod-
eling domain, in which graphs are also present (as software
artefacts), we call this concept Meta-Graphs, cf. [6]:

Definition 4.1 (Meta-Graphs and Homomorphisms): A
meta-graph G = (NG, EG = (EGn→n′)n,n′∈NG

) consists of
a collection NG of Nodes and for each pair (n, n′) of nodes a
set of Edges EGn→n′ from n to n′. I.e. all edges are partitioned
w.r.t. their source- and target-nodes n and n′.

7The category of sets and mappings has as objects a proper collection,
because there is no such thing as the set of all sets, see e.g. [10].

8To understand the forthcoming results, it is not necessary to delve deeper
into these definitions, the interested reader may consult [10] or [11].

Whenever the partitioning w.r.t. source- and target-nodes is
clear from the context, we will write the edges of a meta-graph
as the union of the collection of the edge-sets:

EG :=
⋃

(n,n′)∈NG×NG

EGn→n′

A homomorphism φ : G → H between two meta-graphs
G = (NG, EG) and H = (NH , EH) is a pair (φN , φE) of
mappings φN : NG → NH and φE : EG → EH with the
edge-node-incidence-condition

∀n, n′ ∈ NG and e ∈ EGn→n′ : φE(e) ∈ EHφN (n)→φN (n′)

i.e. source and target of the image of the edge e must coincide
with the image of source and target of e, resp.

To simplify reading, we omit subscripts N and E in φN
and φE and write for both of them just φ, if the differentiation
becomes clear from the context.

It is not forbidden for a meta-graph to contain an infinite
collection of nodes. Hence we can consider the meta-graph
whose nodes are finite sets and whose edges are the mappings
between these sets:

Definition 4.2 (The Meta-Graph of Finite Sets): Let

Set = (N Set , ESet )

where N Set = {X | X is a finite set} and

ESet = (ESet
X→Y = {f : X → Y | f is a total map})X,Y ∈N Set .

Considering only finite sets is no restriction, because, in
Software Engineering, involved sets like the set of all types
(in a data- or class-model) are always finite.9

Our goal in this section is to provide a formal description of
models in software engineering with the help of meta-graphs
and algebraic specifications. To keep the elaboration simple,
we will, however, not work with additional constraints such as
multiplicities10, such that an edge always specifies an arbitrary
(binary) relation between source and target nodes.

Algebraic signatures [12] in its classical form rely on
functions, i.e. they don’t know about arbitrary relations. E.g.
the signature of natural numbers consist of one sort s, a unary
operation inc :s → s and the constant zero (an operation
without parameters). The signature is intended to inductively
describe the set N of natural numbers: Constant zero is
interpreted as the number 0 and operation inc as function
f : N→ N, defined by f(x) := x+ 1.

In the sequel, we will consider signatures with several sorts,
but only unary operations. Its (semantic) interpretation is then
a set Xs for each sort s and for each operation op : s → s′

a total function f : Xs → Xs′ . To capture arbitrary binary
relations (as in M2) with algebraic specifications we work
with reification, which is a recurring technique: E.g., in UML
modeling this means to break the relationship between two

9It can even be shown that there is no such thing as the set of all finite
sets, cf. footnote 7, which justifies necessity of nodes in a meta-graph to be
a collection rather than a set.

10E.g. for model M2 to prescribe precedence arrangements of concrete
transitions and tasks, multiplicity constraints should be used.
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Fig. 2. Signature Σ′
2 for Process Modelling

classes down into two functional relationships by creating
an association class with projections (total functions) to the
two classes. Similarly, arbitrary relations between tables in a
relational database can always be implemented with junction
tables, their foreign keys representing functional dependencies.
Hence, by reification, each data model with many-to-many
relationships can be transformed into a model, which only
specifies functions between types.

Example 4.1: The signature Σ0 in the top of Fig. 1 contains
sorts N and E (nodes and edges) and unary operations
src, tgt : E → N . An interpretation is then a set of nodes and
a set of edges and two functions, which assign to each edge its
source and target node. All models M1-M4 in abstract syntax
are interpretations of Σ0, relations (arrows in the concrete
syntax) being already reified.

Example 4.2 (Signatures as Meta-Graphs): We can also
specify a signature Σ′2, which contains basic concepts for pro-
cess modelling by requiring sorts Task and Trn (for Transition)
together with operations that assign to a transition preceding
and succeeding tasks, cf. Fig. 2. pre and succ are (reified) sorts
and functions (source/target)Of(Pre/Succ) assign source and
target to them.

