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Abstract Heat shock factor 1 (HSF1), a key regulator of transcriptional responses to proteotoxic 
stress, was linked to estrogen (E2) signaling through estrogen receptor α (ERα). We found that an 
HSF1 deficiency may decrease ERα level, attenuate the mitogenic action of E2, counteract E2- stimu-
lated cell scattering, and reduce adhesion to collagens and cell motility in ER- positive breast cancer 
cells. The stimulatory effect of E2 on the transcriptome is largely weaker in HSF1- deficient cells, in 
part due to the higher basal expression of E2- dependent genes, which correlates with the enhanced 
binding of unliganded ERα to chromatin in such cells. HSF1 and ERα can cooperate directly in 
E2- stimulated regulation of transcription, and HSF1 potentiates the action of ERα through a mecha-
nism involving chromatin reorganization. Furthermore, HSF1 deficiency may increase the sensitivity 
to hormonal therapy (4- hydroxytamoxifen) or CDK4/6 inhibitors (palbociclib). Analyses of data from 
The Cancer Genome Atlas database indicate that HSF1 increases the transcriptome disparity in 
ER- positive breast cancer and can enhance the genomic action of ERα. Moreover, only in ER- positive 
cancers an elevated HSF1 level is associated with metastatic disease.

Editor's evaluation
The authors present an interesting genomics approach to understanding the role of heat shock 
factor 1 (HSF1) in breast cancer cells. They show that HSF1 indirectly interacts with estrogen 
receptor α (ERα) by regulating the transcription of HSP90, which is essential for normal folding and 
function of the receptor. They also show that HSF1 and ERα tether within the genome to enhance 
the transcription of a subset of genes associated with disease progression. Finally, they show the 
relevance to the breast tumors through comparing their data to publicly available data.

Introduction
Breast cancer is the most common malignancy in women worldwide. Four clinically relevant molec-
ular types are distinguished based on the expression of estrogen receptors (ERs) and HER2 (ERBB2). 
Among them, luminal adenocarcinomas, characterized by the expression of estrogen receptors, 
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constitute about 70% of all breast cancer cases. There are two classical nuclear estrogen receptors, 
ERα and ERβ (encoded by ESR1 and ESR2 genes, respectively), and structurally different GPR30 
(GPER1), which is a member of the rhodopsin- like family of the G protein- coupled and seven- 
transmembrane receptors. ERα expression is most common in breast cancer, and its evaluation is 
the basis for determining the ER status. The activity of estrogen receptors is modulated by steroid 
hormones, mainly estrogens, which are synthesized from cholesterol via androgens in the reaction 
catalyzed by aromatase (Fuentes and Silveyra, 2019). According to epidemiological and experi-
mental data, estrogens alongside the mutations in BRCA1 and BRCA2, CHEK2, TP53, STK11 (LKB1), 
PIK3CA, PTEN, and other genes, are key etiological factors of breast cancer development (Yaşar 
et al., 2017; Verigos and Magklara, 2015). The mechanism of estrogen- stimulated breast carcino-
genesis is not clear. According to the widely accepted hypothesis, estrogens acting through ERα 
stimulate cell proliferation and can support the growth of cells harboring mutations that then accu-
mulate, ultimately resulting in cancer. Another hypothesis suggests the ERα-independent action of 
estrogens via their metabolites, which can exert genotoxic effects, contributing to cancer devel-
opment (Yager and Davidson, 2006; Pescatori et  al., 2021). Nevertheless, hormonal therapies 
targeting either estrogen production (i.e., aromatase inhibitors) or the hormone receptor itself such 
as selective ER modulators (SERMs; i.e., tamoxifen) and selective ER degraders (SERDs; i.e., fulves-
trant) are widely used to block the mitogenic action of estrogens in patients with ER- positive breast 
cancer (Renoir, 2012; Farcas et al., 2021), contributing to the decline in mortality from breast cancer 
in recent decades (Iwase et al., 2021).

Previously, we have found that the major female sex hormone 17β-estradiol (E2) stimulates acti-
vation of heat shock factor 1 (HSF1) in estrogen- dependent breast cancer cells via MAPK signaling 
(Vydra et al., 2019). HSF1 is a well- known regulator of response to cellular stress induced by various 
environmental stimuli. It mainly regulates the expression of the heat shock proteins (HSPs), which func-
tion as molecular chaperones and regulate protein homeostasis (Ran et al., 2007). HSF1- regulated 
chaperones control, among others, the activity of estrogen receptors (Echeverria and Picard, 2010). 
ERs remain in an inactive state trapped in multimolecular chaperone complexes organized around 
HSP90, containing p23 (PTGES3), and immunophilins (FKBP4 or FKPB5) (Segnitz and Gehring, 
1995). Upon binding to E2, ERs dissociate from the chaperone complexes and become competent 
to dimerize and regulate the transcription. ERs bind DNA directly to the estrogen- response elements 
(EREs), or indirectly, via tethering factors, and promote the transcription at either nearby promoters 
or through chromatin loops from distal enhancers. The dynamic action of ERs, which enables the 
adaptation of cancer cells and impacts the clinical outcome, relies on many transcriptional coactiva-
tors and corepressors (Heldring et al., 2007; Renoir, 2012; Farcas et al., 2021). HSP90 is essential 
for ERα hormone binding (Fliss et al., 2000), dimer formation (Powell et al., 2010), and binding to 
the EREs (Inano et al., 1994). Also, the passage of the ER to the cell membrane requires association 
with the HSP27 (HSPB1) oligomers in the cytoplasm (Razandi et al., 2010). More than 20 chaperones 
and co- chaperones associated with ERα in human cells have been identified through a quantitative 
proteomic approach (Dhamad et  al., 2016), but their specific contribution in the receptor action 
still needs to be investigated. Moreover, HSF1 is involved in the regulation of a plethora of non- HSP 
genes, which support oncogenic processes: cell cycle regulation, signaling, metabolism, adhesion, 
and translation (Mendillo et al., 2012). A high level of HSF1 expression was found in cancer cell lines 
and many human tumors (Vydra et al., 2014; De Thonel et al., 2011) and was shown to be associated 
with the increased mortality of ER- positive breast cancer patients (Santagata et al., 2011; Gökmen- 
Polar and Badve, 2016).

E2- activated HSF1 is transcriptionally potent and takes part in the regulation of several genes 
essential for breast cancer cell growth (Vydra et al., 2019). Furthermore, HSF1- regulated chaper-
ones are necessary for ERα proper function. Thus, a hypothetical positive feedback loop between 
E2/ERα and HSF1 signaling may exist, which putatively supports the growth of estrogen- dependent 
tumors. Here, to study the cooperation of HSF1 and ERα in estrogen signaling and the influence of 
HSF1 on E2- stimulated transcription and cell growth and mobility, we created novel experimental 
models based on HSF1- deficient cells and performed an in- depth bioinformatics analysis of the rele-
vant genomics data. We also compared the influence of HSF1 on ER- positive and ER- negative breast 
cancers transcriptomes from The Cancer Genome Atlas (TCGA) database.

https://doi.org/10.7554/eLife.69843
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Results
HSF1 deficiency reduces the estrogen-stimulated proliferation and 
mobility of ERα-positive MCF7 cells
To study the contribution of HSF1 in E2 signaling, we established MCF7 cell lines with reduced HSF1 
expression. Firstly, we tested a few HSF1- targeting shRNAs (Figure 1—figure supplement 1A). Then, 
the most potent variant that reduced HSF1 level about 10- fold (termed afterward shHSF1) was chosen 
for further studies. Although the heat shock response was significantly reduced, the expression of HSP 
genes (HSPA1A, HSPH1, HSPB1, and HSPB8) was still induced after this HSF1 knockdown (Figure 1—
figure supplement 1B). Thus, we additionally created MCF7 variants with HSF1 functional knockout 
using the CRISPR/Cas9 gene targeting approach (clones arisen from two individual cells termed KO#1 
and KO#2 afterward). Then, considering the slight differences between clones, we created an addi-
tional experimental model: six new individual HSF1- negative (HSF1−) and six HSF1- positive (HSF1+) 
MCF7 clones obtained using the DNA- free CRISPR/Cas9 system (which was more effective) were 
pooled before analyses. The complete elimination of HSF1 (Figure 1A, Figure 1—figure supplement 
1A) was connected with a substantial loss of inducibility of HSP genes (Figure 1—figure supplement 
1B) and proteins (HSP105/HSPH1, HSP90, HSP70/HSPA1) following hyperthermia (Figure 1B). The 
ability of cells to form colonies in the clonogenic assay was reduced in all MCF7 experimental models 
of HSF1 depletion (using shRNA and sgRNA; Figure 1C, Figure 1—figure supplement 1C). More-
over, the population size of ALDH- positive (stem/progenitor) cells correlated with the HSF1 level and 
was reduced in HSF1- deficient cells (Figure 1—figure supplement 1D). Also, the increased contribu-
tion of cells in the G1 phase was associated with the HSF1 knockout (Figure 1—figure supplement 
1E). HSF1 knockdown did not affect the proliferation rate, while the functional HSF1 knockout led to 
a slight reduction in the proliferation rate under standard conditions (this effect was not visible under 
less favorable growing conditions, i.e., in phenol red- free 5% dextran- activated charcoal- stripped fetal 
bovine serum (FBS); Figure 1D, Figure 1—figure supplement 1F). To check if HSF1 deficiency would 
affect the growth of another ERα-positive cell line, we modified T47D cells using the CRISPR/Cas9 

eLife digest About 70% of breast cancers rely on supplies of a hormone called estrogen – which 
is the main hormone responsible for female physical characteristics – to grow. Breast cancer cells 
that are sensitive to estrogen possess proteins known as estrogen receptors and are classified as 
estrogen- receptor positive. When estrogen interacts with its receptor in a cancer cell, it stimulates the 
cell to grow and migrate to other parts of the body. Therefore, therapies that decrease the amount 
of estrogen the body produces, or inhibit the receptor itself, are widely used to treat patients with 
estrogen receptor- positive breast cancers.

When estrogen interacts with an estrogen receptor known as ERα it can also activate a protein 
called HSF1, which helps cells to survive under stress. In turn, HSF1 regulates several other proteins 
that are necessary for ERα and other estrogen receptors to work properly. Previous studies have 
suggested that high levels of HSF1 may worsen the outcomes for patients with estrogen receptor- 
positive breast cancers, but it remains unclear how HSF1 acts in breast cancer cells.

Vydra, Janus, Kuś et al. used genetics and bioinformatics approaches to study HSF1 in human 
breast cancer cells. The experiments revealed that breast cancer cells with lower levels of HSF1 also 
had lower levels of ERα and responded less well to estrogen than cells with higher levels of HSF1. 
Further experiments suggested that in the absence of estrogen, HSF1 helps to keep ERα inactive. 
However, when estrogen is present, HSF1 cooperates with ERα and enhances its activity to help cells 
grow and migrate. Vydra, Janus, Kuś et al. also found that cells with higher levels of HSF1 were less 
sensitive to two drug therapies that are commonly used to treat estrogen receptor- positive breast 
cancers.

These findings reveal that the effect HSF1 has on ERα activity depends on the presence of 
estrogen. Therefore, cancer therapies that decrease the amount of estrogen a patient produces may 
have a different effect on estrogen receptor- positive tumors with high HSF1 levels than tumors with 
low HSF1 levels.

https://doi.org/10.7554/eLife.69843
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Figure 1. Effect of HSF1 depletion on MCF7 cell growth and migration. (A) HSF1 level and (B) heat shock response assessed by western blot in 
unmodified cells (WT) and in cells obtained using DNA- free CRISPR/Cas9 system: HSF1+ (six clones with the normal HSF1 level were pooled) and 
HSF1− (six HSF1- negative clones were pooled). Actin (ACTB) was used as a protein loading control. Heat shock: 43°C/1 hr + recovery 37°C/6 hr. (C) The 
number of colonies formed in the clonogenic assay: representative images of single- cell clones stained with crystal violet and their quantification (mean 

Figure 1 continued on next page

https://doi.org/10.7554/eLife.69843
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method (Figure 1—figure supplement 2A). Under standard conditions, we did not observe differ-
ences between HSF1+ and HSF1− T47D cells in the proliferation and clonogenic assay (not shown). 
Unlike MCF7 cells, HSF1− T47D cells grew slightly faster than HSF1+ cells, but this difference was not 
statistically significant and no differences were observed in the cell cycle (Figure 1—figure supple-
ment 2B and C).

We have previously demonstrated that HSF1 was activated after E2 treatment of ERα-positive 
cells and it was able to bind to the regulatory sequences of several target genes, which correlated 
with the upregulation of their transcription (Vydra et al., 2019). Since most of these genes code for 
proteins involved in E2 signaling, we expected that HSF1 downregulation could affect E2- dependent 
processes, especially cell proliferation. Therefore, we compared E2- stimulated proliferation of HSF1- 
proficient and HSF1- deficient MCF7 cells in all experimental models. HSF1 deficiency resulted in 
weaker growth stimulation by E2 (than in the corresponding control cells), but a statistically significant 
difference was not observed in all experimental conditions/cell variants (Figure 1D, Figure 1—figure 
supplement 1G). However, E2- stimulated proliferation was not significantly reduced in HSF1- deficient 
T47D cells (Figure 1—figure supplement 2B). These results indicate that HSF1 may influence the 
growth of ER- positive breast cancer cells, unstimulated and stimulated by estrogen, although the 
effect also depends on other factors (differences between cells, culture conditions).

