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Nomenclature

Symbols

a(·) Neural network activation function

C(·) Cost function defining the objective of neural network training

/ optimization procedure; scalar function defining the P -dimensional

cost landscape

f(·) Model function defining neural network architecture, mapping from

T1-dimensional space to TL-dimensional space

F Sensitivity matrix of size TL × P ; Jacobian matrix of neural network outputs for a given input

G Hessian OPG approximation matrix of size P × P
H Hessian matrix of size P × P
K Number of eigenpairs, scalar

L Number of neural network layers, scalar

n When used as subscript, example index

N Number of training examples, scalar

P Number of neural network parameters, scalar

Q Eigenvector matrix of size P ×K or P × P
S Number of Lanczos iteration steps, scalar

T When used as superscript (e.g. QT ), indicates transposed

T1 Dimensionality of neural network input and data, scalar

TL Dimensionality of neural network output and data, scalar

xn T1-dimensional input data point / example, vector or scalar

x0 Denotes an arbitrary T1-dimensional input data point / example,

vector or scalar

yn TL-dimensional output data point / example, vector or scalar

ŷn TL-dimensional prediction / estimated output data point, vector or scalar
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λ L2-regularization rate parameter, scalar

ω P -dimensional model parameter, vector or scalar

ω̂ P -dimensional estimated model parameter, vector or scalar

σ(x0) The TL-dimensional predictive uncertainty associated with x0 (i.e. one uncertainty

value per neural network output)

Λ Eigenvalue matrix of size K ×K
λk Eigenvalue number k, λ1 ≥ λ2 ≥ . . . ≥ λk ≥ . . . ≥ λK , scalar

Σ Covariance matrix of size P × P
∧ When used as superscript (e.g. ω̂), indicates estimated

∼ When used as superscript (e.g. Σ̃), indicates approximated

N Normal distribution



viii Nomenclature

Abbreviations / Accronyms

CIFAR-10 Canadian Institute For Advanced Research;

Small images dataset, 10 classes

CPU Central Processing Unit

DAG Directed Acyclic Graph

DRWI Dynamic Random Weight Initialization

GB Giga Byte

Github Provider of Internet hosting for software development and version control

GNU General Public License

GPU Graphical Processing Unit

ImageNet Large visual database of more than 14 million hand-annotated images

LeNet LeCun Network; type of neural network architecture

MNIST Modified National Institute of Standards and Technology;

Handwritten digits image dataset, 10 classes

NumPy The fundamental package for scientific computing with Python

OoD Out-of-Distribution

OPG Outer-Product of Gradients

PreResNet Pre-activation Residual Network; type of neural network architecture

Python The Python programming language

PyTorch Deep learning software framework provided by Facebook

ReLU Rectified Linear Unit; type of activation function

ResNet Residual Network; type of neural network architecture

RMS Root Mean Square

SciPy Python-based ecosystem of open-source software for mathematics, science,

and engineering

SGD Stochastic Gradient Descent

sigmoid Type of activation function

softmax Type of activation function

SRWI Static Random Weight Initialization

Std Standard deviation

SVD Singular Value Decomposition

TensorFlow Deep learning software framework provided by Google

Var Variance



Preface

”When will my daughter be back from school today to ruin the concentration I need for

great scientific accomplishments?”, the poor computer scientist asked himself miserably

blaming his pandemic induced home office situation.

”It’s Tuesday, so I know it will be quite early”, he continued. ”On the other hand, it’s

spring — so it’s nice to stay outside and play around with friends. But she’s probably

hungry — since there is no afternoon meal served at school this week”.

The poor computer geek concluded it would rather be soon, and started to finish up his

work in order to get a clean stop. A few seconds later, the doorbell rang, and she was

home. His mental model had made the right prediction based on his prior knowledge

and the data available.

Almost any process you can imagine can be thought of as function computation. As

long as we can learn the right function for the given task, we can use it to predict

answers to all kinds of relevant questions. Learning from data plays a key role not only

in everyday life, but in many areas of science, finance and industry. We make use of

historic data to learn functions, and then compute these for arbitrary inputs to predict

likely outcomes. From the frequency spectra of underwater acoustic emissions, we can

estimate the amount of oil leaking into the ocean. Or we can predict the future price of

a stock and get rich on the basis of company performance measures and economic data

[Friedman et al., 2001; Goodfellow et al., 2016; Nielsen, 2015].

However, the simplest mathematical functions can fall short of representing complicated

real-world phenomena. If we consider simple linear regression, and learn the two param-

eters given a set of observations, this simple linear model can quickly fail to describe

the real underlying function. The classical example is the XOR function, for which we

will find that a linear model cannot represent its non-linear relationship between the in-

put and the output. We can still use it, but its predictive capabilities will lead to poor

accuracy because it is under-fitting the data.
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In contrast, it would be convenient if we could just rank functions by how well they fit

our data, and then select the model with the best fit. But here we face the unfortunate

difficulty that more complex models typically fits the data better. When we fit a curve

to data, a quadratic curve with three parameters can always fit the data better than a

linear model with just two parameters. And it is turtles all the way down — because a

polynomial with hundred terms fits the data even better, and so on. Selecting the model

with the best fit typically leads to implausibly detailed and over-fitted models, which

generalize poorly for new unseen data.

One of the most striking facts about neural networks comes with the universal approxima-

tion theorem [Stinchombe, 1989]. It states that no matter what the underlying function

is, there is guaranteed to be a neural network so that for every possible input, the ex-

pected output value (or some close approximation) is predicted by the network. In fact,

the universality theorem even holds for networks with a single hidden layer — as long

as they are allowed to be exponentially wide. However, even though these wide but shal-

low networks can be powerful on their own, they are generally prone to over-fitting. But

fortunately, strong empirical evidence suggests that deep neural networks [Goodfellow

et al., 2016] yet pose great generalization capabilities. When cleverly constructed using

various forms of regularization and parameter optimizations strategies — deep networks

are capable of avoiding the over-fitting regime, and can be adapted to learn the functions

useful in solving very complicated real-world problems with unprecedented accuracy.

Deep learning models are generally considered to be black box models. This means that

their model functions are so complex that no human interpretability is possible. One

cannot simply have a closer look at one or more of the parameters in these networks

and assess their role in the over-all model. Nor can we reach a conclusion of what the

prediction will look like for a given input just by simple inspection. Consequently, when

we make a prediction, we can neither explain in an easy manner why the model decided to

give us this particular answer. These aforementioned shortcomings are closely tied to the

problem of adversarial attacks and out-of-distribution examples [Goodfellow et al., 2014;

Lee et al., 2018]. Deep learning models generally work best when applied on input data

coming from the same distribution as the training set. In terms of image classification,

quite easily one can construct both questionable and unquestionable images that will

fool the network to predict a desired outcome.

Statistical uncertainty [Friedman et al., 2001] has long been thought of as a potential

candidate to put these aforementioned shortcomings to an end. Traditionally, deep

learning image classifiers are constructed to produce probability point predictions. How-

ever, as the Bayesian paradigm provides a coherent framework based on full probability

distributions, these networks can be extended to produce full multivariate probability
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distributions. Their outputs can thus be seen as probability means and probability vari-

ances. This additional piece of information, the variance, is thus seen as a measure of the

associated predictive uncertainty of the probability point predictions represented by the

means. Predictive uncertainty is often divided in two components: the aleatoric com-

ponent and the epistemic component [Hüllermeier and Waegeman, 2020]. The aleatoric

uncertainty is regarded as irreducible and stochastic, and will in the context of image

classification stem from the randomness associated with the labeling process. The other

component, the epistemic uncertainty — also referred to as model uncertainty — is due

to limited amount of training data, and can be reduced accordingly.

With a mixed success, predictive uncertainty has previously been explored and approx-

imated by a range of methods in the deep learning literature: from classical sampling

techniques such as Bootstrap ensemble methods [Khosravi and Creighton, 2011; Osband,

2016], Markov Chain Monte Carlo based methods [Andrieu et al., 2003; Krauth, 1998],

and the more recent MC-Dropout method [Gal and Ghahramani, 2016; Kendall and

Gal, 2017], to optimization based methods commonly referred to as Variational Infer-

ence [Jordan et al., 1999; Wainwright and Jordan, 2008].

This thesis deals with one of the most classical uncertainty quantification methods known

in statistics. Throughout the thesis, it will be referred to as the Delta method [Hoef,

2012; Khosravi and Creighton, 2011; MacKay, 1992a; Newey and McFadden, 1994]. The

Delta method is an analytical approach towards quantifying the variance of multivariate

functions. In the deep learning prediction context, this amounts to evaluating an ex-

pression for the variance (i.e. uncertainty) of the neural network output which depends

on the inversion of the Fisher information [Ly et al., 2017] matrix. Since the dimen-

sionality of this matrix grows quadratically with the number of model parameters, the

method has a long time been deemed computationally intractable in the deep learning

domain. However, from first principles — and as a result of three years of systematic

work, including more than two hundred documented Jira tasks — we show via three cen-

tral papers that the method can in fact be successfully adapted to quantify predictive

epistemic uncertainty in modern deep learning image classification.
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Abstract

This thesis explores the Delta method and its application to deep learning image clas-

sification. The Delta method is a classical procedure for quantifying uncertainty in

statistical models, but its direct application to deep neural networks is prevented by the

large number of parameters P . We recognize the Delta method as a measure of epistemic

as opposed to aleatoric uncertainty and break it into two components: the eigenvalue

spectrum of the inverse Fisher information (i.e. inverse Hessian) of the cost function

and the per-example sensitivities (i.e. gradients) of the model function. We mainly fo-

cus on the computational aspects, and show how to efficiently compute low and full-rank

approximations of the inverse Fisher information matrix, which in turn reduces the com-

putational complexity of the näıve Delta method from O(P 2) space and O(P 3) time, to

O(P ) space and time. We provide bounds for the approximation error by a novel error

propagating technique, and validate the developed methodology with a released Tensor-

Flow implementation. By a comparison with the classical Bootstrap, we show that there

is a strong linear relationship between the quantified predictive epistemic uncertainty

levels obtained from the two methods when applied on a few well known architectures

using the MNIST and CIFAR-10 datasets.

