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ABSTRACT
Sponges are amongst the most difficult benthic taxa to properly identify, which has
led to a prevalence of cryptic species in several sponge genera, especially in those with
simple skeletons. This is particularly true for sponges living in remote or hardly
accessible environments, such as the deep-sea, as the inaccessibility of their habitat
and the lack of accurate descriptions usually leads to misclassifications. However,
species can also remain hidden even when they belong to genera that have
particularly characteristic features. In these cases, researchers inevitably pay attention
to these peculiar features, sometimes disregarding small differences in the other
“typical” spicules. The genus Melonanchora Carter, 1874, is among those well
suited for a revision, as their representatives possess a unique type of spicule
(spherancorae). After a thorough review of the material available for this genus from
several institutions, four new species of Melonanchora, M. tumultuosa sp. nov.,
M. insulsa sp. nov., M. intermedia sp. nov. and M. maeli sp. nov. are formally
described from different localities across the Atlanto-Mediterranean region.
Additionally, all Melonanchora from the Okhotsk Sea and nearby areas are
reassigned to other genera; Melonanchora kobjakovae is transferred to Myxilla
(Burtonanchora) while two new genera, Hanstoreia gen. nov. and Arhythmata gen.
nov. are created to accommodate Melonanchora globogilva and Melonanchora
tetradedritifera, respectively. Hanstoreia gen. nov. is closest to Melonanchora,
whereas Arhythmata gen. nov., is closer to Stelodoryx, which is most likely
polyphyletic and in need of revision.
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INTRODUCTION
Accurate species-level taxonomy is a fundamental keystone for conservation assessment,
planning, and management (Myers et al., 2000; Groves et al., 2017). The differentiation
between cryptic species (as in Knowlton, 1993), is of paramount importance for effective
conservation policies (Lohman et al., 2010). While cryptic species are a widespread
phenomenon among both terrestrial and marine phyla (e.g., Baker, 1984; Mayer &
Helversen, 2001; Concepción et al., 2008; Crespo & Pérez-Ortega, 2009; Dennis & Hellberg,
2010; Lohman et al., 2010; Payo et al., 2013; Golestani et al., 2019), the assumed lack of
barriers to gene flow in marine habitats (Hellberg, 2009) contributed to the assumption
that benthic organisms have greater distribution ranges and phenotypic plasticity than
their terrestrial counterparts (Knowlton, 1993). As a result of this assumption, many
benthic species were considered to be geographically widespread or even cosmopolitan
(Klautau et al., 1999). Recent studies have generally demoted this idea (e.g., Klautau et al.,
1999; van Soest, Hooper & Hiemstra, 1991; van Soest & Hooper, 1993). The dispersal
capabilities vary greatly among benthic species even within the same phyla (Uriz et al.,
1998) and they can be differentially reduced by natural barriers (Allcock et al., 1997;Waters
& Roy, 2004). In this sense, some invertebrate Phyla, such as sponges and corals,
produce short-lived, free larvae that are seemingly incapable of countering apparently
weak marine barriers such as littoral currents or substrate discontinuity, often resulting
in extremely low dispersal capabilities (Hellberg, 2009). In sponges, for instance, genetically
structured populations, even at short spatial scales, have been repeatedly reported (Duran
et al., 2004; Duran, Pascual & Turon, 2004; Calderon et al., 2007; Blanquer, Uriz &
Caujapé-Castells, 2009; Blanquer & Uriz, 2010; Guardiola, Frotscher & Uriz, 2016), which
favours speciation and makes the existence of widely distributed or cosmopolitan species
unlikely.

Species complexes and cryptic species are particularly prevalent among sponges with
few diagnostic characters (Klautau et al., 1999; Uriz, Garate & Agell, 2017a, 2017b),
especially when these characters exhibit environmental plasticity (Maldonado et al., 1999;
Xavier et al., 2010; De Paula et al., 2012). For example, the sponge complex Chondrilla
nucula Schmidt, 1862, was once considered as having a circumtropical distribution
(Klautau et al., 1999), Stylocordyla borealis (Lovén, 1868) was reported as occurring at both
poles (Uriz et al., 2010), the Atlanto-Mediterranean Scopalina lophyropoda Schmidt, 1862
and Hemimycale columella (Bowerbank, 1874) both contained several morphologically
cryptic species revealed by molecular markers (Blanquer & Uriz, 2008; Uriz, Garate &
Agell, 2017a, 2017b) and the excavating sponges Cliona celata Grant, 1826 and Cliona
viridis (Schmidt, 1862), which are known to be “species complexes” which remain
partially unresolved (Xavier et al., 2010; De Paula et al., 2012; Escobar, Zea & Sánchez,
2012; Leal et al., 2016; Gastaldi et al., 2018). Cryptic species complexes are also prevalent in
sponge genera without mineral (spicules) or organic skeletons (spongin fibres), such as
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Hexadella Topsent, 1896, where species are almost indistinguishable based solely on
morphological or histological characteristics (Reveillaud et al., 2010, 2012). However,
species can also remain hidden even when they belong to genera that have particularly
characteristic spicules. In these cases, researchers inevitably pay attention to these peculiar
spicules, sometimes disregarding small differences in the other “typical” spicules.

Some genera of Poecilosclerida, one of the most diverse orders in terms of spicule
diversity (Hooper & Van Soest, 2002), possess unique spicular types that greatly facilitate
their identification. Examples include dianciastras in Hamacantha Gray, 1867 (Hajdu,
1994; Hajdu & Castello-Branco, 2014), clavidiscs in Merlia Kirkpatrick, 1908 (Vacelet &
Uriz, 1991), discorhabds in Latrunculia du Bocage, 1869 (Samaai, Gibbons & Kelly,
2006) or thraustoxeas in Rhabderemia Topsent, 1890 (van Soest & Hooper, 1993).
Nevertheless, because taxonomists historically have focused on these particular spicules
(van Soest, Hooper & Hiemstra, 1991), differences in other apparently banal spicules
have been disregarded. As a consequence, some of these genera (e.g., Rhabderemia van
Soest & Hooper (1993), Acarnus, Gray, 1867, van Soest, Hooper & Hiemstra (1991),Merlia,
Vacelet & Uriz (1991) or Trachytedania Ridley, 1881 (Cristobo & Urgorri (2001))
contain or contained, until recently, few formally described species that were considered as
having a widespread geographic distribution. Moreover, only the well-described species are
usually recognised and reported in the literature (van Soest, Hooper & Hiemstra, 1991),
while those with poor or imprecise descriptions remain forgotten, a trend which is
aggravated for sponges living in remote or hardly accessible environments, such as the
deep-sea (Reveillaud et al., 2010). Despite the challenges involved, comprehensive reviews
of such genera are considered extremely useful for the discovery of cryptic species
(Reveillaud et al., 2012) and to test biogeographical and evolutionary hypotheses (van Soest
& Hooper, 1993; Cárdenas et al., 2007).

The genusMelonanchora Carter, 1874, is among those well suited for such revisions, as
(i) it possesses a unique spicule type (spherancorae); (ii) currently contains only five
formally accepted species (van Soest et al., 2021) (iii) only two out of the five species are
commonly recorded over large geographical areas (Baker et al., 2018) and (iv) the three
remaining species seem to be endemic to the Okhotsk Sea and nearby Pacific Islands
(Koltun, 1958, 1970; Lehnert, Stone & Heimler, 2006a) and present clear differences with
their Atlantic counterparts (Lehnert, Stone & Heimler, 2006a). Finally, Melonanchora
representatives occur within Vulnerable Marine Ecosystems (VMEs) across the
Atlanto-Mediterranean region, thus being in need of accurate identifications for the
evaluation of the conservation status of the sponge grounds where they occur (Best et al.,
2010; ICES, 2012).

In this context, this paper: (1) reviews the status of all the species currently allocated to
Melonanchora with particular emphasis in the Pacific species, apparently endemic to
the Okhotsk Sea, and their relationships with other Myxillidae; (2) provides a reliable guide
for their identification; (3) describes new species of the genus; (4) and discusses the
biogeographical implications of the circumpolar distribution of this genus.
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MATERIALS AND METHODS
Museum material and sample treatment
The materials for this study consisted of samples from natural history museums and
other scientific institutions and unregistered individuals from surveys across the North
Atlantic (Life+ INDEMARES, NEREIDA and ABIDES) as well as specimens from authors’
own collections. The institutions are abbreviated in the text as follow:

Canadian Museum of Nature, Canada (CMNI), using the prefix CMNI; Gothenburg
Natural History Museum, Sweden (GNM), using the prefix GNM; Museo Civico di
Storia Naturale di Genova, Italy (MSNG), using the prefix MSNG; Museum of Biology of
Lund, Sweden (MZLU), using the prefix MZLU; Naturalis Biodiversity Center, The
Netherlands (NBC, previously ZMA), using the prefix ZMA.POR. and ZMA.POR.P;
National Museum of Natural History, Smithsonian Institution, Unites States (NMNH,
previously USNM) using the prefix NMNH-USNM; Musée Zoologique de la Ville de
Strasbourg, France (MZS) using the prefix MZS; Museu de Ciències Naturals (Zoologia) de
Barcelona, Spain (MZB), using the prefix MZB; National History Museum, United
Kingdom (NHMUK, previously BMNH), using the prefix NHMUK; Swedish Museum of
Natural History, Sweden (NRM), using the prefix NRM; Yale Peabody Museum of Natural
History, Unites States (YPM), using the prefix YPM IZ; Museum für Naturkunde,
Germany (ZMB) using the prefix ZMB; Jean Vacelet’s personal collections (JV) and
Manuel Solórzano’s personal collections (MS).

DNA was extracted from small pieces of tissue of four samples (MSNG Vis4.7, CMNI
2018-0107, GNM Por624, NMNH-USNM 1082996) using QIAGEN’s DNeasy Blood
and Tissue kit, following the instructions of the manufacturer. Amplification and sequencing
of the mitochondrial cytochrome c oxidase subunit I (COI) were attempted but proved
unsuccessful, with only two samples yielding an amplicon but resulting in sequencing of
non-target DNA (bacteria). This was likely due to the low quantity and integrity of the DNA
in the samples, as assessed by spectrophotometry using a DeNovix DS-11 FX.

All known species of Melonanchora were represented in the studied material, with the
holotypes for all species but Melonanchora tetradedritifera Koltun, 1970 being examined.
Spicule preparations for both optical and scanning electron microscopy (SEM) were
performed according to Cristobo et al. (1993) and Uriz, Garate & Agell (2017a). Optical
observations were performed using a Leica DM IRB inverted microscope from the
Instituto de Ciencias del Mar (ICM-CSIC), whereas SEM observation were conducted
using an ITACHI TM3000 TableTop Scanning Electron Microscope from the Center
for Advanced Studies of Blanes (CEAB-CSIC), Spain, a JEOL–6100 SEM from the
University of Oviedo (UO), Spain, and a HITACHI S-3500 N scanning electron
microscope from the Institut de Ciències del Mar (ICM-CSIC), Spain. Spicule sizes are
given as ranges with average values (in italics) ± Standard Deviation (e.g., MIN.–MEAN ±
SD–MAX.). Unless otherwise stated, spicule measurements were performed on 40 spicules
per spicule type. The species classification adopted in the study follows that currently
proposed byMorrow & Cárdenas (2015) and the World Porifera Database (van Soest et al.,
2021). A key to Melonanchora can be found in Supplemental Material 1.
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Finally, the electronic version of this article in Portable Document Format (PDF) will
represent a published work according to the International Commission on Zoological
Nomenclature (ICZN), and hence the new names contained in the electronic version are
effectively published under that Code from the electronic edition alone. This published
work and the nomenclatural acts it contains have been registered in ZooBank, the
online registration system for the ICZN. The ZooBank LSIDs (Life Science Identifiers) can
be resolved and the associated information viewed through any standard web browser by
appending the LSID to the prefix http://zoobank.org/. The LSID for this publication is:
[urn:lsid:zoobank.org:pub:F1A22CAA-DE1F-434D-9A6B-F00853C40FF5]. The online
version of this work is archived and available from the following digital repositories: PeerJ,
PubMed Central SCIE and CLOCKSS.

RESULTS
Systematic Description
Phylum PORIFERA Grant, 1836
Class DEMOSPONGIAE Sollas, 1885
Subclass Heteroscleromorpha Cárdenas, Pérez & Boury-Esnault, 2012
Order POECILOSCLERIDA Topsent, 1928
Family MYXILLIDAE Dendy, 1922
Genus Melonanchora Carter, 1874

Type species:
Melonanchora elliptica Carter, 1874: 212 (by monotypy).

Diagnosis:
From encrusting to massive-globular growth form, with paper-like, easily detachable
thin ectosome, bearing fistular processes. Ectosomal skeleton composed of smooth
strongyles to tylotes with somewhat asymmetrical ends, whereas the choanosome is mainly
composed of smooth strongyles or styles. Microscleres include typically two categories of
anchorate isochelae, rarely three, and spherancorae (amended from van Soest, 2002).

Remarks:
The genus Melonanchora was erected by Carter (1874) for Melonanchora elliptica on the
account of this species singular anchorate-derived chelae (spherancorae), placing it
tentatively with the “Halichondria” family concept built around H. (= Myxilla) incrustans
(Johnston, 1842). The genus was later included in Desmacidonidae Schmidt (1880) until
Lundbeck (1910), and later Topsent (1928), transferred it to Myxillidae. Simultaneously,
Hentschel had it assigned it to Dendoricellidae1 (Hentschel, 1929), but this assignation was
not widly accepted (Alander, 1935) and was quickly disregarded.

The family Myxillidae has been redefined over the years (Hajdu, van Soest & Hooper,
1994; Desqueyroux-Faúndez & van Soest, 1996; van Soest, 2002) and the genus
Melonanchora fits well within the current definition of Myxillidae established in the
Systema Porifera (Hooper & Van Soest, 2002), which is restricted to “those genera
which combine the possession of anchorate chelae with diactinal ectosomal tornotes

1 While Hentschel assigned it to Dendor-
icellidae, he later wrongfully referred
Melonanchora as part of Tedanidae
within the text.
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[oxeotes and tylotes] and choanosomal styles in a reticulate arrangement”. Yet, after
re-examination of all the available Melonanchora material, the current definition of the
genus (van Soest, 2002) needs to be amended to better allocate the new species here
described or re-described, including: presence of smooth strongyles (Melonanchora
emphysema (Schmidt, 1875),M. tumultuosa sp. nov.,Melonanchora intermedia sp. nov.) as
choanosomal megascleres and the possession of two to three chelae categories
(M. intermedia sp. nov., M. maeli sp. nov.).

Nevertheless, the main diagnostic character of the genus, the spherancorae, remains
unaltered since Carter’s original description (See “The Origin of Spherancorae”). Aside
from spherancorae, Carter also added the presence of a papillated paper-thin like ectosome
(Figs. 1A, 1C, and 1F) as an additional diagnostic character (Carter, 1874). Although
this feature is shared with other deep-sea genera such as Cornulum Carter, 1876 or
Coelosphera Thomson, 1873 (Lehnert & Stone, 2015; Schejter, Cristobo & Ríos, 2019),
Melonanchora differs from the later in its white-translucent coloration, brittle and loose
appearance and its characteristic wart-shaped papillae, which may make external
identification feasible at the genus level (Stone, Lehnert & Reiswig, 2011).