It is important not to mix up this signature with model M2

in Fig.1 (an interpretation of Σ0)! Note, e.g. that there is no
labeling of edges in M2. In the sequel, we will, however,
precisely elaborate on their commonalities, and we will justify
the deliberately chosen name Σ′2.

It is remarkable that the signature in Example 4.2 is a meta-
graph: We obtain nodes

NΣ′2 = {pre, succ,Task,Trn}

from the sorts. Furthermore, from the operations, we obtain
edges EΣ′2 with edge sets

E
Σ′2
pre→Task = {targetOfPre}

E
Σ′2
pre→Trn = {sourceOfPre}

E
Σ′2
succ→Task = {targetOfSucc}

E
Σ′2
succ→Trn = {sourceOfSucc}

and EΣ′2
n→n′ = ∅ for the remaining 12 edges sets.

This example justifies the following definition:
Definition 4.3 (Signature): A signature Σ is a meta-graph

with nodes the set of sorts of Σ. For each pair of sorts s and
s′ the set EΣ

s→s′ is the set of all operations op : s → s′ with
domain s and codomain s′.

In the sequel, we will use the terms sort / node as well as
the terms operation / edge synonymously, but use either one of
the alternatives depending on whether we speak of signatures
or meta-graphs.

As in Example 4.1, a general signature Σ specifies models
by assigning a concrete set to each sort / node, and by
assigning a function between these sets to each operation /
edge. Moreover, the definition of interpretations enforces the
function for an edge e ∈ EΣ

n→n′ in the signature to have
domain / codomain the interpretation of n / n′. This function-
set-incidence-condition justifies the following definition:

Definition 4.4 (Σ-Model): A model M that conforms to
signature Σ, called a Σ-Model, is a homomorphism

M : Σ→ Set .

between meta-graphs Σ and Set . M is also said to conform
to signature Σ. We call set M(n) and for each e ∈ EΣ

n→n′
function M(e) : M(n) → M(n′) the interpretations or
instantiations of nodes n and edge e in model M .11

Thus M1-M4 in Fig. 1 are rather homomorphisms from
Σ0 to Set and we say that the mapping of function M(e)
establishes an e-link from x ∈ M(n) to M(e)(x). More
vividly, ”M(e)(x) is the e-property of x”, e.g. Class is the
src(-property) of Assoc in M1, start is the src of from in M3.

Of course, models alone are not enough to cope with
important disciplines in the multifaceted world of model-
driven engineering, e.g. model composition, model differenc-
ing, model repair, and other sorts of operations on models.
I.e. we also have to consider interrelations between models:
Model homomorphisms. In the spirit of natural transformations
in category theory, model homomorphisms must be understood
as a family of mappings, one for each sort in the signature,
with the usual compatibility conditions:

Definition 4.5: Let Σ be a signature and M and M ′ be two
Σ-models. A (Σ-)model homomorphism

α : M ⇒M ′

is a family
(αs : M(s)→M ′(s))s∈NΣ

of mappings, each of them being a mapping between the two
interpretations of sort s in models M and M ′, such that

∀s1, s2 ∈ NΣ,∀e ∈ EΣ
s1→s2 : M ′(e) ◦ αs1 = αs2 ◦M(e),

see Fig. 3. I.e. for each element x in the interpretation of sort
s1 in M , the e-linked element of x’s α-image in M ′ equals the
α-image of x’s e-linked element, i.e. model homomorphisms
are compatible with all specified operations.

The compatibility condition is very natural: E.g. a mapping
α from model M to model M ′ both conformimg to signature
Σ′2 (see Fig. 2) must map the target task of a precedence p
in M to the target task of αpre(p) in M ′, thus preserving the
precedence arrangements of M after mapping it to M ′.

11In Algebraic Specifications M(n) is called the carrier set of sort n and
M(e) the implementation of operation e. The term ”model” for a meta-graph
homomorphism from M to Set has frequently been used, e.g. in [11].
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e // s2

M ′(s1)
M ′(e)

// M ′(s2)

Fig. 3. Model Homomorphism Compatibility

We obtain an important mathematical object, which is the
central artefact for our considerations in the next sections12:

Definition 4.6 (Category of Σ-Models): The category
Mod (Σ) has objects all Σ-models and morphisms Σ-model ho-
momorphisms. An identity is the family of identical mappings,
composition is componentwise composition of the mappings
in the respective families.