The thesis is organized as follows: Chapter 1 contains an introduction to deep learning,

while Chapter 2 addresses the basic concepts of uncertainty, and we briefly review some

of the existing methodology for uncertainty quantification in deep learning. In Chapter

3, we give an introduction and a summary of the three scientific papers included in the

dissertation. Chapter 4 concludes the thesis and discusses potential topics for future

work. In the last Chapter 5, we include the original manuscripts of the three scientific

papers.
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Chapter 1

Deep Learning

Behind the tremendous array of conglomerative literature, supervised deep learning

[Goodfellow et al., 2016; Nielsen, 2015] can simply be viewed as a (huge) non-linear

regression. At the first step towards supervised deep learning, we find simple linear re-

gression. We learn a two-dimensional parameter describing a straight line on the basis

of example data consisting of single-dimensional inputs and outputs. Consecutively, we

form linear combinations of the parameter and new single-dimensional inputs to predict

single-dimensional outputs. At the second step, we arrive at multiple linear regression.

Here, a multi-dimensional parameter describing a hyper plane is learned to predict single-

dimensional outputs from multi-dimensional inputs. The next step takes us to logistic

regression, where we allow for learning non-linear relationships between two-dimensional

outputs and multi-dimensional inputs. The fourth step takes us to multinomial logistic

regression, where non-linear relationships between multi-dimensional inputs and outputs

are allowed to be learned. At the final fifth step, we find supervised deep learning — a

modeling paradigm with few rules — where we learn multiple deep layers of non-linear

relationships between multi-dimensional inputs and outputs.

Deep learning has successfully been applied in both unsupervised [Caron et al., 2018;

Jing and Tian, 2020; Xie et al., 2016] and supervised forms. This introduction deals

with supervised deep learning, which is the task of learning a parameterized function

that maps an input to an output based on example pairs of both input and output. Quite

differently, unsupervised deep learning deals with the task of learning an embedding that

groups inputs similar to each other into clusters based on just input examples.
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1.1 Deep Learning Hype

Although successfully applied by word-wide researchers, deep learning has received sub-

stantial criticism from several parties. To quote Andrew Ng — artificial intelligence

pioneer, co-founder and former head of Google Brain, former Chief Scientist at Baidu,

and today mostly known as the leading figure of Coursera — in a podcast hosted by

DeepLearning.AI and Stanford HAI, reproduced and published by the IEEE Spectrum

Magazine [Perry, 2021]:

“It turns out”, Ng said, “that when we collect data from Stanford Hospital, then we

train and test on data from the same hospital, indeed, we can publish papers showing

[the algorithms] are comparable to human radiologists in spotting certain conditions.”

“But”, he said, “It turns out [that when] you take that same model, that same AI

system, to an older hospital down the street, with an older machine, and the technician

uses a slightly different imaging protocol, that data drifts to cause the performance of

AI system to degrade significantly. In contrast, any human radiologist can walk down

the street to the older hospital and do just fine.”

“So even though at a moment in time, on a specific dataset, we can show this works, the

clinical reality is that these models still need a lot of work to reach production.”

Indeed, industries such as Medical and Automotive are currently investing billions of

dollars in deep learning research. The hype seems to be endless, but few companies

are willing to risk missing what potentially represents the beginning of the greatest

technological revolution of all times. But the third1 wave of the current reincarnation of

neural networks also comes with its dark side: no one to date has yet been able to prove

that the technology is fundamentally reliable, and this poses a big risk when companies

start to roll out automated diagnostics systems and self-driving cars.

However, the fundamental problem with deep learning seems to be the so-called out-

of-distribution examples. In a real-world project, one literally never knows how much

training data you will have to collect and annotate in order to uncover the true underlying

data generating distribution. In many deep learning applications, it can take an endless

effort to cover all possible corner-cases.

In a lecture provided by Bouvet Norway AS, they identify several key points to why about

80% of industrial machine learning projects tend to fail; a) too high expectations : most of

1Historically, there have been three main waves of development in the field: deep learning known
as Cybernetics in the 40s-60s, deep learning known as Connectionism in the 80s-90s, and the current
resurgence under the name deep learning beginning in 2006 [Goodfellow et al., 2016].
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the enterprises tend to target hyper-ambitious moon-shot projects that will completely

transform the company/product and give over-sized return or investment. Such projects

can take forever to complete and pushes the teams to their limits. Ultimately, the

business leaders lose their confidence in the project and stop the investment; b) lack

of clearly defined business goals : often research is started without a clearly defined

hypothesis. Team members often cannot answer what the goal of the project really is,

what problem they are trying to solve, and which questions they want answered — and

the leadership team often do not know how much time and money they are willing to

spend; c) lack of data and/or labeling of data: The unavailability of labeled data is

another key challenge that stalls many machine learning projects. From the MIT Sloan

Management Review [Ransbotham et al., 2017], 76% of machine learning people combat

this challenge by attempting to label and annotate training data on their own and 63%

go so far as to try to build their own annotation automation technology. This means that

a huge percentage of machine learning team expertise are lost for the labeling process.

1.2 The Learning in Deep Learning

In terms of linear regression models, the parameter can simply be obtained analytically

by solving the normal equations [Bishop, 2006]. However, when the model becomes non-

linear and increasingly complex like in deep learning, an iterative method is generally

required to obtain an estimate of the parameter. The learning in deep learning refers to

the process of estimating the parameter (Section 1.2.5) under a predefined cost function

(Section 1.2.3) on the basis of a training and test dataset (Section 1.2.1), means for

regularization (Section 1.2.4) and a model function (Section 1.2.2) using an optimization

procedure (Section 1.2.6).

1.2.1 Training and Test Datasets

We define the training dataset as N input data points xn ∈ RT1 (e.g. image, sensor data,

etc.) and N output data points yn ∈ RTL (e.g. class, target measurement, etc.) where

n = 1, 2, ..., N is the example index. We use the same nomenclature for the test dataset,

which consists of Ntest examples not contained in the training dataset. The purpose

of the test dataset is to assess how the model performs on new unseen data that has

not been part of the training dataset. Usually, the test dataset is evaluated repeatedly

throughout the learning process to monitor the generalization capability of the model.

Whenever appropriate, we denote a new unseen example not contained in the training

dataset by x0.
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Figure 1.1: A feed-forward neural network with dense layers.

1.2.2 Model Function

The architecture of the deep learning model describes the relationship between inputs and

outputs, and is formally expressed by a model function f : RT1 → RTL , which matches the

dimensionalities of the input and output components of the training dataset. Usually,

when TL = 1 and the outputs are real numbers, we have a deep learning regression

model. Whenever TL > 1 and the outputs are categorical, we have a classification model.

However, in principle we can also define a multi-output regression model with TL > 1,

and all other kinds of combinations. When the model function can be represented by

a directed acyclic graph (DAG) [Bishop, 2006], we have a feed-forward neural network

deep learning model, whereas if the graph is cyclic, we have a recurrent neural network

deep learning model [Goodfellow et al., 2016].

The model function works through a series of L layers starting at the input layer and

stopping at the output layer as shown in Figure 1.1. Usually this is conceptualized as

drawing the DAG in a left-to-right fashion where the input is fed on the left hand side,

and the output is obtained at the right hand side. The first layer, the input layer, has

T1 vertices with T1 incoming edges and simply represents the input example xn ∈ RT1

where n denotes the example index. The consecutive layers, the hidden layers, receive

their inputs from the previous layers, and form linear combinations of these with their

weights (in Figure 1.1 denoted by W , which is a part of the parameter) represented

by their incoming edges. These linear combinations are often implemented as matrix

multiplications, hence resulting in so-called dense layers in which every pair of distinct

(input to output) vertices are connected by a unique edge (i.e. parameter value) [Ben-
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gio, 2009]. When the linear combinations are implemented using linear convolutions,

the resulting layers are called convolutional layers [LeCun et al., 1995]. Convolutional

layers have several interesting properties: Sparse interaction means that the output of

the layer is dependent on a limited number of the inputs, but with multiple consecutive

convolutional layers, the vertices become indirectly connected so series of convolutional

layers can efficiently describe complicated interactions between several variables; param-

eter sharing limits the architecture of the model, reduces memory requirements and is

more than often seen to improve the quality of models; equivariant to translation means

that a convolutional layer can learn patterns regardless of shifts in the input.

Other types of layers also exists: batch-normalization layers [Ioffe and Szegedy, 2015]

are commonly used for stabilization through normalization of the layers’ inputs by re-

centering and re-scaling, pooling layers [Weng et al., 1993] can be deployed for dimen-

sionality reduction, dropout layers [Srivastava et al., 2014] can be used as regularization

and residual layers [He et al., 2016] allow for training deeper networks by dealing with

the vanishing gradients [Hochreiter et al., 2001] problem in terms of skip connections

[Drozdzal et al., 2016].

As a last step per hidden layer, the biases (in Figure 1.1 denoted by b, which can be

viewed as the intercepts of the parameter) are added to the layers’ outputs before a

non-linear activation function (in Figure 1.1 denoted by a) is applied in an element-wise

fashion. Non-linear activation functions are what makes deep learning models non-linear,

and is generally what fuels neural networks’ powerful expressiveness. A multitude of

activation functions currently exists, such as the rectified linear unit (ReLU) [Glorot

et al., 2011], the sigmoid and the tanh [Goodfellow et al., 2016], to name a few. At this

stage, it can be useful to conceptualize that a feed-forward neural network with dense

layers utilizing only linear activation functions would simply collapse into multiple linear

regression.

