
A Practical Adaptive Key Recovery Attack on
the LGM (GSW-like) Cryptosystem⋆

Prastudy Fauzi1, Martha Norberg Hovd1,2, and H̊avard Raddum1

1 Simula UiB, Norway
2 University of Bergen, Norway

Abstract. We present an adaptive key recovery attack on the leveled
homomorphic encryption scheme suggested by Li, Galbraith and Ma
(Provsec 2016), which itself is a modification of the GSW cryptosys-
tem designed to resist key recovery attacks by using a different linear
combination of secret keys for each decryption. We were able to effi-
ciently recover the secret key for a realistic choice of parameters using
a statistical attack. In particular, this means that the Li, Galbraith and
Ma strategy does not prevent adaptive key recovery attacks.
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1 Introduction

Fully homomorphic encryption (FHE) is a powerful primitive which allows for
meaningful computations to be performed on encrypted data, without the need
for decryption. An FHE scheme allows for ciphertexts to be evaluated over any
circuit without risking an erroneous decryption of the resulting ciphertext, i.e.,
Dec(C(Enc(m)))̸= C(m) for some circuit C. There are other flavours of homo-
morphic encryption as well: leveled homomorphic encryption (LHE) and some-
what homomorphic encryption (SHE), which both allow for a limited amount of
operations to be performed on a ciphertext before there is a risk of decryption
failure. A key difference between LHE and SHE is that the key generation of
LHE schemes takes an extra parameter as input, which specifies the depth of
the deepest circuit the scheme is able to homomorphically evaluate.

Many F/L/SHE schemes rely on a quantum secure assumption, such as the
hardness of learning with errors (LWE) and ring learning with errors (RLWE),
to provide security against key recovery attacks and/or message recovery. In
fact, these schemes are typically shown to achieve IND-CPA security, meaning
an adversary with access only to the public key and parameters is provably
unable to distinguish between the encryptions of any two messages. However,
most existing F/L/SHE schemes are known to be susceptible to adaptive key
recovery attacks [8,10]. In these attacks an adversary has temporary access to
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a decryption oracle, and is able to recover the secret key based on information
leaked from the decryption queries.

For example, schemes based on LWE or RLWE (such as GSW [11]) can
leak one bit of the secret key from a small number of decryption queries. These
schemes have public keys of the form (A,As+ e) with secret key s, a matrix A,
and noise e. Key recovery attacks either compute s directly, or first compute the
noise e and use this to derive s. Chenal and Tang used this approach to attack
several (R)LWE schemes, one of which was GSW [8].

Li, Galbraith and Ma (LGM, [13]) proposed a technique to circumvent such
key recovery attacks: instead of decrypting using a single secret key s, they
suggested changing secret keys for every decryption, so any information leaked
from two different decryption queries would be unrelated, which should make it
impossible for an adversary to recover any secret key. They constructed an LHE
scheme based on GSW they claimed achieved IND-CCA1 security, though they
were unable to provide a formal proof. 3

Concretely, they start with the dual version of GSW, where the public key
is of the form (A,As), but the secret key s must have small norm; security
now depends on the hardness of the inhomogeneous short integer solution (ISIS)
problem, which is also assumed to be quantum secure. Instead of having one
secret key s, they generate t distinct secret keys: s1, . . . , st. During decryption a
random linear combination of the secret keys, s′ =

∑t
i=1 λisi, is used, where the

λi’s are redrawn from a distribution for each decryption. The message space is Z2,
so a decryption query leaks, at best, one bit of s′: an unknown linear combination
of secret keys unlikely to ever be reused, since the λis that generate it are redrawn
for every decryption. The technique successfully thwarts the known adaptive key
recovery attacks on GSW and similar schemes, and Li et al. therefore argue that
their scheme achieves IND-CCA1 security, though they are unable to prove it.

In this paper we show that the LGM scheme is still susceptible to an adaptive
key recovery attack, as we are able to recover a secret key using a statistical
attack. We go even further to claim that the general approach of using a random
linear combination of secret keys for each decryption query is susceptible to
statistical adaptive key recovery attacks. To the best of our knowledge, the LGM
scheme is currently the only concrete leveled homomorphic encryption scheme
attempting to achieve IND-CCA1 security, which has proven a difficult security
notion to achieve for SHE or LHE schemes. 4

2 Preliminaries

Vectors are denoted by bold, lower case letters, and are assumed to be in column
form. Logarithms are always base 2. For a real number x, let ⌊x⌉ = ⌊x+ 1

2⌋ be the
3 The original paper was published in ProvSec 2016 [14] however, the ePrint ver-
sion [13] of the paper contains major changes. In particular, the scheme we mount
the adaptive key recovery attack on in this article is found in the ePrint version.

4 There are suggestions for generic constructions achieving IND-CCA1 security (e.g.,
[7]), but there are no concrete instantiations of these constructions.
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closest integer to x. For any integers x and q, let x mod q denote the modular
reduction centered around zero. For a vector v, let ∥v∥ be its Euclidean norm.
Unless stated otherwise, we refer to somewhat, leveled, and fully homomorphic
encryption schemes as simply homomorphic encryption schemes.

