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Abstract

In infrared spectroscopy of thin film sam-

ples, interference introduces distortions in

spectra, commonly referred to as fringes.

Fringes may alter absorbance peak ratios,

which hampers the spectral analysis. We

have previously introduced extended multi-

plicative signal correction (EMSC) for

fringes correction. In the current article,

we provide a robust open-source algorithm

for fringe correction in infrared spectros-

copy and propose several improvements to the Fringe EMSC model. The

suggested algorithm achieves a more precise fringe frequency estimation by mean

centering of the measured spectrum and applying a window function prior to the

Fourier transform. It selects two frequencies from a user defined number of max-

ima in the Fourier domain. The improved Fringe EMSC algorithm is validated on

two experimental datasets, one of them being a hyperspectral image. Techniques

for separating sample spectra from background spectra in hyperspectral images,

and techniques to identify spectra affected by fringes are also provided.
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1 | INTRODUCTION

Fourier-transform infrared spectroscopy (FTIR) is one of
the most widely used analytical techniques. The

technique has broad application in natural sciences,
industrial research and development, and medical diag-
nostics. Examples includes material characterization and
analysis, quality control, process monitoring, and
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identification and classification of various organic, inor-
ganic and biological samples [1–4].

In infrared spectroscopy, one of the main objectives is
to acquire chemical information about a sample. In a
transmission experiment, this is achieved by illuminating
a sample with infrared radiation and recording radiation
that is transmitted through the sample to a detector. By
taking the intensity ratio of the incident radiation and
the intensity of the transmitted radiation, the unit-free
quantity transmittance is calculated. From the transmit-
tance we obtain the so-called absorbance spectrum,
which as the name implies is expected to reveal signa-
tures from loss of radiation through absorption. However,
in any real measurement, radiation is always lost due to
scattering off the sample as well. Scattering comprises all
effects that lead to deviations from rectilinear wave prop-
agation, including reflection and diffraction. In some
cases the loss due to scattering is considerable and leads
to strong spectral distortions.

In an ideal case, one can assume that the interaction
between the infrared radiation with matter follows Beer–
Lambert behavior in which case the absorbance is pro-
portional to the optical thickness of the sample [5–7]. A
type of absorbance spectrum that contains only signa-
tures of chemical absorbance, and is devoid of physical
features such as scattering, we call a pure absorbance
spectrum. In contrast, spectra which are affected by phys-
ical phenomena we call apparent absorbance spectra.
Variation in source intensity or in sample thickness,
which lead to constant baseline shifts and scaling of the
spectra, respectively, can be handled using the standard
extended multiplicative signal correction (EMSC) [8].
EMSC is based on the Beer–Lambert model, and can be
extended to handle moderate scattering. With moderate
scattering we refer to situations where scattering effects
do not strongly deform absorption bands and absorption
bands do not strongly affect scattering properties of the
sample [7]. With EMSC, the chemical and physical fea-
tures in the absorbance spectra are estimated and sepa-
rated, and the pure absorbance spectrum is retrieved.

For highly sophisticated scattering signatures, the stan-
dard EMSC is not sufficient. When the size of the sample is
on the same order as the wavelength of the employed infra-
red radiation, complex non-Beer–Lambert behavior is read-
ily observed. For these samples, the wave nature of the
radiation dominates, leading to intricate relations between
scattering and absorption. An example is Mie scattering, the
impact of which on infrared microspectroscopy has been
studied extensively since Mohlenhoff et al. described the
phenomenon in 2005 [9–14].

Another example of strong spectral distortions caused
by scattering is the case of thin film samples. For thin
films, with two nearly perfectly parallel surfaces, multiple
internal reflections inside the film lead to signatures of

constructive and destructive interference. Films which
give rise to multiple internal reflections are in photonics
also referred to as etalons. While multiple internal reflec-
tion is a special case of scattering, we will also refer to it
as reflection. This effect can for example be observed for
thin oil films on top of water displaying a whole spec-
trum of colors due to constructive and destructive inter-
ference of the incoming sun light. In the spectral domain,
the constructive and destructive interference manifests
itself in the absorbance spectra as sine wave signatures.
The signatures are commonly referred to as interference
fringes.

Fringes are observed in the infrared spectra of many
different samples, such as thin tissue sections [7] and par-
affin embeddings [15], as well as in measurements with
for example microfluidic chambers [16] or diamond anvil
cells used in high pressure measurements [17]. Different
techniques have been proposed to deal with interference
fringes in spectroscopy. The methods can be divided into
three categories; (1) eliminating multiple internal reflec-
tions during the measurements, (2) modeling and remov-
ing the fringes by a wave optics approach, and
(3) suppressing the fringes in the interferogram or the
spectrum without a physical model. Modeling and
removing the fringes according to a physical model, as
opposed to eliminating interference during the measure-
ments, is advantageous since the fringe problem is often
discovered after the experiment has been conducted.

Approaches that attempt to remove fringes without a
physical model, the third category, include altering the
interferogram, fitting and removing sine waves from the
spectra, SVD denoising and deconvolution. In FTIR mea-
surements, the sinusodial fringes appear in the interfero-
gram as spikes, located outside of the central peak. Both
zeroing out these spikes, or replacing them with a patch
from an interferogram belonging to a fringe-free spec-
trum, have been proposed [18,19]. However, both of
these methods can lead to modifications of absorbance
peaks in the spectra [7], called aliasing effects. In 1978,
Clark and Moffatt suggested to remove interference
fringes by manually fitting sine waves, by changing the
frequency, amplitude, phase and offset, until the fringes
were minimized [20]. This method is tedious and inappli-
cable to large datasets where the parameters vary
between spectra. Iwata et al. suggested in 1994 a method
for removing noise from spectra by use of a singular
value decomposition (SVD) on a cyclic matrix con-
structed from the interferogram [21]. This method can be
used to remove interference fringes, however, it requires
the fringe signal to be of relatively high frequency and
low amplitude, such that it resembles noise. Further, the
method is inapplicable to absorbance spectra from biolog-
ical samples, as it fails when several absorbance bands
are present in one spectrum. A deconvolution method
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has also been proposed by Pistorius et al. [22] However,
this method may also lead to aliasing effects. Approaches
based on wave optics models, the second category,
includes the method developed by King and Milosevic in
2012, which aims at retrieving the absorption coefficient
of a sample, provided that the refractive index is known
at one wavelength and the thickness is approximately
known [23,24]. The method has proven useful for cor-
recting FTIR transmission spectra from non-biological
material [25]. Further, Mayerhöfer et al. developed in
2020 an iterative algorithm which aims to retrieve the
refractive index spectrum and the thickness of the sample
in a wave optics correction scheme. They show that they
are able to correct for fringes, as well as the dispersive
effect, in measured spectra of polymethyl methacrylate
films [26].

