
1

Bounds on the nonlinearity of differentially uniform
functions by means of their image set size, and on

their distance to affine functions
Claude Carlet,

Universities of Bergen, Norway, and Paris 8 (LAGA laboratory), France.
E-mail: claude.carlet@gmail.com

Abstract—We revisit and take a closer look at a (not so well
known) result of a 2017 paper, showing that the differential
uniformity of any vectorial function is bounded from below by
an expression depending on the size of its image set. We make
explicit the resulting tight lower bound on the image set size of
differentially δ-uniform functions (which is the only currently
known non-trivial lower bound on the image set size of such
functions). We also significantly improve an upper bound on the
nonlinearity of vectorial functions obtained in the same reference
and involving their image set size. We study when the resulting
bound is sharper than the covering radius bound. We obtain as
a by-product a lower bound on the Hamming distance between
differentially δ-uniform functions and affine functions, which we
improve significantly with a second bound. This leads us to study
what can be the maximum Hamming distance between vectorial
functions and affine functions. We provide an upper bound which
is slightly sharper than a bound by Liu, Mesnager and Chen when
m < n, and a second upper bound, which is much stronger in
the case (happening in practice) where m is near n; we study
the tightness of this latter bound; this leads to an interesting
question on APN functions, which we address (negatively). We
finally derive an upper bound on the nonlinearity of vectorial
functions by means of their Hamming distance to affine functions
and make more precise the bound on the differential uniformity
which was the starting point of the paper.

Keywords: Vectorial function, cryptography, substitution box
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I. INTRODUCTION

D IFFERENTIALLY uniform functions are those vectorial
functions F : Fn2 7→ Fm2 (called (n,m)-functions) such

that the maximum size δF of the set {x ∈ Fn2 ;F (x) + F (x+
a) = b}, where a ∈ Fn2 , a 6= 0, and b ∈ Fm2 , is small.
This value δF is called their differential uniformity Their
study is fundamental for the evaluation of the resistance of the
block ciphers which use them as substitution boxes (in brief,
S-boxes), against the main attacks (such as the differential
attack and the linear attack). S-boxes provide block ciphers
with what Claude Shannon [20] called confusion, and are the
only non-linear components of the ciphers; they are therefore
essential to their security. Recall that there are two main
models of block ciphers: substitution-permutation networks
(SPN) and Feistel ciphers; combinations of these two basic
models are also possible. In SPN, the cipher is made of
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rounds being the composition of functions, one of which is the
substitution layer, made of the concatenation of S-boxes. Since
the cipher must be invertible, the substitution layer needs to be
a permutation, and the S-boxes need then to be bijective (with
m necessarily equal to n). In Feistel ciphers, the bijectivity of
the cipher is ensured by its very structure, and the S-boxes do
not need to be bijective (m can then be different from n). It is
preferable that the S-boxes are balanced (that is, each element
in the co-domain is matched the same number of times as the
image of an element of the domain, which needs of course
m ≤ n), but if they are not, then some precautions can be taken
like in [19]. The main block cipher used in civil applications,
the AES, is an SPN, while the previous one, the DES, was
a Feistel cipher. Both models are still important and much
used nowadays. The Feistel structure, which is more related
to this paper, is used in the block ciphers Blowfish, Camellia,
CAST-128, FEAL, GOST, ICE, KASUMI, LOKI97, Lucifer,
MARS, MAGENTA, MISTY1, RC5, Simon, TEA,Twofish,
XTEA, and even in CLEFIA, MacGuffin, RC2, RC6, Skipjack
and SMS4.
Differentially uniform functions also play an important role in
coding theory: as shown in [5], the subclass of almost perfect
nonlinear functions is directly related to 2-error correcting
codes and their duals (which both present much interest for
applications to communications and cryptography).
Differentially uniform functions have then been much studied
since the 1990’s. Recall that the important papers of K.
Nyberg, such as [17], [18], have led to the already mentioned
AES [11]. But still not enough is known on their properties
in general, and since few are known, it is difficult to make
conjectures on them. What is known is characterizations by di-
verse means (see a survey in [4]), but the properties of general
differentially uniform functions are essentially unknown (such
as their maximum algebraic degree, their minimum and max-
imum nonlinearities, their minimum and maximum Hamming
distances to affine functions, to permutations and to affine
permutations, the structure of their image sets, their maximum
and minimum numbers of fixed points, etc.). It is essential
to understand better the general structure and properties of
differentially uniform functions, for several reasons. First, the
importance of differentially uniform functions for symmetric
cryptography and for coding theory automatically calls for a
better knowledge of their properties. Second, some features
may ease attacks and it is then important to choose the S-boxes
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so as to minimize this risk. For that, it is necessary to know
what are the possible features of general differentially uniform
functions. Third, a puzzling question is whether the known
differentially uniform functions (which are essentially either
power functions over finite fields - possibly slightly modified -
or quadratic functions) are peculiar or if on the contrary, they
are more or less representative of the general differentially
uniform functions. This latter question is wide open, and
until new functions are hopefully discovered that would help
clarify it, we need to know more about the properties of
general differentially uniform functions. But it is impressive
how ignorant we are about them. A first step forward has
been made in [8] with what we shall recall and develop in
Section III, but much more knowledge is needed (this is also
true for the subclass of almost perfect nonlinear functions).
Ref. [8] is not widely known in the community of vectorial
functions for cryptography, since this paper was devoted to
side channel attacks, and the bound on the image set size of
differentially uniform functions that it contains was not made
very explicit. Two preprints have recently presented bounds
which are equivalent to it when dealing with characteristic
two (the authors of these preprints were not aware that this
bound was known):
- Ref. [10] deduces the bound for APN functions from the fact
that the sets {x1 + x2; x1, x2 ∈ F−1(y), x1 6= x2}; y ∈ Fn2 ,
are pairwise disjoint and have size

(|F−1(y)|
2

)
; then it obtains

that |Im(F )| ≥ 2n+1
3 if n is odd and |Im(F )| ≥ 2n+2

3 if n is
even; we shall check in Section III that this is also what gives
[8] in the particular case of APN functions;
- Ref. [13], which deals with any characteristic and also
includes other results, presents a proof rather close to that
of [8] (actually, this latter proof generalizes easily to the odd
characteristic as we shall observe in Section III).
Of course, the bound is not interesting for cryptography in
the framework of substitution permutation networks, since
permutations have Fn2 for image set, but it is for Feistel
ciphers, since the knowledge of the image set and of its size
is important for both the designer of a cryptosystem and the
attacker.
In the present paper, we first briefly make clear what is proved
in [8] on the size of the image sets of differentially uniform
functions, since the bound on the image set size by means of
the differential uniformity is in fact presented in that paper
as a bound on the differential uniformity by means of the
image set size. Then, after developing a little more this study,
we devote the paper to addressing the important questions of
the nonlinearity of differentially uniform functions and their
Hamming distance to affine functions. The nonlinearity is an
essential parameter of vectorial functions, in the frameworks
of cryptography (where it allows to quantify the complexity
of the linear attack, see [14]) and coding theory (where it
allows to determine the minimum distance of some linear
super-codes of the first order Reed-Muller code, see [16]).
The Hamming distance to affine functions plays also a role,
as mentioned in [15], since a vectorial function admitting a
good approximation by an affine function is cryptographically
weak. Also, studying the nonlinearity of general differentially

