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a b s t r a c t

We consider the path space of a manifold with a measure induced by a stochastic
flow with an infinitesimal generator that is hypoelliptic, but not elliptic. These
generators can be seen as sub-Laplacians of a sub-Riemannian structure with a
chosen complement. We introduce a concept of gradient for cylindrical functionals
on path space in such a way that the gradient operators are closable in L2. With
this structure in place, we show that a bound on horizontal Ricci curvature is
equivalent to several inequalities for functions on path space, such as a gradient
inequality, log-Sobolev inequality and Poincaré inequality. As a consequence, we
also obtain a bound for the spectral gap of the Ornstein–Uhlenbeck operator.
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under

the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Stochastic analysis on the path space over a complete Riemannian manifold has been well developed ever
since B. K. Driver [13] proved the quasi-invariance theorem for the Brownian motion on compact Riemannian
manifolds in 1992. A key point of the study is to first establish an integration by parts formula for the
associated gradient operator induced by the quasi-invariant flows, then prove functional inequalities for
the corresponding Dirichlet form (see e.g. [16,26] and references within). For more analysis on Riemannian
path spaces we refer to [14,28,31] and references within. Recently, there has been an extensive study
by A. Naber [30] on the equivalence of bounded Ricci curvature and certain inequalities on path space.
R. Haslhofer and A. Naber [23] extended these results to characterize solutions of the Ricci flow. For further
results in this direction see [9,10,24].
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In the present article, we develop this formalism in the framework of hypoelliptic operators and diffusions
in sub-Riemannian geometry. Let (M, H, g) be a sub-Riemannian manifold, meaning that H is a subbundle
f TM with a metric tensor g. Let ∇ be an affine connection on TM compatible with (H, g) in the sense
hat it preserves H and its metric g under parallel transport. We define an operator

L = trH ∇2
×,×, (1.1)

as the trace of the Hessian ∇2 over H with respect to the inner product g. We assume that the subbundle H

is bracket-generating, meaning that its sections and their iterated brackets span the entire tangent bundle.
This makes L into a hypoelliptic operator on functions by Hörmander’s theorem [25]. Let Bx

t be a standard
Brownian motion in the inner product space Hx. Then the solution of the SDE,

dXx
t = //t ◦ dBx

t , Xx
0 = x

is a diffusion on M with 1
2 L as infinitesimal generator, where //t : TxM → TXx

t
M denotes ∇-parallel

ransport along Xx
t . For the case when H = TM and ∇ is the Levi-Civita connection, the operator L

s the Laplacian and Xx
t is the Brownian motion in M .

The analysis of path space of sub-Riemannian manifolds has been earlier considered in [2,3] for the case
here the sub-Riemannian structure (H, g) is the restriction to the transverse bundle of a foliation that is

Riemannian, totally geodesic and of Yang–Mills type. In this present paper, we will extend the approach in [3]
to arbitrary sub-Riemannian manifolds with a metric preserving complement, which include sub-Riemannian
manifolds coming from Riemannian foliations, but does not require anything of the metric along the foliation
or even any extension of the sub-Riemannian metric.

An immediate difficulty for analysis on path space over a sub-Riemannian manifold is that if differentia-
tion is only allowed in directions of the horizontal subbundle, then it is a priori not clear how to define the
gradient of functionals on path space in a way that makes the operator closable. We introduce a gradient
on path space in terms of a connection ∇ compatible with the sub-Riemannian structure which is canonical
in the sense that any choice of complement V to the subbundle H determines it uniquely. To motivate the
appropriateness of the definition, we first review the smooth path space and the development map with
respect to an arbitrary connection. The underlying idea is that if we have a variation of curves {γs} that
re all tangent to H, then the corresponding variational vector field Y = ∂sγs|s=0 will not be in H in

general. Yet it cannot be arbitrary in the sense that it is determined by prH Y for any choice of projection
prH : TM → H, a fact that was also observed in [3]. We will construct the sub-Riemannian gradient on
path space to reflect this property. The most straightforward advantage of our gradient is that it admits an
integration by parts formula from where closability of the gradient operator in L2 immediately follows.

We also develop a concept of a damped gradient analogous to the definition in Riemannian geometry,
but with the adjoint connection ∇̂ of ∇. In spite of the fact that this adjoint will not be compatible with
the sub-Riemannian structure, we show that the gradient and the damped gradient are related by the Ricci
operator.

Having set up this formalism, we extend the approach of Naber to the sub-Riemannian case in our main
result in Theorem 4.1. We establish functional inequalities on the path space of the stochastic flow x ↦→ Xx

t

including gradient inequalities, log-Sobolev inequalities and Poincaré inequalities. These inequalities are
shown to be equivalent to bounds on the horizontal Ricci operator RicH : H → H which is defined taking the
trace of the curvature tensor only over H. We also show that bounds on RicH can equivalently be described
by functional inequalities for functions on M . This equivalence result could also open the door to the study
of an analogue of Ricci flow in the sub-Riemannian setting, which has already been considered in the case
of the sub-Riemannian Heisenberg group in [15] using the formalism of metric measure spaces.

We want to emphasize that having similar relations between bounded Ricci curvature and functional

inequalities in both the Riemannian and the sub-Riemannian case is quite surprising. By contrast, the
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relationship between lower Ricci curvature bounds and functional inequalities for the heat semigroup is
much more complicated in the sub-Riemannian case compared to the Riemannian one, see e.g. [1,4,5,20,21]
for details.

The structure of the paper is as follows. In Section 2 we first consider the smooth path space and
development with respect to an arbitrary connection. We review the basic definitions of sub-Riemannian
manifolds and connections compatible with such structures. In contrast to the Riemannian case, we do
not have torsion-free compatible connections on such spaces, however, we give analogues of the Levi-Civita
connection by defining a canonical connection with minimal torsion relative to a chosen complement V to
he horizontal bundle H. We finally use these connections to define corresponding vector fields on smooth
ath space.

We generalize the definition of these vector fields in Section 3 in order to define a gradient and a
amped gradient for functions on path space. We relate these concepts and look at their properties in
heorems 3.1, 3.3 and 3.4. In particular, we establish integration by parts formulas for both the gradient
nd the damped gradient, generalizing the Riemannian case and the case treated in [3]. Finally, in Section 4
e show that several functional inequalities related to functions on path space are equivalent to the analogue
f bounded Ricci curvature. We state our main result in Theorem 4.1. From this result, we also obtain a
pectral gap estimate in Corollary 4.5 for the Ornstein–Uhlenbeck operator corresponding to the gradient.

In Section 5, we look closer at how such results can be interpreted geometrically. Intuitively, we show
hat if one uses the canonical connection ∇ corresponding to a metric preserving complement V , then the
ub-Riemannian path space has geometry “similar to M/V ”. This latter concept is well defined in the case
hen V is an integrable submanifold corresponding to a regular foliation Φ in which M/Φ has an induced
iemannian structure, but our formalism is valid for non-integrable choices of complements as well.
For the main results of this paper, we need to choose a complement which is metric preserving. To explain

he reason behind this assumption and for later references, we include some formulas related to a general
hoice of connection and complement in the Appendix.

. Smooth path space and sub-Riemannian geometry

.1. Smooth path space and development

An affine manifold is a pair (M, ∇) where ∇ is an affine connection on TM . Let T denote the torsion of
, i.e.

T(Y, Z) = ∇Y Z − ∇ZY − [Y, Z], Y, Z ∈ Γ (TM),

nd let R denote its curvature

R(Y1, Y2)Z =
(
∇Y1∇Y2 − ∇Y2∇Y1 − ∇[Y1,Y2]

)
Z, Y1, Y2, Z ∈ Γ (TM).

e define its adjoint ∇̂ as the connection

∇̂Y Z = ∇Y Z − T(Y, Z). (2.1)

Observe that the torsion of ∇̂ is −T and hence ∇ is the adjoint of ∇̂. We remark that if (s, t) ↦→ ωs
t is a

wo-parameter function with values in M , then

Ds
∂

∂t
ωs

t = D̂t
∂

∂s
ωs

t ,

here Ds and D̂t denote covariant derivatives of respectively ∇ in the direction of s and ∇̂ in the direction

f t.

3
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Let W ∞
x (M) denote the space of smooth curves [0, ∞) → M , t ↦→ ωt satisfying ω0 = x. When

//t : TxM → TωtM denotes parallel transport with respect to ∇ along a given path ω ∈ W ∞
x (M), we say

hat u ∈ W ∞
0 (TxM) is the anti-development of ωt if it is the unique solution of

u̇t = //−1
t ω̇t, u0 = 0,

ith u̇t = d
dt ut. Conversely, we say that ω is the development of u. We write Dev(u) = ω and Dev−1(ω) = u.

e note that Dev−1 is defined for any element in W ∞
x (M), however, for a general u ∈ W ∞

0 (TxM), t ↦→
ev(u)t might be only defined for short time. If ωt = Dev(u)t is defined for all time for any u ∈ W ∞

0 (TxM),
∈ M , then ∇ is called complete. For the rest of this subsection, we assume that ∇ is complete. For the

eneral case, see Remark 2.2. The next lemma describes the derivative of the map Dev.

emma 2.1. Let ω ∈ W ∞
x (M) be an arbitrary smooth curve with Dev−1(ω) = u. Consider ωs

t = Dev(u+sk)t

or k ∈ W ∞
0 (TxM) and define

Yt = ∂

∂s
ωs

t |s=0. (2.2)

Write //t, /̂/t : TxM → TωtM for parallel transport along ω relative to respectively ∇ and ∇̂. If we write

Yt = //tyt = /̂/tŷt

with ŷt = /̂/−1
t //tyt, then yt and ŷt are the unique solutions of

kt = yt +
∫ t

0
T//s(ys, dus) −

∫ t

0

∫ s

0
R//r (dur, yr)dus

=
∫ t

0
//−1

s /̂/s
˙̂ys ds −

∫ t

0

∫ s

0
R//r (dur, yr)dus.

We remark that in the above statement, we used the notation

T//t
(w1, w2) = //−1

t T(//tw1, //tw2),
R//t

(w1, w2)w3 = //−1
t R(//tw1, //tw2)//tw3.

We will use this notation for tensors in general throughout the paper.