A promising method proposed recently is to fit and
remove sinusoidal waves in a model-based, automated
manner. Konevskikh et al. suggested in 2015 a model
based method and showed that interference fringes, as
predicted by the Fresnel equations, can be approximated
to a single sinusoid, for samples with refractive index
below 2.4 [7]. In his method, sine waves are fitted to the
measured spectra in an extended multiplicative signal
correction (EMSC) model. The method is similar to the
manual fitting procedure of Clark and Moffatt, but the
frequency, amplitude, phase and offset are all estimated
automatically. The frequency of the sine waves is found
through a Fourier transform of the fringe signal, while
adding both sine and cosine curves to the EMSC model
allows an automated estimation of the phase. In EMSC,
the amplitude and constant offset are estimated as well.
The method, we call it Fringe EMSC, was revised in 2018
by Azafar et al., with the suggestion to make the fringe
removal an iterative process, as well as including sine
waves of multiple frequencies as model functions in the
EMSC [16]. The EMSC based method has the advantage
that it can correct many spectra in a fast and robust man-
ner. This is one of the reasons why EMSC based methods
are often preferred to iterative methods.

Here, we propose a robust and automated approach
for precise estimation fringe frequencies, which is needed
as an input for the EMSC correction, and provide it as an
open source code for the infrared community. The code
is available at the BioSpec Norway GitHub page, as a part
of the biospectools toolbox (https://github.com/
BioSpecNorway/biospectools). The proposed Fringe
EMSC is validated by simulated data and two experimen-
tally obtained datasets, one from pollen samples embed-
ded in a polyethylene and paraffin film, and one from
thin hair cross sections. The developed code can be used
for infrared spectra and infrared hyperspectral images.
We demonstrate how the Fringe EMSC can be used on a
hyperspectral image. This procedure includes steps to

separate sample spectra from the image background, and
to identify spectra which need fringe correction from the
ones which do not.

2 | EXPERIMENTAL DATA

2.1 | Pollen grains dataset

The pollen dataset consist of single spectra of pollen
grains from four Oak species, collected in Australia and
Portugal in the time period 2017–2018. The pollen sam-
ples were embedded, without any sample pretreatment,
in a matrix medium, consisting of a soft paraffin (Vase-
line-type petroleum jelly) between two sheets of polyeth-
ylene foils. The amount of paraffin was approximately
1 mg per 25 cm2. An X-ray fluorescence (XRF) sample
cup was used to stretch the foils and to minimize the
appearance of air bubbles in the sample [27].

Microscopic transmission measurements of pollen
were performed using a Vertex 70 FTIR spectrometer
with a Hyperion 3000 IR microscope (Bruker Optik,
Ettlingen, Germany), equipped with a globar as mid-IR
source and a liquid nitrogen-cooled mercury cadmium
telluride (MCT) detector. The spectra were recorded with
a total of 128 scans in the 7000–600 cm�1 spectral range,
with a spectral resolution of 2 cm�1, and digital spacing
of 0.9630 cm�1. The samples were measured using a �15
objective, with a 30 � 30 μm2 aperture. Background spec-
tra were recorded at the start of each measurement (one
per sample) by measuring a sample-free setting. The
microscope was equipped with a computer-controlled x/
y/z stage. The spectroscopic system was controlled with
OPUS 7.5 software (Bruker Optik, Ettlingen, Germany).
50 spectra per sample were obtained, each corresponding
to different single pollen grains, resulting in 200 spectra
in total. Only a selection of these 200 spectra was used in
this study.

2.2 | Hair cross section dataset

The hair dataset consists of a hyperspectral image of thin
cross sections of human hair. The samples were prepared
by inserting the hair in a plastic tubing of pharmaceutical
grade, filled with water. Subsequently, the samples were
frozen and cryosectioned with a cryotome at negative
temperature (�5 to �10�C). The thicknesses of the sam-
ples were approximately 10 μm. The sections were then
deposited on a slide which is transparent in the infrared.

The infrared image was collected in 2016 at the Syn-
chrotron SOLEIL, using a synchrotron source on a Contin-
uum XL microscope (ThermoFisher Scientific, Courtaboeuf,
France) with a MCT detector. The spectral resolution was

SOLHEIM ET AL. 3 of 18

https://github.com/BioSpecNorway/biospectools
https://github.com/BioSpecNorway/biospectools


8 cm�1 and the number of averaged scans was 50 for the
sample and 512 for the background. The aperture size was
set to 6 � 6 μm2 in single aperture mode.

3 | THEORETICAL MODEL

3.1 | The electromagnetic theory of
fringes

In infrared spectroscopy, the aim is to obtain a scatter-
free signal, the pure absorbance spectrum. The pure
absorbance spectrum allows us to estimate concentration
of constituents via absorption bands that are proportional
to the concentrations. The absorbance spectrum Z eνð Þ can
be obtained from measured intensities as

Z eνð Þ¼�log10
I eνð Þ
I0 eνð Þ¼�log10T eνð Þ ð1Þ

where I0 eνð Þ refers to the incident radiation, I eνð Þ the
transmitted radiation, and T eνð Þ is the transmittance.

According to the Beer–Lambert law, a pure absor-
bance spectrum can be approximated as the product of
the characteristic absorptivity ej eνð Þ of an absorbing spe-
cies, j, the concentration, cj, of the absorbing species and
the optical thickness, d, of the sample, summed over all
absorbing species, J [28,29];

Zpure eνð Þ≈
XJ
j¼1

cj � ej eνð Þ
" #

�d: ð2Þ

From this equation, the absorbance spectrum is consid-
ered to be proportional to the optical thickness of the
sample, d.

For the ideal case, when the sample does not scatter,
and the expression above is valid, the absorbance signals
are solely related to absorption. In many measurements,
however, some of the incident radiation is scattered off
the sample. In the absorbance spectrum, scattering may
lead to broad, underlying baseline distortions as well as
distortions in chemical bands. When the measured
spectrum contains scatter features, we refer to it as the
apparent absorbance, Zapp eνð Þ. In many cases scattering
features can be estimated by standard extended multipli-
cative signal correction (EMSC). EMSC is a model based
preprocessing technique which was developed first as
multiplicative signal correction (MSC) by Martens et al.
in the 80's [30–32], and later as the extended version
called EMSC [8]. EMSC was shown to be an excellent
tool for correcting infrared absorbance spectra containing
moderate scattering features [29]. It is based on the afore-
mentioned Beer–Lambert model for absorption, where

changes in the optical thickness of a sample causes scal-
ing of the absorbance spectra. Physical effects are treated
as additive contributions, and accounted for by different
so-called model spectra. The EMSC model has been
developed and combined with meta-modeling of scatter-
ing phenomena to handle sophisticated physical phe-
nomena, such as Mie scattering [10,11,13,14] and
multiple internal reflection [7,16].

