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Abstract
In this paper, the convergence of the fundamental alternating minimization is estab-
lished for non-smooth non-strongly convex optimization problems in Banach spaces,
and novel rates of convergence are provided. As objective function a composition of a
smooth, and a block-separable, non-smooth part is considered, covering a large range
of applications. For the former, three different relaxations of strong convexity are
considered: (i) quasi-strong convexity; (ii) quadratic functional growth; and (iii) plain
convexity. With new and improved rates benefiting from both separate steps of the
scheme, linear convergence is proved for (i) and (ii), whereas sublinear convergence
is showed for (iii).

Keywords Convex optimization · Alternating minimization · Rate of convergence ·
Linear convergence · Sublinear convergence · Banach spaces

1 Introduction

The (cyclic) block coordinate descent (BCD), in the literature also referred to as non-
linear block Gauss-Seidel or successive subspace correction method, is a fundamental
optimization algorithm [4,12]. Given a block structured minimization problem, it con-
sists of the successive minimization with respect to the single blocks. Since numerous
applications naturally inherit a block structure, the BCD and its variations have been
of great interest for decades—especially whenever it is more convenient or feasible to
solve the corresponding subproblems instead of the globally coupled problem. For an
overview, we refer to the review paper [15].

The convergence of the BCD has been extensively studied in the literature—
typically in Euclidean spaces. For instance, if already partial minimization is
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well-defined, any generated accumulation point is a stationary point [4]. Further-
more, convergence has been established under various convexity assumptions as, e.g.,
strong convexity [1], and quasi-convexity with respect to each block [7,8]. Even more
strongly, linear convergence has been proved in the context of (multiplicative Schwarz)
domain decomposition methods for smooth and strongly convex problems, here, in
Banach spaces [14], and the context of feasible descent methods under stricter convex-
ity assumptions (e.g., strong convexity w.r.t. single blocks) [9]; for the latter, lately the
overarching class of smooth convex functions with quadratic functional growth has
been identified to lead to linear convergence [11]. Commonly, smoothness assumptions
of global kind are made, as e.g., global Lipschitz continuity of the Jacobian.

The BCD for two blocks is entitled alternating minimization. It is worth noting
that two-block structured problems, appearing in various applications, constitute an
important class. In view of this work, we mention an emerging interest for iterative
decoupling strategies of two-way coupled partial differential equations, cf., e.g., [5]
and references within.

The presence of just two blocks allows for an improved convergence analysis of
the BCD in contrast to the general case. For unconstrained smooth convex problems
in finite dimensional Euclidean spaces equipped with the l2 norm, linear convergence
has been established under additional strong convexity [3], and moreover sublinear
convergence has been showed for problems with non-smooth, block-separable contri-
butions [2]. Both results have in common that the theoretical multiplicative constant
merely depends on the minimum of the Lipschitz constants of the partial derivatives,
instead of a global one. The proofs essentially utilize knowledge on first-order gradi-
ent descent methods as the (proximal) BCD. To our best knowledge, those theoretical
convergence results are the finest in the literature.

The motivation for this work has been to generalize and improve the previous con-
vergence results for the alternatingminimization. For this purpose,we consider amodel
problem in (infinite dimensional) Banach spaces incorporating block-separable non-
smooth contributions (Sect. 2). The model problem covers a large class of problems,
allowing, e.g., for block-separable convex constraints or non-smooth regularization;
for more examples, we refer to Beck [2]. Finally, by exploiting tailored norms in the
analysis this setting can enable (A) tighter convergence results in (B) a fairly general
setup. Furthermore, driven by that fact that strong convexity may be a lot to ask for,
for the first time, linear convergence of the alternating minimization is investigated
under two relaxations of strong convexity: quasi-strong convexity (Sect. 3), and mere
quadratic functional growth without an explicitly required feasible descent property
(Sect. 4). For a more complete picture, we additionally study the case of plain con-
vex optimization but in Banach spaces (Sect. 5). An illustrative numerical PDE-based
example inspired frommultiphysics solved by the alternatingminimization is provided
in Sect. 6. The results are summarized and discussed in the concluding Sect. 7.
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2 Alternatingminimization for two-block structuredmodel problem

We consider the two-block structured model problem

min
{

H(x1, x2) ≡ f (x1, x2) + g1(x1) + g2(x2)
∣∣ (x1, x2) ∈ B1 × B2

}
, (1)

where B1,B2, f , g1, g2 satisfy the following properties:

(P1) (Bi , ‖ · ‖i ) is a Banach space with its dual
(B�

i , ‖ · ‖i,�
)
and the duality pairing

〈·, ·〉i , i = 1, 2. The index will be omitted for duality pairings.
(P2) The function gi : Bi → R ∪ {∞} is proper convex, (Fréchet) subdifferentiable

with subdifferential ∂gi on dom gi , i = 1, 2. Let D := dom g1 × dom g2.
(P3) The function f : B1 × B2 → R is convex and (Fréchet) differentiable over D.

