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Abstract: In a one-flavor NJL model with a finite temperature, chemical potential, and external
magnetic field, the self-energy of the quark propagator contains more condensates besides the
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and spin magnetic moment.
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1. Introduction

The study of QCD phase transition is important in theoretical physics and high-energy
physics [1–7]. It is believed that in collisions of two particles with high energy, QCD
matters will be produced in which the behaviors of the particles are dominated by the
strong interaction. At the first moment of collision, these newborn particles form quark-
gluon plasma (QGP) and, as time elapses, this evolves into hadrons. If the collisions of
charged particles are noncentral, the produced QCD matter will be accompanied by an
extremely strong magnetic field [8]. This field could highly affect QCD matter; therefore,
studying the properties of QCD matter with magnetic fields is meaningful and important.
So far, an interesting effect that comes from the magnetic field is known as ‘Magnetic
Catalysis’ [9–15], it shows that the quark condensate, which is widely accepted as the
order parameter of the phase transition between QGP and hadrons, are strengthened by
magnetic field. Following these works, the lattice QCD has shown a new effect where
at some temperatures, on the contrary, a strong magnetic field weakens the condensate,
which is called ‘Inverse Magnetic Catalysis’ [16].

For qualitatively studying the phase transition of QCD matters, the NJL model is a use-
ful and convenient tool because one can easily describe the mechanism of chiral symmetry
broken and derive the dynamical mass [1,2,17–25]. To utilize this model, we usually apply
mean field approximation to tackle the four-fermion interaction terms in the Lagrangian—
for example, (ψ̄ψ)2 → 2〈ψ̄ψ〉(ψ̄ψ)−〈ψ̄ψ〉2, (iψ̄γ5~τψ)2 → 2〈iψ̄γ5~τψ〉(iψ̄γ5~τψ)−〈iψ̄γ5~τψ〉2.
It is believed that this approximation is equivalent to the Dyson–Schwinger equations with
contact interaction treatment from QCD, and the gap equation can be written as

Σ
G

∫
d4x = i

∫
d4x 〈x|γµŜγµ|x〉,

Ŝ−1 = /p −m− Σ, Σ = σ + iγ5~π ·~τ, σ = − G
Nc
〈ψ̄ψ〉, ~π = − G

Nc
〈iψ̄γ5~τψ〉.

(1)
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In the above equation, Σ represents the self-energy of quark propagator and the dynam-
ical mass σ contained in Σ is generated by a nonperturbative effect, which will dynamically
cause the chiral symmetry to break in specific situations. It is clear that in Equation (1),
~π = 0 leads to Σ = σ; therefore, in most papers, the dynamical mass is studied directly
rather than discussing a general form of the self-energy. However, in M. Asakawa and
K. Yazaki’s work [26], the authors firstly pointed out that the self-energy does not simply
equal σ when chemical potential is not zero, and the actual self-energy should be written
as Σ = σ + aγ0. One can also refer to Klevansky’s work [27] for a similar discussion.

We notice in [28] that the authors had considered more four-fermion interaction terms
in the NJL model with the presence of magnetic field. In this article, we will rigorously
prove that the existence of other four-fermion interaction terms is a necessary consequent
of the self-consistency of the gap equations when the chemical potential and external
magnetic field are not zero. Different from [28], we have included chemical potential and
considered the effect of all Landau levels rather than the lowest Landau level in this paper.

In this paper, we propose a self-consistent analysis to study the self-energy in a
one-flavor NJL model. Through this analysis, we prove that the self-energy has more
components than Asakawa’s assumption with the presence of chemical potential and
external magnetic field. The purpose of this article is not to study the dynamical mass and
phase transition but the properties of the other components in the self-energy under the
influence of temperature, chemical potential, and external magnetic field. The structure of
this article is as follows: in Section 2, we establish the Lagrangian with finite temperature,
chemical potential, and external magnetic field, then use the Fierz identity, mean-field
approximation, and self-consistent analysis to identify the self-energy and derive the gap
equations; in Section 3, we solve the gap equations, respectively, in the chiral symmetry
broken phase and chiral symmetry restored phase; in Section 4, we present the conclusion.

It is worth mentioning that the dynamical properties of the one-flavor NJL model and
one-flavor QCD could be different. In one-flavor QCD, the quantum anomalies will prevent
the existence of chiral symmetry [29], then there will be no phase transition between the
chiral symmetry phase and chiral breaking phase. However, this is not the case we consider
in this paper; here, the one-flavor NJL model cannot be treated as a simplified model of
one-flavor QCD, it should be seen as a simplified model of the two-flavor NJL model
instead. We will come back to this problem in the conclusion.

2. The Gap Equations
2.1. NJL Model and Mean-Field Approximation

At finite temperature, one can write the Lagrangian of the one-flavor NJL model with
quarks with nonzero chemical potential and external magnetic field as

L = ψ̄ /̂Dψ + G(ψ̄ψ)2 + µψ̄γ0ψ,

/̂D = /̂p + qe /A, p̂0 = − ∂
∂τ , p̂i = i∂i, (A0, A1, A2, A3) = (0, B

2 x2,− B
2 x1, 0).