Melonanchora elliptica Carter, 1874
(Figs. 1A, 2, 3)

Synonymy:
Melonanchora elliptica Carter, 1874: 212, pI. XIII figs 6–12, pI. XV figs. 35a–35b;
Vosmaer, 1885: 31, pI. I fig. 14, pI. V figs. 69–70 (partim); Topsent, 1892: 101–102; Fristedt,
1887: 454, pl. 25 fig. 5, 55 (partim); Arnesen, 1903: 15–16, pl. II fig. 4, pl. V fig. 4; Topsent,
1904: 144, pl. IV fig. 10; Lundbeck, 1905: 213–216, pl. VII figs. 4–6, pl. XX figs. 1a–1o;
Lundbeck, 1909: 402–403; Arndt, 1913: 116; Topsent, 1913: 44; Topsent, 1928: 246;
Hentschel, 1929: 966; Burton, 1931: 4; Alander, 1935: 5; Arndt, 1935: 71–73, Fig. 141;
Koltun, 1959: 122–123, fig. 76; Ríos & Cristobo, 2017: 169; Baker et al., 2018: 20–25, figs.
5–7; Dinn & Leys, 2018: 63.

Not: M. elliptica; Schmidt, 1880: 85, pl. IX fig. 8.

Material examined.

Holotype: NHMUK 1882.7.28.54a, between the north coast of Scotland and the Faroe
Islands; HMS Porcupine expedition (1869), ca. 800 m depth, 1869. (two slides);
NHMUK-Norman Coll. N�50 10.1.1.1417, HMS Porcupine expedition (1869); NHMUK
1954.3.9.301 N�50; NHMUK - Norman Coll. -H. J. Carter Slide Coll. 1954.3.9.301; ZMB
Por 3042, between the North coast of Scotland and the Faroe Islands, North Atlantic
Ocean (59.85166, −6.03333).

Additional specimens examined:
CMNI 2018-0107, Saglek Bank, Labrador Sea, North Atlantic Ocean (60.45213,
−61.26894), 427 m depth, 2016-07-21, collected by Dinn, Curtis (Dinn & Leys, 2018);
MZLU L936/3483, Trondheim Fjord, Norway (63.494092, 10.31647), 1936; NRM 113070,
off Lindenows Fjord, Greenland, North Atlantic Ocean (60.06666, −34.25), 237.9 m depth,
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1885 (Fristedt, 1887); YPM IZ 006552.PR, Laurentian Channel, Nova Scotia, North
Atlantic Ocean (44.5667, −56.6958), USFC Albatross, 218 m depth, 1885; NHMUK-
Norman Collection 1910.1.1.588, Hardanger Fjord, ca. 180 m depth, 1882; NHMUK-Sott-
Ryen Coll., 1931.6.1.19, Folden Fjord, Norway (Burton, 1931); NHMUK Norman Coll.
1910.1.1.1418, Norway, 1882; NHMUK–Norman Coll. 1910.1.1.1419, Norway, 1882;
NHMUK–Norman Coll. 1910.1.1.1420, Norway, 1882; NHMUK–Norman Coll.
1910.1.1.1421 (Fristedt, 1887); NHMUK-Norwegian Coll. 1982.9.6.14.a., Norway, 1885;
ZMA.POR.P.10797, North of Hammerfest, Norway, Arctic Ocean (72.15003, 22.71246),

Figure 1 External appearence of various Melonanchora species. (A) External view of Melonanchora
elliptica (MZLU L935/3858), p indicates some ectosomal papillae; (B) Individual of Melonanchora
emphysema (Me) attached to coral rubble (GNM Porifera 416); (C) Holotype of Melonanchora tumul-
tuosa sp. nov. (GNM Porifera 624), Ect indicates the ectosome, Ch indicates the choanosome, Cha
indicates the choanosomal cavities, Os indicates the oscules; (D) Individual of Arythmata tetradentifera
(NMNH-USNM 148959); (E) Holotype of Melonanchora insulsa sp. nov. (MZS Po165); (F) Holotype of
Hanstoreia globogilva (NMNH-USNM 1082996), p indicates some ectosomal papillae and Os indicates
the oscules; (G) Holotype ofMelonanchora maeli sp. nov. (ZMA.POR.7269), p indicates some ectosomal
papillae and Ch the choanosome. Full-size DOI: 10.7717/peerj.12515/fig-1
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R/V Willem Barents expedition (1880–84), 265 m depth, 1881 (Vosmaer, 1885); ZMA.
POR.1548, North of Hammerfest, Norway, Arctic Ocean (72.15, 22.68333), R/V Willem
Barents expedition (1880–84), 265 m depth, 1881 (Vosmaer, 1885).

Unregistered material:
NR0509_43, Flemish Cap, Tail Grand Bank, North Atlantic Ocean, 1,554 m depth
(NEREIDA Coll.); NR0509_49, Flemish Cap, Tail Grand Bank, North Atlantic Ocean,
1,137 m depth (NEREIDA Coll.); NR0509_52, Flemish Cap, Tail Grand Bank, North
Atlantic Ocean, 870 m depth (NEREIDA Coll.); NR0509_73, Flemish Cap, Tail Grand
Bank, North Atlantic Ocean, 1,122 m depth (NEREIDA Coll.); NR0509_82a, Flemish Cap,
Tail Grand Bank, North Atlantic Ocean, 1,127 m depth (NEREIDA Coll.); NR0610_21,
Flemish Cap, Tail Grand Bank, North Atlantic Ocean, 1,055 m depth (NEREIDA Coll.);
NR0709_5, Flemish Cap, Tail Grand Bank, North Atlantic Ocean, 1,248 m depth
(NEREIDA Coll.).

Description:
Usually massive-globular sponge (Fig. 1A), more rarely encrusting (CMN 2018-0107),
with an easily detachable paper-like thin ectosome bearing abundant fistular processes.
The choanosome shows several scattered pores and channels. Colour whitish translucent
outside, cream-orange in the choanosome.

Skeleton:
Ectosomal skeleton consists of tangential tylostrongyles with a criss-cross arrangement
(Fig. 2C). Choanosomal skeleton with scattered poorly defined tracts (Fig. 2B) of styles to
substyles and abundant organic content. Microscleres are distributed thorough the
choanosome without any clear discernible pattern, yet, in some individuals (including the
holotype), spherancorae form a dense palisade between the ectosome and the choanosome
and might also cover the choanosomal tracts (Fig. 2D).

Spicular complement:
Styles, tylostrongyles, two categories of chelae, and spherancorae (Figs. 3A–3G).

Ectosomal tylostrongyles (Fig. 3B): Unevenly, slightly flexuous unequally thinning towards
both ends, with a more or less central swelling and, differentially inflated ends (strongyle to
tylote appearance).
Size range: 560.3–624.3 ± 32.2–666.5 mm × 7.8–11.8 ± 3–17.3 mm

Choanosomal styles (Fig. 3A): Entirely smooth, slightly curved towards its distal end.
In general, they have the point markedly acerate, but points can also be blunt to various
degrees in some spicules (stylostrongyles) (Fig. 3F).
Size range: 782.5–830.8 ± 50–908.1 mm × 17.2–19.3 ± 1.1–20.5 mm

Isochelae I (Fig. 3E, c’): Small anchorate isochelae, with a straight shaft, well-developed
fimbriae and spatulated alae. The distal alae slightly point outwards, giving a “V” lateral
appearance to both ends.
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Size range: 24.2–26.6 ± 3.4–29 mm

Isochelae II (Fig. 3D, b’): large isochelae with a straight shaft, well-developed fimbriae and
spatulated alae. The distal alae slightly point outwards, giving a “V” lateral appearance to
both ends.
Size range: 48.3–51.1 ± 3.8–58 mm

Spherancorae (Fig. 3C, a’): Unique to the genus, with an oval shape and slightly pointed
ends, which might resemble a rugby ball. It possesses fimbriae on its internal face, which
may be free or fused to various degrees.
Size range: 48.3–51.2 ± 2.7–53.1 × 23.1–28.3 ± 1.6–29.2 mm

Geographic distribution and ecological remarks:
Melonanchora elliptica is a common amphi-Atlantic species (Fig. 4) also occurring in
Arctic waters (Carter, 1877), as far as the Barents Sea (Koltun, 1959; Katckova et al., 2018).
It has been recorded from the coasts of Norway (Vosmaer, 1885; Topsent, 1913), Faroe
Plateau (Carter, 1874; Lundbeck, 1905), Porcupine Seamount (Könnecker & Freiwald,
2005; van Soest & De Voogd, 2015) and Rockall Bank (van Soest & Lavaleye, 2005),

Figure 2 Optical microscope imaging of Melonanchora spicules. (A) General view of the spicules
of Melonanchora (NHMUK 1882.7.28.54a) un light microscopy. C. I indicates the largest chelae cate-
gory, C. II indicates the smallest chelae category, and Sph indicates spherancorae; (B) View of the
loose choanosomal tracts off Melonanchora elliptica (NHMUK 1882.7.28.54a) (C) View of the char-
acteristic criss-cross like pattern of the ectosome of Melonanchora (NHMUK–Norman Coll.
1910.1.1.1421); (D) Spherancorae covering the choanosomal tracts in Melonanchora elliptica (NHMUK
1882.7.28.54a). Full-size DOI: 10.7717/peerj.12515/fig-2
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Figure 3 Melonanchora elliptica spicule plate. Spicular set for Melonanchora elliptica (sample
NHMUK 1882.7.28.54a., holotype). (A) Choanosomal style; (B) Ectosomal tylostrongyle; (C) Spher-
ancorae; (D) Large chelae category (Chelae II); (E) small chelae category (Chelae I); (F) Detail
of the styles’ acerate end; (G) General view of M. elliptica’s spicules by SEM imaging. (a’) Spherancora
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Greenland and Iceland (Lundbeck, 1905; Burton, 1959), the Galician coast (Ríos &
Cristobo, 2017), the Azores archipelago (Topsent, 1892, 1904, 1928) and the area within the
Labrador Peninsula and the Newfound Land Seas (Topsent, 1913; Michaud & Pelletier,
2006; Baker et al., 2018), from 80 to 1,554 m depth. In the Canadian coasts and the Gulf of
Maine, the species is commonly found on sponge grounds on trawlable areas (Maciolek
et al., 2008, 2011) and it has been observed to be an occasional nursery ground for the
octopus Rossia palpebrosa Owen, 1935 (Wareham Hayes, Fuller & Shea, 2017).
Nevertheless, its role and ecological significance in Vulnerable Marine Ecosystems (VMEs)
are still poorly understood and in need of further research.

Remarks:
Melonanchora elliptica is the type species of the genus, first described from a specimen
collected during the HMS Porcupine expedition (1869) in the Northeast Atlantic (Carter,
1874). The holotype description referred to a soft roundish sponge with a thin paper
like ectosome with papillate projections that lodge pores and oscula. However, while the
pore areas are indeed located at the wart-like papillae, the oscula are not at their tip
(Figs. 1C; 1F), as initially claimed (Carter, 1874; Vosmaer, 1885) but on the ectosome
(Lundbeck, 1905), yet they are visible only after a careful examination. The conspicuous
ectosome is loosely attached to the choanosome here and there, which, together with its
fragility, might contribute to its rip off during trawl sampling (Vosmaer, 1885; Topsent,
1892). Collected individuals without ectosome, appear smooth, porous, and lack the
characteristic papillae. However, the presence of spherancorae facilitates the species
identification, even after the ectosome’s detachment (Baker et al., 2018).

While Carter’s original description was precise, the illustrations were not sufficiently
accurate. Thus, subsequent authors (Vosmaer, 1885; Topsent, 1892, 1904) referred to
Schmidt’s redescription based on specimens from the Caribbean (Schmidt, 1880) rather
than carter’s description of the type specimen for their species identification. However,
Schmidt’s material (MZS Po165) was in fact another species (described below as
Melonanchora insulsa sp. nov.) clearly differing from M elliptica in the shape of chelae
and spherancorae. Finally, Topsent’s individuals form the Azores are insufficiently
described (Table 1) and were not available. While it is clear that they belong to
Melonanchora, it is impossible to ascertain based on Topsent’s descriptions if they
unequivocally belong toM. elliptica or to any other North AtlanticMelonanchora species.

Melonanchora emphysema (Schmidt, 1875)
(Figs. 1B; 5; 6)

Figure 3 (continued)
(b’) Chelae II and (c’) Chelae I relative sizes when compared with that of the megascleres. Scale bars for
(A), (B), (a’), (b’), (c’) 300 mm; (C)–(F) 30 mm and (G) 500 mm. Images (A) to (E) and (G) were taken
from sample NHMUK 1882.7.28.54a (holotype). Images for F were taken from both NHMUK
1882.7.28.54a (holotype) and CMNI 2018-0107. Full-size DOI: 10.7717/peerj.12515/fig-3
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Synonymy:
Desmacidon emphysema Schmidt, 1875: 118.
Melonanchora elliptica; Alander, 1935: 5 (partim).
Melonanchora emphysema; Vosmaer, 1885: 31, pI. I fig. 14, pI. V figs. 69–70 (partim);
Thiele, 1903: 393; Lundbeck, 1905: 213–216, pl. XX fig. 2a–2d; Lundbeck, 1909: 402–403;
Arndt, 1913: 116; Hentschel, 1929: 966–967; Arndt, 1935: 73, Fig. 142; Alander, 1942: 57
(partim); Vacelet, 1969: 200–201, fig. 38; Solórzano & Durán, 1982: 105–106, fig. 5c;
Solórzano, 1990: 755–777, L. 92; Solórzano, 1991: 34; Ríos & Cristobo, 2017: 169; Santín
et al., 2021: Tab. 1.
Not Melonanchora emphysema; van Soest, 1993: 210, Tab. 2; Pulitzer-Finali, 1983: 561.

Material examined.
Holotype:
ZMB Por 2680, North Sea, from a Fjord of the southern coasts of Norway; ZMB Por 6571,
North Sea, from a Fjord of the southern coasts of Norway.

Additional specimens examined:
GNM Porifera 416, Skagerrak, Sweeden, 80–100 m depth, 1934, (Alander, 1935, 1942);
GNM Porifera 290, Norra Kosterområdet Säcken, Baltic Sea (59.01441, 11.11977), 80 m
depth, 1934, (Alander, 1935, 1942); GNM Porifera 390, Norra Kosterområdet Säcken,
Baltic Sea (59.01441, 11.11977), 80 m depth, 1927, (Alander, 1935, 1942); MZB
2019–1740–Blanes Canyon, north-western Mediterranean Sea (41.50722, 2.93388),

Figure 4 Distribution map for north Atlantic Melonanchora species. Distribution map for the North
AtlanticMelonanchora species:Melonanchora elliptica (green circle),Melonanchora emphysema (orange
square), Melonanchora tumultuosa sp. nov. (red triangle); Melonanchora maeli sp. nov. (dark green
square); Melonanchora intermedia sp. nov. (purple square); Melonanchora insulsa sp. nov. (dark
blue square). Projected view (UTM Zone 31N (WGS84)) with geographic (WGS84) coordinates indi-
cated for reference. The 1,000 m depth isobaths is represented by a grey line. Geographic and bathymetric
data used was obtained from http://www.naturalearthdata.com.

Full-size DOI: 10.7717/peerj.12515/fig-4
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Table 1 Comparative table between all known records of Melonanchora elliptica Carter, 1874, including the locality (Loc.) and depth of the
sample, as well as the measurement of their spicular complement.