Finally, the last layer, the output layer, has TL vertices and produces the final output of

the network (in Figure 1.1 denoted by ŷ). The output-layer closely resembles the hidden

layers in terms of that it also applies its own weights and biases, but the difference lies in

the type of activation function utilized. For classification models, the softmax function

[Bridle, 1989] is typically utilized, as it normalizes the outputs relative to the different

classes and thus provides a probability output. For regression models, a linear activation

function is usually applied.
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1.2.3 Cost Function

The cost function measures the distance between the output components of the training

dataset and the outputs of the model function given the corresponding input components

of the training set. As the model function depends on the parameter, the cost function

can be minimized with respect to the parameter to achieve a minimum total distance for

the entire training set. For regression models, the mean squared error cost function is

typically utilized, whereas for classification models, the cross entropy [Goodfellow et al.,

2016] cost function is commonly deployed.

1.2.4 Regularization

Regularization is a general technique with the goal of making an ill-posed problem well-

posed. As over-fitting is one example of an ill-posed problem, regularization is com-

monly applied in deep learning to balance the so-called bias-variance trade-off. The

bias-variance dilemma is the conflict in trying to minimize the cost function while si-

multaneously maximizing the model’s generalization capability for new unseen input

data.

A multitude of regularization techniques exist in the deep learning domain. Ranging from

classical penalizing based methods such as L1/L2-regularization [Krogh and Hertz, 1991]

to more sophisticated approaches such as dropout regularization [Srivastava et al., 2014].

Penalizing methods typically works by introducing a parameter-dependent penalty term

on the cost function, and can be thought of as a way of shrinking the parameter towards

zero during training. In turn, this will lead to simpler models that are less likely to

over-fit. Quite differently, dropout regularization is achieved by altering the architecture

by introducing dropout layers. Dropout layers work by randomly setting some of their

outputs to zero during training. As a consequence, the network becomes less sensitive to

specific weights and biases, and this in turn results in networks with better generalization

capabilities which are less likely to over-fit.

1.2.5 Initializing the Parameter

In order for the optimization procedure to start evaluating the cost function, the pa-

rameter must first be initialized. There are two main heuristics for this single purpose,

and they both generally lead to a drastic reduction in the amount of required optimiza-

tion steps. While the parameter consists of both weights and biases, both these methods
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were derived to deal exclusively with the weights — and assumes that the biases are

initialized to zero. The process is therefore referred to simply as weight initialization.

Depending on the type of activation functions used within the individual layers,

xavier/glorot initialization [Glorot and Bengio, 2010] was derived for the weights as-

sociated with sigmoid/tanh activation functions, while he initialization [He et al., 2015]

is intended for weights associated with ReLU activation functions. The two methods are

distinguished by that the former draws its initial weight values from an uniform proba-

bility distribution, while the latter from a Gaussian probability distribution. Although

technically different, both methods parameterize their respective probability distribu-

tions according to the number of weights in the individual layers.

1.2.6 Optimization

Having all the required building blocks in place, the optimization procedure can finally

take place in order for the network to learn the parameter from the training dataset.

The central optimization algorithm in deep learning is gradient descent [Bottou et al.,

2018]. As gradient descent is a first-order iterative optimization algorithm for finding

a local minimum of differentiable functions, it can efficiently be applied to minimize

the cost function with respect to the parameter as long as estimates of its gradient can

be computed efficiently. Thanks to the back-propagation algorithm [Linnainmaa, 1976],

this is indeed possible in deep learning. The back-propagation algorithm has later been

identified as a special case of automatic differentiation [Wengert, 1964]. Today, most

deep learning software frameworks, such as TensorFlow [Abadi et al., 2015] and PyTorch

[Paszke et al., 2017], include simple functions for calculating the gradient of arbitrary

expressions based on automatic differentiation. In fact, the whole philosophy behind

these deep learning frameworks is built upon the idea of decomposing the model archi-

tecture into graph(s) sequentially representing all the involved mathematical operations.

Gradients are then computed by automatic differentiation which works by applying the

chain-rule of calculus repeatedly to these operations, and therefore derivatives of arbi-

trary order can be computed automatically and accurately to working precision.

Gradient descent simply works by taking repeated steps in the opposite direction of

the gradient at the current point. Because this is the direction of steepest descent, the

method is guaranteed to follow a down-hill path and converge to a point in parameter

space where the gradient is (approximately) zero. Although such points need not neces-

sarily be true global nor local minima, the success of gradient descent in deep learning

prominently lies in the fact that it works very well in practice. Nevertheless, second-

order optimization is also an active research topic in deep learning, but has generally
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not found much popularity mainly due to the prohibitively expensive computational cost

that comes with repeated Hessian evaluations [Anil et al., 2020].

Gradient descent comes in a range of different variants. The primary source of variance

lies in how the training data is used when estimating the gradient. In its original form, the

full training set is utilized at every step. But as repeated gradient estimates based on the

full training dataset is computationally demanding, stochastic gradient descent [Robbins

and Monro, 1951] performs a parameter update for each single training example. A

natural extension and more cost-efficient approach is mini-batch gradient descent, where

the gradient is approximated by calculating the mean of the gradients on subsets (e.g.

mini-batches) of the entire training dataset. The latter two methods often introduce yet

another level of stochasticity by periodically shuffling the training dataset so that the

gradient always will be based on a different sample.

The second source of variance is rooted in subtle details around how to best scale the

gradient when performing the down-hill steps. This scaling factor is widely known as the

learning rate. Here we find a range of methods specifically developed for deep learning.

Common for most of these methods is that they utilize an adaptive adjustment of the

learning rate. Besides stochastic gradient descent with momentum [Rumelhart et al.,

1986], the two most used optimization methods in deep learning are Adam [Kingma and

Ba, 2014] and root mean square propagation (RMSProp) [Tieleman and Hinton, 2017].

While the latter adaptively adjusts the learning rate based on a running average for

each of the individual gradient components, the former operates by adjusting separate

learning rates for each of the gradient components in terms of both the running average

and the running variance.

1.3 Famous Architectures and Datasets

The LeNet architecture [LeCun et al., 1995, 1998] introduced in 1995, is famous due to

its historical importance. As the first successful neural network with convolutional lay-

ers, it achieved state-of-the-art classification performance on the MNIST hand-written

digit dataset. Thanks to the internet, the tiny color image datasets CIFAR-10 and

CIFAR-100 [Krizhevsky et al., 2009] subsequently came to life. With the introduction

of GPUs, further breakthroughs followed. A range of successful deep network architec-

tures including AlexNet [Krizhevsky et al., 2012], VGG [Simonyan and Zisserman, 2014],

GoogLeNet [Szegedy et al., 2015], ResNet [He et al., 2016], and DenseNet [Huang et al.,

2017] now operates on large scale datasets consisting of millions of high resolution images

such as ImageNet [Deng et al., 2009] and OpenImage [Kuznetsova et al., 2020].



Chapter 2

Uncertainty Quantification in Deep

Learning

This chapter briefly summarizes uncertainty quantification methodology applicable (and

inapplicable) to deep learning, before we round off with a more in-depth introduction to

the Delta method which lies the foundation for this thesis. For an excellent and compre-

hensive survey of uncertainty quantification in deep learning, we refer to [Gawlikowski

et al., 2021]. For the broader machine learning perspective, we refer to [Hüllermeier and

Waegeman, 2020].

2.1 Introduction

In statistical modeling, there are two major schools of thought. These are known as the

Frequentist and the Bayesian school of thought. In the Frequentist’s view of statistical

modeling, the true, unobservable value ω∗ of the model parameter ω is assumed fixed and

unknown, and the estimate ω̂ is based on a random sample of data points (the training

dataset). The values of ω̂ will thus vary from sample to sample, making ω̂ itself a random

variable. Therefore, the uncertainty about the point estimate of ω∗ will be reflected in

the variance of ω̂. Consequently, this variance will indicate how much ω̂ is expected

to change with respect to a different sampling of data. The uncertainty of predictions

can thus be seen as the result of propagating the uncertainty of the parameter estimate

through the model function when applied to new input x0, hence producing an output

y0 with its own variance, i.e. the predictive uncertainty.

In Bayesian statistics [Bolstad and Curran, 2016], statements about the parameter are

made in terms of probability distributions that are conditioned on observed data (the
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training dataset), denoted by the posterior distribution. Uncertainty about the param-

eter is thus expressed in terms of probability, which is why the Bayesian framework is

often referred to as probabilistic modeling. The Bayesian equivalent to predictive uncer-

tainty is thus described by the variance of the posterior predictive distribution which can

be viewed as an ensemble of models generated from the posterior distribution.

Regardless of the statistical approach taken, there are two types of uncertainty

[Hüllermeier and Waegeman, 2020]: Epistemic uncertainty is commonly understood as

the reducible component of uncertainty — the uncertainty of the model itself, or its pa-

rameters. While the epistemic uncertainty can be reduced by increasing the amount

of training data, the other component of uncertainty known as aleatoric uncertainty, is

a random and irreducible quantity and stems from the uncertainty in the output (la-

bel/target) assignment process. For this reason, the aleatoric uncertainty is also often

called data uncertainty.

The predictive uncertainty consists of the sum of both the epistemic uncertainty and the

aleatoric uncertainty — when propagated onto predictions. Common for most of the

Bayesian methods is that they quantify the sum of both these components, and as a

consequence, further actions must be taken in order to separate the two [Kwon et al.,

2020]. However, our Delta methodology introduced in Section 2.2 is concentrated on the

epistemic part, and we therefore refer to it as the predictive epistemic uncertainty. The

meaning is therefore different from the standard interpretation [Devore et al., 2012].