(2)

where q is an arbitrary electric charge number. Generally in QCD matter, q = 2
3 for the up

quark and q = − 1
3 for the down quark. Nevertheless, we do not assign any value to q until

the numerical calculation in this paper.
To extract the dynamical mass from the Lagragian of Equation (2), we need to apply

mean-field approximation to the four-fermion interaction term (ψ̄ψ)2. However, according
to Asakawa’s work [26], a nonzero dynamical mass (〈ψ̄ψ〉 6= 0), with the presence of
nonzero chemical potential, will induce a U(1) charge condensate (〈ψ̄γ0ψ〉 6= 0). Further-
more, we notice that, with chemical potential and external magnetic field, the dynamical
mass can induce more condensates besides 〈ψ̄γ0ψ〉. To introduce these condensates, firstly,
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we need to transform the four-fermion interaction term to its Fierz identity in the La-
grangian [27], which is

F [(ψ̄ψ)2] =
1

4Nc
[(ψ̄ψ)2 + (ψ̄γµψ)2 − (iψ̄γ5ψ)2 − (ψ̄γ5γµψ)2 +

1
2
(ψ̄σµνψ)2]. (3)

Strictly speaking, the fermion field in the Fierz identity should be a tensor product of
spinor space, flavor space (if it is a two-flavor NJL model), and color space; therefore, the
crossing matrices, referring to Equations (B6) and (B7) in [27], must have Pauli matrices
(for two-flavor NJL) and Gell-Mann matrices (for color space) beside the Dirac matrices
in Equation (3). Except Dirac matrices, the other two kinds of matrices are neglected in
our paper for simplicity, because, according to our minimum condensates ansatz in the
following discussion, their existence does not cause new condensates; further, through
the mean-field approximation, the four-fermion terms that couple with nonidentity Pauli
matrices and Gell-Mann matrices are zero. For more discussions on the Fierz identity, one
can also refer to [30,31], in which the relation between strong interaction and four-fermion
interaction terms is also discussed.

It is generally believed that (ψ̄ψ)2 and F [(ψ̄ψ)2] are dynamically equivalent, but the
mean-field approximation could break such equivalence. Applying the approximation to
(ψ̄ψ)2 gives only the vacuum condensate, while for F [(ψ̄ψ)2], according to Equation (3), it
could give 〈ψ̄Γψ〉 (Γ ∈ {I, γµ, γ5, γ5γµ, σµν})—16 kinds of possible condensates. If chemical
potential is nonzero, in the case of F [(ψ̄ψ)2], one can prove that 〈ψ̄γ0ψ〉 6= 0 as long as
〈ψ̄ψ〉 6= 0; this is where the U(1) charge condensate comes from. In this paper, we apply
the mean-field approximation to F [(ψ̄ψ)2] instead of (ψ̄ψ)2 to find more condensates.

The general equation of the mean-field approximation to any four-fermion term
(ψ̄Γψ)2 is

(ψ̄Γψ)2 = (ψ̄Γψ− 〈ψ̄Γψ〉)2 + 2〈ψ̄Γψ〉(ψ̄Γψ)− 〈ψ̄Γψ〉2 ≈ 2〈ψ̄Γψ〉(ψ̄Γψ)− 〈ψ̄Γψ〉2. (4)

In the Lagrangian, (ψ̄Γψ)2 normally multiplies a coupling constant—g, for example—thus,
the mean-field is defined as ξ = −2g〈ψ̄Γψ〉, and Equation (4) is equivalent to

g(ψ̄Γψ)2 ≈ −ξψ̄Γψ− ξ2

4g
. (5)

Applying the approximation to each term in F [(ψ̄ψ)2], there are

GF [(ψ̄ψ)2] ≈ −ψ̄Σ⊗ 1cψ + LM,

Σ = σ + aγ0 + bγ5γ3 + cσ12, LM = −Nc
G (σ2 + a2 − b2 + c2),

(6)

where σ, a, b, and c are mean-fields, defined as

σ = − G
2Nc
〈ψ̄ψ〉, a = − G

2Nc
〈ψ̄γ0ψ〉, b =

G
2Nc
〈ψ̄γ5γ3ψ〉, c = − G

2Nc
〈ψ̄σ12ψ〉. (7)

Accordingly, the Lagrangian evolves into

L′ = ψ̄( /̂D− Σ + µγ0)ψ + LM. (8)

Someone might get confused by the exposition above—as to why in Equation (6) there
are only 4 kinds of condensates (or mean-fields) rather than 16 kinds of them. To answer
the question, we need a proof and an ansatz.
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Firstly, we assume in the chiral symmetry broken phase (broken phase for short)
that there is only one kind of condensate, 〈ψ̄Γψ〉 6= 0, if and only if Γ = I4. Then, the
propagator is

Ŝ0 =
1

/̂D− σ + µγ0
. (9)

As 〈ψ̄Γψ〉 ∝ Tr(Ŝ0Γ), the other condensates can be deduced from Ŝ0. One can complete the
deduction through the method in [20] and the assistance of symbolic computation; then, a
qualitative result is

〈ψ̄γ0ψ〉, 〈ψ̄γ5γ3ψ〉, 〈ψ̄σ12ψ〉 ∝ σ, 〈ψ̄Γψ〉 = 0 for Γ 6= I4, γ0, γ5γ3, σ12. (10)

The operator ‘Tr’ means taking trace on the Hilbert space of the quark wave function,
including the coordinate/momentum space, spinor space, and color space.