Proof. Let D and D̂ be the covariant derivative of respectively ∇ and ∇̂. Write e1,s(t), . . . , en,s(t) for an
orthonormal ∇-parallel basis along t ↦→ ωs

t with ej,0(t) = ej(t) and ej,s(0) = ej(0), and use the same basis
to define ut + skt =

∑n
j=1(uj(t) + skj(t))ej(0). Then

D̂t∂sω = Ds∂tω =
n∑

j=1
k̇jej,s +

n∑
j=1

(u̇j + sk̇j)Dsej,s.

By definition, we have Dsej,s(0) = 0. Furthermore, we have

DtDsej,s = (DtDs − DsDt)ej,s = R
(

∂

∂t
ω,

∂

∂s
ω

)
ej,s.

t follows that at s = 0,

D̂tY = /̂/t
˙̂yt = DtY − T(ω̇t, Yt) =

n∑
j=1

k̇jej(t) +
n∑

j=1
u̇j(Dsej,s(t)|s=0),

nd hence,

//−1
t /̂/t

˙̂yt = ẏt − T//t
(u̇t, yt) = k̇t +

n∑
j=1

u̇j(t)
∫ t

0
R//s(u̇s, ys)ej(0)ds. □
4
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Remark 2.2 (Non-complete Connections). Let ω ∈ W ∞
x (M) be any given curve with u = Dev−1(ω). Then

or arbitrary k ∈ W ∞
0 (TxM) and any T > 0, there is some ε > 0 such that t ↦→ Dev(u + sk)t has a solution

on [0, T ] for |s| < ε. Hence, we have that t ↦→ Yt can still be defined as a derivative of a two-parameter family
as in (2.2) for any t ≥ 0.

2.2. Sub-Riemannian manifolds

We consider a sub-Riemannian manifold as a triple (M, H, g) where M is a connected manifold, H ⊆ TM

s a subbundle of the tangent bundle and g = ⟨ · , · ⟩g is a metric tensor on H. The sub-Riemannian structure
H, g) induces a map ♯ : T ∗M → H ⊆ TM defined by

⟨α, v⟩ = ⟨♯α, v⟩g, α ∈ T ∗
x M, v ∈ Hx, x ∈ M.

e can then define a (degenerate) sub-Riemannian cometric g∗ by

g∗(α, β) = ⟨α, β⟩g∗ = ⟨♯α, ♯β⟩g.

e remark that in what follows, we use g, the map ♯ as well as the cometric g∗ to state our results. For
∈ H and α ∈ T ∗M , we also use the notation |v|g = ⟨v, v⟩1/2

g and |α|g∗ = ⟨α, α⟩1/2
g∗ and ask the reader to

eep in mind that |α|g∗ may vanish for non-zero covectors.
As usual, we assume that H is bracket-generating, meaning that sections of H and their iterated brackets

pan the entire tangent bundle. A curve ωt is called horizontal if it is absolutely continuous and satisfies
˙ t ∈ Hωt for almost every t. The bracket-generating condition implies that any pair of points can be
onnected by a horizontal curve. We hence have a well defined distance on M given by

dg(x, y) = inf
{∫ T

0
⟨ω̇t, ω̇t⟩1/2

g dt : ω0 = x, ωT = y, ωt is horizontal
}

. (2.3)

he topology induced by the metric dg coincides with the manifold topology. We say that (M, H, g) is
omplete if (M, dg) is a complete metric space. For more details on sub-Riemannian geometry, see e.g. [29].

.3. Compatible connections and metric preserving complements

Let ∇ be an affine connection on TM for a sub-Riemannian manifold (M, H, g). We are interested in the
ollowing types on connections.

efinition 2.3. A connection ∇ is called compatible with the sub-Riemannian structure if for any
∈ Γ (TM), Y, Y2 ∈ Γ (H),

(i) ∇ZY |x ∈ Hx for any x ∈ M ,
(ii) Z⟨Y, Y2⟩g = ⟨∇ZY, Y2⟩g + ⟨Y, ∇ZY2⟩g.

Unlike what holds in Riemannian geometry, there exists no affine connection that is both compatible with
he sub-Riemannian structure and also torsion free when H is bracket-generating and a proper subbundle of
M , see e.g. [22]. Let t ↦→ ωt be any smooth horizontal curve with ω0 = x. If ∇ is a compatible connection

hen anti-development u = Dev−1(ω) is a smooth curve Hx, and the converse is also true for any curve
∈ W ∞

x (Hx) if only for short time in general. If (M, H, g) is complete as a metric space, then the solution
ill exist for all time, see Proposition A.2, Appendix.
One way of obtaining a preferred connection is to choose a complement V to H, that is a subbundle

M = H ⊕ V . We will always assume that our complement satisfies the following definition, introduced
n [20].
5
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Definition 2.4. For any Z ∈ Γ (TM), let LZ denote the corresponding Lie derivative. Let V be a
complement to a sub-Riemannian manifold (M, H, g) with corresponding projections prH and prV . The
complement V is then called metric preserving if for any Z ∈ Γ (V ) and X ∈ Γ (H), we have

(LZ pr∗
H g)(X, X) = 0.

For discussion of the general complement, see the Appendix. For such a complement, we have the following
result.

Proposition 2.5. Assume that V is metric preserving. There is a connection ∇ with torsion T satisfies
the following properties:

(a) Both H and V are parallel with respect to ∇;
(b) ∇ is compatible with (H, g);
(c) T(H, H) ⊆ V ;
(d) T(H, V ) = 0.

Furthermore, if ∇′ is another connection satisfying (a)–(d), then ∇Y Z − ∇′
Y Z = ∇prV Y prV Z −

∇′
prV Y prV Z.

This result is a special case of Proposition A.4, Appendix. Since the restriction ∇|V |V will not have
any influence of the next computation, we will write ∇ = ∇g,V for any connection ∇ satisfying (a)–(d) in
Proposition 2.5. We will now study the path space using such connections.

Let (M, H, g) be a complete sub-Riemannian manifold with a chosen metric-preserving complement V ,
and let ∇ = ∇g,V . Let ∇ have torsion T and curvature R and define Dev = Dev∇ relative to this connection.
Then the following result holds.

Proposition 2.6. Consider ωs
t = Dev(u + sk)t for u, k ∈ W ∞

0 (Hx). Write ω = Dev(u) and introduce a
linear map At = Aω

t : TxM → TxM by

Atw =
∫ t

0
T//s(dus, w).

If Yt = ∂
∂s ωs

t |s=0, then Yt = //tyt = /̂/tŷt with

yt = ht +
∫ t

0
dAshs, ŷt = ht −

∫ t

0
Asdhs,

here ht = prH yt is the unique solution of

kt = ht −
∫ t

0

∫ s

0
R//r (dur, hr) dus. (2.4)

The statement is a special case of Lemma A.6, Appendix. Based on this result, we make the following
efinition.

efinition 2.7. Let (M, H, g) be a sub-Riemannian manifold with a metric preserving complement V and
efine ∇ = ∇g,V . For any h ∈ W ∞

0 (Hx), we define a vector field Dh on W ∞
x (M) by

Dh|ω = //−1
t

(
ht +

∫ t

0 T//s(dus, hs)
)

= //−1
t

(
ht +

∫ t

0 dAshs

)
,

−1
here u = Dev (ω) and //t denotes parallel transport along ω with respect to ∇.
6
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We note the following immediate consequence of Proposition 2.6.

Corollary 2.8. For any horizontal curve ω with u = Dev−1(ω), we have{
d
ds Dev(u + sk)|s=0 : k ∈ W ∞

0 (H)
}

= {Dh|ω : h ∈ W ∞
0 (H)}.

We note that d
ds Dev(u + sk)|s=0 = Dh|ω where k and h are related by (2.4). In the case when ∇ is a flat

connection, i.e. if R ≡ 0, then k = h. We will generalize such vector fields to functions h with values in the
Cameron–Martin space in the next section.

Remark 2.9. Let (M, H, g) be a sub-Riemannian manifold. We say that a Riemannian metric ḡ tames g if
ḡ|H×H = g. Assume that we have chosen a taming metric ḡ for which V = H⊥ is the orthogonal complement
of H. Assume further that V is integrable with corresponding foliation Φ. Then the assumption of V being
metric-preserving is equivalent to assuming that the metric ḡ is bundle-like, or, in a different terminology,
assuming that Φ is a Riemannian foliation. We refer to [20] for details. We emphasize that none of these
properties depend on ḡ|V ×V .

3. Diffusions and gradients on path space

Throughout this section, we assume that any complement V to a horizontal bundle H chosen is metric
reserving. We also assume that M is compact for a simpler presentation. We hence have that all tensors are
ounded and that all local martingales are indeed martingales. The same results hold in the non-compact
ase under some additional assumptions, see Section 3.7 for details.

.1. Sub-Riemannian diffusions and notation

Let M be a compact manifold and let Wx = Wx(M) be the space of continuous maps ω : [0, ∞) → M

with ω0 = x. Let (H, g) be a sub-Riemannian structure on M and let ∇ be a compatible connection. Recall
that the Hessian of ∇ is defined as

∇2
Y1,Y2 = ∇Y1∇Y2 − ∇∇Y1 Y2 , Y1, Y2 ∈ Γ (TM).

We write L = trH ∇2
×,× for the connection sub-Laplacian of ∇ and let x ↦→ Xx

t ∈ Wx be the stochastic flow
with generator 1

2 L and Xx
0 = x defined on the filtered probability space (Wx, F·,Px).

For 0 ≤ s ≤ t < ∞, let //s,t : TXx
s

M → TXx
t

M denote the parallel transport along Xx
t with respect to ∇

and write //0,t = //t. Note that //s,t = //t//
−1
s . The solution Bx

t of

dBx
t = //−1

t ◦ dXx
t , Bx

0 = 0 ∈ Hx,

is a standard Brownian motion in Hx. Hence, Xx
t can be considered as the development of the Brownian

motion in Hx.
For any T > 0, we define W T

x as the curves in Wx restricted to [0, T ]. We write the induced structure of a
filtered probability space as (W T

x , F T
· ,PT

x ) and the corresponding stochastic process as Xx
[0,T ]. Introduce the

Cameron–Martin space HT
x := HT (Hx) as the Hilbert space of absolutely continuous functions h : [0, T ] →

Hx with
∫ T

0 |ḣt|
2
g dt < ∞ and with inner product

⟨h, k⟩H =
∫ T

⟨ḣt, k̇t⟩g dt, h, k ∈ HT
x .
0
7
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More generally, we define

HT
W,x = L2(W T

x → HT
x ; F T

· ,PT
x )

=
{

h ∈ L2(W T
x → HT

x ;PT
x ) : ht is Ft-measurable, t ∈ [0, T ]

}
,

s a Hilbert space with inner product ⟨h, k⟩L2 = E⟨h, k⟩H. As usual, we write ⟨h, Bx⟩H =
∫ T

0 ⟨ḣs, dBx
s ⟩g.