V. INTERNALISING MODEL TYPINGS

For the Σ0-models in Fig. 1 it is necessary to classify
elements in lower models by elements in the next higher
level, i.e. there are model homomorphisms τi, which define
the typing from one level to the next higher level, see the
blue rectangles in the top left corner of their nodes. E.g.
τ1 : M2 ⇒M1 with e.g. τ1(pre) = Assoc, τ1(Task) = Class.

In general, a model M is typed in model T , both con-
forming to an arbitrary signature Σ, i.e. there are (meta-
graph-)homomorphisms M,T : Σ → Set and a Σ-model
homomorphism

τ : M ⇒ T.

In the sequel, we show, how we can internalise the typing into
model M by accepting an extended signature for it.

A. From Mod (Σ)-Model T to Extended Signature Gr (Σ, T )

In the sequel, for nodes of Σ we use letter s to indicate
that these nodes are sorts of the base signature, and we use op
for edges (operations). Recall that T (s) is the interpretation of
sort s in model T . For any edge op in Σ with source s1 and
target s2, T (op) : T (s1) → T (s2) assigns to each t ∈ T (s1)
an appropriate linked element in T (s2). To emphasise the fact
that elements of T (s) are types of the typing model T , we
use letter t for these elements. Then we define the meta-graph
Gr (Σ, T ) as follows13:
• NGr(Σ,T ) := {(t : s) | t ∈ T (s)}
• E

Gr(Σ,T )
(t:s)→(t′:s′) := {(t :op) | op ∈ EΣ

s→s′ , t
′ = T (op)(t)}

Whereas Σ-model T consists of sets T (s), an element t
of such a set is now converted into a node of meta-graph
Gr (Σ, T ) containing its sort s in its new label. And for each
op ∈ EΣ

s1→s2 , the pairs (t, T (op)(t)) of input and output

12The reader may recall the definitions in Sect. III.
13We denote the result of the construction with Gr ( , ) in honour of

Alexander Grothendieck, who invented this construction for categories.

Σ0

M2

��

E
src

,,

tgt

22_

��

N_

��

Set {pre, succ}
M2(src)

..

M2(tgt)

00 {Task,Trn}

Fig. 4. Meta-graph homomorphism M2 : Σ0 → Set

elements of T (op) for t ∈ T (s1) are made explicit as edges
in the new graph Gr (Σ, T ), a manifestation of map elements.

Example 5.1: Σ0-model M2 of Fig. 1 is a meta-graph
homomorphism M2 : Σ0 → Set , which is shown in Fig. 4.

The mappings are M2(src) = {(pre 7→ Trn), (succ 7→
Trn)}, M2(tgt) = {(pre 7→ Task), (succ 7→ Task)}. We obtain
Gr (Σ0,M2) = (NGr(Σ0,M2), EGr(Σ0,M2)) with nodes

NGr(Σ0,M2) = {(pre :E), (succ :E), (Task :N), (Trn :N)}

and non-empty edge sets

E
Gr(Σ0,M2)
pre:E→Trn:N = {(pre : src)} (Trn is src of pre)

E
Gr(Σ0,M2)
succ:E→Trn:N = {(succ : src)} (Trn is src of succ)

E
Gr(Σ0,M2)
pre:E→Task:N = {(pre : tgt)} (Task is tgt of pre)

E
Gr(Σ0,M2)
succ:E→Task:N = {(succ : tgt)} (Task is tgt of succ)

This signature is depicted in the top of Fig.5.

B. From T -typed model M to a single Gr (Σ, T )-model

The second step of the construction will now interpret
τ : M ⇒ T as a single model M in Mod (Gr (Σ, T )), thus
internalising the typing τ between two models M and T into
a single model M by accepting an extended signature for
it. For this we have to define a meta-graph homomorphism
M : Gr (Σ, T ) → Set . Recall model homomorphism τ to
consist of a family (τs : M(s) → T (s))s∈NΣ and recall that
M must map any node (t : s) to some set and any edge (t :op)
to a mapping between two of these sets. We let M be defined
• . . . on nodes of Gr (Σ, T ): M((t : s)) := (τs)

−1(t)

• . . . on edges of Gr (Σ, T ): For edge (t :op) ∈ EGr(Σ,T )
(t:s)→(t′:s′)

we define the mapping

M(t :op) : (τs)
−1(t)→ (τs′)

−1(t)

by
ξ 7→M(op)(ξ).