The result of Equation (10) suggests that the assumption 〈ψ̄Γψ〉 6= 0 if and only if
Γ = I4, in the broken phase, is not self-consistent. In order to keep the self-consistency, we
have to assume 〈ψ̄ψ〉, 〈ψ̄γ0ψ〉, 〈ψ̄γ5γ3ψ〉, 〈ψ̄σ12ψ〉 6= 0 at least, which leads to Equations (6)
and (7).

Rigorously speaking, the proof above is not complete, as the self-energy Σ in Equation (6)
is minimally self-consistent only. A complete proof—which is complex and has hard to
deduce computable gap equations—should assume Σ has all 16 kinds of condensates,
and then prove that some of them equal 0. To avoid such complexity, we propose an ansatz
that the minimally self-consistent Σ is adequate for the quark propagator in our case.

2.2. The Gap Equations

So far, we have enunciated the mean-field approximation and probable condensates;
the next step is to obtain the gap equations from the Lagrangian L′. Firstly, the partition
function of L′ is

Z =
∫

Dψ̄Dψ exp
(∫ β

0
dτ
∫

d~xL′
)
= e−βJ ,

J = −LM

∫
d~x + TNc Tr ln Ŝ, Ŝ =

1
/̂D− Σ + µγ0

.

(11)

For a thermal equilibrium system, its grand potential J should be at a local minimum
with fixed temperature, chemical potential, and external magnetic field, and the equations
to identify the minimum are

δJ
δσ

= 0,
δJ
δa

= 0,
δJ
δb

= 0,
δJ
δc

= 0. (12)

These are the elementary gap equations. As σ, a, b are constant fields, the variations in
Equation (12) are equivalent to partial differentials; then, the gap equations can be written
more explicitly as

2
G

σ
∫

d~x = −T tr
+∞

∑
m=−∞

∫
〈m,~x|Ŝ|m,~x〉d~x,

2
G

a
∫

d~x = −T tr
+∞

∑
m=−∞

∫
〈m,~x|Ŝγ0|m,~x〉d~x,

2
G

b
∫

d~x = T tr
+∞

∑
m=−∞

∫
〈m,~x|Ŝγ5γ3|m,~x〉d~x,

2
G

c
∫

d~x = −T tr
+∞

∑
m=−∞

∫
〈m,~x|Ŝσ12|m,~x〉d~x,

(13)

where the operator ‘tr’ means taking the trace of the gamma matrices only, and ‘m’ is the
quantum number of the eigenstate of ∂

∂τ at finite temperature T. The state |m,~x〉 has the
properties of

〈l,~y|m,~x〉 = δlmδ(~x−~y),
∂

∂τ
|m,~x〉 = iλm|m,~x〉, λm = (2m + 1)πT, l, m ∈ Z. (14)
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To proceed, we have to tackle ∑
m

∫
〈m,~x|Ŝ|m,~x〉d~x, in which Ŝ is rewritten as

Ŝ =
1

(/̂D′ + Σ̃)(/̂D′ − Σ′)
(/̂D′ + Σ̃),

/̂D′ = p̂′0γ0 + D̂iγ
i, p̂′0 = p̂0 + µr, µr = µ− a,

Σ′ = σ + bγ5γ3 + cσ12, Σ̃ = σ + bγ5γ3 − cσ12.

(15)

Clearly, the U(1) charge condensate 〈ψ̄γ0ψ〉 (or a) serves as a renormalization parameter
to µ; therefore, µr = µ− a is the chemical potential of real physical significance and will be
treated as a free parameter in the following discussion.

According to Equation (15), the fermion propagator is

Ŝ =
1

p̂′20 − D̂2
1 − D̂2

2 − p̂2
3 − σ2 − b2 + c2 − 2bp̂3γ5 + 2cp̂3γ5γ0 + 2(cp̂′0 − σb)γ5γ3 − qeBσ12

(/̂D′ + Σ̃). (16)

Referring to our previous work [20], by replacing |m,~x〉 with another set of complete
states |m, p3; n, α〉, one can quantize (D̂2

1 + D̂2
2) in the denominator of Ŝ to the Landau

levels (2n + 1)|q|eB (n = 0, 1, 2, . . .). A simple introduction of |m, p3; n, α〉 is shown in
Appendix A. From the properties of |m, p3; n, α〉, one can prove that

∑
m

∫
〈m,~x|Ŝ|m,~x〉d~x = ∑

m

+∞

∑
n=0

∫
dp3dα 〈m, p3; n, α|Ŝ|m, p3; n, α〉 = |q|eB

2π ∑
m

∫
Seff

dp3

2π

∫
d~x,

Seff = f1 I4 + f2γ0 + f3γ5γ3 + f4σ12.