.2. Gradient on path space

Let V be a metric preserving complement to H and define ∇ = ∇g,V . Let x ↦→ Xx
· be the corresponding

tochastic flow. For any h ∈ W ∞
0 (Hx), recall the definition of Dh on W ∞

x (M) from Definition 2.7. As
arallel transport is well defined along a path in Wx almost surely, we can consider Dh as a P-almost surely
efined vector field on Wx. We want to make this definition more precise and valid for functions h in the
ameron–Martin space.
Inspired by Proposition 2.6, we define the following endomorphism Ax,t = At : TxM → TxM by

At( · ) =
∫ t

0
T//s(◦dBx

s , · ) =
∫ t

0
T//s(dBx

s , · ) − 1
2

∫ t

0
(δHT)//s( · )ds,

where ◦d denotes the Stratonovich differential and δHT = − trH(∇×T)(×, · ). We remark that by the
defining properties of ∇ in Proposition 2.5, we have that At(Hx) ⊆ Vx and At(Vx) = 0. For fixed T > 0,
consider the space of cylindrical functions

FC∞ =
{

F : ω ∈ W T
x ↦→ f(ωt1 , . . . , ωtn)

⏐⏐⏐⏐ 0 ≤ t1 < · · · < tn ≤ T,
n ≥ 0, f ∈ C∞(Mn)

}
.

For h ∈ HT
x , we define Dh acting on a cylindrical function F : ω ↦→ f(ωt1 , ωt2 , . . . , ωtn) by

DhF =
n∑

i=1

⟨
//−1

ti
dif |(ωt1 ,...,ωtn ), hti

+
∫ ti

0 dAtht

⟩
=

n∑
i=1

⟨
//−1

ti
dif |(ωt1 ,...,ωtn ),

∫ ti

0 (id +Ati
− At)dht

⟩
.

bserve that this definition is a generalization of Definition 2.7. If we define DtF ∈ Hx by

DtF :=
n∑

i=1
1t≤ti

♯(id +Ati
− At)∗//−1

ti
dif |(ωt1 ,...,ωtn ),

hen for every h ∈ HT
x , ∫ T

0
⟨DtF, ḣt⟩gdt = DhF.

inally, we define the gradient DF ∈ HT
W,x by the relation ⟨DF, h⟩H = DhF .

We will show that the operator D : F → DF can be closed on path space by the following integration by
arts formula. Recall that R is the curvature of ∇. Introduce the corresponding Ricci operator Ric : TM →
M by

Ric(v) = − trH R(×, v) × . (3.1)
8
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Theorem 3.1.

(a) For any F ∈ FC∞, we have

dxEx[F ] = Ex[D0F ] − 1
2

∫ T

0
Ex[(Ric//s Qs)∗DsF ] ds,

where Qt is the solution to the following equation:

dQt = −1
2 Ric//t

Qt dt, Q0 = idTxM . (3.2)

(b) For any F ∈ FC∞ and h ∈ HT
x , we have

Ex[⟨DF, h⟩H] = Ex

[
F

∫ T

0
⟨ḣt + 1

2 Ric//t
ht, dBt⟩g

]
.

In particular, for F (X[0,T ]) = f(Xt), our result reduces to the following form, see the end of Section 3.5
or more details.

orollary 3.2. Assume that V is metric preserving and write Ptf = E[f(Xt)].

(a) Let Qt be the solution of (3.2). Then

dPtf(v) = Ex

[⟨
//−1

t df |Xt , Qtv +
∫ t

0
dAsQsv

⟩]
, v ∈ TxM ;

(b) for any k ∈ HT
x with ht = Qt

∫ t

0 Q−1
s dks, we have

Ex [f(XT )⟨k, B⟩H] = Ex

[⟨
//−1

T df |XT
, hT +

∫ T

0
dAtht

⟩]
.

We note that the result in (a) has already appeared in [22]. We show this formula by proving the
corresponding derivative formula and integration by parts formula in Theorem 3.4 for the damped gradient.

3.3. The damped gradient on path space

We define the damped gradient D̃F similarly to the formula in Riemannian geometry, but using parallel
transport of the adjoint connection. We use the connection ∇ = ∇g,V and define Ric as in (3.1). Define
/̂/s,t : TXsM → TXtM as parallel transport along Xt with respect to ∇̂, the adjoint of ∇, and write
/̂/t = /̂/0,t. We first introduce Q̂s,t : TXsM → TXsM , s ≤ t,

d

dt
Q̂s,t = −1

2 Ric
/̂/s,t

Q̂s,t, Q̂s,s = idTXs M .

e note that if Q̂t = Q̂0,t, then Q̂s,t = /̂/sQ̂tQ̂
−1
s /̂/−1

s and for s ≤ r ≤ t,

Q̂s,t = /̂/−1
s,rQ̂r,t/̂/s,rQ̂s,r.

or F ∈ FC∞ with F (ω) = f(ωt1 , . . . , ωtn), we define

D̃tF (ω) :=
n∑

i=1
1t≤ti

♯//−1
t Q̂∗

t,ti
/̂/−1

t,ti
dif |(ωt1 ,...,ωtn ),

nd furthermore, for any k ∈ HT
x ,

D̃kF := ⟨D̃F, k⟩H :=
∫ T

0
D̃tFdkt.

he next result clarifies the relationship between DF and D̃F .
9
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Theorem 3.3. Let Qt : TxM → TxM be the solution to

Q0 = idTxM , dQt = −1
2 Ric//t

Qtdt.

(a) For any k ∈ HT
x and F ∈ FC∞, if ht = Qt

∫ t

0 Q−1
s dks, then

D̃kF = DhF,

(b) For any F ∈ FC∞,

D̃tF = DtF − 1
2

∫ T

t

(Ric//s QsQ−1
t )∗DsFds.

Next, with respect to the damped gradient, we establish the gradient formula and integration by parts
ormula on path space as follows.

heorem 3.4.

(a) (Derivative formula) For any F ∈ FC∞ and t > 0, we have

DtEx[F |Ft] = Ex[D̃tF |Ft].

(b) (The Clark–Ocône formula) For any F ∈ FC∞, we have

F = Ex[F ] +
∫ T

0
⟨Ex[D̃sF |Fs], dBx

s ⟩.

(c) (Integration by parts formula) For any k ∈ HT
x and F ∈ FC∞,

Ex[⟨D̃F, k⟩H] = Ex [F ⟨k, Bx⟩H] .

In particular, for any k ∈ HT
x with Ut = //−1

t /̂/t, we have

E [f(Xx
T )⟨k, Bx⟩H] = E

[⟨
//−1

T df |Xx
T

, UT Q̂T

∫ T

0
Q̂−1

s U−1
s dks

⟩]
. (3.3)

We will prove Theorems 3.3 and 3.4 in the next subsections. Now we show how Theorem 3.1 follows from
these results.

Proof of Theorem 3.1. We can prove (a) directly by using Theorem 3.4(a) and Theorem 3.3(b). For (b),

ExDhF = ExD̃kF = Ex [F ⟨k, B⟩H]

= Ex

[
F

∫ T

0
⟨ḣt + 1

2 Ric//t
ht, dBx

t ⟩g

]
,

here the last equation follows from dkt = dht + 1
2 Ric//t

htdt. □

.4. Proof of Theorem 3.3

Let (M, H, g) be a sub-Riemannian manifold with a metric preserving complement V . In all the steps
elow, we will consider the connection ∇ = ∇g,V .

Define the tensor Ric relative to ∇ as in (3.1). To prove Theorem 3.3, we first observe that Ric vanishes
utside the horizontal bundle H.
10
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Lemma 3.5. Write RicH = Ric |H . Then

Ric = RicH prH = prH RicH prH .

Proof. We note that since H is parallel with respect to ∇, we have R( · , · )v ∈ Hx for any v ∈ Hx, x ∈ M . It
follows that Ric(TM) ⊆ H. From the proof of Lemma A.6, we also have that ⟨R(v1, z)v1, v2⟩g = 0 whenever
V is metric preserving, giving us Ric(V ) = 0. □

Next, we relate the damped gradient and the gradient by the following conversion formula.

Lemma 3.6. Define Ut = //−1
t /̂/t. For any element in k ∈ HT

x , write ht = Qt

∫ t

0 Q−1
s dks. We then have

that
UtQ̂t

∫ t

0
Q̂−1

s U−1
s dks = ht +

∫ t

0
dAshs.

Proof. We note first that dUt = T//t
(◦dBt, Ut · ) and U0 = id, giving us that Ut = id +At. Since A2

t = 0,
we have that U−1

t = id −At. We will use this to find a formula for Q̂t by

dQ̂t = −1
2 Ric

/̂/t
Q̂t dt = −1

2(id −At) Ric//t
(id +At)Q̂t dt

= −1
2 Ric//t

Q̂t dt + 1
2At Ric//t

Q̂t dt.

Hence, we have that Q̂t = Qt + 1
2
∫ t

0 As Ric//s Qs ds = Qt −
∫ t

0 AsdQs. Since Qtw = w for any w ∈ V , the
inverse of Q̂t is Q̂−1

t = (id +
∫ t

0 AsdQs)Q−1
t .

We use these identities to compute

UtQ̂t = Qt +
∫ t

0
dArQr, (UtQ̂t)−1 = Q−1

t −
∫ t

0
dArQrQ−1

t , (3.4)

and hence,

(d(UtQ̂t))(UtQ̂t)−1 =
(

−1
2 Ric//t

Qtdt + dAtQt

)
(UtQt)−1

= −1
2 Ric//t

dt + dAt.

f we write at = UtQ̂t

∫ t

0 Q̂−1
s U−1

s dks, then

dat = d(UtQ̂t)(UtQ̂t)−1at + dkt = −1
2 Ric//t

atdt + dAtat + dkt, a0 = 0.

t follows that at = ht +
∫ t

0 dAshs since ht is the solution of dht + 1
2 Ric//t

htdt = dkt. □

Using this lemma, we prove Theorem 3.3 as follows.

roof of Theorem 3.3. We consider F ∈ FC∞. Note that∫ T

0
D̃tF (ω)dkt =

∫ T

0

n∑
i=1

1t≤ti
⟨//−1

t Q̂t,ti
/̂/−1

t,ti
dif |(ωt1 ,...,ωtn ), dkt⟩g

=
∫ T

0

n∑
i=1

1t≤ti
⟨//−1

ti
dif |(ωt1 ,...,ωtn ), Uti

Q̂ti
Q̂−1

t U−1
t dkt⟩g.