Interference fringes, arising from multiple internal
reflections, are apparent in absorbance spectra as sine
waves, and are especially noticeable in the “silent” regions
where they do not overlap with chemical absorbance sig-
nals. At wavelengths corresponding to destructive interfer-
ence, a peak is found in the spectrum, while constructive
interference corresponds to the troughs. A typical example
of an infrared spectrum containing fringes is shown in
black in Figure 1. Figure 1 also shows an example of a so-
called pure absorbance spectrum, that is, a spectrum with-
out physical signatures, plotted in gray.

The interference pattern can be described using the
Fresnel equations. We start out by expressing the trans-
mitted intensity

I eνð Þ¼ I0 eνð Þ � t eνð Þj j2 ð3Þ

where t eνð Þ is the transmission coefficient at normal inci-
dence for a film in vacuum, given by

t eνð Þ¼ 2ime�2πieνd
1þm2ð Þ sin 2πmeνdð Þþ2im cos 2πmeνdð Þ ð4Þ

FIGURE 1 Example of a pure absorbance spectrum in gray

(Matrigel [14]), and an apparent absorbance spectrum with

interference fringes in black (from a thin film hair cross section).

The amide I and II peaks are cut in the hair cross section spectrum

due to over saturation in the measurements. Interference fringes

are clearly present in the silent region
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where m is the complex refractive index, d is the thick-
ness of the film and eν is the wavenumber. The complex
refractive index consists of a real part n, which relates to
the wave propagation dynamics of the material, and an
imaginary part n0, which relates to the dissipation of
energy. The real and imaginary part of the refractive
index are related by

n eνð Þ¼n0þ 2
π
P
Z ∞

0

sn0 sð Þ
s2�eν2 ds ð5Þ

where n0 is the constant (or slowly varying) offset of the
real part of the refractive index, and the second term con-
stitutes the fluctuating part, given by the Kramers-Kronig
relation. P is the Cauchy principal value of the integral.
We denote the fluctuating part of the real part of the
refractive index nkk .

It can be shown that the imaginary part of the refractive
index is related to the pure absorbance spectrum [33] by

n0 eνð Þ¼Zpure eνð Þ ln 10
4π deν , ð6Þ

assuming that the reflection of the incident radiation by
the film is negligible, such that the Beer–Lambert law
holds. For further details we refer the reader to references
[5–7]:.

3.1.1 | Dispersion

The real part of the refractive index may undergo two
types of dispersion in a spectral region. The first is a slow
dispersion, which is determined by the overall absorption
properties of the material outside the spectral region.
This type of dispersion is well known from the refraction
of visible electromagnetic radiation at a prism. Dispersion
can occur as well as a rapid fluctuation of the real part of
the refractive index in the neighborhood of absorption
bands. The rapid fluctuations of the real part of the
refractive index is related to absorption and is governed
by the Kramers-Kronig relation.

The wavelength-depended real part and the imagi-
nary part of the refractive index determine together the
absorption efficiency of the material [34], and may cause
band shape changes in infrared microspectroscopy of
cells and tissues, which have been interpreted as Mie
scattering [35]. Similar phenomena are observed for thin
films of materials with a high refractive index [36]. Theo-
retically, this causal connection becomes evident from
the fact that both n and n0 enter Equation (4) through m.
Band shape changes in absorbance spectra which result
from the dispersive real part of the refractive index are

known in the Mie literature as the dispersive effect. Ini-
tially, the effect was named “the dispersive artefact”
[11,35]. The effect is however completely described by
theory, and is therefore not an artifact. Therefore, the lit-
erature terms this effect today “dispersive effect” [14].

While the dispersive effect can be seen explicitly in
the analytical description of Mie scattering, and in the
analytical description of the interaction of electromag-
netic radiation with a thin film, it is in principle relevant
for any scatterer of arbitrary shape and composition.

For the interested reader, we refer to references
[11,14,37,38] to see examples of how dispersion affects
Mie distorted spectra. Examples of the dispersive effect in
films will be briefly discussed later in this article.

While the dispersive effect is especially strong in Mie
distorted spectra, it is not as prominent in spectra from
thin film biological samples. In the article at hand it is
shown that the multiple internal reflection of thin biolog-
ical films can be treated in a good approximation as addi-
tive to absorption. This permits the use of the Fringe
EMSC model for fringe correction, as opposed to using
an iterative approach. EMSC models are typically very
stable and both easy and fast to use for correction of
many spectra.

3.2 | The Fringe EMSC

In the following, we present the Fringe EMSC, in which
we model the sample as a non-absorbing film, and treat
the fringe signal as additive to the pure absorbance.
When approximating the fringe signal emerging from a
non-absorbing film, the apparent absorbance of the film
can be expressed as [7]

A¼
ln 1þ 1

4
1
n0
�n0

� �2
sin2 2πn0eνdð Þ

� �
ln 10

: ð7Þ

This equation is later in the article referred to as the full
analytical model. By means of a Taylor expansion of the
natural logarithm and the half-angle formula, the expres-
sion can be written

A ¼ 1
4 ln 10

1
n0

�n0

� �2 1� cos 4π n0eνdð Þ
2

 !

� 1
32 ln 10

1
n0

�n0

� �4 1� cos 4π n0eνdð Þð Þ2
4

 !
þ���

ð8Þ

provided that 1
4

1
n0
�n0

� �2
is between �1 and 1, which

holds when n0 ≤ 2:4 [7]. From this equation, we can see
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that the fringe signal can be approximated by a single
cosine wave (or sine wave, depending on the phase)
when the first term dominates the expression. One
should note that the frequency of the fringe signal is
depending on the ratio of the optical thickness of the film
to the wavelength of the employed radiation, and is
therefore independent of a potential substrate. A sub-
strate would however affect the amplitude of the fringes.
In most cases, fringes are unwanted in infrared spectros-
copy, since they alter peak ratios and hampers the analy-
sis. However, fringes can be used to estimate the
thickness of a sample of known refractive index, using
the equation above.

