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Abstract

This manuscript presents a topological argumentation framework for mod-
elling notions of evidence-based (i.e., justified) belief. Our framework relies
on structures known as topological evidence models for representing the
pieces of evidence that an agent has at her disposal, and it uses abstract
argumentation theory to select the pieces of evidence that the agent will use
to define her beliefs. The tools from abstract argumentation theory allow
us to model agents who make decisions in the presence of contradictory
information. Thanks to this, it is possible to define two new notions of be-
liefs, grounded beliefs and fully grounded beliefs. These notions are discussed
in this paper, analysed and compared with the existing notion of topological
justified belief. This comparison revolves around three main issues: closure
under conjunction introduction, the level of consistency and their logical
strength.

Keywords: doxastic logic ·modelling arguments · justified belief ·grounded
belief · evidence models · topological models · abstract argumentation the-
ory

1 Introduction

Within formal epistemology, different formal frameworks have been proposed
for representing and analysing (different variations of) the notion of belief.
Among them one can find not only proposals using quantitative tools (e.g.,
the theory of subjective probabilities [Easwaran 2011] and the ranking-based
plausibility representation [Spohn 1988]) but also approaches using qualitative

∗Published as Shi et al. (2021), and available at https://dx.doi.org/10.1007/s10670-021-00399-5.

1

https://dx.doi.org/10.1007/s10670-021-00399-5


structures (e.g., standard epistemic logic, either with a KD45 relational rep-
resentation [Hintikka 1962, Fagin et al. 1995, Meyer and van Der Hoek 1995]
or via plausibility models [Board 2004, Baltag and Smets 2008]). Most of the
mentioned proposals have been successful in modelling different doxastic no-
tions and/or their dynamics. Yet, they are not necessarily adapted to model the
reasons, justifications or evidence on which these beliefs are based.1

In answer to this general development, the last decade witnessed a number
of different frameworks that can portray the justifications or evidence on which
different epistemic attitudes are based. Within the qualitative camp, there are
at least two different lines of work. The first has followed syntactic approaches.
An example of this are the proposals in Baltag et al. (2012, 2014) and Égré
et al. (2014), which combine dynamic epistemic logic (van Ditmarsch et al.
2008, van Benthem 2011) with the justification terms from justification logic
(Artemov and Nogina 2005, Artemov 2008). Informally, these terms represent
reasons or justifications. When incorporated to the formal language, one can
build formulas as t:ϕ, expressing that t is a justification for ϕ. The second
line of work relies on semantic tools. An example of this is the evidence model
developed in van Benthem and Pacuit (2011), van Benthem et al. (2014), which
represents evidence as a set of possible worlds. This proposal has opened new
alternatives, as it allows the use of topological tools, leading to the topological
evidence model of Baltag et al. (2016). The use of topological tools within logic
is not new, and in fact has a long tradition.2 In particular, there have been
important proposals within epistemic logic. Among them, one can mention
Georgatos (1992), Moss and Parikh (1992), Dabrowski et al. (1996), which use
topological tools for describing a notion of increase in knowledge, that is, a form
of knowability. The use of these tools for representing evidence establishes
further connections between epistemic concepts and mathematical notions of
measurement.

This paper extends the line of work on topological evidence structures.
It does so by adding tools from abstract argumentation theory (Dung 1995), a
framework that allows us to make decisions in the presence of contradictory
information. As its name suggests, the abstract argumentation framework
abstracts away from the actual content of a given set of arguments, focusing
instead on the conflicts that occur among them. Based on this, it provides
different criteria for selecting ‘appropriate’ sets of arguments, regardless of the
detailed content-description of each individual argument. By using these tools
when also discussing evidence, the agent can make sense of the potentially con-
flicting pieces of evidence she has obtained, selecting collections of evidence on
which different notions of belief can be based.3 The resulting setting, called the
topological argumentation framework in this paper, can be understood as realising
an idea that was informally already present in the literature:

1There are exceptions, as some earlier developments do represent doxastic notions and their
supporting evidence. An example is the Dempster-Shafer theory of belief functions (Dempster
1968, Shafer 1976).

2Indeed, McKinsey (1941) already relates topology with modal logic. An overview of the work
in this direction can be found in Aiello et al. (2007).

3Note how this idea of defining beliefs in terms of evidence and argumentation is different
from, e.g., the proposal Grossi and van der Hoek (2014), which takes beliefs and arguments as two
primitive and independent notions, then studying their relationship.
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[. . . ] a statement is believable if it can be argued successfully against attacking arguments.
In other words, whether or not a rational agent believes in a statement depends on whether
or not [an] argument supporting this statement can be successfully defended against the
counterarguments. (Dung 1995, p.323)

The use of abstract argumentation within the topological evidence setting
allows one to define different forms of evidence-based (i.e., justified) belief.
This paper focuses on two of them, grounded belief and fully grounded belief,
studying thoroughly their relationship as well as their relation with the notion
of topological justified belief proposed in Baltag et al. (2016). The comparison
reveals that topological justified belief and grounded belief represent different ways
of dealing with a tension between consistency and informativeness, a tension
that emerges when dealing with conflicting information: should the agent look
for full consistency, even when this produces a flat notion of belief that contains
mostly uninformative propositions? Or should she aim for more informative
beliefs, even when this leads to a weaker form of consistency? The comparison
also reveals that fully grounded belief strikes a balance between consistency and
informativeness. Our formal analysis will make precise in what sense this
notion is a balanced form of justified belief.

This paper is structured as follows. Section 2 provides a step-wise presen-
tation and justification of the tools the paper relies on, leading to the definition
of the main structure, the topological argumentation model. Then, Section 3
presents the three notions of belief that the paper focuses on, topological justi-
fied belief, grounded belief and fully grounded belief, discussing their basic logical
properties. Section 4 presents a formal language for describing topological
argumentation models, together with a sound and complete axiom system
characterising its validities. All these tools are put to work in Section 5, in
which we conduct a comprehensive comparative study of the relationship be-
tween the three doxastic notions. Finally, Section 6 summarises the paper and
outlines some directions for further work.

Note that this paper can be seen as both a generalisation and an extension of
the conference papers Shi et al. (2017) and Shi et al. (2018). As such, some results
presented here are recalled from the mentioned papers so we have the basis
to build further on them. The main novel contributions of the present paper,
when compared to the mentioned conference papers, can be summarized as
follows:

(i) The axiom system of Section 4 has been proven to be sound and complete
for a class of models that imposes three constraints on its components (Shi et al.
2018). Here it is shown that the same axiom system is now sound and
complete for a more general class of models (see Definition 2.5 and the
footnote therein). Additionally, the present paper includes the details and
subtleties of the new completeness proof.

(ii) Section 5 contains a novel discussion that makes fully precise the rela-
tionship between the three forms of justified belief examined here. In
this way, it rounds up the analysis on justified belief that motivated this
series of papers. The discussion makes use of some results presented in
our earlier conference papers, but it also contains new ones. In particu-
lar, the results used in Subsection 5.3 to show the relationship between
topological justified belief and fully grounded belief are new. Moreover,
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the proof of Proposition 5.4 makes use of the logic presented in Section 4,
which demonstrates how our technical results contribute to our concep-
tual analysis.

2 A Formal Representation of Evidence

The notion of evidence has been discussed extensively in the literature, both in
the logic and philosophy communities. Because of this, “it is far from obvious that
any one thing could play all of the diverse roles that evidence has at various times been
expected to play” (Kelly 2016). Still, some of the properties that are discussed in
the literature can be lifted out, and that is what we will do for the purpose of
this paper. This section focuses on these properties, introducing along the way
the formal tools that will be used throughout the text.

2.1 Evidence provides information

Example 2.1 Nora is collecting information about a small meteor that crashed
in a forest long time ago. Right now, she is interested on the day the meteor
crashed. The people from a village nearby the crashing site say that the meteor
crashed on September of 1914. Then, while looking at old newspapers, she
finds a note stating that it crashed in that year on September the 12th. J

During her research, Nora collects evidence in different ways: from the
testimony of people and from a document. Each one of those pieces of evidence
provides Nora with information which, if true, would exclude, respectively, all
possible states of affairs in which the meteor crashed in a month other than
September 1914, and all possible state of affairs in which it crashed on a date
other than September the 12th, 1914. More generally, for an agent whose
information is represented as the uncertainty that is present among a collection
of possible states of affairs (e.g., the possible worlds model of Hintikka 1962),
a piece of evidence can be understood as a subset of the initial collection. In this
sense, a piece of evidence is a (defeasible) indication of the possible range of
states of affairs to which the real world may belong.4

Throughout this text, let At be a countable set of atomic propositions.

Definition 2.1 (Evidence model (van Benthem and Pacuit 2011)) A (uniform)
evidence model is a tuple (W,E0,V) in which (i) W , ∅ is a set of possible worlds;
(ii) E0 ⊆ 2W

\ {∅} is a collection of non-empty subsets of W (satisfying W ∈ E0),
called the collection of basic pieces of evidence; (iii) V : At → 2W is a valuation
function. J

In an evidence model, E0 contains the basic pieces of evidence that the agent
has acquired. By representing a piece of evidence simply as a set of worlds,
evidence in an evidence model is simplified to its bare bones: its informational
content (i.e., the alternatives the evidence discards). In particular, the model
does not keep track of the evidence’s sources.5

4For a further philosophical discussion on the notion of information-as-range, we refer to
Adriaans and van Benthem (2008), Martinez and Sequoiah-Grayson (2019).

5Thus, a representation of Nora’s scenario includes neither the people of the village nor the
newspaper: it only includes the information that these sources provide.
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Now, observe the requirements over E0. The first states that a piece of
evidence cannot be contradictory on its own (∅ < E0); the second states that
the agent ‘knows’ which is the full range of possibilities (W ∈ E0). Note how
there are no further restrictions over E0. In particular, pieces of evidence are
assumed to be, in general, fallible: they do not need to contain ‘the real world’.
Thus, the agent might have two basic pieces of evidence contradicting each
other: there may be E1,E2 ∈ E0 with E1 ∩ E2 = ∅. Still, this means neither that
the agent believes contradictions nor that she believes propositions that are at
odds with one another. More precisely, having evidence supporting a certain
proposition P ⊆ W (i.e., having an E ∈ E0 such that E ⊆ P) is not enough to
believe P.6 A single piece of evidence is not enough; what matters is the bearing
of the agent’s total evidence.

2.2 Evidence provides affirmative information

Identifying evidence as non-self-contradictory information is a good starting
point for a more fine-grained analysis of evidence and its relation with belief.
Yet, not all types of such information qualify as evidence. A further requirement
is that evidence needs to be affirmative, that is, it needs to be verifiable when it is
true and “true precisely in the circumstances when it can be affirmed” (Vickers
1989, p.6).7

Example 2.2 The meteor has been kept in a museum, and Nora is now inter-
ested in its weight. Her different measuring devices provide different results.
But each one of them has a measuring error. J

Each one of the measuring devices provides Nora with an interval within
which the meteor’s weight might be. Each one of these intervals (a, b) provides
affirmative evidence because, regardless of which is the precise weight of the
meteor in the interval, she can look for a more precise device and affirm what
the evidence asserts. But Nora can do more: she can combine the different
intervals (i.e., the different pieces of evidence) to get a more precise result.
How ought she do this?

It has been argued in the literature that the tools of mathematical topology
can be used to model affirmative/verifiable information (Vickers 1989, Kelly
1996).8 A topology over a non-empty domain X is a family τ ⊆ 2X containing
both X and∅, and closed under both finite intersections and arbitrary unions. As
argued in the references, this structure fits the need because it captures the logic
of affirmative information. First, an infinite disjunction of pieces of affirmative
information is affirmative: it can be affirmed by any of its affirmative disjunts.
With respect to finite conjunctions of pieces of affirmative information, they
are also affirmative: only a finite number of pieces of information needs to be
affirmed, and this takes only finite time. But an infinite conjunction of pieces

6In other words, we are stating that a piece of evidence E ∈ 2W supports a proposition P ⊆W if
and only if P holds whenever E is truthful (i.e., whenever E contains the real world).

7For a philosophical discussion on the use of these concepts in the context of scientific inquiry,
we point to Kelly (1996).

8Note that it is the idea of evidence as affirmative information what makes topology a suitable
structure for modelling evidence. Other structures may be suitable as well (and even better suited)
if some other aspects of evidence are taken into account. Here, no attempt is made to establish a
topological structure as “the” structure for evidence.
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of affirmative information cannot necessarily be affirmed: it may take infinite
time.9 These ideas yield the following structure.

Definition 2.2 (Topological evidence model (Baltag et al. 2016)) A topologi-
cal evidence model (W,E0, τE0 ,V) extends an evidence model (W,E0,V) (Defi-
nition 2.1) with τE0 , the topology over W generated by E0.10 Following the
literature, the elements of a topology will be called open sets. J

Based on what we have explained, E0 in a topological evidence model
should be taken as a set of not only consistent but also affirmative pieces of
information. All non-empty opens in the generated topology thus constitute
all possible pieces of evidence which are available to the agent if she reasons
about her basic set of evidence E0.