Let ∇ f denote the (Fréchet) derivative of f .
(P4) The optimal set of problem (1), denoted by X ⊂ B1 × B2, is non-empty, and

the corresponding optimal value is denoted by H �.
(P5) For any (x̃1, x̃2) ∈ D, the following problems have minimizers

min
x1∈B1

H(x1, x̃2), and min
x2∈B2

H(x̃1, x2).

Exploiting the particular two-block structure, we consider the iterative solution of
(1) via the classical alternating minimization, cf. Algorithm 1.

Algorithm 1 Alternating minimization for model problem (1)

Initialization: x0 = (x01 , x02 ) ∈ D, such that

x02 ∈ argmin
{

H(x01 , x2)
∣∣ x2 ∈ B2

}
. (2)

General step: For k = 0, 1, ..., given xk ∈ D, find xk+1 ∈ B1 × B2 such that

xk+1
1 ∈ argmin{H(x1, xk

2 ) | x1 ∈ B1}, (3)

xk+1
2 ∈ argmin{H(xk+1

1 , x2) | x2 ∈ B2}. (4)

Abbreviation: For k ≥ 0, define xk+1/2 := (xk+1
1 , xk

2 ), Hk := H(xk ), Hk+1/2 := H(xk+1/2).

As in [2], the partial optimality condition (2) on the initial guess has been chosen for
the sakeof simpler notation in the subsequent analysis;wewill analyze the convergence
behavior of Algorithm 1 under the following additional assumptions on the product
structure and smoothness:

(A1) B1 × B2 is equipped with a separate norm ‖ · ‖ and β1, β2 ≥ 0, satisfying

‖(x1, x2)‖2 ≥ βi‖xi‖2i for all (x1, x2) ∈ B1 × B2, i = 1, 2. (5)

Furthermore, B1 × B2 is equipped with a canonical duality pairing 〈·, ·〉.
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(A2) The partial (Fréchet) derivative of f with respect to the i-th component, denoted
by ∇i f ∈ B�

i , is Lipschitz continuous with Lipschitz constant Li ∈ (0,∞],
i = 1, 2, with min{L1, L2} < ∞; exemplarily, for i = 1 (analogously for
i = 2) it holds that ‖∇1 f (x1 + h1, x2) − ∇1 f (x1, x2)‖1,� ≤ L1‖h1‖1 for all
(x1, x2) ∈ D, h1 ∈ B1, such that x1 + h1 ∈ dom g1, equivalently by a block
version of the so-called descent lemma [2,4]

f (x1 + h1, x2) ≤ f (x1, x2) + 〈∇1 f (x1, x2), h1〉 + L1

2
‖h1‖21 . (6)

Remark 1 (Semi-normed spaces) The following analysis does in fact not require ‖ · ‖
or ‖ · ‖i , i = 1, 2, to be positive definite. Consequently, it is sufficient to formulate (5)
and (6) as well as convexity properties (specified in each section), with respect to
semi-norms. Without introducing additional notation, we also subsequently allow ‖ ·‖
and ‖ · ‖i , i = 1, 2, to be merely semi-norms.

3 Linear convergence in the quasi-strongly convex case

In this section, linear convergence is established for the alternating minimization
applied to model problem (1) under additional quasi-strong convexity for f :

(A3a) The function f : B1×B2 → R is quasi-strongly convex w.r.t. X , with modulus
σ > 0, i.e., for all x ∈ D and x̄ := argmin

{‖x − y‖ ∣∣ y ∈ X
}
, the projection

of x onto X , it holds

f (x̄) ≥ f (x) + 〈∇ f (x), x̄ − x〉 + σ

2
‖x − x̄‖2.

Any strongly convex function is quasi-strongly convex. Moreover, by convexity of g1
and g2, H inherits quasi-strong convexity from f [with (A3a) stated for subdifferen-
tiable functions].