uniform functions being a so hard problem, studying the
distance to affine functions may be a way to progress on
this subject, since there is a clear relation between these two
values (this relation needs to be quantified precisely, though;
we know already that the nonlinearity is bounded above by
this Hamming distance and we give a complementary bound
in Corollary 2). It is puzzling that the maximum distance
from vectorial functions to affine functions is unknown, and
it would be very interesting to know what are the vectorial
functions which lie at maximum distance to affine functions
(i.e. the functions playing the role of bent vectorial functions
with respect to this other nonlinearity parameter that is the
distance to affine functions); maybe these functions have some
interesting properties.
When δF = 2 (which is optimum), differentially δ-uniform
(n, n)-functions are called APN (almost perfect nonlinear). We
shall of course be particularly interested in these functions,
since they contribute in an optimal way to the resistance
against the differential attack.

The paper is organized as follows.
After preliminaries in Section II, we revisit and study more
in detail in Section III the result from [8] on the differential
uniformity of vectorial functions, given the size of their image
sets. We study the equivalent tight lower bound on the image
set size of differentially δ-uniform functions. We apply this
lower bound to the sums of F and affine functions in Section
IV and pose the natural question whether the resulting property
of APN functions allows to characterize them; we answer
negatively. We observe in Section V that an upper bound given
in [8] on the nonlinearity of (n,m)-functions by means of their
image set size is weak, and we derive a much better bound.
We study when this bound improves upon the covering radius
bound. In Section VI, we also bound from below the Hamming
distance between differentially uniform functions and affine
functions, first as a consequence of the bound on the image
set size and then by an improved bound. This shows that the
resistance against differential attacks ensures automatically the
resistance against attacks by affine approximations. This leads
us in Section VII to study the maximum Hamming distance
between vectorial functions and affine functions and to first
slightly improve upon the only known explicit upper bound
on it and second significantly improve upon it when m is
near n. Showing that this latter bound is not tight leads to
an interesting question on APN functions that we solve. In
Section VIII, we derive an upper bound on the nonlinearity
of any (n,m)-function F by an expression depending on its
Hamming distance to affine functions. In Section IX, we make
the bound on the differential uniformity of F more accurate,
by introducing another parameter of F .

II. PRELIMINARIES

We shall denote by 0n (resp. 1n) the zero vector (resp.
the all-1 vector) of length n and by ei the i-th vector of the
canonical basis of the vector space Fn2 . We denote by wH(x)
the Hamming weight of an element x of Fn2 , that is, the size
of its support supp(x) = {i ∈ {1, . . . , n}; xi = 1}. We call
co-support of x the complement of its support.
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The vector space Fn2 is sometimes endowed with the struc-
ture of the field F2n (with zero element denoted by 0); indeed,
this field being an n-dimensional vector space over F2, each of
its elements can be identified with the binary vector of length
n of its coordinates relative to a fixed basis.

Given an n-variable Boolean function f , that is, a function
from Fn2 to F2, the Walsh transform of f is defined as
Wf (u) =

∑
x∈Fn2

(−1)f(x)+u·x, where “·” is some chosen
inner product in Fn2 (such as u · x =

∑n
i=1 uixi, or, if Fn2

is endowed with the structure of F2n , u · x = trn(ux), where
trn(x) =

∑n−1
i=0 x

2i is the so-called absolute trace function).
The Walsh transform satisfies the inverse Walsh transform
relation: ∑

u∈Fn2

Wf (u)(−1)u·v = 2n(−1)f(v),∀v ∈ Fn2 . (1)

For a given (n,m)-function F , that is, a function from Fn2
to Fm2 , the value WF (u, v) of the Walsh transform of F at
(u, v) ∈ Fn2 × Fm2 equals by definition that of the Walsh
transform of the Boolean function v · F at u:

WF (u, v) =
∑
x∈Fn2

(−1)v·F (x)+u·x,

where we use the same notation “·” for inner products in Fn2
and Fm2 . The nonlinearity of a Boolean function f equals its
minimum Hamming distance to affine Boolean functions, that
is, to functions of the form u ·x+ ε, u ∈ Fn2 , ε ∈ F2. It equals
then:

nl(f) = 2n−1 − 1

2
max
u∈Fn2

|Wf (u)|. (2)

It is bounded above by 2n−1−2
n
2−1, according to the covering

radius bound (see e.g. [4]) and f is called bent if it achieves
this value. The nonlinearity of an (n,m)-function F equals
the minimum nonlinearity of its component functions v · F ,
v ∈ Fm2 \ {0m}. It equals then

nl(F ) = 2n−1 − 1

2
max
u∈Fn2

v∈Fm2 ,v 6=0m

|WF (u, v)|. (3)

It quantifies the contribution of the (n,m)-function, when used
as an S-box, to the resistance of block ciphers against the linear
attack [14]. It is bounded above by 2n−1 − 2

n
2−1 as well and

F is called bent if it achieves this value. Bent functions exist
for m ≤ n

2 , n even, only [17]. For m = n, nl(F ) is bounded
above by 2n−1−2

n−1
2 , according to the Sidelnikov-Chabaud-

Vaudenay (SCV) bound [9] and F is called almost bent (AB)
if it achieves this value (AB functions exist for every odd n,
see e.g. [4] for a description of known ones).

Any (n,m)-function can be uniquely represented by its
algebraic normal form (ANF):

F (x) =
∑

I⊆{1,...,n}

aI

(∏
i∈I

xi

)
=

∑
I⊆{1,...,n}

aI x
I , (4)

where aI belongs to Fm2 . The global degree of the ANF
is called the algebraic degree of F . It equals the maximum
algebraic degree of the component functions of F . The zero

function has by convention algebraic degree 0. Affine func-
tions are those functions of algebraic degree at most 1. If Fn2 is
endowed with the structure of the field F2n , then every (n, n)-
function (and then, every (n,m)-function where m divides n)
can be uniquely represented by its univariate representation:

F (x) =

2n−1∑
i=0

δix
i ∈ F2n [x]/(x2n + x). (5)

Hence, every (n, n)-function is a polynomial function. The al-
gebraic degree equals then maxj=0,...,2n−1; δj 6=0 w2(j), where
w2 denotes the Hamming weight of the binary expansion. The
functions whose univariate expression is a monomial are called
power functions.
We shall denote the image set {F (x);x ∈ Fn2} of F by
Im(F ).