Once the agent has obtained all possible pieces of combined evidence, she
can move on to the next step: using her evidence to define her beliefs. As it is
discussed below, this is straightforward when all her evidence is truthful, but
requires making decisions when, as in our case, it is not.

2.3 Evidence weighted against other evidence

Once the agent has combined all her available evidence (thus obtaining the
topology τE0 ), she is left with the task of selecting those pieces of combined
information that will define her beliefs. If all basic pieces of evidence are
truthful (technically, if every set U ∈ E0 contains ‘the real world’), then their
combination will produce, among other things, a single and consistent strongest
piece of combined evidence: intuitively, the conjunction of all basic pieces. In
these cases, the agent can define her beliefs simply in terms of what is supported
by this strongest piece of evidence.

But, in general, the agent might have obtained fallible data. Among other
things, this means she might have two basic pieces of evidence contradict-
ing each other (there might be E1,E2 ∈ E0 with E1 ∩ E2 = ∅), and thus there
might not be a single and consistent strongest piece of combined evidence (the
conjunction of all basic pieces would not be consistent, and the consistent com-
binations should have left out E1 or E2 or both). In these cases, the agent is left
with several consistent but mutually exclusive ‘maximal’ pieces of combined
evidence. How can she define her beliefs? In other words, how can she make
sense of this conflicting information? One alternative (taken by Baltag et al.
2016 and discussed in more detail in the next section) is to remain neutral: do
not give priority to any ‘maximal’ piece of combined evidence. This is reason-
able in some scenarios, but it leaves out a large and very important group of
situations: those in which some evidence is, for some reason, more persuasive
than other.

There are different ways to define some form of priority among pieces of
evidence. From a purely mathematical perspective, one can define a ‘priority’
ordering over them (technically, assume a priority ordering over 2W , or even

9Another classical example of an assertion which is not affirmative is “all ravens are black”. It
is clear that we should never take a piece of information which is impossible to be verified to be
our evidence. Readers are referred to Vickers (1989, Chapter 2) for a deeper discussion.

10 The topology generated by a given Y ⊆ 2X is the smallest topology τY over X such that Y ⊆ τY.
When no confusion arises, τE0 will be denoted simply by τ.
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assume a priority ordering over W and lift it). One could also expand the model
to represent sources of evidence, assume some form of priority among them,
and lift it to an ordering over the information they provide.

This paper follows a different approach. It relies on a well-known frame-
work that allows us to make decisions in the presence of contradictory infor-
mation: abstract argumentation theory (Dung 1995). The abstract argumentation
framework abstracts away from the actual contents of a given set of arguments,
focussing instead on the conflicts (attacks) that occur among them. Then, it
uses this notion of attack to define different criteria for selecting ‘appropriate’
sets of arguments. Thus, one can understand the combined pieces of evidence
the agent has obtained as arguments (as done already in Baltag et al. 2016), and
then use abstract argumentation tools for selecting sets of arguments on which
notions of belief can be based. As it will be discussed below, the use of abstract
argumentation is more general than defining/inducing an ordering over pieces
of evidence.

Here are the basic definitions of the abstract argumentation setting.

Definition 2.3 (Attack graph) An attack graph is a tuple (A,�) where (i) A , ∅
is a set of arguments, and (ii)� ⊆ (A×A) is a binary relation, the attack relation,
with a1� a2 read as “a2 attacks a1”. J

The crucial component of an attack graph is the attack relation, which
defines some form of priority among arguments. Still, the approach is more
general than defining an ordering among arguments. The reason is that the
relative priority between two arguments induced by the attack relation (e.g.,
by defining a < b when a � b and b 6� a) is independent of the arguments’
relative priority with respect to a third argument. In particular, transitivity
does not need to hold: it is possible to have a < b and b < c without having
a < c, thus allowing cycles of strictly more important pieces (e.g., the attack
graph (A = {a, b, c},� = {(a, b), (b, c), (c, a)})).

In basic abstract argumentation, a key assumption is that a notion of defense
between (sets of) arguments can be defined in terms of the notion of attack.11

Definition 2.4 (Characteristic (defense) function) Let A = (A,�) be an attack
graph. A set of arguments B ⊆ A is said to defend argument a ∈ A if and only
if every argument attacking a (for all x ∈ A such that a � x) is itself attacked
by some argument in B (there is b ∈ B such that x� b). Then, the characteristic
function of A, denoted by dA and also called the defense function, returns the set
of arguments defended by a given set B ⊆ A:

dA(B) := {c ∈ A | c is defended by B}

When c ∈ dA(B), it is said that c is acceptable with respect to B. J

As mentioned, abstract argumentation provides different criteria to single
out sets of arguments with appealing properties. For example, one might want
for a given set to be conflict-free (there are no attacks between its elements) or

11In fact, the argumentation framework is general enough to allow an argument to be another
argument’s attacker and defender simultaneously. Still, there are proposals introducing new rela-
tions between arguments, including different forms of attack and support (e.g., Oren and Norman
2008, Cayrol and Lagasquie-Schiex 2009, Prakken 2010).
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self-defended (if someone in the set is attacked, someone in the set attacks the
attacker). These and other options will be useful for selecting sets of arguments
on which a notion of belief will be based. But before doing that (Subsection 3.2),
here is how the argumentation framework is seamlessly integrated into a topo-
logical evidence model.

Definition 2.5 (Topological argumentation model) A topological argumentation
(TA) model (W,E0, τ,�,V) extends a topological evidence model (W,E0, τ,V)
(Definition 2.2) with a relation� ⊆ (τ×τ), the attack relation on τ, thus defining
the attack graph (τ,�) where T1 � T2 is read as “T2 attacks T1”. This attack
relation is required to satisfy the following conditions:12

(i) for every T1,T2 ∈ τ: T1 ∩ T2 = ∅ if and only if T1� T2 or T2� T1;

(ii) for every T ∈ τ \ {∅}: ∅� T and T 6� ∅. J

In a TA model, the elements of τ are the arguments the attack graph talks
about. This makes sense, as they are the components of the model representing
potentially conflicting information. Still, we will be a bit more precise, using
the term arguments to refer only to the non-empty elements of τ.13

The two conditions that� is required to satisfy define the notion of attack
between two pieces of evidence. The first states (right to left) that ‘attack
implies conflict’ (i.e., empty intersection), but also (left to right) that, while
‘conflict implies attack’, the attack does not need to be mutual. The second
establishes that, while the empty set is attacked by all non-empty opens, it does
not attack any of them.14

With the topological argumentation model defined, it is time to look into
some of the different notions of belief that can be defined within this structure.

3 Three Notions of Justified Belief

This section discusses three notions of justified belief, all of them definable
on TA models (Definition 2.5). While they differ on the ways they deal with
conflicting information. these notions are closely related to one another. Their
comparison, provided in Section 5, will bring along some interesting issues
about justified belief.

3.1 Topological Justified Belief

As mentioned above, one alternative for dealing with conflicting information
is to remain neutral: do not give priority to any ‘maximal’ piece of combined
evidence. This is essentially the approach followed by Baltag et al. 2016, which
defines a notion of belief, topological justified belief, in the following way.

12Previous presentations of this structure (Shi et al. 2017, 2018, Shi 2018) asked for a further
condition on the attack relation: for every T,T1,T′1 ∈ τ, if T1 � T and T′1 ⊆ T1, then T′1 � T. The
definition provided here is a generalisation of the previous proposal. As it will be proved later, this
does not change the resulting logic.

13The non-empty elements of τ have already been called arguments in Baltag et al. (2016). For a
deeper discussion on this, see Özgün (2017, Section 5.2).

14Thus, from the first condition, it follows that the empty set only attacks itself. In particular,
this says that no subset of τ containing ∅ can be conflict-free.
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Definition 3.1 (Topological justified belief (Baltag et al. 2016)) Let the tuple
M = (W,E0, τ,�,V) be a TA model. The agent has a topological justified belief on
a proposition P ⊆ W in M (notation: Bt P) if and only if every argument T can
be strengthened into an argument T′ that supports P, that is,

Bt P iff def for all T ∈ τ \ {∅} there is T′ ∈ τ \ {∅} s.t. T′ ⊆ T and T′ ⊆ P

If one wants to allow the agent to have beliefs about her own beliefs, Bt P itself
should be a proposition (that is, a set of worlds). In a TA model, the set of basic
pieces of evidence E0 is global, and thus so is the topology τ. Then, it makes
sense to make the notion of topological justified belief global, assigning it either
the full domain or else the empty set:

Bt P :=

W for all T ∈ τ \ {∅} there is T′ ∈ τ \ {∅} s.t. T′ ⊆ T and T′ ⊆ P
∅ otherwise J

As shown in Baltag et al. (2016), topological justified belief Bt is a KD45-
operator: it is closed under material implication (K), consistent (D), and both
positively (4) and negatively (5) introspective.

As discussed in the original proposal, one of the most interesting features
of topological justified belief is that it can be characterised in terms of different
topological notions (see Baltag et al. 2016, Proposition 2 for some of them). One
of these characterisations is useful to make clear the way topological justified
belief deals with conflicting information. Recall that, given a topology τ over
a set X, an open T ∈ τ is said to be dense if and only if it has a non-empty
intersection with every other non-empty open. Then, as stated in Baltag et al.
(2016, Prop. 2, item 4),

Proposition 3.1 Let M = (W,E0, τ,�,V) be a TA model. Then, Bt P holds in M if
and only if there is a dense open T ∈ τ such that T ⊆ P. �

This proposition tells us that the agent has a topological justified belief in P
if and only if P is supported by an argument that is consistent with every other
argument. Thus, when defining a topological justified belief, every argument is
equally important. Although this is reasonable in some scenarios, it is not good
enough for dealing with situations in which some evidence is more important
than other.

3.2 Grounded Belief

As mentioned above, abstract argumentation allows us to make sense of con-
flicting information, and it does so by providing different criteria to single out
sets of arguments with appealing properties. These sets can be used to identify
arguments on which different notions of belief can be based on. One can look
for arguments belonging to conflict-free or self-defended sets. One can also look
for arguments in sets that are admissible (those that are conflict-free and whose
members are all acceptable with respect to it), complete (those that are admissible
and contain every acceptable argument with respect to it), preferred (maximal
admissible sets) or stable (conflict-free sets that attack every argument not in
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it).15 Each one of these alternatives yields a notion of belief whose properties
are worthwhile to investigate.

This paper focuses on a particular set of arguments, defined in terms of the
characteristic function dτ that arises from the attack graph (τ,�). Note that
dτ’s domain and range, 2W , defines a complete lattice (with the order given
by inclusion); moreover, it has been shown that dτ is monotonic (Dung 1995,
Lemma 19). Then, it follows (Knaster 1928, Tarski 1955) that dτ has a least
fixed point: a smallest set LFPτ ⊆ τ satisfying LFPτ = dτ(LFPτ). The properties
of this set of arguments LFPτ, called within abstract argumentation theory the
grounded extension, makes it an excellent candidate for the set of arguments over
which beliefs can be defined. First, it can be proved that it is conflict-free (i.e.,
there are no T,T′ ∈ LFPτ such that T� T′).16 Moreover, LFPτ is a set that can
defend all (LFPτ ⊆ dτ(LFPτ)) and only (dτ(LFPτ) ⊆ LFPτ) its members against
any attackers. There might be other conflict-free subsets of τ containing exactly
the arguments they defend, but LFPτ is the common part shared by all of them.

Here are two more reasons that make the grounded extension appealing.
The first is a property the set has in any attack graph: while the other men-
tioned alternatives provide more than one set (there is, in general, more than
one admissible/complete/preferred/stable set in an attack graph), the grounded
extension is always unique. The second is a property the set has in our spe-
cific setting. Although the grounded extension is unique, in general it might
be empty. However, this is not the case in our framework. Indeed, from the
restrictions imposed on�, it follows that dense opens are never attacked (they
are in conflict only with the empty set, which does not attack anybody), and
thus they are always in LFPτ. But W ∈ τ is a dense open, and thus LFPτ always
has at least one element.

Definition 3.2 (Grounded belief (Shi et al. 2017)) Let M = (W,E0, τ,�,V) be
a TA model. The agent has a grounded belief on P ⊆ W in M (notation: Bg P) if
and only if there is an argument in LFPτ supporting P, that is

Bg P iff def there exists F ∈ LFPτ such that F ⊆ P.

When Bg P is understood as a proposition,

Bg P :=

W there exists F ∈ LFPτ such that F ⊆ P.
∅ otherwise J

The definition pins down LFPτ as the set of arguments qualified for justify-
ing an agent’s belief. More precisely, the chosen arguments are those belonging
to the smallest set which is conflict-free and defends all and only its members.

Here are the basic properties of grounded belief.

Proposition 3.2 (Properties of Bg) Let (W,E0, τ,�,V) be a TA model.

(i) Grounded beliefs are upward-closed, that is,Bg P and P ⊆ Q implyBg Q. Thus,
they are closed under conjunction elimination.

15For more details and other alternatives, the reader is referred to Baroni and Giacomin (2009),
Baroni et al. (2011).

16Thus, ∅ < LFPτ, and hence LFPτ contains only arguments.
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(ii) Moreover, LFPτ itself is closed upwards: if F ∈ LFPτ and F′ ∈ τ is such that
F ⊆ F′, then F′ ∈ LFPτ.