2.1.1 The Goal of Uncertainty Quantification

After having trained a neural network to obtain the parameter point estimate ω̂, the

traditional approach proceeds by computing only predictive point estimates ŷ0 = f(x0, ω̂)

for new inputs x0, simply by plugging x0 into the model function along with ω̂. But in

reality we know there will be two sources of uncertainty in this process: a) the epistemic

component of uncertainty baked into our model as a result from having trained using only

a limited amount of training data; and b) the aleatoric component of uncertainty as a

result of noisy target measurements. Therefore, we can take these sources of uncertainty

into account and rather express predictions as ŷ0 = f(x0, ω̂)± σ̃0 where σ̃0 is an estimate

of predictive uncertainty associated with x0.

To illustrate this further, we now consider a data generating function g(x) = sin (x) + x

from which we sample a training dataset in two different regions of x (around x = −0.5

and x = 0.5). We define a heteroskedastic measurement noise function ε(x) that we

add to g(x) when we obtain samples from it. By hetereoskedasticity we here mean
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that the emulated measurement noise we add is itself a function of x. We emulate the

measurement noise by letting ε(x) be normally distributed with zero mean and with a

variance proportional to x. Hence, the training data we generate will be randomly be

corrupted with low noise values for low values of x — and high noise values for high

values of x. With reference to Figure 2.1, we can now explain the two involved sources of

predictive uncertainty as follows: a) the epistemic component of σ̃ will be high in regions

where there is little or no training data (x not around −0.5 nor 0.5) simply because the

model lacks the ability to safely deal with these values of x (for which it has no training

experience); and b) the aleatoric component of σ̃ will be low around x = −0.5 and high

around x = 0.5 because here the training data suggests low and high measurement noise,

respectively. Thus, generally, the aleatoric component of uncertainty simply accounts for

the stochasticity of data generating processes which may (e.g. heteroskedastic) or may

not (e.g. homoskedastic) be a function of x.

Figure 2.1: A data generating function g(x) = sin (x) + x (dotted gray line) corrupted
by heteroskedastic noise, is sampled in two different regions of x (around x = −0.5 and
x = 0.5) to obtain a training dataset (red dots). A neural network is trained using
this training dataset, and outputs predictive point estimates f(x, ω̂) as shown by the
solid blue line. The orange shaded interval around the point estimate corresponds to the
epistemic component of uncertainty, while the green shaded interval corresponds to the
aleatoric component of the uncertainty. Original image credit: Martin Krasser

2.1.2 The Bootstrap and Deep Ensembles

A classical frequentist approach to obtain uncertainty estimates is known as the Boot-

strap [Efron, 1992; Lakshminarayanan et al., 2017; Osband, 2016]. In terms of deep

learning, the Bootstrap procedure is often referred to by the name Deep Ensembles.
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While this method can be extended to quantify also aleatoric uncertainty [Khosravi and

Creighton, 2011], the standard method deals with the epistemic counterpart. Essentially,

the method requires an ensemble of neural network models. By assessing the variance

over model ensemble predictions, predictive epistemic uncertainty estimates can thus be

obtained. The simplicity of the approach is the key advantage, while the disadvantage

is the need to build and maintain multiple models in parallel. The classical Bootstrap

method starts by creating B datasets from the original training dataset by sampling

with replacement. Subsequently, B models are trained separately on each of the boot-

strapped datasets. The variance captured by the Bootstrap is thus seen caused by the

change in ω̂ relative to the different samples of the training dataset. In the deep learn-

ing domain, the procedure is straightforward although several subtleties naturally arise.

Given the implicit stochasticity of gradient descent through mini-batching and training

data shuffling (Chapter 1, Section 1.2.6), these sources of variance will also affect the

outcome. Clearly, another source of variation is random weight initialization (Chapter

1, Section 1.2.5), not to mention the so-called indeterminism [Nagarajan and Warnell,

2019] present in many deep learning software frameworks. We have included a determin-

istic TensorFlow implementation of the Bootstrap algorithm in the pyDeepDelta [Nilsen,

2018-2021a] provision under the name pydeepboot.py, and further details can be found

in Paper 3 [Nilsen et al., 2021b].

2.1.3 Bayesian Methods

Bayesian statistics provides a coherent framework for representing uncertainty in neural

networks [Blei et al., 2017; Brooks et al., 2011; Gal and Ghahramani, 2016; Gundersen

et al., 2020; MacKay, 1992a; Murray, 2018]. The Bayesian approach makes inferences

based on the full distribution of a model output y0, for an input example x0. This is

called the posterior predictive distribution, given by

p(y0|x0, X, Y ) =

∫
p(y0|x0, ω)p(ω|X, Y )dω, (2.1)

where the likelihood distribution, p(y0|x0, ω), is the distribution of the model output

y0, given an input x0 and a model function parameterized by ω. The second factor,

p(ω|X, Y ), is called the posterior distribution, and is the distribution of the model pa-

rameter itself given the training dataset here denoted by X (input) and Y (output).

The posterior predictive distribution can thus be viewed as an ensemble of models with

different settings of ω, weighted by the posterior. Thus, the most likely parameter values

will contribute the most to the probability of y0, taking on a particular value. Making

statements about parameter values and predictions in terms of probability highlights one
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of the key features of the Bayesian approach: it yields an intuitive and coherent way of

expressing uncertainties in terms of the variances of the different distributions.

The (co)variance of the posterior distribution can thus be seen as the uncertainty of the

model parameter, and can therefore be regarded as the source of the epistemic component

of uncertainty. In contrast, the variance of the likelihood distribution can be regarded as

the source of the aleatoric component of uncertainty. When combined via Equation (2.1),

the variance of the predictive posterior distribution quantifies the predictive uncertainty

associated with x0 as a combination of both the aleatoric and the epistemic counterparts.

At this point it can be useful to realize that with an infinite amount of training data

(i.e. N →∞), the posterior distribution would approach a Dirac delta function centered

around the true unknown parameter value ω∗ (i.e. p(ω|X, Y )→ δ(ω−ω∗)). The integral

(2.1) would therefore collapse, and only the irreducible variance of the likelihood at ω∗

(e.g. aleatoric uncertainty) would contribute to the total predictive uncertainty.

Most of the uncertainty quantification methods in the Bayesian regime seek to approxi-

mate the integral represented by Equation (2.1). To this end, the classical Monte Carlo

method [Krauth, 1998] proceeds by drawing samples from the posterior distribution and

propagate these to obtain samples from the posterior predictive distribution. Finally,

to obtain predictive point estimates ŷ0 with predictive uncertainty σ(x0), the mean and

standard deviation of these samples are computed.

If the sampling of the posterior distribution becomes too computationally costly (which

is usually the case in deep learning), one can turn to other approximation methods.

These includes, but are not limited to, the Laplace approximation [Neal, 2012], Stochas-

tic expectation propagation [Li et al., 2015] and Langevin diffusion methods [Welling and

Teh, 2011]. In particular, the Laplace approximation is obtained by taking the second-

order Taylor expansion around the mode of the posterior (ω̂). This leads to a Gaussian

distributed (approximate) posterior, which in turn can more easily be sampled. How-

ever, this approach leads to expressions involving the inverse Fisher information matrix

and is therefore in its direct form still prohibitively expensive in deep learning due its

quadratic space and cubic time computational complexity in the number of parameters.

A line of research seeking to further reduce the computational complexity of the Laplace

approximation is discussed in more detail in Section 2.1.4.

Another major drawback with the pure Monte Carlo method in deep learning is its poor

convergence properties (i.e. high variance) for high-dimensional parameter spaces. Other

sampling methods intended to solve this exist, such as Importance sampling [Skaug and

Fournier, 2006], the Metropolis-Hasting Algorithm, the Gibbs sampler and Hamiltonian

Monte Carlo (HMC) [Neal et al., 2011]. These methods are all known as Markov Chain
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Monte Carlo (MCMC) methods and they might improve the convergence properties

compared to random sampling, but are usually still not tractable in the deep learning

domain. However, a viable alternative is Variational Inference [Blei et al., 2017].

Like the Laplace approximation, Variational Inference addresses the sampling issue by

approximating complex posteriors using much simpler distributions (i.e. variational dis-

tributions) parameterized by so-called variational parameters. This method turns the

problem into an optimization problem with the goal of estimating the variational pa-

rameter by minimizing the corresponding Kullback-Leibler divergence [Kullback, 1997]

between the variational distribution and the true posterior.

The Dropout method [Gal and Ghahramani, 2016], often referred to as Monte Carlo

Dropout or simply MC-Dropout, can be viewed as approximate Variational Inference

[Gundersen et al., 2020]. Given deep learning architectures regularized (and trained)

using dropout layers (Chapter 1, Section 1.2.4), MC-Dropout generates a distribution

over the model parameter by leaving the dropout-layers activated also during prediction.

The process is thus similar to the Bootstrap procedure, where the empirical variance can

be computed based on the resulting ensemble of predictions.

In the original works of MacKay [MacKay, 1992a,b], a Bayesian neural network training

procedure based on the Laplace approximation is proposed. While this method allows

for separate quantification of aleatoric and epistemic uncertainty, it relies on repeated

computations of the full inverse Fisher information matrix at training time. It can thus

be regarded as a second-order optimization method, and is therefore in its original form

intractable in deep learning.