An (n,m)-function F is called differentially δ-uniform,
for a given positive integer δ, if for every a ∈ Fn2 \ {0n}
and every b ∈ Fm2 , the equation F (x) + F (x + a) = b
has at most δ solutions. We denote the minimum of these
integers δ by δF and call it the differential uniformity of F . It
quantifies the contribution of the (n, n)-function, when used
as an S-box, to the resistance of block ciphers against the
differential attack [1]. For every (n,m)-function F , we have
δF ≥ max(2, 2n−m). It is shown in [17] that, for m < n,
equality is equivalent to the fact that F is bent, and this can
then happen if and only if n is even and m ≤ n

2 .
Note that we can have δF = 2 only when n ≥ m. An

(n, n)-function F is called almost perfect nonlinear (APN) if
it is differentially 2-uniform, that is, if for every a ∈ Fn2 \{0n}
and every b ∈ Fn2 , the equation F (x) + F (x + a) = b has 0
or 2 solutions (i.e. the derivative DaF (x) = F (x) +F (x+a)
is 2-to-1). Equivalently, |{DaF (x), x ∈ Fn2}| = 2n−1. Still
equivalently, for distinct elements x, y, z, t of Fn2 , the equality
x+ y+ z+ t = 0n implies F (x) +F (y) +F (z) +F (t) 6= 0n,
that is, the restriction of F to any 2-dimensional flat (i.e.
affine plane) of Fn2 is non-affine, that is, for every linearly
independent a, b ∈ Fn2 , the function DaDbF (x) does not
vanish. There are several characterizations of APN functions
(see e.g. the survey [4]). The relationship between nonlinearity
and differential uniformity is not clear for APN functions:
all that is known on the nonlinearity of general APN (n, n)-
functions is that it cannot be 0 (see [2]), while all known
APN functions have a rather good nonlinearity. Note that
differentially uniform functions can have nonlinearity 0 (for
instance, an (n, n)-function obtained from an APN (n, n)-
function by replacing one of its coordinate functions by an
affine Boolean function is differentially 4-uniform and has
nonlinearity 0).

III. THE LOWER BOUND ON THE SIZE OF THE IMAGE SETS
OF DIFFERENTIALLY UNIFORM FUNCTIONS

In [8, Subsection 4.2] is studied (for reasons related to side
channel attacks that we shall not develop here) the differential
uniformity of those (n, n)-functions F satisfying, for some
d, that dH(x, F (x)) ≤ d for every x ∈ Fn2 . The differential
uniformity of such functions is shown to be bad if d is too
small. The authors observe that the condition being that all
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the images of the function F (x)+x have Hamming weight at
most d, the size of the image set of this latter function (which
has the same differential uniformity as F ) is then bounded
above by D =

∑d
i=0

(
n
i

)
. A lower bound is then proved on

the differential uniformity of a function by means of the size
of its image set.

We now want to study more deeply the incidence of the
image set size of differentially uniform (n,m)-functions, since
it is only approached as a tool in this paper, whereas it deserves
more attention because the bound of [8] is one of the rare
known properties of differentially uniform functions. For our
present paper to be self-contained, we briefly recall what is
the lower bound in [8] and the method for proving it. Let F
be any (n,m)-function. We have

∑
a∈Fn2 ;a 6=0n

|(DaF )−1(0m)| =

|{(x, y) ∈ (Fn2 )2;F (x) = F (y)}|−2n =
∑

b∈Im(F )

|F−1(b)|2−

2n ≥

(∑
b∈Im(F ) |F−1(b)|

)2

|Im(F )|
− 2n =

22n

|Im(F )|
− 2n, where

the inequality is obtained by the Cauchy-Schwarz inequality.
Since, in every numerical sequence, there exists an element
larger than or equal to the arithmetic mean of the sequence,
we deduce that there exists a ∈ Fn2 , nonzero, such that

|DaF
−1(0m)| ≥

22n

|Im(F )|−2n

2n−1 . We have then:

Proposition 1. [8] For every (n,m)-function, the differential
uniformity of F satisfies:

δF ≥


22n

|Im(F )| − 2n

2n − 1

 .
Equivalently, we have 22n

|Im(F )| ≤ (2n − 1) δF + 2n, that is:

|Im(F )| ≥
⌈

22n

(2n − 1) δF + 2n

⌉
≥
⌈

2n

δF + 1

⌉
. (6)

For δF = 2, we have then that for every APN (n, n)-function:

|Im(F )| ≥
⌈

22n

3 · 2n − 2

⌉
. (7)

Note that
⌈

22n

3·2n−2

⌉
equals 2n+1

3 when n is odd and 2n+2
3

when n is even; these exact values are given in [10].
We observe that the bound (7) is much stronger than the
bound |Im(F )| ≥ 1+

√
2n+2−7
2 obtained in [21]. Note also

that it is tight. Indeed, we know that APN power functions
in even dimension n have for image set the set of cubes in
F2n (see e.g. [4]), whose number equals 1 + 2n−1

3 = 2n+2
3 ,

which achieves then the bound of (7) with equality. This is
natural, given the proof above of the bound, since, for every
power APN function F , the size of F−1(b) is independent of
b 6= 0n in Im(F ), and the sequence |F−1(b)|, b ∈ Im(F ), is
then constant except at 0n, and the Cauchy-Shwarz inequality
is close to an equality.

Remark. Proposition 1 generalizes straightforwardly to
any characteristic: let p be a prime and F : Fnp 7→ Fmp .
Denoting DaF (x) = F (x + a) − F (x), we have

∑
a∈Fnp ;a6=0n

|(DaF )−1(0m)| = |{(x, y) ∈ (Fnp )2;F (x) =

F (y)}| − pn =
∑

b∈Im(F )

|F−1(b)|2 − pn ≥(∑
b∈Im(F ) |F−1(b)|

)2

|Im(F )|
−pn =

p2n

|Im(F )|
−pn, and there ex-

ists a ∈ Fnp , nonzero, such that |DaF
−1(0m)| ≥

p2n

|Im(F )|−p
n

pn−1 .

We have then: δF ≥
⌈

p2n

|Im(F )|−p
n

pn−1

⌉
. This is equivalent to:

|Im(F )| ≥
⌈

p2n

(pn−1) δF+pn

⌉
≥
⌈

pn

δF+1

⌉
. �

IV. ON THE SUMS OF DIFFERENTIALLY UNIFORM
FUNCTIONS AND AFFINE FUNCTIONS

The bound of Proposition 1 applies to F + A, where A
is any affine function (or equivalently, to F + L, where L is
any linear function). The next corollary is then straightforward
but it gives an interesting property, which may for instance
eliminate a large number of potential APN candidates.

Corollary 1. Let F be any differentially δ-uniform (n,m)-
function. Let A be the set of affine (n,m)-functions1. Then,
for every A ∈ A, we have:

|Im(F +A)| ≥
⌈

22n

(2n − 1)δ + 2n

⌉
.