∫ T ˜ ˙ ∫ T ˙
Hence, we have that 0 ⟨DtF (ω), k⟩g ds = 0 ⟨DtF, h⟩g ds by Lemma 3.6, which then proves (a).
11
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The relationship between DtF and D̃tF can be observed from∫ T

0
(D̃tF − DtF )k̇t dt = −1

2

∫ T

0
DtF Ric//t

Qt

∫ t

0
Q−1

s dt

= −1
2

∫ T

0

∫ T

s

DtF Ric//t
QtQ

−1
s dtdks,

hich then implies (b). □

.5. Proof of Theorem 3.4

We first prove Theorem 3.4(a) for the case n = 1.

emma 3.7. For any x ∈ M , consider Q̂x
t = Q̂t as the solution of

d

dt
Q̂t = −1

2 Ric
/̂/t

Q̂t , Q̂0 = idTxM ,

nd let Q̂∗
t : T ∗

x M → T ∗
x M be its dual. Define Ut = //−1

t /̂/t. Then we have

dPtf |x = E
[
Q̂∗

t /̂/−1
t df |Xx

t

]
= E

[
Q̂∗

t U−1
t //−1

t df |Xx
t

]
.

Proof. For t ∈ [0, T ], consider the T ∗
x M -valued process

Ñs = Q̂∗
s /̂/−1

s dPt−sf |Xs .

From (A.4) and the fact that V is metric preserving, it follows that Ñs is a local martingale

dÑs = Q̂∗
s /̂/−1

s ∇̂//sdBsdPt−sf |Xs ,

and from our compactness assumption, it is a true martingale. □

Proof of Theorem 3.4. For part (a), write F (ω) = f(ωt1 , . . . , ωtn). We first consider the case when t = 0.
Write Φ(x) = Ex[F ]. Then we need to prove

♯dΦ = Ex[D̃0F ].

By Lemma 3.7, the desired assertion holds for n = 1. We will use an induction argument [27, Section 8.4]
and assume that it holds for n ≥ 1. We will prove that the assertion also holds for n + 1. Let

g(x) = E[f(x, Xx
t2−t1 , Xx

t3−t1 , . . . , Xx
tn+1−t1)],

which by our induction hypothesis satisfies.

dg(x) =
n+1∑
i=1

E
[
Q̂0,ti−t1 /̂/−1

ti−t1dif |(x,Xx
t2−t1

,...,Xx
tn+1−t1

)

]
. (3.5)

From (3.5) and from the result at n = 1,

dEf |Xx
t1

,Xx
t2

,...,Xx
tn+1

= dE[g(Xx
t1)] = E

[
Q̂0,t1 /̂/−1

t1 dg|Xx
t1

]
=

n∑
i=1

E
[
Q̂0,t1 /̂/−1

t1 Q̂t1,ti
/̂/−1

t1,ti
dif |(Xx

t1
,Xx

t2
,...,Xx

tn+1
)

]
=

n∑
E
[
Q̂0,ti

/̂/−1
ti

dif |(Xx
t1

,Xx
t2

,...,Xx
tn+1

)

]
, (3.6)
i=1

12
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which is the desired result for t = 0. For a general t, consider G = Ex[F |Ft]. If tm−1 < t ≤ tm, then

G(ω) = g(ωt1 , . . . ωtm−1 , ωt) = Ex[f(ωt1 , . . . , ωtm−1 , Xtm , . . . , Xtn)|Xt = ωt].

sing the formula (3.6), we obtain

dωtg|(ωt1 ,...,ωtm−1 ,ωt) = dωtE[f(ωt1 , . . . , ωtm−1 , Xtm , . . . , Xtn)|Xt = ωt]
= dωtE[f(ωt1 , . . . , ωtm−1−t, Xtm−t, . . . , Xtn−t)|X0 = ωt]

= Eωt

[ n∑
i=m

Q̂∗
0,ti−t/̂/

−1
ti−tdif |(ωt1 ,...,ωtm−1 ,Xtm ,...,Xtn )

]
= E

[ n∑
i=m

Q̂∗
t,ti

/̂/−1
t,ti

dif |(ωt1 ,...,ωtm−1 ,Xtm ,...,Xtn )
⏐⏐Xt = ωt

]
= //tE[D̃tF |Ft]

rom the strong Markov property of Xt.
For part (b), we first observe that E[F | Ft] is a martingale according to the definition. By martingale

epresentation, we have

dE[F | Ft] = ⟨DtE[F | Ft], dBx
t ⟩ = ⟨E[D̃tF | Ft], dBx

t ⟩.

ntegrating from 0 to T gives

F − E[F ] = E[F | FT ] − E[F ] =
∫ T

0
⟨E[D̃tF | Ft], dBx

t ⟩. (3.7)

For part (c), we first use (3.7) inside the term E [F ⟨k, Bx⟩H]. By (3.7),

E [F ⟨k, Bx⟩H] = E

[(
E[F ] +

∫ T

0
⟨E[D̃tF | Ft], dBx

t ⟩

)
⟨k, Bx⟩H

]

= E

[∫ T

0
⟨E[D̃tF | Ft], k̇t⟩dt

]
,

iving the formula in (c). By letting F (X[0,T ]) = f(XT ) we have the equality in (3.3). □

roof of Corollary 3.2. For (a), we first observe from Lemma 3.7 that

⟨dPtf, v⟩ = E⟨Q̂∗
t /̂/−1

t df |Xt , v⟩ = E⟨//−1
t df |Xt , UtQ̂tv⟩.

hen by (3.4), we have

⟨dPtf, v⟩ = E
[⟨

//−1
t df, Qtv +

∫ t

0
dAsQsv

⟩]
, v ∈ TxM.

he formula in (b) follows from Theorem 3.1 (b) by taking F (X[0,T ]) = f(XT ) directly. □

.6. Quasi-invariance

We want to link ⟨D̃F, k⟩H to the directional derivative induced by some quasi-invariant flow. We use
echniques from [32, Chapter 4.2]. For k ∈ HT

x and s ∈ (−ε, ε), let Xs = Xx,s solve the SDE

s s s s
dXt = //t ◦ dBt − s//t dkt, X0 = x, (3.8)
13
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where //s is the parallel transport along Xs with respect to ∇. This flow is quasi-invariant, i.e., the
distribution of Xs

[0,T ] is absolutely continuous with respect to that of X[0,T ] = Xx
[0,T ]. Let

Rs = exp
(

s⟨k, B⟩H − s2

2 ⟨k, k⟩H
)

= exp
(

s

∫ T

0
⟨k̇, B⟩g − s2

2

∫ T

0
|k̇t|

2
g dt

)
.

f P denotes the Wiener measure on the path space of Hx, d = rank Hx, then by the Girsanov theorem,

Bs
t := Bt − skt

s a d-dimensional Brownian motion in Hx under the probability measure Ps = RsP = (ξs,k)∗P with

ξs,k(u) = u + sk, u ∈ W0(Hx).

roposition 3.8. For any x ∈ M and F ∈ FC∞,

Ex[⟨D̃F, k⟩H] = lim
s→0

E
F (Xs

[0,T ]) − F (X[0,T ])
s

holds for all k ∈ HT .

Proof. Let Bs
t = Bt − skt, which is the d-dimensional Brownian motion under Ps. By the weak uniqueness

of (3.8), we conclude that the distribution of X under Ps is consistent with that of Xs under P. In particular,

E[F (Xs
[0,T ])] = E

[
RsF (X[0,T ])

]
.

Thus, we have

lim
s→0

E
F (Xs

[0,T ]) − F (X[0,T ])
s

= lim
s→0

E
[
F (X[0,T ])

Rs − 1
s

]
= E

[
F (X[0,T ])

∫ T

0
⟨k̇t, dBt⟩g

]
= Ex[⟨D̃F, k⟩H]. □

.7. Comments for the non-compact case

In order to have a simple exposition, we have assumed throughout this section that we are working over
compact manifold. This has the advantage that we can be assured that processes such as Xx

t , At and Qt

ave infinite lifetime, all tensors are bounded and all local martingales that appear in our proofs are indeed
rue martingales. If one can find alternative ways to show that the same properties hold, our results hold
ithout the compactness assumption. One way to ensure this on a non-compact manifold, is to verify that

he following assumptions hold.

(A) Assume that Xx
t has infinite lifetime, i.e. assume that Pt1 = 1.

(B) We must be able to pick a taming Riemannian metric ḡ such that T and Ric are bounded and such
that sup0≤t≤T |//t|ḡ⊗ḡ∗ is finite for every T . We note that since /̂/t = //t(id +At), such assumptions
are sufficient to bound parallel transport with respect to ∇̂ as well.

(C) Our cylindrical functions will now be defined as FC∞
0 consisting of functions F (ω) = f(ωt1 , . . . , ωtn)

where f ∈ C∞
0 (Mn) is of compact support. In order to differentiate expectations of such functions and

in order that they remain bounded, we need to assume that supt∈[0,T ] |dPtf |ḡ∗ is bounded for every
∞
finite T > 0 and every compactly supported function f ∈ C0 (M).

14
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For sufficient conditions for these assumptions to be satisfied on non-compact manifolds, more specifically
on complete sub-Riemannian manifolds coming from totally geodesic Riemannian foliations, see [22].

For alternate approaches of dealing with path space analysis on non-compact spaces in the Riemannian
case, we also refer to [8]. For the rest of the paper, we will assume that properties (A) to (C) are satisfied
or some other conditions are satisfied in order to ensure that the results of this section hold.