Theorem 1 (Q-linear convergence under quasi-strong convexity) Assume that (P1)–
(P5) and (A1), (A2), (A3a) hold. Let {xk}k≥0 be the sequence generated by the
alternating minimization, cf. Algorithm 1. For all k ≥ 0 it holds

Hk+1 − H � ≤
(
1 − σβ1

L1

)(
1 − σβ2

L2

)(
Hk − H �

)
.

Proof We consider the first half-step of the alternating minimization and show

Hk+1/2 − H � ≤
(
1 − σβ1

L1

)(
Hk − H �

)
for all k ∈ N0. (7)

By definition, it holds β1
L1

≥ 0, whereas equality holds if β1 = 0 or L1 = ∞. W.l.o.g.

we assume that β1
L1

> 0 (since Hk+1/2 ≤ Hk by construction, the statement (7) follows
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immediately for β1
L1

= 0). We first utilize: (i) (A3a) and the definition of β1, cf. (5); (ii)

a simple rescaling; and (iii) the fact that σβ1
L1

∈ (0, 1] [by (5), (6), (A3a)] and Lipschitz
continuity of∇1 f , cf. (6). For this, let x̄ k = (x̄ k

1 , x̄ k
2 ) := argmin

{‖x − xk‖ ∣∣ x ∈ X
} ∈

D, with H � = H(x̄ k). Ultimately, it holds

f (xk) − f (x̄ k) ≤
(i)

〈
∇ f (xk), xk − x̄ k

〉
− σβ1

2

∥∥∥xk
1 − x̄ k

1

∥∥∥
2

1

=
(ii)

L1

σβ1

[〈
∇1 f (xk),

σβ1

L1

(
xk
1 − x̄ k

1

)〉
− L1

2

∥∥∥∥
σβ1

L1

(
xk
1 − x̄ k

1

)∥∥∥∥

2

1

]

+
〈
∇2 f (xk), xk

2 − x̄ k
2

〉

≤
(iii)

L1

σβ1

[
f (xk) − f

(
xk
1 + σβ1

L1

(
x̄ k
1 − xk

1

)
, xk

2

)]

+
〈
∇2 f (xk), xk

2 − x̄ k
2

〉
. (8)

Furthermore, by convexity of g1, it holds with
σβ1
L1

∈ (0, 1] that

g1

(
σβ1

L1
x̄ k
1 +

(
1 − σβ1

L1

)
xk
1

)
≤ σβ1

L1
g1(x̄ k

1 ) +
(
1 − σβ1

L1

)
g1(xk

1 ),

or equivalently after reordering terms

g1(xk
1 ) − g1(x̄ k

1 ) ≤ L1

σβ1

[
g1(xk

1 ) − g1

(
xk
1 + σβ1

L1

(
x̄ k
1 − xk

1

))]
. (9)

Furthermore, the optimality condition corresponding to the second step of Algorithm 1
reads: xk

2 ∈ dom g2 and 0 ∈ ∇2 f (xk) + ∂g2(xk
2 ) for all k ≥ 0, which by definition of

a subdifferential together with x̄ k
2 ∈ dom g2 implies

g2(xk
2 ) − g2(x̄ k

2 ) ≤ −
〈
∇2 f (xk), xk

2 − x̄ k
2

〉
. (10)

Combining (i) Eqs. (8)–(10), and (ii) the optimality of xk+1
1 , cf. (3), yields

Hk − H � ≤
(i)

L1

σβ1

[
Hk − H

(
xk
1 + σβ1

L1

(
x̄ k
1 − xk

1

)
, xk

2

)]
≤
(ii)

L1

σβ1

(
Hk − Hk+1/2

)
.