In the Fringe EMSC, the apparent absorbance is
modeled as

Zapp eνð Þ¼ aþb �Zref eνð Þþ c �eνþZfringes eνð Þþ ε eνð Þ ð9Þ

where the terms a and c �eν represent constant and linear
baseline shifts, respectively. The model can be further
extended by adding higher order polynomials. Zref eνð Þ is a
pure, scatter-free absorbance spectrum, called the refer-
ence spectrum, and Zfringes eνð Þ is the fringe signal. The
term ε eνð Þ accounts for the unmodelled part of Zapp eνð Þ.
The Fringe EMSC builds on a standard EMSC, that is, an
EMSC model which does not contain the term Zfringes eνð Þ
[8]. In a standard EMSC, polynomials are added as model
spectra to account for moderate baseline variations.

The fringe signal Zfringes eνð Þ we suggest to present by a
number of sine and cosine waves with different
frequencies

Zfringes eνð Þ ¼ d1sin f 1 �eνð Þþd2cos f 1 �eνð Þ
þe1sin f 2 �eνð Þþ e2cos f 2 �eνð Þ
þ� � �:

ð10Þ

The EMSC parameters a, b, c, d1 etc., are estimated by
least squares regression, as will be explained shortly.
With Equation (9), the measured spectrum is modeled as
a combination of physical and chemical model functions.
When the contribution from each of the model functions
is estimated, the physical features of the absorbance spec-
trum can be removed, and we are left with the corrected
spectrum Zcorr eνð Þ

Zcorr eνð Þ¼Zapp eνð Þ�a� c �eν�Zfringe eνð Þ
b

: ð11Þ

Dividing by the scaling parameter b normalizes all spectra
to match the optical thickness of the reference spectrum.

As mentioned, the EMSC parameters need to be esti-
mated, which is done by least squares regression, as
described in the following. Let the apparent

absorbance spectrum be represented by the coulumn
vector α, where the length i is the number of
wavenumber channels,

α¼

α eν1ð Þ
α eν2ð Þ
α eν3ð Þ
..
.

0BBBB@
1CCCCA: ð12Þ

The matrix containing the j model spectra are represen-
ted as the[i� j] matrix M,

M¼

1 Zref eν1ð Þ eν1 sin f 1 �eν1ð Þ cos f 1 �eν1ð Þ � � �
1 Zref eν2ð Þ eν2 sin f 1 �eν2ð Þ cos f 1 �eν2ð Þ
1 Zref eν3ð Þ eν3 sin f 1 �eν3ð Þ cos f 1 �eν3ð Þ
..
.

266664
377775 ð13Þ

Finally, the vector p of length j which contains the EMSC
parameters,

p¼

a

b

c

..

.

0BBBB@
1CCCCA ð14Þ

can be found by regressing each apparent absorbance
spectrum α onto the matrix of model spectra M. The vec-
tor of EMSC parameters p contains the regression coeffi-
cients obtained from the regression model for one
apparent absorbance spectrum.

It is important to note that the EMSC needs as an
input a very rough estimate of the pure absorbance spec-
trum as a reference spectrum. This estimate is preferably
an absorbance spectrum from the same dataset that
shows little or no scatter contributions. The aim of the
Fringe EMSC is not to restore iteratively the pure absor-
bance spectrum. It aims at estimating the fringes, scaling
and baseline effects and to subtract these from the mea-
sure absorbance spectrum which then results in a very
good estimate of the pure absorbance spectrum. There is
no requirement that the reference spectrum is chemically
nearly identical with the underlying pure absorbance
spectrum, chemical difference between the reference
spectrum and the spectrum to be corrected can be han-
dled by the residual term of the EMSC model. It has been
shown previously that this approach has a stabilizing
effect for the parameter estimation, as the reference spec-
trum has overall a very similar shape as the underlying
pure absorbance spectrum except the tiny and interesting
chemical variations which are taken care of by the

6 of 18 SOLHEIM ET AL.



residual of the EMSC model [39,40]. Therefore, the
Fringe EMSC approach does not require the knowledge
of the refractive index function. The knowledge of the
refractive index function is necessary if the dispersive
effect becomes large and effects are no longer additive or
multiplicative, as for Mie scattering, and for thin films of
non-biological materials. In this case iterative algorithms
need to be used [12–14,26,37].

3.3 | Frequency estimation

In the following we explain how the fringe frequencies f i
can be estimated automatically. We select a part of the
spectrum Zcrop eνð Þ, preferably from the “silent” region
where the fringe signal is most undisturbed by absor-
bance peaks, and perform a discrete Fourier transforma-
tion (DFT) on this region:

Ẑcrop kΔxð Þ¼
XN�1

n¼0

Zcrop eνnð Þe�i2πN kn, ð15Þ

where Ẑcrop kΔxð Þ is the complex number associated with
the k'th frequency bin, N is the number of sampling
points in the signal, and Δx denotes the distance between
the sampling points in the Fourier domain. The ampli-
tude of the k'th frequency bin is found as j Ẑcrop kΔxð Þ j,
and the frequency steps in the Fourier domain are found
through Δx as

Δx¼ 2π
NΔeν : ð16Þ

It is evident that the frequency steps in the Fourier
domain can be decreased, and the number of frequencies
increased, by increasing N . Zero-padding is therefore
applied to Zcrop eνð Þ, extending the signal with zeros at the
end. Padding with npad ¼ 5 �N at the end of the signal is
chosen as a standard. When the cropped signal is trans-
formed with the discrete Fourier transform, we find
which frequencies are most prominent (with the highest
amplitude) in the fringe signal. These frequencies are
then used as input for the sine and cosine wave model
functions. The number of frequencies, and thus the num-
ber of terms to be used in Equation (10), will be evaluated
later in the article.

3.4 | Improvements of the Fringe EMSC
algorithm

In this study, several improvements to the Fringe EMSC
algorithm are proposed. The algorithm is shown in
Figure 2, where the improvements with respect to the
algorithm proposed by Konevskikh et al. [7] are marked
in red. The new algorithm includes a robust and precise
frequency estimation and suggests to select and use sev-
eral frequencies in the Fourier domain. In the following,
a step-wise explanation of the new algorithm is pres-
ented. Subsequently, the algorithm is demonstrated in

FIGURE 2 The Fringe EMSC algorithm with improvements marked in red (wrt. the algorithm of Konevskikh et al. [7]). Each step of

the algorithm is explained in more detail in the text
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use on two datasets of infrared spectroscopic measure-
ments. Two filtering methods which are used when
preprocessing infrared hyperspectral images are also
presented. The first method is used to identify spectra
which are affected by interference fringes, while the sec-
ond method is used to discard empty background spectra
in an infrared image. The improved Fringe EMSC algo-
rithm consists of six steps (the algorithm is available open
source at BioSpec Norway's GitHub page; https://github.
com/BioSpecNorway/biospectools):
Step 1: The user specifies a region containing
undisturbed fringes Zcrop eνð Þ, that is, within the “silent”
region. The data used in this study did not show signals
from CO2 in this region. In cases where variations in CO2

is a problem, we suggest to linearly interpolate the CO2

region prior to the following steps.
Step 2: The selected region Zcrop eνð Þ is then mean cen-
tered. This is because an offset in Zcrop eνð Þ leads to high
amplitudes for low frequencies in the Fourier domain,
which are unrelated to the fringes in the measured spec-
tra. These low frequencies are suppressed by mean
centering.