4. Bounded curvature and functional inequalities on path space

4.1. Inequalities equivalent to bounded curvature

Inspired by Naber’s work [30], we have the following characterization formulae for the boundedness of
RicH . Let V be a metric preserving complement with ∇ = ∇g,V the corresponding connection. Recall that

icH := Ric |H where Ric is defined as in (3.1). We state the main result of the paper with proof given in
he next section.

heorem 4.1 (Characterization of Bounded Horizontal Ricci Curvature by Functional Inequalities). Let K

e some fixed non-negative constant. Consider the following bound for the horizontal Ricci curvature RicH

− K ≤ RicH ≤ K. (4.1)

. The following functional inequalities for functions on path space are equivalent to curvature bound (4.1):

(i) for any F ∈ FC∞
0 ,

|D0Ex[F ]|g ≤ Ex

[
|D0F |g + K

2

∫ T

0
e K

2 s |DsF |g ds
]
;

(ii) for any F ∈ FC∞
0 ,

|D0Ex[F ]|2g ≤ e K
2 T Ex

[
|D0F |2g + K

2

∫ T

0
e K

2 s |DsF |2g ds
]
;

(iii) (Log-Sobolev inequality) for any F ∈ FC∞
0 and t > 0 in [0, T ],

Ex

[
Ex[F 2|Ft] logEx[F 2|Ft]

]
− Ex[F 2] logEx[F 2]

≤ 2
∫ t

0
e K

2 (T −r)

(
Ex|DrF |2g + K

2

∫ T

r

e K
2 (s−r) Ex|DsF |2g ds

)
dr;

(iv) (Poincaré inequality) for any F ∈ FC∞
0 and t > 0 in [0, T ],

Ex

[
Ex[F |Ft]2

]
− Ex[F ]2

≤
∫ t

0
e K

2 (T −r)

(
Ex|DrF |2g + K

2

∫ T

r

e K
2 (s−r) Ex|DsF |2g ds

)
dr.

I. The following functional inequalities on the manifold M are equivalent to the curvature bound (4.1):

(v) for f ∈ C∞
0 (M),

|dPtf(x)|2g∗ − e K
2 t Ex

[⏐⏐(id +At)∗//−1
t df(Xt)

⏐⏐2
g∗

]
≤ Ex

[
K

2

∫ t

0
e K

2 (t+s) |(id +At − As)∗//−1
t df(Xt)|

2
g∗ ds

]
;

15
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and

|2df − dPtf |2g∗(x) − e K
2 t Ex

[⏐⏐2df(x) − (id +At)∗//−1
t df(Xt)

⏐⏐2
g∗

]
≤ Ex

[
K

2

∫ t

0
e K

2 (t+s) |(id +At − As)∗//−1
t df(Xt)|

2
g∗ ds

]
.

emark 4.2. Theorem 4.1 describes equivalent statements for a symmetric bound of RicH . For non-
ymmetric bounds, i.e. if K1 ≤ RicH ≤ K2 for some constants K1 ≤ K2, we can also give corresponding
quivalent functional inequalities as in [10] by modifying the gradient operator on the path space to:

D̄tF :=
n∑

i=1
1t≤ti

e− K1+K2
4 (ti−t) ♯(id +Ati

− At)∗//−1
ti

diF.

he functional inequalities will then be written in terms of D̄F . We refer to [10, Proposition 2.2] for a more
etailed discussion.

.2. Proof of Theorem 4.1

We will show equivalence of the properties in Theorem 4.1 by proving the relations

(4.1)

↓↓ ↘↘

→→ (iii)

↓↓
(v)

↗↗

(i)

↓↓

(iv)

↙↙
(ii)

↖↖

e divide the proof into two parts.

roof of Theorem 4.1, Part I. In this part, we prove the implications “(4.1) ⇒ (i) ⇒ (ii) ⇒ (v)”, “(4.1)
(iii)” and “(4.1) ⇒ (iv)”.

(4.1) ⇒ (i)” By Theorem 3.1(a), we have

dxEx[F ] = Ex[D0F ] − 1
2

∫ T

0
Ex[(Ric//s Qs)∗DsF ] ds.

hen using condition (4.1), we can prove (i) by controlling Qt and RicH :

|dxEx[F ]|g ≤ |Ex[D0F ]|g + K

2

∫ T

0
e 1

2 Ks Ex[|DsF |g] ds.

(i) ⇒ (ii)” It is easily observed that

Ex

[
|D̃tF |2g

⏐⏐⏐Ft

]
= Ex

[(
|DtF |g + K

2

∫ T

t

e K
2 (s−t) |DsF |gds

)2⏐⏐⏐Ft

]

≤ e K
2 (T −t) Ex

[(
|DtF |2g + K

2

∫ T

t

e K
2 (s−t) |DsF |2g ds

)⏐⏐⏐Ft

]
, (4.2)

hich implies (ii) with t = 0.

16
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“(ii) ⇒ (v)” If F (ω) = f(ωt), then

D0F (Xt) = ♯(id +At)∗//−1
t df(Xt), DsF (Xt) = ♯(id +At − As)∗//−1

t df(Xt).

e obtain from (ii) that

|dPtf |2g∗ ≤ e k
2 t Ex

[
|(id +At)∗//−1

t df(Xt)|
2
g∗

]
+ K

2 Ex

[∫ t

0
e K

2 s |(id +At − As)∗//−1
t df(Xt)|

2
g∗ds

]
.

oreover, if F (ω) = 2f(x) − f(ωt), then

|2df − dPtf |2g∗(x) − e K
2 t Ex

[⏐⏐2df(x) − (id +At)∗//−1
t df(Xt)

⏐⏐2
g∗

]
≤ Ex

[
K

2

∫ t

0
e K

2 (t+s) |(id +At − As)∗//−1
t df(Xt)|

2
g∗ ds

]
.

(4.1) ⇒(iii)(iv)” We now prove (iii) and (iv) by using estimate (4.2) above and the Itô formula,

d(Ex[F 2|Ft] logEx[F 2|Ft]) = dMt +

⏐⏐Ex[D̃tF
2|Ft]

⏐⏐2
g

2Ex[F 2|Ft]
dt

≤ dMt + 2Ex

[⏐⏐D̃tF
⏐⏐2
g
|Ft

]
dt,

here Mt is a local martingale such that

dMt = (1 + logEx[F 2|Ft])⟨Ex(D̃tF
2|Ft), dBt⟩.

ntegrating from 0 to t and taking expectation of both sides, we prove the inequality (iii). Similarly, we can
rove (iv) by taking into consideration of the process Ex[F |Ft]2 and using the following Itô formula:

dEx[F |Ft]2 = dM̃t + Ex

[⏐⏐D̃tF
⏐⏐2
g
|Ft

]
dt,

here M̃t is a local martingale such that

dM̃t = 2Ex[F |Ft]⟨Ex(D̃tF |Ft), dBt⟩.

ntegrating from 0 to t and taking expectation of both sides, we prove inequality (iv).

To give the second part of the proof, we first need to include the following lemmas. For the Riemannian
anifold case, the corresponding results can be found for instance in [10,32].

emma 4.3 (Bochner–Weitzenböck Formula). Let L = trH ∇2
×,× be the connection sub-Laplacian on tensors.

or any f ∈ C∞(M), we then have

Ldf(Z) − dLf(Z) = −2 trH ∇×df(T(×, Z)) + df(Ric(Z) + δHT(Z)).

n particular,

1
2L|df |2g∗ = ⟨dLf, df⟩g∗ + ⟨(Ric +δHT)∗(df), df⟩g∗

+ |∇df |2g∗⊗g∗ − 2 trH ∇×df(T(×, ♯df)).
17
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Proof. The result follows from Lemma A.5, Appendix, for the case of a metric preserving complement and
from the property of the torsion for our choice of connection. □

emma 4.4. For x ∈ M , let f ∈ C∞
0 (M) be such that ∇df |x = 0 and df(Vx) = 0. Then the following limits

hold:

(a) 1
2 ⟨♯df, Ric ♯df⟩g(x) = lim

t↓0

⟨
df,Ex[(id +At)∗//−1

t df |Xt ]
⟩

g∗(x) − ⟨df, dPtf⟩g∗ (x)
t

;

(b) lim
t↓0

1
t2Ex

[
|A∗

t //−1
t df |2g∗

]
= 0;

(c) 1
2 ⟨♯df, Ric ♯df⟩g(x) = lim

t↓0

Ex

[⏐⏐(id +At)∗//−1
t df |Xt

⏐⏐2
g∗

]
− |dPtf |2g∗(x)

t
.

roof. Let ∇Hf = ♯df denote the horizontal gradient of a function f . Choose a taming Riemannian metric
ḡ, i.e. a Riemannian metric ḡ such that ḡ|H = g. We can always choose ḡ so that H and V are orthogonal. We

ill use this taming metric to construct a relatively compact neighborhood of t where we have reasonable
stimates for the first exit time. If ∇̄f is the gradient with respect to ḡ, we have that prH ∇̄f = ∇Hf .

Let dḡ be the Riemannian distance of ḡ. Choose sufficient small r such that the ball Bḡ(x, r) of ḡ-radius r

centered at x is outside the cut-locus of x. Let ρt := dḡ(x, Xt). Then there exists a constant c1 > 0 such
that Ld2

ḡ(x, ·) ≤ 2c1. By Itô’s formula,

dρ2
t = 2ρt⟨∇Hρt, //tdBt⟩g∗ + 1

2Lρ2
t dt

≤ 2ρt⟨∇Hρt, //tdBt⟩g∗ + c1dt, t < σr,

here σr = inf{t ≥ 0 : Xt /∈ Bḡ(x, r)}. For fixed t > 0 and δ > 0, define

Zs := exp
(

δ

t
ρ2

s − δ

t
c1s − 2δ2

t2

∫ s

0
ρ2

u du

)
, s ≤ σr.

Then as |∇H(dḡ(x, ·))|g ≤ |∇̄(dḡ(x, ·))|ḡ = 1, we have

dZs = exp
(

δ

t
ρ2

s − δ

t
c1s − 2δ2

t2

∫ s

0
ρ2

u du

)
×
(

2δ

t
ρs⟨∇Hρs, //sdBs⟩g∗ − 2δ2

t2 ρ2
s ds + 2δ2

t2 ρ2
s|∇Hρs|2g∗ds

)
≤ exp

(
δ

t
ρ2

s − δ

t
c1s − 2δ2

t2

∫ s

0
ρ2

u du

)(
2δ

t
ρs⟨∇Hρs, //sdBs⟩g∗

)
,

nd hence Zs is a supermartingale. Therefore,

P(σr ≤ t) = P
(

max
s∈[0,t]

ρs∧σr ≥ r

)
≤ P

(
max

s∈[0,t]
Zs∧σr ≥ eδr2/t−δc1−2δ2r2/t

)
≤ exp

(
c1δ − 1

t
(δr2 − 2δ2r2)

)
.

f we take δ = 1/4, then

P(σr ≤ t) ≤ exp
(

1
4c1 − r2

8t

)
.