Author Loc./Depth Ectosomal megascleres Choanosomal
megascleres

Isochelae Spherancorae

Melonanchora elliptica Carter, 1874

Carter (1874) Faroe Plateau*/
‘deep-sea’

(St) ca. 750 mm (S) ca. 495 mm Present Present

Reexamination
van Soest (2002)

Faroe Plateau*/
‘deep-sea’

(St) 450–650 × 13–15 mm (S) 650–860 mm (I) 22–44 µm
(II) 60 µm

48–68 mm

Reexamination
This study
(ZMB Por 3042)

Faroe Plateau
*/‘deep-sea’

(St) 500–561.9 ±
34.4–611.2 × 14.7–15.9 ±
1.1–19.6 µm

(S) 730–804.3 ±
78.9–1176
× 14.7–19.2 ±
2.1–22.2 µm

(I) 22.8–25 ±
1.5–27.6 µm
(II) 48.9– 61 ±
2.4–66.3 µm

58.8–62.4 ± 2.2–68.3
× 27.6–29.7 ±
1.8–31.3 µm

Vosmaer (1885) Barents Sea Present Present Present Present

Reexamination
This study
(ZMA.POR.
P.10797)

Barents Sea (St) 584–678 ± 55.9–762 ×
13.8–16.8 ± 1.7–18.6 µm

(S) 738–994.3 ±
89.9–1146
x 15–19.1 ± 2.7–23.7
µm

(I) 24–27.8 ± 1.5–31 µm
(II) 63–71.8 ± 2.3–81 µm

63–67.5 ± 2.2–72
× 26–28.9 ±
1.7–30.5 µm

Fristedt (1887) East Greenland/
580 m

(St) 500 mm nm (I) 15 µm
(II) 60 µm

70 mm

Arnesen (1903) Between Bergen and
Trondheim/
100–180 m

nm (S) ca. 1000 mm (I) nm
(II) 68 µm

60 mm

Lundbeck (1905) North Atlantic/
105–1,460 m

(St) 410–620 × 8–17 µm (S) 680–860 × 14–21 µm (I) 21–28 µm
(II) 47–61 µm

54–68 × 24–38 mm

Arndt (1935) North Atlantic/
‘deep-sea’

(St) 410–620 µm (S) 680–860 µm (I) 21–28 µm
(II) 47–75 µm

54–68 mm

Koltun (1959) Barents Sea/
106–385 m

(St) 410–620 × 8–17 µm (S) 680–904 × 14–27 µm nm nm

Baker et al. (2018) Davis Strait/
537–1,132 m

(St) 528.1–594.7–655.5
× 14.2–19.3–23.9 µm

(S) 689.7–842.8–902.8 ×
11.1–15.1–21.1 µm

(I) 23.1–25.4–28.8 µm
(II) 40.4–57.4–67.6 µm

48–57.2–65.7
� 24–29.7–35.9 µm

(St) 575.9–618.6–661.5
× 18.3–21.6– 24.8 µm

(S) 730.2–778.4–822.4 ×
13.3–15.5–17.9 µm

(I) 22.7–24.9–27 µm
(II) 44.7–54.8–61.6 µm

54.1–62.8–68 ×
26.9–31–36.9 µm

(St) 497.4–613.1–725.5
× 15.7–19.5–22.2 µm

(S) 701.8–759.8–827.4 ×
12–14.5–19 µm

(I) 21.4–25.1–29.1 µm
(II) 50.9–56.9–60.8 µm

51.2–57.9–63.4 ×
23.7–30.1–37.5 µm

(St) 504.4–568–629.1
× 16–19.2–22.7 µm

(S) 743.5–814.3–879.1 ×
11.3–14.4–18.8 µm

(I) 23.2–26–27.2 µm
(II) 48.2–52.5–57.7 µm

46.3–55.8–61.7 ×
25.6–29–33.2 µm

(St) 498.4–553–603
× 15.7–18.6–22.3 µm

(S) 682.2–758.4–835.4 ×
13.5–17.4–20.5 µm

(I) 21.5–24.4–26.3 µm
(II) 42.1–59–82.8 µm

41.5–49.5–57.5 ×
27.8–31.8–37.9 µm

Dinn & Leys (2018) Saglek Bank,
Northern Labrador
Sea/427 m

(T) 554–623–693 ×
12.6–15.5–18.6 mm.

(S) 749–833–923 ×
18.5–23–26 mm

(I) 18–22–27.6 mm
(II) 35–55–64 mm

43–50–53 mm

Reexamination
This study
(CMNI 2018-
0107)

Saglek Bank,
Northern Labrador
Sea/427 m

(St) 560.3–624.3 ±
32.2–667.6 × 7.8–11.8 ±
3–17.3 mm.

(S) 782.5–830.7 ± 50–908
× 19.3–21.5 ±
1.2–23.1 mm

(I) 24.1–24.9 ±
1.2–29 mm
(II) 48.3–51 ± 3.8–59 mm

48.3–51.2 ± 2.6–53.1
× 26.5–29 ±
0.7–29.8 mm

This study
(NR0509_43)

Flemish Cap, Tail
Grand Bank/
1,554 m

(St) 533–645 × 6–13 µm (S) 619–803 × 14–18 µm (I) 21–26 µm
(II) 46–66 µm

48–64 × 20–33 mm

(Continued)
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‘ABIDES’ survey, 684 m depth, 2018 (Santín et al., 2021); ZMA.POR.P.10800 Outer
Hebrides, Scotland, North-East Atlantic (56.80588, −7.42903), 2006; ZMA.POR.20192
Outer Hebrides, Scotland, North-East Atlantic (56.80588, −7.42903), 2006; ZMA.POR.
P.10799 West of Hvasser, Norway, Baltic Sea (59� 04′ 42.06″N 10� 43′ 55.379″E), 2006;
ZMA.POR.20559.b West of Hvasser, Norway, Baltic Sea (59.07835, −10.73204), 2006;
ZMA.POR.20473.b West of Hvasser, Norway, Baltic Sea (59.07835, −10.73204), 2006;
ZMA.POR.20551 West of Hvasser, Norway, Baltic Sea (59.07835, −10.73204), 2006; ZMA.

Table 1 (continued)

Author Loc./Depth Ectosomal megascleres Choanosomal
megascleres

Isochelae Spherancorae

This study
(NR0509_49)

Flemish Cap, Tail
Grand Bank/
1,137 m

(St) 488–610 × 8–17 µm (S) 601–1000 ×
15–27 µm

(I) 20–30 µm
(II) 50–67 µm

52–61 × 19–28 mm

This study
(NR0509_52)

Flemish Cap, Tail
Grand Bank/
1,122 m

(St) 504–598 × 12–16 µm (S) 751–1086 ×
16–24 µm

(I) 21–35 µm
(II) 55–77 µm

55–66 × 26–39 mm

This study
(NR0509_73)

Flemish Cap, Tail
Grand Bank/870 m

(St) 555–625 × 11–17 µm (S) 767–910 × 15–24 µm (I) 25–29 µm
(II) 39–70 µm

51–63 × 23–34 mm

This study
(NR0509_82a)

Flemish Cap, Tail
Grand Bank/
1,127 m

(St) 538–676 × 12–20 µm (S) 637–867 × 17–20 µm (I) 22–28 µm
(II) 51–71 µm

58–68 × 27–39 mm

This study
(NR0620_21)

Flemish Cap, Tail
Grand Bank/
1,248 m

(St) 532–842 × 10–19 µm (S) 722–902 × 10–22 µm (I) 19–27 µm
(II) 38–52 µm

46–59 × 25–35 mm

This study
(NR0709_5)

Flemish Cap, Tail
Grand Bank/
1,055 m

(St) 518–845 × 11–20 µm (S) 705–833 × 13–22 µm (I) 23–33 µm
(II) 37–63 µm

50–62 × 26–35 mm

This study
(NHMUK
Norman Coll.
1910.1.1.1418)

Norway/unknown (St) 479.5–602.8 ±
24.1–673
x 14.3–16.4 ± 2.2–19.1
µm

(S) 765–863.8 ±
59.5–925.7
x 15.3–19.8 ±
1.5–21.7 µm

(I) 24.3–27.1 ±
2.4–33.3 µm
(II) 61–72.6 ± 8–82 µm

67–75.6 ± 5.4–82.6 ×
27.1–31.7 ±
4.3–35.4 µm

This study
(NHMUK
Norman Coll.
1910.1.1.1419)

Norway/unknown (St) 548–570.3 ± 10.3–628
x 13.7–15.8 ± 1.8–18.7
µm

(S) 745.6–880.1 ±
34.9–936
x 14.9–18.5 ±
1.3–23.5 µm

(I) 26–27.2 ±
0.8–28.5 µm
(II) 67.3–75.5 ±
1.4–78 µm

67–75.2 ± 6.5– 83 ×
23.7–33.1 ±
6.5–36 µm

Melonanchora cf. elliptica Carter, 1874

Topsent (1892) Azores/736–1,267 m (St) Present (S) Present (I) nm
(II) 55 mm

70 mm

Topsent (1904) Azores/523–1,360 m nm nm (I) 18–21 µm
(II) nm

nm

Topsent (1913) Norwegian coast/
440 m

nm nm nm nm

Topsent (1928) Azores/650–950 m nm nm (I) 19–23 mm
(II) 40–41 mm

43 × 26 mm

Azores/1,378 m nm nm (I) 20–23 mm
(II) 72 mm

72 × 35 mm

Notes:
(S) indicates styles; (St) indicates strongyles; (T); indicates tylostyles.
* indicates this is the holotype of the species; nm indicates a spicular type that was not mentioned on a description, yet it is assumed was present on the samples.
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POR.P.10798 Outer Hebrides, Scotland, North-East Atlantic (56.8071, −7.43025), 2006;
ZMA.POR.20353.a Outer Hebrides, Scotland, North-East Atlantic (56.8071, −7.43025),
2006; ZMA.POR.P.10795 West of Ireland, North-East Atlantic (55.50093, −15.78839),
attached to Madrepora debris, 2005; ZMA.POR.P.20020 West of Ireland, North-East
Atlantic (55.50093, −15.78839), attached to Madrepora debris, 2005; ZMA.POR.20020
West of Ireland, North-East Atlantic (55.50093, −15.78839), attached toMadrepora debris,
2005; ZMA.POR.P.10829 West of Hvasser, Norway, Baltic Sea (59.07577, 10.73552),
2007; ZMA.POR.20467 West of Hvasser, Norway, Baltic Sea (59.07577, 10.73552), 2007;
ZMA.POR.P.10828 Outer Hebrides, Scotland, North-East Atlantic (56.8059, −7.44183),
2006; ZMA.POR.20175.b Outer Hebrides, Scotland, North-East Atlantic (56.8059,
−7.44183), 2006; ZMA.POR.P.10827 Outer Hebrides, Scotland, North-East Atlantic
(56.80563, −7.426029), 2006; ZMA.POR.20335 Outer Hebrides, Scotland, North-East
Atlantic (56.80563, −7.426029), 2006.

Unregistered material:
AVILES_0710–48DR5, Avilés Canyon System, Cantabrian Sea (43.80333, −6.15583), 128
m depth (INTEMARES AVILES Coll.); MS, off Bares (44.055, −7.64638), Spanish coasts,
500 m depth; JV, Cassidaigne Canyon (42.95, 5.38333), 360 m depth (Vacelet, 1969);
Galician Bank, west of Galician coast, Spain (42.58305, −11.58305) ca. 700 m depth; Baixo
do Placer do Cabezo de Laxe (43, −9.03333), Galicia Coast, Spain, Fishermen’s by-catch, 58
m depth, 1981 (Duran & Solórzano, 1982; Solórzano, 1990, 1991).

Description:
Mostly encrusting, rarely massive-encrusting (GNM Porifera 416), with an easily
detachable paper-like ectosome bearing fistular processes. Fistulae might be absent in small
encrusting individuals. Colour whitish translucent in the ectosome, cream-orange in the
choanosome while in alcohol.

Skeleton:
Ectosomal skeleton formed by intertwined tangential tylostrongyles. The choanosomal
skeleton is ill defined, with scattered tracts of tylostrongyles identical to those conforming
the ectosome. Microscleres mostly scattered thorough the choanosome without any clear
discernible pattern.

Spicule complement:
Tylostrongyles, two categories of chelae, and spherancorae (Figs. 5A–5E and Figs. 6A–6F).

Ectosomal and choanosomal tylostrongyles (Figs. 5A; 6A): of similar shape to those of
M. elliptica: they are unevenly and slightly flexuous, enlarged at the central zone and
narrowing toward unequal tylotoid (Fig. 6F), giving them the appearance from strongyles
to tylostrongyles.
Size range: 492.7–508.1 ± 13–521.6 mm × 9.7–10.6 ± 2.8–14.5 mm

Isochelae I (Figs. 5D, c’; 6E, c’): Small isochelae with a straight shaft, gently bending to its
ends, with three spatulated alae and well-formed fimbriae.
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Size range: 24.1–26.6 ± 2.8–28.9 mm

Isochelae II (Figs. 5C, b’; 6C, b’): very similar to isochelae I, but bigger in size.
Size range: 48.3–51.5 ± 5.5–58 mm

Figure 5 Melonanchora emphysema spicule plate. Spicular set for Melonanchora emphysema (sample
ZMB Por 2680, holotype). (A) Ectosomal and chonasomoal tylostrongyle; (B) Spherancorae; (C) Large
chelae category (Chelae II); (D) small chelae category (Chelae I); (E) General view of M. emphysema’s
spicules by SEM imaging. (a’) Spherancora (b’) Chelae II and (c’) Chelae I relative sizes when compared
with that of the megascleres. Scale bars for (A), (a’), (b’), (c’) 200 mm; (B), (C), (D) 30 mm and
(E) 500 mm. Full-size DOI: 10.7717/peerj.12515/fig-5
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Spherancorae (Figs. 5B, a’; 6B, a’): Elongated-ovoid (Fig. 5B) to stadium shaped (Fig. 6B)
with teeth-like fimbriae on its internal surface, which may be fused at various degrees.
Size range: 37.6–38.8 ± 1.1–40.5 × 25.1–27.6 ± 1.6–28.9 mm

Figure 6 Melonanchora cf. emphysema spicule plate. Spicular set for Melonanchora cf. emphysema
from Laxe, Galicia coast, Spain (unregistered sample). (A) Ectosomal and chonasomoal tylostrongyle;
(B) Spherancorae; (C) Large chelae category (Chelae II); (D) Chelae II with reduced alae; (E) small chelae
category (Chelae I); (F) Detail of the tyles. (a’) Spherancora (b’) Chelae II and (c’) Chelae I relative sizes
when compared with that of the megascleres. Scale bars for (A), (a’), (b’), (c’) 175 mm; (B), (C), (D) 20 mm
and (F) 12 mm. Full-size DOI: 10.7717/peerj.12515/fig-6
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Geographic distribution:
Originally described from the coasts of Norway (Schmidt, 1875), the species is known from
deep Atlantic and Arctic waters (Fig. 4), including Greenland and Iceland, (Lundbeck,
1905, 1909, 1910), Faroe Islands (Hentschel, 1929), Porcupine Bank (van Soest & De Voogd,
2015), Baltic Sea (Alander, 1935, 1942), the Spanish coasts (Solórzano, 1990; Ríos &
Cristobo, 2017; this paper), and the coasts of Norway (Vosmaer, 1885; Arndt, 1913)
including the Svalbard archipelago (Gulliksen et al., 1999). The species had also been
tentatively recorded from the Atlantic Canadian coast (Baker et al., 2018; Murillo et al.,
2018), yet these records correspond toMelonanchora tumultuosa sp. nov., thus its presence
in the west Atlantic area remaining unconfirmed. Additionally, the species has also been
sparsely recorded from the Mediterranean Sea and nearby areas: the Gulf of Lyon (Vacelet,
1969; Santín et al., 2021) and the northern coasts of Spain (Solórzano & Durán, 1982;
Solórzano, 1990, 1991; Ríos & Cristobo, 2017; this study). The species appears to be a
frequent inhabitant of cold-water corals communities (Könnecker & Freiwald, 2005; van
Soest & De Voogd, 2015), yet it might also occur attached to rocky substrata or debris.