(17)

f1, f2, f3, and f4 are functions of (m, p3, eB, T, µr, σ, b, c)—their explicit expressions are
shown in Appendix B. Now, the gap equations are

σ

2G
= −|q|eB

2π
T ∑

m

∫
f1

dp3

2π
,

a
2G

= −|q|eB
2π

T ∑
m

∫
f2

dp3

2π
,

b
2G

=
|q|eB
2π

T ∑
m

∫
f3

dp3

2π
,

c
2G

= −|q|eB
2π

T ∑
m

∫
f4

dp3

2π
.

(18)

For succinctness of the following formulae, we take ∑
m

as
+∞
∑

m=−∞
, and ∑

n
as

+∞
∑

n=0
.

From Appendix B, we know f1, f2, f3, and f4 are functions of (bq, cq) rather than (b, c),
and the gap equations of (b, c) can be rewritten as

bq

2G
=
|q|eB
2π

T ∑
m

∫
f ′3

dp3

2π
,

cq

2G
= −|q|eB

2π
T ∑

m

∫
f ′4

dp3

2π
, (19)

where f ′3 and f ′4 are also functions of (bq, cq). Clearly, if we can solve the gap equations
of (σ, a, bq, cq), the results are independent of the sign of q, which implies that in the
broken phase, the quarks with opposite electric charges have opposite condensates (b, c).
The physical significance of condensates (b, c) will be discussed in the last section.

Normally, if one wants to solve the gap equations in Equation (18), one has to use a
numerical method to solve the 4 equations simultaneously. However, in previous discus-
sions, we have mentioned that a is a renormalization parameter to µ, and we tend to treat
µr as a free variable; thus, the equation about a can be isolated from the gap equations. One
can solve the equations of (σ, b, c) first, then use the results to determine a afterwards.



Symmetry 2021, 13, 1410 6 of 16

2.3. The Coupling Constant and Cut-Off Parameter

In the limit of zero chemical potential, a, b, and c equal 0, the gap equations degrade
into the equation about σ,

σ

2G
= −|q|eB

4π
σT ∑

m

∫
dp3 ∑

n

2− δ0n

(−iλm)2 −ω2
n

, ωn =
√

σ2 + 2n|q|eB + p2
3. (20)

To proceed, we employ the formula below to transform the sum of m into the integral of
p0 [32],

2πiT ∑
m

f (p0 = −iλm + µ) =−
∫ i∞+µ+ε

−i∞+µ+ε

f (p0)

eβ(p0−µ) + 1
dp0 −

∫ i∞

−i∞

f (p0)

eβ(µ−p0) + 1
dp0

+
∮

C

f (p0)

eβ(p0−µ) + 1
dp0 +

∫ i∞

−i∞
f (p0)dp0,

(21)

where the ‘C’ in the contour integral represents a specific contour in the complex plane of
p0, shown in Figure 1; then, Equation (20) becomes

Re(p0)

Im(p0)

O µ

µ + i∞i∞

−i∞ µ− i∞

Figure 1. The contour C in the complex plane of p0.

σ

2G
=
|q|eB
16π3 σ

∫
dp0dp3 ∑

n

2− δ0n

p2
0 + ω2

n
− |q|eB

8π2 σ ∑
n
(2− δ0n)

∫
dp3

1
ωn

1
eβωn + 1

=
|q|eB
16π2 σ

∫ +∞

0

e−σ2s

s
coth(|q|eBs)ds− |q|eB

8π2 σ ∑
n
(2− δ0n)

∫
dp3

1
ωn

1
eβωn + 1

.

(22)

In Equation (22), the integral of the proper time ‘s’ is divergent; therefore, we need a cut-off
to the lower limit of the integral of ‘s’, which is∫ +∞

0
ds→

∫ +∞

1/Λ2
ds. (23)

In order to identify the values of the coupling constant G and the cut-off parameter
Λ, we need a gap equation at zero temperature and zero magnetic field, which can be
simplified from Equation (22),

8π2

G
=
∫ +∞

1/Λ2

e−σ2s

s2 ds, (24)

As a reminder, this is the gap equation of one-flavor quark.
We already know that in the two-flavor NJL model [27,33], with g as the coupling

constant of the four-fermion interaction term, the gap equation is

π2

Ncg
=
∫ +∞

1/Λ′2

e−σ′2s

s2 ds, g ≈ 3.20388GeV−2, Λ′ ≈ 1.08631GeV, (25)
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In this equation, the dynamical mass σ′ is

σ′ = −2g〈ψ̄ψ〉 = −2g(〈ūu〉+ 〈d̄d〉) ≈ −4g〈ūu〉, (26)

while, in this article, the dynamical mass σ is

σ = − G
2Nc
〈ψ̄ψ〉 = − G

2Nc
〈ūu〉. (27)

Both σ and σ′ are dynamical masses of up quark and down quark; thus, there should
be σ = σ′. Then, from Equations (26) and (27), one can derive G = 8Ncg. The cut-off
parameters Λ and Λ′ are both determined by the pion decay constant; therefore, Λ = Λ′.
In conclusion, the values of the coupling constant and the cut-off parameter in one-flavor
gap equation, Equation (24), are

G ≈ 76.89312GeV−2, Λ ≈ 1.08631GeV. (28)