18
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(a) By Itô’s formula and the estimate for σr, for small t and f ∈ C∞
0 (M) such that ∇df(x) = 0, we get

Ex

[
//−1

t df |Xt

]
= df(x) + Ex

[∫ t∧σr

0
//−1

s L(df)|Xs ds

]
+ o(t)

= df |x + L(df)|x t + o(t).

From this equality, the result is easily derived using Taylor expansion:⟨
df,Ex//−1

t df |Xt

⟩
g∗(x) − ⟨df, dPtf⟩g∗ (x)

=
(

⟨df, Ldf⟩g∗ − ⟨df, dLf⟩g∗

)
(x)t + o(t)

= 1
2 ⟨Ric∗ df, df⟩g(x) t + o(t),

where again we used the Weitzenböck identity in Lemma 4.3 and the fact that (δHT)∗df |x = 0 since
df(Vx) = 0.
Finally, from Lemma 4.3, we see that Ldf |V = dLf |V . Hence, the process Ns in T ∗

x M given by

Nsv = ⟨//−1
s dPt−sf |Xt , v⟩

where v ∈ Vx, is a martingale. As a consequence, for any v ∈ TxM ,

Ex[⟨A∗
t //−1

t df |Xt , v⟩] = Ex[⟨Nt, Atv⟩]

= Ex

[∫ t∧σr

0
trH⟨∇//s×dPt−sf, T(//s×, //sv)⟩ds

]
+ o(t),

which is of order o(t) since ∇df(x) = 0.
(b) Using that Ex[A∗

t //−1
t df |Xt ] = o(t), that df vanishes at Vx and that ∇df = 0, we have

Ex

[
|A∗

t //−1
t df |2

]
= Ex

[∫ t∧σr

0

⏐⏐//−1
s ∇

//t·
df |Xs(As · )

⏐⏐2
g∗⊗g∗ds

]
+ Ex

[∫ t∧σr

0

⏐⏐dfT(//s ·, //s ·)
⏐⏐2ds

]
+ 2Ex

[∫ t∧σr

0

⟨
∇

//s·
df(As · ), dfT(//s ·, //s ·)

⟩
ds

]
+ o(t2)

= o(t2).

As a consequence,
lim
t↓0

1
t2Ex

[
|A∗

t //−1
t df |2g∗

]
= 0.

(c) Since ∇df(x) = 0, we have |∇df |g∗⊗g∗(x) = 0 and

trH ∇×df(T(×, ♯df))(x) = 0.

By the Weitzenböck formula in Lemma 4.3,

1
2L|df |2g∗(x) − ⟨df, dLf⟩g∗ (x) = 1

2 ⟨Ric∗(df), df⟩g∗(x).

Thus, by the Taylor expansions at the point x (we drop x below for simplicity):

Ex

[
|//−1df(Xt)|

2
∗

]
= |df |2∗ + 1

L|df |2∗ t + o(t),
t g g 2 g

19
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and

|dPtf |2g∗ = |df |2g∗ + ⟨dLf, df⟩g∗ t + o(t),

we obtain
1
2 ⟨Ric∗ df, df⟩g∗(x) = lim

t↓0

Ex

[
|//−1

t df |Xt |
2
g∗

]
− |dPtf |2g∗(x)

t
. (4.3)

On the other hand,

Ex

[⏐⏐(id +At)∗//−1
t df |Xt

⏐⏐2
g∗

]
= Ex

[⏐⏐(id +A∗
t )//−1

t df |Xt

⏐⏐2
g∗

]
= Ex

[
|//−1

t df |Xt |
2
g∗

]
+ 2Ex⟨//−1

t df ||Xt , A∗
t //−1

t df |Xt⟩ + Ex

[
|A∗

t //−1
t df |Xt |

2
g∗

]
= Ex

[
|//−1

t df(Xt)|
2
g∗

]
+ 2Ex⟨//−1

t df(Xt) − dPtf(x), At//
−1
t df(Xt)⟩

+ Ex

[
|A∗

t //−1
t df(Xt)|

2
g∗

]
= Ex

[
|//−1

t df |Xt |
2
g∗

]
+ 2Ex

∫ t∧σr

0
trH⟨∇//s×dPt−sf, T(//s×, //−1

t−sdf |Xt)⟩ds

+ Ex

[
|A∗

t //−1
t df |Xt |

2
g∗

]
+ o(t).

Since ∇df = 0 and df(Vx) = 0, then

lim
t↓0

[
2Ex

∫ t∧σr

0 trH⟨∇//s×dPt−sf, T(//s×, //−1
t−sdf |Xt)⟩ds

t

]
= 0. (4.4)

Combining (4.4), (b) and (4.3), we finish the proof. □

roof of Theorem 4.1, Part II. We finish the remaining implications “(iii)⇒(iv)⇒(ii)” and “(v) ⇒ (4.1)”.

(iv)⇒(ii)” By Itô’s formula, we have

Ex[Ex[F |Ft]2] − Ex[F ]2 =
∫ t

0
Ex|DsEx[F |Fs]|2 ds

≤
∫ t

0
e K

2 (T −s)

(
Ex|DsF |2g + K

2

∫ T

s

e K
2 (r−s) Ex|DrF |2g dr

)
ds. (4.5)

For any function F (ω) = f(ωt1 , . . . , ωtn) with t1 > 0, the functions r ↦→ Ex|DrF |2g and s ↦→ Ex|DsEx[F |Fs]|2

re continuous at time 0. Hence, we can divide both sides of (4.5) by t and take the limit as t goes to 0 to
btain (ii).

If t1 = 0, i.e. if F (ω) = f(x, ωt2 , . . . , ωtn), then r ↦→ Ex|DrF |2 is not continuous at time 0. We construct
family of functions

Fε(ω) = f(ωε, ωt2 , . . . , ωtn)
or 0 < ε < t2. For this family of functions, r ↦→ Ex|DrFε|2 is continuous at time 0 and

|dxEx[Fε]|2g∗ ≤ e K
2 T Ex

[
|D0Fε|2g + K

2

∫ T

0
e K

2 s |DsFε|2g ds

]
.

By considering the limit ε ↓ 0, we prove (ii).

“(iii)⇒(iv)” Applying the log-Sobolev inequality (iii) for F 2 = 1 + εG, we have

Ex

[
Ex[(1 + εG)|Ft] logEx[(1 + εG)|Ft]

]
− Ex[(1 + εG)] logEx[(1 + εG)]

≤ 2
∫ t

e K
2 (T −r)

(
Ex|Dr

√
1 + εG|

2
g + K

2

∫ T

e K
2 (s−r) Ex|Ds

√
1 + εG|

2
g ds

)
dr.
0 r
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Using the Taylor expansion at ε = 0, we have

Ex

[
εE[G|Ft] + ε2

2 E[G|Ft]2
]

−
[
εEx(G) + ε2

2 (ExG)2
]

+ o(ε2)

≤ 2
∫ t

0
e K

2 (T −r)

(
Ex|Dr

√
1 + εG|

2
g + K

2

∫ T

r

e K
2 (s−r) Ex|Ds

√
1 + εG|

2
g ds

)
dr

= 1
2

∫ t

0
e K

2 (T −r)

(
ε2Ex|DrG|2g + K

2

∫ T

r

e K
2 (s−r) ε2Ex|DsG|2g ds

)
dr + o(ε2).

ividing both sides with ε2 and letting ε → 0, we then obtain (iv).

(v)⇒(4.1)” For any point x ∈ M and any α ∈ H∗
x with α(Vx) = 0, we choose a function f : M → R such

hat
df(x) = α, ∇df(x) = 0.

e note that then ⟨(δHT)∗(df), df⟩(x) = 0. Observe also that the inequalities of (v) are equivalent to:

|dPtf |2g∗ − Ex

[
|(id +At)∗//−1

t df(Xt)|
2
g∗

]
t

≤ (eKt −1)
t

Ex

[
|(id +At)∗//−1

t df(Xt)|
2
g∗

]
+ K

2t
Ex

[∫ t

0
e K

2 s |(id +At − As)∗//−1
t df(Xt)|

2
g∗ds

]
,

nd

4(1 − e K
2 t)

t
|df |2g∗(x) − 4(1 − e K

2 t)
t

Ex⟨df(x), (id +At)∗//−1
t df(Xt)⟩

− 4⟨df(x), dPtf(x)⟩ − 4Ex⟨df(x), (id +At)∗//−1
t df(Xt)⟩

t

+
|dPtf |2g∗ − e K

2 t Ex|(id +At)∗//−1
t df(Xt)|

2
g∗

t

≤ K

2t
Ex

[∫ t

0
e K

2 (t+s) |(id +At − As)∗//−1
t df(Xt)|

2
g∗ ds

]
.

etting t tend to 0 and using Lemma 4.4, we obtain

−K|♯α|2g(x) ≤ ⟨♯α, Ric ♯α⟩g(x) ≤ K|♯α|2g(x). □

.3. The Ornstein–Uhlenbeck operator

For cylindrical functions F, G ∈ FC∞
0 define a bilinear form

E (F, G) = E⟨DF, DG⟩H = E
∫ T

0
⟨DtF, DtG⟩g dt.

hen (E , FC∞
0 ) is a positive bilinear form on L2(W T

x ;Px,T ). It is standard that the integration by parts
ormula in Theorem 3.1 implies closability of the form (see e.g. the argument in [32, Lemma 4.3.1.]). We shall
se (E , Dom(E )) to denote the closure of (E , FC∞

0 ). Let (L , Dom(E )) be the analogue of the Ornstein–
Uhlenbeck operator as the generator of the Dirichlet form E . Let gap(L ) denote the spectral gap of the
Ornstein–Uhlenbeck operator. The following is then a consequence of Theorem 4.1.
21
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Corollary 4.5. Assume that there exists some non-negative constant K such that

−K ≤ RicH ≤ K.

hen

(a) for any F ∈ Dom(E ) with Ex[F ] = 0,

Ex(F 2) ≤ 1
2(eKT +1) Ex(F, F );

(b) for any F ∈ Dom(E ) with Ex[F 2] = 1,

Ex(F 2 log F 2) ≤ (eKT +1) Ex(F, F );

(c) the spectral gap has the following estimate:

gap(L )−1 ≤ 1
2(eKT +1).

roof. The inequalities in (a) and (b) are derived by using Theorem 4.1 (iii) and (iv) with t = T :

Ex[F 2] − (Ex[F ])2 ≤
∫ T

0
e K

2 (T −t) Ex

[
|DtF |2g + K

2

∫ T

t

e K
2 (s−t) |DsF |2g ds

]
dt

≤ 1
2 Ex

[∫ T

0
(e K

2 (T +t) + e K
2 (T −t))|DtF |2g dt

]

≤ 1
2(eKT +1)Ex

[∫ T

0
|DtF |2g dt

]
.

he estimate in (c) is derived according to the definition of the spectral gap. □

. On the geometry of path space and complements

.1. Integrable complements

Let (M, H, g) be a sub-Riemannian manifold and let V be a metric preserving complement that is also
robenius integrable, i.e. [V, V ] ⊆ V . Let Φ be the corresponding foliation of V . Then M/Φ locally has
he structure of a Riemannian manifold. More precisely, any x ∈ M has a neighborhood U such that
U : U → U/Φ|U is a submersion of differentiable manifolds. Since V is metric preserving, there exists
Riemannian metric ǧU on U/ΦU such that

⟨v, w⟩g = ⟨(πU )∗v, (πU )∗w⟩ǧU
, v, w ∈ Hx, x ∈ U.