Reordering terms finally yields Eq. (7). By symmetry (incl. discussion of β2
L2

≥ 0), it
holds

Hk+1 − H � ≤
(
1 − σβ2

L2

)(
Hk+1/2 − H �

)
. (11)

Ultimately, combining Eqs. (7) and (11), proves the assertion. ��
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3.1 Numerical test for quasi-strongly convexminimization in a Euclidean space

To assess the sharpness of Theorem 1 under the use of suitable problem-dependent
norms, we consider a two-block structured, unconstrained, quadratic, convex opti-
mization problem in a Euclidean space (here Rn+m , n, m ∈ N)

min

⎧
⎪⎨

⎪⎩
H(x1, x2) ≡ 1

2

∥∥∥∥∥∥∥

[
A1 A2

]

︸ ︷︷ ︸
=:A

[
x1
x2

]
− b

∥∥∥∥∥∥∥

2

l2

∣∣∣∣∣∣∣

x1 ∈ R
n,

x2 ∈ R
m

⎫
⎪⎬

⎪⎭
(12)

with A1,A2,A,b properly dimensioned. We assume that A is non-zero. Then by
Theorem 8 in [11], the problem (12) is quasi-strongly convex w.r.t. the Euclidean
l2 norm, with σ = σmin(A)2, where σmin(·) denotes the minimal singular value.
Furthermore, it satisfies the smoothness and convexity assumptions of Theorem 1
with β1 = β2 = 1, L1 = σmax (A1)

2, L2 = σmax (A2)
2, where σmax(·) denotes the

maximal singular value. Ultimately, by Theorem 1, q-linear convergence is guaranteed
for all k ≥ 0

Hk+1 − H � ≤
2∏

i=1

(
1 − σmin(A)2

σmax(Ai )2

)

︸ ︷︷ ︸
=:λ

(
Hk − H �

)
. (13)

However, the generality of Theorem 1 also allows for utilizing problem-dependent
norms, allowing for improving the straight forward result (13). Having Remark 1 in
mind, set ‖·‖i := ‖·‖A�

i Ai
, i = 1, 2, where ‖x‖2S := x�Sx for any symmetric, suitably

dimensioned matrix S. Consequently, it is L1 = L2 = 1. In addition, let η > 0, I be
the identity matrix (in any dimension), and define the norm on the product space by

‖ · ‖ := ‖ · ‖A2
η
, with Aη := (

ηI + A�A
)1/2

. Similarly, set Aiη := (
ηI + A�

i Ai
)1/2

,

and the Schur complement SA2
iη

:= A2
iη − A�

i A jA
−2
jη A

�
j Ai , where j ∈ {1, 2}, j �= i ,

i = 1, 2. In order to determine σ and βi , it follows from standard linear algebra that

∥∥∥∥A
[
x1
x2

]∥∥∥∥

2

l2

≥ σmin

(
AA−1

η

)2 ∥∥∥∥

[
x1
x2

]∥∥∥∥

2

A2
η

= σmin

(
AA−1

η

)2 ‖(x1, x2)‖2 , and

‖(x1, x2)‖2A2
η

≥ ‖xi‖2SA2iη ≥ σmin

(
S1/2
A2

iη
A−1

iη

)2

‖x1‖2A2
iη

≥ σmin

(
S1/2
A2

iη
A−1

iη

)2

‖x1‖2i .
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Fig. 1 Practical and theoretical
convergence for the alternating
minimization solving (12)
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Finally, σ and βi are obtained by maximizing the singular values w.r.t. η, equivalent
with the limit η → 0. Thus, Theorem 1 predicts that for all k ≥ 0 it holds

Hk+1 − H � ≤
2∏

i=1

(

1 − lim
η→0

σmin

(
AA−1

η

)2
σmin

(
S1/2
A2

iη
A−1

iη

)2
)

︸ ︷︷ ︸
=:λopt

(
Hk − H �

)
.

(14)

Using a small example, we demonstrate the sharpness of (14) opposing to (13). Let

A1 :=
⎡

⎣
0 0
1 −2
1 1

⎤

⎦ , A2 :=
⎡

⎣
1 −1
0 0

−1 1

⎤

⎦ , b :=
⎡

⎣
1
1
1

⎤

⎦ .

For this choice, the two bounds in (13) and (14) are given by λ ≈ 0.717 and λopt ≈
0.245, respectively. In Fig. 1, the theoretical and actual performances of the alternating
minimization applied to (12) are visualized for the initial guess x01 := 0. We observe
a good agreement between the practical convergence rate and the theoretical bound
λopt, stemming from the analysis using problem-dependent norms.

4 Linear convergence in the quadratic functional growth case

In this section, linear convergence is established for the alternating minimization
applied to model problem (1) under additional quadratic growth for H :

(A3b) The objective function H : B1 × B2 → R has quadratic functional growth w.r.t.
X with modulus κ > 0; i.e., for all x ∈ D and x̄ (as in (A3a)), it holds

H(x) − H(x̄) ≥ κ

2
‖x − x̄‖2 .