Subsequently, a window function is applied to mini-
mize spectral leakage caused by non-integer number of
periods in the selected spectral window. This makes the
algorithm more robust with respect to the choice of
Zcrop eνð Þ. In the codes provided on GitHub, the triangular
Bartlett window function is used. Finally, zero padding is
performed in order to increase the resolution in the Fou-
rier domain. However, since padding makes the Fourier
transform more computationally expensive, we suggest as
a trade-off to pad with npad ¼ 5 �N , that is, five times the
signal length N at the end of the signal.
Step 3: A fast Fourier transform (FFT) is applied, and the
two most pronounced frequencies are selected from a
number of local maxima nmax . To find out how many
local maxima one should include, the recommended
strategy is to inspect the Fourier transformed signal to
see how many prominent frequencies the signal consists
of. Usually nmax should be set to 1 or 2. This way of
selecting the most prominent frequencies deviates from
previous practise. In the following we first present the
method for a more precise fringe signal estimation by
performing a simulation study, and thereafter the method
for selecting frequencies from multiple maxima is pres-
ented for experimentally obtained data.

Method for a more precise fringe signal estimation
(simulation study)
The Fringe EMSC model is based on two approximations:
the first relates to the fact that fringes are described by
treating the sample as a non absorbing film and the
fringe signal is then considered as additive to the pure

absorbance. The second approximation is made by using
only the first term of Equation (8), that is, the fringe sig-
nal is described by a sine wave.

To study the effect of approximations included in the
Fringe EMSC, we compare the following three models:
Using the (1) Full analytical model, where the fringe fea-
tures are simulated by use of Equation (7), using a priori
knowledge about n0 and d. It is important to note that
the model is the full analytical model for a non-absorb-
ing film. To account for absorbance, a simulated pure
Lorentzian absorbance spectrum was added to the
model. With a pure Lorentzian absorbance we refer to
an absorbance spectrum calculated from the dielectric
function of a Lorentz oscillator (with the dispersive
imaginary and real parts), as described in eg [41,42]
Adding this spectrum to the model would be ideal if
fringes could in fact be treated as additive to the chemi-
cal absorbance, and exact values for n0 and d could be
obtained. (2) First term of the Taylor expansion, where the
fringe features are simulated using the first term on the
right hand side of Equation (8). This model approximates
model 1 if the first term dominates the expression, neg-
lecting the higher frequency oscillations. As for model 1,
both n0 and d are known a priori. (3) Sum of sine and
cosine waves (The Fringe EMSC). In this model, the fre-
quency is estimated by the approach described above. If
the frequency of the fringe signal is estimated correctly,
the model is expected to be very similar to model 2. The
region 1880–6000 cm�1 is selected as Zcrop eνð Þ for fre-
quency estimation.

The three models are compared to an exact apparent
absorbance spectrum with fringes which is calculated
from the transmittance of Equation (4), where the exact
Fresnel equations were used with no approximations.
The exact apparent absorbance spectrum has one absor-
bance band, simulated as a pure absorbance spectrum
consisting of one Lorentzian peak at 1600 cm�1. This
pure absorbance spectrum served then as input for Equa-
tion (6), and the imaginary part of m, n0, was established.
From n0, nkk was found through the last term in Equa-
tion (5). A range of values for the constant part of the real
part of the refractive index and the thickness of the film
were also given, with n0∈ 1:2,2:9½ � and d∈[3 μm, 15 μm],
respectively. An example of a simulated apparent absor-
bance spectrum is shown in red in Figure 3 together with
the pure Lorentzian absorbance in blue. The apparent
absorbance spectrum was obtained by setting n0 ¼ 1:82
and d¼ 5.45 μm.

Comparing the model performances: The simulated
exact apparent absorbance spectra were compared to the
three models. For each comparison, the root mean square
error (RMSE) was found. We plot the RMSE as a 2D
heatmap to visualize the fit for the three models for
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different n0 and d. The heatmaps are shown in
Figure 4a–c. As is evident from the full analytical model
in Figure 4a, treating the fringes as additive to the
absorption leads to an error, especially when n0

increases. By plotting the apparent absorbance (red), the
estimated fringe signal (blue) and the residuals (purple)
from a set of n0 and d which correspond to high residuals
(n0 ¼ 2:41 and d¼ 6.92 μm), we show that the error has a
Fano line shape which is present in the residuals (see
Figure 4d). This is because scattering affects absorption
efficiency, and constructive and destructive interference
tend to increase and decrease the absorption, respec-
tively. Interference leads to electromagnetic field inten-
sity changes within the layer, leading to non-linear
absorption effects [36]. For biological samples, with a rel-
atively low n0 (with an n0 between 1 and 1.5), the effect
of dispersion is low. In order to evaluate the effect of the
substrate, the relative refractive index between the sam-
ple and the substrate needs to be taken into account. For
commonly used materials such as CaF2 this ratio is
within range that is valid for our approximation. Figure 6
shows that a ratio of around two still gives a valid
approximation.