Consider the special case when Φ is a regular foliation, i.e. when M̌ = M/Φ is a differentiable manifold.
rite the corresponding projection as π : M → M̌ . Let ǧ be the corresponding complete Riemannian
etric on M̌ . For the sake of simplicity, we assume that (M, H, g) is complete, which implies that (M̌, ǧ)

s complete, as this is a distance decreasing map. Write ∇̌ for the Levi-Civita connection of ǧ. Let x ∈ M

e a given point with x̌ = π(x). Let W ∞
x,H and W ∞

x̌ be the space of smooth curves with domain [0, ∞)
tarting at x and x̌, respectively, where the curves starting at x are required to be horizontal. Then since

is an Ehresmann connection on π, curves starting at x̌ have unique horizontal lifts to x. Hence, the map
∞ → W ∞, ω ↦→ π(ω), is a bijection.
x,H x̌
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Next, let hY denote the horizontal lift of a vector field Y on M̌ , that is hY is the unique section of H

satisfying π∗hY = Y . We can then describe the connection ∇ = ∇g,V as

∇hY hY2 = h∇̌Y Y2, ∇ZhY = 0, ∇hY Z = [hY, Z], (5.1)

for Y, Y2 ∈ Γ (TM̌), Z ∈ Γ (V ). Hence, if Devx̌ : Tx̌M̌ → M̌ is the development map of ∇̌, then we have the
following commutative diagram:

W ∞
0 (Hx) Devx →→

π∗,x

↓↓

W ∞
x,H

π

↓↓

W ∞
0 (Tx̌M̌)

Devx̌

→→ W ∞
x̌

ith every map in the diagram being a bijection.
Going from smooth curves to continuous curves, the concept of horizontal curves will no longer be well

efined. However, if B̌x̌
t is the standard Brownian motion in Tx̌M̌ and X̌ x̌

t denotes the Brownian motion in
ˇ , then we can still make sense of the following diagram

Bx
t
� Devx →→

_
π∗,x

↓↓

Xx
t_

π

↓↓

B̌x̌
t
�
Devx̌

→→ X̌ x̌
t

,

We finally note that by (5.1) we have RicH = π∗Řic|H where Řic denotes the Ricci operator on M̌ .
In summary, if we consider the path space Wx(M) with the probability distribution given by the sub-
Riemannian Brownian motion, then, viewed from the connection ∇ = ∇g,V , the path space has a geometry
similar to that of the path space of M/ exp(V ). See [20] for more details.

5.2. An instructive example

Let (M (1), g(1)) and (M (2), g(2)) be two oriented Riemannian manifolds, both of dimension n. Let
SO(TM (1)) and SO(TM (2)) be the oriented orthonormal frame bundles. With respect to the diagonal action
of SO(n) on SO(TM (1)) × SO(TM (2)), we define

M = (SO(TM (1)) × SO(TM (2)))/ SO(n).

We can consider elements q ∈ M as linear isometries q : Tx(1)M (1) → Tx(2)M (1) where (φ(1), φ(2)) · SO(n),
φ(1) ∈ SO(TM)x(1) , φ(2) ∈ SO(TM)x(2) can be identified with q = φ(2) ◦ (φ(1))−1. Define π(1) : M → M (1)

and π(2) : M → M (2) such that q : Tx(1)M (1) → Tx(2)M (2) is mapped to x(1) and x(2), respectively. We can
then define a subbundle H ⊆ TM by

H =
{

q̇t : π
(1)
∗ q̇t = π

(2)
∗ q̇t,

qtYt is a parallel vector field for every parallel Yt along π(qt)

}
.

Then H is an Ehresmann connection on both π(1) and π(2). Furthermore, for any element v ∈ H, we have

|π(1)
∗ v|

2
g(1) = |π(2)

∗ v|
2
g(2) =: |v|2g.

Consider the sub-Riemannian manifold (M, H, g). This corresponds to the optimal control problem of rolling
M (1) on M (2) without twisting or slipping along a minimizing curve. For more details and conditions for H

being bracket-generating see e.g. [12,18,19].
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Consider the choices of complement V (1) = ker π
(1)
∗ and V (2) = ker π

(2)
∗ . Both of V (1) and V (2) are

etric preserving complements by definition. If ∇(1) = ∇g,V (1) and ∇(2) = ∇g,V (2) are the corresponding
ompatible connections with horizontal Ricci operator Ric(1)

H and Ric(2)
H respectively, then we have that

ic(1)
H = (π(1))∗ Ricg(1) and Ric(2)

H = (π(2))∗ Ricg(2) , where Ricg(1) and Ricg(2) are the respective Ricci
urvatures of g(1) and g(2). This illustrates that our formalism for path space of sub-Riemannian manifolds
eally depends on the choice of complementary subbundle.

.3. A non-integrable complement

We will include an example from [7]. Consider the Lie algebra so(4). If e1, . . . , e4 is the standard basis
f R4, we write eij ∈ so(4) for the matrices satisfying eijek = δikej − δjkei. Consider the inner product
n so(4) given by ⟨Y1, Y2⟩ = − 1

2 tr Y1Y2. Consider an orthogonal decomposition so(4) = h ⊕ v where
= span{e12, e23}. On SO(4), define subbundles T SO(4) = H ⊕ V where H and V are respective left

ranslations of h and v. We define a sub-Riemannian metric g by left translation of the restriction of inner
roduct of so(4) to h.

The subbundle V is not integrable, but it is metric preserving from the bi-invariance of the inner product
n so(4). Furthermore, if we define ∇ = ∇g,V , then

1
2 ≤ RicH ≤ 2.

ee [7, Example 3.1] for detailed calculations.

.4. How to understand the curvature bounds

Let (M, H, g) be a given sub-Riemannian manifold. As the above calculations show, our curvature bounds
ill in general depend on the choice of complement V which determines the connection ∇ = ∇g,V . This
ependence can be understood in the following way. Firstly, our connection sub-Laplacian L = trH ∇2

×,×
epends on the choice of complement, and hence the same is true for the underlying diffusion Xx

t . See
.g. [17,20] for more details relating connections and sub-Laplacians. Furthermore, even for complements
hat define the same sub-Laplacian L, the derivatives d

ds Dev(Bx
· − sk·)|s=0 on cylindrical functions will

differ. In this sense, the curvature RicH can be seen as a curvature of the development map.
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Appendix. General geometric formulas

In most of our previous result, we restricted ourselves to sub-Riemannian manifolds (M, H, g) equipped
ith a choice of metric preserving complement V . In this appendix, we include formulas without this
ssumption to point out the additional complications that exist in general and for the benefit of future
esearch.
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A.1. Horizontal compatibility and completeness

Let (M, H, g) be a sub-Riemannian manifold and ∇ an affine connection. We introduce the following
weakening of the concept of compatibility

Definition A.1. A connection is called horizontally parallel if (i) and (ii) of Definition 2.3 holds for all
horizontal vector fields Z, Y, Y2 ∈ Γ (H).

We note the following related to the notion of completeness with respect to the sub-Riemannian metric
and horizontally compatible sub-Riemannian connections.

Proposition A.2. Let (M, H, g) be a complete sub-Riemannian manifold and let ∇ be a connection that is
orizontally compatible with the sub-Riemannian structure (H, g). Then for any smooth curve u ∈ W ∞

0 (Hx),
ev(u) is defined for all time.

In particular, this result holds for the compatible connections.

roof. Let u ∈ W ∞
0 (Hx) be fixed. For a given T > 0, let φ(T ) =

∫ T

0 |u̇|2gx
dt denote the length of u up to

ime T . Let [0, T ] be some interval for which the solution of

u̇ = //−1
t ω̇t, ω0 = x

xists. Then since //−1
t is a linear isometry by our assumptions, we have that ωt, t ∈ [0, T ] has to be contained

n the ball Bg(x, φ(T )+ε), ε > 0, centered at x with radius φ(T )+ε defined relative to the sub-Riemannian
istance dg defined in (2.3). Since we are assuming that (M, H, g) is complete, all such balls have compact
losures, see e.g. [6]. Hence, for any T > 0, we can solve the development equation in Bg(x, φ(T ) + ε). It
ollows that Dev(u) is well defined. □

Note that the map Dev restricted to W ∞
0 (Hx) only depends on parallel transport along horizontal curves,

o it really only depends on a partial connection, which will be discussed in the next section.

.2. Partial connections on sub-Riemannian manifolds

A partial connection ∇ on H in the direction of H is a map ∇ : Γ (H) × Γ (H) → Γ (H), (Y, Z) ↦→ ∇Y Z

atisfying that for f ∈ C∞(M),

∇fY Z = f∇Y Z and ∇Y fZ = (Y f)Z + f∇Y Z.

n other words, covariant derivatives are only defined in the direction of H. A partial connection will give
s a well defined parallel transport along H-horizontal curves. For more on partial connections, see [11].

Let (M, H, g) be a sub-Riemannian manifold. A partial connection on H in the direction of H is compatible
ith (H, g) if

Z⟨Y1, Y2⟩g = ⟨∇ZY1, Y2⟩g + ⟨Y1, ∇ZY2⟩ (A.1)

or any Z, Y1, Y2 ∈ Γ (H). We define its torsion t : H × H → TM by

t(X, Y ) = ∇XY − ∇Y X − [X, Y ].

hen we have the following result.
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Lemma A.3. Let ∇ be a partial connection on H in the direction of H.