Remarks:
Schmidt (1875) poorly described Desmacidon emphysema from the coast of Norway, a
species characterized by the presence of a papillate ectosome and smooth megascleres
enlarged at the middle, with unequally swelled ends. While Schmidt accurately reported
spherancorae in his M. emphysema samples from the Caribbean (Schmidt, 1880),
he missed these spicules in the Northern Sea samples, mistaking them with diatoms
(Schmidt, 1875), which led to his misclassification of M. emphysema in the genus
Desmacidon, until amended by Thiele (1903). Furthermore, Schmidt’s incomplete
description (Table 2) led several authors to consider the species a synonym of M. elliptica
(Vosmaer, 1885; Arnesen, 1903) while others claimed that a clear distinction existed
(Thiele, 1903; Lundbeck, 1905). The problem mainly arose as the main distinguishing
feature between both species relies on its choanosomal megascleres, with M. elliptica
possessing styles and M. emphysema possessing strongyles (Lundbeck, 1905), yet several
authors had described samples with blunt-ended styles as choanosomal megascleres
(Vosmaer, 1885; Baker et al., 2018).

The re-examination of Schmidt holotype (ZMB Por 2680) however leaves no doubt
about the validity of the species. As previously pointed out (Thiele, 1903; Lundbeck, 1905),
M. emphysema’s choanosomal megascleres are exclusively tylostrongyles identical to
its ectosomal ones, while its spherancorae are smaller or equal in size to the large
isochelae (Table 2). Conversely, in M. elliptica there is a clear distinction between the
choanosomal (styles) and ectosomal (tylostrongyles) megascleres and, additionally, the
spherancorae are within the size range of the large isochelae (Table 1). Thus, individuals
identified as M. emphysema with blunt-ended diactines in two clear categories do not
correspond to this species but to a new one,Melonanchora tumultuosa sp. nov. (described
below). Finally, in the Mediterranean and nearby areas, M. emphysema tylostrongyles
are almost half in size than those in the North Atlantic specimens (average length ca. 400
vs. 600 mm; Table 2), and it has been suggested that they might correspond to a yet
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Table 2 Comparative table between all known records ofMelonanchora emphysema (Schmidt, 1875), including the locality (Loc.) and depth of
the sample, as well as the measurement of their spicular complement.

Author Loc./Depth Ectosomal megascleres Choanosomal
megascleres

Isochelae Spherancorae

Melonanchora emphysema (Schmidt, 1875)

Schmidt (1875) Haugesund,
Norway*/
193 m

(St) Present nm Present nm

Reexamination
This study
(ZMB Por 2680)

Haugesund,
Norway*/
193 m

(St) 500–570 ± 15.9–627
× 10.9–15.8 ± 3.1–18.5 µm

Same as in
ectosome

(I) 19.6–24.7 ±
2.7–29.4 µm
(II) 55.3–60.2 ±
3.9–68.6 µm

40.4–44.3 ± 1.8–58 ×
23.1–25.6 ± 1.3–28 µm

Thiele (1903) North Atlantic (St) ca. 650 µm Same as in
ectosome

(I) 21 µm
(II) 60 µm

50 mm

Lundbeck (1905) North Atlantic/
375–1,460 m

(St) 440–610 × 10–14 µm Same as in
ectosome

(I) 24–30 µm
(II) 57–71 µm

50–56 × 28 mm

Alander (1942) Skandia,
Sweden/85 m

Present Present Present Present

Reexamination
This study
(GNM Porifera 390)

Skandia,
Sweden/85 m

(St) 492.7–508.1 ± 13–521.7
× 9.7–10.6 ± 2.8–14.5 µm

Same as in
ectosome

(I) 24.2–26.6 ±
2.7–29 µm
(II) 48.3–51.5 ±
5.5–58 µm

37.6–38.9 ± 1–42.6 ×
21.6–24.3 ± 1.6–29 µm

Vacelet (1969) Mediterranean/
360–370 m

(St) 330–490 × 8.5–18 µm Same as in
ectosome

(I) 22 µm
(II) 40–53 µm

40–45 × 20 mm

Rexamination
This study
(unregistered)

Mediterranean/
360–370 m

(T) 389.3–418.6 ± 11.7–477 ×
12.2–14.6 ± 1.3–17.6 µm

Same as in
ectosome

(I) 21.4–22.9 ±
0.9–25.3 µm
(II) 41.2–45 ±
1.2–55.1 µm

38.4–41.3 ± 1.5–44.5 ×
17.1–19.7 ± 2.3–22.7 mm

This study
(ZMA.POR.P.10800)

Scotland/- (St) 342–472.8 ± 61.8–540 × 5.4–6.9
± 0.8–7.8 mm

Same as in
ectosome

(I) 22.8–24.3 ±
1–25.8 mm
(II) 48–52.5 ±
5.6–63 mm

37.8–41.7 ± 2.8–44.4 ×
18–19.5 ± 1.3–21 mm

This study
(unregistered)

Galicia Bank/
500 m

(T) 439.2–479.9 ± 30.4–537.6
× 12.2–15.5 ± 1.8–18.7 µm

Same as in
ectosome

(I) 20.7–23.4 ±
1.5–25.4 µm
(II) 42–51.2 ±
4.3–57.2 µm

37.2–41.2 ± 2–44.6 ×
17.3–20.6 ± 1.2–23.4 µm

This study
(unregistered)

Galicia Bank/
500 m

(T) 429.2–482.2 ± 29.7–538.9
× 11.8–15 ± 1.7–18.7 µm

Same as in
ectosome

(I) 20.2–22.8 ±
1.9–27.3 µm
(II) 40.6–54 ±
4.8–62.7 µm

34.7–41.2 ± 4–54.5 ×
17.2–20.2 ± 2–23.5 µm

This study
(MZB 2019–1740)

Gulf of Lyon/
684 m

(T) 253.6–375.6 ± 48.7–426.1 mm ×
8.8–10.1 ± 1.7–13.7 mm

Same as in
ectosome

(I) 20.5–24.1 ±
3.7–30.4 mm
(II) 44.3–53 ±
4.2–60 mm

41.2–43.7 ± 2.1–46.6 ×
18.3–20.5 ± 2.7–26.3 mm

Melonanchora cf. emphysema (Schmidt, 1875)

Solórzano & Duran
(1981)

Galicia Coast,
Spain*/58 m

(St) 316–345 × 9 mm Same as in
ectosome

(I) 22– 26 mm
(II) 44 –51 mm

27–40 mm

Reexamination Solórzano
(1990)

Galicia Coast,
Spain*/58 m

(St) 316–345 × 8–9 mm Same as in
ectosome

(I) 22– 26 mm
(II) 44 –51 mm

27–40 × 18–20 mm

(Continued)
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undescribed species (Vacelet, 1969). In this sense, reexamination of all known
Mediterranean material did in fact reveal a new species,Melonanchora intermedia sp. nov.
(described below), occurring within western Mediterranean meshophotic environments
(Pulitzer-Finali, 1983; Díaz, Ramírez-Amaro & Ordines, 2021). However, no major
differences could be observed with M. emphysema specimens from other deep-sea
Mediterranean and nearby areas other than the aforementioned size of their tylostrongyles
(Table 2). Additionally, the Mediterranean and Iberian specimens’ spherancorae (Fig. 6B)
closely match a stadium-shaped appearance, which is characteristic of M. emphysema.
However, it must be noted that one specimen from the Galician coast and another
one from the Cantabrian Sea possess relatively smaller and thinner tylostrongyles (ca.
330 mm length vs. ca. 6 mm width) when compared with all other M. emphysema records
(Table 2), and, in the Galician sample, an additional category of chelae with reduced alae
could be observed in very low numbers (Fig. 6D). Nevertheless, said chelae are absent
from all other Iberian or MediterraneanM. emphysemamaterial. Given the high variability
in megasclere size observed within all Melonanchora species (Tables 1–3), as well as the
poor conservation status of these deviant samples, it would be unwise to erect a new
species based solely on the megascleres size. Yet, the possibility that those specimens
correspond in fact to a cryptic species cannot be entirely ruled out, and its identity should
be further clarified if more individuals with said characteristics were to be discovered.

Melonanchora tumultuosa sp. nov.
(Figs. 1C; 7)

Synonymy:
Melonanchora elliptica; Vosmaer, 1885: 31, pI. I fig. 14, pI. V figs. 69–70 (partim);
Lundbeck, 1905: 213–216, pl. VII figs. 4–6, pl. XX figs. 1a–1o (partim); Lundbeck, 1909:
402–403 (partim); Alander, 1935: 5 (partim).
Melonanchora emphysema; Alander, 1942: 57 (partim); Baker et al., 2018: 26–30, figs. 8–10.
Not Melonanchora elliptica Carter, 1874: 212.

Material examined.

Table 2 (continued)

Author Loc./Depth Ectosomal megascleres Choanosomal
megascleres

Isochelae Spherancorae

Reexamination
This study
(unregistered)

Galicia Coast,
Spain*/58 m

(T) 302.6–345.8 ± 24–384.5 ×
4.9–6.83 ± 0.8–8 mm

Same as in
ectosome

(I) 16.5–20 ±
1.4–22.2 mm
(II) 35–44 ±
3.9–50 mm

31.9–36.2 ± 2.3–40.5 ×
14.2–17.2 ± 2.1–20.5 mm

This study
(AVILES_0710–48DR5)

Cantabrian Sea/
128 m

(T) 274–329.6 ± 30.6–387.6 ×
4.6–6.1 ± 0.8–7.6 mm

Same as in
ectosome

(I) 15.4–18 ±
1.3–20.7 mm
(II) 33.6–44 ±
3.8–48.9 mm

34.7–37.2 ± 1.2–39.3 ×
12.6–16 ± 2–19.9 mm

Notes:
(S) indicates styles; (St) indicates strongyles; (T); indicates tylostyles.
* indicates this is the holotype of the species; nm indicates a spicular type that was not mentioned on a description, yet it is assumed was present on the sample/s.
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Table 3 Comparative table for all new species of Melonanchora, as well as the closely related genus Hanstoreia gen. nov., described on this
work, including: the locality (Loc.) and depth of the sample, as well as the measurement of their spicular complement.

Author Loc./Depth Ectosomal megascleres Choanosomal megascleres Isochelae Spherancorae

Melonanchora tumultuosa sp. nov.

Vosmaer (1885) – Present Present Present Present

Reexamination
This study
(ZMA.POR.
P.10796)

Norway/256 m (St) 483–542.6 ±
38.3–600 mm ×
10.6–12.9 ± 3.2–19.3
mm

(St) 627.9–802.3 ±
42.2–924.5 mm ×
11.6–18.3 ± 1.5–24.4 mm

(I) 21.2–26.5 ±
3.8–28.9 mm
(II) 48.6–68.6 ±
8.1–72.9 mm

48.3–67.5 ± 6.8–78.62
× 18.9–22.3 ±
1.6–25.2 mm

Baker et al. (2018) Davis Strait/
537–1132 m

(St) 485.1–599.8–673.3
× 12.7–15.6–20 µm

(St) 831.1–913.6–981.6
× 15.7–19.5–22.7 µm

(I) 22.6–25.8–32.2 µm
(II) 43.3–59–66.4 µm

53.2–57.5–63.7 ×
23.1–27.7–35.3 µm

(St) 537.5–582.6–670.8
× 12.0–14.4–17.4 µm

(St) 823.5–884.6–957.8
× 13.5–19.2–24 µm

(I) 22.2–24.3–27.1 µm
(II) 44–49.5–56.8 µm

52.8–54.9–59.3 ×
24.9–30.4–36.0 µm

(St) 509.9–569.8–611.6
× 11.3–14.7–17.9 µm

(St) 672.6–770.9–860.1
× 17.4–20–23.9 µm

(I) 20.5–22.7–25.4 µm
(II) 49.5–52.3–56.3
µm

57.5–61.7–65.1 ×
23.9–26.9–28.8 µm

This study
(NR0509_82b)

Flemish Cap, Tail
Grand Bank/
1,027 m

(St) 548–657 × 11–17
µm

(St) 716–873 × 14–22 µm (I) 22–26 µm
(II) 49–68 µm

56–67 × 25–38 mm

This study
(NR0610_30)

Flemish Cap, Tail
Grand Bank/613 m

(St) 544–657 × 8–18
µm

(St) 483–823 × 8–13 µm (I) 24–32 µm
(II) 38–67 µm

47–65 × 22–34 mm

This study (GNM
Porifera 624)

Sydkoster Island,
Sweeden*/100 m.

(St) 483–542.6 ±
38.3–600 × 10.6–12.9 ±
3.2–19.3 mm

(St) 627.9–802.3 ±
42.2–924.5 × 11.6–18.3 ±
1.5–24.4 mm

(I) 21.2–26.5 ±
3.8–28.9 mm
(II) 48.6–68.6 ±
8.1–72.9 mm

48.3–67.5 ± 6.8–78.6
× 18.9–22.3 ±
1.6–25.2 mm

This study
(NHMUK,
83.12.13.70.89)

Unknown (St) 483–542.6 ±
38.3–600 × 10.6–12.9 ±
3.2–19.3 mm

(St) 768–895.7 ± 38.3–993
× 15.7–19.8 ± 1.6–24 mm

(I) 18.5–21 ± 2.6–25
mm
(II) 55.7–76.1 ±
2.9–79 mm

62.8–70 ± 4.9–78 ×
22.1–24.5 ±
1.9–29.3 mm

This study (NHMUK
Norman Coll.
1898.5.7.38)

Norway (St) 490–550.4 ±
38.9–607.6 × 10.8–13.1
± 3.3–19.6 mm

(St) 637–712.7 ±
31.3–813.5 × 11.8–14.7 ±
1.5–21.1 mm

(I) 21.3–26.5 ± 2.5–29
mm
(II) 40.2–57.7 ±
8.2–69.6 mm

48.3–60 ± 4.2–67.6 ×
25.1–27 ± 1.5–29
mm

This study
(ZMA.POR.
P.10825)

Norway/130–150 m (St) 528–617 ± 52.2–667
× 12.8–15 ± 2–18 mm

(St) 642–696 ± 58.8–804.3
× 14.7–18.6 ± 2.7–21.9
mm

(I) 24–28.9 ± 4.4–32
mm
(II) 54–72.3 ± 8.7–81
mm

56.6–64.3 ± 6.4–72.3
× 18–23.8 ±
2.8–27.4 mm

This study
(ZMA.POR.
P.10822)

Norway/130–150 m (St) 402–499.5 ±
60.5–540 × 12–13.7 ±
1.8–16.1 mm

(St) 645–756 ± 88–1026 ×
12.5–19.3 ± 1.9–21 mm

(I) 23–27.6 ± 4.1–30
mm
(II) 51–70.1 ± 9.2–78
mm

52.2–58.8 ± 7.9–74 ×
23.4–25.9 ± 2.8–30
mm

This study
(ZMA.POR.4977)

Norway/130–150 m (St) 462–515.5 ±
54.8–582 × 11.9–14.2 ±
1.6–16.5 mm

(St) 601.3–719.5 ±
79.3–1002 × 13.3–18.2 ±
2.7–22.7 mm

(I) 24–29 ± 2.6–33
mm
(II) 60–71.5 ± 7.1–84
mm

48–55.6 ± 6.2–72 ×
24–25.9 ± 2.4–30
mm

Melonanchora intermedia sp. nov.