(iii) Grounded beliefs are mutually consistent: Bg P and Bg Q imply P ∩Q , ∅.

(iv) Grounded beliefs are positively and negatively introspective. �

Proof. We prove only the second and third statements in this proposition. The
others are trivial.

(ii) Assume that F ∈ LFPτ and F ⊆ F1 ∈ τ. It will be shown that, for any
F2 ∈ τ such that F1 � F2, there is F3 ∈ LFPτ such that F2 � F3. Take
an arbitrary F2 ∈ τ such that F1 � F2. From F ⊆ F1 and F1 ∩ F2 = ∅, it
follows that F ∩ F2 = ∅. By the first condition of the attack relation, it
follows that either F� F2 or else F2 � F. In the first case, F� F2, from
F ∈ LFPτ it follows that there must be another argument F3 ∈ LFPτ such
that F2 � F3. So we find the required argument F3. In the second case,
F2� F, the argument F ∈ LFPτ is the required one.

(iii) Suppose Bg P and Bg Q hold in the model. Then, there are FP,FQ ∈ LFPτ
such that both FP ⊆ P and FQ ⊆ Q. Since LFPτ is conflict-free, both
FQ � FP and FP � FQ fail; this implies FP ∩ FQ , ∅ (first condition on
�), from which the required P ∩Q , ∅ follows. �

Despite mutual consistency (previous proposition) and closure under con-
junction elimination (which follows from upwards-closure), grounded belief is
not closed under conjunction introduction. The following use of a TA model
for reasoning about a specific scenario (Example 3.1 in Shi et al. 2017) illustrates
this.

Example 3.1 The zoo in Tom’s town bought a new animal and will show it
soon to the public. Tom is curious about what species the animal is, so he asks
his colleagues. However, he gets different answers. Some tell him that the
animal is a penguin ({1}), some tell him that the animal is a pterosaur ({2}) and
some tell him that the animal is a bat ({3}). Moreover, two other colleagues,
who he really trusts, tell him that the animal can fly ({2, 3}) and the animal is
not a mammal ({1, 2}). After receiving all these pieces of information, Tom is
puzzled. Although “the animal can fly” and “the animal is not a mammal”
imply that the animal is a neither a penguin nor a bat, it is still hard to imagine
that there can be a pterosaur living in this modern world. Intuitively, in such a
situation, Tom comes to believe that the animal can fly and the animal is not a
mammal. However, it seems that his evidence is not strong enough to support
the claim that the animal is a pterosaur.

Let At = {p, t, b} be a set of atomic propositions (p: “the animal is a penguin”;
t: “the animal is a pterosaur”; b: “the animal is a bat”). The TA model M
specified below describes Tom’s evidence, arguments and doxastic situation.

({1, 2, 3},E0 = {{1}, {2}, {3}, {1, 2}, {2, 3}}, τ = 2{1,2,3},�,V) (1)

with V = {(p, {1}), (t, {2}), (b, {3})} and the attack relation� given by the union
of (i) singletons attacking one another, (ii) every open attacking the empty
set, and (iii) {{3} � {1, 2}, {1} � {2, 3}, {2} � {1, 3}, {1, 3} � {2}}, as shown in
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Figure 1: Grounded beliefs are not closed under conjunction.

Figure 1.17 Following its definition, LFPτ = {{1, 2}, {2, 3}, {1, 2, 3}} (a set that is
not closed under intersection); together with the definition of grounded belief,
this confirms the intuition that Tom can come to believe that the animal can
fly ({2, 3} ∈ LFPτ) and that the animal is not a mammal ({1, 2} ∈ LFPτ) without
coming to believe that the animal is a pterosaur (no subset of {2} is in LFPτ). J

It is important to notice that the lack of closure under conjunction does not
indicate that the agent lacks reasoning abilities. Her set of available arguments
(the topology) is the power set of the domain, thus showing that she can put
all her pieces of evidence together in a logical way. However, the agent uses
a very specific strategy for selecting the arguments (i.e., non-empty pieces of
evidence) on which her beliefs will be based. It turns out that the set of chosen
arguments, LFPτ, is in general not closed under intersection; thus, the agent’s
grounded beliefs are, in general, not closed under conjunction introduction.

As a consequence of the failure of closure under conjunction introduction,
grounded beliefs are consistent only up to a certain level.

Proposition 3.3 Let (W,E0, τ,�,V) be a TA model, and let B ⊆ {P ⊆W | Bg P = W}
be any set of propositions the agent groundedly believes. Then,

⋂
B , ∅ holds only

when |B| ≤ 2; in other words, grounded beliefs are only mutually consistent but not
necessarily fully consistent. �

An interesting question is, then, under which conditions are grounded be-
liefs closed under conjunction introduction? Or, in other words, under which
conditions is LFPτ closed under intersections? The next proposition provides
two such scenarios.

Proposition 3.4 Let (W,E0, τ,�,V) be a TA model, with LFPτ the least fixed point
of its characteristic function.

• If� is symmetric on the set of arguments, then LFPτ is closed under intersec-
tions.

• If� is unambiguous (i.e. for all T1,T2,T3 ∈ τ, if T1� T2 and T2� T3, then
T1 6� T3 and T3 6� T1), then LFPτ is closed under intersections; �

Proof. See Subsection A.1.
17Attack edges involving the empty set are not drawn.
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3.3 Fully Grounded Belief

Both topological justified belief and grounded belief rely on the topology gen-
erated by the agent’s basic pieces of evidence, but they do so in a different way;
hence the discrepancy with respect to the closure under conjunction introduc-
tion. Still, it is possible to combine the ideas behind their respective definitions
in order to get a notion of belief that, while remaining neutral about potential
conflicts, it does so with respect to a potentially smaller set of arguments: those
in LFPτ. This is achieved by taking the original definition of topological justi-
fied belief (Definition 3.1), and adjusting the range over which the quantifiers
work.

Definition 3.3 (Fully grounded belief) Let M = (W,E0, τ,�,V) be a topologi-
cal argumentation model. The agent has a fully grounded belief on a proposition
P ⊆ W in M (notation: B f P) if and only if every argument in LFPτ can be
strengthened to an argument in LFPτ which supports P. That is,

B
f P iff def for all F ∈ LFPτ there is F′ ∈ LFPτ s.t. F′ ⊆ F and F′ ⊆ P.

Fully grounded belief can be turned into a propositionB f P ⊆W just as before.J

Thus, the only difference between the definitions of topological justified
belief and fully grounded belief is that, in the latter, all involved arguments
should be members of LFPτ.

Example 3.2 Recall the scenario presented in Example 3.1, in which LFP =
{{1, 2}, {2, 3}, {1, 2, 3}}, and in which Tom’s grounded beliefs are the propositions
in {{1, 2}, {2, 3}, {1, 2, 3}} (the supersets of some argument in LFP). Note how the
set of Tom’s fully grounded beliefs contains {1, 2, 3} (every element of LFP can be
shrunk into an element of LFP that is also a subset of {1, 2, 3}) but nothing else:
for example, {1, 2} is not a fully grounded belief because {2, 3} ∈ LFP cannot be
shrunk into a subset of {1, 2} that is also in LFP, and {2, 3} is not a fully grounded
belief because {1, 2} ∈ LFP cannot be shrunk into a subset of {2, 3} that is also in
LFP.18

In this example, Tom’s fully grounded beliefs coincide with his topological
justified beliefs. Still, this does not mean that both notions are logically equiva-
lent. To see the difference, consider a variation of the situation in which the at-
tack relation from {1, 3} to {2}has been deleted. In this modified TA model, Tom’s
topological justified beliefs remain {{1, 2, 3}}, as the underlying topology does
not change. However, LFP changes, becoming the set {{2}, {1, 2}, {2, 3}, {1, 2, 3}},
which happens to be also the set containing the propositions about which Tom
has a fully grounded belief. J

Although fully grounded belief and topological justified belief are not logi-
cally equivalent, the similarity in their definitions (a ∀∃ quantification pattern)
suggests that they may share logical properties. Indeed, this is the case. As
mentioned before, it has been shown that topological justified belief is a KD45
operator; the proposition below does the same for fully grounded belief.

Proposition 3.5 Fully grounded beliefB f is a KD45 operator (closed under both con-
junction introduction and conjunction elimination, consistent, and with both positive
and negative introspection) TA models. �

18Alternatively, {1, 2, 3} is the only set supported by every element of LFP.
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Proof. The D axiom is valid for fully grounded belief because LFPτ is conflict-
free. Axioms 4 and 5 are valid because fully grounded belief is defined globally
in the model. The necessitation rule and closure under conjunction elimination
hold because LFPτ contains the model’s domain (recall: W is never attacked)
and the definition of fully grounded belief is upward closed (if the argument
F′ in the definition satisfies F′ ⊆ P, then for any Q ⊇ P it follows that F′ ⊆ Q).

It is only left to show that fully grounded beliefs are closed under conjunc-
tion introduction. Take a TA model, with P,Q ⊆W, and suppose both B f P and
B

f Q hold. Then, for any F ∈ LFPτ, not only there is F′ ⊆ F such that F′ ∈ LFPτ
and F′ ⊆ P (the first), but also there is F′′ ⊆ F such that F′′ ∈ LFPτ and F′′ ⊆ Q
(the second). Now, take an arbitrary T ∈ LFPτ. From the first, there is T′ ⊆ T
such that T′ ∈ LFPτ and T′ ⊆ P. From the second, T′ ∈ LFPτ implies that there
is T′′ ⊆ T′ such that T′′ ∈ LFPτ and T′′ ⊆ Q. But T′′ ⊆ T′ and T′ ⊆ P imply that
T′′ ⊆ P. Hence, T′′ ⊆ P ∩ Q. Thus, for all F ∈ LFPτ, we can find an argument
F′ ⊆ F such that F′ ∈ LFPτ and F′ ⊆ P ∩ Q. Therefore, B f (P ∩ Q) holds in the
model.

As a consequence, fully grounded beliefs are, indeed, ‘fully’ consistent.

Proposition 3.6 Let (W,E0, τ,�,V) be a TA model, for any finite set B ⊆ {P ⊆ W |
Bt P = W},

⋂
B , ∅. That is, fully grounded beliefs are fully consistent. �

This section has introduced three notions of justified belief, discussing their
basic logical properties. Still, their relationship has not been made completely
precise. Section 5 will provide a more systematic analysis of these three notions,
including the way they relate to each other. The most important tool for such
analysis will be provided in the next section.

4 The Logic of Argumentation, Justified Belief and
Knowledge

This section provides a detailed account of the languageL�,U,Bg,T, introduced in
Shi et al. (2018) to describe TA models. Since a TA model is based on a topological
evidence model,L�,U,Bg,T follows the language presented in Baltag et al. (2016)
in including an operator (U) for infallible/irrevocable knowledge (knowledge that,
once acquired, it cannot be defeated by any further evidence) and an operator
(�) for factive argument (an argument that is true in the actual world). These
two operators are both conceptually meaningful and technically needed for a
sound and complete axiomatization. Still, this is not enough for our purposes:
a TA model also includes an attack graph (τ,�), from which the crucial least
fixed point LFPτ is defined. For talking about the information LFPτ provides,
L�,U,Bg,T includes two additional operators: Bg for describing grounded belief,
and T for describing grounded knowledge (or, in more detail, factive grounded
belief, that is, a grounded belief based on a factive argument).19

19This paper does not elaborate on the interpretation of T as grounded knowledge. Interested
readers are referred to xxx (2020), which makes a fine-grained comparative analysis of three different
notions of knowledge that arise within TA models.
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Definition 4.1 (LanguageL�,U,Bg ,T) The language L�,U,Bg,T is generated by:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Uϕ | �ϕ | Bg ϕ | Tϕ

with p ∈ At. As mentioned above, formulas of the form Uϕ describe the
agent’s infallible knowledge, those of the form �ϕ expresses that “the agent has a
factive argument for ϕ”, and those of the form Bg ϕ/Tϕ express that “the agent
has grounded belief/knowledge of ϕ”. Other Boolean operators (∨,→,↔) as well
as the modal duals of U, �, T and Bg are defined as usual (for the latter:
Ûϕ := ¬U¬ϕ, ^ϕ := ¬�¬ϕ, B̂g ϕ := ¬Bg

¬ϕ and T̂ϕ := ¬T¬ϕ).
Formulas inL�,U,Bg,T are semantically evaluated in pointed TA models, pairs

(M,w) with M = (W,E0, τ,�,V) a TA model and w ∈ W a world in it. The
semantic interpretation of atoms and Boolean operators is as usual. For the
modal operators,

M,w |= Uϕ iff def W ⊆ ~ϕ�
M,w |= �ϕ iff def there exists T ∈ τE0 \ {∅} such that w ∈ T and T ⊆ ~ϕ�
M,w |= Bg ϕ iff def there exists F ∈ LFPτ such that F ⊆ ~ϕ�
M,w |= Tϕ iff def there exists F ∈ LFPτ such that w ∈ F and F ⊆ ~ϕ�

with ~ϕ� = {w ∈ W | M,w |= ϕ}. A formula is valid (notation: |= ϕ) when
M,w |= ϕ holds for every world w of every TA model M. J

Note how infallible knowledge U is given by a global universal modality.
Then, the modality � allows us to build formulas of the form �ϕ, indicating
the existence of an argument (T ∈ τE0 \ {∅}) that is factive (the evaluation point
w is in T) and that supports ϕ (T ⊆ ~ϕ�). Combining these two, the notion of
topological justified belief can be defined (Baltag et al. 2016, Proposition 2) in
the following way:

Bt ϕ := U^�ϕ. (2)
It is also useful to compare the truth conditions ofBg and T. The difference

is simple: while making Bg ϕ true at w requires the existence of an argument
F in LFPτ that supports ϕ, making Tϕ true at w requires, additionally, for the
argument to be factive (w ∈ F). Notice how, given their semantic interpretation,
Bg ϕ and Tϕ are mutually definable in the presence of conjunction, U and �.
Indeed, first, grounded belief Bg ϕ can be defined by simply adding a global
existential quantification Û before grounded knowledge T. In this way, the
given argument F ∈ LFPτ does not need to be factive in the evaluation point; it
is enough for it to be factive somewhere in the model, a tautological statement
as every argument is non-empty. Thus,

|= Bg ϕ↔ ÛTϕ.