We then searched for differences between modified cells in response to longer E2 treatment. We 
noticed that stimulation of HSF1- proficient MCF7 cells with E2 for 7–14 days resulted in cell- cell disso-
ciation, the acquisition of an ameboid- or mesenchymal- like morphology (Figure 1E and F, Figure 1—
figure supplement 1I), and enhanced adhesion to collagens (I and IV) but reduced to vitronectin 
(Figure 1G; adhesion to fibronectin, laminin, and tenascin was not affected; not shown). These changes 
enabled cells to migrate faster (Figure 1H, Figure 1—figure supplement 1H). HSF1 deficiency coun-
teracted cell scattering after E2 stimulation (Figure 1E and F, Figure 1—figure supplement 1I ). This 
was associated with the reduced adhesion to collagens and cell motility (Figure 1G and H, Figure 1—
figure supplement 1H). It is noteworthy that T47D cells differed from MCF7 cells in response to E2 
treatment for 14 days, especially in acquired cell morphology. Amoeboid- like morphology was domi-
nant among the scattered MCF7 cells, while mesenchymal- like morphology was dominant in T47D 
cells (Figure 1E and F, Figure 1—figure supplement 2D and E). Also, adhesion to collagens was not 
affected by E2 in T47D cells (Figure 1—figure supplement 2F). Nevertheless, E2 treatment enhanced 
migration of HSF1- proficient but not HSF1- deficient T47D cells (Figure 1—figure supplement 2G).

Transcriptional response to estrogen is inhibited in HSF1-deficient cells
In a search for the mechanism responsible for a distinct response to estrogen in ER- positive cells with 
different levels of HSF1, we analyzed global gene expression profiles by RNA- seq in all MCF7 cell vari-
ants. At control conditions (no E2 stimulation), we found relatively few genes differentially expressed 
in HSF1- proficient and HSF1- deficient cells that were common for different models of HSF1 downreg-
ulation. These included mainly known HSF1 targets (e.g., HSPH1, HSPE1, HSPD1, HSP90AA1) slightly 
repressed in HSF1- deficient cells. Analyzing the response to E2, we initially compared cell variants 
from different models: with the normal level of HSF1 (WT, SCR, and MIX) and HSF1- deficient cells 

± SD, n = 4). (D) Growth curves of untreated (Ctr) and E2- stimulated cells in phenol red- free media with 5% or 10% charcoal- stripped FBS (assessed 
using crystal violet staining). Mean and standard deviation from three independent experiments (each in three technical replicates) are shown. (E) 
F- actin staining in cells treated with E2 (10 nM for 14 days), then seeded for 24 hr on fibronectin- coated slides. Arrowheads, ameboid- like cells; arrows, 
mesenchymal- like cells; scale bar, 50 μm. (F) The number of cells after F- actin staining was counted in 10 random fields and single cells (ameboid- like 
and mesenchymal- like) were calculated as a percent of all cells. (G) Cell adhesion to collagens and vitronectin analyzed after E2 treatment (10 nM for 
14 days); adhesion to BSA serves as a negative control (n = 4) (H) The number of migrating cells assessed by Boyden chamber assay after E2 treatment 
(10 nM for 14 days) (n = 3, each in three technical replicates). Boxplots represent the median, upper and lower quartiles, maximum and minimum; 
***p<0.0001, **p<0.001, *p<0.05 (significance of differences versus the corresponding control – next to the curve/box/bar or between cell variants). 
See Figure 1—figure supplement 1 and Figure 1—figure supplement 2 for an extended characteristic of other HSF1- deficient MCF7 and T47D cell 
models.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Characteristic of HSF1- deficient MCF7 cell variants.

Figure supplement 2. Characteristic of HSF1- deficient T47D cells.

Figure 1 continued

https://doi.org/10.7554/eLife.69843
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(shHSF1, KO#1, and KO#2) (Supplementary file 1, sheet 1). We found 50 genes similarly regulated by 
E2 (47 upregulated and 3 downregulated) in all HSF1- proficient MCF7 cell variants (Figure 2—figure 
supplement 1A and B). On the other hand, only 13 genes were similarly upregulated after E2 stim-
ulation in HSF1- deficient MCF7 cell variants (Figure 2—figure supplement 1A and C). The gene set 
enrichment analyses indicated that HSF1 deficiency negatively affected the processes activated by 
estrogen (the early and late estrogen response; Figure 2—figure supplement 1E). Moreover, though 
almost all genes upregulated by E2 in HSF1- proficient cells were also upregulated in HSF1- deficient 
cells (except NAPRT), the degree of their activation (measured as a fold change E2 versus Ctr) was 
usually weaker in the latter cells (Figure 2—figure supplement 1F), which indicated that the transcrip-
tional response to estrogen was inhibited in the lack of HSF1. Interestingly, however, several E2- de-
pendent genes revealed slightly higher basal expression (without E2 stimulation) in HSF1- deficient 
cells (Figure 2—figure supplement 1G), which suggested that in the absence of E2, HSF1 could be 
involved in the suppression of these genes.

Considering differences between KO#1 and KO#2 HSF1 knockout clones derived from individual 
cells (Figure 2—figure supplement 1D), we performed an additional transcriptomic analysis using a 
putatively more representative MCF7 cell model obtained by DNA- free CRISPR/Cas9 method (hetero-
geneous populations of HSF1+ and HSF1− cells) (Supplementary file 1, sheet 2). The analysis showed 
that 3715 genes significantly changed the expression (2336 upregulated and 1479 downregulated) 
in HSF1+ cells after E2 stimulation. On the other hand, only 2969 genes (1818 upregulated and 1151 
downregulated) changed the expression in HSF1− cells (Figure  2A). Thus, approximately 20% of 
genes responding to E2 treatment in HSF1+ cells did not respond similarly in HSF1− cells. Moreover, 
among genes up- or downregulated in both cell variants, approximately 68% or 81%, respectively, 
responded less effectively (fold change E2 versus Ctr) in HSF1− cells than HSF1+ cells (Figure 2A, 
bottom panel). The gene set enrichment analyses revealed the slight differences in the early and 
late estrogen response pathways (Hallmark gene sets M5906 and M5907) but also in genes defining 
epithelial- mesenchymal transition (M5930). Interestingly, the expression of genes from these path-
ways already differentiated untreated HSF1− and HSF1+ cells. Genes encoding cell cycle- related 
targets of E2F transcription factors (M5925), involved in the G2/M checkpoint (M5901) as well as 
ECM proteoglycans (M27219) and collagen formation (M631), also discriminated HSF1− and HSF1+ 
cells (Figure 2—figure supplement 2A). The analysis confirmed that the transcriptional response to 
estrogen was inhibited in the lack of HSF1. In addition, signaling pathways related to proliferation, 
migration, and collagen adhesion were identified as primarily affected, which was consistent with 
the results of functional tests. Among E2- responding genes that were common for all MCF7 cell 
models, 46 were upregulated and 2 were downregulated (Figure 2B). Though a fraction of genes 
with higher basal expression in HSF1− cells than in HSF1+ cells (potentially repressed by HSF1) was 
smaller compared to other models of HSF1 deficiency (Figure 2—figure supplement 1), it remained 
relevant (Figure 2C).

To validate the RNA- seq results, we selected 13 estrogen- induced genes for RT- qPCR analyses 
using nascent RNA (Figure 2D). In the case of nine genes, the degree of activation was substantially 
lower in HSF1− than in HSF1+ cells. When the basal expression in E2- untreated cells was compared, 
there were 12 genes expressed at a higher level in untreated HSF1− cells in comparison to HSF1+ 
cells (Figure 2D). Additional RT- qPCR analyses using total RNA showed that of the 15 genes tested 
12 were less activated after E2 treatment in HSF1− than in HSF1+ cells. When the basal expression 
in E2- untreated cells was compared, six genes were expressed at a significantly higher level and one 
at a lower level in HSF1− than HSF1+ cells (Figure 2—figure supplement 2B). Therefore, although 
the response to E2 was highly variable (differences were observed between cell models), RT- qPCR- 
based validation generally confirmed differences between HSF1- proficient and HSF1- deficient MCF7 
cells revealed by the RNA- seq. These changes at the transcriptional level might have direct functional 
consequences in HSF1− cells (reduced level of E2- stimulated lcnRNAs, e.g., LINC01016) but also were 
connected with the reduced protein level of E2- stimulated genes (HSPB8, PHLDA1, and EGR3 are 
shown as examples; Figure 2E).

HSF1 influences the binding of ERα to chromatin
To further study the influence of HSF1 on estrogen signaling, we analyzed ERα binding to chro-
matin in HSF1- proficient and HSF1- deficient MCF7 cells. We performed ChIP- seq analyses using the 

https://doi.org/10.7554/eLife.69843
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Figure 2. The deficiency of HSF1 reduces a transcriptional response to estrogen (E2) in ER- positive MCF7 cells. (A) Overlap of genes stimulated or 
repressed after the E2 treatment (RNA- seq analyses) in HSF1+ and HSF1− cells (model created as described in Figure 1). The bottom panel compares 
the degree of response to E2 of overlapping genes. (B) Heatmap with hierarchical clustering of normalized read counts from RNA- seq (row z- score) 
for selected genes (identified as similarly responding in all MCF7 cell models; see Figure 2—figure supplement 1) stimulated or repressed after the 

Figure 2 continued on next page

https://doi.org/10.7554/eLife.69843


 Research article      Cancer Biology | Cell Biology

Vydra, Janus, et al. eLife 2021;10:e69843. DOI: https:// doi. org/ 10. 7554/ eLife. 69843  8 of 36

first functional knockout model (KO#2 and MIX cells) and validation by ChIP- qPCR using the model 
obtained by the DNA- free CRISPR/Cas9 system. A list of all ERα-binding sites detected by ChIP- seq in 
unstimulated cells and after 30 or 60 min of E2 treatment is presented in Supplementary file 2. These 
analyses revealed that in unstimulated cells ERα binding was more efficient (more binding sites and 
increased number of tags per peak) in HSF1- deficient cell variant (KO#2) than in the corresponding 
HSF1- proficient control (MIX cells) (Figure  3A and B) (it is worth noting that the MIX cell variant 
was also different from wild- type cells, indicating that the genome organization was affected by the 
CRISPR/Cas9 procedure itself, possibly due to off- targets). ERα target sequences in IGFBP4 or GREB1 
are examples of such increased binding efficiency in unstimulated HSF1- deficient cells (Figure 3D). 
Estrogen treatment for 30 or 60 min resulted in enhanced ERα binding in all cell variants. However, fold 
enrichment (E2 versus Ctr) was lower in HSF1- deficient cells than in HSF1- proficient cells (Figure 3C). 
Moreover, the number of detected peaks in the E2- treated HSF1- deficient cells was only slightly 
higher than in unstimulated cells (Figure 3A) and enhanced ERα binding was primarily manifested 
in sites already existing in unstimulated cells (Figure 3C and D). We additionally searched for ERα- 
binding preferences in HSF1- proficient and HSF1- deficient cells. After estrogen treatment, ERβ (ESR2) 
and ERα (ESR1) motifs were centrally enriched in ERα-binding regions in all cell variants (Figure 3—
figure supplement 1). Moreover, in untreated cells, the motif for PBX1 (not centrally enriched in peak 
regions), which is a pioneer factor known to bind to the chromatin before ERα recruitment (Magnani 
et al., 2011), was identified by MEME- ChIP analysis in all cell variants (not shown). This indicates that 
ERα chromatin- binding preferences were not substantially changed in HSF1- deficient cells.

Validation of ChIP- seq results revealed that in the case of IGFBP4 and GREB1 (i.e., sequences 
highly enriched with ERα after E2 stimulation) the binding efficiency of ERα was higher in unstimulated 
HSF1− cells than in the corresponding HSF1+ cells. On the other hand, although estrogen treatment 
strongly induced ERα binding, this induction was considerably lower in HSF1− cells (Figure 3E). There-
fore, we confirmed that in this experimental system the deficiency of HSF1 may result in enhanced 
binding of unliganded ERα (in particular at strongly responsive ERα-binding sites) and weaker subse-
quent enrichment of ERα binding upon estrogen stimulation. However, other patterns of the response 
to E2 treatment are also possible, especially in sequences that were weakly enriched in ERα after stim-
ulation, as exemplified by AMZ1, SDK2, SMPD3, and SMTNL2 (Figure 3D and E). Observed differ-
ences in response to E2 between cells with different levels of HSF1 may result from altered expression 
of ERα in HSF1- deficient cells. We found that although the kinetics of ERα activation (as assessed by 
S118 phosphorylation) in response to E2 treatment was similar in HSF1+ and HSF1− MCF7 cells, ERα 
and pS118 ERα levels were lower in HSF1− cells (Figure 3F).

ERα is known to be kept in an inactive state by HSP90 (Pratt and Toft, 1997), in particular by 
HSP90AA1 (Dhamad et al., 2016), that is, the HSF1 transcriptional target. Thus, looking for a reason 
for the decreased ERα level and its dysregulated binding to DNA in HSF1- deficient cells, we focused 
on ERα and HSP90 interactions. Analyses of the proximity of both proteins by PLA revealed that 
the number of ERα /HSP90 complexes decreased after estrogen treatment in HSF1+ MCF7  cells 
(Figure  3—figure supplement 2A). This indicates that liganded (and transcriptionally active) ERα 
is indeed released from the inhibitory complex with HSP90. HSP90AA1 expression was substantially 

E2 treatment. (C) The response to E2 stimulation presented as a mean fold change E2 versus Ctr (dots; scale on the top) as well as changes in the 
expression level between Ctr and E2 (arrows begin at the level of mean expression in untreated cells and end at the level of mean expression in treated 
cells; normalized RNA- seq read counts with a scale on the bottom). Genes are sorted according to the hierarchical clustering shown in the heatmap. 
Upregulation, fold change >1.0; downregulation, fold change <1.0. Statistically significant differences between untreated HSF1+ and HSF1− cells 
are marked: ***p<0.0001, **p<0.001, *p<0.05. (D) Nascent RNA gene expression analyses by RT- qPCR in wild- type (WT), HSF1+, and HSF1− cells. 
The upper panel shows E2- stimulated changes (E2 versus Ctr fold change; E2 treatment: 10 nM, 4 hr), bottom panel shows basal expression level 
represented as fold differences between untreated wild- type control (WT), HSF1+, and HSF1− cells. Corresponding total RNA analyses are shown in 
Figure 2—figure supplement 2B. ***p<0.0001, **p<0.001, *p<0.05 (significance of differences versus the corresponding control – above the bar, or 
between cell variants). (E) Analyses at the protein level (western blot) after 48 hr treatment with E2. HSPA8 was used as a protein loading control. The 
graph below shows the results of densitometric analyses (n = 3).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Analyses of a transcriptional response to estrogen (E2) in ER- positive MCF7 cells with different levels of HSF1.