Quasi-strong convexity implies quadratic functional growth [11], but not vice versa;
functions satisfying (A3b) do not require to be convex [16]. We refer to [11] to exam-
ples.

123



J. W. Both

Following a similar strategy as in the proof of Theorem 1, we show q-linear conver-
gence. We stress that opposing to the analysis of general feasible descent methods for
problemswith quadratic functional growth, cf., e.g., [11], a feasible descent property—
ensured e.g. for block coordinatewise strongly convex functions—is not explicitly
required for a mere two-block structure.

Theorem 2 (Q-linear convergence under quadratic functional growth) Assume (P1)–
(P5) and (A1), (A2), (A3b) hold. Let {xk}k≥0 be the sequence generated by the
alternating minimization, cf. Algorithm 1. For all k ≥ 0 it holds

Hk+1 − H � ≤
(
1 − κβ1

8L1

)(
1 − κβ2

8L2

)(
Hk − H �

)
.

Proof We consider the first half-step of the alternating minimization and show

Hk+1/2 − H � ≤
(
1 − κβ1

8L1

)(
Hk − H �

)
. (15)

W.l.o.g. we assume that β1
L1

> 0. Let x̄ k := argmin
{‖x − xk‖ ∣∣ x ∈ X

} ∈ D, with

H � = H(x̄ k). Utilizing the convexity and smoothness of f , we then obtain

f (xk) − f (x̄ k) ≤
〈
∇1 f (xk), xk

1 − x̄ k
1

〉
+
〈
∇2 f (xk), xk

2 − x̄ k
2

〉
. (16)

By (i) introducing γ ∈ (0, 1] to be specified later, (ii) using the Lipschitz continuity
of ∇1 f , cf. (A2), and the convexity of f , and (iii) the definition of β1, cf. Eq. (5), we
moreover obtain

〈
∇1 f (xk), xk

1 − x̄ k
1

〉

=
(i)

〈
∇1 f (xk

1 , xk
2 ) − ∇1 f

(
xk
1 + γ

(
x̄ k
1 − xk

1

)
, xk

2

)
, xk

1 − x̄ k
1

〉

+ 1

γ

〈
∇1 f

(
xk
1 + γ

(
x̄ k
1 − xk

1

)
, xk

2

)
, γ
(

xk
1 − x̄ k

1

)〉

≤
(ii)

L1γ ‖xk
1 − x̄ k

1‖21 + 1

γ

[
f
(

xk
1 , xk

2

)
− f

(
xk
1 + γ

(
x̄ k
1 − xk

1

)
, xk

2

)]

≤
(iii)

L1

β1
γ ‖xk − x̄ k‖2 + 1

γ

[
f
(

xk
1 , xk

2

)
− f

(
xk
1 + γ

(
x̄ k
1 − xk

1

)
, xk

2

)]
. (17)

Based on same grounds as utilized for deriving (9) and (10), it holds

g1(xk
1 ) − g1(x̄ k

1 ) ≤ 1

γ

[
g1(xk

1 ) − g1
(

xk
1 + γ

(
x̄ k
1 − xk

1

))]
, (18)

g2(xk
2 ) − g2(x̄ k

2 ) ≤ −
〈
∇2 f (xk), xk

2 − x̄ k
2

〉
. (19)
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By definition of H and (16)–(19), we obtain

Hk − H � ≤ L1

β1
γ ‖xk − x̄ k‖2 + 1

γ

[
H(xk) − H

(
xk
1 + γ

(
x̄ k
1 − xk

1

)
, xk

2

)]
. (20)

Thus, by utilizing (A3b), the optimality property of xk+1
1 based on the first step of the

alternating minimization, cf. (3), and choosing γ = κβ1
4L1

, it follows

Hk − H � ≤ 1

2

(
Hk − H �

)
+ 4L1

κβ1

(
Hk − Hk+1/2

)
,

which yields (15), after reordering. By symmetry, it analogously follows that

Hk+1 − H � ≤
(
1 − κβ2

8L2

)(
Hk+1/2 − H �

)
. (21)

Finally, combining Eqs. (15) and (21) proves the assertion. ��

5 Sublinear convergence in the plain convex case

In this section, sublinear convergence is established for the alternating minimization
applied to model problem (1) under the mild assumption of a compact level set of H
w.r.t. the initial value, inspired by Beck [2]:

(A3c) The functions gi : Bi → R ∪ {∞}, i = 1, 2, are closed convex (and
thereby H ). Furthermore, the level set of H with respect to H(x0), L :={

x ∈ D ∣∣ H(x) ≤ H(x0)
}
, be compact; let R := diam(L, X).