2.1.4 Approximating the Laplace Approximation

The yet so high computational complexity of the Laplace approximation can be miti-

gated by several approximations of the Fisher information matrix. Different approxima-

tions of the Fisher have been proposed in various contexts. This includes its diagonal

approximation [Becker and Le Cun, 1988; Salimans and Kingma, 2016], the last-layer

approximation [Kristiadi et al., 2020], the block-diagonal approximation [Lee et al., 2020;

Ritter et al., 2018] and others [Hennig, 2013; Le Roux and Fitzgibbon, 2010; Liu and No-

cedal, 1989]. A line of research focusing on Kronecker-factorization [Botev et al., 2017;

Martens and Grosse, 2015] of the block-diagonal approximation starts with [Lee et al.,

2020; Ritter et al., 2018].

To illustrate these approximations, we in Figure 2.2 visualize the full Fisher information
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matrix (i.e. Hessian) for the LeNets discussed in Paper 2 [Nilsen et al., 2021a]. To

be clear, this sort of computation and visualization is tractable only for the smallest

networks discussed in the paper. To see this, consider that the full Fisher of the CIFAR-

10 LeNet occupies 56 GBs of memory and takes 78 hours to compute; whereas in contrast,

the full Fisher of the large CIFAR-10 ResNet (also discussed in Paper 2) would occupy

500 TBs of memory, and take an estimated 35 years to compute!

With reference to Figure 2.2, the diagonal approximation thus concentrates solely on

the values along the main diagonals, while the last-layer approximation concentrates on

the values contained in the barely visible purple squares (i.e. layer 6) in the lower right

corners. As the block-diagonal approximation assumes layer-wise independence of the

parameters, it is limited to the values contained in the color-shaded squares representing

the individual layers of the neural networks (i.e. no cross-terms involved).

These plots suggest that there is no specific structure to the Fisher in deep learning

image classification. Except from that L2-regularization imposes a relatively strong

diagonal structure, the other non-zero entries are more or less uniformly distributed

across the whole matrix. We find that the sparsity level of the Fisher is extremely high

in general. The number of non-zero entries is just 1% for MNIST and 2% for CIFAR-10.

Nevertheless, to highlight the structure in these visualizations we had to make the blue

dots where |Hij| > 0 large enough to be visible, and this in a sense gives a misleading

perception of the true sparsity levels.

In the next Section 2.2, we introduce the Delta method and connect it to the Laplace

approximation.
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(a) MNIST (b) CIFAR-10

Figure 2.2: Visualization of the structure and sparsity level of the Fisher information
matrix for the MNIST (P = 93, 322) and CIFAR-10 (P = 122, 570) LeNets. The raw
matrices were first computed exactly by Pearlmutter’s technique, followed by down-
sampling to 100 × 100 entries using bicubic interpolation for visualization purposes.
Finally, to preserve the relative scale of the two different sized networks, the final images
were scaled accordingly. A blue dot is shown in column i and row j when the absolute
value of the down-sampled Hessian in location ij is greater than zero. The neural network
layers are visualized by the color-shaded squares. Note that layer 2 (upper left corners)
and layer 6 (lower right corners) are barely visible due to their relative small number of
parameters.

2.2 The Delta Method

Under the framework of Maximum Likelihood Estimation [Le Cam, 1990], the deep learn-

ing model parameter estimate ω̂ is called the Maximum Likelihood Estimator (MLE).

Alternatively, when the cost function is regularized using parameter-dependent penalty

terms (e.g. L1/L2-regularization), ω̂ is called the Maximum A Posteriori (MAP) Estima-

tor. With the theory of maximum likelihood comes a truly remarkable theoretical result.

It has been referred to as ”arguably the most important result in theoretical statistics”

[Geyer, 2003], and has been discussed in thousands of research papers ever since its first

appearance in the original work of R. A. Fisher — the inventor of the method of max-

imum likelihood. The derivation of the result builds on the law of large numbers, the

central limit theorem, Taylor expansions and repeated use of Slutsky’s theorem. We point

to [Geyer, 2003] for arguably the best intuition building treatment of the topic available

on the internet to date. Despite the fact that the MLE or MAP estimates usually cannot
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be described by an explicit formula (this is why deep learning utilizes a optimization pro-

cedure), maximum likelihood continues to give an explicit large sample approximation

[Van der Vaart, 2000] to the sampling distributions of these estimators. In particular,

this means that estimates of the mean and variance of the distributions describing the

MLE or MAP estimates can be obtained on the basis of the training dataset — hence

allowing for epistemic uncertainty quantification. The large sample approximation is as

follows

ω̂ ∼ N (ω∗,Σ). (2.2)

In words, for a large (enough) training dataset size N — the distribution of the MLE or

MAP estimates are approximately normal with mean ω∗ (the true unknown parameter

value) and approximate covariance Σ. When the likelihood distribution for which the

MLE or MAP estimate is based upon is of the form of the true likelihood distribution of

the training dataset, the covariance matrix Σ can be estimated by the Hessian estimator

defined H−1 or the Outer-Product of Gradients (OPG) estimator defined G−1. In con-

trast, when the true likelihood distribution of the data is not of the form of the one used

for any ω, the covariance matrix can be estimated by the Sandwich estimator defined

H−1GH−1 [Freedman, 2006; Geyer, 2003; Schulam and Saria, 2019]. In the literature,

the two matrices H and G are both referred to as the empirical Fisher information ma-

trix, and can be estimated based on the N examples in the training dataset: the matrix

H is the empirical Hessian with respect to ω of the cost function evaluated at ω̂, and

the matrix G is the empirical covariance of the gradients with respect to ω of the cost

function evaluated at ω̂.

For convenience, we now restrict the reminder of this introduction to deep learning

regression models, with scalar model functions f(x0, ω) : RT1 → R. An extension to the

classification setting can be found in Paper 2 [Nilsen et al., 2021a]. It can be shown by

a first-order Taylor approximation [Grosse, 2020; Khosravi and Creighton, 2011] that the

variance (i.e. squared predictive epistemic uncertainty) associated with the prediction of

x0 can be obtained by

V ar(ŷ0) = ∇fTΣ∇f, (2.3)

where ŷ0 = f(x0, ω̂) is the neural network output, Σ is the parameter covariance estimate

in (2.2), and where∇f is the gradient with respect to ω of the model function evaluated at

ω̂. The two expressions (2.2) and (2.3) together form what is known as the Delta method.

At this point, we clearly see that the Delta method is closely related to the Laplace

approximation. Both methods build upon the large sample approximation (2.2), but the

difference lies in how the predictive uncertainty estimates are obtained. The standard

Laplace approximation uses (2.2) to obtain samples of the posterior distribution, and

plug these into an approximation of the variance of (2.1) (i.e. sum), while the Delta



18 Uncertainty Quantification in Deep Learning

method simply evaluates the differential expression (2.3).

The main obstacle with the classical Delta method applied in deep learning is its high

computational cost. The space complexity is quadratic as the Fisher information matrix

grows quadratically with the dimensionality of the parameter, and the time complexity

is cubic due to its inversion. In the next Chapter 3 we introduce the three papers

included in the dissertation which together addresses and details how to get around

these aforementioned computational difficulties. In this perspective, it is well worth to

realize that the methodology we introduce can be seen as a new way of approximating

the full Fisher information matrix with bounded approximation errors, and

thus fits into the Laplace approximation line of research discussed in Section 2.1.4.

In the next and final Section 2.2.1, we round off this chapter by developing a hybrid

approach combining the standard Laplace approximation with the key ideas from Pa-

per 2 [Nilsen et al., 2021a] — resulting in an efficient Laplace Approximation based

Monte Carlo sampling algorithm not published elsewhere. A small demonstration of its

capabilities is further presented in Chapter 4.

2.2.1 An Efficient Laplace Approximation based Monte Carlo

Sampler

The covariance approximation developed in Paper 2 [Nilsen et al., 2021a] is repeated

here for convenience. It is defined by

Σ̃ =
1

N

[
QLΛ−1

L QT
L + λ̃−1(I −QLQ

T
L)
]
, (2.4)

where QLΛLQ
T
L is the low-rank approximation of the Fisher information matrix based on

its top K eigenpairs, and where λ̃ is the approximation constant used for the remaining

eigenvalues. The first step in the standard approach [Gentle, 2009] to sampling the

normal distribution (2.2) is to factorize the covariance matrix as Σ̃ = AAT . Conveniently,

it turns out that under the approximation (2.4) the matrix A is simply given by

A =
1√
N

[
QL

√
Λ−1

L QT
L +

√
λ̃−1(I −QLQ

T
L)

]
. (2.5)

Obtaining T samples ω̂(t) from the posterior can now be done by repeatedly perturbing

the parameter estimate ω̂ ∈ RP with matrix vector products between A and vectors
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z(t) ∼ N (0, I) ∈ RP , t = 1, 2, . . . , T ,

ω̂(t) = ω̂ + Az(t) = ω̂ +
1√
N

[
QL

√
Λ−1

L QT
Lz

(t) +
√
λ̃−1(z(t) −QLQ

T
Lz

(t))

]
. (2.6)

Finally, the predictive mean and variance for an arbitrary input example x0 can be

obtained by evaluating the mean and variance of the model function for x0 across the

posterior samples

ŷ0 =
1

T

T∑

t=1

f(x0, ω̂
(t)), σ̃2(x0) =

1

T − 1

T∑

t=1

(
f(x0, ω̂

(t))− ŷ0
)2
. (2.7)

Bounds for the approximation error can readily be obtained by using the error propa-

gating technique presented in Paper 2, Section 4.3.1. A Python implementation of the

proposed algorithm is included in the pyDeepDelta [Nilsen, 2018-2021a] provision under

the name pydeepdelta sampler demo.ipynb.
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Chapter 3

Introduction to the Papers

The fundamental research question we seek to answer in this dissertation is twofold: a)

can the classical Delta method from statistics be applied in modern deep learning to

quantify model (epistemic) uncertainty? And b) can it be useful in image classification?