Figure supplement 2. E2- stimulated gene expression analyses in MCF7 cells with different levels of HSF1 created using DNA- free CRISPR/Cas9 system.

Figure 2 continued

https://doi.org/10.7554/eLife.69843
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Figure 3. HSF1 deficiency influences the binding of ERα to chromatin in ER- positive MCF7 cells. (A) Number of peaks and peak size distribution 
(number of tags per peak), (B) heatmap visualization of ERα ChIP- seq data (versus input), and (C) binding enrichment (fold enrichment E2 versus Ctr) 
after E2 stimulation (10 nM for 30 or 60 min) in HSF1- deficient cells (KO#2) and corresponding control (MIX, a combination of control clones arisen from 
single cells following CRISPR/Cas9 gene targeting). Heatmaps depict all ERα-binding events centered on the peak region within a 3 kb window around 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.69843
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reduced in HSF1- deficient cells (RNA- seq analyses), which correlated with the reduced HSP90 
protein level (Figure 3—figure supplement 2B). Also, the ERα level was considerably decreased in 
most HSF1- deficient cell variants (except KO#1 cells; Figure 3—figure supplement 2C), especially 
in cells cultured in phenol- free media (Figure 3F). Therefore, we hypothesized that the number of 
ERα/HSP90 complexes could be reduced in HSF1- deficient cells, which would result in enhanced 
basal transcriptional activity of ERα in untreated cells. However, we observed an increased number 
of such complexes both in untreated and E2- stimulated HSF1− cells when compared to HSF1+ cells 
(Figure 3—figure supplement 2A). This indicates that the response to estrogen could be dysregu-
lated in HSF1- deficient cells, also at the level of ERα/HSP90 interactions, in a mechanism not related 
directly to the HSP90 and ERα downregulation mediated by the HSF1 deficiency.

HSF1 can cooperate with ERα in chromatin binding and participate in 
the spatial organization of chromatin loops
Since estrogen- activated HSF1 was shown to bind to chromatin, we compared the binding patterns 
of ERα and HSF1 in wild- type MCF7 cells (using our ChIP- seq data deposited in the NCBI GEO data-
base; accession no. GSE137558; Vydra et al., 2019). Although in untreated cells (Ctr) there were 
1535 and 2248 annotated peaks for ERα and HSF1 respectively (compared to the input), only a few 
(below 50) binding sites with overlapped peaks for both transcription factors were identified. More-
over, these common binding regions were characterized by a small number of tags (smaller in the 
case of ERα) (Figure 4A; Supplementary file 3, sheet 1). On the other hand, the search for ERα and 
HSF1 common binding regions created after estrogen treatment (E2 versus Ctr) returned more than 
200 peaks (Supplementary file 3, sheet 2). They represented only a small fraction of the total number 
of ERα-binding sites (~2.6% from 8320 peaks; in the case of HSF1, this represents 35% of 571 peaks) 
(Figure 4B). Numbers of tags per peak and fold enrichment increased after E2 stimulation for both 
factors, yet more for ERα than HSF1 binding in such regions (Figure 4C). These results suggest that 
although there is a significant overlap between two sets of peaks (p- value=0.0099, ChIPpeakAnno, 
peakPermTest), the cobinding of both factors in the same DNA region may not be critical in the regu-
lation of the ERα transcriptional activity. Instead, we postulate that HSF1 may influence the organi-
zation of the chromatin loops created after estrogen stimulation. When we combined ERα and HSF1 
ChIP- seq peaks with data from chromatin interaction analysis by paired- end tag sequencing (ChIA- PET) 
performed by Fullwood et al., 2009, it was evident that the HSF1- binding sites mapped to ERα-in-
teracting loci (ERα anchor regions) (Figure 4D, Figure 4—figure supplement 1) even if actual ERα 
binding was not detected in the same locus (examples of such anchors in FAM102A, HSPB8, PRKCE, 
and WWC1 regulatory sequences are shown in Figure 4D). HSF1 peaks unrelated to ERα anchoring 
were also existing (Figure 4—figure supplement 1B). Further analyses of the spatial organization 
of chromatin by chromosome conformation capture (3C) technique revealed that some interactions 
between different ERα anchor regions were dependent on the presence of HSF1. This is exemplified 
by HSPB8 and WWC1 loci analyzed in HSF1- proficient and HSF1- deficient cells (Figure 4E), which 
confirms the role of HSF1 in the formation of ERα-mediated chromatin loops.

Though the cobinding of HSF1 and ERα to DNA was rare and relatively weak, particularly in 
untreated cells, the proximity of both factors was easily detected. In general, both transcription factors 
colocalized in the nucleus when assessed by immunofluorescence (Figure 4—figure supplement 2A). 

the peak. Peaks in each sample were ranked on intensity. (D) Examples of ERα peaks identified in ChIP- seq analyses, normalized by scaling factor using 
bamCoverage tool, and visualized by the IGV browser in unstimulated cells (Ctr) and after E2 treatment (10 nM, 30 min). The scale for each sample is 
shown in the left corner. Line plots show the E2/Ctr ratio obtained using the bamCoverage tool. (E) Comparison of ERα-binding efficiency (by ChIP- 
qPCR; % of input) in selected sequences in untreated (Ctr; upper panel) and after E2 stimulation (10 nM, 30 min; bottom panel) HSF1+ and HSF1− MCF7 
cells (model created as described in Figure 1). ***p<0.0001, **p<0.001, *p<0.05 (significance of differences versus the corresponding control – above 
the bar, or between cell variants). (F) Western blot analysis of ERα level and its phosphorylated form (pS118) after E2 treatment (1, 10, and 100 nM for 30 
or 60 min) in HSF1+ and HSF1− cells. Actin (ACTB) was used as a protein loading control. Graphs below show the results of densitometric analyses (n = 
4). *p<0.05 (significance of differences versus the corresponding control – above the bar, or between cell variants, versus the same treatment).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Top enriched motifs in ERα ChIP- seq peak regions.

Figure supplement 2. Analyses of HSP90 and ERα expression/interactions in ER- positive breast cancer cells.

Figure 3 continued

https://doi.org/10.7554/eLife.69843
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Figure 4. HSF1 may cooperate with ERα in DNA binding and take a part in chromatin organization. (A) Overlapped HSF1 and ERα ChIP- seq peaks in 
untreated wild- type MCF7 cells – peak size distribution (number of tags per peak). (B) The number of overlapped ERα and HSF1 peaks identified after 
E2 stimulation in wild- type MCF7 cells. (C) Overlapped HSF1 and ERα ChIP- seq peaks in wild- type MCF7 after E2 stimulation – peak size distribution 
(number of tags per peak) and fold enrichment. (D) Examples of ERα and HSF1 peaks identified by MACS in ChIP- seq analyses in wild- type MCF7 cells 

Figure 4 continued on next page

https://doi.org/10.7554/eLife.69843
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Thus, PLA spots indicating putative HSF1/ERα interactions were mainly located in the nucleus and 
their number increased after E2 treatment (Figure 4F, Figure 4—figure supplement 2B). However, 
large diversity was observed between individual cells, which suggests that also HSF1 binding to DNA 
may be differentiated at the single- cell level. Nevertheless, we concluded that the proximity of HSF1 
and ERα putatively reflecting their interactions frequently happens in the cell nucleus.

The PLA results showed that interactions between ERα and HSF1 are possible, while the binding 
patterns observed in ChIP- seq combined with the ChIA- PET results suggest that different modes of 
these interactions are possible. To distinguish between cobinding, tethering, and canonical binding, 
regions of HSF1 and ERα ChIP- seq peaks (and ChIA- PET reads) were analyzed whether each sequence 

after E2 treatment and corresponding ChIA- PET interactions (Fullwood et al., 2009) downloaded from ENCODE database and visualized by the IGV 
browser. The red bar shows the ERα anchor region (interacting loci), the red line – the intermediate genomic span between the two anchors forming a 
putative loop; the scale for each sample is shown in the left corner. (E) ERα-mediated chromatin interactions analyzed by chromosome conformation 
capture (3C) technique in HSPB8 and WWC1 loci. The scheme represents ERα anchor regions (red bars), HSF1- binding sites (blue arrows), and forward 
(F) and reverse (R) primers around subsequent HindIII cleavage sites. A model of chromatin loops resulting from interactions between ERα anchor 
regions is also illustrated above. Interactions between selected DNA regions were analyzed by PCR in untreated and E2- stimulated HSF1+ and HSF1− 
cells. (F) Interactions between ERα and HSF1 assessed by Proximity Ligation Assay (PLA) (red spots) in HSF1+ and HSF1− MCF7 cells after E2 treatment. 
DNA was stained with DAPI. Scale bar, 20 μm. Representative nuclei are enlarged. The number of spots per nucleus is shown in boxplots (which 
represent the median, upper and lower quartiles, maximum and minimum). ***p<0.0001, *p<0.05. E2, 10 nM for 60 min (or 30 min for 3C).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Examples of different patterns of ERα and HSF1 binding to chromatin.

Figure supplement 2. Analyses of ERα, and HSF1 expression/interactions in ER- positive breast cancer cells.

Figure 4 continued

Figure 5. Classification of the ERα and HSF1- binding patterns in gene regulatory regions in estrogen- treated MCF7 cells. (A) A workflow of the search 
for possible ERα and HSF1- binding patterns based on the presence (+) and absence (−) of estrogen- response element (ERE) and heat shock element 
(HSE) motifs within the binding/anchoring sites detected by ChIP- seq/ChIA- PET. (B) Graphical illustration of possible cooperation between ERα and 
HSF1 in the chromatin. (C) The number of genes potentially regulated by ERα and HSF1 via canonical binding, tethering, or cobinding. Peaks were 
annotated to the nearest gene transcription start site (several modes of regulation are possible for one gene). (D) Comparative analysis of 569, 220, and 
65 genes potentially co- regulated by canonical ERα and HSF1 binding, tethering, and cobinding, respectively; examples of genes are shown in gray 
boxes.

https://doi.org/10.7554/eLife.69843
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contained a motif match of HSF1 (heat shock element [HSE]) and/or ERα (ERE) (Figure 5A; Supple-
mentary file 4). Analyses of all peaks/reads existing after E2 treatment showed that most of them 
reflected canonical binding through the corresponding motif. We found 569 genes that could be 
independently co- regulated by both transcription factors. In addition, ERα and HSF1 may directly 
cooperate in the regulation of 275 genes: cobinding was found for 65 genes and possible tethering 
(i.e., the presence of both transcription factors in a given chromatin region containing only one motif) 
for 220 genes (Figure 5B and C). In the last group, it is also possible that ERα and HSF1 bound to 
chromatin in different sites can interact, leading to the formation of a chromatin loop. Moreover, 
various binding patterns were found in the regulatory region annotated to one gene (Figure 5D). This 
analysis showed that ERα and HSF1 can interact more frequently through tethering (or when each is 
bound to a different region) than cobinding.

Metastatic and nonmetastatic breast cancers differ in the level of HSF1 
only in the ER+ group
Our in vitro analyses indicated that HSF1 could support the transcriptional action of ERα upon estrogen 
treatment. On the other hand, HSF1- regulated chaperones are necessary to keep estrogen receptors 
in an inactive state in the absence of ligands, which collectively indicated important functional cross-
talk between both factors. Therefore, to further study the significance of the interaction between 
ERα and HSF1 in actual breast cancer, we utilized RNA- seq data deposited in TCGA database. The 
analysis revealed that the transcript level of HSF1 negatively correlated with the ESR1 transcript level, 
although this tendency was relatively weak (Figure 6A). Neither ESR1 nor HSF1 transcript levels had 
a significant prognostic value (Figure 6—figure supplement 1A). Therefore, out of all breast cancer 
cases, we selected four groups (numbered from I to IV) characterized by significantly different levels of 
ERα (mRNA and protein level) and HSF1 (mRNA) expression: ER−/HSF1low, ER−/HSF1high, ER+/HSF1low, 
and ER+/HSF1high (Figure 6B). These groups varied in molecular subtypes composition. In ER+ cancers 
(luminal A, luminal B, and normal- like), the HSF1low group was more homogenous (mostly luminal A) 
than the HSF1high group. In ER– cases (basal- like and HER2- enriched), the HSF1high group was more 
homogenous (mostly basal- like) (Figure 6C). Importantly, the exclusion of cases with moderate/inter-
mediate expression of ESR1 or HSF1 enabled us to observe the effect of both transcription factors 
on the survival of breast cancer patients, although the expression of HSF1 alone had no significant 
effect on the survival in either ER– or ER+ group analyzed separately (Figure 6—figure supplement 
1B). Nevertheless, the most divergent groups were ER+/HSF1low and ER−/HSF1high (better and worse 
prognosis, respectively; p=0.0044), which represented luminal A and basal- like enriched groups 
(Figure  6D, Figure  6—figure supplement 1B). The difference between ER+/HSF1low and ER−/
HSF1high cancers was also clearly visible in the multidimensional scaling (MDS) plots where the cancer 
cases belonging to these groups were separated. MDS plotting generally separated ER+ cases from 
ER−/HSF1high cases, while ER−/HSF1low cases were scattered between them (Figure 6E). On the other 
hand, HSF1high and HSF1low cases were not separated, although they were slightly shifted against each 
other. When looking at molecular subtypes, it became apparent that ER−/HER2- positive cancers were 
separated from ER−/basal- like cancers and slightly overlapped with ER+ cancers. These analyses indi-
cate collectively that HSF1 and ERα may affect survival and have stronger prognostic value if analyzed 
together but only when extreme expression values are taken into account.