The following result predicts a two-stage behavior: first, the error decreases q-
linearly until sufficiently small; after that, sublinear convergence is initiated. The shift
depends on the smoothness properties of the problem.

Theorem 3 (Sublinear convergence for the non-smooth convex case) Assume that
(P1)–(P5) and (A1), (A2), (A3c) are satisfied. Let {xk}k≥0 be the sequence generated
by the alternating minimization, cf. Algorithm 1. Define

m� :=
⎡

⎣−1 +
⎡

⎢⎢⎢
log2

⎛

⎝ H0 − H �

min
{

L1
β1

, L2
β2

}
R2

⎞

⎠

⎤

⎥⎥⎥

⎤

⎦

+
, p� :=

2
(

β1
L1

+ β2
L2

)−1

min
{

L1
β1

, L2
β2

} ∈ [1, 2],

where �·� and [·]+ respectively denote the ceiling function and the restriction to the
positive part. It holds for all k ≥ 0

Hk − H � ≤ max

⎧
⎪⎨

⎪⎩

(
1

2

)k (
H0 − H �

)
,
4R2

(
β1
L1

+ β2
L2

)−1

[k − m�]+ + p�

⎫
⎪⎬

⎪⎭
.
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In particular, for k ≥ m� at the earliest, sublinear convergence kicks in.

The proof utilizes two auxiliary results: general descent properties for each subit-
eration of the alternating minimization, and a criterion for concluding sublinear
convergence. Those are summarized in the following two lemmas.

Lemma 1 Under the assumptions of Theorem 3, it holds for all k ≥ 0 that

Hk − Hk+1/2 ≥ min
{
1
2 ,

β1
4L1R2 (Hk − H �)

}
(Hk − H �), (22)

Hk+1/2 − Hk+1 ≥ min
{
1
2 ,

β2
4L2R2 (Hk+1/2 − H �)

}
(Hk+1/2 − H �). (23)

Proof We show Eq. (22), assuming w.l.o.g. β1
L1

> 0. As in the proof of Theorem 2,
Eq. (20) can be derived under given assumptions; i.e., for γ ∈ (0, 1] it holds

Hk − H � ≤ L1

β1
γ ‖xk − x̄ k‖2 + 1

γ

[
H(xk) − H

(
xk
1 + γ

(
x̄ k
1 − xk

1

)
, xk

2

)]
.

By definition of R, cf. (A3c), and the monotonicity of {H(xk)}k=0, 12 ,1,..., it holds

‖xk − x̄ k‖ ≤ R. Thus, with the definition of xk+1/2, cf. Eq. (3), it follows

Hk − H � ≤ L1R2

β1
γ + 1

γ

(
Hk − Hk+1/2

)
.

We distinguish two cases: If Hk − H � > 2L1R2

β1
, we choose γ = 1; otherwise, we

choose γ = β1
2L1R2 (Hk − H �). This finally proves the first part of the assertion (22).

The second part (23) analogously follows by symmetry. ��
The following auxiliary convergence criterion, inspired by a similar result in [3],will

allow for effectively making use of the energy descent of both steps of the alternating
minimization.

Lemma 2 Let {Ak}k=0, 12 ,1,... ⊂ R≥0 and γ1, γ2, p ≥ 0 satisfy

Ak − Ak+1/2 ≥ γ1A2
k for all k ≥ 0, (24a)

Ak+1/2 − Ak+1 ≥ γ2A2
k+1/2 for all k ≥ 0, (24b)

A0 ≤ (p(γ1 + γ2))
−1 . (24c)

Then it holds for all k ≥ 0 that Ak ≤ [(k + p)(γ1 + γ2)
]−1

.

Proof By (24a) and (24b), {Ak}k=0, 12 ,1, 32 ,... is non-increasing, and it holds

1

Ak+1
− 1

Ak
= Ak − Ak+1/2

Ak Ak+1/2
+ Ak+1/2 − Ak+1

Ak+1/2Ak+1
≥ γ1 + γ2,
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for k ≥ 0. Thus, by utilizing a telescope sum and applying Eq. (24c), we obtain

1

Ak+1
=
(

1

Ak+1
− 1

Ak

)
+
(

1

Ak
− 1

Ak−1

)
+ · · · + 1

A0
≥ (k + 1 + p)(γ1 + γ2).