Before we check whether this definition of M is really a
homomorphism, let’s investigate the construction along our
running example:

Example 5.2: We continue example 5.1. Let M3 and M2

be the Σ0-model(s) in Fig. 1, then there is the typing homo-
morphism τ2 : M3 ⇒ M2. The above construction yields the



Gr (Σ0,M2)

M

��

(pre :E)

pre:src
))

pre:tgt
// (Task :N)

(succ :E)

succ:tgt

55

succ:src
// (Trn :N)

_

��

Set {from}

M(pre:src)
))

M(pre:tgt)
// {Initial,GoFwd,GoBack}

{to1, to2}
M(succ:tgt)

55

M(succ:src)

// {start}

Fig. 5. Translated model Gr (Σ0,M2) → Set

Gr (Σ0,M2)-model in Fig. 5 with the obvious map elements,
e.g. M(succ : tgt) maps to1 7→ GoFwd, to2 7→ GoBack.

Proposition 5.1: M is a meta-graph homomorphism.
Proof: We have to check the edge-node-incidence-

condition of Def. 4.1. Let for this two nodes (t : s) and (t′ : s′)

and an edge (t : op) ∈ E
Gr(Σ,T )
(t:s)→(t′:s′) be given. Thus, by the

definition of EGr(Σ,T )
(t:s)→(t′:s′) in Sect. V-A,

t′ = T (op)(t). (1)

We have to verify

M(t :op)
?
∈ ESet

(τs)−1(t)→(τs′ )
−1(t′).

i.e. we must show that M(t :op) is a function from (τs)
−1(t)

to (τs′)
−1(t′). Let for this ξ ∈ (τs)

−1(t) be given, i.e.

t = τs(ξ) (2)

i.e. ξ (in M ) is t-typed (in T ) and both belong to sort s of
signature Σ. By the definition of M(t :op), we must show that
M(op)(ξ) ∈ (τs′)

−1(t′).
This follows from the model homomorphism compatibility,

see Fig. 3, which in the case of τ : M ⇒ T becomes

τs′ ◦M(op) = T (op) ◦ τs (3)

for all edges op ∈ EΣ
s→s′ , because then

τs′(M(op))(ξ) = T (op)(τs(ξ)) by (3)
= T (op)(t) by (2)
= t′ by (1)

i.e. M(op)(ξ) ∈ (τs′)
−1(t′) as desired.

We call M the internalisation of τ : M ⇒ T and write

INT (τ) := M.

M
h //

τ
��

M ′

τ ′

��

7→ INT (τ)
INT (h)

// INT (τ ′)

T

Fig. 6. Internalisation INT : Mod (Σ) ↓ T → Mod (Gr(Σ, T ))

INT maps objects of the comma category Mod (Σ) ↓ T (see
Sect. III) to objects of Mod (Gr (Σ, T )). The categorical view,
however, demands also an assignment of morphisms, i.e., we
have to define INT (h) for a morphism h in Mod (Σ) ↓ T ,
see Fig. 6. We do this by defining the action of INT (h)
exactly as the one by h: If ξ ∈ M(s) for some node s in
Σ, then let t = τs(ξ) and define INT (h)(t:s)(ξ) := hs(ξ). i.e.
INT (h) is now a family of mappings, one for each sort in (the
fine-grained) signature Gr (Σ, T ), whereas h was a collection
of mappings, only one for each sort in (the coarse-grained)
signature Σ. Because h was a model-homomorphism and type-
compatible as a morphism of the comma category, INT (h) is
also compatible with operations, thus

INT : Mod (Σ) ↓ T → Mod (Gr (Σ, T ))

becomes a functor.
The following theorem is the main result of the paper:
Theorem 5.1: INT is an equivalence of categories, i.e.

Mod (Σ) ↓ T ∼= Mod (Gr (Σ, T )).

Proof: See Appendix Sect. VIII-B
The equivalence property in the theorem has an important
consequence, which can be illustrated along Example 5.2:
From the Σ2-model in Fig. 5, in which the original Σ0-
structure (sorts E and N and src / tgt-structure) has at
first sight vanished, we can nevertheless fully and uniquely
reconstruct the typing τ2 : M3 ⇒ M2 and the mapping
behaviour of homomorphisms M3,M2 : Σ0 → Set just by
applying INT −1.