3. The Solutions of the Gap Equations
3.1. The Approximate Solutions in Chiral Symmetry Broken Phase

In the broken phase, σ, a, b, c 6= 0, theoretically, one needs to solve the gap equations
of (σ, b, c) in Equation (18), but the divergent parts in the integrals of the ‘ f ’s (or f1, f2, f3,
and f4) cannot be separated out simply and properly such as in Equation (22)—therefore, a
direct numerical iteration method is not available. Through some numerical experiments,
we notice that in the solutions of the gap equations, (b, c) are much smaller than σ, one
can set b, c = 0 in the ‘ f ’s of Equation (18) for approximate solutions, and then the gap
equations are simplified to

8π2

G
σ =|q|eBσ

∫ +∞

1/Λ2

e−σ2s

s
coth(|q|eBs)ds

− |q|eBσ ∑
n
(2− δ0n)

∫
dp3

1
ωn

[
1

eβ(ωn−µr) + 1
+

1
eβ(ωn+µr) + 1

]
,

8π2

G
b =qeB

∫ [ 1
eβ(ω0−µr) + 1

− 1
eβ(ω0+µr) + 1

]
dp3,

8π2

G
c =− qeBσ

∫ +∞

1/Λ2

e−σ2s

s
ds + qeBσ

∫ 1
ω0

[
1

eβ(ω0−µr) + 1
+

1
eβ(ω0+µr) + 1

]
dp3.

(29)

To derive the above equations, we employed the formula of Equation (21). One should
notice that in the simplified gap equations of (b, c), we write q instead of |q| since q =
|q| sgn(q), which has explicitly shown that the directions of mean-fields (b, c) depend on
the sign of the electric number. Incidentally, if one uses Ŝ0 of Equation (9) to deduce 〈ψ̄ψ〉,
〈ψ̄γ5γ3ψ〉, and 〈ψ̄σ12ψ〉, the derived equations are equivalent to Equation (29).

By setting q = 1, the numerical results of Equation (29) are shown in Figures 2–7.
One should notice that in Figures 6 and 7, we have drawn (−c)-µr relation instead of
c-µr relation for the comparison with σ-µr relation. In these figures, the results of chiral
symmetry restored phase (restored phase for short) are also included, in which σ, c = 0
and b is proportional to µr; these results will be discussed in the next subsection. It is clear
in Figures 2, 3, 6 and 7 that when µr passes a specific point (the phase transition point),
σ and c have a transition from a nonzero value to zero, which indicates it is a first-order
phase transition, while in Figures 4 and 5, the mean-field b also has a transition when µr
passes the same point, but the gap between two phases is ambiguous.
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Figure 2. In these four subfigures, we fix temperature at 0.01, 0.05, 0.1, and 0.15 GeV separately
and plot the σ-µr relations in each subfigure with different magnitudes of the external magnetic field.

Figure 3. In these four subfigures, we fix the external magnetic field at 0.01, 0.1, 0.2, and 0.25 GeV2

separately and plot the σ-µr relations in each subfigure with different temperatures.
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Figure 4. In these four subfigures, we fix temperature at 0.01, 0.05, 0.1, and 0.15 GeV separately
and plot the b-µr relations in each subfigure with different magnitudes of the external magnetic field.
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Figure 5. In these four subfigures, we fix external magnetic field at 0.01, 0.1, 0.2, and 0.25 GeV2

separately and plot the b-µr relations in each subfigure with different temperatures.
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Figure 6. In these four subfigures, we fix temperature at 0.01, 0.05, 0.1, and 0.15 GeV separately
and plot the (−c)-µr relations in each subfigure with different magnitudes of the external mag-
netic field.
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Figure 7. In these four subfigures, we fix external magnetic field at 0.01, 0.1, 0.2, and 0.25 GeV2

separately and plot the (−c)-µr relations in each subfigure with different temperatures.
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3.2. The Solutions in Chiral Symmetry Restored Phase

In the chiral symmetry restored phase, σ = 0, the expression of f1 is

f1 = −
p′20 − p2

3 + b2 − c2

F0(p′0, p3, |q|eB, 0, b, c)
cq

2
−

+∞

∑
n=0

2− δ0n

2
2p′0bc

Fn(p′0, p3, |q|eB, 0, b, c)
, (30)

As f1 belongs to the gap equation of σ, which equals 0 at present, we need to prove that
∑m
∫

f1 dp3 = 0. Through analyzing Equation (30), one can conclude that c = 0 ensures
∑m
∫

f1 dp3 = 0 since f1 is proportional to c. We also notice that the expression of f4,

f4 =
p′0bc

F0(p′0, p3, |q|eB, 0, b, c)
+ c

+∞

∑
n=0

2− δ0n

2
p′20 − p2

3 + 2n|q|eB + b2 − c2

Fn(p′0, p3, |q|eB, 0, b, c)
, (31)

is proportional to c as well, and c ∝ ∑m
∫

f4dp3; therefore, c = 0 is one of the valid solutions.
However, how can we be sure that c = 0 is the only valid solution in this case? The reason
is as below, assuming c 6= 0, the mean-fields (b, c), which are 2 variables, must adapt to
3 gap equations of (σ, b, c), and clearly, the 3 equations are independent of each other,
one cannot solve the equations when the amount of independent equations outnumbers
the amount of their variables, while in the case of c = 0, the equations of (σ, c) become
identities, leaving 1 equation with 1 variable (the equation of b); thus, c = 0 is the only
valid solution in the restored phase.