Since in vitro analyses showed an effect of HSF1 on E2- stimulated cell migration that may facili-
tate metastasis formation, we checked HSF1 levels in metastatic (defined as all cases with a nonzero 
number of positive lymph nodes or with distant metastases; 418 cases) and nonmetastatic (399 cases) 
breast cancers (data deposited in TCGA database). ER+ (defined by our criteria, Figure 6B) was the 
only group in which HSF1 expression level was higher in metastatic cases than in nonmetastatic ones 
(logFC = 0.32, p- value=0.0005) (Figure  6F). When groups of patients defined by ER status were 
analyzed for overrepresentation of metastatic tumors, we found that they might be more common 
among ER+ tumors (51.3% versus 39.6% in the ER− group; p- value=0.018, Fisher’s exact test) 
(Figure 6G, upper panel). Furthermore, only in the ER+ group a proportional increase in metastatic 
disease was observed with the increase in HSF1 expression (Figure 6H) and metastatic tumors were 
overrepresented in ER+/HSF1high (62% versus 44.3% in ER+/HSF1low) (p- value=0.059, Pearson’s chi- 
squared test, verified by chi- squared posthoc test) (Figure 6G, bottom). When all patients (split into 
groups by ER status from TCGA clinical data and HSF1 expression split by median value or intervals) 

https://doi.org/10.7554/eLife.69843
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Figure 6. Relationship between ERα and HSF1 expression in breast cancer. (A) Correlation of HSF1 and ESR1 transcript level in all TCGA breast cancers. 
Each dot represents one cancer case; log(CPM), log2- counts per million. (B) Cases with markedly different mRNA levels of ESR1 (additionally, protein 
level determined by immunohistochemistry [IHC] was considered) and HSF1 selected for further analyses (groups I–IV). (C) Characteristics of selected 
groups by the molecular subtypes of breast cancer. (D) Kaplan–Meier plots for all selected groups. (E) Multidimensional scaling (MDS) plots of selected 
cases with marked: ER and HSF1 statuses (left) or molecular subtypes (right). (F) Plots of HSF1 expression levels in groups defined by ER status and 
presence/absence of metastases (**p<0.001). Black dots represent mean values. (G) Metastatic and nonmetastatic cases in groups of patients defined 
by ER status and HSF1 expression level. *p<0.05. (H) The proportion of metastatic (red) to nonmetastatic (green) cases (and their number) in ER+, ER−, 
and NA groups with different levels of HSF1 expression (deciles). ER+/−, estrogen receptor- positive/negative; HSF1high, high HSF1 level, HSF1low, low 
HSF1 level; NA, not assigned to any group.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Effect of ESR1 and HSF1 transcript levels on survival in TCGA breast cancer patients cohort analyzed separately or in 
combination using the Kaplan–Meier plotter.

Figure 6 continued on next page

https://doi.org/10.7554/eLife.69843


 Research article      Cancer Biology | Cell Biology

Vydra, Janus, et al. eLife 2021;10:e69843. DOI: https:// doi. org/ 10. 7554/ eLife. 69843  15 of 36

were analyzed, among- groups differences were also present (p- value = 0.001) (Figure  6—figure 
supplement 2). These analyses suggest that the action of HSF1 and its effect on metastasis formation 
may differ in ER+ versus ER− breast cancers.

HSF1 increases the disparity of the transcriptome in ER-positive breast 
cancers
Furthermore, we analyzed global gene expression profiles in breast cancers with different ERα and 
HSF1 statuses. Differential expression tests between the above- selected groups of patients (Supple-
mentary file 5) revealed that generally ERα had a much stronger influence on the transcriptome (i.e., 
ER+ versus ER−) than HSF1 (i.e., HSF1high versus HSF1low). Nevertheless, differences between ER+ and 
ER− cases were higher in the presence of high levels of HSF1, which implicates that HSF1 increases 
the disparity of the transcriptome of ER+ cancers. Also, the differences in the transcript levels between 
HSF1high and HSF1low cancers were higher in ER+ than ER− cases (Figure 7A). Remarkably, the most 
divergent were ER+/HSF1low and ER−/HSF1high cancers, which resembled the most significant differ-
ences in the survival probability (Figure 6D). Then, we looked at differences in numbers of differently 
expressed genes (DEGs) between patients’ groups. To eliminate the possible influence of the group 
size on DEGs, we repeated each test 10 times, randomly subsampling groups to an equal number of 
cases and averaging the number of DEGs. Furthermore, to check whether heterogeneity of selected 
groups regarding molecular subtypes could affect observed differences in gene expression profiles, 
only basal- like (ER−) and luminal A (ER+) cancers were included in these tests (Figure 7B). In general, 
these analyses also revealed that the number of genes differentiating ER+ and ER− cases was higher 
in HSF1high cancers, while the number of genes differentiating HSF1high and HSF1low cases was higher 
in ER+ cancers. The most divergent were again ER+/HSF1low and ER−/HSF1high cases while the most 
similar, ER−/HSF1low and ER−/HSF1high (Figure 7C). This tendency was maintained when groups with 
mixed molecular subtypes composition were analyzed as well as more homogenous cancer groups 
(i.e., only basal- like and luminal A). Furthermore, the prognostic value of both ESR1 and HSF1 was 
visible in such homogenous groups (Figure 6—figure supplement 1C), which may simply reflect the 
prognostic difference between the basal- like and luminal A (i.e., ER- negative and ER- positive) breast 
cancer subtypes. Also, HSF1high cases were dominant in basal- like cases, while HSF1low were dominant 
in luminal A cases. Further analyses showed that the level of HSF1 did not affect the survival of ER- pos-
itive luminal A cancers but may slightly worsen the prognosis of basal- like cancers (Figure 6—figure 
supplement 1C).

Differences in gene expression profiles between pairwise compared groups of cancer were further 
illustrated on volcano plots that additionally separated upregulated and downregulated genes 
(Figure 7—figure supplement 1). Then we searched for the hypothetical influence of the HSF1 status 
on functions of ERα-related genes in actual cancer tissue. The gene set enrichment analysis identified 
terms related to estrogen response among the most significant ones associated with transcripts differ-
entiating between ER+ and ER− cancers. It is noteworthy that terms related to spliceosomal complex 
assembly, especially the formation of a quadruple snRNP complex, were differentiating HSF1high and 
HSF1low cancers (Figure  7—figure supplement 2). The more detailed analysis focused on terms 
related to hormone signaling and metabolism showed differences between HSF1high and HSF1low cases 
when ER+ and ER− cancers were compared. These analyses indicate that HSF1 may enhance estrogen 
signaling. On the other hand, the analysis focused on terms related to response to stimulus and 
protein processing (i.e., functions presumed to be dependent on HSF1 action via the HSPs expression) 
revealed that most of them reached the statistical significance of differences between ER+/HSF1high 
and ER−/HSF1high cases (Figure 7D).

We additionally compared the expression of E2- regulated genes (the set identified in MCF7 cells 
by RNA- seq, i.e., 46 upregulated and 2 downregulated genes; Figure 2) in selected groups of breast 
cancers with different levels of ESR1 and HSF1. The analysis revealed the highest upregulation of 
PGR and LINC01016 genes in ER+ compared to ER− cancers (regardless of HSF1 status) (Figure 7E). 
It is noteworthy, however, that not all genes upregulated by E2 in MCF7 cells revealed an increased 

Figure supplement 2. Metastatic and nonmetastatic breast cancer cases in subgroups of patients defined by (A) ER status only (from TCGA clinical 
data); (B) ER status and HSF1 expression level.

Figure 6 continued
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Figure 7. HSF1 increases the disparity of the transcriptome of ER- positive breast cancer. (A) Boxplots of fold changes (log fold change [logFC] absolute 
values) illustrating differences in gene expression between groups characterized in Figure 6; represented are the median, upper/lower quartiles, and 
the highest/lowest values (excluding outliers shown as dots). (B) Composition of ER+ and ER− groups with different levels of HSF1 reduced to one 
molecular subtype (luminal A and basal, respectively). (C) The number of differently expressed genes (y- axis) plotted cumulatively against the false 

Figure 7 continued on next page
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expression level in ER+ compared to ER− cancers. Especially, FOXC1 and LINC00511 were expressed 
at a higher level in ER− cancers. Moreover, regardless of ER status, cancers with high HSF1 levels 
revealed a higher expression of MYBL1 than cancers with low HSF1 levels. Furthermore, expression 
of a few genes systematically differentiated cancers with high levels of both factors (ER+/HSF1high) 
compared to cancers with the low level of at least one factor (including RAPGEFL1, AMZ1, KCNF1, 
HSPB8 upregulated, and CYP24A1, SIM1 downregulated in ER+/HSF1high cancers), which was consis-
tent in all relevant comparisons (marked with green boxes in Figure 7E). Nevertheless, the observed 
features of gene expression profiles confirmed collectively that HSF1 affects the genomic action of 
ERα in breast cancer.

HSF1 functional knockout results in a better response to 
hydroxytamoxifen and palbociclib treatments in MCF7 cells
ER- positive breast cancers are frequently treated with tamoxifen, a selective estrogen receptor 
modulator. More recent therapeutic options include palbociclib, a selective inhibitor of the cyclin- 
dependent kinases CDK4 and CDK6, approved for women with advanced metastatic cancer. Thus, 
we studied the influence of HSF1 on the response of MCF7 and T47D cells to these drugs. Treat-
ment of HSF1+ cells with 4- hydroxytamoxifen (4- OHT) resulted in slightly enhanced proliferation 
(Figure 8A). This may be a consequence of ERα activation (estimated by its phosphorylation at S118; 
Figure 8B) and induction of ERα-regulated genes (not shown) and is consistent with previous reports 
(Ali et al., 1993). Although HSF1 functional knockout by itself had different effects in both cell lines 
(MCF7 growth was inhibited, while T47D growth was enhanced after HSF1 knockout; see Figure 1D, 
Figure 1—figure supplement 1F and G, Figure 1—figure supplement 2B), treatment with 4- OHT 
did not result in increased proliferation, thus it gave better results than in HSF1+ cells (Figure 8A). 
4- OHT slightly inhibited E2- stimulated cell proliferation, and the differences between HSF1+ and 
HSF1− cells reflected differences in response to E2. T47D cells were more resistant to palbociclib than 
MCF7 cells. The difference between HSF1+ and HSF1− was not significant in T47D cells while in MCF7 
cells inhibitory concentration 50 (IC50) of palbociclib was more than twofold lower in HSF1− than in 
HSF1+ cells (Figure 8C). Palbociclib also inhibited E2- stimulated cell proliferation, yet only in MCF7 
cells, it was slightly more effective in the absence of HSF1 (Figure 8A). These results show only some 
tendencies (the statistical significance depends on the tests used) but suggest that ER- positive breast 
tumors with low HSF1 expression may be more sensitive to treatment with 4- OHT and palbociclib than 
cases with high HSF1 levels.

Discussion
The precise mechanisms by which estrogens stimulate the proliferation of breast cancer cells are still 
unclear. We found that estrogen action may be supported by HSF1, a deficiency of which in ER- pos-
itive MCF7 breast cancer cells slows down the mitogenic effect of estrogen. This may be a conse-
quence of a reduced level of ERα and transcriptional response to estrogen in these cells. In addition, 

discovery rate (FDR) value of differences (x- axis). Comparisons of ER+ and ER− cancer cases as well as HSF1high and HSF1low: all cases (upper graphs; 
for group indexes see panel A) and cases from pre- selected cancer subtypes (lower graphs; for group indexes, see panel B). (D) Gene set enrichment 
analyses showing differences between ER+ and ER− breast cancers with different HSF1 levels. Terms related to hormone signaling and metabolism 
and response to stimulus and protein processing in comparisons between groups that were selected in Figure 6B. Blue, a fraction of downregulated 
genes; red, a fraction of upregulated genes. (E) Differences in the expression of the E2- regulated gene set (as identified in MCF7 cells by RNA- seq; 
see Figure 2 and Figure 2—figure supplement 1) between breast cancers with different levels of ESR1 and HSF1 selected from TCGA database and 
qualified into four groups as shown in Figure 6B. Green boxes mark all possible comparisons between the ER+/HSF1high group to other groups. The 
black horizontal line separates genes up- and downregulated after E2 treatment in MCF7 cells.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Volcano plots showing differential expression patterns between two distinct groups of breast cancers with different levels of 
ESR1 and HSF1 expression.

Figure supplement 2. Gene set enrichment analyses showing the most significant terms differentiating ER+ and ER– breast cancers with different HSF1 
levels (in comparisons between groups selected in Figure 6B). 

Figure 7 continued
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analyses of the transcriptome of breast cancers from TCGA database showed the importance of HSF1 
as evidenced by higher transcriptome disparity in ER- positive cases with a high expression of HSF1 
rather than with low HSF1 levels. The effect of E2 and ERα on cell migration and metastasis also is 
unclear and published data are inconsistent. E2 was shown to suppress the invasion of ER- positive 
breast cancer cells (Padilla- Rodriguez et al., 2018) or to enhance breast cancer cell motility and inva-
sion (Sanchez et al., 2010; Zheng et al., 2011; Ho et al., 2016; Vazquez Rodriguez et al., 2017). 
Correspondingly, ERα silencing or inhibition (by fulvestrant, a selective estrogen receptor degrader) 
was shown to enhance cell migration and invasion (Bouris et  al., 2015; Gao et  al., 2017) or to 
reduce motility (Bischoff et al., 2020). We showed that longer exposure to E2 induced cell scattering 
and increased mobility in ER- positive breast cancer cells and HSF1 deficiency could counteract these 
processes. It is noteworthy that responses to E2 and the effects of HSF1 are slightly different in MCF7 
and T47D cells. Ameboid- like morphology and enhanced adhesion to collagens are induced by E2 in 
MCF7, while mesenchymal- like morphology is induced in T47D cells. Generally, T47D cells differ from 
MCF7 cells in response to estrogen, partially due to a lower level of ERα in T47D (Vydra et al., 2019). 
Moreover, T47D cells harbor a p53 missense mutation (L194F), which causes p53 stabilization (Lim 
et al., 2009). The mutant p53 exhibits gain- of- function activities in mediating cell survival, and this is 
likely the reason for the differences between T47D and MCF7 cells. Nevertheless, the data from TCGA 
showing a correlation between increasing levels of HSF1 and metastatic disease in ER- positive breast 
cancers support the observations from the in vitro model that HSF1 may affect migration.