Second, by Item (ii) of Proposition 3.2 and the truth conditions,

|= Tϕ↔ (Bg ϕ ∧ �ϕ).

Thus, the languages L�,U,Bg,T, L�,U,T and L�,U,Bg are all equally expressive.
Both ‘grounded operators’ Bg ϕ and Tϕ are included in L�,U,Bg,T as primitive
operators because of their philosophical significance. Yet, one can work within
L�,U,T or L�,U,Bg without losing expressivity because the ‘missing’ primitive
operator can be defined in terms of the others.20 Still, this does not mean that

20The completeness proof takes advantage of this fact, working only with L�,U,T.
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• Propositional Tautologies and Modus Ponens
• The S5 axioms and rules for U • The S4 axioms and rules for �

• ` T> • ` Tϕ→ TTϕ

• ` Tϕ→ ϕ • From ` ϕ→ ψ infer ` Tϕ→ Tψ

• ` Bg ϕ→ ¬Bg
¬ϕ • ` (Tϕ ∧Uψ)→ T(ϕ ∧Uψ)

• ` Tϕ→ �ϕ

• ` Tϕ→ U(�ϕ→ Tϕ) • ` U^�ϕ→ Bg ϕ

• `

(
Bg ϕ ∧ ¬Bg ψ ∧U((ϕ ∧ ψ)→ �(ϕ ∧ ψ))

)
→ Û�(ϕ ∧ ¬ψ)

Table 1: Axiom system L�,U,T, for L�,U,T w.r.t. TA models.

any of the grounded operators can be defined within L�,U(or, for that matter,
within the languages discussed in Baltag et al. 2016). If both Bg ϕ and Tϕ
are removed, the language cannot talk about the information provided by the
attack graph (τ,�), and thus it cannot talk about arguments in LFPτ.

As a final detail, the mentioned equivalence Tϕ↔ (Bg ϕ ∧ �ϕ) also shows
how grounded knowledge Tϕ does not need to coincide with the similar but
different notion of grounded true belief, expressed in the language as Bg ϕ ∧ ϕ.
The latter only asks for the grounded belief to be true, regardless of which is
the LFP-argument it relies on, but the former requires a special kind of LFP-
argument: a factive one.

Axiom system forL�,U,T. It has been proved (Baltag et al. 2016, Thm. 4) that the
validities of L�,U with respect to topological evidence models (Definition 2.2)
are characterised by (i) propositional tautologies and Modus Ponens, (ii) the
S4 axioms and rules for �; (iii) the S5 axioms and rules for U, (iv) Uϕ → �ϕ.
Thus, the challenge in finding an axiom system for L�,U,T with respect to TA
models consists essentially in finding additional axioms that characterise not
only the grounded knowledge operator T (which refers, semantically, to the
least fixed point of a function defined in terms of a relation � with special
properties) but also its relationship with the other modalities U and �.

Table 1 shows our proposal. Axioms and rules in the upper block should be
familiar to modal logicians, and those in the second block describe the essential
properties of grounded knowledge: it contains validities (T>), it is truthful
(Tϕ → ϕ) and positively introspective (Tϕ → TTϕ), and it is monotonic
(ϕ→ ψ implies Tϕ→ Tψ).

The axioms in the third block describe the interaction between T and U
(recall that Bg ϕ↔ ÛTϕ). For the first, Bg ϕ→ ¬Bg

¬ϕ states that grounded
beliefs are mutually consistent. The second, (Tϕ ∧ Uψ) → T(ϕ ∧ Uψ), called
“pullout axiom”, states that infallible knowledge can be merged into grounded
knowledge. Semantically, it is not hard to understand why this is valid.21

Conceptually, this is also intuitive because infallible knowledge is in fact the
agent’s commitment to what is assumed to be true in the model, and this

21When ψ is globally true, Uψ is also globally true, and thus is true in the factive argument that
makes Tϕ true.
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commitment accompanies all her other epistemic and doxastic attitudes. For a
better grasp of the difference between the two notions of knowledge U andT, it
is helpful to contrast the pullout axiom with the formula Tϕ∧Tψ→ T(ϕ∧ψ),
which is not valid.

The pullout axiom can be used to derive other validities describing the
interaction between T and U. An example is the following one, a variation
of the famous K axiom. Note how the validity is different from the formula
T(ϕ→ ψ)→ (Tϕ→ Tψ), which is not valid.

Proposition 4.1 ` U(ϕ→ ψ)→ (Tϕ→ Tψ). �

Proof.

(1) ` (Tϕ ∧U(ϕ→ ψ))→ T(ϕ ∧U(ϕ→ ψ)) Instance of the ‘pullout’ axiom
(2) ` (ϕ ∧U(ϕ→ ψ))→ ψ Axiom T for U; Modus Ponens
(3) ` T(ϕ ∧U(ϕ→ ψ))→ Tψ (2) and rule for T
(4) ` U(ϕ→ ψ)→ (Tϕ→ Tψ) (1), (3) and Modus Ponens

�

The axioms in the forth block of Table 1 describe the relationship between
different modalities. Axiom Tϕ→ �ϕ expresses that grounded knowledge of
ϕ implies the existence of a factive argument for ϕ. Axiom U^�ϕ → Bg ϕ
characterises the relation between the two notions of justified belief (recall that
Bt ϕ := U^�ϕ).

Axiom Tϕ → U(�ϕ → Tϕ) describes part of the relationship between an
agent’s grounded knowledge, infallible knowledge and factive arguments. It
says that if the agent has grounded knowledge of ϕ, then she infallibly knows
that for any of her arguments for ϕ, if it is factive then she has grounded
knowledge of ϕ. Williamson (Williamson 2000) argues that evidence should
not only be true but also be knowledge. The axiom can be seen as a weaker
statement: after knowing ϕ, the agent can equate having true evidence for ϕ
with having knowledge of ϕ. But, in general, true evidence does not equal
knowledge.

Finally, axiom
(
Bg ϕ ∧ ¬Bg ψ ∧ U((ϕ ∧ ψ) → �(ϕ ∧ ψ))

)
→ Û�(ϕ ∧ ¬ψ)

expresses the following intuition: if an agent that has the argument ϕ ∧ ψ (the
U((ϕ∧ψ)→ �(ϕ∧ψ)) part22) and also a grounded belief in ϕ but not in ψ, then
she must have an argument for ϕ ∧ ¬ψ.

As usual, the soundness of the axiom system is proved by verifying that
the axioms are valid (i.e., true in every world of every TA model) and the rules
preserve validity. Most of the cases are relatively simple; here we focus on the
last three axioms, to give the reader a better grasp of the involved modalities’
semantic interpretation.

Proposition 4.2 |= Tϕ→ U(�ϕ→ Tϕ). �

Proof. Let M = (W,E0, τ,�,V) be a TA model; take w ∈ W, and suppose
M,w |= Tϕ. Then, there exists F ∈ LFPτ such that w ∈ F and F ⊆ ~ϕ�, that is,

22Note that “the agent has the argument ϕ” is different from “the agent has an argument for ϕ”.
The former is expressed by U(ϕ→ �ϕ), semantically stating that there is an argument T satisfying
T = ~ϕ�; the latter corresponds to Û�ϕ, semantically stating that there is an argument T satisfying
T ⊆ ~ϕ�.
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there is F ∈ LFPτ such that F ⊆ ~ϕ�. Now, take any u ∈ W and suppose there
is Tu ∈ τE0 \ {∅} such that both u ∈ Tu and Tu ⊆ ~ϕ� (i.e., suppose, M,u |= �ϕ).
Then, F ∪ Tu is not only a factive (at u, as u ∈ (F ∪ Tu)) argument supporting
ϕ (clearly, (F ∪ Tu) ⊆ ~ϕ�); it is also in LFPτ, as F ∈ LFPτ and LFPτ is closed
upwards (Proposition 3.2). Therefore, M,u |= Tϕ.

Proposition 4.3 |= U^�ϕ→ Bg ϕ. �

Proof. By Proposition 3.1, U^�ϕ (recall: topological justified belief in ϕ) im-
plies the existence of a dense open T supporting ϕ. But dense opens intersect
with all non-empty opens, so they are not attacked at all; hence, T must be in
LFPτ, which gives us grounded belief in ϕ.

Proposition 4.4 |=
(
Bg ϕ ∧ ¬Bg ψ ∧U((ϕ ∧ ψ)→ �(ϕ ∧ ψ))

)
→ Û�(ϕ ∧ ¬ψ).�

Proof. Let M = (W,E0, τ,�,V) be a TA model; take w ∈ W. Use the unfolded
version of Bg, i.e., suppose

M,w |= ÛTϕ ∧ ¬ ÛTψ ∧U((ϕ ∧ ψ)→ �(ϕ ∧ ψ))

From the first conjunct, there is F ∈ LFPτ such that F ⊆ ~ϕ�. But, from the
second, no F′ ∈ LFPτ is such that F′ ⊆ ~ψ�; in particular, ~ϕ ∧ ψ� < LFP.
However, by the third conjunct, ~ϕ ∧ ψ� ∈ τ. So there must be an argument
keeping ~ϕ ∧ ψ� out of LFP, that is, there is a non-empty T ∈ τ such that
~ϕ ∧ ψ� � T and T intersects with all arguments in LFPτ, with the former
implying that T ⊆ W \ ~ϕ ∧ ψ� and the latter implying that T ∩ F , ∅. It
is precisely T ∩ F the argument that will be used to prove that Û�(ϕ ∧ ¬ψ)
holds at w. It is indeed an argument, as T ∩ F , ∅ and T ∩ F ∈ τ; moreover,
it supports ϕ ∧ ¬ψ, as from F ⊆ ~ϕ� and T ⊆ W \ ~ϕ ∧ ψ� it follows that
T ∩ F ⊆ (W \ ~ϕ ∧ ψ�) ∩ ~ϕ� = ~ϕ ∧ ¬ψ�. Then, M,w |= Û�(ϕ ∧ ¬ψ).

For the strong completeness of the system, the reader can find a detailed
proof in Appendix B.23 For dealing with the operators U and �, the proof
follows the general strategy used in Baltag et al. (2016). However, dealing
with the additional the operator T requires a by no means routine strategy.
Semantically, this operator relies on the least fixed-point of the characteristic
function dτ, which is defined in terms of the attack relation �. However,
disentangling the subtle structure of LFPτ in the constructed canonical model
is not straightforward, as neither dτ nor � are dealt with explicitly by the
language.

Theorem 1 The axiom system of Table 1 is sound and strongly complete for the
language L�,U,T w.r.t. topological argumentation models. �

Fully grounded belief? The language L�,U,T can describe both the agent’s
topological justified beliefs (Bt) and her grounded beliefs (Bg). Here we use
the axiom system L�,U,T discuss whether fully grounded belief is expressible in
L�,U,T.

23The completeness result proved in Appendix B is actually stronger than what Theorem 1 states
(see Theorem 2).
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Recall that topological justified belief is syntactically characterised within
L�,U,T as U^�ϕ, with ^ and � referring to arbitrary arguments. Consider-
ing that the definition of fully grounded belief follows the same quantification
pattern as that of topological justified belief, differing only on the quantifica-
tion’s domain (from arbitrary arguments to grounded arguments), this suggests
that fully grounded belief could be syntactically characterised within L�,U,T as
U T̂ Tϕ. However, this is not the case, witness the following derivation within
the axiom system L�,U,T.

Proposition 4.5 ` U T̂ Tϕ↔ ÛTϕ �

Proof. Each column proves one direction.