Since we have σ, c = 0, the only gap equation left is

b
2G

=
|q|eB
2π

T ∑
m

∫
f3

dp3

2π
=

qeBµr

8π2 . (32)

Clearly, in the chiral restored phase, the condensate 〈ψ̄γ5γ3ψ〉, independent of temperature,
is proportional to the strength of magnetic field and chemical potential; the detailed
discussion of this result will be argued in the last section.

4. Conclusions and Remarks

In this paper, we have studied the self-energy of NJL model in the presence of tem-
perature, chemical potential, and external magnetic field, it turns out that when chemical
potential is nonzero, the self-energy no longer equals dynamical mass. In order to establish
the correct gap equations in the frame of the NJL model, we employ the Fierz identity to
introduce more condensates; then, by a proof and an ansatz, we reduce the condensates to
(σ, a, b, c).

In the self-energy (6), σ, the vacuum condensate, is the dynamical mass, which is a
positive real number depending on temperature, chemical potential, and external magnetic
field in the broken phase, while in the restored phase, it is constantly zero. The properties
of σ in different situations and taking it as the order parameter of the phase transition have
been widely studied for decades, there is no new result that can be added to the properties
of σ from this paper. The role of σ in our case is a benchmark, which can be used to verify
that after introducing other condensates, the qualitative properties of the phase transition
do not deviate from the classical results. Besides the vacuum condensate, the mean-field
a, or 〈ψ̄γ0ψ〉, is thought of as a U(1) charge condensate, which is absorbed by the bare
chemical potential µ of the original Lagrangian Equation (2). As a result, µr = µ− a is
the real chemical potential of physical significance in the dynamical process and µr is to
µ as the running coupling constant is to bare coupling constant. In this article, we do not
study a since µr is treated as a free variable, and, in the absence of bare chemical potential,
the mean-field a is constantly zero.

The mean-field b, or 〈ψ̄γ5γ3ψ〉, represents a condensate of chiral current; it is induced
by chemical potential and external magnetic field simultaneously. Generally, the chiral
current has three directions, but due to the external magnetic field, the SO(3) symmetry of
space is broken, and the induced chiral current is parallel or antiparallel to the direction of
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magnetic field. Unlike the dynamical mass, the mean-field b is a nonzero quantity in chiral
broken and restored phase as long as µ and eB are not zero. In the chiral broken phase,
the chiral current is a small quantity compared with σ, while in the chiral restored phase,
it is proportional to µr and qeB; actually, this is the chiral separation effect (CSE for short)
proposed by M. Metlitski and A. Zhitnitsky [34] and others’ works [35–38]. Although chiral
current has physical significance, in the chiral broken phase, its magnitude is too small
to have an obvious effect, but in the restored phase, due to CSE, stronger magnetic field
or higher chemical potential (denser QCD matter) may cause observable effects. It is
worth noting that CSE is discovered through chiral anomaly in the work of Metlitski and
Zhitnitsky, while in our case, CSE is a result of self-consistence of the condensates—there
must be some mathematical correlation behind the coincidence. Besides CSE, in a series
of Tatsumi’s works [39–41], the authors used the chiral current to study ferromagnetism
in nuclear matter and QCD matter, it is the parameter to describe ‘spin polarization’ in
their articles. Different from our case, their works do not involve external magnetic fields;
therefore, the chiral current only exists in color super conductivity. The chiral current
does not present in the work of [28]; instead, it is ψ̄γ0γ3ψ in their work. Clearly, the self-
consistent analysis does not prevent ψ̄γ0γ3ψ appearing in the Lagrangian, but one should
be cautious that ψ̄γ0γ3ψ could stimulate other condensates (or four-fermion interaction
terms) in the Lagrangian due to the self-consistency of the gap equations.

For the mean-field c, or 〈ψ̄σ12ψ〉, we name it ‘spin current’. Like the chiral current, it
is also induced by chemical potential and external magnetic field. Due to the magnetic
field, the spin current is parallel or antiparallel to the direction of magnetic field as the
chiral current does; therefore, the current has no other directions such as 〈ψ̄σ23ψ〉 and
〈ψ̄σ31ψ〉. Actually, ‘spin current’ is not an accurate description to the mean-field c since
(ψ̄σ12ψ) is not exactly the angular momentum of spin. Through Noether’s theorem, one can
easily find out that for the Dirac field, its spin angular momentum is contained in the term
of (ψ̄γ0σ12ψ) rather than (ψ̄σ12ψ). The physical significance of (ψ̄σ12ψ) is elucidated in
Sakurai’s textbook [42]. It is proved that the vector current, jµ = eψ̄γµψ, can be decomposed

into j(1)µ and j(2)µ when the electron couples to a classical vector potential Aµ (Gordon

decomposition), and j(2)µ couples to Aµ; j(2)µ Aµ = e
2mc (

1
2 Fµνψ̄σµνψ) can account for the spin

magnetic moment interaction with the gyromagnetic ratio g = 2 in the nonrelativistic
limit. It is clear that magnetic moment is inversely proportional to the mass of fermion;
therefore, one cannot define the magnetic moment for a massless fermion. This statement
is consistent with the property of the spin current in this article, because c = 0 in the
restored phase. The spin current is a small quantity compared with σ in the broken phase,
but