The gadget vector g is defined as the column vector (1, 2, . . . , 2l−1)T , and
the gadget matrix is defined as G = In ⊗ g ∈ Zn×nl

q (i.e., G is a matrix with g
on the diagonal), for l = ⌊log(q)⌉+ 1.

Define G−1 : Zn×n′

q → {0, 1}nl×n′
to be the operation such that for any

matrix M ∈ Zn×n′

q , we have that G ·G−1(M) = M.

IND-CCA1. An encryption scheme E = (Setup,KeyGen,Enc,Dec) achieves
the security notion indistinguishability under (non-adaptive) chosen ciphertext
attack (IND-CCA1) if any probabilistic polynomial time adversary A has at
most a 1/2 + negl chance of winning the following game against a challenger C:

– C derives the parameters using params ← Setup(1κ), draws a key pair
(pk, sk)← KeyGen(params), and sends pk and the parameters to A.

– A sends ciphertexts c to her decryption oracle ODec, which returns Dec(c).
– A sends two messages of equal length (m0,m1) to C.
– C returns c← Enc(pk,mb) to A, for a randomly chosen bit b ∈ {0, 1}.
– A outputs the bit b∗, and wins if b∗ = b.

The notion of IND-CPA security is defined in a similar way, but here A does not
have access to a decryption oracle.

An adaptive key recovery attack is stronger than an IND-CCA1 attack, as
recovering the secret key enables an adversary to decrypt all ciphertexts, not
just distinguish between the encryptions of two chosen messages.

LWE. The Learning With Errors (LWE) distribution is defined as follows: for a
fixed vector s drawn uniformly at random from Zn

q , sample a vector a uniformly
at random from Zn

q and an error e from some noise distribution χ, and output

(a, b = a · sT + e mod q). The search problem of LWE is to find s given m
samples of the LWE distribution, where s is fixed for all the samples.

ISIS. Given a modulus q, a matrix B ∈ Zn×m
q , and a vector u, the Inhomoge-

neous Short Integer Solution (ISIS) problem is to find a vector e drawn from a
distribution χ with bound B such that Be = u mod q, if such a vector exists. It
is required that m > n to prevent an adversary simply finding e using Gaussian
elimination [13,5].

2.1 Distributions

For integers a ≤ b, let [a, b] denote the set of integers x such that a ≤ x ≤ b.
A distribution over values S = [a, b] for integers a ≤ b is discrete uniform if
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all n = b − a + 1 values x ∈ S can occur with equal probability 1/n. Such a

distribution has mean a+b
2 and variance n2−1

12 .
A distribution over values R is Gaussian with mean µ and variance σ2 if it

follows the probability density function

g(x) =
1

σ
√
2π

e
(x−µ)2

2σ2 .

A random variable following a Gaussian distribution is also said to be normally
distributed. The value σ is also known as the standard deviation.

We provide, without proof, some known properties of Gaussian distributions.

Lemma 1. Let (Xi)
n
i=1 be normally distributed independent random variables

with mean µi and variance σ2
i for i ∈ {1, 2, . . . , n}. Let (ai)ni=1 be real numbers.

Then X =
∑n

i=1 aiXi is also normally distributed, with mean
∑n

i=1 aiµi and
variance

∑n
i=1 a

2
iσ

2
i .

Lemma 2. Let X be a random variable following a Gaussian distribution with
mean µ and variance σ2. Then Pr[|X − µ| ≥ tσ] = erf(t/

√
2), where erf(x) =

2√
π

∫ x

0
e−t2dt is the error function. In particular, Pr[|X − µ| ≥ 5σ] ≤ 2−20.

Theorem 1 (Central limit theorem for sample). Let X1, . . . , Xn be inde-
pendent random variables from a distribution with mean µ and variance σ2. Let
X = 1/n·

∑n
i=1 Xi. Then if n approaches infinity, X−µ converges to a Gaussian

distribution with mean 0 and variance σ2/n.

Informally, by taking a large enough sample size n, X − µ has mean ϵµ and
variance σ2/n+ ϵσ, where ϵµ, ϵσ may both be made arbitrarily small.

Discrete Gaussian Distribution. The discrete Gaussian distribution may be
viewed as a Gaussian distribution where the values are restricted to a countable
set, say Z. To preserve the desirable properties of Gaussian distributions men-
tioned above, one should not simply sample a Gaussian and round to the closest
integer. Instead, we adapt the definition of Gaussian distributions over S ⊆ Z
presented by Micciancio and Walter [16]. For the more general definition over
S ⊆ Zn, we refer to [1,13].

Definition 1. Let S be a subset of Z. For c ∈ R and a parameter σ > 0 ∈ R,
define ρσ,c(x) = e−π

(x−c)2

σ2 and ρσ,c(S) =
∑

x∈S ρσ,c(x). The discrete Gaussian
distribution over S with center c and standard deviation σis defined as

∀x ∈ S : DS,σ,c(x) =
ρσ,c(x)

ρσ,c(S)
.

We also state Theorem 7 (one dimensional leftover hash lemma) of [13], as it
is central for the derivation of parameters for the LGM scheme. Li et al. present
it as a special case of Theorem 2 of Agrawal et al. [2].
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Theorem 2. Let σ, ϵ ∈ R be such that ϵ > 0 and σ > C for some absolute
constant C (see [2]). Let t, σ′ ∈ R be such that t ≥ 10 log(8t1.5σ) and σ′ ≥
4t log(1/ϵ). Then the statistical difference between the following two distributions
is bounded by 2ϵ.