(1) ` T̂ Tϕ→ ÛTϕ (1) ` ÛTϕ→ ÛTTϕ
(2) ` U T̂ Tϕ→ U ÛTϕ (2) ` ÛTTϕ→ ¬ ÛT¬Tϕ
(3) ` U ÛTϕ→ ÛTϕ (3) ` ¬ ÛT¬Tϕ→ U T̂ Tϕ
(4) ` U T̂ Tϕ→ ÛTϕ (4) ` ÛTϕ→ U T̂ Tϕ �

From this syntactic equivalence and the soundness of L�,U,T, it follows that
|= U T̂ Tϕ ↔ Bg ϕ. But, as discussed before (Example 3.2), fully grounded
belief B f and grounded belief Bg are not semantically equivalent (see also
Subsection 5.2); thus, fully grounded belief cannot be syntactically defined
by U T̂ Tϕ. The reason for the discrepancy is that, despite following a similar
quantification patter, topological justified belief Bt and fully grounded beliefB f

require arguments from domains that have different closure properties: the one
used in the definition of Bt (the topology τ) is closed under finite intersections,
but the one used in the definition of B f (the least fixed point LFPτ) is not
(Example 3.1).

The axiom system presented in this section allow us to reason about the
different epistemic notions that can be expressed withinL�,U,T (and thus within
L�,U,Bg,T). In the next section, the system will be put to work to make precise the
relationship between the three discussed notions of belief: topological justified
belief, grounded belief and fully grounded belief.

5 Comparing the discussed notions of belief

Section 3 has presented three different notions of justified belief that can be
defined within a TA model. The first one, topological justified belief (Bt),
relies only on the topology generated by the agent’s set of basic evidence. The
second and third, grounded belief (Bg) and fully grounded belief (B f ), make
additional use of the attack relation between arguments. The logical properties
of each one of these notions have been also discussed: while both Bt andB f are
KD45 operators,Bg is not: it is consistent, fully introspective and closed under
conjunction elimination, but it is not closed under conjunction introduction.

This section discusses the relationship between these three notions, making
crucial use of the axiom system L�,U,T. The discussion will reveal a tension
between informativeness and consistency within an agent’s justified beliefs.
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5.1 Topological Justified Belief and Grounded Belief

The crucial connection between topological justified belief Bt and grounded be-
liefBg has been already presented and proved (Proposition 4.3): in TA models,
topological justified belief implies grounded belief. The reason is that every
argument defining the first is also an argument defining the second: every
dense open is in LFPτ. Nevertheless, there might be arguments defining the
second that are not arguments defining the first: LFPτ might have opens that
are not dense. Indeed, in the situation described by Example 3.1, {1, 2} and {2, 3}
belong to LFPτ, despite the fact that they are not dense opens. Thus, e.g., {1, 2}
is part of the agent’s grounded beliefs, but not part of her topological justified
ones (the unique dense open is {1, 2, 3}). This shows that grounded belief is
strictly weaker than topological justified belief, allowing more propositions to
be believed.

More interestingly, grounded belief is a generalization of topological justi-
fied belief in the sense that the latter is the special case of the former that arises
when the attack relation in the TA model is symmetric.

Proposition 5.1 Let (W,E0, τ,�,V) be a TA model in which the attack relation�
is symmetric. Then, for all P ⊆W, Bt P = Bg P. �

Proof. Observe that, when the attack relation is symmetric, LFPτ is actually
given by {T ∈ τ | ∀x ∈ τ \ {∅} : x∩T , ∅}. The proposition follows immediately
from this observation, Proposition 3.1 and the definition of Bg.

In summary, while grounded belief accepts more propositions than topo-
logical justified belief (and hence it is a weaker notion), it does so at the cost of
lacking closure under conjunction introduction (Example 3.1). It is worthwhile
to emphasise, once again, that this should not be taken as an indication that
the agent lacks reasoning abilities. The agent represented by a TA model is in
fact a powerful reasoner, as she can combine the pieces of evidence in E0 she
has collected. The ‘issue’, if one wants to call it that way, is the behaviour of
the set of arguments she has deemed as ‘good enough’ for defining her beliefs,
LFPτ: the existence of both a ‘good enough’ argument for believing ϕ and a
‘good enough’ argument for believingψ does not imply the existence of a ‘good
enough’ argument for believing ϕ ∧ ψ.

Still, note that the lack of closure under conjunction introduction implies
that grounded beliefs are potentially inconsistent, something that does not
occur with topological justified beliefs. These two notions of belief can be seen
then as what result from two different strategies for keeping consistency in the
face of conflicting information. On the one hand, topological justified belief
keeps consistency by not using the conflicting pieces at all (thus ‘believing
less’). On the other hand, grounded belief uses the conflicting pieces (thus
‘believing more’), keeping consistency because of its lack of a closure property.
For example, in Example 3.1, Tom’s topological justified belief is only W, which
seems to be too prudent.

Being aware of such a tension between topological justified belief and
grounded belief, it is meaningful to ask whether there is a notion of belief
which is still weaker than topological justified belief, and yet satisfies the clo-
sure property. It turns out that fully grounded belief serves as a positive answer
to the question.
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5.2 Grounded Belief and Fully Grounded Belief

Both grounded belief Bg and fully grounded belief B f are defined in terms
of the arguments in the least fixed point LFPτ in a topological argumentation
model. An immediate observation about the logical relationship between these
two notions is that fully grounded belief implies grounded belief.

Proposition 5.2 Let (W,E0, τ,�,V) be a TA model. Then,

{P ⊆W | B f P = W} ⊆ {P ⊆W | Bg P = W}. �

It is also clear that the two notions are not logically equivalent: fully ground-
ed belief is closed under conjunction introduction (Proposition 3.5), but ground-
ed belief is not (Example 3.1). From this and the previous proposition, it follows
that, grounded belief is strictly weaker than fully grounded belief.

A more interesting and not so obvious fact is that fully grounded belief is
the key to the question of the sufficient and necessary condition for grounded
belief to be closed under conjunction introduction.24

Proposition 5.3 Given a TA model, B f P and Bg P are semantically equivalent for
any P ⊆W if and only if LFPτ is closed under finite intersections. �

Proof. From left to right: if grounded belief and fully grounded belief are
equivalent in the given model, then grounded beliefs should be closed under
conjunction introduction: for any P,Q ⊆ W, if Bg P ∧ Bg Q holds then Bg(P ∧
Q) also holds. This implies that LFPτ is closed under finite intersection, as
otherwise it is easy to find P and Q such that Bg’s closure under conjunction
introduction fails.

From right to left: by the alternative characterisation of grounded belief as
U T̂ Tϕ (Proposition 4.5), we only need to prove that B f P ↔ U T̂ Tϕ holds
when LFPτ is closed under finite intersection. For the first direction, assume
B

f P; then, for all F ∈ LFPτ there is F′ ∈ LFPτ such that F′ ⊆ F and F′ ⊆ P. Now
take an arbitrary w ∈ W and an arbitrary F ∈ LFPτ with w ∈ F; then there is
F′ ∈ LFPτ such that F′ ⊆ F and F′ ⊆ P. But ∅ < LFPτ so F′ , ∅; there is v ∈ F′

with F′ ∈ LFPτ and F′ ⊆ P. Hence, for all w ∈ W and all F ∈ LFPτ such that
w ∈ F, we can find a v ∈ F′ such that TP holds on v; then, U T̂ TP holds in the
model. Note how we did not use LFPτ’s closure under finite intersections.

For the second direction, assume U T̂ TP; then, for all w ∈W and all F ∈ LFPτ
with w ∈ F, there is v ∈ F such that there is an argument F′ ∈ LFPτ such that
v ∈ F′ and F′ ⊆ P. Note that F′ is not required to be a subset of F; still, LFPτ
is closed under finite intersections, so F ∩ F′ is also in LFPτ, which gives us an
argument in LFPτ that is a subset of F (F∩F′ ∈ LFPτ) and supports P (F∩F′ ⊆ P).
So, for all F ∈ LFPτ, we can find an F′ ∈ LFPτ such that F′ ⊆ F and F′ ⊆ P, which
implies that B f P holds in the model.

5.3 Topological Justified Belief and Fully Grounded Belief

Subsections 5.1 and 5.2 show that both topological justified belief Bt and fully
grounded belief B f are strictly stronger and more consistent (in the sense of

24Note that Proposition 3.4 only provides two sufficient conditions.
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satisfying closure under conjunction introduction) than grounded belief Bg.
Then, what is the relationship between Bt and B f ? The answer is that topolog-
ical justified belief is stronger than fully grounded belief.

Proposition 5.4 Take a TA model with domain W. For any proposition P ⊆ W, if
Bt P holds, then so does B f P. �

The proof of this proposition is not so easy as one may think. It requires the
following definition, fact and lemma, with the latter being the crucial step. The
axiom system L�,U,T of Section 4 plays a pivotal role in the proofs.

Definition 5.1 (Subspace topology) Take a TA model with W its domain and
τE0 its topology; take a proposition P ⊆ W. The subspace topology on P is
defined as τ|P := {T ∩ P | T ∈ τ}. J

Fact 5.1 Given a TA model, if T is a dense open in τE0 and P is also an open in τE0 ,
then T ∩ P is a dense open in τ|P. �

Lemma 5.1 Take a TA model with topology τ. For any F ∈ LFPτ, if there exists
F′ ∈ LFPτ such that F′ ⊆ F and there is a dense open TF′ in τ|F′ satisfying TF′ ⊆ P,
then there exists F′′ ∈ LFPτ such that F′′ ⊆ F and F′′ ⊆ P. �

Proof. The proof of the lemma hinges on the following validity:

|= T^�ϕ→ T̂ Tϕ.

To prove the formula’s semantic validity, it will be shown that it can be derived
within L�,U,T; then, the system’s soundness will guarantee that the formula
holds in every world of every TA model.

Proof of ` T^�ϕ → T̂ Tϕ. From axiom T for U (its contraposition in the first
case), it follows that ` T^�ϕ→ ÛT^�ϕ and ` U T̂ Tϕ→ T̂ Tϕ. Then, it is
enough to ‘bridge the gap’, proving ` ÛT^�ϕ → U T̂ Tϕ. The equivalence
stated in Proposition 4.5, ` U T̂ Tϕ ↔ ÛTϕ, provides an alternative for the
consequent; then, it is enough to prove

` ÛT^�ϕ→ ÛTϕ

The proof goes through six stages. The derivations below use the standard
names of axioms and rules, and CPL indicates the use of tautologies in classical
propositional logic.

(i) The first step is to prove

` U((�^�ϕ ∧ �ϕ)→ �(�^�ϕ ∧ �ϕ)).

(1) �^�ϕ→ ��^�ϕ Axiom 4�
(2) �ϕ→ ��ϕ Axiom 4�
(3) (�^�ϕ ∧ �ϕ)→ �(�^�ϕ ∧ �ϕ) (1),(2), axiom K� and CPL
(4) U((�^�ϕ ∧ �ϕ)→ �(�^�ϕ ∧ �ϕ)) NecU
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(ii) The second step is to prove

` ¬ Û�(�^�ϕ ∧ ¬�ϕ)

(1) ��^�ϕ→ ¬�¬�ϕ Axiom T� and ^ := ¬�¬
(2) ¬(��^�ϕ ∧ �¬�ϕ) (1) and CPL
(3) (��^�ϕ ∧ �¬�ϕ)↔ �(�^�ϕ ∧ ¬�ϕ) Axiom K�
(4) ¬�(�^�ϕ ∧ ¬�ϕ) (2),(3) and CPL
(5) U¬�(�^�ϕ ∧ ¬�ϕ) (4) and NecU

(6) ¬ Û�(�^�ϕ ∧ ¬�ϕ) (5), Û := ¬U¬ and CPL

(iii) The third and crucial step uses the key axiom,

` ÛTϕ ∧ ¬ ÛTψ ∧U((ϕ ∧ ψ)→ �(ϕ ∧ ψ))→ Û�(ϕ ∧ ¬ψ),

By taking ϕ to be �^�ϕ and ψ to be �ϕ, it yields

`

∧
ÛT�^�ϕ,
¬ ÛT�ϕ,
U((�^�ϕ ∧ �ϕ)→ �(�^�ϕ ∧ �ϕ))

→ Û�(�^�ϕ ∧ ¬�ϕ)

Item (i) above is the third conjunct in the antecedent; Item (ii) is the
negation of the consequent. Thus, by CPL,

` ÛT�^�ϕ→ ÛT�ϕ

(iv) The fourth step is to prove

` ÛT^�ϕ→ ÛT�^�ϕ.

(1) T^�ϕ→ TT^�ϕ Axiom 4T
(2) TT^�ϕ→ T�^�ϕ Axiom ` Tϕ→ �ϕ and MonotonicityT
(3) T^�ϕ→ T�^�ϕ (1),(2) and CPL
(4) ÛT^�ϕ→ ÛT�^�ϕ Axioms and rules for U

(v) The fifth step is to prove that

` ÛT�ϕ→ ÛTϕ

by using axiom T� and both NecT and NecÛ.