Pulitzer-Finali (1983) Corsica,
Mediterranean
Sea*/128 m

(St) 380–490 × 6–11 µm Same as in ectosome (I) 19–21 µm
(II) 32–49 µm

37–43 mm

(Continued)
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Holotype (here designated): GNM Porifera 624, Kostergrundet, Sydkoster Island,
Sweeden, 100 m depth.

Additional specimens examined:
NHMUK–Icelandic Coll. 1958.1.1.633, Iceland, North Atlantic Ocean (63.55, −11.41666),
1936; NHMUK Norman Coll. 1898.5.7.38, Norway, 1893; NHMUK, 83.12.13.70.89;
MZLU L935/3858, Koster, Säcken, Swedeen, Baltic Sea (59.00971, 11.11471), 1934,
(Alander, 1935; 1942); ZMA.POR.P.10796, Northwest of Tromsø, Norway, Arctic Ocean
(72.60138, 24.95), R/VWillem Barents expedition (1880–84), 256 m depth, 1881 (Vosmaer,
1885); ZMA.POR.P.10825, Marsteinsboen, Norway, North East Atlantic (60.12583,
4.98944), 130–150 m depth, on stone, 1982; ZMA.POR.P.10822, Marsteinsboen, Norway,
North East Atlantic (60.12583, 4.98944), 130–150 m depth, on stone, 1982; ZMA.POR.
P.10824, Marsteinsboen, Norway, North East Atlantic (60.12583, 4.98944), 130–150 m
depth, on stone, 1982; ZMA.POR.4977, Marsteinsboen, Norway, North East Atlantic

Table 3 (continued)

Author Loc./Depth Ectosomal megascleres Choanosomal megascleres Isochelae Spherancorae

Reexamination
This study
(MSNG R.N. N
IS.4.7)

Corsica,
Mediterranean
Sea*/128 m

(St) 369–411.8 ±
14.5–475.3 × 7.2–9.7 ±
1.5–11 mm

Same as in ectosome (I) 19–21.5 ± 0.7–22.7
mm
(II) 30.1–35.2 ±
2.9–38.6 mm
(III) 33.2–39.5 ±
5.1–47.8 mm

38.9–44.4 ± 6.7–51.2
× 20–21.8 ±
1.9–24.2 mm

Díaz, Ramírez-
Amaro & Ordines
(2021)

Mallorca Channel,
Mediterranean Sea/
104–138 m

(T) 359–446–556 × 5– 8
–11 µm

Same as in ectosome (I) 14–18–21 µm
(II) nm
(III) 29–42 –47 mm

36–40–46 ×
14–19–23 mm

Melonanchora insulsa sp. nov.

Schmidt (1880) Gulf of Mexico*/
‘deep-sea’

- – (I) 23 µm
(II) 68 µm

60 mm

Reexamination
This study
(MZS Po165)

Gulf of Mexico*/
‘deep-sea’

(St) 593.6–656.7 ±
36.2–701 × 16.1–17.1 ±
1.2–19.5 mm

(S) 813.4–989 ±
41.2–1121.7 × 19.3–20.7
± 1.4–22.5 mm

(I) 27.2–30.9 ±
3.4–35.8 mm
(II) 48.6–52.3 ±
5.1–68 mm

52.9–56.5 ± 4.2–62.1
× 22–24.3 ±
1.7–26.6 mm

Melonanchora maeli sp. nov.

This study
(ZMA.POR.7269)

Cape Verde*/‘deep-
sea’

(T) 531.6–590.9 ±
37.9–627.9 × 9.7–10.3 ±
0.5–10.6 mm

(S) 637.6–918.5 ±
75.6–1062.6 × 17.3–19.2
± 1.3–21.3 mm

(I) 17.4–19.8 ±
1.7–23.2 mm
(II) 27–29.3 ±
1.2–31.9 mm
(III) 45.4–49.6 ±
2–53.1 mm

48.3–50.2 ± 1.7–53.2
× 17.4–19.2 ±
1.5–21.3 mm

Hanstoreia globogilva (Lehnert, Stone & Heimler, 2006a)

Lehnert et al. (2006a) Aleutian Islands*/
190 m

(T) 640–680 × 10–12 µm (Ac) 660–670 × 20–30 µm (I) 23–25 µm
(II) nm

(I) 65–93 mm
(II) 65–93 mm

Reexamination
This study
(NMNH-USNM
1082996)

Aleutian Islands*/
190 m

(T) 598.9–675 ±
22.5–724.5 × 9.7–10.9 ±
2.2–14.5 mm

(Ac) 589.3–638.3 ±
30–677.3 × 27–28 ±
1.1–29 mm

(I) 23.1–25.2 ± 1.1–27
mm
(II) 48–64.4 ±
6.8–67.6 mm

(I) 77.3–86.9 ±
2.8–91.8 × 27–30 ±
2.3–33.8 mm
(II) nm

Notes:
(S) indicates styles; (St) indicates strongyles; (T); indicates tylostyles.
* indicates this is the holotype of the species; nm indicates a spicular type that was not mentioned on a description, yet it is assumed was present on the samples.
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(60.12583, 4.98944, 130–150 m depth, on stone, 1982; ZMA.POR.P.10823, off Saengsbokt,
Bergen, Norway, North East Atlantic (60.36666, 4.81666), 350–600 m depth, 1982; ZMA.
POR.4976, off Saengsbokt, Bergen, Norway, North East Atlantic (60.36666, 4.81666),
350–600 m depth, 1982.

Unregistered material:
NR0509_82b, Flemish Cap, Tail Grand Bank, North Atlantic Ocean, 1,127 m depth
(NEREIDA Coll.); NR0610_30a, Flemish Cap, Tail Grand Bank, North Atlantic Ocean,
613 m depth (NEREIDA Coll.).

Description:
Massive-globular sponge, with an easily detachable paper-like thin ectosome bearing
abundant fistular processes (typical of the genus). The choanosome is orange-cream in
colour and the ectosome results whitish, yet translucent, in alcohol.

Skeleton:
Spicule arrangement as in the other species of the genus (viz. M. elliptica), with its main
distinguishing feature being the presence of strongyles as choanosomal megascleres.

Spicule complement:
Tylostrongyles, strongyles, two categories of isochelae, and spherancorae (Figs. 7A–7F)

Ectosomal tylostrongyles (Fig. 7B): As in other Melonanchora, they are slightly flexuous,
with a more or less central swelling. The tips can be strongyloid or slightly tylote often
vaguely unequal.
Size range: 483–542.6 ± 38.3–600 mm × 10.6–12.9 ± 3.2–19.3 mm

Choanosomal strongyles (Fig. 7A): Entirely smooth, with asymmetrical ends (one clearly
rounded and the other blunt but somewhat narrower. More or less curved throughout its
entire length.
Size range: 627.9–802.3 ± 42.2–924.5 mm × 11.6–18.3 ± 1.5–24.4 mm

Isochelae I (Fig. 7E, c’): Anchorate, with a straight shaft, gently bending to its ends, with
three-spatulated alae.
Size range: 21.2–26.5 ± 3.8–28.9 mm

Isochelae I (Fig. 7D, b’): Similar to isochelae I, but smaller in size.
Size range: 48.6–68.6 ± 8.1–72.9 mm

Spherancorae (Fig. 7C, a’): With a prolate-oval shape, and dentate fimbriae on its internal
face, which might be free or fused at various degrees. The junction points of each couple of
opposite alae can be observed in most spicules, with the resulting fused shaft being
slightly asymmetrical.
Size range: 48.3–67.5 ± 6.8–78.62 × 18.9–22.3 ± 1.6–25.2 mm
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Figure 7 Melonanchora tumultuosa spicule plate. Spicular set for Melonanchora tumultuosa sp. nov.
(sample GNM Por 624, holotype). (A) Choanosomal strongyle; (B) Ectosomal tylostrongyle;
(C) Spherancorae; (D) Large chelae category (Chelae II); (E) small chelae category (Chelae I), (F) General
view ofM. tumultuosa sp. nov. spicules by SEM imaging. (a’) Spherancora (b’) Chelae II and (c’) Chelae I
relative sizes when compared with that of the megascleres. Scale bars for (A), (B), (a’), (b’), (c’) 300 mm;
(C), (D), (E) 30 mm and (F) 500 mm. Full-size DOI: 10.7717/peerj.12515/fig-7
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Geographic distribution and type locality:
The species presents an amphi-Atlantic distribution (Fig. 4), being sympatric with
M. elliptica. Its type locality is the Sydkoster Island, Sweden, yet, known records for the
species also include Iceland (NHMUK–1958.1.1.633) the Davis Strait (Baker et al., 2018)
and Norwegian coasts (Vosmaer, 1885; this paper).

Etymology:
From the latin tumultuosus, meaning full of commotion. It refers to the confusion that
samples of this species have caused betweenM. elliptica andM. emphysema during the past
century.

Remarks:
Specimens of M. tumultuosa sp. nov. had been considered by several authors to be
M. emphysema because of their possession of both ectosomal and choanosomal strongyles
(Baker et al., 2018). Close re-examination of the M. emphysema type revealed only one
type of megascleres, which is present in both ectosome and choanosome (Fig. 5A), whereas
in M. tumultuosa sp. nov., two different types of strongyles characterise either the
ectosome (Fig. 7B) or the choanosome (Fig. 7A).

Additionally, it had been suggested that those Melonanchora with two strongyle
categories could in fact be M. elliptica individuals with styles modified into strongyles
(Baker et al., 2018). In this regard, sponge spicules might vary in shape due to
environmental conditions (Bell, Barnes & Turner, 2002) and/or silica abundance (Uriz
et al., 2003) even to the point not expressing one or more spicule types (Maldonado &
Uriz, 1996; Maldonado et al., 1999). However, M. elliptica and M. tumultuosa sp. nov.
co-occur in their areas of distribution, even at local scales (Baker et al., 2018), weakening
such an idea. Finally, M. tumultuosa sp. nov., spherancorae shape is mostly prolate
(Fig. 7C), commonly with asymmetrical shafts and rounded ends, whereas they are clearly
spheroidal in M. elliptica, with slightly pointed ends (Fig. 3C), which is translated in an
overall slender spherancorae forM. tumultuosa sp. nov, compared toM. elliptica (average
width 29.7 vs. 22.3 mm respectively; Tables 1 & 3).

Melonanchora intermedia sp. nov.
(Fig. 8)

Synonymy:
Melonanchora emphysema; Pulitzer-Finali, 1983: 561; Díaz, Ramírez-Amaro & Ordines,
2021: 42–43, fig. 16.
Not Melonanchora emphysema (Schmidt, 1875: 118).

Material examined.
Holotype (here designated): MSNG Vis4.7–off Calvi, Corsica (42.53333, 8.6), depth 128 m,
detrital, dredge, 18 July 1975. R.N. N IS.4.7 (Pulitzer-Finali, 1983).
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Description:
Small subglobular individual attached to rocky debris. It possesses a paper-like ectosome
with the warty-like papillae typical of the genus, yet with just a few papillae.

Figure 8 Melonanchora intermedia spicule plate. Spicular set for Melonanchora intermedia sp. nov.
(sample MSNG Vis4.7, holotype). (A) Ectosomal and chonasomoal tylostrongyle; (B) Spherancorae;
(C) small chelae category (Chelae I); (D) Large chelae category (Chelae II); (E) Anisochelae; (F) Detail of
the tylostrongyle’s ends. (a’) Spherancora (b’) Chelae II (c’) Anisochelae and (d’) Chelae I relative sizes
when compared with that of the megascleres. Scale bars for (A), (a’), (b’), (c’), (d’) 200 mm; (B), (C), (D),
(E), (F) 20 mm. Full-size DOI: 10.7717/peerj.12515/fig-8
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Skeleton:
Ill-defined paucispiculate tracts in the choanosomal area, and a clear crisscross pattern can
be observed in the ectosome. Microscleres are abundantly scattered throughout the
choanosome.

Spicule complement:
Tylostrongyles, three categories of chelae and spherancorae (Figs. 8A–8F).

Ectosomal and choanosomal tylostrongyles (Fig. 8A): frommore or less straight to entirely
bent on its length. The show a wider central zone, narrowing asymmetrically toward
differently marked tylotoid ends (Fig. 8F), giving the spicule a variable shape between
strongyles to tylostrongyles.
Size range: 369.6–411.8 ± 14.5–475.3 mm × 7.2–9.7 ± 1.5–11 mm

Isochelae I (Fig. 8C, d’): anchorate, with a gently curved shaft and irregularly spatulated
rounded alae, often with a malformed tooth in one or both of the extremes.
Size range: 19–21.5 ± 0.7–22.7 mm

Isochelae II (Fig. 8D, b’): With an almost straight shaft and three alae, presenting a
prominent fusion between the lateral alae and the shaft.
Size range: 30.1–35.2 ± 2.9–38.6 mm

Isochelae III (Fig. 8E, c’): With a long, gently curved shaft and slightly asymmetrical ends,
e.g., the alae of one extreme are ca. 1.5 longer that those of the opposite extreme
(anisochelae appearance). Alae are usually flat and with a straight end (occasionally with a
bifid appearance), occupying ca. ¼ of the spicule size.
Size range: 33.2–39.5 ± 5.1–47.8 mm

Spherancorae (Fig. 8B, a’): with an elongated shape, and fimbriae on its internal face, which
can be free or fused to varying degrees. Spherancorae with incompletely fused alae are
present.
Size range: 38.9–44.4 ± 6.7–51.2 × 20–21.8 ± 1.9–24.2 mm

Geographic distribution and type locality:
The species seems so far to be endemic to the Mediterranean Sea (Fig. 4), having only been
recorded from its type locality off Calvi, on the Corsica island (Pulitzer-Finali, 1983) and,
more recently, from the Mallorca Channel (Díaz, Ramírez-Amaro & Ordines, 2021).
Regarding its ecology, while records are still scarce it appears to occur at rhodolith beds
and rocky environments close to the limit of the continental shelf, between 104 to 134 m
depth.

Etymology:
From the Latin intermedia (“in between”). The name refers to its unique possession of a
third intermediate category of isochelae, contrary to almost all other Melonanchora
species, which only possess two.
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Remarks:
The closest species to M. intermedia sp. nov. would be M. emphysema, a typical deep-sea
species also recorded from the Mediterranean Sea. Both species share the presence
of tylostrongyles as their only megascleres, yet their microscleres present clear
divergences, with isochelae being smaller in size in M. intermedia sp. nov. compared to
M. emphysema (avgerage length (I) 21.5 and (II) 35.2 vs. (I) 24.7 and (II) 60.2 mm,
respectively; Tables 2 & 3), as well as the presence of a third category of chelae with flat,
slightly asymmetrical ends in M. intermedia sp. nov. In this sense, in their description of
‘Melonanchora emphysema’ Díaz, Ramírez-Amaro & Ordines (2021) only mentions two
chelae categories with no apparent aberrant morphologies, which could cast doubts
about its placement between M. emphysema or M. intermedia sp. nov. Nevertheless, all
spicular categories mentioned in Díaz, Ramírez-Amaro & Ordines (2021) fall within the
size range of M. intermedia sp. nov. (Table 3), and its biggest isochelae category possess
flat ends, which is one of the defining characteristics of M. intermedia sp. nov. Regarding
the fact that only two chelae categories could be identified in his specimen, it is possible
that isochelae II and III might have been confused in optical microscopy as, in fact, Fig. 16
of that same publication depicts a isochelae with rounded alae which matches in size
(ca. 35 mm) the isochelae II category of the holotype. It is also interesting to note that the
smallest isochelae category in the holotype of M. intermedia sp. nov. usually showed
alae with aberrant morphologies (Fig. 8C), a feature that was not described for the
Mallorca specimen. As so, this might point out that the presence and/or abundance of
certain of chelae types within this species might be subjected to a certain degree of
intraspecific variation. Finally, the Mallorca specimen shares withM. intermedia sp. nov. a
subglobular appearance, as well as depth range and habitat (100–140 m depth) which
further supports its inclusion as M. intermedia sp. nov. as opposed to M. emphysema,
which is appears to be an encrusting sponge mostly limited to the deep-sea and other
cold-water environments.