Note also the similarity of signature Σ2 for the translated
model with the signature Σ′2 in Fig. 2. Whereas we had added
the labels of the edges in Σ′2 according to common sense from
the structures in Fig. 1, are names now determined according
to the described algorithm of Sections. V-A and V-B yielding
the same information content.

For future purposes, we conclude this section with some
results that are easily derivable from Theorem 5.1:

Definition 5.1 (Terminal Object): In any category C, a
terminal object U is an object with the following property: For
each object M ∈ C there is exactly one morphism M → U .

Remark 5.1 (Terminal Models): In Fig. 1, M1 is a terminal
object in Mod (Σ0): Since the interpretations of nodes and
edges are singletons, resp., there is only one way of mapping
the interpretations of any Σ0-model M to the interpretations
of M1, namely each element in M(N) is mapped to Class and
each element in M(E) is mapped to Assoc.



Since M1(E) and M2(N) are singletons the diagrammatic
representations of the signature Σ0 and the terminal Σ0-model
M1 in Fig. 1 become nearly identical. In other words: We can
consider M1 as an internal representation of the ”linguistic
meta-model” Σ0.

The following statements are well-known [12]:
Proposition 5.2: A terminal object in Mod (Σ) is given by

interpreting each node as singleton set and each operation as
the only possible function between the corresponding sets.

Proposition 5.3: Let C be a category with terminal object
U , then C ∼= C ↓ U .

We obtain
Corollary 5.1 (of Theorem 5.1): INT (idT : T ⇒ T ) is a

terminal object in Mod (Gr (Σ, T )).
Proof: Because id−1

T (t) is a singleton, it is easy to see
that INT (idT ) assigns to each node of Gr (Σ, T ) a singleton
set. Thus the result follows from Prop. 5.2.

VI. FROM TYPING CHAIN TO SINGLE GRAPH AND BACK

Let

Mn

τn−1
// Mn−1

τn−2
// · · · τ2 // M2

τ1 // M1 (4)

be a general typing chain, where Mi are Σ0-models for some
initial signature Σ0. In this section, we use the results of
the previous parts to collapse the complete typing chain into
a single model (more concrete: a single meta-graph), which
encodes all higher typing levels and the whole typing structure,
and from which the typing chain can be reconstructed.

A. Iterating the Internalisation

Let Σ0 be some initial signature,

M0
i := Mi (1 ≤ i ≤ n), τ0

i := τi (1 ≤ i ≤ n− 1),

then we define recursively

Σi := Gr (Σi−1,M
i−1
i ), (5)

see Sect. V-A for the definition of Gr ( , ), and

INT i : Mod (Σi−1) ↓M i−1
i → Mod (Σi)

for all i ∈ {1, . . . , n}, where INT i is the functor from
Theorem 5.1 with T := M i−1

i . All models M i−1
j (i < j ≤ n)

are directly or indirectly typed over M i−1
i , because for each

i we have composed typing morphisms

τij := (τ i−1
i ◦ τ i−1

i+1 ◦ · · · ◦ τ
i−1
j−1 : M i−1

j →M i−1
i )i<j≤n,

which are objects of the comma category Mod (Σi−1) ↓M i−1
i

and for which we define

M i
j := INT i(τij), τ

i
j := INT i(τ

i−1
j ) (6)

for all 1 ≤ i < j ≤ n, the first assignment being on objects,
the second on morphisms of Mod (Σi−1) ↓ M i−1

i (note that
τ i−1
j : τi(j+1) → τij is a morphism in Mod (Σi−1) ↓ M i−1

i ),
thus establishing a new shortened typing chain in Mod (Σi).

In fact, the initial typing chain (4) in Mod (Σ0) is the input
for the iteration:

Fig. 7. Signature Σ1 = Gr (Σ0,M0
1 )

• M0
n

τ0
n−1
// M0

n−1

τ0
n−2

// · · ·
τ0
2 // M0

2

τ0
1 // M0

1

All these models are directly or indirectly typed over M0
1 , i.e.

we obtain objects of Mod (Σ0) ↓ M0
1 . They are mapped by

INT 1 to

• M1
n

τ1
n−1
// M1

n−1

τ1
n−2

// · · ·
τ1
2 // M1

2

i.e. for i = 1, the chain is shortened by the first internal-
isation on the right: M1

2 = INT 1(τ12) = INT 1(τ0
1 ) and

τ1
2 := INT 1(τ0

2 ) by (6) with j = 2. Furthermore, M1
j and

τ1
j for j > 2 are calculated accordingly.