(vi) The sixth step uses Item (iv), Item (iii) and Item (v) to obtain the required

` ÛT^�ϕ→ ÛTϕ

For the actual proof of the lemma, take F ∈ LFPτ in a TA model M, and
assume there exists F′ ∈ LFPτ such that F′ ⊆ F and there is a dense open TF′ in
τ|F′ satisfying TF′ ⊆ ~ϕ�. Then, for any T ∈ τ such that T ∩ F′ , ∅, we have
T∩TF′ , ∅ and T∩TF′ ⊆ ~ϕ�∩F. Therefore, for any T ∈ τ such that T∩F′ , ∅,
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there exists a world v ∈ T such that M, v |= �(~ϕ�∩ F). This implies that for any
w ∈ F′, M,w |= T^�(~ϕ� ∩ F).25

By applying the proved validity, it follows that for any w ∈ F′, M,w |=
T̂ T(~ϕ� ∩ F). So for any F′′ ∈ LFPτ such that F′′ ∩ F′ , ∅, there exists u ∈ F′′

such that M,u |= T(~ϕ� ∩ F). Recall that LFPτ is conflict-free; thus, for any
F′′ ∈ LFPτ there exists u ∈ F′′ such that M,u |= T(~ϕ�∩F), i.e. there is Fu ∈ LFPτ
such that Fu ⊆ ~ϕ� ∩ F.

Thus, under the assumptions of this proposition, any F can be strengthened
to Fu such that Fu ⊆ ~ϕ�.

Finally, Proposition 5.4 can be proved.

Proof. (Proposition 5.4) Assume that Bt P holds in the given TA model. Then, by
Proposition 3.1, there exists a dense open T in τE0 such that T ⊆ P. By Fact 5.1, it
follows that for any F ∈ LFPτ, there is a dense open TF = T ∩ F in τ|F satisfying
TF ⊆ P. So for any F ∈ LFPτ there exists F′ ∈ LFPτ such that F′ ⊆ F and there is
a dense open TF′ ⊆ P. By applying Lemma 5.1, it follows that for any F ∈ LFPτ,
there exists F′′ ∈ LFPτ such that F′′ ⊆ F and F′′ ⊆ P, which implies by the
definition of fully grounded belief that B f P holds in the given TA model.

5.4 Discussion

The results in this section show that, for any TA model with domain W and for
any P ⊆ W, we have Bt P ⊆ B f P ⊆ Bg P. Moreover: as shown by Example 3.2,
the opposite directions do not hold in general: Bg P * B f P and B f P * Bt P.
Therefore, fully grounded belief is strictly weaker than topological justified
belief, but strictly stronger than grounded belief.

Bt P
topological justified

belief
→

B
f P

fully grounded
belief

→

Bg P
grounded

belief

As mentioned in the introduction, topological justified belief and grounded belief
represent different ways of dealing with the tension between consistency and
informativeness. The first chooses full consistency, even when this produces a
‘flat’ notion of belief; the second accepts more informative beliefs, even when
this leads to a weaker form of consistency.

It is important to notice the crucial role the principle of closure under con-
junction introduction (believing “P” and believing “Q” implies believing “P
and Q”) plays. It is precisely by giving up this closure property that grounded
beliefs manage to remain consistent up to a point (Item (iii) of Proposition 3.2;
Proposition 3.3), even after allowing more informative propositions. In the
literature, this principle is usually discussed in the context of probability-based
beliefs, where belief is interpreted as probability above a given threshold (see,
e.g., Huber and Schmidt-Petri 2009). Some philosophers have argued that it is
necessary to give up the principle, as the lottery paradox (Kyburg 1961) demon-
strates; some others insist on the necessity of “the closure of all-or-nothing belief
under conjunction” (Leitgeb 2017).

25Note that we write P holds in w (i.e. w ∈ P) as M,w |= P.
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Interestingly, some authors (e.g., Foley 2009) have proposed distinguish-
ing between the closure principles governing beliefs and those characterising
deductive reasoning. This position fits with what the results in this paper con-
vey. Indeed, as it has been discussed, the lack of closure under conjunction
introduction for grounded beliefs does not indicate that the agent lacks rea-
soning abilities. She is capable of combining her basic pieces of evidence as
represented by the topology τE0 .26 However, there is more than just combining
evidence to obtain arguments: there is also the aspect of choosing arguments
to define (potentially different) notions of beliefs. As it happens in the topo-
logical argumentation framework, while using arguments in certain ways pro-
duces notions of belief satisfying the principle (topological justified belief, fully
grounded belief), using them in different ways produce epistemic notions that
lack it (grounded belief).

The results also show how fully grounded belief strikes a balance between
topological justified beliefs and grounded beliefs, that is, a balance between
consistency and informativeness. On the one hand, it is ‘more consistent’ than
grounded belief, as it satisfies closure under conjunction introduction.27 On the
other hand, it is more informative than topological justified belief, as it allows
more propositions to be believed.

6 Future Work

This paper combines a semantic representation of an agent’s evidence with
tools from abstract argumentation theory. In the resulting structure, topological
argumentation (TA) models, it is possible to define a wide spectrum of epistemic
notions. This includes concepts already discussed in the literature on evidence-
based beliefs, as evidence, argument, infallible knowledge and topological justified
belief. Crucially, the use of tools from abstract argumentation makes it possible
to define new doxastic attitudes, with this paper focussing on those of grounded
belief and fully grounded belief. The main subject of this paper has been the study
of the properties of these notions as well as the relationship they have with
topological justified belief.

The individual analysis of the new notions has shown that, while grounded
beliefs are mutually consistent, closed under conjunction elimination, and both
positively and negatively introspective, they are not closed under conjunction
introduction. The analysis has also shown that fully grounded belief has the
properties of a KD45 operator. Then, the comparative analysis has shown how,
while topological justified beliefs can be seen as a notion that prioritises consis-
tency, grounded beliefs can be seen as a notion that prioritises informativeness.
More interestingly, the analysis has shown how fully grounded belief can be
seen as the ‘middle point’ between the two previous doxastic notions: it is
more informative than topological justified beliefs, but also more consistent
than grounded beliefs. It is important to emphasise that the main points of
discussion manifest themselves only because, in a TA model, there is an explicit
distinction between the process of constructing arguments from evidence and

26See Bjorndahl and Özgün (2019), Balbiani et al. (2019) for proposals modelling this process.
27In fact, fully grounded belief is exactly what emerges when the set of arguments on which

grounded beliefs are based, LFPτ, is closed under intersections (Proposition 5.3).
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the process of selecting arguments for defining beliefs.

The presented setting opens several interesting alternatives for further re-
search. An immediate technical one follows from the fact that fully grounded
belief has been semantically characterised but not syntactically defined. Further
research on its syntactic definability is necessary, and it may as well require an
extension of the language discussed here. It is also worth mentioning that the
attack relation in a TA model is specified by the modeller, and not extracted
from the model itself. In fact, although the model indicates the basic pieces of
evidence the agent has, it does not say anything about their source. Thus, one
could extend the setting by allowing an explicit representation of the sources
of evidence.

There are also conceptual questions. The concept of grounded belief relies
on the notion of grounded extension, but further doxastic notions may arise
by using further tools from abstract argumentation theory. Indeed, other ex-
tensions might be considered, as preferred extension, stable extension and so on.
They would give raise to further types of belief that can be compared with the
ones studied here.

From a more general perspective, it is also interesting to move to a multi-
agent scenario. In this topological-argumentation setting, this means not only
for agents to have potentially different sets of basic pieces of evidence, but also
for them to consider possibly different attack relations. This would give rise
to a more ‘real’ argumentation setting, with argumentation taking place not
only within an agent’s mind, but also between different agents. In turn, this
emphasises the importance of a further dynamic layer, exploring the different
epistemic actions that might affect the agent’s epistemic state. In line with
other work on evidence-dynamics (e.g., van Benthem and Pacuit 2011), the
emergence of new evidence is interesting (as is the dismissal of existing one);
our setting also allows for changes in an agent’s attack relation (arising, e.g.,
from her interaction with others).

Finally, it is worth exploring the relation between our qualitative setting
for evidence and belief and the quantitative approach developed in Dempster
(1968) and Shafer (1976).

A Proofs

A.1 Proof of Proposition 3.4

For the first sufficient condition, assume that � is symmetric on the set of
arguments. Observe that, then, LFPτ = {T ∈ τ | ∀x ∈ τ \ {∅} : x ∩ T , ∅}, which
is closed under conjunction.

The second sufficient condition requires more details, and the following
lemma will be useful.

Lemma A.1 Let M = (W,E0, τE0 ,�,V) be a TA model. Then, for all F1,F2 ∈ LFPτ,

F1,F2 ∈ LFPτ implies F1 ∩ F2 ∈ LFPτ
if and only if

for all T ∈ τ, if F1 ∩ F2� T then there is F ∈ LFPτ such that T ∩ F = ∅. �
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Proof. Take arbitrary F1,F2 ∈ LFPτ. From left to right, consider the contraposi-
tive, and suppose there is an open T ∈ τ such that T attacks F1 ∩ F2 but is not in
conflict with anybody in LFPτ. From the latter it follows that nobody in LFPτ
attacks T, and thus the attacked F1 ∩ F2 is not defended by LFPτ; therefore,
F1 ∩ F2 is not in LFPτ.

From right to left, take an argument T ∈ τ such that F1 ∩ F2 � T. Then,
there is F′ ∈ LFPτ such that T ∩ F′ = ∅, and thus either T� F′ or else F′� T.
The first case gives us an argument in LFPτ attacking T, namely F′; the second
case does that too, as F′ is in LFPτ, and thus there should be F′′ ∈ LFPτ such
that T� F′′. Hence, for all T ∈ τ such that F1 ∩ F2 � T there is F ∈ LFPτ such
that T� F: the set F1 ∩ F2 is defended by LFPτ. Thus, F1 ∩ F2 ∈ LFPτ.

Now, take any F1,F2 ∈ LFPτ and, for the contrapositive, suppose F1 ∩ F2
is not in LFPτ. By Lemma A.1, there is an open T ∈ τ which attacks F1 ∩ F2
(i.e., F1 ∩ F2 � T) and which is not in conflict with any elements of LFPτ (i.e.,
F ∈ LFPτ implies T ∩ F , ∅). The goal is to show that� is not unambiguous,
and in order to achieve that define the following T1,T2 and T3:

T1 := F1 ∩ T, T2 := F2 ∩ T, T3 := F1 ∩ F2.

Note how none of the sets are empty. Note also how, due to the fact that T
attacks F1 ∩ F2, T must be in conflict with F1 ∩ F2 (that is, (F1 ∩ F2) ∩ T = ∅);
hence, T1 ∩T2 = T2 ∩T3 = T3 ∩T1 = ∅: the sets are in conflict with one another,
and thus there should be pairwise attacks in at least one direction. Consider
two cases, T1� T2 or T2� T1.

• Suppose T1� T2. If T2� T3 is also the case, then the fact that either T1�
T3 or else T3 � T1 should hold make� not unambiguous. Otherwise,
T3 � T2 should hold and then, similarly, the fact that either T1 � T3 or
else T3� T1 hold make� not unambiguous.

• Suppose T2� T1. By an analogous argument,� is not unambiguous.

Thus, the attack relation is not unambiguous.

B Proof of Theorem 1

The text has already argued for the soundness of the system of Table 1 within
topological argumentation models (the validity of some of the interesting ax-
ioms is proved in Proposition 4.2, Proposition 4.3 and Proposition 4.4).

For completeness, It will be shown that any L�,U,T-consistent set of L�,U,T-
formulas is satisfiable. Satisfiability will be proved in an Alexandroff qTA model
(see below), which is L�,U,T-equivalent to its corresponding TA model.28 In
fact, we will prove a stronger completeness result than that stated in Theorem 1.

Theorem 2 The axiom system of Table 1 is strongly complete for the language L�,U,T
w.r.t. topological argumentation models which satisfies the following extra condition:
for every T,T1,T′1 ∈ τ: if T1� T and T′1 ⊆ T1, then T′1� T. �

28A similar strategy is used in Baltag et al. (2016): the authors first showed show that any
consistent set of formulas is satisfiable in a quasi-model, and then transformed such model into a
modally-equivalent topological evidence model.
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Next we prove the theorem.

Definition B.1 (qTA model) A quasi-topological argumentation model (qTA) is a
tuple M = (W,E0,6,�,V) in which (W,E0, τ,�,V) is a TA model (with τ
generated by E0, as before) and 6 ⊆ (W ×W) a preorder such that, for every
E ∈ E0, if u ∈ E and u 6 v, then v ∈ E.

Formulas inL�,U,T are interpreted in qTA models just as in TA models. The
only difference is �, which becomes a normal universal modality for 6. More
precisely, M,w |= �ϕ iff for all v ∈ W, if w 6 v then M,w |= �ϕ. Now, two
topological definitions, a refined qTA model, and the connection.

Definition B.2 (Specification preorder) Let (X, τ) be a topological space. Its
specification preorder vτ ⊆ (X × X) is defined, for any x, y ∈ X, as x vτ y iff for
all T ∈ τ, x ∈ T implies y ∈ T. J

Definition B.3 (Alexandroff space) A topological space (X, τ) is Alexandroff iff
τ is closed under arbitrary intersections (i.e.,

⋂
T ∈ τ for any T ⊆ τ). J

Definition B.4 (Alexandroff qTA model) A qTA-model M = (W,E0,6,�,V)
is called Alexandroff iff (i) (W, τE0 ) is Alexandroff, and (ii) 6 = vτ. J

Proposition B.1 Given an Alexandroff qTA model M = (W,E0,6,�,V), take M =
(W,E0, τ,�,V). Then, ~ϕ�M = ~ϕ�M for every ϕ ∈ L�,U,T. �

Proof. Exactly as that of Özgün (2017, Prop. 5.6.14) for topological evidence
models and L�,U, as T has the same truth condition in qTA and TA models.