∫
V c d~x relates to the magnetic moment of the whole system, which could give rise to

considerable and observable effects in the experiments.
In the introduction, we mentioned that the one-flavor QCD is different from the one-

flavor NJL model due to quantum anomalies; therefore, in one-flavor QCD, there should
be no chiral symmetry phase. As a consequence, if one wishes to study the properties of
QCD matters in one-flavor by using the one-flavor NJL model, the nonexistence of chiral
symmetry should be taken into account. However, in this paper, we do not intend to
study QCD matters in one-flavor; the employment of the one-flavor NJL model here is
for simplicity, it can be treated as a degraded version of two-flavor NJL and used to keep
the gap equations simple. Through mean-field approximation, the mechanisms of chiral
symmetry breaking of one-flavor NJL and two-flavor NJL are the same. Further, as one can
notice, we define q as an arbitrary electric charge number at the beginning, with which one
can easily extend the formulae to the two-flavor NJL model. The extension is not necessary,
since from one-flavor to two-flavor, the qualitative results are the same except for some
quantitative differences. Nonetheless, if one wishes to study two-flavor NJL with external
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magnetic field, the gap equation of quark condensate, by consulting Equation (18), can be
written as

σ

2G
= − ∑

f=u,d

|q f |eB
2π

T ∑
m

∫
f1(|q f |eB)

dp3

2π
, qu =

2
3

, qd = −1
3

. (33)

The main purpose of this work is to prove the existence of new condensates besides
the quark condensate; therefore, other effects such as the ‘Inverse Magnetic Catalysis’ are
not involved. In order to reproduce ‘Inverse Magnetic Catalysis’ with the NJL model, one
has to consider the quantum fluctuation effect to the coupling constant, which requires
that G is a function of eB [43]. Although the new condensates, Equation (10), could bring
new observable effects, they do not help to induce the ‘Inverse Magnetic Catalysis’ without
considering the magnetic field dependence of G, because in the mean-field approxima-
tion, the modifications of the quark condensate caused by these new condensates are
negligible. However, magnetic field dependence of the coupling constant can also be
considered in these new condensates and gap equations Equation (18) (or Equation (29)) in
following works.
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Appendix A. The Properties of |m, p3; n, α〉
|m, p3; n, α〉 is the eigenstate of p̂0, p̂3, and (D̂2

1 + D̂2
2),

|m, p3; n, a〉 = |m〉 ⊗ |n, α〉 ⊗ |p3〉,

p̂0|p0〉 = −iλm|m〉, p̂3|p3〉 = p3|p3〉, (D̂2
1 + D̂2

2)|n, α〉 = (2n + 1)|q|eB|n, α〉.
(A1)

In order to express |n, α〉 in an analytic form, we define a state in the subspace spanned
by |x1〉 ⊗ |x2〉,

|D1, p〉 =
√

2
|q|eB

|p〉 ⊗ |X〉, X =
2

qeB
(p + D1)

D̂1|D1, p〉 = D1|D1, p〉, p̂1|p〉 = −p|p〉, x̂2|X〉 = −
2

qeB
(p + D1)|X〉.

(A2)

Clearly, |D1, p〉 is normalized and complete,

〈D1, p|D′1, p′〉 = δ(D1 − D′1)δ(p− p′),
∫

dD1dp |D1, p〉〈D1, p| = I. (A3)

In the |D1, p〉 representation, |n, α〉 is expressed as

〈D1, p|n, α〉 = cneia(p+ D1
2 )hn(

√
2
|q|eB

D1), cn =

(
1

n!2π
√
|q|eBπ

) 1
2

, (A4)
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where hn(z) is the solution of Weber differential equation; it is an even-function of z, and
its properties of completeness and orthogonality are

∫
hn(z)hm(z)dz = n!

√
2πδnm,

+∞

∑
n=0

1
n!
√

2π
hn(x)hn(y) = δ(x− y), (A5)

Through these properties, one can prove that |n, α〉 is complete and orthogonal,

〈m, α′|n, α〉 =
∫

dD1dp 〈m, α′|D1, p〉〈D1, p|n, α〉 = δmnδ(α′ − α),

+∞

∑
n=0

∫
dα |n, α〉〈n, α| =

+∞

∑
n=0

∫
dαdD1dpdD′1dp′ |D1, p〉〈D1, p|n, α〉〈n, α|D′1, p′〉〈D′1, p′| = I.