In particular, an (n, n)-function can be APN only if, for every
A ∈ A, we have:

|Im(F +A)| ≥
⌈

22n

3 · 2n − 2

⌉
. (8)

Hence, when searching for APN functions, we can eliminate
as potential candidates, for each A, all the functions F such
that |Im(F +A)| <

⌈
22n

3·2n−2

⌉
.

Trying to build vectorial functions satisfying (8) for
every affine function A (that is, for every linear function)
without using the notion of APN function and Corollary
1 seems hard. Even for the simplest examples that are
Gold and inverse functions, it seems difficult to prove
directly that for every linear function L, the sizes of the
sets {x2k+1 + L(x);x ∈ F2n} for k co-prime with n and
{x2n−2 + L(x);x ∈ F2n} for n odd are larger than or equal
to 22n

3·2n−2 .

Remark. Let us try to see if we have the same with x2k+1

for n not co-prime with k. Note that taking for L the zero
function, the size of Im(F ) is equal to 1 + 2n−1

gcd(2n−1,2k+1)
=

1 + (2n−1) gcd(2n−1,2k−1)
gcd(2n−1,22k−1)

= 1 + (2n−1)(2gcd(n,k)−1)
(2gcd(n,2k)−1)

={
2n if val2(k) ≥ val2(n)

1 + 2n−1
2gcd(n,k)+1

if val2(k) < val2(n)
,

where val2(k) is the 2-valuation of k. Hence, if
val2(k) < val2(n), we have |Im(F )| < 22n

3·2n−2 , since

1We use the same symbol as for affine Boolean functions since there is no
ambiguity.
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2gcd(n,k) + 1 ≥ 5 (because n is assumed not co-prime with
k) and 1 + 2n−1

5 = 2n+4
5 < 22n

3·2n−2 , for n ≥ 3. In the case
val2(k) ≥ val2(n), we would need to consider nonzero L
and the case seems more complex.
Similarly, it seems difficult to say if we have the same
with x2n−2 for n even as for n odd. For L = 0, the
inequality is satisfied since the inverse function is a
permutation and for all the other affine functions L we
already know that |Im(F )| ≥

⌈
22n

5·2n−4

⌉
, since F + L is

differentially 4-uniform, but it seems difficult to say more.
For L(x) = x2k , the equation x2n−2 + L(x) = b for b 6= 0 is
equivalent to x2k+1 + bx = 1 and by the change of variable
x → b2

−k
x, to x2k+1 + x = b−(1+2−k). This equation can

be handled as shown in [22], [12], but it is already quite
complex; addressing all other linear functions L seems
out of reach. It is even difficult to know what can be the
largest possible value of

∑
a∈Fn2 ;a6=0 |(Da(F + L))−1(0)| =∑

a∈Fn2 ;a6=0 |(DaF )−1(L(a))| (which provides the lower
bound on |Im(F + L)|). We know that |(DaF )−1(b)| equals
4 if and only if ab = 1 and equals 2 if and only if ab 6∈ F2

and trn
(

1
ab

)
= 0. It is difficult to say if there exist linear

functions such that |(DaF )−1(L(a))| ≥ 2 for every nonzero
a, and how many times |(DaF )−1(L(a))| can then reach 4.
In the case of Gold functions, it may be easier to determine
the largest possible value of

∑
a∈Fn2 ;a6=0 |(DaF )−1(L(a))| =∑

a∈Fn2 ;a 6=0 |{x ∈ F2n ; ax2k + a2kx = L(a) + a2k+1}| =∑
a∈Fn2 ;a 6=0 |{x ∈ F2n ; x2k + x = L(a)

a2k+1
+ 1}|.

Proving directly (without using Corollary 1) that, over F2n ,
Kasami functions x4i−2i+1, gcd(i, n) = 1, Welch functions

x2
n−1
2 +3, n odd, Niho functions x2(n−1)/2+2(n−1)/4−1 if

n ≡ 1 (mod 4), and x2(n−1)/2+2(3n−1)/4−1 if n ≡ 3

(mod 4), and Dobbertin functions x2
4n
5 +2

3n
5 +2

2n
5 +2

n
5 −1,

5|n, satisfy that, for every affine (n, n)-function L, we have
|Im(F + L)| ≥

⌈
22n

3·2n−2

⌉
, seems still more difficult than for

Gold and inverse APN functions. �

Corollary 1 leads to the natural question whether
its converse is true: given an (n, n)-function F , if for
every affine (or every linear) (n, n)-function L, we have
|Im(F + L)| ≥

⌈
22n

3·2n−2

⌉
, then F is it necessarily APN?

The answer to this question is no: there are already counter-
examples with functions in dimension 4. For instance, the
power function F (x) = x11 is not APN over F24 while it
satisfies the condition, that is, for every linearized polynomial
L(x) = ax + bx2 + cx4 + dx8 over F16, the number of
distinct images taken by the function x11 + L(x) is larger
than or equal to 6.

V. AN UPPER BOUND ON THE NONLINEARITY BY MEANS
OF THE IMAGE SET SIZE

In [8] is also proved that the nonlinearity of any
(n,m)-function F is bounded from above as follows:

nl(F ) ≤ 2n−1 −
2n+m−1

|Im(F )| −2n−1

2m−1 . This bound is very weak,
even if we take for |Im(F )| the value which is the

smallest and then the most in its favor, that is, according to
Relation (6): |Im(F )| =

⌈
22n

(2n−1) δF+2n

⌉
. Indeed, the bound

says then that nl(F ) is bounded above by approximately
2n−1− 2m−n−1(2n−1) δF+2m−1−2n−1

2m−1 ≈ 2n−1− 1+δF
2 +2n−m−1

and the bound is very far above the covering radius bound.

Let us show a much better bound with the same approach
as for proving Proposition 1. We have seen that, thanks to the
Cauchy-Schwarz inequality, we have |{(x, y) ∈ Fn2 ;F (x) =

F (y)}| =
∑
b∈Im(F ) |F−1(b)|2 ≥ 22n

|Im(F )| . We deduce∑
v∈Fm2

W 2
F (0n, v) =

∑
v∈Fm2 ;x,y∈Fn2

(−1)v·(F (x)+F (y)) =

2m |{(x, y) ∈ Fn2 ;F (x) = F (y)}| ≥ 22n+m

|Im(F )| .
Hence, we have

∑
v∈Fm2 ,v 6=0m

W 2
F (0n, v) ≥

22n+m

|Im(F )| − 22n and maxu∈Fn2 ,v∈Fm2 ,v 6=0mW
2
F (u, v) ≥

maxv∈Fm2 ,v 6=0mW
2
F (0n, v) ≥

22n+m

|Im(F )|−22n

2m−1 . According to
Relation (3), we deduce:

Proposition 2. For every positive integers n,m and every
(n,m)-function, we have:

nl(F ) ≤ 2n−1 −

√
22n+m−2

|Im(F )| − 22n−2

2m − 1
. (9)

If we take again |Im(F )| =
⌈

22n

(2n−1) δF+2n

⌉
, then

nl(F ) is bounded above by approximately 2n−1 −√
2m−2((2n−1) δF+2n)−22n−2

2m−1 , that is, if m = n for instance,
by approximately 2n−1 −

√
2n−2 δF . This latter inequality is

interesting when δF > 2 since it improves then upon the
SCV bound. Note that, still for m = n, if δ = 2, then

(9) writes nl(F ) ≤ 2n−1 −

√
23n−2

|Im(F )|−22n−2

2n−1 and gives no
information since, according to Relation (7), it is weaker than
the SCV bound, except if |Im(F )| = 22n

3·2n−2 (in which case,
the two bounds would coincide, but this number is not an
integer). Let us now compare (9) for any m with the covering
radius bound. We know from [17] that this latter bound is not
tight for n

2 < m. The bound (9) of Proposition 2 is strictly
sharper than the covering radius bound if and only if we have
22n+m−2

|Im(F )| −22n−2

2m−1 > 2n−2. We have then:

Proposition 3. For every positive integers n,m and every
(n,m)-function, the bound (9) of Proposition 2 is sharper than
the covering radius bound if and only if |Im(F )| < 2n+m

2n+2m−1 .

Note that when m ranges between n
2 and n, this necessary

and sufficient condition ranges from |Im(F )| . 2m (i.e. no
condition) to |Im(F )| . 2m−1.

We see that the larger the image set size of F , the larger
the upper bound of Proposition 3.

VI. ON THE HAMMING DISTANCE BETWEEN
DIFFERENTIALLY UNIFORM FUNCTIONS AND AFFINE

VECTORIAL FUNCTIONS

Observing that, for every (n,m)-function G, we have
dH(F,G) = |{x ∈ Fn2 ;F (x) 6= G(x)}| ≥ |Im(F + G)| − 1,
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since (F + G)(x) takes at least |Im(F + G)| − 1 nonzero
values, at least once each, we have then that the Hamming
distance from any differentially δ-uniform (n, n)-function F
to A satisfies:

dH(F,A) ≥
⌈

22n

(2n − 1)δ + 2n

⌉
− 1. (10)

In particular, the Hamming distance between any APN func-
tion and A is at least

⌈
22n

3·2n−2

⌉
− 1.

The value of dH(F,A), contrary to the nonlinearity of F , is
not directly linked to the linear attack, but as the nonlinearity
does, it quantifies to which extent F is different from affine
functions. This parameter has been studied in [6], [7], [15]
where it was denoted in diverse ways (we shall keep here the
notation dH(F,A)).
If for some x ∈ Fn2 , some b, v ∈ Fm2 and some linear
(n,m)-function L, we have v · F (x) 6= v · (L(x) + b), that
is, denoting by L∗ the adjoint operator of L, if we have
v · F (x) 6= L∗(v) · x+ v · b, then we have F (x) 6= L(x) + b.
Hence, denoting a = L∗(v) and ε = v · b, we have {x ∈
Fn2 ; v ·F (x) 6= a · x+ ε} ⊆ {x ∈ Fn2 ;F (x) 6= L(x) + b}. This
implies that dH(F,A) = minb∈Fm2 ,L∈L |{x ∈ Fn2 ;F (x) 6=
L(x)+b}| ≥ maxv∈Fm2 ,v 6=0m mina∈Fn2 ,ε∈F2 dH(v·F, a·x+ε) =
maxv∈Fm2 ,v 6=0m nl(v ·F ) ≥ minv∈Fm2 ,v 6=0m nl(v ·F ) = nl(F ).
The inequality dH(F,A) ≥ nl(F ) was already observed in
[15] but we see with the inequalities above why these two
parameters can be far from each other. Lower and upper
bounds were given in [7] on dH(F,A) when F is a bent
function. Lower bounds on dH(F,A) for a given function F
do not imply lower bounds on the nonlinearity of F , but they
give some insight on the chances that F can have good or bad
nonlinearity.
Let us show now that a much stronger bound than (10) is
valid:

Proposition 4. Let F be any δ-uniform (n,m)-function, then
we have:

dH(F,A) ≥ 2n −
√

2n + δ (2n − 1).

In particular, let F be any APN function, then we have:

dH(F,A) ≥ 2n −
√

3 · 2n − 2.

Proof. We have:

|F−1(0m)| ≤
√∑
b∈Fm2

|F−1(b)|2

=
√
|{(x, y) ∈ (Fn2 )2;F (x) = F (y)}|

=

√∑
a∈Fn2

|(DaF )−1(0m)|

≤
√

2n + δ (2n − 1).

Applying this to F + L instead of F , we deduce:

dH(F,L) = |{x ∈ Fn2 ; (F + L)(x) 6= 0m}| ≥

2n −
√

2n + δ (2n − 1).

�
This bound shows that if δ is small enough, function F
contributes well as an S-box to the resistance against attacks
by affine approximations.

VII. ON THE MAXIMUM POSSIBLE VALUE OF dH(F,A)

The number 2n −
√

3 · 2n − 2 is rather close to 2n (which
is of course an upper bound for dH(F,A)). This poses the
question of determining what is the largest possible value of
dH(F,A) for all (n,m)-functions F (that is, finding for this
other nonlinearity parameter, tight bounds similar to the cover-
ing radius bound for m < n and to the SCV bound for m ≥ n,
see e.g. [4]) and still more interestingly, what are the functions
which reach it (which would be the equivalent of bent func-
tions and of almost bent functions for this notion of nonlinear-
ity). The following upper bound was given in a paper in Chi-
nese and reproduced in [15]: dH(F,A) < (1− 2−m)(2n− 1).
The proof deals with character sums. Let us briefly present
it (in a slightly simpler and more complete way): for every
linear function L, we have |{x ∈ Fn2 ; F (x) + L(x) =
F (0n)}| = 2−m

∑
x∈Fn2 ,v∈Fm2

(−1)v·(F (x)+L(x)+F (0n)). De-
noting by L the vector space of linear (n,m)-functions, we
have that, if v 6= 0m, then

∑
L∈L(−1)v·L(x) equals |L| if

x = 0n and equals 0 otherwise. This implies (distinguishing
the cases v = 0m and v 6= 0m)

∑
L∈L |{x ∈ Fn2 ; F (x) +

L(x) = F (0n)}| = (2n−m + 2−m(2m − 1))|L| and therefore:
maxL∈L |{x ∈ Fn2 ; F (x) + L(x) = F (0n)}| ≥ 2n−m + 1 −
2−m and this gives indeed dH(F,A) ≤ 2n−2n−m−1+2−m.
Note that since dH(F,A) is an integer, this bound is equiv-
alent to dH(F,A) ≤ 2n − 2n−m − 1 for m ≤ n and to
dH(F,A) ≤ 2n − 2 for m ≥ n.