– Choose a length t vector x ∈ Zt with entries chosen from the discrete Gaus-
sian distribution on Zt with parameter σ and a length t vector z ∈ Zt with
entries chosen from a discrete Gaussian distribution on Zt with parameter
σ′ and compute the output xT z.

– Choose and output an element from the discrete Gaussian distribution on Z
with parameter σσ′.

3 The LGM Scheme

The leveled homomorphic encryption scheme LGM [13] is also known as DMGSW
since it uses a multi-key and dual version of GSW. We present it using mostly
the original notation, but denote the secret keys as si = (ri ∥−eTi )T , as opposed
to ei = (Ii ∥−tTi )T . Note also that we omit the details of homomorphic addition
and multiplication, as they are not relevant for our attack.

Setup(1κ, 1L): Let n = n(κ, L) and m = m(κ, L) be parameters n < m that
depend on the security parameter κ and number of levels L. Choose a
modulus q and bounded noise distribution χ = χ(κ, L) on Z with bound
B such that it achieves at least 2κ security against known attacks. Choose
the number of secret keys t = O(log n). Let l = ⌊log q⌋+1 andN = (t+m)l.
Output params = (n, q, χ,m, t, l, N).

KeyGen(params): Uniformly sample B ∈ Zn×m
q . For i ∈ [1, t], sample ei from

χm, set ui = Bei and set si = (ri ∥ −eTi )T , where ri is the i-th row of the

t×t identity matrix. Return the public keyA = [u1∥. . .∥ut∥B] ∈ Zn×(t+m)
q

and the secret key s = (s1, . . . , st).
Enc(A, µ ∈ Z2): Let G be the (t+m)×N gadget matrix. Sample R ← Zn×N

q

and X← χ(t+m)×N . Output C = µ ·G+ATR+X ∈ Z(t+m)×N
q .

Dec(s,C): Sample (λ1, . . . , λt) ∈ Zt
q \ {0}t until the generated s′ =

∑t
i=1 λisi

has small norm. Let i ∈ [1, t], j, I = (i − 1)l + j be integers such that
λi ̸= 0, 2j−1 ∈ (q/4, q/2] and I ∈ [1, tl]. Compute u = ⟨CI , s

′⟩ mod q,
where CI is the Ith column of the ciphertext matrix C. Finally, output
|⌊u/2j−1⌉| ∈ {0, 1}.

Correct decryption of honestly generated ciphertexts follows from the fol-
lowing observations: first, note that Asi = 0 for all i by construction, which
ensures that As′ ≡ 0 mod q. Then, due to s′ being small and the choice of I,
u = µGT s′ +XT s′ = µ2j−1 + E for some small E. It is clear that the rounded
division with 2j−1 will result in the message µ.

Li et al. mainly focus on the case where the λis are drawn uniformly at
random from {0, 1}, but they also discuss other possible distributions to sample
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from, such as a larger uniform distribution or a discrete Gaussian distribution.
We consider the security of the scheme in all these cases.

Deducing a message from a ciphertext boils down to solving the LWE-like
instance BTR+X, whilst security against (non-adaptive) key recovery attacks
is based on the ISIS problem.

The intuition behind LGM’s claimed IND-CCA1 security is that since a new
secret key is being used to decrypt every time the oracle is called, an adversary
will be unable to deduce anything meaningful about either the summands of
the key or the key itself, as she gets at most one bit of information from each
decryption query, since the message space is Z2. Li et al. argued that any infor-
mation leaked from one decryption query cannot be combined with information
from another query, since the secret keys are different every time.

3.1 Parameter derivation

The authors do not suggest a concrete parameter setting for the LGM scheme;
we therefore derive a realistic choice for parameters based on the information
and bounds provided in [13], which we also state here.

– The parameters m, n, q and the bound B must all be chosen so that the
instantiated cases of LWE and ISIS problems are hard to solve.

– The inequality tB + mB2 < q/8 must be satisfied in order to prevent an
erroneous decryption of a fresh (i.e., unevaluated) ciphertext.

– Li et al. suggest setting B = 6σ.
– If the distribution of the values of ⟨CI , s

′⟩ mod q = ⟨CI ,
∑t

i=1 λisi⟩ mod q
resembles a uniform distribution over Zq, it must be indistinguishable from
a uniform distribution over Zq. By the leftover hash lemma, we must have
t ≥ log(q) + 3κ where κ is the security parameter of the scheme for the two
distributions to be indistinguishable.

– If the distribution of the values of ⟨CI , s
′⟩ mod q = ⟨CI ,

∑t
i=1 λisi⟩ mod q

resembles a discrete Gaussian distribution over Zq, t and σ must satisfy the
bounds of Theorem 2, i.e., t ≥ 10 log(8t1.5σ) and σ ≥ C. This ensures that
statistical difference of the distribution of values of ⟨CI , s

′⟩ mod q and a
discrete Gaussian with parameter σσ′ is bounded by 2ϵ.