Figure 8. HSF1 functional knockout affects the response of cells to 4- hydroxytamoxifen (4- OHT) and palbociclib (Palbo). (A) Growth of HSF1+ and 
HSF1− MCF7 and T47D cells (assessed using crystal violet staining). Cells were treated with DMSO (Ctr), 4- OHT (100 nM), Palbo (1 µM in MCF7 cells, 
10 µM in T47D cells), and E2 for 6 days. Boxplots represent the median, upper and lower quartiles, maximum and minimum of absorbance ratio from 
three independent experiments (each in two technical replicates); **p<0.001, *p<0.05 (significance of differences versus the corresponding control – 
above the box, or between cell variants/treatments). (B) Western blot analysis of ERα level and its phosphorylated form (pS118) after E2 or/and (4- OHT) 
treatment in HSF1+ and HSF1− MCF7 cells. Ctr: DMSO; E2: 10 nM E2; 4- OHT: 100 nM 4- OHT; 4- OHT+ E2: 100 nM 4- OHT and 10 nM E2. All cells were 
incubated for 2 hr, E2 was added 1 hr before harvesting the cells. Actin (ACTB) was used as a protein loading control. Graphs below show the results of 
densitometric analyses (n = 3). *p<0.05 (significance of differences versus corresponding Ctr – above the bar, or between cell variants, versus the same 
treatment). (C) Viability of HSF1+ and HSF1− MCF7 and T47D cells treated with palbociclib and assessed by MTS. IC50 plots and values were generated 
with the Quest Graph IC50 Calculator.

https://doi.org/10.7554/eLife.69843
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The mechanism of supportive action of HSF1 in ER- positive cells was already proposed, by which 
upon E2 treatment HSF1 is phosphorylated via ERα/MAPK signaling, gains transcriptional competence, 
and activates several genes essential for breast cancer cell growth and/or ERα action (Vydra et al., 
2019). Here, we found that HSF1 deficiency results in a weaker response to estrogen stimulus of many 
estrogen- induced genes. It is noteworthy that the reduced transcriptional response to estrogen could 
at least partially result from the enhanced binding of unliganded ERα to chromatin and higher basal 
expression of ERα-regulated genes. This suggests that HSF1- dependent mechanisms may amplify ERα 
action upon estrogen stimulation while inhibiting it in the absence of ligands. The proper action of ERs 
depends on HSF1- regulated chaperones, especially HSP90. As expected, the number of HSP90/ERα 
complexes decreased after ligand (E2) binding in cells with normal levels of HSF1. However, although 
HSP90 was downregulated in HSF1- deficient cells, more HSP90/ERα complexes were found both in 
untreated and estrogen- stimulated cells. Hence, increased activity of ERα in HSF1- deficient cells could 
not be explained by the reduced sequestration of unliganded ERα by HSP90. Accordingly, additional 
HSF1- dependent factors may influence the formation of these complexes. Nevertheless, because it is 
known that HSP90 inhibitors affected the ERα level (Fliss et al., 2000; Nonclercq et al., 2004; Fiskus 
et al., 2007; Wong and Chen, 2009), a decreased level of ERα observed in our experimental model 
may be a consequence of the decreased level of HSP90. Ligand- independent genomic actions of 
ERα are also regulated by growth factors that activate protein- kinase cascades, leading to phosphor-
ylation and activation of nuclear ERs at EREs (Stellato et al., 2016). The involvement of HSF1 in the 
repression of estrogen- dependent transcription was reported in MCF7 cells treated with neuregulin 
(NRG1), the ligand for the HER2 (NEU/ERBB2) receptor tyrosine kinase (Khaleque et al., 2008). Inter-
actions of HSF1 with the corepressor metastasis- associated protein 1 (MTA1) and several additional 
chromatin- modulating proteins were implicated in that process. Therefore, since the lack of HSF1 can 
alter the cellular context, it cannot be ruled out that HSF1 influences unliganded and liganded ERα 
by various mechanisms that have to be further investigated. Our observation from cell culture models 
that silencing or knockout of HSF1 has a different effect on ERα-regulated genes in the absence or 
presence of estrogen implicates that the consequences in real cancer may depend on the hormonal 
status of the patient, which is connected with age (pre-/postmenopausal) or use of contraceptive and 
hormone replacement therapies.

Transcriptional activation by ERα is a multistep process modulated by coactivators and corepres-
sors. Cofactors interact with the receptor in a ligand- dependent manner and are often part of large 
multiprotein complexes that control transcription by recruiting components of the basal transcription 
machinery, regulating chromatin structure, and/or modifying histones (Welboren et al., 2009; Kovács 
et al., 2020; Pescatori et al., 2021). Liganded ERα may bind directly to DNA (to ERE), and indirectly 
via tethering to other transcription factors such as FOS/JUN (AP1), STATs, ATF2/JUN, SP1, and NFκB 
(Björnström and Sjöberg, 2005; Welboren et al., 2009; Heldring et al., 2011). It was established 
that direct ERE binding is required for most (75%) of the estrogen- dependent gene regulation and 
90% of the hormone- dependent recruitment of ERα to genomic binding sites (Stender et al., 2010). 
Therefore, 10% of ERα binding occurs through tethering factors. Here, we found that HSF1 can poten-
tially be an additional factor tethering liganded ERα to DNA. ERα has been shown to function via 
extensive chromatin looping to bring genes together for coordinated transcriptional regulation (Full-
wood et al., 2009). Since ERα anchor sites were identified also in sites bound by HSF1 but not ERα, 
we propose that HSF1 may be a part of this ‘looping’ machinery. Other components in the same 
anchoring center are also possible. According to the data from ENCODE, the HSF1- binding sites 
may coincide with NR2F2, JUND, FOSL2, CEBPB, GATA3, MAX, HDAC2, etc. It is consistent with the 
finding that transcription factor binding in human cells occurs in dense clusters (Yan et al., 2013). In 
general, estrogen- induced HSF1 binding was weaker than ERα binding. However, PLA analyses indi-
cated a large heterogeneity in a cell population regarding ERα and HSF1 interactions. The final tran-
scriptional activity of ERα is modulated by interactions with various tethering factors, including HSF1. 
Therefore, we hypothesize that it can be modulated differently at the single- cell level by different 
cofactors and chromatin remodeling factors. Thus, the response measured on the whole- cell popula-
tion is heterogeneous, while stochastic when a single cell is considered.

Some premises indicate that high levels of HSF1 may be associated with resistance of estrogen- 
dependent breast cancers to hormonal therapies based on antiestrogens. A significant association 
between high HSF1 expression and increased mortality among the ER- positive breast cancer patients 

https://doi.org/10.7554/eLife.69843
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receiving hormonal therapy was first noticed by Santagata et al., 2011, then confirmed by Gökmen- 
Polar and Badve, 2016. It was proposed that overexpression of HSF1 in ER- positive breast cancers 
was associated with a decreased dependency on the ERα-controlled transcriptional program for 
cancer growth (Silveira et al., 2021). However, this conclusion was based on experiments performed 
without estrogen stimulation. Our in vitro studies indicate that the influence of HSF1 on ERα action 
depends on the presence of the estrogen and HSF1 may repress the ERα-controlled transcriptional 
program only in the absence of the ligand. Nevertheless, we confirmed that HSF1- deficient cells 
responded better to 4- hydroxytamoxifen treatment than cells with normal HSF1 levels. Also, palbo-
ciclib, an inhibitor of CDK4/6, was more effective in these cells. Enhanced resistance to hormonal 
therapies could be mediated by HSF1- regulated genes. HSPs themselves can be prognostic factors 
in breast cancer and especially oncogenic properties of HSP90AA1 correlated with aggressive clinico-
pathological features and resistance to the treatment (Whitesell et al., 2014; Klimczak et al., 2019). 
Here, we have proposed a novel mechanism of the HSF1 action in ER- positive breast cancers, which is 
independent of typical HSF1- regulated genes. This mechanism assumes that HSF1 influences the tran-
scriptional response to estrogen via the reorganization of chromatin structure in estrogen- responsive 
genes. This mode of HSF1 action may be important in all ERα-expressing cells. For example, ERα is a 
critical transcription factor that regulates epithelial cell proliferation and ductal morphogenesis during 
postnatal mammary gland development. It is noteworthy that HSF1 has been shown to promote 
mammary gland morphogenesis by protecting mammary epithelial cells from apoptosis and increasing 
their proliferative capacity (Xi et al., 2012).

Experimental data indicate that the level of HSF1 can be used to predict response to treatment, 
while HSF1 targeting may improve the efficacy of breast cancer treatment and prevent the devel-
opment of metastases. High HSF1 nuclear levels (estimated by immunohistochemistry in patients 
with invasive breast cancer at diagnosis; in situ carcinomas and stage IV cancers were excluded from 
the outcome analysis) were previously associated with decreased survival specifically in ER- positive 
breast cancer patients (Santagata et al., 2011). However, in another study performed on samples 
from patients with ER- positive tumors, only a weak association was found between the HSF1 protein 

Figure 9. Model of cooperation between ERα and HSF1 in response to estrogen (E2) stimulation. Both ERα and HSF1 are kept in an inactive state by 
the complexes of HSP90, p23, and immunophilins (I). The binding of E2 to ERα is connected with the release of the chaperone complex and activation 
of ERα, leading to the phosphorylation of MEK1/2 followed by HSF1 activation. Oligomers of active transcription factors can bind to DNA and 
cooperate in the regulation of the transcription either directly or through chromatin reorganization. This may be influenced by other factors (differently 
in individual cells).

https://doi.org/10.7554/eLife.69843
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expression and poor prognosis (Gökmen- Polar and Badve, 2016). Nevertheless, both studies showed 
a significant correlation between HSF1 transcript levels and the survival in ER- positive breast cancer 
patients. In our analysis, using data from TCGA gene expression database, we did not observe such 
a correlation. ESR1 and HSF1 levels may be prognostic only if analyzed groups of patients are prese-
lected regarding the high/low expression, and may reflect the differences between luminal and basal 
cancers. We found that in cancers with high expression of estrogen receptor (ER+), the HSF1low group 
consisted mainly of luminal A cases, which are known to have the best prognosis. Although high 
HSF1 levels slightly reduced the survival in ER+ cancer patients, they had a greater negative outcome 
on survival in ER- negative patients. In that group, HSF1high cases consisted mainly of the basal- like 
subtype, known to have a worse prognosis.

In conclusion, HSF1 and ERα cooperate in response to estrogen stimulation. The regulation is 
known to be mediated by HSF1- dependent chaperones, which are important for the proper ERα 
action (Echeverria and Picard, 2010). Additionally, however, estrogen via ERα and MAPK acti-
vates HSF1 (Vydra et al., 2019), which together with ERα forms new chromatin loops that enhance 
estrogen- stimulated transcription (Figure 9). This may be affected by other factors (acting differently 
in individual cells). Moreover, HSF1 may be involved in the repression of unliganded ERα. Further-
more, genes activated by ERα and HSF1 play an important role in regulating the growth and spread 
of estrogen- dependent tumors.

Materials and methods
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Key resources table 

Reagent type 
(species) or 
resource Designation Source or reference Identifiers Additional information

Cell line (Homo 
sapiens) MCF7

American Type Culture 
Collection Cat#:HTB- 22; RRID:VCL_0031

Cell line (H. sapiens) T47D
European Collection of 
Authenticated Cell Cultures Cat#:85102201; RRID:CVCL_0553

Transfected 
construct (human)

Edit- R Human HSF1 
crRNAs

Dharmacon, Horizon 
Discovery Group Company Cat#:CM- 012109- 02- 0002

Transfected construct (human)
5′ GGTGTCCGGGTCGCTCACGA

Transfected 
construct (human)

Edit- R Human HSF1 
crRNAs

Dharmacon, Horizon 
Discovery Group Company Cat#:CM- 012109- 05- 0002

Transfected construct (human)
 AAAGTGGTCCACATCGAGCA

Transfected 
construct (human)

Edit- R Human HSF1 
crRNAs

Dharmacon, Horizon 
Discovery Group Company Cat#:CM- 012109- 03- 0002

Transfected construct (human)
 GTGGTCCACATCGAGCAGGG

Transfected 
construct (human) Edit- R tracrRNA

Dharmacon, Horizon 
Discovery Group Company Cat#:U- 002005 Transfected construct

Antibody
Anti- HSF1 (rabbit 
polyclonal)

Enzo, Life Sciences, 
Famingdale, NY

Cat#:ADI- SPA- 901; 
RRID:AB_1083465

WB (1:4000),
IF (1:300)
PLA (1:300)
ChIP (4 μg/sample)

Antibody
Anti- HSF1 (E- 4) (mouse 
monoclonal)

Santa Cruz Biotechnology, Inc, 
Inc, Dallas, TX Cat#:sc- 17757; RRID:AB_627753 PLA (1:200)

Antibody

Anti- ERα (estrogen 
receptor α) (D8H8) 
(rabbit monoclonal)

Cell Signaling Technology, 
Danvers, MA Cat#:8644; RRID:AB_2617128

WB (1:1000)
PLA (1:200)

Antibody
Anti- ERα (mouse 
monoclonal) ERalpha Diagenode, Liège, Belgium Cat#:C15100066; RRID:AB_2716575

PLA (1:200)
ChIP (4 μg/sample)
IF (1:200)

Antibody

Anti- phosphoERα 
(S118) (16J4) (mouse 
monoclonal)

Cell Signaling Technology, 
Danvers, MA Cat#:2511; RRID:AB_331289 WB (1:2000)

Antibody
Anti- ACTB (AC- 15)(HRP) 
(mouse monoclonal)

Sigma- Aldrich, Merck KGaA, 
Darmstadt, Germany Cat#:A3854; RRID:AB_262011 WB (1:25,000)
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Reagent type 
(species) or 
resource Designation Source or reference Identifiers Additional information

Antibody
Anti- HSP90 (rabbit 
polyclonal)

Enzo, Life Sciences, USA 
Famingdale, NY

Cat#:ADI- SPA- 836; 
RRID:AB_10615944

WB (1:2000)
PLA (1:200)
IF (1:200)