In the next proposition, we obtain a bound that is slightly
stronger when m < n (and is identical when m = n).

Proposition 5. For every positive integers n,m and every
(n,m)-function F , we have:

dH(F,A) ≤ 2n −
⌈
2
n
2−m
√

2n + 2m − 1
⌉
,

where A is the vector space of all affine functions over Fn2
and dH(F,A) is the minimum Hamming distance between F
and affine functions.

Proof. For every linear (n,m)-function L, we have:

max
b∈Fm2

|{x ∈ Fn2 ; F (x) + L(x) = b}|2 ≥∑
b∈Fm2

|{x ∈ Fn2 ; F (x) + L(x) = b}|2

2m
=

2−m|{(x, y) ∈ (Fn2 )2; F (x) + L(x) = F (y) + L(y)}| =

2−2m
∑

x,y∈Fn2 ,v∈Fm2

(−1)v·(F (x)+F (y)+L(x+y)).

We have, for every x, y ∈ Fn2 and every nonzero v ∈ Fm2 that∑
L∈L(−1)v·L(x+y) equals |L| if x + y = 0n and equals 0

otherwise. We deduce (distinguishing the cases v = 0m and
v 6= 0m):∑

L∈L
max
b∈Fm2

|{x ∈ Fn2 ; F (x) + L(x) = b}|2 ≥
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(22n−2m + (2m − 1)2n−2m)|L|,

and therefore:

max
L∈L,b∈Fm2

|{x ∈ Fn2 ; F (x) + L(x) = b}|2 ≥

22n−2m + 2n−m − 2n−2m =

2n−2m(2n + 2m − 1).

We deduce

dH(F,A) = 2n − max
L∈L,b∈Fm2

|(F (x) + L(x) + b)−1(0m)|

≤ 2n − 2
n
2−m
√

2n + 2m − 1.

This completes the proof. �

For m < n, we get dH(F,A) ≤ 2n −⌈
2n−m

√
1 + 2m−n − 2−n

⌉
, which is sharper than the

bound dH(F,A) ≤ 2n − 2n−m − 1 of [15].
For m = n, we get dH(F,A) ≤ 2n −

⌈√
2− 2−n

⌉
= 2n − 2,

the same as in [15].
For m > n, we get dH(F,A) ≤ 2n −⌈
2
n
2−

m
2

√
1 + 2n−m − 2−m

⌉
which may be worse by

one unit than dH(F,A) ≤ 2n − 2 proved in [15].

Remark. To avoid the loss of information due to the first
inequality in the proof above, a slightly different approach
consists in fixing b (taking later the best possible value), as
done in [15], but keeping the square of |{x ∈ Fn2 ; F (x) +
L(x) = b}|. We have

22m
∑
L∈L
|{x ∈ Fn2 ; F (x) + L(x) = b}|2 =

∑
L∈L

∑
x,y∈Fn2
v,w∈Fm2

(−1)v·(F (x)+L(x)+b)+w·(F (y)+L(y)+b) =

∑
x,y∈Fn2
v,w∈Fm2

(−1)v·(F (x)+b)+w·(F (y)+b)

(∑
L∈L

(−1)v·L(x)+w·L(y)

)
.

We have:

∑
L∈L

(−1)v·L(x)+w·L(y) =



|L| if x = y = 0n
|L| if x = y 6= 0n and v = w
0 if x = y 6= 0n and v 6= w
|L| if x 6= y and v = w = 0m
0 if x 6= y and v = w 6= 0m
0 if x 6= y and v 6= w.

This implies:∑
L∈L
|{x ∈ Fn2 ; F (x) + L(x) = b}|2 =

2−2m
∑

v,w∈Fm2

(−1)v·(F (0n)+b)+w·(F (0n)+b)|L|+

2−2m|{(x, v) ∈ Fn2 × Fm2 , x 6= 0n}||L|+

2−2m|{(x, y) ∈ Fn2 × Fn2 , x 6= y}||L|.

Here again, the value is maximal when b = F (0n) and then
we have ∑

L∈L
|{x ∈ Fn2 ; F (x) + L(x) = F (0n)}|2 =

|L|+ 2−m(2n − 1)|L|+ 2−2m2n(2n − 1)|L|.

and therefore:

max
L∈L
|{x ∈ Fn2 ; F (x) + L(x) = b}|2 ≥

1 + 2−m(2n − 1) + 2−2m2n(2n − 1),

that is:

dH(F,A) ≤ 2n−
⌈√

22n−2m + 2n−m − 2n−2m + 1− 2−m
⌉
.

This bound is probably (since we are taking the ceiling)
exactly the same as the one in Proposition 5 (with maybe
rare exceptions where it would be lower by 1). �

We can see with Proposition 5 and with the remark above
that the bound of [15] is not easy to significantly improve with
an approach by character sums. And for m = n, which is an
important practical case, we have no improvement at all with
such method. We shall now obtain, by a completely different
approach, another bound which is stronger than both bounds
for m ≥ n (and more generally for m ≥ n− lnn where ln is
the natural logarithm).
Let us choose some a ∈ Fn2 and n linearly independent
elements a1, . . . , an of Fn2 ; there exists a unique affine (n,m)-
function A such that A(a) = F (a) and A(a+ai) = F (a+ai)
for i = 1, . . . , n. Let us briefly recall how this well-known
fact can be shown: an (n,m)-function A is affine and such
that A(a) = F (a) if and only if the function L(x) =
F (a) + A(a+ x) is linear (that is, affine and taking the zero
value at 0n), and thanks to the fact that (a1, . . . , an) is a basis
of the vector space Fn2 , there exists a unique linear function
L satisfying L(ai) = F (a) +F (a+ai) for i = 1, . . . , n. This
writes A(a+ ai) = F (a+ ai).
Then we have dH(F,A) ≤ 2n−(n+1) since A and F coincide
at the n+ 1 distinct points a, a+ a1, . . . , a+ an.
We have then:

Proposition 6. For every positive integer and every (n,m)-
function F , we have:

dH(F,A) ≤ 2n − n− 1.

If this bound is tight, then, for every a ∈ Fn2 and every
linearly independent elements a1, . . . , an of Fn2 , any (n,m)-
function F achieving it with equality must coincide with the
affine function A defined above only at a, a+ a1, . . . , a+ an
(note that this condition is necessary but may not be sufficient).
Hence, such F must satisfy F (a) + F (a +

∑n
i=1 εiai) 6=

L(
∑n
i=1 εiai) =

∑n
i=1 εiL(ai) =

∑n
i=1 εi(F (a)+F (a+ai)),

for every a ∈ Fn2 , every basis (a1, . . . , an) of Fn2 , and every
ε ∈ Fn2 of Hamming weight at least 2. If we look a little
more precisely at the cases where wH(ε) is even and odd,
respectively, we see that the condition is equivalent to saying
that, for every even number 2 ≤ r ≤ n of linearly independent
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elements a1, . . . , ar, the function F (x) +
∑r
i=1 F (x + ai) +

F (x+
∑r
i=1 ai) never vanishes.