For notation, define Γ© = {ϕ ∈ L�,U,T | ©ϕ ∈ Γ} for Γ ⊆ L�,U,T and © ∈
{�,U,T}. For the proof, let Φ0 be a L�,U,T-consistent set of L�,U,T-formulas. A
slightly modified version of Lindenbaum Lemma shows that it can be extended
to a maximal consistent one. Let MCS be the family of all maximally L�,U,T-
consistent sets of L�,U,T-formulas; let Φ be an element of MCS extending Φ0.

Definition B.5 (Canonical qTA model) The canonical qTA model for Φ, MΦ =
(WΦ,EΦ

0 ,6
Φ,�Φ,VΦ), is defined as follows.

• WΦ := {Γ ∈MCS | ΓU = ΦU
} and VΦ(p) := {Γ ∈WΦ

| p ∈ Γ}.

• For Γ,∆ ∈WΦ, Γ 6Φ ∆ iff def for any ϕ ∈ L�,U,T, �ϕ ∈ Γ implies ϕ ∈ ∆.

• For any Γ ∈ WΦ, define the set 6Φ[Γ] := {Ω ∈ WΦ
| Γ 6Φ Ω}. Then, let EΦ

0 :=
{
⋃

Γ∈U 6
Φ[Γ] | U ⊆WΦ

} \ {∅}.

While 6Φ and VΦ are standard (recall: � is a normal universal modality for 6), each
E ∈ EΦ

0 is a non-empty union of the 6Φ-upwards closure of the elements of some subset
of WΦ. The last component, the attack relation�Φ, is the novel one in this model, and
it requires more care. First, define {|ϕ|}M := {Γ ∈WΦ

| ϕ ∈ Γ}. Then, by taking τΦ to be the
topology generated by EΦ

0 define, for any T,T′ ∈ τΦ,

• T�Φ T′ iff def


T = ∅ if T′ = ∅

T ∩ T′ = ∅ and there is no ϕ ∈ L�,U,T s.t. otherwise
both {|Tϕ|} ⊆ T and ÛTϕ ∈ Φ

When no confusion arises, the superscript Φ will be omitted. J
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Note how MΦ is indeed a qTA model (Definition B.1). First, it is clear
that ∅ < E0 and W ∈ E0. Moreover, 6 is indeed a preorder (see its axioms)
satisfying the extra condition. Finally, it can be proved that � satisfies the
three conditions.

Lemma B.1 Let MΦ = (W,E0,6,�,V) be the model of Definition B.5. Then,

(i) for every T1,T2 ∈ τ: T1 ∩ T2 = ∅ if and only if T1 � T2 or T2 � T1;

(ii) for every T,T1,T′1 ∈ τ: if T1 � T and T′1 ⊆ T1, then T′1 � T;

(iii) for every T ∈ τ \ {∅}: ∅� T and T 6� ∅. �

Proof.

(i) The right-to-left direction is immediate. From left to right, assume T1 ∩

T2 = ∅; moreover, for a contradiction, suppose both T1 6� T2 and T2 6�

T1. Then, there is ϕ1 ∈ L�,U,T such that {|Tϕ1|} ⊆ T1 and ÛTϕ1 ∈ Φ, and
there is ϕ2 ∈ L�,U,T such that {|Tϕ2|} ⊆ T2 and ÛTϕ2 ∈ Φ. It follows that
{|Tϕ1|} ∩ {|Tϕ2|} = ∅; to finish the proof, it is enough to show

Lemma B.2 For any ϕ1, ϕ2 ∈ L�,U,T, having {|Tϕ1|} ∩ {|Tϕ2|} = ∅ and both
ÛTϕ1 ∈ Φ and ÛTϕ2 ∈ Φ leads to a contradiction. �

Proof. From {|Tϕ1|} ∩ {|Tϕ2|} = ∅ and theorem TTϕ → Tϕ it follows
that {|TTϕ1|} ∩ {|TTϕ2|} = ∅. Moreover: ÛTϕ1 ∈ Φ and ÛTϕ2 ∈ Φ
imply, respectively, {|Tϕ1|} , ∅ and {|Tϕ2|} , ∅ (Proposition B.2 below);
this, together with axiom Tϕ → TTϕ, yields both {|TTϕ1|} , ∅ and
{|TTϕ2|} , ∅, which imply (Proposition B.2) ÛTTϕ1 ∈ Φ and ÛTTϕ2 ∈

Φ.

Observe how {|Tϕ1|} ∩ {|Tϕ2|} = ∅ also implies {|Tϕ1|} ⊆ {|¬Tϕ2|}, so
U(Tϕ1 → ¬Tϕ2) ∈ Φ; therefore, from Proposition 4.1 it follows that
U(TTϕ1 → T¬Tϕ2) ∈ Φ. From the latter and ÛTTϕ1 ∈ Φ we get
ÛT¬Tϕ2 ∈ Φ; but then, axiom ÛTϕ → ¬ ÛT¬ϕ and ÛTTϕ2 ∈ Φ

imply ¬ ÛT¬Tϕ2 ∈ Φ. Thus, we have a contradiction, as Φ is consistent.

(ii) Take T,T1,T′1 ∈ τ with T1 � T and T′1 ⊆ T1. If T = ∅, the case is trivial
(T1 should be ∅, and so T′1), so suppose T , ∅. From T1 � T, there is no
ϕ ∈ L�,U,T such that {|Tϕ|} ⊆ T1 and ÛTϕ ∈ Φ. But T′1 ⊆ T1, so no such ϕ
exists for T′1 either. Moreover, T1 ∩ T = ∅ so T′1 ∩ T = ∅; hence, T′1� T.

(iii) Immediate. �

Thus, MΦ is a qTA model. The next proposition (standard proof) provides
existence lemmas for the standard modality � and the global modality Û.

Proposition B.2 For any ϕ ∈ L�,U,T and any Γ ∈W:
• ^ϕ ∈ Γ iff there is ∆ ∈W s.t. Γ 6 ∆ and ϕ ∈ ∆.

• Ûϕ ∈ Γ iff there is ∆ ∈W s.t. ϕ ∈ ∆; �
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Now, tools to prove a similar result for the operator T, whose truth clause
relies on LFP, given by�. First, some useful properties of the model.

Fact B.1 (i) τ = E0 ∪ {∅}. (ii) If Û�ϕ ∈ Φ, then {|�ϕ|} ∈ τ. (iii) If ÛTϕ ∈ Φ, then
{|Tϕ|} ∈ τ. (iv) For any T ∈ τ and any ϕ ∈ L�,U,T: if T ⊆ {|ϕ|}, then T ⊆ {|�ϕ|}. �

Proof.

(i) Immediate, as {
⋃

Γ∈U 6
Φ[Γ] | U ⊆ WΦ

} is closed under intersections and
unions.

(ii) Analogous to the next one.

(iii) Assume ÛTϕ ∈ Φ; then, there is at least one Γ ∈ W such that Tϕ ∈ Γ,
that is, {|Tϕ|} , ∅. Now, note how {|Tϕ|} =

⋃
Γ∈{|Tϕ|} 6[Γ].29 Moreover,

{|Tϕ|} ⊆ W so, by E0’s definition,
⋃

Γ∈{|Tϕ|} 6[Γ] = {|Tϕ|} ∈ E0; then, by the
first item, {|Tϕ|} ∈ τ.

(iv) First, note how T =
⋃

Γ∈T 6[Γ].30 Then, from T ⊆ {|ϕ|} it follows that⋃
Γ∈T 6[Γ] ⊆ {|ϕ|}, that is, 6[Γ] ⊆ {|ϕ|} for every Γ ∈ T; therefore, �ϕ ∈ Γ

(Proposition B.2) for every such Γ, and hence T ⊆ {|�ϕ|}. �

Here are the first steps towards locating LFP.

Definition B.6 (Semi-acceptable and Acceptable) Define C1 as

C1 = {T ∈ τ | there exists ϕ ∈ L�,U,T such that {|Tϕ|} ⊆ T and ÛTϕ ∈ Φ}

• An open T ∈ τ is semi-acceptable if and only if, for any ψ ∈ L�,U,T with T ⊆ {|�ψ|},
there is ξ ∈ L�,U,T such that {|T ξ|} ⊆ {|�ψ|} and ÛT ξ ∈ Φ.

• An open T ∈ τ is acceptable if and only if T is semi-acceptable and there is no T′ ∈ τ
such that T ∩ T′ = ∅ and T′ ∩ T′′ , ∅ for all T′′ ∈ C1.

Define C2 as C2 = {T ∈ τ \ C1 | T is acceptable}. J

Note that no element of C1 is attacked by elements of τ. Moreover,

Fact B.2 (i) For any T ∈ τ, if T ∈ C1, then T is acceptable. (ii) If T ∈ τ is semi-ac-
ceptable, then T ∩ T′ , ∅ for all T′ ∈ C1. �

Proof.

(i) If T ∈ C1, then there is ϕ ∈ L�,U,T with {|Tϕ|} ⊆ T and ÛTϕ ∈ Φ. For
semi-acceptability, take any ψ ∈ L�,U,T with T ⊆ {|�ψ|}; the initial ϕ
satisfies both {|T ξ|} ⊆ {|�ψ|} and ÛT ξ ∈ Φ. For the second condition
of acceptability, T ∈ C1, so for any T′ ∈ τ such that T′ ∩ T′′ , ∅ for all
T′′ ∈ C1, it is the case that T′ ∩ T , ∅.

29For (⊆), suppose ∆ ∈ {|Tϕ|}; since 6 is reflexive, ∆ ∈ 6[∆], and thus ∆ ∈
⋃

Γ∈{|Tϕ|} 6[Γ]. For (⊇),
take ∆ ∈

⋃
Γ∈{|Tϕ|} 6[Γ]; then, ∆ ∈ 6[Γ] for some Γ in {|Tϕ|}, that is, for some Γ with Tϕ ∈ Γ. But

then, from axioms Tϕ→ TTϕ and Tϕ→ �ϕ, we get �Tϕ ∈ Γ. Then, from 6’s definition, Γ 6 ∆
implies Tϕ ∈ ∆. Hence, ∆ ∈ {|Tϕ|}.

30Indeed, T ⊆
⋃

Γ∈T 6[Γ] is immediate (6 is reflexive), and T ⊇
⋃

Γ∈T 6[Γ] follows from the fact
that if Γ ∈ T then 6[Γ] ⊆ T.
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(ii) It will be proved that, for any ϕ ∈ L�,U,T such that ÛTϕ ∈ Φ, any
semi-acceptable open T ∈ τ satisfies that T ∩ {|Tϕ|} , ∅. Fact B.2.(ii)
follows, because every open in C1 should be a superset of {|Tϕ|} for some
ϕ ∈ L�,U,T.

For a contradiction, suppose there is ϕ ∈ L�,U,T such that ÛTϕ ∈ Φ and
T ∩ {|Tϕ|} = ∅ for a semi-acceptable T. Now take any ψ ∈ L�,U,T such
that T ⊆ {|�ψ|}; then, T ⊆ {|�ψ ∧ ¬Tϕ|}. By Item (iv) of Fact B.1, T ⊆
{|�(�ψ∧¬Tϕ)|}. But T is semi-acceptable, so there is ξ ∈ L�,U,T such that
{|T ξ|} ⊆ {|�(�ψ ∧ ¬Tϕ)|} and ÛT ξ ∈ Φ. Now, ` �(�ψ ∧ ¬Tϕ)→ ¬Tϕ,
so {|T ξ|} ⊆ {|¬Tϕ|}, that is, {|T ξ|} ∩ {|Tϕ|} = ∅. The contradiction then
follows from Lemma B.2. �

Lemma B.3 Let C = C1 ∪ C2. Then, LFP = C. �

Proof. (⊇) The proof of this direction consists of proving two cases.(i) If T ∈ C1,
there isϕ ∈ L�,U,T such that {|Tϕ|} ⊆ T and ÛTϕ ∈ Φ. Hence, by�’s definition,
there is no T′ ∈ τwith T∩T′ = ∅ such that T� T′;31 thus, T ∈ LFP. Therefore,
C1 ⊆ LFP. (ii) Otherwise, T ∈ C2. Take any T′ ∈ τ such that T� T′. From�’s
definition, T′∩T = ∅. FromC2’s definition and T∩T′ = ∅, there is T′′ ∈ C1 such
that T′ ∩ T′′ = ∅. From the previous case, T′′ cannot be attacked, i.e., T′′ 6� T′;
then, by the first item on Lemma B.1, T′ � T′′. Summarising, for any T′ ∈ τ
attacking T, there is T′′ ∈ C1 attacking T′; hence, T ∈ d(C1) ⊆ d(LFP) = LFP,
that is, T ∈ LFP. Therefore, C2 ⊆ LFP.

(⊆) Take now T ∈ τ such that T < C; it will be shown that T < LFP. The case
with T = ∅ is immediate, as ∅� ∅. Thus, suppose T , ∅.