Antibody
Anti- HSP70 (HSPA1) 
(mouse monoclonal)

Enzo, Life Sciences, 
Famingdale, NY

Cat#:ADI- SPA- 810; 
RRID:AB_10616513 WB (1:2000)

Antibody
Anti- HSP105 (rabbit 
polyclonal) BioVision, Milpitas, CA Cat#:3390- 100; RRID:AB_2264190 WB (1:600)

Antibody
Anti- HSPB8/HSP22 
(rabbit polyclonal)

Cell Signaling Technology, 
Danvers, MA Cat#:3059; RRID:AB_2248643 WB (1:1000)

Antibody

Anti- TDAG51 (PHLDA1) 
(RN- E62) (mouse 
monoclonal)

Santa Cruz Biotechnology, Inc, 
Inc, Dallas, TX Cat#:sc- 23866; RRID:AB_628117 WB (1:1000)

Antibody
Anti- EGR3 (A- 7) (mouse 
monoclonal)

Santa Cruz Biotechnology, Inc, 
Inc, Dallas, TX Cat#:sc- 390967; RRID:AB_2894831 WB (1:1000)

Antibody
Anti- HSC70 (HSPA8) (B- 6) 
(mouse monoclonal)

Santa Cruz Biotechnology, Inc, 
Inc, Dallas, TX Cat#:sc- 7298; RRID:AB_627761 WB (1:5000)

Antibody Anti- mouse IgG (HRP) Millipore, Billerica, MA Cat#:AP124P; RRID:AB_90456 WB (1:5000)

Antibody Anti- rabbit IgG (HRP) Millipore, Billerica, MA Cat#:AP132P; RRID:AB_90264 WB (1:2000)

Antibody
Anti- rabbit IgG (Alexa 
Fluor 488)

Abcam, Cambridge, Great 
Britain Cat#:ab150077; RRID:AB_2630356 IF (1:200)

Antibody
Anti- mouse IgG (Alexa 
Fluor 594)

Abcam, Cambridge, Great 
Britain Cat#:ab150116; RRID:AB_2650601 IF (1:200)

Recombinant DNA 
reagent pLVX- shRNA1 vector Clontech/Takara Bio USA, Inc. Cat#:632177

Lentivirus construct to express a 
small hairpin RNA (shRNA)

Recombinant DNA 
reagent pLVX- shHSF1 This paper

pLVX- shRNA1 vector encoding 
shRNA specific for HSF1

Recombinant DNA 
reagent

Edit- R hCMV- PuroR- Cas9 
Expression Plasmid

Dharmacon, Horizon 
Discovery Group Company Cat#:U- 005100- 120 Cas9 expression vector

Sequence- based 
reagent qPCR primers This paper See Supplementary files 6–8

Sequence- based 
reagent shRNA This paper See Materials and methods

Peptide, 
recombinant protein eSpCas9- GFP protein

Sigma- Aldrich, Merck KGaA, 
Darmstadt, Germany Cat#:ECAS9GFPPR

Commercial assay 
or kit

Duolink In Situ Red Kit 
Mouse/Rabbit

Sigma- Aldrich, Merck KGaA, 
Darmstadt, Germany Cat#:DUO92101

Commercial assay 
or kit ALDEFLUOR Kit STEMCELL Technologies Cat#:01700

Commercial assay 
or kit

The iDeal ChIP- seq Kit 
for Transcription Factors Diagenode Cat#:C01010055

Commercial assay 
or kit

Direct- Zol RNA MiniPrep 
Kit Zymo Research Cat#:R2052

Commercial assay 
or kit μMacs Streptavidin Kit

Miltenyi Biotec, Bergisch 
Gladbach, Germany Cat#:130- 074- 101

Commercial assay 
or kit

CellTiter 96 AQueous 
One Solution Assay Promega; Madison, WI Cat#:G3580

 Continued

 Continued on next page

https://doi.org/10.7554/eLife.69843
https://identifiers.org/RRID/RRID:AB_10615944
https://identifiers.org/RRID/RRID:AB_10616513
https://identifiers.org/RRID/RRID:AB_2264190
https://identifiers.org/RRID/RRID:AB_2248643
https://identifiers.org/RRID/RRID:AB_628117
https://identifiers.org/RRID/RRID:AB_2894831
https://identifiers.org/RRID/RRID:AB_627761
https://identifiers.org/RRID/RRID:AB_90456
https://identifiers.org/RRID/RRID:AB_90264
https://identifiers.org/RRID/RRID:AB_2630356
https://identifiers.org/RRID/RRID:AB_2650601


 Research article      Cancer Biology | Cell Biology

Vydra, Janus, et al. eLife 2021;10:e69843. DOI: https:// doi. org/ 10. 7554/ eLife. 69843  23 of 36

Reagent type 
(species) or 
resource Designation Source or reference Identifiers Additional information

Commercial assay 
or kit

SuperSignal West Pico 
PLUS Chemiluminescent 
Substrate

Thermo Fisher Scientific, 
Waltham, MA Cat#:34577

Commercial assay 
or kit

QIAseq Ultralow Input 
Library Kit Qiagen, Venlo, Netherlands Catt#:180492

Commercial assay 
or kit

ECM Cell Adhesion Array 
kit

Sigma- Aldrich, Merck KGaA, 
Darmstadt, Germany Cat#:ECM540

Commercial assay 
or kit

PCR Master Mix SYBR 
Green

A&A Biotechnology, Gdynia, 
Poland Cat#:2008- 100A

Chemical 
compound, drug 17 beta- estradiol

Sigma- Aldrich, Merck KGaA, 
Darmstadt, Germany Cat#:E4389

Chemical 
compound, drug 4- Hydroxytamoxifen

Sigma- Aldrich, Merck KGaA, 
Darmstadt, Germany Cat#:T176

Chemical 
compound, drug

Palbociclib, 
hydrochloride salt LC Laboratories, Woburn, MA Cat#:P- 7788

Chemical 
compound, drug 4- Thiouridine

Cayman Chemical, Ann Arbor, 
MI Cat#:16373- 100

Chemical 
compound, drug Puromycin

Sigma- Aldrich, Merck KGaA, 
Darmstadt, Germany Cat#:P8833

Chemical 
compound, drug Phalloidin- TRITC

Sigma- Aldrich, Merck KGaA, 
Darmstadt, Germany Cat#:P1951 IF (1:800)

Software, algorithm Adobe Photoshop CS6 Adobe Version 13.0.1; RRID:SCR_014199

Software, algorithm ImageJ NIH RRID:SCR_003070

Software, algorithm Samtools
doi:10.1093/bioinformatics/
btp352 RRID:SCR_002105

Software, algorithm R software
R Foundation for Statistical 
Computing Package v.3.6.2; RRID:SCR_001905

Software, algorithm DESeq2
doi:10.1158/0008-5472.CAN-
13-1070 RRID:SCR_015687

Software, algorithm NOISeq doi:10.1093/nar/gkv711 Package v.3.12; RRID:SCR_003002

Software, algorithm FastQC software

https://www. bioinformatics. 
babraham. ac. uk/ projects/ 
fastqc RRID:SCR_014583

Software, algorithm Hisat2 doi:10.1038/nmeth.3317 Version 2.0.5; RRID:SCR_015530

Software, algorithm FeatureCounts
doi:10.1093/bioinformatics/
btt656 Version 1.6.5; RRID:SCR_012919

Software, algorithm ChIPpeakAnno doi:10.1186/1471-2105-11-237 Version 3.24.2; RRID:SCR_012828

Software, algorithm deepTools2 doi:10.1093/nar/gkw257 Version 3.5.0; SCR_016366

Software, algorithm Bowtie2 doi:10.1038/nmeth.1923 Version 2.2.9; SCR_016368

Software, algorithm MEME Suite doi:10.1093/nar/gkv416 Version. 5.4.1; RRID:SCR_001783

Software, algorithm MACS software doi:10.1038/nprot.2012.101 Version 1.4.2; RRID:SCR_013291

Software, algorithm Bedtools software
doi:10.1093/bioinformatics/
btq033 RRID:SCR_006646

Software, algorithm
MedCalc Statistical 
Software

MedCalc Software Ltd, 
Ostend, Belgium Version 19.2.1; RRID:SCR_015044
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Reagent type 
(species) or 
resource Designation Source or reference Identifiers Additional information

Software, algorithm ChIPseeker Bioconductor package Version 1.26.2; RRID:SCR_021322

Software, algorithm TCGAbiolinks package doi:10.1093/nar/gkv1507 Version 2.14; RRID:SCR_017683

Software, algorithm edgeR package
doi:10.1093/bioinformatics/
btp616 Version 3.28.1; RRID:SCR_012802

Software, algorithm Statistica TIBCO Software Inc RRID:SCR_014213

Software, algorithm MSigDB doi:10.1073/pnas.0506580102 RRID:SCR_016863

Other Deoxyribonuclease I
Worthington Biochemical 
Corporation Cat#:LS006333

Other RNAClean XP beads
Beckman Coulter Life Science, 
Indianapolis, IN Cat#:A63987

Other MTSEA- biotin- XX Biotium, Fremont, CA Cat#:90066

Other DAPI stain Invitrogen Cat#:D1306 1 µg/ml

Other DharmaFECT Duo
Dharmacon, Horizon 
Discovery Group Company Cat#:T- 2010 Transfection reagent

Other Viromer CRISPR
Lipocalyx GmbH, Halle 
(Saale), Germany Cat#:VCr- 01LB- 01 Transfection reagent

Other
cOmplete Protease 
Inhibitor Cocktail

Sigma- Aldrich, Merck KGaA, 
Darmstadt, Germany Cat#:4693116001

Other
PhosSTOP (phosphatase 
inhibitor tablets)

Sigma- Aldrich, Merck KGaA, 
Darmstadt, Germany Cat#:4906837001

Other Collagen I
Sigma- Aldrich, Merck KGaA, 
Darmstadt, Germany Cat#:804592

Other Collagen IV
Sigma- Aldrich, Merck KGaA, 
Darmstadt, Germany Cat#:C55333

Other Fibronectin Corning, NY Cat#:354008

 Continued

Cell lines and treatments
Human ERα-positive MCF7 and T47D breast cancer cell lines were purchased from the American Type 
Culture Collection (ATCC, Manassas, VA) and the European Collection of Authenticated Cell Cultures 
(ECACC, Porton Down, UK), respectively. Cells were cultured in DMEM/F12 medium (Merck KGaA, 
Darmstadt, Germany) supplemented with 10% FBS (EURx, Gdansk, Poland) and routinely tested for 
mycoplasma contamination. For heat shock, logarithmically growing cells were placed in a water bath 
at a temperature of 43°C for 1 hr. The cells were allowed to recover for the indicated time in a CO2 
incubator at 37°C. For estrogen treatment, cells were seeded on plates and the next day the medium 
was replaced into a phenol- free medium supplemented with 5% or 10% dextran- activated charcoal- 
stripped FBS (PAN- Biotech GmbH, Aidenbach, Germany). 17β-estradiol (E2; #E4389, Merck KGaA) 
was added 48 hr later to a final concentration of 10 nM unless otherwise stated for the indicated 
time. For longer E2 treatments, the medium was changed every two days. In the case of treatments 
with palbociclib (hydrochloride salt, #P- 7788, LC Laboratories, Woburn, MA) and 4- hydroxytamoxifen 
(#T176, Merck KGaA), an equal volume of DMSO was added as vehicle control. The growth media 
were not replaced either before or after treatments. Working solutions were prepared fresh before 
each experiment in a culture medium (without antibiotics).

HSF1 down-regulation using shRNA
The shRNA target sequence for human HSF1 (NM_005526.4) was selected using the RNAi Target 
Sequence Selector (Clontech, Mountain View, CA). The target sequences were shHSF1 - 5′GCA GGT 
TGT TCA TAG TCA GAA- 3′ (1994–2013 in NM_005526.4), shHSF1.2–5′CCT GAA GAG TGA AGA 
CAT A (526–544), and shHSF1.3–5′ CAG TGA CCA CTT GGA TGC TAT (1306–1326). The negative 
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control sequence was 5′- ATG TAG ATA GGC GTT ACG ACT. Sense and antisense oligonucleotides 
were annealed and inserted into the pLVX- shRNA vector (Clontech) at BamHI/EcoRI site. Infectious 
lentiviruses were generated by transfecting DNA into HEK293T cells and virus- containing superna-
tant was collected. Human MCF7 cells were transduced with lentiviruses following the manufacturer’s 
instructions and selected using a medium supplemented with 1 μg/ml puromycin (Life Technologies/
Thermo Fisher Scientific, Waltham, MA, USA).

HSF1 functional knockout using the CRISPR/Cas9 editing system
To remove the human HSF1 gene, Edit- R Human HSF1 (3297) crRNA, Edit- R tracrRNA, and Edit- R 
hCMV- PuroR- Cas9 Expression Plasmid (Dharmacon, Lafayette, CO) were introduced into MCF7 cells 
using DharmaFECT Duo (6 µg/ml) (Dharmacon) according to producer’s instruction. Transfected cells 
were enriched by puromycin (2 µg/ml) selection for 4 days. Afterward, single clones were obtained 
by limiting dilution on a 96- well plate. The efficiency of the HSF1 knockout was monitored by western 
blot. Out of 81 tested clones, 2 individual clones with the HSF1 knockout (KO#1 and KO#2) and 6 
pooled control clones (MIX) were chosen for the next experiments. Among individually tested HSF1- 
targeting crRNAs, only two were effective (target sequences:  GTGGTCCACATCGAGCAGGG and  
AAAGTGGTCCACATCGAGCA, both in exon 3 on the plus strand). For validation experiments, a new 
model was created using DNA- free system: Edit- R Human HSF1 (3297) crRNAs ( GGTGTCCGGGTC-
GCTCACGA in exon 1 on the minus strand and  AAAGTGGTCCACATCGAGCA in exon 3 on the plus 
strand), Edit- R tracrRNA (Dharmacon), and eSpCas9- GFP protein (#ECAS9GFPPR, Merck KGaA) were 
introduced into MCF7 and T47D cells using Viromer CRISPR (Lipocalyx GmbH, Halle [Saale], Germany) 
according to the manual provided by the producer. Single clones were obtained by limiting dilution 
on a 96- well plate. The efficiency of the HSF1 knockout was monitored by western blot and confirmed 
by sequencing (Genomed, Warszaw, Poland). Five (T47D) or six (MCF7) individual unaffected clones 
(HSF1+) or with the HSF1 functional knockout (HSF1−) were pooled each time before analyses.