While the short answer of a) above turns out to be yes, this chapter summarizes the

path of work that was conducted in order to answer the question, and places the three

papers denoted by Paper 1, 2 and 3 along this route. Regarding b), a discussion of

its usefulness in image classification is presented in the next Chapter 4. We start off by

a little background section which allows this chapter to be read as a stand-alone piece

of text.

3.1 Background

A modern deep neural network can be described by a complicated random multivariate

function y = f(ω, x) of a P -dimensional random variable ω =
(
ω1 ω2 . . . ωP

)T
which

maps constant inputs x to random outputs y. Traditionally, by a training procedure and

a set of input/output examples, we get a constant point estimate ω̂ of the function

variable so that we later on can use it to predict point estimates ŷ0 of the outcome y0

for arbitrary input examples x0 simply by plugging ω̂ into f along with x0.

The question is, are there other viable alternatives in which we compute not only point

estimates of ω and y but rather their full probability distributions? Yes, conveniently

the Delta method is an analytical approach towards quantifying both the mean and

variance of multivariate functions. In principle we can use it to compute the mean

and variance of both ω and y and hence get vital information about their respective
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probability distributions. If we regard ω̂ as the mean of ω, a first-order Taylor expansion

of y around ω̂ yields an approximation of the mean of y simply given by f(ω̂, x). In this

view, we recognize that at this point nothing deviates from the traditional approach:

point estimates of predictions correspond to first-order Taylor approximations of the

mean of y. But what about the variance? Indeed, an analogous first-order Taylor

approximation of the variance of y is given by the expression ∇yTΣ∇y where Σ is the

covariance matrix of ω. Thus, if we manage to compute this new expression, we can

supplement point estimates of predictions with the underlying predictive variance, i.e.

the predictive uncertainty. As we saw in Chapter 2, the covariance matrix Σ can be

estimated by several different procedures. Common for these methods are that they

all involve the inverse of the Fisher information matrix, i.e. the inverse Hessian matrix

and/or the inverse Hessian OPG approximation matrix. In other words, the variance

expression mainly consists of gradients and the Hessian (i.e. gradients of gradients), and

the scene is set by the fact that modern deep learning software frameworks are built

around automatic differentiation.

3.2 Summary

With the basic background information presented in the beginning of this chapter in

mind, in Paper 1 [Nilsen et al., 2019], we introduce the required methodology and soft-

ware code for efficient computation of Hessian matrices within the modern deep learning

software framework TensorFlow [Abadi et al., 2015]. Firstly, we demonstrate how to ef-

ficiently compute the exact Hessian matrix using Pearlmutter’s technique [Pearlmutter,

1994]. Secondly, we introduce a per-example gradients technique serving as the foun-

dation for efficiently computing the OPG approximation. Thirdly, we introduce and

implement the Lanczos iteration and the Incremental SVD [Cardot and Degras, 2015;

Levy and Lindenbaum, 2000; Trefethen and III, 1997] algorithm for efficient computa-

tion of the eigenvalue decomposition of the two aforementioned matrices. In particular,

this addresses the difficulty with the large dimensionality of the Hessian matrix which

grows quadratically with the number of variables/parameters in the deep learning model.

Fourthly, we show how to obtain full-rank approximations based on low-rank approx-

imations exploiting the well-known flatness [Keskar et al., 2016] of deep learning cost

landscape minima.

The importance and motivation of the contributions in Paper 1 is two-fold: a) to help

relevant communities by providing a quick route to get Hessian estimates using Tensor-

Flow, and b) to enable and support the calculations required by Paper 2. Regarding a)

we evidently observe that the paper and the belonging released software code has been
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and still is quite popular on Github. In Chapter 4, Section 4.6 we take a closer look at

the current impact of this work.

In Paper 2 [Nilsen et al., 2021a], we build upon the methodology presented in Paper

1, and show how to implement an approximation of the Delta method using the same

software framework. Firstly, we recognize the Delta method as a measure of epistemic as

opposed to aleatoric uncertainty and break it into two components: the eigenvalue spec-

trum of the Fisher information (i.e. Hessian) of the cost function and the per-example

sensitivities (i.e. gradients) of the model function. Secondly, we show how to approxi-

mate the näıve Delta method and thereby reducing the computational complexity in the

number of parameters from quadratic in space and cubic in time, to linear in both space

and time. Thirdly, we elaborate on how L2-regularization counteracts the fact that the

Hessian and OPG matrices tend to be singular in deep learning after training, and there-

fore virtually are not invertible. Furthermore, we discuss the well-known fact that the

Hessian after training in deep learning usually is not positive definite, and show how to

deal with this. Fourthly, based on the full-rank approximation introduced in Paper 1

[Nilsen et al., 2019], we develop rigorous bounds of the approximation error of the pro-

posed Delta methodology. We consider this error propagating technique as the most

novel contribution of the dissertation. We show by examples that only a relatively small

number of eigenpairs of the Fisher contribute to the predictive uncertainty for examples

contained in the training set. Furthermore, we show that when the smallest estimated

eigenvalue of the Fisher information matrix λK is close to the regularization rate param-

eter λ, the approximation errors for any example will be close to zero even when K � P .

Fifth, we compare the three covariance estimators discussed, and show that they yield

almost identical results. Sixth, we provide an accompanying TensorFlow implementa-

tion [Nilsen, 2018-2021a] of the methodology, and demonstrate how to it can be applied

on a few well known architectures using the MNIST and CIFAR-10 datasets.

The importance and motivation of Paper 2 can best be described by recognizing that

this paper deals with a lot of different but interconnected topics, and acts as a reference

filled with enlightening information which we expect can bridge the gap between people

from the fields of statistics and machine/deep learning.

In Paper 3 [Nilsen et al., 2021b], we compare the Delta method approximation intro-

duced in Paper 2 [Nilsen et al., 2021a] with the classical Bootstrap method introduced in

Section 2.1.2. For the Bootstrap, we discard training data shuffling (and in-determinism

by the use of an deterministic implementation) from the procedure, and consider the sole

effect of training data bootstrapping plus two variants of random weight initialization:

dynamic random weight initialization (DRWI) and static random weight initialization

(SRWI). The former is based on using a different (i.e. dynamic) random seed for each of
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the networks in the ensemble, while the latter uses the same (i.e. static) seed across all of

the networks. By a comparison with the Delta method, we show that the best correspon-

dence between the predictive epistemic uncertainty estimates is achieved with the DRWI

variant of the Bootstrap. We show that there is a strong linear relationship between the

quantified predictive epistemic uncertainty levels obtained from the two methods when

applied on two LeNet-based neural network classifiers using the MNIST and CIFAR-10

datasets. By the use of regressions, we quantify the similarity in terms of the relative

and absolute uncertainty reflected respectively via the squared correlation coefficients

(R2) and the slopes (β). While the relative uncertainty similarity measured by the R2

tends to be high (∼ 0.9), the slopes β indicate that the absolute uncertainty levels differ

slightly between the methods. In Chapter 4 we come back to this and make some fur-

ther reflections regarding absolute and relative uncertainty. Lastly, we demonstrate by

timings that the Delta method offers a five times computation time reduction compared

to the Bootstrap.

The motivation of Paper 3 is to validate the methodology proposed in Paper 2. This

piece of work therefore first and foremost acts as a supplement to Paper 2, but can also

be seen as the result of a need for an internal validation tool.



Chapter 4

Concluding Remarks and Future

Work

We have shown via the three central papers introduced in Chapter 3 that the Delta

method from statistics can be adapted to the modern deep learning context. However,

this chapter is devoted to discuss its usefulness in image classification, and we take

a critical look at the proposed methodology and focus on identified shortcomings and

limitations. Secondly, we round off by pointing at several relevant research topics which

could be investigated in the future as well as taking a brief look at the current impact

and consequences of our research.

4.1 Implementation

Despite that the Delta method offers a relatively simple recipe to quantify epistemic

uncertainty, the practical aspect of implementing the technology within a modern deep

learning software framework was at the time of writing nothing but involved. This can

be surprising, since at first glance the involved calculations in our methodology fits well

with automatic differentiation.

As we saw in Paper 1, Pearlmutter’s technique is in retrospect relatively simple to

implement, but tremendous effort was spent before this simple TensorFlow formulation

was realized and validated. Another surprisingly difficult aspect is the per-example

gradients involved in the OPG approximation. This is counter-intuitive, since one of

the motivations for the OPG approximation in the first place is to avoid second-order

derivatives, and hence to simplify the required calculations. However, as per-example

gradients cannot leverage from the parallelism offered by backward-mode automatic
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differentiation [Goodfellow, 2015], much effort was spent on developing the efficient per-

example gradients technique introduced in Paper 1 for this sole purpose.

Our efficient implementation in TensorFlow [Nilsen, 2018-2021a] serves as a basic starting

point for trying out the Delta method in deep learning. Nevertheless, despite that the

implementation currently consists of more than 1500 lines of code, its applicability to

ever-changing architectures with new types of layers etc., can still be limited in terms

of adaption needs. At a late stage in this study, however, our library also got company

by a PyTorch [Paszke et al., 2017] implementation [Daxberger et al., 2021] of the closely

related Laplace approximation and its variants.

4.2 Computing Considerations and Larger Architec-

tures

Despite the fact that we have reduced the näıve Delta method’s computational complex-

ity to be linear in the number of parameters P , the presented methodology still requires

considerable amount of computing power when P grows very large. Since the computa-

tional complexity also scales (linearly) with the number of eigenpairs K and the number

of training examples N , it seems that with today’s computing power, the bottleneck of

our methodology is reached when the number of parameters is in the order of 107. In

Paper 2, we showed that the computation time for a CIFAR-10 PreResNet-11 with

P ≈ 11M , N = 50, 000 and K = 200 is about 15 hours using a AMD Ryzen 5 2600 CPU

@ 3.4 GHz with eight cores and 32 GBs memory along with an NVIDIA RTX 2080 Ti

based GPU with 11 GBs memory. The belonging memory consumption is hence close to

9 GBs assuming single precision floating point arithmetic. More generally, if the largest

affordable K yields a λK far from λ, it can render the methodology intractable as the

approximation errors can be too large.