Iterating further over index i (i ≥ 2) yields after iteration
i = n− 2 (by mapping with INT n−2)

• Mn−2
n

τn−2
n−1
// Mn−2

n−1 ,

in Mod (Σn−2), then after iteration i = n − 1 (by mapping
with INT n−1)
• Mn−1

n

in Mod (Σn−1).
We can even go one step further and artificially add τn :=

idMn
in the beginning of the original typing chain (4), i.e.

Mn+1 := Mn. We can then apply a last iteration round
(i = n), which produces the terminal object in Mod (Σn) by
Corollary 5.1. By Prop. 5.2, this terminal object has singletons
for all sorts of signature Σn, i.e. it is fully represented by Σn
itself. We obtain the
• Final result: Σn.

The lines starting with “•” demonstrate the successive
collapse of the typing chain into the single meta-graph Σn. Of
course, the transformation of the typing chain in (4) to Σn is
invertible, because it is composed of invertible transformations
INT 1, . . . , INT n by Theorem 5.1.

Example 6.1: Let’s demonstrate everything along our run-
ning example: Σ1 := Gr (Σ0,M1) is depicted in Fig. 7.
Because M1 is the terminal object by Prop. 5.2, Σ1-models
M1

2 ,M
1
3 ,M

1
4 are structurally identical to M2,M3,M4 in

Fig. 1, the only difference being the renaming of nodes
and their typings in M1

j , which now have suffix Assoc or
Class. Additionally, M1

2 is no longer typed, since τ1 has been
internalised.

Σ2 := Gr (Σ1,M
1
2 ) together with the remaining models

is shown in Fig. 8. Sorts in the signature are colored grey,
operations and their mapping behavior in the models are
distinguished by different colors. Elements of the sets in the
models are positioned according to the positioning of the sorts
in the signature, see the grey rectangles, e.g. all elements
in M2

3 , which belong to sort Task : Class : N are grouped
together in the top right corner of M2

3 , in this case the elements



Fig. 8. Signature Σ2 = Gr (Σ1,M1
2 ) and Σ2-models

Fig. 9. Signature Σ3 = Gr (Σ2,M2
3 ) and Σ3-models

Initial,GoFwd,GoBack. Note the similarity with Fig.5, where
elements are grouped in the same way, but the intermediate
step via M1 is skipped, thus omitting the terms Assoc and
Class in the names.

Finally, the construction of Σ3 and internalisation of τ2
3

yields the Σ3-model in Fig.9, where we observe the occurence
of two empty sets. The last step according to the above
algorithm then yields signature Σ4 in Fig.10, in which the part
of the chain is coded, which is needed to reconstruct the direct
and indirect typings of the contained elements (Corollary 6.1
below provides a criterion to completely restore the chain).

Note that it is nowhere necessary to store the src-tgt-
arrangement of all higher levels. This arrangement is encoded

Fig. 10. Signature Σ4 = Gr (Σ3,M3
4 )

in the labeling of the sorts and operations of Σn, e.g. in Σ4

by the suffixes of the labels.

B. Reconstruction

The most important application of Theorem 5.1 is the
ability to unfold the final result Σn in order to reconstruct
the complete typing chain, including its labeling and the inner
structure of models on all levels: Let M i

j be a Σi-model
(j > i), then the sorts in Σi yield sets

N := {s2 : · · · : si+1 | s1 : s2 : · · · : si+1 ∈ NΣi}

and

E := {s2 : · · · : si : op | s1 : s2 : · · · : si : op ∈ EΣi , op ∈ EΣ0}

which together with corresponding domain and codomain of
the latter make up a signature, which faithfully restores sorts
and operations of Σi−1. In contrast, the cut off sorts s1 of
NΣi constitute the model M i−1

i together with the appropriate
linkings. These sorts are simultaneously the respective typings
of the models M i−1

j on lower levels j > i. In such a way, e.g.,
Σ2 in Fig. 8 and Σ2-models are reverted back to Σ1-models
M1

4 ,M
1
3 ,M

1
2 together with their (possibly composed) typings.

It is easy to see from the described reconstruction method-
ology, that the following corollary of Theorem 5.1 holds:

Corollary 6.1: Let a typing chain be given as in (4), where
all typing morphisms τi are surjective. Let Σn be the final
result of the iterated internalisation. Then the typing chain
can completely be reconstructed from Σn.