For the model 2 using the first term of the Taylor
expansion we see that the RMSE increases as n0 > 2:4, as
expected. When n0 > 2:4, the Taylor expansion is no lon-
ger valid. An increasing n0 is also associated with more
significant higher order terms. The first term of the

FIGURE 3 A simulated pure absorbance spectrum in blue,

and a simulated apparent absorbance spectrum is calculated with

Equation (4), using n0 ¼ 1:82 and d¼ 5.45 μm. The pure absorbance

spectrum was used for calculating n0 and nkk

FIGURE 4 Upper panel: Heatmap showing the RMSE when correcting different apparent absorbance spectra, using different

combinations of n0 and d in the simulation. The models used for correction was (a) model 1 (full analytical model), (b) model 2 (first term of

the Taylor expansion) and (c) model 3 (the Fringe EMSC model). Lower panel: Examples of correction using the different models are shown

for n0 ¼ 2:41 and d¼ 6.92 μm. The apparent absorbance spectrum is plotted in red, the estimated fringe signal which is removed from the

apparent absorbance spectrum is shown in blue, and the residuals in purple. (d) Using model 1, the residuals are low outside the chemical

absorption band. (e) Using model 2, we get additional residuals from the lack of higher order cosine terms (Equation 8). (e) Using model 3, it

is evident that the estimation of the frequency is not satisfactory
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expansion is no longer sufficient to express the fringe sig-
nals. From Figure 4e we see that this is consistent with
an increase in the higher frequency terms in Equation (8),
which are present in the residuals. For the Fringe EMSC
model, however, the RMSE is higher for some combinations
of n0 and d compared to the model using the first term of
the Taylor expansion. This results in the circular patterns
in the RMSE heatmap (Figure 4c). The reason for the cir-
cular patterns is that the estimated frequency does not
correspond to the correct frequency of the fringe signal,
as can be seen from Figure 4f. This can be confirmed by
plotting the difference in the known main frequency of
the fringe signal (4πn0d, from Equation 8) and the

estimated frequency, which results in the plot in Figure 5.
We observe that the same circular patterns appear.

The erroneous estimation of the frequency is due to
the resolution of the frequency axis in the Fourier domain.
The error for the estimation of the frequency could in
principle be avoided by using a higher npad for the zero
padding. In practice, when increasing npad for zero pad-
ding, we did not observe overfitting. However, increasing
npad increases the computation time considerably. For
this example, setting npad ¼ 12:4 �N reduced the error
caused by the erroneous frequency estimation by 53%,
but resulted in an increase of the computation time by a
factor of 10.2 (averaged over 10 runs, for all combinations
of n0 and d). On a Lenovo P53 laptop, with 128GB RAM
and an intel i7 (9th gen) processor, it takes 6 ms to cor-
rect one spectrum consisting of 5000 data points, with
npad ¼ 5 �N . To avoid increasing computation time, we
propose another strategy for handling this issue. We sug-
gest selecting two neighboring frequencies from each local
maximum which is selected in the Fourier domain. The
resulting RMSE heatmap for model 3 with this adjustment
is shown in Figure 6. As we can see from this figure, the
residuals caused by the wrongly estimated frequency are
now reduced, and the heatmap in Figure 6a resembles the
one in Figure 4b. This strategy is therefore proposed as a
step in the Fringe EMSC algorithm. In the Fringe EMSC
algorithm proposed by Azarfar et al. [16], they suggest to
use multiple iterations. However, by selecting frequencies
from multiple maxima in the Fourier domain, we experi-
ence that an iterative approach is not needed.

Method for selecting multiple frequency maxima in
the Fourier domain (experimental data):
In order to illustrate the approach for selecting multiple
frequencies, we used experimental data obtained from
thin film hair cross sections. From the experimentally

FIGURE 6 When two frequencies are included in model 3 (the Fringe EMSC), (a) the heatmap of the RMSE and (b) the residuals

resemble the results from the model 2 in Figure 4b and e, respectively

FIGURE 5 Heatmap showing the difference in the desired

estimated frequency (4πn0eνd from Equation 8) and the frequency

estimated from the Fourier transform in the Fringe EMSC model.

The same circular patters as in Figure 4c is present, confirming that

the difference between the performance of model 2 (the first term

of the Taylor expansion) and model 3 (the Fringe EMSC) is due to

the incorrect estimation of the frequency
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obtained spectra, it is evident that there can be multiple fre-
quencies present in the fringe signal. This can be seen from
the raw spectrum plotted as a dashed gray line in Figure 7,
where a relatively high-frequency signal is superimposed on
a more low-frequency background signal in the region
between 1750 and 2750 cm�1. From the Fourier transform of
this region, shown as inserted panels in Figure 7 (mean cen-
tering, windowing and zero-padding is applied), the two fre-
quencies are present as two broad local maxima. In order to
capture both frequency components of the signal, we pro-
pose to include two neighboring frequencies around a num-
ber nmaxima local maxima, instead of including a portion of
the frequencies with the highest amplitude, as suggested
by Azarfar et al. [16] The effects of including different
sets of frequencies are shown in Figure 7, where the sets
of selected frequencies are highlighted in the inserted
panels. The corresponding corrected spectra are shown in
Figure 7, where the frame color matches the color of the
corrected spectrum. It is evident that using only the low
frequencies results in a corrected spectrum where the
main fringe signal is still present (blue line). The result of
the proposed method (including frequencies from the
middle panel) which is plotted in red is clearly favorable.
Including 10 of the most prominent frequencies leads to
a smooth silent region (purple line), but the method is
prone to overfitting, which can be seen in the fingerprint
region where the corrected spectrum assimilates the ref-
erence spectrum. Including 10 frequencies results in 20
model function in Zfringe eνð Þ and in a model complexity
which is not needed.

We now return to the six steps of the Fringe EMSC
algoirthm:
Step 4: For each frequency selected in the Fourier
domain, a pair of sine and cosine functions is created in
the EMSC fringe model of Equation (9). The complete
Fringe EMSC model includes the following: the reference
spectrum, a constant and linear baseline, the sine and
cosine functions with the selected frequencies.
Step 5: Estimate the EMSC parameters for all model
functions, using least squares regression.
Step 6: The measured spectrum is finally corrected
according to Equation (11).

The code published on GitHub performs all the steps one
to six fully automatically. As input parameter, the operator
chooses the number of frequency maxima nmaxima, and the
spectral window used for the fringe frequency estimation.

In the following, the suggested algorithm is validated on
two example data sets of spectra obtained from biological
material.

4 | EXPERIMENTAL VALIDATION

4.1 | Case study: Correction of single
spectra from pollen grains embedded in
paraffin

In the following example, we show how the Fringe EMSC
algorithm can be used on infrared spectra of pollen grains
embedded in paraffin. Since pollen grains normally are of

FIGURE 7 The frequency selection

is shown in the inserted panels, where

the color of the frame corresponds to the

colors of the corrected spectra in the

main figure. The raw spectrum is shown

in dashed gray and the reference

spectrum in black. The raw spectrum is

selected from the hair cross

section dataset
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spherical shape, with a size in the same order as the
wavelength of the employed radiation, the samples are
highly effective Mie scatterers [33]. In order to avoid Mie
scattering in these measurements, the pollen grains were
embedded in paraffin, and sandwiched between two
sheets of a thin polyethylene film. While the paraffin
embedding successfully suppressed the Mie scattering,
fringes were observed in measured spectra due to the
nearly perfect film caused by the paraffin. Since the
refractive indices of paraffin and polyethylene are simi-
lar, 1.47 and 1.53, respectively [43,44], we can treat them
optically as the same material. Raw spectra are shown in
gray in Figure 8, where the mean spectrum is shown in
black. The mean spectrum does not contain fringe sig-
nals, and is therefore well suited as a reference spectrum
in the Fringe EMSC. In this dataset not all spectra are
affected by fringes, and a filtering technique was there-
fore developed to detect spectra which need fringe
correction.