Melonanchora insulsa sp. nov.
(Fig. 1E; 9)

Synonymy:
Melonanchora elliptica Schmidt, 1880: 85, pl. IX fig. 8.
Not Melonanchora elliptica Carter, 1874: 212.

Material examined.
Holotype (here designated): MZS Po165, Gulf of Mexico, USCSS Blake expedition
(1878–79) in the Gulf of Mexico, (24, −86), deep-sea dredging, 1879.

Description:
A small (less than 1 cm2), thin fragment of choanosome, and some scrapped pieces of
ectosome (Fig. 1E). Although we cannot report on the sponge’s original shape, Schmidt 1
(880) described the sample as a crust growing on an euplectellid glass sponge from the
genus Regadrella.
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Skeleton:
The ectosomal skeleton consists of tangential strongyles with a criss-cross arrangement,
whereas the choanosomal skeleton is formed by ill-defined style-made tracts. Microscleres
are widespread throughout the choanosome without a clear discernible pattern.

Spicule complement:
Styles, strongyles, two categories of chelae, spherancorae (Figs. 9A–9F).

Ectosomal strongyles (Fig. 9B): slightly flexuous, with more or less unequal ends.
Size range: 593.6–656.7 ± 36.2–701 × 16.1–17.1 ± 1.2–19.5 mm

Choanosomal styles (Fig. 9A): entirely smooth, mostly straight, with acerate points
(Fig. 9F), sometimes slightly curved towards its distal end.
Size range: 813.4–989 ± 41.2–1121.7 × 19.3–20.7 ± 1.4–22.5 mm

Isochelae I (Fig. 9E): Smaller in size, and with a more prominent fusion between the lateral
alae and the shaft.
Size range: 27.2–30.9 ± 3.4–35.8 mm

Isochelae II (Fig. 9D): With a gently curved shaft, and spatulated alae.
Size range: 48.6–52.3 ± 5.1–68 mm

Spherancorae (Fig. 9C): with an elliptical slightly asymmetrical shape, and teeth-like
fimbriae on its internal face, which might be free or fused to different extent. Ridges of the
spherancorae are unequally, gently bent, giving its ellipsoid shape a slightly asymmetrical
appearance.
Size range: 52.9–56.5 ± 4.2–62.1 × 22–24.3 ± 1.7–26.6 mm

Geographic distribution and type locality:
The species is so far only known from the Gulf of Mexico (East of the Campache
Escarpment, 24.0�N 86.0�W), and was collected from deep waters (Fig. 4).

Etymology:
From the latin in- (“not”) + salsus (“salted”), meaning insipid, tasteless. The name refers to
the original description of the specimen made by Schmidt (1880), who regarded the sample
as boring or “uninteressanten”.

Remarks:
Schmidt (1880) unambiguously stated that this individual from the Gulf of Mexico
belonged to M. elliptica. However, the two types of chelae in M. elliptica’s have a straight
shaft with free alae pointing outwards (Figs. 3D–3E), whereas in M. insulsa sp. nov.
chelae show a slightly bent shaft and its alae are more parallel to the later (Figs. 9D–9E).
Apart from their morphological differences, the smaller isochelae category appears to be
bigger in M. insulsa sp. nov. (average length 30.9 mm; Table 3) when compared with
those from M. elliptica (average length 26.6 mm; Table 1). Moreover, M. elliptica’s
spherancorae are regularly oval (Fig. 3C), whereas M. insulsa’ spherancorae are irregular,
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Figure 9 Melonanchora insulsa spicule plate. Spicular set for Melonanchora insulsa sp. nov. (sample
MZS Po165, holotype). (A) Choanosomal style; (B) Ectosomal tylostrongyle; (C) Spherancorae; (D) Large
chelae category (Chelae II); (E) small chelae category (Chelae I); (F) Detail of the styles’ acerate end as
seen in SEM imaging. (a’) Spherancora (b’) Chelae II and (c’) Chelae I relative sizes when compared with
that of the megascleres. Scale bars for (A), (B), (a’), (b’), (c’) 300 mm; (C), (D), (E) 30 mm and
(F) 100 mm. Full-size DOI: 10.7717/peerj.12515/fig-9
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somewhat asymmetrical ellipsoids (Fig. 9C), supporting the distinction of M. insulsa sp.
nov. as a different species from M. elliptica.

Melonanchora maeli sp. nov.
(Fig. 1G; 10)

Synonymy:
Melonanchora emphysema; van Soest, 1993: 210, Tab. 2.
Not Melonanchora emphysema (Schmidt, 1875: 118).

Material examined.
Holotype (here designated): ZMA.POR.7269, Ponta Tremorosa, Ilha de Santiago, Cape
Verde, (14.8833, −23.5333), 1986; ZMA.POR.P. 10826, Ponta Tremorosa, Ilha de Santiago,
Cape Verde, (14.8833, −23.5333), 1986 (microscopic slide).

Description:
A small sub-globular sponge, covered with abundant, proportionally big, bulbous fistules
which arise from a paper-thin like ectosome (Fig. 1G). The ectosome is only attached
here and there to the cavernous choanosome, making the former easily detachable.
The choanosome is beige-orange and the ectosome is somewhat whitish, yet translucid.

Skeleton:
The ectosomal skeleton consists of tangential tylotes with a more or less developed
criss-cross arrangement, whereas the choanosomal skeleton is formed by ill-defined style-
made tracts. Microscleres are widespread thorough the choanosome without a clear
discernible pattern.

Spicule complement:
Styles, tylotes, three categories of chelae and spherancorae (Figs. 10A–10H). The sample
was contaminated with tetractinellid spicules from an unidentified specimen stored
altogether with the holotype.

Ectosomal tylostrongyles (Fig. 10B): slightly flexuous, with clearly marked tyles at both
ends. Very regular in size.
Size range: 531.3–590.9 ± 37.9–627.9 × 9.7–10.3 ± 0.5–10.6 mm

Choanosomal styles (Fig. 10A): entirely smooth and mostly straight to slightly bent, always
with acerate endings. The heads vary between those of true styles to true tylostyles
(Fig. 10G), albeit the later are rare.
Size range: 637.6–918.5 ± 75.6–1062.6 × 17.3–19.2 ± 1.3–21.3 mm

Isochelae I (Fig. 10F; d’): Small anchorate chelae, with a straight, short shaft, long fimbriae
and spatulated alae.
Size range: 17.4–19.8 ± 1.7–23.2 mm
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Isochelae II (Fig. 10E; c’): The least abundant of all three chelae categories, with a slightly
bent shaft, in intermediate size between isochelae I and III, with short, slender alae. Only
29 spicules could be measured.

Figure 10 Melonanchora maeli spicule plate. Spicular set for Melonanchora maeli sp. nov. (sample
ZMA.POR.7269, holotype). (A) Choanosomal style; (B) Ectosomal tylostrongyle; (C) Spherancorae;
(D) Large chelae category (Chelae III); (E) Intermediate chelae category (Chelae II); (F) Small chelae
category (Chelae I); (G) Head of a style modified into a tylostyle; (H) Detail of a spherancora lateral view.
(a’) Spherancorae (b’) Chelae III (c’) Chelae II and (d’) Chelae I relative sizes when compared with that of
the megascleres. Scale bars for (A), (B), (a’), (b’), (c’), (d’) 300 mm; (C), (D), (E), (F) 30 mm; (G) 400 mm
and (H) 20 mm. Full-size DOI: 10.7717/peerj.12515/fig-10
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Size range: 27–29.3 ± 1.2–31.9 mm

Isochelae III (Fig. 10D; b’): The biggest of the three isochelae categories, it is strikingly
similar to isochelae II, with a long, slightly bent shaft and reduced slim alae. Yet, the
alae are more reduced in regards to the general size of the spicule, and they are widely
opened in respect to each other, contrary to isochelae II, where the separation between alae
isn’t obvious.
Size range: 45.4–49.6 ± 2–53.1 mm

Spherancorae (Figs. 10C, 10H; a’): with an elongated oval shape, almost straight with just a
subtle curvature near the tips, and teeth-like fimbriae on its internal face. It usually shows a
slightly asymmetrical appearance.
Size range: 48.3–50.2 ± 1.7–53.2 × 17.4–19.2 ± 1.5–21.3 mm

Geographic distribution and type locality:
This is the southernmost species of Melonanchora known to date, and, the only species of
the genus to occur in Cape Verde archipelago (14� 52′ 59.88″N 23� 31′ 59.88″W) (Fig. 4).

Etymology:
The species is dedicated to Mael, the Elder God of the Seas in the world of Malaz,
co-created by Steven Erikson and Ian C. Esslemont, in recognition of the vast and unique
universe of their novels.

Remarks:
Originally identified as M. emphysema (van Soest, 1993), the specimen appears to be new
to science. While its spicule complement would place it close to M. elliptica or M. insulsa
sp. nov. due to the possession of styles as choanosomal megascleres, the presence of
three chelae categories easily tells it apart from those. Additionally, the shape of the
chelae is very different to that of the abovementioned species, with considerably reduced
alae in two of the chelae categories (Figs. 10D and 10E), a feature which isn’t shared by
any other Melonanchora species. Furthermore, its spherancorae are almost straight
(Fig. 10C), whereas in most other Melonanchora species a clear oval morphology can be
observed.

Genus Hanstoreia gen. nov.

Diagnosis:
Massive-globular growth form, with paper-like, easily detachable thin ectosome, bearing
multiple fistular processes. Ectosomal skeleton going from no apparent apparent
organization to an ill-defined crisscross of smooth strongyles to tylotes with somewhat
asymmetrical ends, whereas the choanosome is composed of ill-defined acanthostyles
tracts. Microscleres include typically two categories of anchorate isochelae, rarely three,
with at least one in the form of acanthose, incomplete ‘spherancorae’.

Type species:
Melonanchora globogilva Lehnert, Stone & Heimler, 2006a: 9–13 (here designated).
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Etymology:
The genus is dedicated to a much esteemed and dearly missed Nordic colleague, Hans Tore
Rapp (University of Bergen), in recognition of his exceptional contributions on taxonomy
and ecology of deep-sea sponges of the boreal and Arctic regions.

Remarks:
Hanstoreia globogilva was recently described from the Pacific Ocean (Fig. 11), and
tentatively assigned to the genusMelonanchora, yet it presented some unique spicule types
absent from their Atlantic counterparts (Lehnert, Stone & Heimler, 2006a). In this
sense, the species clearly resembled M. elliptica, the type species of Melonachora, yet it
possessed acanthostyles (Fig. 12A) as choanosomal megascleres and particular isochelae
with dentate fimbria (Fig. 12C) along the internal face of its alae and shaft, which were
reminiscent of spherancorae, the main diagnostic feature for Melonanchora.

The placement of this species within Melonanchora was initially based on its
external morphology (Fig. 1F) and, under the consideration that other Melonanchora
species (viz. M. tetradedritifera Koltun, 1970 and M. kobjakovae Koltun, 1958) had been
previously described with incomplete ‘spherancorae’ (Koltun, 1958, 1970). However,
SEM observation of Koltun’s species (this study, Figs. 13–14) proved that those species
did not bear true spherancorae but more or less complete cleistochelae, and therefore
both M. tetradedritifera and M. kobjakovae need to be reassigned to other genera
(See below).

Figure 11 Distribution map for North Pacific species previously in Melonanchora. Distribution map
for Hanstoreia globogilva (red diamond), Myxilla (B.) kobjakovae (green square) and Arythmata tetra-
dentifera (purple circle). Projected view (UTM Zone 31N (WGS84)) with geographic (WGS84) coor-
dinates indicated for reference. A grey line represents the 1,000 m depth isobaths. Geographic and
bathymetric data used was obtained from http://www.naturalearthdata.com.

Full-size DOI: 10.7717/peerj.12515/fig-11
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While the dissimilarities between H. globogilva and Melonanchora are quite clear
(smooth vs. acanthose choanosomal megascleres, complete vs. incomplete ‘spherancorae’),
they also share several traits (mainly two categories of smooth isochelae, ectosomal
tylostrongyles to strongyles, a thin translucent paper-like ectosome and a more or less
subspherical external morphology) thus, arguments both in favour and against erecting a
new genus for H. globogilva could be made. Regarding H. globogilva’s external appearance,
within Poecilosclerida there are other unrelated genera apart from Melonanchora (viz.
Cornulum, family Acarnidae; Coelosphaera, family Coelosphaeraeidae) which might
present a subglobular appearance and possess a warty, paper-like ectosome. Thus, external
appearance alone does not represent a reliable character for genus assignation.

Regarding its spicular complement and skeletal arrangement, H. globogilva is
indubitably closer toMelonanchora than to any other genera within Myxillidae, but it still
presents major differences with the former. In this sense, H. globogilva possesses true
acanthostyles, which are lacking from any other Melonanchora representative so far.
Furthermore, all known Melonanchora possess an ectosomal arrangement of tangential
tylostrongyles forming a dense, well-defined crisscross pattern (Fig. 2C), whereas in the
choanosome megascleres are mostly arranged in spicule tracts, with some free spicules
in between. On the contrary, in the case of H. globogilva tylostrongyles in the ectosome are
mostly arranged in a confused manner, whereas their choanosomal tracts are ill-defined
and with abundant free spicules in between. Nevertheless, the main difference between
H. globogilva and Melonanchora would be that of its supposed incomplete ‘spherancorae’.
In this sense, H. globogilva possesses unique, acanthose square-shaped chelae, which
might be reminiscent of spherancorae while still in formation. Nevertheless, it has already
been proven that unique microscleres, including chelae derivatives, might have evolved
independently by phylogenetically distant species. In this sense, a similar case to that of
H. globogilva andMelonanchora would be that of the proposed synonymy of Abyssocladia
Lévi, 1964 with Phelloderma Ridley & Dendy, 1886 by van Soest & Hajdu (2002).
Abyssocladia was known from just three ill-known species while Phelloderma was
monotypic, but both genera appeared to share the possession of a unique, apparently
identical chelae type in the form of ‘abyssochelae’. Nevertheless, and as noted by the
authors, both species greatly differed in all other aspects, including general shape,
skeletal architecture and the rest of its spicular complement. The discovery of additional
species of Abyssocladia casted additional doubts about the genus status, which was then
revived and reassigned to the family Cladorizhidae based on its similar skeletal
arrangement, presence of sigmancistras and shared carnivorous habit (Vacelet, 2006).
Finally, the use of molecular markers demonstrated that Abyssocladia and Phelloderma
were not closely related (Vargas et al., 2013), and thus that, despite their striking similarity,
their unique chelae had developed independently. Lastly, it is also worth noticing that if
included in Melonanchora, H. globogilva would be the sole representative of the genus in
the Pacific, whereas all other species occur in the North Atlantic.

While Melonanchora and H. globogilva could be arguably closer to each other than to
other Myxillidae, based on previous precedents we have decided to erect a new genus,
Hanstoreia gen. nov. to allocate H. globogilva, rather than including it in Melonanchora.
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Hanstoreia globogilva (Lehnert, Stone & Heimler, 2006a)
(Figs. 1F; 12)

Synonymy:
Melonanchora globogilva Lehnert, Stone & Heimler, 2006a: 9–13, fig. 4a–4f, fig. 5a–5d;
Stone, Lehnert & Reiswig, 2011: 88, Apendix IV. 168–169.
Melonanchora globoblanca Lehnert, Stone & Heimler, 2006a: 12 (misspelling of the
former).