(a) The map X, Y ↦→ t(X, Y ) mod H does not depend on the choice of ∇. In particular, t cannot vanish
when H is bracket-generating. Furthermore, if V is a choice of complement for H, that is TM = H ⊕V ,
with corresponding projection prV , then prV t is independent of choice of partial connection.

(b) Assume that ∇ is compatible with the sub-Riemannian metric. Then it is uniquely determined by its
torsion.

(c) Let V be a choice of complement to H. Then there is a unique partial connection ∇ compatible with the
sub-Riemannian structure (H, g) and with t(H, H) ⊆ V .

roof. The result in (a) follows from the fact that t(X, Y ) = −[X, Y ] mod H. To prove (b), choose an
rbitrary complement V and a reference compatible partial connection ∇′. Write its torsion t′ = t′

H + t′
V =

rH t′ + prV t′. For any partial connection ∇, we write ∇XY = ∇′
XY + κ(X)Y with torsion t = tH + t′

V .
e then have that

κ(X)Y − κ(Y )X = t(X, Y ) − t′(X, Y ) = (tH − t′
H)(X, Y ),

rom the definition of torsion and using that (A.1) implies,

⟨κ(X)Y1, Y2⟩g + ⟨Y1, κ(X)Y2⟩g = 0.

ence, it follows that κ is determined by

⟨κ(X)Y1, Y2⟩ = 1
2 ⟨(tH − t′

H)(X, Y1), Y2⟩g

− 1
2 ⟨(tH − t′

H)(Y1, Y2), X⟩g − 1
2 ⟨(tH − t′

H)(X, Y2), Y1⟩g.

ence κ is uniquely determined by tH . Furthermore, to prove (c), if we take

⟨κ(X)Y1, Y2⟩ = 1
2 (−⟨t′

H(X, Y1), Y2⟩g + ⟨t′
H(Y1, Y2), X⟩g + ⟨t′

H(X, Y2), Y1⟩g) ,

hen tH = 0 and this is the unique such choice. □

Given a sub-Riemannian manifold (M, H, g), let V be a choice of complement. Let prH and prV be the
orresponding projections. We write ∇g,V for the unique compatible partial connection with t(H, H) ⊆ V .
e will also write ∇ = ∇g,V for an affine connection of the following form

∇XY =

⎧⎨⎩ ∇g,V
X Y, if X, Y ∈ Γ (H);

prH [X, Y ], if X ∈ Γ (V ), Y ∈ Γ (H);
prV [X, Y ], if X ∈ Γ (H), Y ∈ Γ (V ),

nd where ∇|V |V can be an arbitrary partial connection on V in the direction of V . We note the following.

roposition A.4. The connection of the form ∇ = ∇g,V with torsion T satisfies the following properties:

(a) Both H and V are parallel with respect to ∇;
(b) ∇ is horizontally compatible with (H, g);
(c) T(H, H) ⊆ V ;
(d) T(H, V ) = 0.

Conversely, any connection ∇ satisfying (a)–(d) is of the form ∇g,V .

We also note that ∇g,V is always horizontally compatible and is compatible if and only if V is metric
preserving.
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A.3. Weizenböck formulas

Let (M, H, g) be a given sub-Riemannian manifold. Let ∇ be an arbitrary connection with torsion T and
urvature R. Write

δHT(Z) = − trH(∇×T)(×, Z), Ric(Z) = − trH R(×, Z) × .

ssume that H is preserved under parallel transport under ∇, and hence ∇g is well defined. For any vector
eld Z ∈ Γ (TM), define qZ : H → H by the formula

⟨qZv1, v2⟩g = 1
2(∇Zg)(v1, v2), v1, v2 ∈ H. (A.2)

e note that Z ↦→ qZ is a tensorial map, so we can consider q ∈ Γ (T ∗M ⊗ End H) as a tensor.

emma A.5 (Weitzenböck Formula). Let ∇̂ denote the adjoint connection of ∇ as in (2.1). Write

L = trH ∇2
×,× and L̂ = trH ∇̂2

×,×

or the Laplacians on tensors. Then, for any function f ∈ C∞(M), we have

Ldf(Z) − dLf(Z) = −2 trH ∇×df(T(×, Z) − qZ×) (A.3)
+ df(Ric(Z) + δHT(Z) − trH T(×, T(×, Z)));

L̂df(Z) − dLf(Z) = 2 trH ∇×df(qZ×) + df(Ric(Z)). (A.4)

roof. For a given point x and any elements v ∈ Hx and w ∈ TxM , choose arbitrary vector fields Y ∈ Γ (H),
∈ Γ (TM) such that Y (x) = v, Z(x) = w, ∇Y (x) = 0 and ∇Z(x) = 0. We remark that this is possible

ince we assumed that H was parallel with respect to ∇. Then at x ∈ M ,

(∇2
Y,Y df)(Z) = Y ∇Y df(Z) = Y ∇Zdf(Y ) + Y df(T(Z, Y ))

= (∇2
Y,Zdf)(Y ) − (∇Y df)(T(Y, Z)) − df((∇Y T)(Y, Z))

= (∇2
Z,Y df)(Y ) + (R(Y, Z)df)(A) − (∇T(Y,Z)df)(Y )

− (∇Y df)(T(Y, Z)) − df((∇Y T)(Y, Z))
= (∇2

Z,Y df)(Y ) − df(R(Y, Z)Y )
− 2(∇Y df)(T(Y, Z)) − df((∇Y T)(Y, Z) + T(Y, T(Y, Z))).

ext, let us insert an orthonormal basis Y1, . . . , Yk of H. We can choose this orthonormal basis such that
ZYi(x) = qZYi(x) for some given point x. Evaluated at x ∈ M , we have

(∇Z,Yi
df)(Yi) = Z(∇Yi

df)(Yi) − (∇qZ Yi
df)(Yi) − (∇Yi

df)(qZYi).

Summing over this basis and using the symmetry of qZ gives us (A.3). The result in (A.4) then follows from
the identity

∇̂Y,Y df(Z) = (∇2
Y,Y df)(Z) + 2(∇Y df)(T(Y, Z))

+ df((∇Y T)(Y, Z)) + df(T(Y, T(Y, Z))). □
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A.4. The smooth horizontal path space seen from an arbitrary complement

Let (M, H, g) be a complete sub-Riemannian manifold and let V be an arbitrary choice of complement.
Let ∇ = ∇g,V be the corresponding connection horizontally compatible with (H, g) and with torsion T and
curvature R. Define the development map Dev relative to this connection. For any Z ∈ Γ (TM), define qZ

s in (A.2) and note that qZ = qprV Z since the connection is horizontally compatible. We note the following
esult.

emma A.6. Let t ↦→ ωt be a smooth horizontal curve with u = Dev−1(ω) ∈ W ∞
0 (Hx). Define

t = Aω
t : TxM → TxM by At =

∫ t

0 T//s(dus, · ). Consider ωs
t = Dev(u + sk)t and define Yt = d

ds ωs
t |s=0.

hen Yt = //tyt = /̂/tŷt with

yt = ht +
∫ t

0
dAshs, ŷt = ht −

∫ t

0
Asdhs.

here ht = prH yt is the solution of

kt = ht −
∫ t

0

∫ s

0
R//r (dur, hr) dus

− 1
2

∫ t

0

∫ s

0

(
(∇dur q)

//r,
∫ r

0
dAr2 hr2

dus + (∇dusq)
//r,
∫ r

0
dAr2 hr2

dur

)
+ 1

2

∫ t

0

∫ s

0
♯

⟨
(∇·q)

//r,
∫ r

0
dAr2 hr2

dur, dus

⟩
g

. (A.5)

Proof. Write Yt = //tyt, prH yt = ht. Observe that from Lemma 2.1, we must have

0 = prV kt = prV yt −
∫ t

0
dAshs.

hen
yt = prH yt + prV yt = ht +

∫ t

0
dAshs.

urthermore, we have that
d(//−1

t /̂/t) = //−1
t T(//tdut, /̂/t · ).

The solution of this equation is //−1
t /̂/t = id +At and /̂/−1

t //t = id −At, since At vanishes on V . As a
consequence

ŷt = /̂/−1
t //tyt = ht +

∫ t

0
dAshs − Atht = ht −

∫ t

0
Asdhs.

Finally, we will prove (A.5) by first observing that

kt = ht −
∫ t

0

∫ s

0
R//r (dur, yr)dus

= ht −
∫ t

0

∫ s

0
R//r (dur, hr)dus −

∫ t

0

∫ s

0
R//r (dur, prV yr)dus. (A.6)

Note that for arbitrary z ∈ Vx and v1, v2, v3 ∈ Hx, we have that

(R(v1, z)g)(v2, v3) = 2⟨(∇v1q)zv2, v3⟩g = ⟨R(v1, z)v2, v3⟩g + ⟨v2, R(v1, z)v3⟩g,

and hence from the first Bianchi identity

⟨R(v1, z)v2, v3⟩g = ⟨⟳ R(v1, z)v2, v2⟩g + ⟨R(v2, z)v1, v3⟩g

= ⟨⟳ (∇v1T)(z, v2)+ ⟳ T(T(v1, z)v2), v3⟩g + ⟨R(v2, z)v1, v3⟩g

= ⟨R(v , z)v , v ⟩ .
2 1 3 g
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Define Sz(v1, v2, v3) = ⟨R(v1, z)v2, v3⟩g. We conclude that

⟨(∇v1q)zv2, v3⟩g = Sz(v1, v2, v3) + Sz(v1, v3, v2),
0 = Sz(v1, v2, v3) − Sz(v2, v1, v3).

onsidering

Sz(v1, v2, v3) − Sz(v2, v1, v3) = 0,

Sz(v2, v3, v1) − Sz(v3, v2, v1) = 0,

Sz(v3, v1, v2) − Sz(v1, v3, v2) = 0,

nd subtracting the second line from the sum of the first and the third, we obtain

Sz(v1, v2, v3) − Sz(v1, v3, v2) − ⟨(∇v2qz)v1, v3⟩ + ⟨(∇v3q)zv2, v1⟩g = 0.

n conclusion
2Sz(v1, v2, v3) = ⟨(∇v1q)zv2, v3⟩g + ⟨(∇v2q)zv1, v3⟩g − ⟨(∇v3q)zv1, v2⟩g.

ombining this with the formula (A.6), we prove (A.5). □
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