However, on the positive side, the effect of computational complexity reduction can also

be seen this way: computing the näıve Delta method using the Hessian estimator for

the CIFAR-10 LeNet would take about 78 hours, and require about 57 GB of memory.

Since in practice one would need to store both the Hessian and its inverse, as well as

temporary variables depending on the type of inversion algorithm, the effective memory

consumption can be as much as 320 GBs. With our approximate Delta methodology,

the computation time is reduced to just about one hour with a memory requirement of

about 500 MBs assuming single precision.
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Figure 4.1: Resulting MNIST OoD example x0. The predicted class ’8’ probability of
this image is 0.9998, while the belonging predictive epistemic uncertainty is 0.0002.

4.3 The Usefulness of the Methodology in Image

Classification

The last limiting aspect we discuss regards the usefulness of the uncertainty measure

obtained by the Delta method in deep learning image classification. In Paper 2 we

demonstrated that false positives have on average a higher level of predictive uncer-

tainty than true positives. However, using this fact for the better good has shown to be

difficult: we have not managed to somehow boost1 the classification accuracy based on

the uncertainty measure nor have we found any other obviously useful applications. This

finding is controversial as predictive uncertainty usually is framed as the holy grail when

it comes to out-of-distribution (OoD) example detection. While we saw in Paper 2 that

the predictive uncertainty can be high for OoD examples, one can per definition of the

Delta method readily construct OoD examples with a class probability of one, and a be-

longing predictive uncertainty of zero. This can be seen by inspecting Equation (2.3):

the predictive uncertainty (as estimated by the Delta method) will always be zero as

long as the class probability is either equal to zero or one. The explanation for this phe-

nomenon is attributed to the softmax activation function whose gradient (i.e. sensitivity

F ) will always be weighted by a quantity which is negative quadratic in probability (i.e.

ŷ(1− ŷ)).

To further illustrate this, we now demonstrate how to construct an OoD example with a

certain class probability close to one, and with a belonging predictive uncertainty close

to zero using the MNIST LeNet defined in Paper 2. We make use of TensorFlow and

flip things around from the standard perspective: after having trained the network as

usual, we let x0 be a variable image while keeping the parameter estimate ω̂ fixed. We

initialize x0 with random uniform noise, and minimize the uncertainty score σscore(x0)

defined in Paper 2 with respect to x0. We also constrain the pixels of x0 to stay within

1For example by swapping the classification in terms of the highest and next highest predicted
probability when the predictive uncertainty of the former exceeds a predefined threshold.
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the normalized range (i.e. between zero and one). The resulting image from this simple

constrained optimization procedure is shown in Figure 4.1. Clearly the resulting image

is OoD as it does not (at all) resemble any digit in the range zero to nine. However, the

predicted class ’8’ probability for this image is still 0.9998, and the belonging predictive

uncertainty is 0.0002.

What can be conclude from this experiment? As long as the class probability of a

prediction is overconfident (i.e. close to zero or one), the predictive epistemic uncertainty

estimated by the Delta method is forced to be close to zero. This accounts for both in-

distribution and OoD examples, and it is therefore not reliable to use the Delta method

and the predictive epistemic uncertainty to detect all OoD images.

A natural question is now to ask whether this is just a weakness of the Delta method,

or if the overconfidence is an intrinsic property of all deep learning classifiers? If the

latter turns out to be true, it could make uncertainty quantification in the deep learn-

ing classification less attractive in general. However, we round off this discussion by

demonstrating that also the Bootstrap and the Bayesian equivalent of our Delta method

approximation, namely the Laplace sampler introduced in Section 2.2.1, fails to fully fix

the overconfidence problem. We use the same MNIST LeNet and the same OoD im-

age as above (Figure 4.1) and use B = 100 DRWI Bootstrap replicates. This leads to

a predicted class ’8’ probability of 0.9993 and a predictive uncertainty of 0.0003 for the

Bootstrap. Furthermore, for the Laplace sampler, we draw S = 1, 000 samples from

the posterior using Equation (2.6). We evaluate (2.7) and get the following results: the

predicted class ’8’ probability is now marginally reduced to 0.9973, and the belonging

predictive uncertainty has increased slightly to 0.0053.

We have behind the scene also explored the so-called ‘red flag’-application of predictive

uncertainty in the image classification setting whose story goes like: if the predictive

uncertainty level exceeds a predefined threshold, a red flag is raised and the example is

sent to a human expert for evaluation. However, based on the MNIST and CIFAR-10

LeNets, we found no evidence that it is advantageous to use the predictive epistemic

uncertainty estimated by the Delta method as opposed to standard probability in our

experiments. We invite the public to explore our released MNIST/CIFAR-10 predictive

epistemic uncertainty datasets contained in the pyDeepDelta Github repository [Nilsen,

2018-2021a]. Documentation on how to read and interpret these datasets is included in

the file pydeepdelta predictive uncertainty datasets.ipynb.
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4.4 Absolute vs. Relative Predictive Uncertainty

As we point out in Paper 2, the absolute level of the predictive uncertainty for the

ResNets is larger than for the LeNets, and exceeds the theoretical maximum standard

deviation of 0.5 for softmax-based neural networks. In particular, this highlights that

there are no guarantees (due to the approxmations involved) that the Delta method will

correctly quantify absolute predictive uncertainty levels. This has several consequences:

a) the absolute level of predictive uncertainty must be used carefully, and b) comparing

the level of predictive uncertainty for different models can be challenging. However,

within the same model, we observe that the relative level of predictive uncertainty is

preserved by the Delta method. This is evident by several means: a) the high R2s in

Paper 3, b) the raised level for false positives regardless of the model (Paper 2), and

c) that meaningful rankings based on the uncertainty score still can be obtained (also

Paper 2). These observations are interesting, because in the classification setting —

the relative predictive uncertainty (among images) is arguably more important than the

absolute counterpart. For example, by a preserved relative predictive uncertainty we can

state that within model M the image X has a greater predictive uncertainty than image

Y . In contrast, knowing the absolute uncertainty level for image X or Y in model M

can be less important. However, as a consequence, in the regression setting (although we

have not explored this territory), the absolute uncertainty levels estimated by the Delta

method must be used carefully.

As a final remark, we note that the Monte Carlo based Laplace sampling algorithm

building on Paper 2, developed in Chapter 2, Section 2.2.1, will ensure that the abso-

lute predictive uncertainty levels under classification at least will stay within theoretical

maximum bounds. This is simply because the variance estimate (2.7) is calculated as

the sample variance of the normalized model outputs.
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4.5 Future Work

In the following, we discuss ideas which may improve the computational efficiency of our

methodology, and highlight topics which could be explored to extend its usefulness in

deep learning.

The stochastic Lanczos algorithm [Lin et al., 2016; Yao et al., 2020] and its variants can

potentially be adapted to our setting in order to improve the computational efficiency

of Pearlmutter’s technique, i.e. the Hessian vector products. We have experimented

by using small stochastic mini-batches of the training dataset with size B � N when

evaluating the Hessian vector products (i.e. analogously to stochastic gradient descent)

and find that the convergence is slower (requires more iterations S) but as B � N the

net computational time is typically reduced. However, we also find that this introduces

a bias in terms of that the Hessian eigenvalue spectra are overestimated, but that their

corresponding variance is very low (i.e. does not change much for different random seeds).

As we saw in Chapter 2, the Laplace Approximation and in particular the Kronecker-

factored [Botev et al., 2017; Kristiadi et al., 2020; Lee et al., 2020; Martens and Grosse,

2015; Ritter et al., 2018] Laplace Approximation and its variants are closely related to the

Delta method. Potential synergies between the methodologies should be explored. By

using our released software [Nilsen, 2018-2021a], it would be straight forward to assume

layer-wise independence of the parameters (or just simply consider the last layer) and

thus only combine the diagonal blocks (or just the last-layer block) of the Fisher to

further increase the computational efficiency. As an example, the computational time

complexity of a block-diagonal approximation of the Hessian estimator in Paper 2 will

be reduced to O(max
l
{S(l)P (l)}N) where S(l) and P (l) denotes the number of Lanczos

steps for layer l and the number of parameters in layer l, respectively. This approach

also paves the way for studying the actual impact of assuming a block-diagonal structure

of the Fisher (or just considering the last layer).

In Chapter 2, Section 2.2.1 we introduced an efficient Laplace Approximation based

Monte Carlo sampler (the Bayesian equivalent of the Delta method) based on the

methodology in Paper 1 and Paper 2. Beyond providing an efficient implementation

in [Nilsen, 2018-2021a] (pydeepdelta sampler demo.ipynb) and the small OoD demon-

stration in the very end of Section 4.3, we have not explored whether this approach

can be beneficial or not. This calls for further experiments. In particular, it could be

interesting to extend the approach with importance sampling [Skaug and Fournier, 2006].

In Paper 2, we mostly focus on Equation (10) which is the standard deviation of the

TL network outputs, i.e. the predictive uncertainty per class. However, as can be seen
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by the Equation (8), the full TL × TL covariance matrix of the network outputs can

readily be obtained. The research question is, can there be useful information also in

the off-diagonal elements of this matrix?