This is an interesting condition, which includes differential 2-
uniformity (indeed, for r = 2, it is equivalent to saying that
F is differentially 2-uniform). For n ≥ 4, the condition seems
much stronger than differential 2-uniformity. If we fix for
instance r = 4, the resulting condition is equivalent to saying
that Da1Da2F (x)+Da3Da4F (x)+Da1+a2Da3+a4F (x) never
vanishes; hence, not only each of these three second-order
derivatives would not vanish; their sum would not either.
However, we have:

Proposition 7. Let n and m be any positive integers and F be
any differentially 2-uniform (n,m)-function. Then F satisfies
that, for every linearly independent elements a1, . . . , a4 of Fn2 ,
the function F (x) +

∑4
i=1 F (x+ai) +F (x+

∑4
i=1 ai) never

vanishes if and only if:∑
u,v∈Fn2 ,v 6=0n

W 6
F (u, v) =

−26n + 18 · 24n+m − 39 · 23n+m + 22 · 22n+m.

No such (n,m)-function F exists if m ≤ 2n−5 or m ≤ n = 4.

Proof. For obtaining such characterization, we shall need
to address all cases for a1, . . . , a4, whether they are linearly
independent or not. Let us then first study the behavior of the
function φa1,a2,a3,a4(x) := F (x) +

∑4
i=1 F (x+ ai) + F (x+∑4

i=1 ai) when a1, . . . , a4 are linearly dependent.
If one element among a1, . . . , a4 is equal to zero (say

a4 = 0n), then the function φa1,a2,a3,a4(x) equals F (x +
a1) + F (x + a2) + F (x + a3) + F (x + a1 + a2 + a3) =
Da1+a2Da1+a3F (x + a1) and since F is differentially 2-
uniform:
- either a1 + a2 and a1 + a3 are linearly dependent (that is,
a1 = a2 or a1 = a3 or a2 = a3) and φa1,a2,a3,0n(x) is the
zero function,
- or they are linearly independent (that is, a1, a2, a3 are
distinct) and φa1,a2,a3,0n(x) does not vanish.

If no element is zero among a1, . . . , a4 and two elements are
equal (say a1 = a2), then φa1,a2,a3,a4(x) equals Da3Da4F (x)
and since F is differentially 2-uniform:
- either a3 and a4 are linearly dependent (that is, a3 = a4)
and φa1,a2,a3,a4(x) is the zero function,
- or they are linearly independent (that is, distinct) and
φa1,a2,a3,a4(x) does not vanish.

If no sum of at least one and at most two elements among
a1, . . . , a4 is zero and the sum of three elements is zero (say
a2 + a3 + a4 = 0n), then φa1,a2,a3,a4(x) equals Da3Da4F (x)
and we are back to the same situation, but then a3 and a4

cannot be linearly dependent since a3 = a4 would imply a2 =
0n and then φa1,a2,a3,a4(x) does not vanish.

If no sum of at least one and at most three elements among
a1, . . . , a4 is zero and the sum of all four elements is zero,
then φa1,a2,a3,a4(x) equals F (x+ a1) + F (x+ a2) + F (x+
a3) +F (x+a4) = Da1+a2Da1+a3F (x+a1) and a1 +a2 and
a1 + a3 cannot be linearly dependent since this would mean
that a1 = a2 or a1 = a3 or a2 = a3, which is excluded;

then φa1,a2,a3,a4(x) does not vanish since F is differentially
2-uniform.

Summarizing, the condition in Proposition 7 is equivalent
to: for every a1, . . . , a4 such that:
- one element is zero and the others are not distinct, or two
elements are equal and non-zero and the two others are equal
and nonzero too, then φa1,a2,a3,a4(x) is the zero function,
- in all the other cases, φa1,a2,a3,a4(x) does not vanish.
The number N of quadruples (a1, a2, a3, a4) such that one ele-
ment is zero and the others are not distinct, or two elements are
equal and the two others are equal too, can be evaluated as fol-
lows. Counting each case once and once only, by considering
successively the subcases where the number of zero elements
equals 4, 3, 2, 1, 0 gives: N = 1+4(2n−1)+6(2n−1)+4(2n−
1)(3·2n−5)+(2n−1)(6·2n−11) = 1+(2n−1)(18·2n−21).
Hence we have: N = 18 · 22n − 39 · 2n + 22.
Since, for every element b of Fm2 , the sum

∑
v∈Fm2

(−1)v·b

equals 2m if b = 0m and equals zero otherwise, the condition
in Proposition 7 is equivalent to:∑

x,a1,...,a4∈Fn2
v∈Fm2

(−1)v·(F (x)+
∑4
i=1 F (x+ai)+F (x+

∑4
i=1 ai)) =

2n+mN.

Using the inverse Walsh transform relation, we have:

26n
∑

x,a1,...,a4∈Fn2
v∈Fm2

(−1)v·(F (x)+
∑4
i=1 F (x+ai)+F (x+

∑4
i=1 ai)) =

∑
x,a1,...,a4,u1,

...,u6∈Fn2 ,v∈F
m
2

6∏
i=1

WF (ui, v)(−1)(u1+···+u6)·x+
∑4
i=1(ui+1+u6)·ai

= 25n
∑

u,v∈Fn2

W 6
F (u, v).

Hence, the condition is equivalent to:∑
u,v∈Fn2

W 6
F (u, v) = 18 · 24n+m − 39 · 23n+m + 22 · 22n+m,

that is to: ∑
u,v∈Fn2 ,v 6=0n

W 6
F (u, v) =

−26n + 18 · 24n+m − 39 · 23n+m + 22 · 22n+m.

This is impossible for m ≤ 2n − 5, since the number
on the right-hand side is then smaller than or equal to
− 7

16 · 2
6n − 39

32 · 2
5n + 11

16 · 2
4n and is therefore negative. It is

also negative if m ≤ n = 4. �

Hence, for every (n,m) such that m ≤ 2n − 5 or
m ≤ n = 4, the inequality in Proposition 6 is in fact strict.