We stress that the distribution mentioned in the two final points arise naturally
during decryption, and that the properties of the distribution depends on CI , so
both points must be taken into account. We start from the final point to derive
σ ≤ C, for C ≥ 18Kηϵ(Z), where K > 1 is some universal constant and ηϵ(Z) ≤√
ln (ϵ/44 + 2/ϵ)/π is the smoothing parameter of the integers [2,18]. Setting

ϵ = 0.005 to provide a statistical difference of 0.01 according to Theorem 2 and
assuming K ≈ 1, we derive σ ≥ 25, so we choose σ = 25. Using the other bounds,
we get t = 400, m = 525, B = 150 and q = 94, 980, 001, which ensures a 120-bit
security against currently known attacks on LWE and ISIS [3,5]. 5

5 Seeing as we do not use n in our attack, we do not set it explicitly. We do note,
though, that it affects the hardness of the LWE instance, and is implicitly set by the
requirement m > n. We assume m ≈ n.
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4 The Key Recovery Attack

First note that any non-zero linear combination of the secret vectors can be used
to decrypt. Hence, to perform a successful key recovery attack we will only need
to recover any single si = (ri ∥ −eTi )T . We present our attack to recover the
entire secret key {s1, . . . , st}, by recovering the coefficients at a particular index
across the t secrets si, index by index. However, for the concrete experiments,
we recover just one secret key.

We first assume the suggested variant of LGM where the values λi are cho-
sen uniformly at random from Z2, and present the basic attack for this case.
Afterwards we show that the attack generalises to the cases λi ∈ [0, b − 1] and
λi ∈ [−b, b], where b is some (very) small constant. This constraint on λi is nec-
essary to ensure that ∥s′ =

∑
λisi∥ is small, as is required by the scheme. We

also discuss the security of the scheme for the case where the λis are sampled
from a discrete Gaussian distribution.

λi ∈ {0, 1}. Recall that decryption works by first choosing λ1, . . . , λt uniformly
at random from {0, 1} and then generating a one-time decryption key s′ as

s′ = λ1s1 + . . .+ λtst = (λ1, . . . , λt,

t∑
i=1

λiei,1, . . . ,

t∑
i=1

λiei,m).

Next, a column CI of the ciphertext matrix C is chosen, where I corresponds
to some index k that satisfies λk = 1. Then u = ⟨CI , s

′⟩ mod q is computed,
and the decryption oracle returns |⌊u/2j−1⌉|, for the unique (and known) value
j for which q/4 < 2j−1 ≤ q/2.

In the following we focus on recovering the first component of each ei, namely
the e1,1, e2,1, . . . , et,1 that are linearly combined in position t+1 of s′. The same
attack can be carried out to recover all the other m positions with an easy
adaptation. We construct our chosen ciphertexts from column vectors ca,i with
some integer a in position i for 1 ≤ i ≤ t, a 1 in position t+ 1 and 0 elsewhere:

ca,i = ( 0, . . . , a, . . . , 0︸ ︷︷ ︸
length t, a in pos. i

, 1, 0, . . . , 0︸ ︷︷ ︸
length m

)T .

Let Dα be the ciphertext matrix where for all i the column corresponding to
λi is cα,i, and let Ra,i be the ciphertext matrix where every column is ca,i:

Dα =


α 0 · · · 0
0 α · · · 0
0 0 · · · α
1 1 · · · 1

0(m−1)×t

 , Ra,i =


0(i−1)×t

a a · · · a
0(t−i)×t

1 1 · · · 1
0(m−1)×t

 .

Asking for the decryption of Dα will result in the following expression for
u = u(Dα), no matter which index k corresponds to the chosen column CI :
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u(Dα) = ⟨cα,i, s′⟩ = α+

t∑
i=1

λiei,1.

This is because it is a requirement that λk = 1 for the chosen index I.
The output of the decryption query will depend on the size of α, as well as
the value of

∑t
i=1 λiei,1. In the attack we will only use values of α that are

close to 2j−2. In particular, we will always have 0 < α +
∑t

i=1 λiei,1 < q, and

thus will never have to consider any reductions modulo q. If α +
∑t

i=1 λiei,1 <

2j−2 the decryption oracle will return 0, and if α +
∑t

i=1 λiei,1 ≥ 2j−2 it will

return 1. Define the value E =
∑t

i=1 λiei,1. Asking for the decryption of Dα

many times will make E a stochastic variable that takes its value according to
a discrete Gaussian distribution over the interval [Emin, Emax], where Emin and
Emax are the minimum and maximum values E can take, respectively. Denoting
the expected value of E by E(E), we get E(E) = 1/2

∑t
i=1 ei,1. Approximately

half of the time E will take a value that is smaller than E(E) and approximately
half of the time the value of E will be greater than E(E).

Similarly, asking for the decryption of Ra,i will give the following expression
for u = u(Ra,i):

u(Ra,i) = ⟨ca,i, s′⟩ = λia+ λiei,1 +
∑
k ̸=i

λkek,1.

In this case we do not know if λi is 0 or 1. If λi = 0, the result is u(Ra,i) =∑
k ̸=i λkek,1 ≪ 2j−2, and so the decryption will output 0. If λi = 1 the output

of the decryption query will depend on the size of a and the value of the sum∑
k ̸=i λkek,1. Define Ei to be Ei =

∑
k ̸=i λkek,1. In the same way as above, asking

for decryptions of Ra,i multiple times will make Ei be normally distributed over
some interval, with an expected value E(Ei) = 1/2

∑
k ̸=i ek,1.