It is no serious restriction to claim surjectivity of the τi,
because this just means that there is at least one instance in
model Mi+1 of type t (located in model Mi) for each t and
each i ∈ {1, . . . , n}.

Consider, as an example, the typing chain of Fig.1 without
the lowest level, i.e. M3

τ2→ M2
τ1→ M1. The algorithm

terinates with Σ3 in the top of Fig. 9, from which the chain
can be restored, because both τ1 and τ2 are surjective.

We constructed our example, such that we can also demon-
strate the effects in case of non-surjectivity. In that case,
the algorithm reconstructs only those types that are actually
instantiated (needed) in the typing chain. Consider for this
again the complete chain in Fig. 1: to2 vanishes during
internalisation, because it is not used as a type in M4.



To fully reconstruct the typing chain in case of non-
surjectivity, it is necessary to store, for each i, those sorts s of
Σi, for which M i

i+1(s) = ∅ together with all operations with
domain or codomain s. E.g. in Fig. 9 to2 : succ : assoc : E of
Σ3 and the two operations to2 : succ : assoc : tgt/src must be
stored during the next internalisation step.

Consequently, an implementing tool (e.g. for multi-level
coupled model transformations [5]) must only maintain meta-
graph Σn and possibly not needed types. All higher level
models and their intermediate typings are coded in Σn’s labels
and structure.

VII. RELATED AND FUTURE WORK

A. Additional Related Work
As already pointed out in the introduction, reasoning about

implementations of multi-level modeling structures is always
accompanied by internalisation techniques and by construing
typing chains as single entities, where especially the elements
of the models are similarly labelled as in our approach. This
has been carried out in connection with DSLs [13], defini-
tions of model behavior [5], coupled model transformations
and multilevel graph transformations [7], [9], but also when
improving reuse opportunities of language families [14] or
embedding a one-level situation into a multi-level environment
[15]. Different ways of internalisations of model typings
and typing chains have also been used in several tools, e.g.
MetaDepth [3], Melanee [16], or AtomPM [17].

Categorical foundations for understanding relations be-
tween objects as entities in their own right are comma- or
arrow categories [18], but especially appear in the concepts of
profunctors, graphs of a functor [19], cartesian closedness [11],
and - the background of Theorem 5.1 - the Yoneda Embedding
and the Grothendieck Construction [18]. Practical approaches
for depicting typing chains as a single artefact exist, but these
transformations are only reversible, if the typing relation is
captured by (e.g. OCL-) constraints [20].

B. Future Work
As mentioned before, we plan to extend the result to partial

typing morphisms in a continuation of the present paper. We
decided not to include partiality in the present paper (“part
one”), because we expect certain extra effort due to different
formulations of composition (of partial mappings) and node-
edge-incidences along a typing chain, cf. [9]. Moreover, in a
final stage of extension, constraints and inheritance must be
included in the theory.

Reification can be avoided, if carriers of algebras are arbi-
trary relations. It may be worth investigating a corresponding
generalisation. This, however, poses new questions about com-
position and (co-)completeness, which complicates the theory
significantly.
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VIII. APPENDIX

In this section, we eleborate the technical details behind
the main theorem in Sect. V-B, Thm. 5.1. Statements without
further explanations or explicit reference can be found in [10].

A. From Meta-Graphs to Categories

In the sequel, we call meta-graphs just graphs. Categories
can be interpreted as graphs enriched with identities, com-
position and equationally constrained w.r.t. neutrality and
associativity. Each graph G can canonically be transformed
into a category P(G), which has as objects the nodes of G
and as arrows the paths in G. A path

p = (n0, e1; · · · ; ek)

for some k ≥ 0 in G consists of a node n0 together with
a sequence ei ∈ EGni−1→ni

(i ∈ {1, . . . , k}) of consecutive
edges with n0 being the source of e1. Identity morphisms are
all empty paths (k = 0) at n: idn := (n, [ ]). Composition in
P(G) is concatenation of paths modulo neutrality (w.r.t. empty
paths) and associativity (of concatenation). In the literature
P(G) is also called the path category of graph G.