4.1.1 | Selecting spectra requiring fringe
correction

In order to select spectra that require fringe correction,
we employ a standard EMSC model in a narrow range in
the silent region. We select a narrow range such that it
contains 4–8 fringe maxima and correct this range with a
standard EMSC with polynomials up to the third order.
As a reference, we use the same reference spectrum
which was used for the Fringe EMSC, that is, the mean
spectrum. It turned out that spectra without fringes could
be modeled with the standard EMSC model with low

residuals, while spectra which contain fringes show rela-
tively high residuals. This offers an opportunity to select
spectra that require fringe correction based on the resid-
uals of this standard EMSC. In Figure 9a,b, two examples
for the correction of the narrow ranges with a standard
EMSC are shown. The corrected spectra are shown in
blue and the reference spectrum in purple. In Figure 9,
fringes are not present in the raw spectrum (shown in
red), and the residuals (gray) are small. In Figure 9,
fringes are present in the raw spectrum, and since they
cannot be modeled they are also present in the residuals.
A cutoff value based on the RMSE, here set to 0.0027,
allows to identify spectra which need fringe correction
and separate them from spectra for which a standard
EMSC is sufficient for the correction. The separation is
shown in Figure 9, where Figure 9c shows the spectra
without fringe signals, and Figure 9d shows spectra with
fringes.

4.1.2 | Correcting pollen spectra

The thickness of the paraffin and polyethylene film of
our pollen data set is in the order of 40–70 micrometer,
which results in high-frequency fringes in the pollen
spectra. According to our experience, the correction of
these high-frequency fringes is difficult since high-fre-
quency fringes in the EMSC model may model chemi-
cal signals in the chemically active regions. An
example of our fringe correction is shown in Figure 10
where Figure 10b,c show two different magnified
ranges of Figure 10a, to make the effect of the correc-
tion more visible. The mean spectrum was used as a
reference spectrum, and two frequencies from two
local maxima in the frequency domain were chosen. As
we can see from Figure 10, there are still fringe signals
left in the spectra, and in some regions the fringe signal
is even increased. One should note that in this exam-
ple, a relatively broad spectral region (600–7000 cm�1)
has been kept. However, it is common to cut the spec-
tra above 4000 cm�1, due to the lack of molecular
vibrations in this region. We have chosen to keep the
region above 4000 cm�1 for illustrating the challenges
of correcting high-frequency fringes better, and how to
overcome them. However, the suggested approach for
fringe correction does not require to keep the region
above 4000 cm�1. In this correction we have employed
weights, shown as a dashed gray line in Figure 10.
Weights are used to increase or decrease the impor-
tance of different spectral regions and can for example
be used to suppress the effect of variations in CO2 con-
tent in the spectra [40]. In this example, weights are
used to amplify the effect of residuals in regions which

FIGURE 8 A selection of apparent absorbance spectra from

transmission measurements of single pollen grains embedded in

paraffin. The mean spectrum is shown in black
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are chemically inactive and where fringes are clearly
present. Down-weighting of regions with strong paraf-
fin signals is used as a measure to suppress the effect of
chemical signals of paraffin on the estimation of the
EMSC b parameter. Since the sample of interest is the
pollen grain and not the paraffin, we aim at scaling the
spectra according to the optical thickness of the pollen

grains. Using zero weights is analogous to removing the
region completely.

An alternative to correcting the full spectral range
(which in this case is 600–7000 cm�1) is to perform piece-
wise correction, or selecting a smaller spectral region of
interest. For the pollen samples, the region of interest is
in the range 800–2000 cm�1. In order to be able to

FIGURE 9 Filtering method for separating spectra of pollen embedded in paraffin which need fringe correction and spectra which do

not need fringe correction. (a) An example of a spectrum which does not need fringe correction, showing the selected part of the silent

region in red, the reference in purple, the corrected in blue and the residuals in gray. (b) The same is shown for a spectrum which needs

fringe correction. Keep in mind that the y-axes in (a) and (b) are scaled differently, and that the residuals in (b) are significantly higher than

in (a). The RMSE value of a standard EMSC model can be used to separate spectra into (c) spectra which does not need fringe correction,

and (d) spectra which need fringe correction

FIGURE 10 (a) Example of correcting a full spectrum with the Fringe EMSC model. The raw spectrum is show in red, the reference

spectrum in black, weights in grey (dashed) and the corrected spectrum in blue. When the spectral range is broad, and the fringes are high-

frequent with low amplitude, the fringe signal can in some cases be (b) artificially increased, or (c) simply not removed
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estimate the fringe frequency we included a chemically
silent region as well, and chose the region 600–
2750 cm�1. As is shown in Figure 11, the fringe correc-
tion works well when a smaller spectral range is
corrected. The fringe signal is removed completely. We
evaluated the complete dataset of pollen sepctra which
were identified as needing fringe correction and found
that it worked well when the fringe correction was
applied to the region 600–2750 cm�1.

4.2 | Case study: correction of infrared
images of hair cross sections

The Fringe EMSC algorithm was further evaluated on a
hyperspectral image of hair cross sections. In Figure 12a,
a set of spectra that were randomly selected from inside
the hair section is shown. The chemical image obtained

FIGURE 11 By selecting a shorter range, spectra which are

affected by high-frequent and low-amplitude fringes can be

successfully corrected. The raw spectrum is shown in red, the

reference in black, weights in gray (dashed) and the corrected

spectrum in blue

FIGURE 13 Shows the suggested pipeline for performing fringe correction on infrared hyperspectral images. The steps are explained in

more detail in the text

FIGURE 12 (a) A selection of infrared transmission spectra from a sample of thin film hair cross sections. One of the spectra is

highlighted in red. The spectra are taken from a hyperspectral image, here plotted at 2952 cm-1 in (b)
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from the absorbance values at 2952 cm�1 from the same
image is shown in Figure 12b. The amide I and II peaks
are partly removed from the spectra due to saturation of
the absorbance signal, that is, the sample absorbs the
incoming radiation completely in these spectral regions.
For preprocessing hyperspectral images, different filter-
ing techniques are often needed prior to the

preprocessing itself, and in the following we suggest a
robust method for preprocessing image data with fringe
signals. The pipeline is shown in Figure 13, and each step
is described in the following.
Step 1: For hyperspectral infrared images, the first step is
often to separate the sample spectra from the image back-
ground spectra (pixels which refer to the empty slide).