The main idea of the attack is to ask for many decryptions of Dα and Ra,i,
and count how often the decryption oracle returns 1. Asking for sufficiently many
decryptions makes the randomness of the unknown and varying λi’s even out to
their expected values. Counting how often the decryption oracle returns 1 for
various values of α and a allows us to extract information about the size of ei,1,
and accurately estimate its value.

Attack procedure. For a more detailed explanation of how the attack works,
we start with the following definition.

Definition 2. Let h(α) be the number of times the decryption oracle returns 1
when asked for a number of decryptions of Dα, and let hi(a) be the number of
times the decryption oracle returns 1 when asked for a number of decryptions of
Ra,i.

The number of times we ask for the decryption of the same ciphertext is
denoted by T , and its exact value will be determined later. By doing a binary
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search, find the integer α0 such that h(α0) < T/2 ≤ h(α0 + 1). Next, make
an interpolated value αest that we estimate would give exactly T/2 decryptions
returning 1 if we were allowed to ask for decryptions of Dα for α ∈ R:

αest =
h(α0 + 1)− T/2

h(α0 + 1)− h(α0)
α0 +

T/2− h(α0)

h(α0 + 1)− h(α0)
(α0 + 1).

Note that the value αest is a real value, and it is our best estimate for the
equation αest +1/2

∑t
i=1 ei,1 = 2j−2 to hold. To be precise, we get the equation

αest + 1/2

t∑
i=1

ei,1 = 2j−2 + ϵ, (1)

where |ϵ| becomes small when the sample size T grows large.
Next, we repeat the process and ask for decryptions of Ra,i for i = 1, . . . , t.

Note that λi = 0 half of the time in these decryptions, which always causes the
oracle to return the value 0. So the values hi(a) will be approximately half of
h(a). This is compensated for by finding the value a0 such that 2hi(a0) < T/2 ≤
2hi(a0 + 1). Knowing that λi = 1 whenever we get a 1-decryption, we do the
same interpolation as above and find an estimate aest ∈ R such that

aest + ei,1 + 1/2
∑
k ̸=i

ek,1 = 2j−2 + ϵi, (2)

where |ϵi| is small. Subtracting (2) from (1) and rearranging we get

ei,1 = 2(αest − aest) + 2(ϵi − ϵ). (3)

Rounding the right-hand side value recovers the correct ei,1, provided that
T is large enough to make |ϵi| < 1/8 and |ϵ| < 1/8.

The attack can be repeated to recover all the ei,x for x = 2, 3, . . . ,m by
setting the 1 in ca,i to be in position t+x. One can also focus on fully recovering
only one of the vectors ei by recovering ei,x for some fixed i and x = 1, 2, . . . ,m.
Note that the recovery of an entry of any ei-vector is independent of the recovery
of any other entry. This is what enables us to recover a single ei-vector in its
entirety, which can be used as a decryption key.

For the attack to work with high probability, we need T ∈ O(t · σ2). In
particular, we have the following:

Lemma 3. If T ≥ 800 · t · σ2 then in Eq. (1) we have that Pr[|ϵ| ≥ 1/8] ≤ 2−20

and in Eq. (2) we have that Pr[|ϵi| ≥ 1/8] ≤ 2−20.

Proof. Since λi is taken from the uniform distribution over {0, 1} it has mean
1/2 and variance 1/4. Moreover, ei,1 is taken from a Gaussian distribution with
mean 0 and variance σ2. Then λi ·ei,1 is taken from a Gaussian distribution with

mean 1/2 ·
∑

ei,1 and variance 1/2 ·σ2. Hence ϵ =
∑t

i=1 λi · ei,1−E(E) is a sum
of Gaussians, which by Lemma 1 is also a Gaussian with mean 0 and variance
t/2 ·σ2. However, if we take an average of T samples of such a function, then by
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the central limit theorem for sample means we get a Gaussian X with mean 0
and variance t

2T ·σ
2. If T ≥ 800 · t ·σ2 then X has standard deviation ≤ 1/40, in

which case Pr[|ϵ| ≥ 1/8] ≤ 2−20 by Lemma 2. Similarly, Pr[|ϵi| ≥ 1/8] ≤ 2−20.
⊓⊔

Remark 1. We cannot get a smaller lower bound for T using Lemma 8.1 of [1]
since there is no guarantee that the Gaussian X in the above proof is integral.

The running time will then be O(Tm) = O(tσ2m). We have that t can only
be polynomially large in the security parameter to have efficient encryption.
Also, ∥s′∥ must be small in order for the underlying ISIS problem to be hard.
Therefore, the attack runs in polynomial time.

4.1 Generalisation of the attack

The above attack assumes that the values λi were sampled uniformly at ran-
dom from {0, 1}. We now investigate whether the attack can be prevented
by choosing the λi from a larger set. The two generalisations we consider are
λi ∈ {0, 1, . . . , b− 1}, or λi ∈ {−b, . . . , b}. As before, we can take T ∈ O(t · σ2).
We show that the attack can be generalised to work in both cases.