This proves the assertion for k ≥ 1; for k = 0 it follows directly from (24c). ��

Finally, we are able to prove Theorem 3.

Proof of Theorem 3 As long as Hk − H � > 2min
{

L1
β1

, L2
β2

}
R2 for some k ∈ N0, by

Lemma 1 and the monotonicity of {Hk}k=0,1,..., it holds that

Hk − H � ≤
(
1

2

)k (
H0 − H �

)
. (25)

Thereby, there exists a minimal m ≥ 0 such that Hk − H � ≤ 2min
{

L1
β1

, L2
β2

}
R2 for

all k ≥ m. Assuming m ≥ 1, Eq. (25) holds for all k ≤ m − 1, and it holds

2min
{

L1
β1

, L2
β2

}
R2 < Hm−1 − H � ≤ 1

2m−1

(
H0 − H �

)
.

Thus, it holds that m < log2

(
H0−H�

min
{ L1

β1
,

L2
β2

}
R2

)

, and consequently (including the case

m = 0), m ≤ m�, with m� as defined above.
Since {Hk}k=0, 12 ,1,... is non-increasing, it also holds for k ≥ m that Hk+1/2− H � ≤

2min
{

L1
β1

, L2
β2

}
R2. Hence, by Lemma 1 it follows for all k ≥ m that

Hk − Hk+1/2 ≥ β1

4L1R2

(
Hk − H �

)2
, (26a)

Hk+1/2 − Hk+1 ≥ β2

4L2R2

(
Hk+1/2 − H �

)2
. (26b)

Using the notation of Lemma 2, we define the sequence {An}n=0, 12 ,1,... with An :=
Hn+m − H �, satisfying the assumptions of Lemma 2 with γ1 = β1

4L1R2 , γ2 =
β2

4L2R2 , p = p�. Finally, the application of Lemma 2 yields

Hk − H � ≤
4R2

(
β1
L1

+ β2
L2

)−1

k − m + p�
≤

4R2
(

β1
L1

+ β2
L2

)−1

[k − m�]+ + p�
for all k ≥ m. (27)

Combining Eqs. (25) and (27) proves the assertion. ��
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Remark 2 (Exponential decay during the first iterations) In the case it holds

max
{

L1
β1

, L2
β2

}
< ∞, and the initial error satisfies H0 − H � > 2max

{
L1
β1

, L2
β2

}
R2,

the result of Theorem 3 can be in fact improved. By an analogous line of argumentation
as in the above proof, one can conclude that Hk − H � first contracts with a rate of 1

4

for the first k1 iterations, until Hk1 − H � ≤ 2max
{

L1
β1

, L2
β2

}
R2 for some k1 ∈ N0.

Afterwards, the convergence behavior can be qualitatively predicted as in Theorem 3.
Ultimately, m� is of the order

m� ≈
⎡

⎢⎢⎢
log4

⎛

⎝ H0 − H �

2max
{

L1
β1

, L2
β2

}
R2

⎞

⎠

⎤

⎥⎥⎥
+
⎡

⎢⎢⎢
log2

⎛

⎝
max

{
L1
β1

, L2
β2

}

min
{

L1
β1

, L2
β2

}

⎞

⎠

⎤

⎥⎥⎥
.

6 Numerical example inspired bymultiphysics

Sequential solution strategies are widely used in the context of multiphysics applica-
tions. Provided a multiphysics problem enjoys a minimization structure, a sequential
solution is closely related (or even equivalent) to applying alternating minimization
to the underlying minimization problem.

In the following, we numerically demonstrate the efficacy of alternating minimiza-
tion to a problem, inspired by poroelasticity applications, i.e., flow in deformable
porous media. The following model problem corresponds to an elasticity-like vecto-
rial p-Laplace equation coupled with a Darcy-type equation for non-Newtonian fluids,
with aBiot–Darcy-type coupling, see [5,10] formore details. For instance, we consider
the representative coupled problem

min

{∫

Ω

[
1

2
|∇ · (αu + βq)|2 + μ

p
|∇u|p + κ

q
|q|q − f · u

]
dx

∣∣∣∣ (u, q) ∈ U × Q
}

,

(28)

where Ω = (0, 1) × (0, 1) ⊂ R
2 denotes the domain, α, β ∈ R, μ, κ ∈ R>0, f ∈ R

2

are model parameters, p, q ∈ (1,∞), and the solution spaces are defined by

U :=
{
v ∈ L p(Ω;R2)