There is the reverse construction U , which assigns to a
category C its (underlying) graph G by defining the collection
of nodes of G to be the objects of C and edges its morphisms.
The monoidal structure is ”forgotten”, i.e. identities become
(meaningless) loops at all nodes, and composition is no longer
known. Additionally, we can convert a graph homomorphism
T : G → Set to a functor T ∗ : P(G) → SET (where SET
is now the category of sets and total mappings such that Set
becomes its underlying graph). This is simply done by defining
T ∗ = T on objects and

T ∗(p) = T (ek) ◦ · · · ◦ T (e1)

for a path p = (n0, e1; · · · ; ek) and k ≥ 0.
Since in our setting these graphs are always signatures, we

use letter Σ instead of G from now on. Furthermore, we denote
with SET C the category, which has objects the functors from
a category C to SET and whose morphisms are the natural
transformations between them [11].

An important theorem in category theory states that P and
U extend to functors (between the category of graphs and the
category of categories) and that the assignment T 7→ T ∗ is a
bijection between graph homomorphisms from Σ to Set on the
one hand and objects of SET P(Σ) on the other hand, which can
be shown to extend to an equivalence of categories between
Σ-models and the category of SET -valued functors [10]:

Lemma 8.1: For any signature Σ: Mod (Σ) ∼= SET P(Σ), the
object assignment being realized by T 7→ T ∗.
This lemma immediately yields

Lemma 8.2: Mod (Σ) ↓ T ∼= SET P(Σ) ↓ T ∗.
The definition of the extended signature in Sect. V-A is based
on the so-called Grothendieck Construction for sets, cf. [11],

which converts any set-valued functor F : C → SET into
a functor from a category Gr (C, F ) to C, the latter functor
having special fibrational properties. In this essentially invert-
ible construction the category Gr (C, F ) is defined similarly as
Gr (Σ, T ) in Sect. V-A. Identities and composition of Gr (C, F )
are due to the existence of them in C. Note that we overloaded
the operator Gr ( , ) corresponding to the type of arguments
(signature and model in Sect.V-A, category and functor in the
Grothendieck Construction). Hence Gr (C, F ) has
• objects {(x :C) | x ∈ F (C), C ∈ |C|} and
• morphisms {(x : op) : (x : C) → (x′ : C ′) | op ∈

MorC(C,C ′), x′ = F (op)(x)}
cf. the definition of Gr (Σ, T ) in Sect. V-A. Because Gr (C, F )
is the disjoint union of all elements in F (C) for all C ∈ |C|,
it is called the category of elements (of F ).

B. The Proof of Theorem 5.1
For the proof we need two auxiliary results:
Lemma 8.3: For any homomorphism T : Σ→ Set :

Gr (P(Σ), T ∗) ∼= P(Gr (Σ, T ))

Proof: The category of elements of the path category of
Σ w.r.t. functor T ∗ has the same objects as the path category
of Gr (Σ, T ), see the above definitions. I.e. we can define a
functor ϕ : Gr (P(Σ), T ∗) → P(Gr (Σ, T )) to be identical on
objects. If (x : p) is a morphism in Gr (P(Σ), T ∗) with p a
morphism in P(Σ), i.e. p := (n0, e1; · · · ; ek) is a path in Σ
and x ∈ T (n0), we define

ϕ(x :p) := ((x :n0), ((x0 : e1); (x1 : e2); · · · ; (xk−1 : ek)))

where x0 := x and xi := T (ei)(xi−1), i = 1..k, if the
path length k > 0, which yields a path in Gr (Σ, T ). For
k = 0, we map the identity morphism id(x:n0) to the empty
path at (x : n0) in P(Gr (Σ, T )). It is easy to see that these
definitions yield a faithful and full (injective and surjective on
each set Mor ( , ) of morphisms) functor, which is essentially
surjective on objects. These three properties are known to
be necessary and sufficient for ϕ being an equivalence of
categories.14

The second auxiliary result is the main ingredient of our
result and can be found in [18], Lemma 9.23.:

Lemma 8.4: [Awodey, 2005] For signature Σ and functor
F : P(Σ)→ SET :

SET P(Σ) ↓ F ∼= SET Gr(P(Σ),F )

Proof of Theorem 5.1: The various equivalences stated
so far yield

Mod (Σ) ↓ T ∼= SET P(Σ) ↓ T ∗ (Lemma 8.2)

∼= SET Gr(P(Σ),T∗) (Lemma 8.4)

∼= SET P(Gr(Σ,T )) (Lemma 8.3)
∼= Mod (Gr (Σ, T )) (Lemma 8.1),

where we use the extended signature Gr (Σ, T ) instead of Σ
in Lemma 8.1.

14For a more detailed definition of these properties and why they charac-
terise equivalences, see [10]