λi ∈ {0, 1, . . . , b − 1}. The attack can be adapted to work when the λi are
sampled uniformly at random from {0, 1, . . . , b−1}. We again focus on recovering
the coefficients ei,1, the other ei,x’s are recovered by repeating the attack with
the same adaptation as above. This also means that we may choose to recover a
single ei-vector here as well.

When the decryption oracle is given the ciphertext matrixDα, it will compute
u(Dα) = λkα+

∑t
i=1 λiei,1, where λk ̸= 0. When α ≈ 2j−2/(b−1), the decryption

oracle will return 0 whenever λk < b− 1, since λkα+
∑t

i=1 λiei,1 < 2j−2 in this
case. Only when λk = b− 1 can we get decryptions that return 1. We know that
λk ̸= 0 when decrypting Dα, so the probability that λk = b− 1 is 1/(b− 1).

As before, we scale the numbers h(α) with b − 1 to do a binary search and
find the value α0 such that (b− 1)h(α0) < T/2 ≤ (b− 1)h(α0 + 1). We then use
this to estimate the αest for which we would expect (b − 1)h(αest) = T/2 if we
were allowed to ask for decryptions of Dα where α ∈ R.

When λi ∈ {0, 1, . . . , b−1}, the expected value of
∑t

i=1 λiei,1 is
b−1
2

∑t
i=1 ei,1.

The αest we find therefore gives the equation

(b− 1)αest +
b− 1

2

t∑
i=1

ei,1 = 2j−2 + ϵ, (4)

where |ϵ| is small for large T .
In the same fashion we can ask for decryptions of Ra,i where a ≈ 2j−2/(b−1)

and count the number of 1-decryptions we get. When decrypting Ra,i we may
have λi = 0, so the probability that λi = b − 1 (which is necessary for the
decryption oracle to return 1) is 1/b. We therefore scale the values of hi(a)
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by b, and find an interpolated value for aest based on the value a0 for which
bhi(a0) < T/2 ≤ bhi(a0 + 1). This yields the equation

(b− 1)aest + (b− 1)ei,1 +
b− 1

2

t∑
k ̸=i

ek,1 = 2j−2 + ϵi, (5)

where |ϵi| is small. Subtracting (5) from (4) gives

ei,1 = 2(αest − aest +
ϵi − ϵ

b− 1
),

and rounding this value recovers the correct ei,1, provided |ϵi| < (b − 1)/8 and
|ϵ| < (b− 1)/8.

The proof of the following lemma is almost identical to Lemma 3 and is thus
omitted. In fact, the upper bound for Pr[|ϵi| ≥ (b−1)/8] and Pr[|ϵ| ≥ (b−1)/8]
will be even smaller than 2−20 for b > 2.

Lemma 4. If T ≥ 800 · t · σ2 then in Eq. (4) we have that Pr[|ϵ| ≥ 1/8] ≤ 2−20

and in Eq. (5) we have that Pr[|ϵi| ≥ 1/8] ≤ 2−20.

λ ∈ {−b, . . . , b}. We start by asking for T decryptions of Dα, where α ≈
2j−2/b, and count how often the decryption oracle returns 1. Recall that the
decryption outputs the absolute value of ⌊u/2j−1⌉, so there are now two cases
where the decryption oracle can return 1, namely when λi = b or λi = −b. There
are 2b+1 numbers in {−b, . . . , b}, but 0 cannot be chosen for λk when decrypting
Dα, so the probability of having λk equal to −b or b is 2/2b = 1/b. We scale
the numbers h(α) by a factor b to compensate for this. We then interpolate like
before to find the value αest such that we would expect h(αest) = T/2 if we
were allowed to ask for decryptions of Dαest for α ∈ R. When the set of values
that λi can take is symmetric around 0, the expected value of

∑
λiei,1 is 0. The

equation we get for αest is then simplified to

bαest = 2j−2 + ϵ, (6)

where |ϵ| is small. Note that we do not need to distinguish between the cases
λk = −b and λk = b, as this is incorporated in the probability 2/2b for having
the possibility of 1-decryption. So the αest we find covers both the cases −bα <
−2j−2 and bα > 2j−2, which both result in 1-decryptions.

When decrypting Ra,i we can have λi = 0, so the probability of λi = −b or
λi = b is then 2/(2b+ 1). We ask T times for decryptions of Ra,i, and as before
find the value aest that is the best estimate for 2b+1

2 hi(aest) = T/2. We then get
the equation

baest + bei,1 = 2j−2 + ϵi, (7)

where |ϵi| is small. Subtracting (7) from (6) gives us

ei,1 = αest − aest +
ϵi − ϵ

b
.
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Rounding this value to the nearest integer recovers the correct ei,1, provided
T is large enough to make |ϵi| < b/4 and |ϵ| < b/4.

The proof of the following lemma is almost identical to Lemma 3 and is thus
omitted. In fact, the upper bound for Pr[|ϵi| ≥ b/4] and Pr[|ϵ| ≥ b/4] will be
even smaller than 2−20.

Lemma 5. If T ≥ 800 · t · σ2 then in Eq. (6) we have that Pr[|ϵ| ≥ 1/8] ≤ 2−20

and in Eq. (7) we have that Pr[|ϵi| ≥ 1/8] ≤ 2−20.

4.2 Implementation of the attack

We have implemented the attack and verified that it works as explained. The
code for the attack was written in C, and can be found at [17]. The secret
ei-vectors were sampled using the DGS library [4].