Remark. Proposition 7 proves that, if m ≤ 2n − 5 or
m ≤ n = 4, then for every (n,m)-function F , there exist a
basis (a1, . . . , an) of Fn2 and two vectors x, ε in Fn2 , such that
wH(ε) ≥ 2 and F (x) +F (x+

∑n
i=1 εiai) +

∑n
i=1 εi(F (x) +

F (x+ai)) = 0m. It would be interesting to determine whether,
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for every basis (a1, . . . , an) of Fn2 , there exist two vectors
x, ε in Fn2 having such property, but it seems difficult to do
so. Denoting by (e1, . . . , en) the canonical basis of Fn2 (of
those Hamming weight 1 vectors), this is equivalent (by com-
posing F by the linear automorphism mapping (a1, . . . , an)
to (e1, . . . , en)), to saying that, for every (n,m)-function F ,
there exist two vectors x, ε in Fn2 such that wH(ε) ≥ 2 and
DεF (x) +

∑n
i=1 εiDeiF (x) = 0m. It seems difficult to check

if there can exist F such that, for every ε in Fn2 of Hamming
weight at least 2 and every x, this latter expression is nonzero.
We recall that we have seen that the case where wH(ε) is
odd reduces itself to the case where wH(ε) is even, so we
shall assume that we are in this latter case. If we use the
inverse Walsh transform relation again, the number of x such
that DεF (x) +

∑n
i=1 εiDeiF (x) = 0m equals, denoting the

support of ε by I (whose size is even) and writing the elements
of (Fn2 )I in the form U = (ui)i∈I :

2−m
∑

x∈Fn2 ,v∈Fm2

(−1)v·(F (x)+F (x+ε)+
∑
i∈I F (x+ei)) =

2−(|I|+2)n−m
∑

x,u∅,uε∈F
n
2

U∈(Fn2 )I ,v∈Fm2

WF (u∅, v)WF (uε, v)
∏
i∈I

WF (ui, v)

·(−1)(u∅+uε+
∑
i∈I ui)·x+

∑
i∈I(uε+ui)·ei =

2−(|I|+1)n−m
∑
uε∈Fn2

U∈(Fn2 )I ,v∈Fm2

WF (uε +
∑
i∈I

ui, v)WF (uε, v)

·
∏
i∈I

WF (ui, v)(−1)
∑
i∈I(uε+ui)·ei .

It seems difficult to go further. �

Reference [15] conjectures that dH(F,A) ≤
(1 − 2−m)(2n − 2

n
2 ). We see that, according to Proposition

4, APN functions are good candidates for approaching this
conjectured bound (if it is true) or for disproving it (if it is
false).

VIII. AN UPPER BOUND ON THE NONLINEARITY BY
MEANS OF THE MINIMUM DISTANCE TO AFFINE FUNCTIONS

We have recalled in Section VI that, for any (n,m)-function
F , we have nl(F ) ≤ dH(F,A). Proposition 2 implies another
upper bound on the nonlinearity by an expression depending
on dH(F,A). Indeed, let us apply this proposition to F + A
where A is the best affine approximation of F . Since F + A
equals 0 at 2n − dH(F,A) points, we have |Im(F + A)| ≤
dH(F,A) + 1 = dH(F,A) + 1. Hence:

Corollary 2. For every positive integers n,m and every
(n,m)-function F , we have:

nl(F ) ≤ 2n−1 −

√
22n+m−2

dH(F,A)+1 − 22n−2

2m − 1
.

This bound must be compared with the bound nl(F ) ≤
dH(F,A). It improves upon it if and only if 2n−1 −

√
22n+m−2

dH (F,A)+1
−22n−2

2m−1 < dH(F,A), that is, 22n+m−2

dH(F,A)+1 >

22n−2 + (2m − 1)(2n−1 − dH(F,A))2, that is, (2m −
1)(dH(F,A))3 + (2m − 1)(1 − 2n)(dH(F,A))2 + (22n−2 +
(2m− 1)(22n−2− 2n))dH(F,A) + 22n−2 + (2m− 1)22n−2−
22n+m−2 < 0. This inequality has the form A (dH(F,A))3 +
B (dH(F,A))2 + C dH(F,A) + D < 0 with A =
2m − 1 > 0, B = (2m − 1)(1 − 2n) < 0,
C = 22n+m−2 − (2m − 1)2n > 0 and D = 0. We

have then 2n−1 −

√
22n+m−2

dH (F,A)+1
−22n−2

2m−1 < dH(F,A) when

dH(F,A) is between the two zeros −B±
√
B2−4AC
2A =

(2m−1)(2n−1)±
√

(2m−1)
√

2n+m+1+2m−22n−2n+1−1

2(2m−1) , which are
located between 0 and 2n.

IX. AN IMPROVEMENT OF THE LOWER BOUND OF
PROPOSITION 1

Let us show that the bound of Proposition 1 can be made
stronger for some functions. Let us denote by ∆ the set
{x + y; (x, y) ∈ (Fn2 )2, x 6= y, F (x) = F (y)}. For every
nonzero a 6∈ ∆, we have |(DaF )−1(0m)| = 0. Let us
assume that F is not injective. Then we have |∆| > 0. We
can then refine the calculations that led to Proposition 1 as
follows:

∑
a∈∆

|(DaF )−1(0m)| =
∑
a∈Fn2

|(DaF )−1(0m)| − 2n ≥

22n

|Im(F )|
− 2n, and we deduce that there exists a ∈ Fn2 ,

nonzero, such that |DaF
−1(0m)| ≥

22n

|Im(F )|−2n

|∆| . Hence:

Proposition 8. For every non-injective (n,m)-function, the
differential uniformity of F satisfies:

δF ≥


22n

|Im(F )| − 2n

|∆|

 , (11)

where ∆ = {x+ y; (x, y) ∈ (Fn2 )2, x 6= y, F (x) = F (y)}.

Relation (11) improves upon Proposition 1 when
|∆| < 2n − 1.

Remark. We have:

|∆| ≤ 1

2
|{(x, y) ∈ (Fn2 )2;F (x) = F (y)}| − 2n−1

= 2−(m+1)
∑

x,y∈Fn2 ,v∈Fm2

(−1)v·(F (x)+F (y)) − 2n−1

= 2−(m+1)
∑
v∈Fm2

W 2
F (0n, v)− 2n−1,

and this bound is tight since it is achieved by those functions
such that, in the multiset ∗{x + y; (x, y) ∈ (Fn2 )2, x 6=
y, F (x) = F (y)}∗, each value is matched at most twice. �

Conclusion
In this paper, we have revisited and clarified a four year
old result on the size of the image set of any differentially
uniform function, and in particular of any APN function,
and we have studied its consequences. We have derived
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an upper bound on the nonlinearity of vectorial functions
by means of their image set size. We have also shown
that differentially uniform functions lie at large Hamming
distance from affine functions and preserve then the block
ciphers in which they are used as substitution boxes from
attacks based on affine approximation as well. The fact that
the image set size of the sum of any differentially uniform
function with any linear function is bounded from below
may provide a new theoretical and computational approach
of differentially uniform functions, and in particular of
APN functions, which is worth future studies. There is also
a need to study the Hamming distance between vectorial
functions (possibly APN) and affine functions, for which
tight bounds similar to the covering radius bound and to the
Sidelnikov-Chabaud-Vaudenay bound are missing, as well as
the knowledge of functions similar to bent functions for this
distance.
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