Material examined.
Holotype: NMNH-USNM 1082996, north of Amlia Island, Aleutian Islands (58.46902,
−173.59802), 190 m depth, 2006.

Description:
Sub-spherical shape, with an easily detachable paper-like thin ectosome bearing abundant
bulbous fistules (Fig. 1F). The choanosome is light-yellow and the ectosome is somewhat
translucent-whitish, in life.

Skeleton:
The ectosomal skeleton consists on a loose crisscross of spicules arranged perpendicularly
to the surface here and there, yet for most of it no clear arrangement can be discerned.
The choanosome consists of ill-arranged tracts of tylotes and acanthostyles, without a clear
discernible orientation, and with the tylotes being restricted to the upper areas of the
choanosome. Microscleres are abundant and concentrate towards the choanosomal tracts.

Spicule complement:
Tylotes, acanthostyles, and three chelae categories, one of them in the form of incomplete
‘spherancorae’ (Figs. 12A–12F).

Ectosomal tylotes (Fig. 12B): Unevenly flexuous, with a central thickening, unequally
thinning towards both ends, which sow variable tyles with variable swellings.
Size range: 598.9–675 ± 22.5–724.5 × 9.7–10.9 ± 2.2–14.5 mm

Choanosomal acanthostyles (Fig. 12A): Slightly curved along its length, with an acerate
point. Spines are short and stout, moderately abundant along the entire shaft but the tip.
Size range: 589.3–638.3 ± 30–677.3 × 27–28 ± 1.1–29 mm

Isochelae I (Fig. 12E): with a straight shaft, well-developed fimbriae and spatulated alae, the
lateral ones largely fused with the shaft.
Size range: 23.1–26.2 ± 1.1–27 mm

Isochelae II (Fig. 12D): Almost identical to isochelae I, but bigger in size.
Size range: 48.3–64. 4 ± 6.8–67.6 mm

Spherancorae (Fig. 12C): Uncompleted, with free teeth, resembling chelae. As in all other
Melonanchora, dentate fimbriae cover its internal face.
Size range: 77.3–86.9 ± 2.8–91.8 × 27–30 ± 2.3–33.8 mm
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Geographic distribution:
The species appears to be rare, as it has only been seldomly recorded from deep bottoms
around the Aleutian Archipelago (Lehnert, Stone & Heimler, 2006a; Stone, Lehnert &
Reiswig, 2011) (Fig. 11).

Figure 12 Hanstoreia globogilva spicule plate. Spicular set for Hanstoreia globogilva (sample
NMNH-USNM 1082996, holotype). (A) Choanosomal acanthostyle; (B) Ectosomal tylostrongyle;
(C) Spherancorae; (D) Large chelae category (Chelae II); (E) small chelae category (Chelae I); (F) General
view of H. globogilva’s spicules by SEM imaging. (a’) Spherancora (b’) Chelae II and (c’) Chelae I relative
sizes when compared with that of the megascleres. Scale bars for (A), (B), (a’), (b’), (c’) 300 mm; (C), (D),
(E) 30 mm and (F) 500 mm. Full-size DOI: 10.7717/peerj.12515/fig-12
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Remarks:
The original description mentions a second category of spherancorae-isochelae with
outer dented margins which could not be found again upon re-examination of the type
material. As they are in the same size-range as the incomplete ‘spherancorae’, they are here
regarded as likely to constitute aberrant modifications or developmental stages of
H. globogilva’s unique chelae. Additionally, the re-examination of the type material made it
clear the existence of a second, larger, isochelae category almost identical to its smallest one
but much less abundant, which might explain its absence from the species’ original
description.

Genus Myxilla Schmidt, 1862
Subgenus (Burtonanchora) Laubenfels, 1936

Type species:
Myxilla (Burtonanchora) crucifera Wilson, 1925 (by original designation).

Diagnosis:
Myxilla with smooth choanosomal styles. Chelae are three-teethed, with occasional
polydentate modifications (amended from van Soest, 2002).

Myxilla (Burtonanchora) kobjakovae (Koltun, 1958)
(Fig. 13)

Synonymy:
Melonanchora kobjakovae Koltun, 1958: 58, fig. 13; Koltun, 1959: 122, fig. 75; pl. XVII,
fig. 4; pl. XVIII, fig. 2; Javnov, 2012 (partim): 65–66.

Material examined:
Syntype (here designated): NHMUK 1963.7.29.23, Southern Kuril Islands, Pacific coast,
R/V Toporok Kuril-Sakhalin expedition (1946–49) (Stns 127, 128), Deep-sea dredging,
1949. Exchanged with V. M. Koltun in July 1963.

Description:
The sponge is tubular, digitate or funnel shaped, with a long stem. Its surface is smooth,
with the oscules being located on the top of the finger-like processes in the digitate forms.
Colour bright orange in life, and from ochre to dark-brown, in alcohol.

Skeleton:
Choanosomal skeleton consisting of a dense isodyctial reticulation of multispicular tracts
embedded in spongin fibres without echinating spicules. Ectosomal skeleton formed by a
tangential layer of more or less disarranged spicules.

Spicule complement:
Styles, strongyles, and two categories of chelae (Figs. 13A–13E).
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Ectosomal strongyles (Fig. 13B): Straight, short and stout, with a subtle swelling at each
end (Fig. 13f’, f’’), finished in a ring of weak spines, typical of Myxilla. They can also be
found scattered through the choanosome.
Size range: 140.3–190.3–323.8 ± 12.2 × 7.1–9.8–12.5 ± 2.1 mm

Choanosomal styles (Fig. 13B): slightly curved along its length, with and acerate distal end
and a proximal end sometimes vaguely inflated.
Size range: 327.5–397.5–567.3 ± 23.2 × 17.8–20.3–22.6 ± 1.9 mm

Isochelae I (Fig. 13D): Unusual small anchorate isochelae with three prominent alae
ending in a double hook-like termination. The alae of both ends almost contact each other,
somewhat resembling a cleistochelae. Fimbriae are well developed, and present and inner
hook on its lower part which point towards the interior of the chelae.
Size range: 29.2–33.3–35.7 ± 2.8 mm

Figure 13 Myxilla kobjakovae spicule set Spicular set for Myxilla (B.) kobjakovae (sample NHMUK
1963.7.29.23, holotype). (A) Choanosomal style; (B) Ectosomal strongyle; (C) Large chelae category
(Chelae I); (D) Small chelae category (Chelae II); (E) Style’s aberrant end; (f’) close up view of the
strongyles microspinned end; (f’’) close up view of the strongyles’ microspinned other end. (a’) Chelae I
(b’) Chelae II relative sizes when compared with that of the megascleres. Scale bars for (A), (B), (a’), (b’)
150 mm; (C), (D), (E) 30 mm and (f’), (f’’) 10 mm. Full-size DOI: 10.7717/peerj.12515/fig-13
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Isochelae II (Fig. 13C): Anchorated, three-teethed chelae, with spatulated alae. It has clear,
well developed fimbriae, which expand from the shaft.
Size range: 60.1–79.7–87.6 ± 7.8 mm

Geographic distribution:
So far, the species has only been recorded from the Okhotsk Sea, at the Kuril, Iturup and
Urup islands (Koltun, 1958, 1959; Javnov, 2012; Guzii et al., 2018) and the Kamchatka
peninsula (Calkina, 1969) at depths ranging from 28 to 231 m (Fig. 11).

Remarks:
Myxilla (B.) kobjakovae was initially assigned to Melonanchora based on the presence of
smooth choanosomal megascleres and spherancorae (Koltun, 1958). Yet, after
re-examining the holotype, we verified that those supposed spherancorae were in fact
cleistochelae derivatives (Fig. 13D). Additionally, M. kobjakovae clearly deviates from
Melanonchora species in growth form, lack of a paper-like ectosome, and type of
megascleres. Besides Melonanchora, just two other Myxillidae genera possess smooth
megascleres:Myxilla (Burtonanchora) Laubenfels, 1936 and Stelodoryx Topsent, 1904. Both
genera resemble each other in most aspects (Lehnert & Stone, 2015), yet Stelodoryx is
defined as possessing polydentate anchorate isochelae whereasMyxilla (B.) has exclusively
three- teethed anchorate isochelae (van Soest, 2002). However, Myxilla (B.) asigmata
Topsent, 1901 has been observed to possess chelae with 3–5 alae (Ríos & Cristobo, 2007),
implying that the definition of Myxilla should be modified to include the eventual
possession of polydentate chelae. On the other hand, as a result of the inclusion of some
other genera as synonyms of Stelodoryx by van Soest (2002), some of the current species of
Stelodoryx possess three-teethed chelae (viz. Stelodoryx lissostyla (Koltun, 1959). As to,
whether Stelodoryx and Myxilla are synonymous or two different genera is unclear and in
need of a taxonomic revision.

The presence of polydentate chelae, while not specific enough, is still used as the
main classifying feature to distinguish Myxilla and Stelodoryx (Bertolino et al., 2007;
Lehnert & Stone, 2015). Thus, the new species is here referred toMyxilla (Burtonanchora)
due to the possession of three-teethed anchorate chelae, yet it differs from most other
Myxilla (B.) in the absence of sigmas, possession of two chelae categories, one of them in
the form of cleistochelae, and its stalked growth form. Further reclassification of the species
should not be ruled out in light of a broader Myxillidae review.

Finally, the species description in the Russian Fauna of the East seas (Javnov, 2012)
depicts varying morphologies for M. kobjakovae. While polymorphism is common in
sponges, the huge variations depicted in the Russian individuals, which range from the
typical digitate-branching orange sponge, to conical-shaped or tubular-rimmed, cream
coloured individuals (Javnov, 2012) suggest they may represent a different related species.

Genus Arhythmata gen. nov.

Type species:
Melonanchora tetradedritifera Koltun, 1970 (here designated).
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Diagnosis:
Lamellate sponge, apparently resulting from coalescent digitations, with the surface
slightly uneven. Ectosome thin, coriaceous, easy to detach, with subectosomal cavities.
Oscula are large and unevenly spread. Choanosome crossed by numerous canals.
The ectosomal skeleton is a tangential layer of strongyles perpendicular to the
choanosomal spicule tracts. The choanosomal skeleton consists of a loose isodyctial
reticulation of multispicular style tracts embedded in spongin. The spicule complement
consists of smooth choanosomal styles, ectosomal tylotes with spiny heads and three
categories of polydentate chelae, among which, at least one is asymmetrically modified.
So far, monotypic genus restricted to the deep-sea areas around the Okhotsk Sea.

Etymology:
From the Latin arhythmatus, meaning “inharmonious” or “of unequal measure”, referring
to the asymmetry of the alae of A. tetradedritifera’s peculiar chelae.

Remarks:
Arhythmata tetradedritifera was originally described as Melonanchora tetradedritifera
based on the possession of smooth choanosomal styles, two categories of chelae, and
spherancorae (Koltun, 1970). However, Koltun misidentified unique, modified chelae as
spherancorae (See “The Origin of Spherancorae”), and described styles and tylostrongyles
that highly differed in shape from those of other Melonanchora species. This spicule
combination draws the species closer to Myxilla (Burtonanchora) and Stelodoryx as they
are the only Myxillidae genera with smooth styles. However, in contrast to M. (B.)
kobjakovae, A. tetradedritifera possesses polydentate (4–5) chelae, which will place the
species closer to Stelodoryx than to Myxilla. However, while Myxilla (Burtonanchora)
(13 accepted species; van Soest et al., 2021) represents a narrowed, well-defined, portion of
Myxilla (91 accepted species; van Soest et al., 2021), Stelodoryx (18 accepted species;
van Soest et al., 2021), represents an amalgam of spicule types on a rather small genus
(Lehnert & Stone, 2015). Indeed, the actual concept of Stelodoryx is only distinguished
fromMyxilla by the presence of polydentate chelae, yet little attention has been paid to the
other spicule complements (Lévi, 1993). Megascleres in Stelodoryx include both smooth
(viz. Stelodoryx flabellata Koltun, 1959) or spiny (viz. Stelodoryx mucosa Lehnert & Stone,
2015) ectosomal tylotes or tornotes, or even styles (viz. Stelodoryx siphofuscus Lehnert &
Stone, 2015); with choanosomal acanthostyles (viz. S. mucosa), smooth styles (viz. S.
siphofuscus or S. mucosa), microspined styles (viz. Stelodoryx lissostyla (Koltun, 1959)),
oxeas (viz. Stelodoryx oxeata Lehnert, Stone & Heimler, 2006a, 2006b) or even strongyles
(viz. S. flabellata). Additionally, chelae may be three-teethed (viz. S. lissostyla) or
polydentate, with teeth varying from four to seven, having from one (viz. S. flabellata) to
three (viz. S. oxeata) chelae categories, with occasional accompanying sigmas (viz.
S. oxeata or S. mucosa). Thus Stelodoryx, with just 18 species, harbours a spicule
variability that might equal those of all four subgenera of Myxilla together (van Soest,
2002). With a combination of strongyles with microspined head and smooth styles, the
closest relative to A. tetradedritifera within Stelodoryx would be Stelodoryx jamesorri
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Lehnert & Stone, 2020 which has already been signalled as of difficult allocation within the
genus Stelodoryx (Lehnert & Stone, 2020). While both species share several common
traits (stout choanosomal smooth styles, ectosomal tylotes to strongyles with microspined
heads and the possession of two categories of peculiar polydentate chelae), both species
differ in the possession of third, unique chelae category for A. tetradedritifera and in their
skeletal organization, being plumoreticulate in Stelodoryx jamesorri, as opposed to the
isodyctial reticulation observed in A. tetradedritifera. Finally, Stelodoryx pluridentata
(Lundbeck, 1905) and Stelodoryx strongyloxeata Lehnert & Stone, 2020, would also be
arguably close to A. tetradedritifera, but they possess ectosomal styles instead of strongyles
(Lévi, 1993; Lehnert & Stone, 2020), with additional sigmas in the former (Lévi, 1993) and
choanosomal strongyleoxeas in the later (Lehnert & Stone, 2020).

Consequently, a new genus, Arhythmata gen. nov., is here erected to properly
accommodate Melanonchora tetradedritifera, with a diagnosis based on the combination
of ectosomal microspined strongyles, smooth choanosomal styles in an isodyctial
arrangement, and three polydentate chelae categories and, from which at least one is
modified into an asymmetrical chelae, a rare feature within Poecilosclerida, which has
been considered of taxonomic value for other genera (e.g., Echinostylnos spp.; Lévi, 1993),
and which are here termed retortochelae (Fig. 14C) and defined as “asymmetrical stout
chelae in which alae are not facing their direct opposite, but the space in-between opposing
alae”. Interestingly enough, retortochelae appear to be very rare within Porifera, with
Echinostylnos Topsent, 1927 being the only other genera with asymmetrically twisted
chelae, albeit not all its accepted species possess such (Carvalho et al., 2016). On the other
hand, their stout, somewhat clesitocheliferous morphology is also relatively unusual
within chelae, just being common in two other genera: Abyssocladia (known as
abyssochelae) and Phelloderma. Despite their rarity, molecular analyses have shown
that said chelae have been independently acquired (Vargas et al., 2013; Göcke, Hajdu &
Janussen, 2016), thus being safe to assume that this is also the case for Arhythmata gen.
nov. Finally, while currently the genus remains monotypic, this might change in the future
upon a proper re-examination of the genus Stylodoryx, which is much in need of revision.