For testing the attack we have used a Dell server with 75 CPU cores (AMD
Epyc 7451). We ran the attack twice, using the parameter sets deduced in Sec-
tion 3.1. For the first attack we used t = 190,m = 525, b = 2, and σ = 25, which
gives the sample size T = 95, 000, 000 according to Lemma 3. For the second
attack we used t = 400,m = 525, b = 2, and σ = 25, for which Lemma 3 gives
the sample size T = 200, 000, 000. In both attacks we drew the λi’s uniformly
from {0, 1} and aimed to recover all the 525 coefficients of e2

6.
In the attack on the t = 190 case, 519 of the 525 coefficients were recovered

correctly. The six coefficients that were wrong all had a difference 1 with the
correct value. In the attack on the t = 400 case, all 525 coefficients of e2 were
recovered correctly.

The run time for the first attack was approximately 12 hours, and for the
second attack approximately 48 hours, both using 75 CPU cores in parallel.
However, the code can be optimised in several ways to reduce the run time. In
particular, it is possible to abort early and not do all T decryptions when it is
clear that h(α) or hi(a) will be much greater or smaller than T/2. We did not
implement this optimisation, and computed all T decryptions every time.

Our attack does not necessarily recover a secret key flawlessly, as demon-
strated above with the t = 190 case, where 6 out of 525 estimated coefficients
were either −1 or 1 off from their true value. In these cases, we need a second
phase to recover the entire secret key. It is straightforward to check whether
such a second phase is necessary, as we may simply check if As̃i = 0, for an
estimated secret key s̃i = (ri,−ẽi)T , where ẽi is the estimate of ei we get by
running the attack. If As̃i ̸= 0, there is at least one wrong entry of ẽi, implying
ei = ẽi + ϵ, where ϵ is a non-zero vector sampled from a Gaussian distribution
with mean 0 and a very small standard deviation. Recall that the public key is
A = [u1 ∥ . . . ∥ ut ∥ B], where ui = Bei, so we can calculate Bϵ = Bẽi − ui.
Now, Bϵ may be described as n highly unbalanced instantiations of the knap-
sack problem: only approximately 1% of the coefficients of ϵ are either −1 or
1. These instantiations are much simpler to solve than the standard knapsack

6 We chose e2 arbitrarily; the attack works to recover any ei, i ∈ {1, . . . , t}.
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problem: one estimation for the time complexity for the Bϵ case is Õ(20.03n)[6],
another is Õ(20.0473n)[12], though the first algorithm does not guarantee finding
the solution. Even though the memory requirement is higher in either case, the
(potential) second phase of the attack does not contribute in any substantial
way to the cost of the key recovery attack, and ensures that the secret key is
completely recovered.

4.3 λi drawn from a non-uniform distribution

Whilst the authors of LGM mainly focus on the λi ∈ {0, 1} case, they also dis-
cuss other distributions it would be possible to sample from, e.g., other uniform
distributions, or a discrete Gaussian distribution. As shown above, sampling λi

from other uniform distributions does not prevent our attack, however, a line
of argument in the LGM paper suggests that a particular choice of a discrete
Gaussian distribution might.7

The argument is as follows: if the values of ⟨CI ,
∑t

i=1 si⟩ resemble sam-
ples from a discrete Gaussian distribution, and the standard deviation σ′ of
the λ-distribution satisfies the condition of Theorem 2, the theorem itself is
applicable to the distribution of the values of ⟨CI ,

∑t
i=1 λisi⟩. Then, seeing as

⟨CI ,
∑t

i=1 λisi⟩ is statistically close to a ‘regular’ discrete Gaussian distribution
with standard deviation σσ′ by Theorem 2, the result from the decryption oracle
cannot leak any information about the secret key.

A rough estimate for the parameters required to achieve 120-bit security in
these cases is: t = 400, σ = 25, B = 150, σ′ = 12, 231,m = 940, and q is a 40-bit
number. These parameters prevent any practical use of the system, especially
given the fact that the scheme encrypts a single bit at a time.

But that aside, could the scheme with this λ-distribution be regarded as a
theoretical construct to demonstrate that IND-CCA1 security is achievable for
homomorphic encryption schemes? We argue that the answer is no. Even if the λ-
distribution is chosen according to Theorem 2, the theorem only guarantees that
the distribution over ⟨CI ,

∑t
i=1 λisi⟩ is statistically close to a discrete Gaussian

distribution if the matrix column CI is such that the values of ⟨CI ,
∑t

i=1 si⟩
appear to be drawn from a discrete Gaussian distribution themselves.

We stress that the choice of CI is entirely up to the adversary in an IND-
CCA1 game, as she can simply submit a ciphertext matrix where every column
is CI . It is therefore feasible for her to submit a CI such that the values of
⟨CI ,

∑t
i=1 si⟩ do not appear to be drawn from a discrete Gaussian distribution,

meaning Theorem 2 does not apply. It is therefore not possible to positively
conclude that no useful information is leaked by a decryption query, even if it
merely results in an adversary obtaining a non-negligible advantage in the IND-
CCA1 game, and not a complete recovery of the secret key. Furthermore, the
adversary can adapt her choice of CI , whilst the choice of the distribution from
which the λis are drawn is fixed when the system is generated. The λ-distribution
therefore cannot be constructed to fit both the situation where CI is designed

7 See discussion in Section 7 of [13].
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to provide values of ⟨CI ,
∑t

i=1 si⟩ seemingly drawn from a discrete Gaussian
distribution and when it is designed to not provide such values.