Protein extraction and western blotting
Whole- cell extracts were prepared using RIPA buffer supplemented with cOmplete protease inhibitors 
cocktail (Roche) and phosphatase inhibitors PhosSTOP (Roche, Indianapolis, IN). Proteins (20–30 μg) 
were separated on 10% SDS- PAGE gels and blotted to a 0.45 μm pore nitrocellulose filter (GE Health-
care, Europe GmbH, Freiburg, Germany) using Trans Blot Turbo system (Bio- Rad, Hercules, CA) for 
10 min. Primary antibodies against HSF1 (1:4000, ADI- SPA- 901), HSP90 (1:2000, ADI- SPA- 836), and 
HSP70 (1:2000, ADI- SPA- 810), all from Enzo Life Sciences (Farmingdale, NY), HSP105 (1:600, #3390- 
100, BioVision, Milpitas, CA), ERα (1:2000, #8644), phosphoERα (S118) (1:2000, #2511), HSPB8 
(1:1000, #3059), all from Cell Signaling Technology (Danvers, MA), PHLDA1 (1:1000, #sc- 23866), EGR3 
(1:1000, #sc- 390967), HSPA8/HSC70 (1:5000, #sc- 7298), all from Santa Cruz Biotechnology (Dallas, 
TX), and ACTB (1:25,000, #A3854, Merck KGaA) were used. The primary antibody was detected by 
an appropriate secondary antibody conjugated with horseradish peroxidase (Thermo Fisher Scientific) 
and visualized by ECL kit (Thermo Fisher Scientific) or WesternBright Sirius kits (Advansta, Menlo 
Park, CA). Imaging was performed on x- ray film or in a G:BOX chemiluminescence imaging system 
(Syngene, Frederick, MD). The experiments were repeated in triplicate, and blots were subjected to 
densitometric analyses using ImageJ software to calculate relative protein expression after normaliza-
tion with loading controls (statistical significance of differences was calculated using t- test).

Total and nascent RNA isolation, cDNA synthesis, and RT-qPCR
For nascent RNA labeling, 500 μM of 4- thiouridine (Cayman Chemical, Ann Arbor, MI) was added to 
control and E2- treated cells for the duration of the treatment (4 hr). Next, total RNA was isolated using 
the Direct- Zol RNA MiniPrep Kit (Zymo Research, Irvine, CA), digested with DNase I (Worthington 
Biochemical Corporation, Lakewood, NJ), and cleaned with RNAClean XP beads (Beckman Coulter 
Life Science, Indianapolis, IN). 5 µg of total RNA from each sample were taken for nascent RNA fraction 
isolation using methane thiosulfonate (MTS) chemistry according to Duffy and Simon, 2016. After 
the biotinylation step using MTSEA- biotin- XX (Biotium, Fremont, CA), s4U- RNA was cleaned with 
RNAClean XP beads and isolated using μMacs Streptavidin Kit (Miltenyi Biotec, Bergisch Gladbach, 
Germany) as described (Garibaldi et al., 2017). Total RNA (1 μg) and nascent RNA (isolated from 5 μg 
of total RNA) from each sample were converted into cDNA as described (Kus- Liskiewicz et al., 2013). 

https://doi.org/10.7554/eLife.69843
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Quantitative PCR was performed using a Bio- Rad C1000 Touch thermocycler connected to the head 
CFX- 96. Each reaction was performed at least in triplicates using PCR Master Mix SYBRGreen (A&A 
Biotechnology, Gdynia, Poland). Expression levels were normalized against GAPDH, ACTB, HNRNPK, 
HPRT1, if not stated otherwise. The set of delta- Cq replicates (Cq values for each sample normalized 
against the geometric mean of four reference genes) for control and tested samples were used for 
statistical tests and estimation of the p- value. Shown are median, maximum, and minimum values of a 
fold change versus untreated control. The primers used in these assays are described in Supplemen-
tary file 6.

Clonogenic assay
Cells were plated onto 6- well dishes (1 × 103 cells per well) and cultured for 14 days. Afterward, cells 
were washed with the phosphate- buffered solution (PBS) and fixed with methanol. Colonies were 
stained with 0.2% crystal violet, washed, and air- dried. Colonies were counted manually.

Proliferation test
Cells (2 × 104 cells per well) were seeded and cultured in 12- well plates. At the indicated time, cells 
were washed with PBS, fixed in cold methanol, and rinsed with distilled water. Cells were stained 
with 0.1% crystal violet for 30 min, rinsed with distilled water extensively, and dried. Cell- associated 
dye was extracted with 1 ml of 10% acetic acid. Aliquots (200 μl) were transferred to a 96- well plate 
and the absorbance was measured at 595 nm (Synergy2 microtiter plate reader, BioTek Instruments, 
Winooski, VT). Grow curves are shown as the ratio of the absorbance on days 2, 4, and 6 against day 
0 and were calculated from 3 to 6 independent experiments, each in 2–3 technical replicates.

Cell viability assay
The effect of drug treatment on cell viability was determined colorimetrically using the CellTiter 96 
AQueous One Solution Cell Proliferation Assay (Promega, Madison, WI) according to the manufac-
turer’s protocol. Cells seeded into 96- well plates (4 × 103 MCF7 cells and 1 × 104 T47D cells per well) 
were incubated with palbociclib in concentrations ranging from 0 to 100 µM in DMSO for the next 
72 hr (max. DMSO concentration <0.5%). The experiment was performed 3–5 times with three repli-
cates for each concentration of the tested compound. IC50 values were determined using the Quest 
Graph IC50 Calculator (AAT Bioquest, Inc, 28 September 2021, https://www. aatbio. com/ tools/ ic50- 
calculator) with the option ‘Set minimum response to zero’.

F-actin staining
Cells were treated with E2 for 14 days, then 5 × 104 cells per well were plated on fibronectin- coated 
Nunc Lab- Tek II chambered coverglass (#155383, Nalge Nunc International, Rochester, NY) and 
allowed to grow for 24 hr. Cells were briefly washed with PBS, fixed for 10 min with 4% parafor-
maldehyde (PFA) solution in PBS, washed with PBS (3 × 5  min), treated with 0.1% Triton- X100 in 
PBS for 5 min, and washed again in PBS (3 × 5 min). F- actin was visualized by incubation with phal-
loidin–tetramethylrhodamine B isothiocyanate (1:800, #P1951, Merck KGaA) while nuclei were coun-
terstained with DAPI. Images were taken using Carl Zeiss LSM 710 confocal microscope with ZEN 
navigation software. The experiments were performed in triplicate. Cells were counted in 10 randomly 
selected fields for each replicate.

Cell adhesion tests
Cells were cultured for 14 days with or without E2 (10 nM). The ECM Cell Adhesion Array kit (#ECM 
540, Merck KGaA) was used according to the manufacturer’s instructions. Adhesion to collagen I and 
IV (#804592 and #C5533, Merck KGaA) was independently validated on collagen- coated (1 µg/cm2) 
96- well plates. Cells (7 × 104 cells per well) were allowed to adhere for 30 min. The wells were washed 
three times with PBS, fixed with cold methanol, and stained with 0.1% crystal violet. The adsorbed dye 
was extracted with a 10% acetic acid solution for 5 min, and measurement was performed at 595 nm 
on the Synergy2 microtiter plate reader (BioTek Instruments).

Transwell migration test (Boyden chamber assay)
Transwell chambers (with 8 μm pore size membrane, Becton Dickinson) were coated with fibronectin 
(10 μg/ml, Becton Dickinson). Cells (8 × 104) were suspended in a HEPES- buffered serum- free medium 
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containing 0.1% BSA, seeded in the top of the chambers, and placed in the wells containing medium 
supplemented with 10% FBS. After 24 hr, the inserts were washed with PBS, fixed with cold methanol, 
rinsed with distilled water, and stained with 0.1% crystal violet for 30 min. The cells on the upper 
surface of the inserts were gently removed with a cotton swab. Cells that migrated onto the lower 
surface were counted under a microscope in five random fields; all experiments were performed three 
times (three technical repetitions each).

ALDEFLUOR assay
The assay was performed using a kit from STEMCELL Technologies (Vancouver, Canada, #01700) 
according to the protocol. Cells (6 × 105) were harvested by trypsinization and resuspended in 
1 ml ALDEFLUOR Buffer. After the addition of 5 μl of BODIPY- aminoacetaldehyd e (BAAA), the 
substrate for aldehyde dehydrogenase (ALDH), and a brief mixing, 500 μl of the cell suspension (3 
× 105) was immediately transferred to another tube supplemented with 5 μl of diethylaminobenzal-
dehyde (DEAB), a specific inhibitor of ALDH, and pipetted to mix evenly. Tubes were incubated at 
5% CO2, 37°C for 60 min. Cells were collected by centrifugation and resuspended in ALDEFLUOR 
Buffer. Analyses were performed using the BD Canto III cytometer (Becton Dickinson, Franklin 
Lakes, NJ).

Cell cycle distribution
Cells (3 × 105 per well) were plated onto 6- well plates. The next day medium was replaced and cells 
were grown for an additional 48  hr. Afterward, cells were harvested by trypsinization, rinsed with 
PBS, and fixed with ice- cold 70% ethanol at −20°C overnight. Cells were collected by centrifugation, 
resuspended in PBS containing RNase A (100 µg/ml), and stained with 100 µg/ml propidium iodide 
solution. DNA content was analyzed using flow cytometry to monitor the cell cycle changes.

Immunofluorescence (IF)
Cells were plated onto Nunc Lab- Tek II chambered coverglass (#155383, Nalge Nunc International, 
Rochester, NY) and fixed for 15 min with 4% PFA solution in PBS, washed, treated with 0.1% Triton- X100 
in PBS for 5 min, and washed again in PBS (3 × 5 min). IF imaging was performed using primary anti-
bodies: anti- HSP90 (1:200; ADI- SPA- 836, Enzo Life Science), anti- HSF1 (1:300; ADI- SPA- 901, Enzo 
Life Sciences), or anti- ESR1 (1:200; C15100066, Diagenode) and secondary Alexa Fluor (488 or 594) 
conjugated antibodies (Abcam). Finally, the DNA was stained with DAPI. Images were taken using Carl 
Zeiss LSM 710 confocal microscope with ZEN navigation software.

Proximity Ligation Assay
To detect the ERα/HSP90 and ERα/HSF1 interactions, the Duolink In Situ Proximity Ligation Assay 
(PLA) (Merck KGaA) was used according to the manufacturer’s protocol. Cells were plated onto Nunc 
Lab- Tek II chambered coverglass (#155383, Nalge Nunc International) 1 day before the experiment. 
Cells were fixed for 15  min with 4% PFA solution in PBS, washed in PBS, and treated with 0.1% 
Triton- X100 in PBS for 5 min. After washing, slides were incubated in Blocking Solution and immu-
nolabeled (overnight, 4°C) with primary antibodies diluted in the Duolink Antibody Diluent: rabbit 
anti- HSP90 (1:200; #ADI- SPA- 836, Enzo Life Science) and mouse anti- ERalpha (1:200; #C15100066, 
Diagenode, Liège, Belgium) or mouse anti- HSF1 (1:200; #sc- 17757, Santa Cruz Biotechnology) and 
rabbit anti- ERα (1:200; #8644, Cell Signaling Technology), as well as rabbit anti- HSF1 (1:300; ADI- 
SPA- 901, Enzo Life Sciences) and mouse anti- ERalpha; negative controls were proceeded without 
one primary antibody or both. Then the secondary antibodies with attached PLA probes were used. 
Signals of analyzed complexes were observed using Carl Zeiss LSM 710 confocal microscope with 
ZEN navigation software; red fluorescence signal indicated proximity (<40 nm) of proteins recognized 
by both antibodies (Fredriksson et al., 2002). Z- stacks images (12 slices; 5.5 μm) were taken at ×630 
magnification. From each experimental condition, spots from 10 to 15 images were identified using 
Photoshop (Red Channel → Select → Color Range) and counted (Picture → Analysis → Record the 
measurements). Next, the mean number of spots per cell (nucleus, cytoplasm) in each image was 
calculated. Experiments were repeated three times.

https://doi.org/10.7554/eLife.69843
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Statistical analyses in in vitro experiments
Outliers were determined using the Grubbs, Tukey criterion, and QQ plot. For each dataset, the 
normality of distribution was assessed by the Shapiro–Wilk test and, depending on data distribution 
homogeneity of variances, was verified by the Levene test or Brown–Forsythe test. For analysis of 
differences between compared groups with normal distribution, the quality of mean values was veri-
fied by the ANOVA test with a pairwise comparison done with the HSD Tukey test or Games–Howell 
test and Tamhane test depending on the homogeneity of variance. In the case of non- Gaussian distri-
bution, the Kruskal–Wallis ANOVA was applied for the verification of the hypothesis on the equality 
of medians with Conover–Iman’s test for pairwise comparisons. p=0.05 was selected as a statistical 
significance threshold.