From T < C it follows that T < C1, so there is no φ ∈ L�,U,T such that
{|Tφ|} ⊆ T and ÛTφ ∈ Φ; hence, from �’s definition, every T′ ∈ τ with
T ∩ T′ = ∅ satisfies that T� T′.

Note that there is at least one T′ ∈ τwith T∩T′ = ∅, for suppose otherwise,
i.e., suppose T′ ∈ τ implies T ∩ T′ , ∅. Now, take any Γ ∈ W; since 6[Γ] ∈ τ
(from 6[Γ] ∈ E0 and Item (i) of Fact B.1), it follows that 6[Γ] ∩ T , ∅, i.e.,
there is ∆ with Γ 6 ∆ and ∆ ∈ T. Furthermore, take any ϕ ∈ L�,U,T with
T ⊆ {|ϕ|}; by Item (iv) of Fact B.1, T ⊆ {|�ϕ|} and then, from Γ 6 ∆ and ∆ ∈ {|�ϕ|},
Proposition B.2 gives us Γ ∈ {|^�ϕ|}, i.e., ^�ϕ ∈ Γ. Thus, it has been shown
that for any Γ ∈ W and any ϕ ∈ L�,U,T with T ⊆ {|ϕ|}, we have ^�ϕ ∈ Γ. Then,
from Proposition B.2 it follows that any ϕ ∈ L�,U,T with T ⊆ {|ϕ|} satisfies that
U^�ϕ ∈ Φ; thus, axiom U^�ϕ→ ÛTϕ implies ÛTϕ ∈ Φ. Moreover, axiom
Tϕ→ �ϕ implies {|Tϕ|} ⊆ {|�ϕ|}. Thus, for any ϕ ∈ L�,U,T with T ⊆ {|�ϕ|} we
have found a formula inL�,U,T, ϕ itself, such that ÛTϕ ∈ Φ and {|Tϕ|} ⊆ {|�ϕ|};
hence, T is semi-acceptable. But T ∩ T′ , ∅ for all T′ ∈ τ, so there is no T′ ∈ τ
such that both T ∩ T′ = ∅ and, for any T′′ ∈ C1, T ∩ T′′ , ∅: in other words,
T is acceptable. Hence, T ∈ C2, i.e., T ∈ C: a contradiction. Thus, indeed there
must be T′ ∈ τ such that T ∩ T′ = ∅.

The rest of the proof is divided into two cases: either there is T′ ∈ τ with
T ∩ T′ = ∅ and T′ ∈ C (at least one T′ contradicting T is in C), or else for any

31This includes ∅, as T ∈ C1 implies {|Tϕ|} , ∅ for T’s corresponding ϕ; hence, T , ∅ and thus
T 6� ∅.
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T′ ∈ τ with T ∩ T′ = ∅ we have T′ < C (no T′ contradicting T is in C). In both
cases, it will be shown that T < LFP.

(i) The first case is the simple one: take any T′ ∈ τ such that T ∩ T′ = ∅ and
T′ ∈ C. Then, as it has been argued, T � T′; moreover, as it has been
proved, C ⊆ LFP. Thus, T < LFP, as LFP has to be conflict-free.

(ii) The second case requires more care. Since no element of C contradicts T,
it follows that C ∈ C implies T ∩ C , ∅. Now, consider the following two
sub-cases: either T is semi-acceptable, or it is not. We will prove that, in
both cases, T < d(C).

If T is semi-acceptable, recall the initial assumption T < C = C1∪C2. Then
T cannot be acceptable, that is, there must be T′′ ∈ τ such that T ∩ T′′ = ∅
and, for any C1 ∈ C1, we have T′′ ∩C1 , ∅. Now, take any such T′′. From
T < C, T∩T′′ = ∅ and T′′ , ∅ (as its intersection with C1 is non-empty), it
follows that T� T′′: this T′′ attacks T. Since T′′∩C1 , ∅ for any C1 ∈ C1,
there is no C1 ∈ C1 such that T′′ � C1. Moreover, there is no C2 ∈ C2
such that T′′� C2 – otherwise, T′′ ∩ C2 = ∅would imply C2 < C2. So, in
summary, if T is semi-acceptable, then there is T′′ ∈ τ such that T� T′′;
there is no C ∈ C such that T′′� C. Therefore, T < d(C).

If T is not semi-acceptable, there is ϕT ∈ L�,U,T such that T ⊆ {|�ϕT |} and
there is no ψ ∈ L�,U,T such that both {|Tψ|} ⊆ {|�ϕT |} and ÛTψ ∈ Φ. In
particular, ϕT itself cannot be such ψ, so either {|TϕT |} * {|�ϕT |} or else
ÛTϕT < Φ. But axiomTϕ→ �ϕ implies {|TϕT |} ⊆ {|�ϕT |}, so ÛTϕT < Φ.
Now, take any C ∈ C1; let ϕC ∈ L�,U,T be one of the formulas satisfying
both {|TϕC|} ⊆ C and ÛTϕC ∈ Φ (by C’s definition, there is at least one).
From theoremTϕ→ �Tϕ, it follows that (�ϕT∧TϕC)→ (�ϕT∧�TϕC)
is a theorem too, and thus so are (�ϕT ∧ TϕC) → (��ϕT ∧ �TϕC) (by
axiom �ϕ→ ��ϕ) and (�ϕT ∧TϕC)→ �(�ϕT ∧TϕC) (axiom K for �).
Hence, by Proposition B.2, U

(
(�ϕT ∧ TϕC)→ �(�ϕT ∧ TϕC)

)
∈ Φ.

So far we have ÛTϕT < Φ and, for every C ∈ C1, not only ÛTϕC ∈ Φ

but also U
(
(�ϕT ∧ TϕC) → �(�ϕT ∧ TϕC)

)
∈ Φ. The first and theorem

Tϕ ↔ T�ϕ imply ÛT�ϕT < Φ; the second and axiom Tϕ → TTϕ
imply ÛTTϕC ∈ Φ. These two, the third, and axiom

(
ÛTϕ ∧ ¬ ÛTψ ∧

U((ϕ∧ψ)→ �(ϕ∧ψ))
)
→ Û�(ϕ∧¬ψ) imply Û�(TϕC∧¬�ϕT) ∈ Φ. For

the final part, take S to be the union of {|�(TϕC ∧ ¬�ϕT)|} for all C ∈ C1,
that is,

S :=
⋃

C∈C1
{|�(TϕC ∧ ¬�ϕT)|}

The following two facts about S are crucial for proving T < d(C):

(a) S ∩ T = ∅. For its proof, from T ⊆ {|�ϕT |} and {|�(TϕC ∧ ¬�ϕT)|} ⊆
{|¬�ϕT |} for all C ∈ C1 (for the latter, use axiom �ϕ→ ϕ), it follows
that T ∩ {|�(TϕC ∧¬�ϕT)|} = ∅ for all such C. Therefore, S∩ T = ∅.
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(b) For any C′ ∈ C, we have C′ ∩ S , ∅. For its proof, take any C′ ∈ C. If
C′ ∈ C1 then, as {|�(TϕC′ ∧ ¬�ϕT)|} ⊆ {|TϕC′ |} (same as before) and
{|�(TϕC′ ∧ ¬�ϕT)|} , ∅ (by Û�(TϕC ∧ ¬�ϕT) ∈ Φ), it follows that
{|�(TϕC′ ∧ ¬�ϕT)|} ∩ {|TϕC′ |} , ∅. But {|TϕC′ |} ⊆ C′ for any C′ ∈ C1;
hence, S ∩ C′ , ∅. Otherwise, C′ ∈ C2 and, for a contradiction,
assume S∩C′ = ∅. Then, since S∩C′′ , ∅ for all C′′ ∈ C1 as we have
proved, there is an open in τ, S, such that S∩C′ = ∅ and S∩C′′ , ∅
for all C′′ ∈ C1. Thus, C′ violates the second condition of acceptance,
and hence C′ < C2: contradiction. So S ∩ C′ , ∅ for any C′ ∈ C2.
Therefore, in sum, C′ ∈ C implies C′ ∩ S , ∅

Now, since S∩T = ∅ and T is not semi-acceptable (so there is noϕ ∈ L�,U,T
s.t. both {|Tϕ|} ⊆ T and ÛTϕ ∈ Φ), we have found an open S in τ with
T� S, according to the definition of�. But S ∩ C , ∅ for all C ∈ C, so
S 6� C for all C ∈ C: no open in C attacks S. Hence, T < d(C).

Therefore, regardless of whether T is semi-acceptable or not, we have
proved that T < C implies that T < d(C).

By the fact that C1 is not attacked and C2 ⊆ d(C1), which we have proved
in our proof of C ⊆ LFP, it follows that C ⊆ d(C). Together with d(C) ⊆ C,
it follows that C = d(C). By the fact that C ⊆ LFP and LFP is the least
fixed point, it follows that C = LFP.

Thus, in both cases T < C implies T < LFP. This completes the proof.

Proposition B.3 (Truth lemma) For any ϕ ∈ L�,U,T and any Γ ∈W,

Γ ∈ {|ϕ|}MΦ if and only if Γ ∈ ~ϕ�MΦ �

Proof. The proof proceeds by induction, with the cases for atomic propositions
and Boolean connectives being routine, and those for and � and U relying on
Proposition B.2. Here we focus on the case for T.

From left to right, suppose Γ ∈ {|Tϕ|}. Then, Tϕ ∈ Γ so, by Proposition B.2,
ÛTϕ ∈ Φ which, by Item (iii) of Fact B.1, implies {|Tϕ|} ∈ τ. Now, let T = {|Tϕ|}.
Then,(i) from {|Tϕ|} ⊆ T and ÛTϕ ∈ Φ, it follows that T ∈ C1 which, by
Lemma B.3, implies T ∈ LFP; (ii) Γ ∈ T, as Γ ∈ {|Tϕ|}; (iii) from axiom Tϕ→ ϕ
it follows that T ⊆ {|ϕ|} which, by inductive hypothesis {|ϕ|} = ~ϕ�, implies
T ⊆ ~ϕ�. Hence, by T’s truth condition, Γ ∈ ~Tϕ�.

From right to left, suppose Γ ∈ ~Tϕ�. Then, by T’s truth condition, there is
T ∈ LFP with Γ ∈ T and T ⊆ ~ϕ�. The inductive hypothesis implies ~ϕ� = {|ϕ|}.
By Item (iv) of Fact B.1 and T ⊆ {|ϕ|}, we have T ⊆ {|�ϕ|}. So we have proved
that Γ ∈ T and T ⊆ {|�ϕ|}.

By Lemma B.3, LFP = C1 ∪ C2; thus, T ∈ C1 ∪ C2. Suppose T ∈ C1; then
there is ψ ∈ L�,U,T with {|Tψ|} ⊆ T and ÛTψ ∈ Φ. Thus, {|Tψ|} ⊆ T ⊆ {|�ϕ|}, so
U(Tψ → �ϕ) ∈ Φ. Now, take any ∆ ∈ {|Tψ|}. The fact that U(Tψ → �ϕ) ∈ ∆,
together with theorem U(ϕ → ψ) → (Tϕ → Tψ) (Proposition 4.1), implies
TTψ → T�ϕ ∈ ∆. Moreover: ∆ ∈ {|Tψ|} implies ∆ ∈ {|TTψ|}, so ∆ ∈ {|T�ϕ|},
that is, T�ϕ ∈ ∆. The latter, together with theorem Tϕ ↔ T�ϕ and axiom
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Tϕ → U(�ϕ → Tϕ), imply U(�ϕ → Tϕ) ∈ ∆, and thus U(�ϕ → Tϕ) ∈ Φ.
Hence, {|�ϕ|} ⊆ {|Tϕ|} and thus, since Γ ∈ T and T ⊆ {|�ϕ|}, we have Γ ∈ {|Tϕ|}.
Otherwise, T ∈ C2, and hence for any ψ ∈ L�,U,T with T ⊆ {|�ψ|} there is
ξ ∈ L�,U,T with {|T ξ|} ⊆ {|�ψ|} and ÛT ξ ∈ Φ. Thus, since ϕ satisfies that
T ⊆ {|�ϕ|}, there is η ∈ L�,U,T such that {|T η|} ⊆ {|�ϕ|} and ÛT η ∈ Φ. From here
we can repeat the argument used in the case of T ∈ C1 in order to get Γ ∈ {|Tϕ|}
again. Thus, in both cases, Γ ∈ {|Tϕ|}, which completes the proof.

Lemma B.4 MΦ is Alexandroff. �

Proof. Whether MΦ is Alexandroff has nothing to do with �; thus, we can
apply Prop. 5.6.15 in Özgün (2017), which states that if τ = {

⋃
Γ∈U 6[Γ] | U ⊆W}

then MΦ is Alexandroff. But Item (i) of Fact B.1 and the definition of E0 imply
the required condition; then, MΦ is Alexandroff.

Since MΦ is Alexandroff, Proposition B.1 tells us it has a modally equivalent
topological argumentation model. Hence, the L�,U,T-consistent set of L�,U,T-
formulas Φ0 is satisfiable in a topological argumentation model which satisfies
the following condition: for every T,T1,T′1 ∈ τ: if T1 � T and T′1 ⊆ T1, then
T′1� T (see Lemma B.1.2).
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