4.4 Thwarting the attack

We discuss some possible ideas to prevent the key recovery attack described
above, and argue that they will not work.

Decryption oracle uses the same (λ1, . . . , λt) for the same ciphertext.
One can ensure that an attacker that queries the same ciphertext C (say, C = Dα

as defined previously) multiple times will have the same set of λ-values chosen
in every decryption. It will then be impossible to do the attack we presented, as
it relies on having random and independent λ-values chosen for each query. This
can be done by setting (λ1, . . . , λt) = PRF(C) for some pseudo-random function
PRF that returns a vector of small values.

To circumvent this measure, the attacker can add a few 1’s to the large part
of the top t rows of Dα or Ra,i that are defined to be 0. The number of 0’s in this
part of Dα or Ra,i is t(t− 1). So if the attacker intends to ask for T decryptions
of the same matrix, she can make the matrices unique by adding up to ρ 1’s in
all possible ways in the top t rows. The computation in the decryption will still
be approximately the same. The largest number ρ of 1’s that must be added in
this way is the smallest integer that satisfies

ρ∑
i=0

(
t(t− 1)

i

)
≥ T.

For the parameters used in our attack (t = 190, T = 200.000.000) this is satisfied
already for ρ = 2.

When adding two 1’s to Dα or Ra,i, the estimates in Eq. (1) and Eq. (2) will
be disturbed by an extra 1 in approximately (2/t) · (1/2) = 1/t of the queries
(the chosen column contains an extra 1 with probability 2/t, and the λj-value it
meets in the inner product will also be 1 with probability 1/2). This error can be
compensated for in the estimation of αest and aest by adding an extra term to the
equations in Eq. (1) and Eq. (2), but both values will be the same and anyway
cancel out in Eq. (3). Hence the attacker can overcome such a countermeasure.

Repeat multiple decryptions and return a value only if they are con-
sistent. Alternatively, one can define a new decryption function which runs the
original decryption function ℓ times and return bit b only if all ℓ evaluations
return b, and abort (i.e., return ⊥) if they are not all equal. However, note that
we now have 3 return values (0, 1,⊥) instead of 2, and can compute the expected
value of each return value for every α similar to before.

For instance, consider querying Dα to the new decryption oracle, where α is
a value such that the original decryption oracle would return 0 with probability
p, and 1 with probability 1 − p. Then the new decryption oracle aborts with
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probability 1 − (pℓ + (1 − p)ℓ), which achieves maximum at p = 1/2. Hence to
detect an optimal αest as in Eq. (1), one asks for T decryptions of Dαest

and
makes sure ≈ (1−21−ℓ)) ·T of them abort. Note that the attack strategy fails if ℓ
is sufficiently large (e.g., ℓ ∈ Θ(κ)), but a large choice of ℓ also severely restricts
the LGM scheme’s level of homomorphism, since a noisy ciphertext obtained
from a homomorphic evaluation would also fail (i.e., return ⊥ or the wrong bit)
with non-negligible probability in the new decryption function.

Ciphertext checks. A plausible strategy to thwart our attack would be to
add a ciphertext check during decryption, to ensure that the ciphertext to be
decrypted has been honestly generated. Using a ciphertext check, Loftus et
al. [15] constructed an SHE scheme that provably achieved IND-CCA1 security,
although the underlying hardness assumption was later shown to be insecure; see
discussion in [13] and the references therein. If such a ciphertext check is added
to the decryption procedure, maliciously generated ciphertexts may simply be
rejected by the decryption oracle, which will make it impossible to mount our
attack. As illustrated by the previous idea, it is far from clear how to successfully
add an efficient ciphertext check to the LGM scheme.

We argue that in general any such ciphertext check that uses the same secret
key value both to check ciphertexts are well-formed and to decrypt will naturally
give some information about the secret key. One can instead have two secret key
values as in the CCA1-secure group homomorphic encryption scheme CS-lite [9],
where the first value is used only for checking ciphertexts are well-formed, while
the second value ensures indistinguishability even if the first value is revealed.
We leave as an open problem how such a method can work with LGM or other
homomorphic encryption schemes.

5 Conclusion

We have shown that the LGM scheme is susceptible to an adaptive key recov-
ery attack, disproving the authors’ claim that the scheme achieves IND-CCA1
security. The attack is practical for λi’s drawn uniformly from {0, 1}, and is still
practical and efficient for λi’s drawn uniformly from a larger set of integers. We
have also argued that the scheme is not secure even if the λi’s are drawn from a
discrete Gaussian distribution. In short, none of the distributions suggested by
Li et al. ensures the IND-CCA1 security of the LGM scheme.

A plausible strategy to thwart our attack would be to add a ciphertext check
during decryption, but we do not know if the strategy can be applied to the
LGM scheme, and we know of no other strategies that may be applicable to the
scheme to achieve IND-CCA1 security. We therefore do not know how to tweak
the LGM scheme to be resistant to our proposed statistical attack.
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