Arhythmata tetradedritifera (Koltun, 1970)
(Figs. 1D, 14)

Synonymy:
Melonanchora tetradedritifera Koltun, 1970: 209, fig. 22.

Material examined.
NMNH-USNM 148959, AB120069, South of Amlia Island, Central Aleutian Islands,
Pacific coast, (51.8392, −173.906), 337 m depth, July 2012; NMNH-USNM 1478958,
AB120046, South of Kanaga Island, Central Aleutian Islands, Pacific coast, (51.5587,
177.622), 358 m depth, July 2012.
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Description:
As described in the genus definition (Fig. 1D). All the examined samples contained sand
grains through the choanosome. Additionally, the colour when dry is dark brown, close to
kobicha (kelp like) or taupe (brown-greyish), whereas the ectosome is whitish with
wheat-like shadings.

Skeleton:
The ectosomal skeleton consists of a somewhat confused tangential layer of strongyles
perpendicular to the choanosomal spicule tracts, which consists of a loose isodyctial
reticulation of multispicular style tracts embedded in spongin.

Spicule complement:
Styles, strongyles, three categories of chelae (Figs. 14A–14D).

Figure 14 Arhythmata tetradentifera spicule plate. Spicular set for Arythmata tetradentifera (sample
NMNH-USNM 148959). (A) Choanosomal style; (B) Ectosomal strongyle; (C) and (C’) Retortochelae;
(D) Large chelae category (Chelae II); (E) Style’s aberrant end; (f’) close up view of the strongyles
microspinned end; (f’’) close up view of the strongyles’ microspinned other end. (a’) Retortochelae (b’)
Chelae II and (c’) Chelae I relative sizes when compared with that of the megascleres. Scale bars for (A),
(B), (a’), (b’), (c’) 300 mm; (C), (D), (E) 50 mm and (f’), (f’’) 10 mm.

Full-size DOI: 10.7717/peerj.12515/fig-14

Santín et al. (2021), PeerJ, DOI 10.7717/peerj.12515 43/63

http://dx.doi.org/10.7717/peerj.12515/fig-14
http://dx.doi.org/10.7717/peerj.12515
https://peerj.com/


Ectosomal strongyles (Fig. 14B): Short, straight, with both ends slightly spinose and slight
inflated somewhat unequally (Fig. 14f’, f’’); a distal thorn is present, which gives them the
appearance of tornote-like strongyles.
Size range: 270.5–307.8–357.4 ± 24.3 × 9.6–10.3–14.5 ± 1 mm

Choanosomal styles (Fig. 14A): Entirely smooth, slightly curved along its length, almost
doubling in width the tylostrongyles.
Size range: 521–608–685 ± 54.3 × 24.1–29.3–33.8 ± 2.3 mm

Isochelae I (Fig. 14E): Small ancorate pentadentate, with a short shaft.
Size range: 48.3–60.4–67.7 ± 7.3 mm

Isochelae II (Fig. 14D): ancorate pentadentate isochelae, with a comparatively large, almost
straight shaft.
Size range: 67.7–70.6–87.3 ± 3.4 mm

Retortochelae (Fig. 14C): Asymmetrical, almost ovoid, ancorate isochelae with a curved,
somewhat twisted shaft and four five, long teeth. The upper and lower teeth are not facing
each other but slightly displaced, in such a way that each tooth occupies the space between
two opposite teeth and vice versa. This makes the chelae asymmetrical, with the alae
looking as if they have been sculpted with notches and tips to accommodate the opposing
alae.
Size range: 77.3–88.6–106 ± 2 × 48.3–49.1–53.1 ± 2 mm

Geographic distribution:
Currently, the species has only been located at the deep-sea waters (338 to 3,335 m depth)
of the Okhotsk Sea, mostly around the Simushir Islands (Koltun, 1970; Downey, Fuchs &
Janussen, 2018) and the Aleutian Islands (Fig. 11).

Remarks:
Although the holotype of this species could not be examined, the studied material fits well
with Koltun’s original description, in terms of spicule types and sizes (Koltun, 1970).
However, the species has been observed to possess two different chelae categories, mainly
distinguished by its size and shaft lengths, which were not described by Koltun, while the
spherancorae mentioned in the original description are, in fact, modified chelae with a
twisted shaft, long teeth and an ovoid contour (retortochelae; Fig. 14C).

Arhythmata tetradedritifera represents a new addition to the already diverse Myxillidae
fauna of the Okhotsk deep-sea and nearby areas. During the past years, several new
species from the area have been included in Myxillidae (Lehnert, Stone & Heimler, 2006a,
2006b; Lehnert & Stone, 2015), which might partially respond to a high abundance of
endemic benthic fauna in the area (Downey, Fuchs & Janussen, 2018). Although the genus
remains monotypic for the time being, further exploration in the deep bottoms of the
Okhotsk Sea and nearby areas might result in the discovery of additional species.
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DISCUSSION
Diversity and biogeography of the genus Melonanchora
In contrast to most sponge genera, Melonanchora shows a quite narrow distribution,
restricted to the circumpolar Arctic and some North Atlantic areas. Additionally,
only one species, M. elliptica could be considered common across its distribution area
(Fristedt, 1887; Lundbeck, 1905; van Soest & De Voogd, 2015; Baker et al., 2018). Despite
initial misidentification of fossil spherancorae (Hinde & Holmes, 1892), there are no
known fossil records for the genus, thus making discussion about its origin and radiation,
tentative.

Contrary to biogeographic distributions of other sponge genera, which suggest they
may have a Tethyan or Gondawanan origin (e.g., Acarnus, van Soest, Hooper & Hiemstra,
1991; Rhabderemia, van Soest & Hooper, 1993; Hajdu & Desqueyroux-Faúndez, 2008;
Hamigera, Santín et al., 2020), the current distribution of Melonanchora might be better
explained by trans-Arctic exchanges. The opening of the Bering Strait during the late
Pliocene (ca. 5.3 Ma; Vermeij, 1991), allowed a massive interchange of species among
northern areas of the Atlantic and the Pacific (Vermeij, 1991), which is supported by
both the fossil record (Reid, 1990) and molecular studies (Dodson et al., 2007; Coyer et al.,
2011). This exchange did not just occur among vagile fauna (Dodson et al., 2007), but also
among benthic species (Reid, 1990), including sponges (Ereskovsky, 1995). Benthic
species are known to have crossed the strait, in the several opening and closing events of
the strait during the glacial and interglacial periods (Coyer et al., 2011). Additionally,
during these glacial and interglacial periods, species expanded or contracted their
distribution areas as a result of climate changes and their associated biotic and abiotic
factors, which provided new suitable habitats (Jansson & Dynesius, 2002). The common
ancestor for both Melonanchora (Atlantic) and Torentendalia gen. nov. (Pacific), might
have expanded from Pacific to Atlantic waters during one of the several events that
opened the Bering Strait, with the aforementioned genera resulting from the isolation of its
Pacific and Atlantic populations. Once in the Atlantic, it could have expanded further
south towards the tropical regions during the glacial periods (Ereskovsky, 1995). Thus,
M. maeli sp. nov. and M. insulsa sp. nov., the only representatives of the genus close
to the equator, might be a legacy of this latitudinal migration, being now confined to
“deep-sea refugia” due to previous climatic changes (Ereskovsky, 1995; Convey et al., 2009).
Finally, the Mediterranean M. intermedia sp. nov. might represent a recent speciation
from M. emphysema, which might have entered the Mediterranean after the Messinian
Salinity Crisis, as hypothesized for other Mediterranean sponges (Boury-Esnault,
Pansini & Uriz, 1992; Xavier & Van Soest, 2012). However, the lack of fossil records in
their current distribution area (Ereskovsky, 1995) and the lack of phylogenetic data,
paired with the scarcity of material of most Melonanchora species, makes it difficult to
properly assess the vicariant events that led to its diversification, leaving the field open for
future research efforts.
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The origin of spherancorae
The order Poecilosclerida Topsent, 1928, build around the exclusive presence of chelae is,
with over 2.500 formally described species (van Soest et al., 2021) possibly the most
diverse group within Porifera (Hooper & Van Soest, 2002). The high taxon diversity
parallels that of its chelae, with basic chelae morphotypes (palmate, anchorate, and
arcuate) described for the first time by Levinsen (1893) and Lundbeck (1905, 1910), and
several modifications of the formers (Hajdu, van Soest & Hooper, 1994; Hooper & Van
Soest, 2002).

In his initial description of Melonanchora, Carter (1874) assumed that the two chelae
categories present his specimen where in fact early developmental stages of the unique,
“melon-shaped” chelae, which characterized the genus or even, the last developmental
stage of anchorate chelae (Vosmaer, 1885). While this view was soon refuted, and the
“melon-shaped” chelae was recognized as a separate chelae type (Schmidt, 1880), it was
not until 1885 that they were given a specific designation, “mel”, based on their unique
shape (Vosmaer, 1885). However, the name would remain unsettled for the following
years, with several authors following Vosmaer’s proposal asmelonanchoras (Fristedt, 1887;
Levinsen, 1893; Arnesen, 1903), while others followed Topsent’s proposed designation
(Topsent, 1892) of sphearancisters (Thiele, 1903; Topsent, 1904). Topsent’s proposal
however, was based on his perception that each shaft of the chelae resembled a diancistra
(Topsent, 1892). However, diancistras are sigmoid derivatives (Hajdu, van Soest & Hooper,
1994) whereas spherancorae are true chelae derivatives (Levinsen, 1893). Nevertheless, the
term “melonanchora” was identical to that of the genus, which could lead to confusion.
As so, Lundbeck settled the dispute in 1905, when he designated these unique chelae as
spherancorae, highlighting its chelae nature and unique oval morphology (Lundbeck,
1905).

Regarding the spherancora’s unique morphology, the common presence of
developmental stages in several individuals has given a proper view of their chelae nature
(Levinsen, 1893) as well of their developmental stages. Spherancorae start as slim ancorate
chelae, with a thin shaft and three teeth (Fig. 15.1), of the same width. Later, those
three teeth expand, until they coalesce (Fig. 15a), forming four indistinguishable shafts, all
being at approximately right angles in respect to each other, and giving the spherancorae
its characteristic oval shape (Fig. 15.2). While not usually visible as they occur on the
internal shaft’s view, the junction points of the alae usually develop into a swelling in adult
spherancorae (Fig. 15c). Right after the arcs are formed, the spherancorae begin the
development of its internal “teeth-brims” (Fig. 15.3), as in other teethed chelae,
(e.g., Guitarra solorzanoi; Cristobo, 1998). The internal dentate fimbriae are regularly
arranged along the internal surface of the Melonanchora’s shaft (Fig. 15.4; 15.5; 15.5’),
yet the teeth are not fused to the shafts, but are free and protrude from a small ridge
formed at side of the shafts (Fig. 15c). The length and a degree of fusion vary between
individuals of the same species, ranging from the most common free teeth forms (Fig. 15b),
to partially joined teeth, or even almost coalescent teeth. This intraspecific variability
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regarding the fusion degree of the alae might partially reflect silica availability at the time
the spicules were formed (Uriz et al., 2003), as it has been reported for other sponge taxa
(e.g., Bavestrello, Bonito & Sará, 1993; Cárdenas & Rapp, 2013).

While the spherancora’s morphology seems to be rather conservative between
Melonanchora species, H. globogilva possesses unique acanthose chelae, which would
resemble incomplete ‘spherancorae’ (Fig. 12C). These chelae present non-coalescenting alae
and internal teeth-brims, which might loosely resemble those in placochelae (Cristobo,
1998), yet this is likely to be anecdotal, and of little to no taxonomical significance.
Nevertheless, the architecture of this third chelae category could be consistent with that
of the developmental stages of true spherancorae (Fig. 15), as its teeth-brims are not
restricted to the alae, but are present all along the shaft’s internal surface, as true
spherancorae. As so, H. globogilva’s unique chelae might point towards a common ancestor
between both Melonanchora and Toretendalia gen. nov., and represent, in fact, ancestral
‘spherancorae’ (Lehnert, Stone & Heimler, 2006a), further supporting its chelae ancestry.

Confusion between spherancorae and other spicular types is highly unlikely, yet there
are a few spicular types that could, or have been, confused with spherancorae. Placochelae
and derivatives (Fig. 16C) are a complex group of microscleres, synapomorphic for the
family Guitarridae (Uriz & Carballo, 2001; Hajdu & Lerner, 2002), which share with
spherancorae the possession of teeth-brims along the shafts and alae (Hajdu, van Soest &
Hooper, 1994). While the possible affinity of Guitarridae with Myxillidae was eventually
proposed (van Soest, 1988), this was poorly supported, among others, by the likely palmate
origin of placochelae (Hajdu, van Soest & Hooper, 1994), which are absent in Myxillidae.
The development of teeth-brims among chelae, while not a common trait, should be
regarded a homoplastic character acquired independently by several taxa. Apart from
placochelae, both cleistochelae (viz. M. (B.) kobjakovae) and clavidiscs (Hinde & Holmes,
1892; Ivanik, 2003) have been interpreted at some point as spherancorae due to their
ovoidal morphology. Fossil Merlia species (viz. Merlia morlandi (Hinde & Holmes, 1892);
Merlia sp. Ivanik, 2003; Lukowiak, Pisera & Stefanska, 2019) have been confused with
Melonanchora due to the similarity between clavidiscs (Fig. 16D) and spherancorae
(Fig. 16A) lateral view. Nevertheless, clavidiscs are synapomorphic forMerlia and believed
to be sigmancistra derivatives (Hooper & Van Soest, 2002), contrary to the spherancora’s
chelae origin. Coincidentally, the lateral view of cleistochelae (Fig. 16B) has also been
misinterpreted as spherancorae, with which they share their chelae origin and the presence
of partially fused alae. However, cleistochelae lack the inner teeth-brims and present a
single arc (2D byplan), resulting from the fusion of all free alae in a single piece, whereas
spherancorae present two arcs (3D byplan), as they result from the fusion of each one of
the free alae with its opposing counterpart.

Finally, and despite their unique morphology amongst sponge microscleres, the
function of spherancorae, as that of many other microscleres, remains unclear. In this
sense, while megascleres possess a clear architectural role in the sponge skeleton,
microscleres are mostly believed to play a consolidating or defensive role, if any
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(Uriz et al., 2003). In theM. elliptica holotype, spherancorae were observed to concentrate
and form a dense palisade on the outer layer of the choanosome as well as surrounding
the aquiferous canals, which could imply a defensive role, or a possible role in the
architecture of the aquiferous system, yet this was not observed in any other of the samples
analysed, and remains speculative.

Figure 15 Developmental stages of spherancorae. Formation process of a spherancorae. 1. Initial stages
of formation; the chelae origin can still be observed, with a full formed shaft (s) and free alae (al) still
visible; 2. Fusion phase; the alae coalesce forming the four shafts; alae’s junction points (jp) are visible (a.);
3. Thickening phase; the shafts start to thicken, and start forming the ridges (r) from which the fimbriae
will later develop; 4. Fimbriae development phase; fimbriae start developing on the ridges, while the shafts
continue thickening; 5. Fully formed spherancorae, with complete, free fimbriae (f) clearly visible (b.); 5’.
Internal view of a spherancorae, visible due to the braking of a shaft; the junction point (jp) of the alae is
still visible on the internal side of the shafts as a swelling (c.), while it is observable that fimbriae (f) are
mostly free, only attached to the shafts (s) by its base. Scale bar for Figures 1–5 is 20 mm, whereas for
figures a., b., and c. is 10 mm. All images were taken from Melonanchora tumultuosa sp. nov. (NHMUK
Norman Coll. 1898.5.7.38). Full-size DOI: 10.7717/peerj.12515/fig-15
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