(A6)

One can also prove that

∫
〈n, α|n, α〉dα =

∫
dx1dx2dD1dpdD′1dp′dα 〈n, α|D1, p〉〈D1, p|x1, x2〉〈x1, x2|D′1, p′〉〈D′1, p′|n, α〉

=
1

2π

∫
dx1dx2

∫
dD1dpdD′1dp′

(
2
|q|eB

) 3
2 1

n!
√

2π
hn(

√
2
|q|eB

D1)hn(

√
2
|q|eB

D′1)

× eix1(p−p′)δ(p +
D1

2
− p′ −

D′1
2
)δ(x2 −

2
qeB

(p′ + D′1))δ(x2 −
2

qeB
(p + D1))

=
|q|eB
2π

∫
dx1dx2.

(A7)

For |m, p3〉, it has

〈m, p3|m, p3〉 =
1

2π

∫
dx3. (A8)

According to Equations (A7) and (A8), for |m, p3; n, α〉, there is∫
〈m, p3; n, α|m, p3; n, α〉dα =

|q|eB
(2π)2

∫
d~x. (A9)

At last, for the convenience of deducing 〈m, p3; n, α|Ŝ|m, p3; n, α〉, the equations below
are useful:

〈m, p3; n, α|D̂1,2|m, p3; n, α〉 = 0,
∫
〈m, p3; n, α| p̂3|m, p3; n, α〉dp3 = 0. (A10)

Appendix B. The Expressions of f1, f2, f3, f4

To express f1, f2, f3, and f4 (the ‘ f ’s for short) in succinct forms, we define a function
Fn as

Fn(p′0, p3, |q|eB, σ, b, c) = (p′20 − p2
3 − 2n|q|eB− σ2 − b2 + c2)2 − 4[(p′0c− σb)2 + (b2 − c2)p2

3]. (A11)

In Fn, p′0 = −iλm + µr, (−iλm) is the eigenvalue of p̂0.
In the process of deducing the gap equations, we notice that some results depend on

the sign of electric charge number q; therefore, it is convenient to generalize the formulae
by introducing two new parameters:

bq = sgn(q)b, cq = sgn(q)c. (A12)

Regarding the new parameters, one can easily prove that the equations below are valid,
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b2
q = b2, c2

q = c2, bqcq = bc, Fn(p′0, p3, |q|eB, σ, bq, cq) = Fn(p′0, p3, |q|eB, σ, b, c), (A13)

these equations are useful to express the ‘ f ’s succinctly.
Deducing the ‘ f ’s requires some tedious but basic algebraic operations, one may

employ programs of symbolic computation, Mathematica programs for example, to ease
the work. The formulae of f1 and f2 are

f1 =
(p′0 + bq)2 − p2

3 − σ2 + c2

F0(p′0, p3, |q|eB, σ, b, c)
σ

2
+ σ

+∞

∑
n=1

p′20 − p2
3 − 2n|q|eB− σ2 + b2 + c2

Fn(p′0, p3, |q|eB, σ, b, c)

−
(p′0 + bq)2 − p2

3 + σ2 − c2

F0(p′0, p3, |q|eB, σ, b, c)
cq

2
−

+∞

∑
n=1

2p′0bc
Fn(p′0, p3, |q|eB, σ, b, c)

,

(A14)

f2 =
p′20 − p2

3 − (σ + cq)2 − b2

F0(p′0, p3, |q|eB, σ, b, c)
p′0
2

+ p′0
+∞

∑
n=1

p′20 − p2
3 − 2n|q|eB− σ2 − b2 − c2

Fn(p′0, p3, |q|eB, σ, b, c)

+
p′20 + p2

3 + (σ + cq)2 − b2

F0(p′0, p3, |q|eB, σ, b, c)
bq

2
+

+∞

∑
n=1

2σbc
Fn(p′0, p3, |q|eB, σ, b, c)

,

(A15)

Due to the sign problem of q, it is better to define and deduce the formulae of f ′3 and
f ′4 than write down the formulae of f3 and f4 directly,

f3 = sgn(q) f ′3, f4 = sgn(q) f ′4, (A16)

for f ′3 and f ′4, there are

f ′3 =
p′20 − p2

3 − (σ + cq)2 − b2

F0(p′0, p3, |q|eB, σ, b, c)
p′0
2
−

+∞

∑
n=1

2p′0σcq

Fn(p′0, p3, |q|eB, σ, b, c)

+
p′20 + p2

3 + (σ + cq)2 − b2

F0(p′0, p3, |q|eB, σ, b, c)
bq

2
+ bq

+∞

∑
n=1

p′20 + p2
3 − 2n|q|eB + σ2 − b2 + c2

Fn(p′0, p3, |q|eB, σ, b, c)
,

(A17)

f ′4 =−
(p′0 + bq)2 − p2

3 − σ2 + c2

F0(p′0, p3, |q|eB, σ, b, c)
σ

2
−

+∞

∑
n=1

2p′0σbq

Fn(p′0, p3, |q|eB, σ, b, c)

+
(p′0 + bq)2 − p2

3 + σ2 − c2

F0(p′0, p3, |q|eB, σ, b, c)
cq

2
+ cq

+∞

∑
n=1

p′20 − p2
3 + 2n|q|eB + σ2 + b2 − c2

Fn(p′0, p3, |q|eB, σ, b, c)
.

(A18)

The advantage of defining f ′3 and f ′4 has been discussed in the main text.
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