∣∣ ∇v ∈ L p(Ω;R2×2), ∇ · v ∈ L2(Ω;R), v|∂Ω = 0
}

,

Q :=
{
v ∈ Lq(Ω;R2)

∣∣ ∇ · v ∈ L2(Ω;R), v|∂Ω · n∂Ω = 0
}

where L p (resp. Lq ) denotes the standard Lebesgue space and n∂Ω is the outer normal
vector on the boundary ∂Ω of Ω . We note the solution spaces U and Q are closely
related to the standard Sobolev spaces W 1,p

0 (Ω) and H0(div;Ω), respectively. We fix
α = 1, β = 10, μ = 1, κ = 0.1, f = (1, 1), p = q = 1.5. The corresponding
solution is displayed in Fig. 2a.

For the numerical solution, the problem (28) is discretized using the Galerkin
method and linear finite elements for u and q on a Cartesian grid with uniform mesh
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N = 6

(a)Discrete solution (b)Error decay

Fig. 2 a Discrete solution, displacement-like ux (x-component of u, whereas y-component is identical)
and flux-like q (visualized by arrows). b Error decay for different mesh sizes 2−N

size 2−N with N ∈ {4, 5, 6}. The corresponding discrete minimization problem is then
solved using Alg. 1 with an initial guess (u0, q0) = (0, 0). For the implementation,
the DUNE project [13] and in particular the dune-functions module [6] have been
utilized.

Let H � denote the energy corresponding to the (converged discrete) solution of (28),
and Hk the energy of the approximation (uk, qk) of the k-th step of Algorithm 1. The
decay Hk − H � is displayed in Fig. 2b for the three mesh sizes. We observe lin-
ear, essentially mesh-independent convergence. In addition, we mention a decreasing
trend for the energy values H � for consecutively refined grid, as expected due to the
consecutively more accurate discretization. In particular, it is H � ≈ −7.077e − 3 for
N = 4, H � ≈ −7.137e − 3 for N = 5, H � ≈ −7.153e − 03 for N = 6.

We note the choices for p and q lead to a non-quadratic problem, whose coupling
however is governed by a quadratic, merely semi-definite contribution. Hence, the
considered problem is closely related with the small algebraic problem in Sect. 3.1,
and after all leads to consistent observations. The in principle mesh-independent
convergence demonstrates that convergence is most adequately described in problem-
dependent, i.e., not standard Euclidean norms, which would in contrast suggest
mesh-dependent convergence.

7 Discussion and concluding remarks

In this paper, we have established convergence of the alternating minimization applied
to a two-block structured model problem within the class of non-smooth non-strongly
convex optimization in general Banach spaces – a fairly broad setting.We have consid-
ered three cases of relaxed strong convexity: (i) quasi-strong convexity, (ii) quadratic
functional growth, and (iii) plain convexity and a compact initial level set. Conver-
gence rates have been provided, of linear type for the first two cases, and of sublinear
type for the third case. To the best of the author’s knowledge, all results are novel.

123



J. W. Both

Our results are direct extensions of previous results in the literature [2,3,11], agree-
ing with or partially refining them if put in the same context, and being valid also in
more general scenarios. The key for arriving at our results has been the exploitation of
describing smoothness properties (of the two single blocks) and convexity properties
(of the full objective function) wrt. different (semi-)norms; these enter the novel rates
predicting in particular that both steps of the alternating minimization separately lead
to an error decrease. For the subclass of quasi-strongly convex problems, we demon-
strate the sharpness of our convergence result, based on a simple numerical example.
In addition, an illustrative numerical example inspired by multiphysics demonstrates
the efficacy of alternating minimization for PDE-based problems. Finally, we high-
light that for the first time, it is proved that quadratic functional growth is sufficient
for linear convergence – without any feasible descent property as commonly required
in the analysis of the general block coordinate descent [9,11].

Ultimately, it is noteworthy that the provided results allow for a systematic devel-
opment and analysis of iterative block-partitioned solvers based on the alternating
minimization for problems in applied variational calculus – in particular two-way
coupled PDEs arising from a convex minimization problem, see, e.g., [5].
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