Global gene expression profiling
Total RNA was isolated from all MCF7 cell variants (untreated, treated with 10 nM E2 for 4 hr, condi-
tions based on Vydra et  al., 2019) using the Direct- Zol RNA MiniPrep Kit (Zymo Research) and 
digested with DNase I (Worthington Biochemical Corporation). For each experimental point, RNAs 
from three biological replicates were first tested by RT- qPCR for the efficiency of treatments. They 
were sequenced separately for HSF1+ and HSF1− cell variants or pooled before sequencing for WT, 
SCR, shHSF1, MIX, KO#1, and KO#2 cell variants. cDNA libraries were sequenced by Illumina HighSeq 
1500 (run type: paired- end, read length: 2 × 76 bp). Raw RNA- seq reads were aligned to the human 
genome hg38 in a Bash environment using hisat2 v 2.0.5. (Kim et al., 2015) with Ensembl genes tran-
scriptome reference. Aligned files were processed using Samtools (v. 1.13) (Li et al., 2009). Further-
more, reads aligned in the coding regions of the genome were counted using FeatureCounts (v. 1.6.5) 
(Liao et al., 2014). Further data analyses were carried out using the R software package (v. 3.6.2; R 
Foundation for Statistical Computing; http://www. r- project. org). Read counts were normalized using 
DESeq2 (v. 1.32.0) (Lowe et al., 2014), then normalized expression values were subjected to differ-
ential analysis using NOISeq package (v. 3.12) (Tarazona et al., 2015) (E2 versus Ctr in all cell variants 
separately). To find common genes between samples, lists of differentiating genes were compared 
and Venn diagrams were performed (package VennDiagram v. 1.6.20 from CRAN). Heatmaps of 
normalized read counts or log2 fold changes (E2 versus Ctr) for genes shared between samples were 
generated (package pheatmap v. 1.0.12 from CRAN). The hierarchical clustering of genes was based 
on Euclidean distance. Colors are scaled per row. Gene set enrichment analysis was performed as 
follows: from the count matrices, we filtered out all the genes with less than 10 reads in each of the 
libraries. Then, we analyzed the gene- level effects of E2 stimulation of cells with normal/decreased 
HSF1 levels, performing the DESeq2 test for paired samples, with pairs defined by the cell variant 
(HSF1+ and HSF1−, and separate analysis of three cell variants with normal- HSF1 level: WT, SRC, MIX, 
and three cell variants with decreased HSF1 level: shHSF1, KO#1, and KO#2). Finally, we performed 
the gene set enrichment analysis in the same way as for TCGA data (see below for details) – for each 
test, genes were ranked according to their minimum significant difference (MSD), CERNO test from 
tmod package was used to find enriched terms, and tmodPanelPlot function was used to visualize the 
results. The raw RNA- seq data were deposited in the NCBI GEO database; accession nos. GSE159802 
and GSE186004.

Chromatin immunoprecipitation and ChIP-qPCR
The ChIP assay was performed according to the protocol from the iDeal ChIP- seq Kit for Tran-
scription Factors (Diagenode) as described in detail in Vydra et al., 2019. For each IP reaction, 
30 µg of chromatin and 4 μl of mouse anti- ERalpha monoclonal antibody (C15100066, Diagenode) 
was used. For negative controls, chromatin samples were processed without antibody (mock- IP). 
Obtained DNA fragments were used for global profiling of chromatin- binding sites or gene- specific 
ChIP- qPCR analysis using specific primers covering the known EREs. The set of delta- Cq replicates 
(difference of Cq values for each ChIP- ed sample and corresponding input DNA) for control and 
test sample were used for ERα-binding calculation (as a percent of input DNA) and estimation of the 
p- values. ERE motifs in individual peaks were identified using MAST software from the MEME Suite 
package (v. 5.1.1) (Bailey et al., 2015). The sequences of used primers are presented in Supple-
mentary file 7.

https://doi.org/10.7554/eLife.69843
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Global profiling of chromatin-binding sites
In each experimental point, four ChIP biological replicates (each from 30 μg of input chromatin) were 
collected and combined in one sample before DNA sequencing. Immunoprecipitated DNA fragments 
and input DNA were sequenced using the Illumina HiSeq 1500 system and QIAseq Ultralow Input 
Library Kit (run type: single read, read length: 1 × 65  bp). Raw sequencing reads were analyzed 
according to standards of ChIP- seq data analysis as described below. Quality control of reads was 
performed with FastQC software (https://www. bioinformatics. babraham. ac. uk/ projects/ fastqc) and 
low- quality sequences (average phred <30) were filtered out. Remained reads were aligned to the 
reference human genome sequence (hg19) using the Bowtie2.2.9 program (Langmead and Salzberg, 
2012). Individual peaks (Ab- ChIPed samples versus input DNA) and differential peaks (17β-estradiol- 
treated versus untreated cells) were detected using MACS software (v. 1.4.2) (Feng et al., 2012), 
whereas the outcome was annotated with Homer package (v. 4.11) (Heinz et al., 2010). Peak intersec-
tions and their genomic coordinates were found using Bedtools software (Quinlan and Hall, 2010). 
The input DNA was used as a reference because no sequences were obtained using a mock- IP probe. 
The locations of identified ERα-binding sites were compared to genomic coordinates of E2- induced 
HSF1 peaks from our previous ChIP- seq analysis (NCBI GEO database; accession no. GSE137558). 
We defined ERα/HSF1- binding sites as ‘common’ if at least the center of one peak was within the 
corresponding peak. Dot plots showing peak size distribution were generated using MedCalc Statis-
tical Software (v. 19.2.1; MedCalc Software Ltd, Ostend, Belgium; https://www. medcalc. org; 2020). 
Coverage of bam files was normalized using deepTools (v. 3.5.0; bamCoverage and bamCompare 
functions) (Ramírez et al., 2016), with scaling factors normalizing the coverage to 1 million reads. 
ChIP- seq heatmaps were prepared using peakHeatmap function from ChIPseeker Bioconductor 
package (v. 1.26.2), with margins of 3000 nucleotides upstream and downstream from the promoter. 
Venn diagrams peak overlap statistics and permutation tests were generated using the ChIPpeakAnno 
package (v. 3.24.2) (Zhu et al., 2010). The raw ChIP- seq data were deposited in the NCBI GEO data-
base; accession no. GSE159724.

MEME-ChIP analyses
The consensus DNA sequences for ERα binding were identified in silico by Motif Analysis of Large 
Nucleotide Datasets (MEME- ChIP, v. 5.1.1) (Bailey et al., 2015) using a 150 bp region centered on the 
summit point and visualized by CentriMo (Local Motif Enrichment Analysis) (Bailey and Machanick, 
2012).

Classification of canonical binding, cobinding, and tethered binding of 
HSF1 and ERα
Data from ERα-related chromatin interaction analysis by paired- end tag sequencing (ChIA- PET) (Full-
wood et al., 2009; GSE18046) were processed as follows: raw paired- end tags detected in the same 
genome localizations were combined to individual peaks using GenomicRanges 1.42.0R package 
(‘reduce’ function to merge overlapping ranges), obtaining genomic coordinates of the ERα binding/
anchor sites, then identified peaks were annotated with Homer package (v. 4.11) (Heinz et al., 2010). 
The locations of detected anchors were compared to genomic coordinates of HSF1 and ERα peaks 
(versus input) from ChIP- seq analysis of E2- treated MCF7 cells (GSE137558 and GSE159724, respec-
tively). We defined ERα_ChIA- PET, HSF1_ChIP- seq, and ERα_ChIP- seq binding sites as overlapping 
if the center of each peak was within the two corresponding peaks. Additionally, for the sequence of 
all peaks from each analysis, a search for ERE and HSE motifs was performed using MAST software 
from the MEME Suite package (v. 5.4.1) (Bailey et al., 2015) with position weight matrix (PWM) of 
ERα and HSF1 from the JASPAR database (Fornes et al., 2020). Based on the presence of HSF1/ERα 
in genomic locus and/or motif matching, three types of binding regions, including canonical binding, 
cobinding, and tethered binding regions, were identified within ChIP- seq/ChIA- PET peaks. A proce-
dure is illustrated in Figure 5A (lists of all peaks with annotation and information about the presence 
of motifs are presented in Supplementary file 4).

Chromosome conformation capture assay (3C)
The procedure was carried out according to the protocol from Deng and Blobel, 2017. In brief, 1 × 
107 cells per sample were trypsinized and fixed with 1% formaldehyde in 1× PBS. Crosslinking was 
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quenched by 0.125 M glycine and cells were lysed (10 mM Tris pH 8.0, 10 mM NaCl, 0.2% NP- 40, 
protease inhibitors). Cell nuclei were resuspended in HindIII RE buffer (10 mM Tris pH 8.0, 50 mM NaCl, 
10 mM MgCl2, 100 μg/ml BSA) and incubated sequentially with 0.3% SDS (1.5 hr) and 1.8% Triton 
X- 100 (1.5 hr) at 37°C with rotation. Chromatin was cleaved using 450U HindIII restriction enzyme 
(BioLabs, Ipswich, MA) at 37°C overnight and diluted 15- fold in ligation buffer (50 mM Tris pH 7.5, 
10 mM MgCl2, 10 mM DTT, 1% Triton X- 100, 100 μg/ml BSA). Ligation was carried out using 4000U 
T4- DNA ligase (EURx) at 16°C overnight, in the presence of 1 mM ATP. All samples were de- cross-
linked (65°C, overnight with mixing), RNase A and Proteinase K treated, and DNA was isolated using 
standard Phenol/Chloroform/Isoamyl alcohol purification method. Precipitated DNA was dissolved 
in 10 mM Tris pH 8.0 and used as a template in PCR analyses. The primers used are listed in Supple-
mentary file 8.

Analysis of human patient TCGA data (performed using R v. 3.6.2)
Data retrieval
Clinical and RNA- seq (HTSeq counts) data from TCGA breast cancer (BRCA) project were downloaded 
(1102 total samples) and prepared using TCGAbiolinks package (v. 2.14) (Colaprico et al., 2016). 
An additional file with clinical data containing ER receptor status, ‘ nationwidechildrens. org_ clinical_ 
patient_ brca. txt’(Anaya, 2021), was downloaded directly from the GDC repository (https:// portalgdc-
cancer. gov). Molecular subtype classification (according to Berger et al., 2018) was retrieved through 
TCGAbiolinks.

Cases selection
Counts were log CPM normalized with the cpm function from the edgeR package (v. 3.28.1) (Robinson 
et al., 2010). Then we selected four groups (numbered I–IV) of patients: ER- positive/negative with 
high/low HSF1 expression level using the following clinical and expression (log CPM) criteria: ER- pos-
itive if er_status_by_ihc: ‘Positive,’ er_status_ihc_Percent_Positive: ‘90–99%’ and expression level of 
ESR1 >6, ER- negative if er_status_by_ihc: ‘Negative’ and expression level of ESR1 <6, HSF1high (low) 
if the expression of HSF1 was above 67 (below 33) percentile across all TCGA_BRCA cases. We also 
excluded cases classified to HER2- enriched and basal- like subtypes from the ER- positive group, and 
luminal A (LumA), luminal B (LumB), and normal- like subtypes from the ER- negative group. In reduced 
groups (numbered IR–IVR), only the luminal A and basal- like cases were analyzed.

Survival analysis was performed using the survfit function from the survival package (v. 3.1–8) and 
plotted with the ggsurvplot function from the survminer package (v. 0.4.6) (Therneau and Grambsch, 
2000).

MDS plots were used to visualize differences between patients. We performed MDS with MDSplot 
function from edgeR and plotted the results with ggplot2 (v. 3.3.2) (Wickham, 2016).

HSF1 expression and the occurrence of metastases
As metastatic we considered the cases fulfilling any of the following conditions in the clinical data: (1) 
containing the greater- than- 0 value in the number_of_lymphnodes_positive_by_he column and/or (2) 
with the presence of metastases confirmed in any of the following columns: metastatic_site_at_diag-
nosis, metastatic_site_at_diagnosis_other, or distant_metastasis_present_ind2. Differential expression 
of HSF1 between metastatic and nonmetastatic tumors was assessed using the glmQLFTest function 
from edgeR. Statistical significance of the differences shown by contingency tables was assessed using  
fisher. test() function for 2 × 2 contingency tables and  chisq. test() for the greater tables. Correction for 
the multiple testing was done using the Benjamini and Hochberg method (FDR = p.adjust(p, method 
= "fdr")).

Differential expression analysis was done with the edgeR package (Robinson et al., 2010). Lowly 
expressed genes were filtered out by filterByExpr function with default parameters, resulting in 24,696 
genes kept for statistical analysis. Then we performed a quasi- likelihood F test for all groups’ combi-
nations one- versus- one and two obvious two- versus- two cases: ER+ versus ER− and HSF1- high versus 
HSF1- low (using mean expression levels for joined groups, with the weight of 0.5). p- Values were 
corrected for multiple testing using the Benjamini and Hochberg method.

https://doi.org/10.7554/eLife.69843
https://github.com/OmnesRes/onco_lnc/blob/master/tcga_data/BRCA/clinical/nationwidechildrens.org_clinical_patient_brca.txt
https://github.com/OmnesRes/onco_lnc/blob/master/tcga_data/BRCA/clinical/nationwidechildrens.org_clinical_patient_brca.txt
https://portalgdccancer.gov
https://portalgdccancer.gov
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Comparison of the number of genes differentially expressed between 
groups
To compare the size of differences identified in each test, we plotted the cumulative distributions of 
false discovery rate (FDR). Each test was repeated 10 times with the groups randomly subsampled to 
equal size of 30 (or 28 in case of reduced groups) to avoid the p- values being affected by the group 
size inequality. Results were averaged and plotted with ggplot2 (Wickham, 2016).

Gene set enrichment analysis
For gene set enrichment analysis, we selected Hallmark, BioCarta, Reactome, and PID gene sets from 
MSigDB (v7.0) (Subramanian et al., 2005) and merged it with the list of pathways downloaded from 
KEGG. DESeq2 was used to calculate log- fold changes with its standard error (Love et al., 2014). 
Then all genes were ordered according to their MSD calculated as |logFC| – 2*logFC_standard_error 
and tested for enrichment using the CERNO test (Zyla et al., 2019) from the tmod package (v. 0.44) 
(Weiner, 2016). The most significant results (effect size >0.65, p- value<0.001 at least in one compar-
ison) and results for gene sets related to the biological processes of interest were visualized with the 
tmodPanelPlot function.
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The following previously published datasets were used:
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Vydra N, Widlak W, 
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query/ acc. cgi? acc= 
GSE137558

NCBI Gene Expression 
Omnibus, GSE137558
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