FIGURE 14 (a) Plot of the scaling parameter from a standard EMSC applied to the hair cross section image. The scaling parameter is

interpreted as a measure of sample thickness in each pixel. (b) RMSE from the standard EMSC. It is evident that the RMSE is higher at the

edges of the sample. (c) A spectrum from the edge is shown to illustrate the scattering effects which are present at the edges. (d) The mask

which is used to separate the sample spectra from the empty slide spectra. The mask is based on a cutoff value for the scaling parameter and

the RMSE value of the EMSC model

FIGURE 15 Separation of spectra which need fringe correction (yellow pixels in (a), shown in (b)) and spectra which do not need

fringe correction (green pixels in (a), spectra shown in (c))

SOLHEIM ET AL. 15 of 18



This can be achieved easily with a basic EMSC by includ-
ing polynomials up to the second degree [45]. We use the
Matrigel spectrum as a reference spectrum [14], since the
mean spectrum from the whole image contains fringe sig-
nals, which makes it unsuitable as a reference spectrum.
From the standard EMSC, the scaling parameter referring
to the effective optical path length is used to obtain a
measure of the thickness of the sample in each pixel.
The scaling parameter for each pixel is shown in
Figure 14a. In our case a threshold of 2.3 was suitable
to separate the sample spectra from the background.
The exact threshold used depends on the scaling of the
reference spectrum compared to the sample spectra,
and needs to be chosen for each application. An addi-
tional threshold for the RMSE in the region 1761–
2840 cm�1 was set to 0.1 in order filter out pixels at the
edge of the hair samples. At the edge of the sample,
strong scattering signals are present in the spectra,
which lead to high residuals in the silent region
(Figure 14b). An example of such a spectrum obtained
at the edge of the hair sample, in pixel (8,9), can be
seen in Figure 14c. These spectra would need a differ-
ent preprocessing technique than Fringe EMSC, a
study which will be described elsewhere. Here, they
are treated as image background spectra. The separa-
tion into image background pixels and sample pixels
can be seen in Figure 14d.
Step 2: After separating the sample spectra from the
image background, we identify spectra which need fringe
correction. This is done with the method described in sec-
tion 4.1.1. The range 1906–2681 cm�1 was used for the
EMSC for filtering spectra that need fringe correction.
The threshold for the RMSE was set to 0.015. Since this
region contains also spectral bands for CO2, the region
between 2340 and 2380 cm�1 was removed before calcu-
lating the RMSE value. The identification of spectra
which need fringe correction can be seen in Figure 15.

Figure 15a shows the pixels which need Fringe EMSC in
yellow, and pixels for which a standard EMSC is suffi-
cient in green. The corresponding spectra are shown in
Figure 15b and c, respectively.
Step 3: The spectra which were identified as needing
fringe correction were then corrected with the Fringe
EMSC. The region 1906–2681 cm�1 was used to estimate
the frequency of the fringe signal, and two local fre-
quency maxima were chosen from the Fourier domain.
For each local maximum, two frequencies were selected.
The weights shown in Figure 16a,b as a gray dashed line
were both applied for the standard EMSC for selecting
sample spectra and for the Fringe EMSC. Polynomials up
to the second order were used in the Fringe EMSC. The
fringe corrected spectra are shown as raw spectra in
Figure 16a, and corrected spectra in Figure 16b. The ref-
erence spectrum is plotted in red, and one of the sample
spectra is plotted in black.
Step 4: The corrected spectra can now be combined to a
complete preprocessed dataset. The spectra which needed
Fringe EMSC are taken from step 3, while the spectra
which did not need the Fringe EMSC were already
corrected with a standard EMSC in step 1. Since the same
reference spectrum was used in both corrections, all spec-
tra are scaled in the same way. An image of the corrected
spectra at 2952 cm�1 is shown in Figure 16c. Compared to
the image of the raw data at the same wavenumber
(Figure 12b) it is evident that the contrast is better. For the
largest hair sample, even the lipid rich medullah is visible.
One should note that with the Fringe EMSC, the spectra
are baseline corrected and scaled according to the refer-
ence spectrum, in addition to the fringe correction. The
biggest difference between the raw spectra and the
corrected spectra is due to baseline correction and scaling
(see Figure 16a,b). This demonstrates one of the advan-
tages of the Fringe EMSC. All physical effects are com-
prised in the model and therefore handled simultaneously.

FIGURE 16 Correcting hair cross section spectra with the Fringe EMSC model. (a) Raw spectra and (b) corrected spectra, with the

reference spectrum (Matrigel) in red, and one of the spectra is highlighted in black. The weights are shown in dashed grey. (c) An image

from the corrected spectra at 2952 cm-1, corresponding to Figure 12b. The improvement in the image contrast is clearly visible
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5 | CONCLUSION

In this study, we developed the Fringe EMSC into a
stable and automated algorithm for fringe removal in
infrared microspectroscopy and infrared microspectroscopic
imaging. We presented several improvements to the algo-
rithm. A more precise estimation of the frequency of the
fringe signal is achieved by mean centering the signal
and applying a window function to it prior to the Fourier
transform. Since the fringe frequencies are estimated
from the silent region, it cannot be guaranteed that the
fringes in the region with strong absorption are exactly
modeled, since there might be slight frequency shifts.
However, visually, the correction seems to work well. To
better understand the effects of the approximations made
in the Fringe EMSC, a simulation study was carried out.
Consequently, the practice for including multiple fre-
quencies in the Fringe EMSC was revised, and a best
practice was found by including two frequencies per
nmaxima local maxima in the Fourier domain. The pres-
ented algorithm is robust, e.g. the choice of the number
of frequencies for the fringe corrections does not affect
the correction result notably. The improved Fringe EMSC
is demonstrated on two experimental datasets, accompanied
by two filtering methods. The first filtering method allows
for separation of sample spectra from empty background
spectra in infrared imaging, while the second filtering
method identifies spectra which are affected by fringe sig-
nals. Both filtering methods are based on standard EMSC,
which makes them robust and easy to use. Python codes for
the Fringe EMSC and filtering methods are available on
GitHub (https://github.com/BioSpecNorway/biospectools).
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