In Paper 3, we compared the Delta method with the Bootstrap. Further work in this

direction could be to compare the Delta method to some of the other methods outlined in

Chapter 2. Moreover, as our work has been focused on the classification task, a natural

extension is to see how the framework behaves under deep learning regression.

4.6 Impact of Work

We expect that this research can contribute to bridge the gap between statisticians

and machine/deep learning researchers and practitioners. We have explored a range

of interconnected topics from both these fields, and provided computationally viable

solutions in order to try out the Delta method in deep learning. The main consequence

of this work can thus be seen as a way of enabling faster and deeper research in the

same direction. Although we have demonstrated the practicality of our methodology,

the emphasis has always been on the computational aspects, and so the real value of

applying the methodology has yet to be uncovered.

At the time of writing, several independent authors have cited the papers included in

this dissertation; a computational method for empirical characterization of the training

loss level-sets of deep neural networks is discussed in [Tahir and Katz, 2020], a study of

gradients flow pathologies in physics-informed neural networks can be found in [Wang

et al., 2021], the implicit bias effect of deep linear networks for binary classification using

the logistic loss in the large learning rate regime is characterized in [Huang et al., 2020],

while [van den Dool, 2020] proposes a mathematical definition for the concept of an

explanation in the context of understanding deep learning decisions, [Gundersen et al.,

2020] explores the use of deep learning and variational inference in Carbon Capture

and Storage (CCS) monitoring. A Long Short Term Memory (LSTM) cell parameter

optimization procedure is proposed by [Chia et al., 2021].
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2geir.kjetil.nilsen@gmail.com

Abstract

This paper deals with the practical aspects of efficiently computing Hessian matrices
in the context of deep learning using the Python programming language and the
TensorFlow library. We define a general feed-forward neural network model and show
how to efficiently compute two quantities: the cost function’s exact Hessian matrix,
and the cost function’s approximate Hessian matrix, known as the Outer Product
of Gradients (OPG) matrix. Furthermore, as the number of parameters P in deep
learning usually is very large, we show how to reduce the quadratic space complexity
by an efficient implementation based on approximate eigendecompositions.

1 Introduction

The Hessian matrix has a number of
important applications in a variety of
different fields, such as optimzation,
image processing and statistics. Ge-
ometrically, the Hessian matrix de-
scribes the local curvature of scalar
functions f : RP → R, and is for this
reason perhaps mostly known in the
field of optimization [8]. Nevertheless,
the Hessian matrix also has an impor-
tant role in statistics, since its inverse
is related to the powerful concept of
uncertainty quantification [9].

In this technical note we mostly
focus on the practical aspects of effi-
ciently computing Hessian matrices in
the context of deep learning [7] using
the Python [10] programming language
and the TensorFlow [1] library. We de-
fine a general feed-forward neural net-
work model and show how to efficiently
compute two quantities: the cost func-
tion’s exact Hessian matrix, and the

cost function’s approximate Hessian
matrix, known as the Outer Product
of Gradients (OPG) matrix. Further-
more, as the number of parameters P
in deep learning usually is very large,
we show how to reduce the quadratic
space complexity by efficient approx-
imate eigendecompositions. Although
we here use a feed-fordward neural net-
work architecture to introduce termi-
nology, the theory and implementation
presented is still directly applicable on
more general neural network architec-
tures using convolutional layers, pool-
ing and regularization.

The paper is organized as follows:
In Section 2 we give definitions which
will be used throughout the paper. In
Section 3 we present the problem state-
ment, and discuss three complications
which need to dealt with in order to
achieve a successful TensorFlow imple-
mentation: 1) tf.hessians() is fun-
damentally inadequate since it only
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calculates a subset of all the partial
derivatives (Section 3.3), 2) computing
Hessian matrices essentially requires
per-example gradients of the cost func-
tion with respect to model parameters,
and unfortunately, the differentiation
functionality provided by TensorFlow
does not support computing gradients
with respect to individual examples ef-
ficiently [2] (Section 3.1), and 3) when
differentiating a function with respect

to several variables represented by a
list of tensors, the result is also a list of
tensors (Section 3.2). In Section 5 we
show how to overcome the aforemen-
tioned complications and introduce our
Python module pyhessian [11] which
is released as open source licensed un-
der GNU GPL on GitHub. In Section 6
we summarize the paper and give some
concluding remarks.

2 Deep Neural Networks

A feed-forward neural network is shown in Figure (1). There are L layers l =
1, 2, ..., L with Tl neurons in each layer. The input layer l = 1, is represented

by the input vector xn =
[
xn,1 xn,2 . . . xn,T1

]T
where n = 1, 2, ..., N is the

input index. Furthermore, there are L−2 dense hidden layers, l = 2, 3, ..., L−1,
and a dense output layer l = L, all represented by weight matrices W (l−1) ∈
RTl×Tl−1 , bias vectors b(l) ∈ RTl and vectorized activation functions σ(l).

Figure 1: A Feed-Forward Neural Network with Dense Layers

Let the cost function C coincide with
TensorFlow’s built-in softmax cross-
entropy function1,

C =
1

N

N∑

n=1

Cn(yn, ŷn) (1)

=
1

N

N∑

n=1

(
−

TL∑

m=1

yn,mlog ŷn,m

)
.

(2)

It is defined as the average of N
per-example cross-entropy cost func-
tions Cn(yn, ŷn), where yn represents
the one-hot target vector for the nth

1TensorFlow API r1.13: tf.losses.softmax cross entropy()

2



ŷn = f(xn, ω) = σ(L)(W (L−1)σ(L−1)(· · ·σ(2)(W (1)xn + b(2)) + · · · ) + b(L)) (3)

example, and where ŷn represents the
corresponding prediction vector. The
prediction vector is obtained by evalu-
ating the model function (3) using the
input vector xn and a flat vector of
model parameters ω ∈ RP defined by

ω =
[
ω1 ω2 . . . ωP

]T
(4)

= flatten
l=2,3,...,L

(W (l−1), b(l)). (5)

The function flatten(·) denotes a row-
wise flattening operation to transform
the collection of model parameters rep-
resented by the weight matrices W (l−1)

and bias vectors b(l), l = 2, 3, ..., L into
a flat column vector of dimension P =
T1T2+T2+. . .+TL−1TL+TL. Further,
the activation function in the output
layer is the vectorized softmax function

σ(L)(z) = softmax(z) (6)

=
exp(z)

∑TL

m=1 exp(zm)
, (7)

where z ∈ RTL , and where exp(·) de-
notes the vectorized exponential func-
tion. Finally, training of the neural
network can be defined as finding an
‘optimal’ parameter vector ω̂ by mini-
mizing the cost function (1),

ω̂ = arg min C(ω)
ω∈RP

. (8)

3 Computing Hessian
Matrices in Tensor-
Flow

Given the cost function C defined in
Section 2, the Hessian matrix H ∈
RP×P is defined2

H =
∂2C

∂ω∂ωT

∣∣∣∣
ω=ω̂

(9)

=
1

N

N∑

n=1

∂2Cn

∂ω∂ωT

∣∣∣∣
ω=ω̂

. (10)

The approximation to the Hessian ma-
trix, known as the Outer Product of
Gradients (OPG) matrix G ∈ RP×P ,
is defined

G =
1

N

N∑

n=1

∂Cn

∂ω

∂Cn

∂ω

T ∣∣∣∣
ω=ω̂

(11)

6= ∂C

∂ω

∂C

∂ω

T ∣∣∣∣
ω=ω̂

. (12)

Letting J =
[
∂C1

∂ω
∂C2

∂ω . . . ∂CN

∂ω

]
,

yields

G =
1

N
JTJ

∣∣∣∣
ω=ω̂

. (13)

We notice that H in Equation (10)
is formed by summing over N per-
example Hessian matrices, and that G
in Equation (11) is formed by summing
over N per-example OPG matrices.
We also note that H can be obtained
by differentating the cost function di-
rectly, whereas this property does not
hold for G as seen by (12). Finally, we
note that G can be written as a per-
example cost Jacobian matrix product
(13).

In order to proceed, we now need
to consider three complications regard-
ing gradients and Hessians in Ten-
sorFlow: the limitations of Tensor-
Flow’s built-in tf.hessians() func-
tion is discussed in Section 3.3, per-
example gradients will be discussed in
Section 3.1, and gradient representa-
tion will be discussed in Section 3.2.

2The notation used means that Hi,j = ∂2C
∂ωi∂ωj

∣∣∣∣ωi=ω̂i
ωi=ω̂i

3



3.1 Per-Example Gradi-
ents

A per-example gradient of the cost
function with respect to model param-
eters means to differentiate Cn in (10)
and (11) with respect to model param-
eters for a single example n. However,
when TensorFlow compute gradients

(e.g. tf.gradients()) it performs
back propagation, which never actu-
ally computes the per-example gradi-
ents, but instead directly obtains the
sum of per-example gradients. To
see what this means, consider the fol-
lowing dummy multiple linear regres-
sion model (for simplicity with no bias
term):

In [ 1 ] : import t en so r f l ow as t f
In [ 2 ] : import numpy as np
In [ 3 ] : W = t f . Var iab le ( [ 3 . , 4 . , 5 . , 2 . ] )
In [ 4 ] : X = t f . p l a c eho lde r ( ’ f l o a t 3 2 ’ , shape=(None , 4 ) )
In [ 5 ] : yhat = t f . t ensordot (X, W, axes = 1)
In [ 6 ] : i n i t = t f . g l o b a l v a r i a b l e s i n i t i a l i z e r ( )
In [ 7 ] : s e s s = t f . I n t e r a c t i v e S e s s i o n ( )
In [ 8 ] : s e s s . run ( i n i t )

We have model parameters represented by the variable tensor W (In [3]), and
we use the placeholder tensor X (In [4]) as the model input. For simplicity, we
do not define a cost function here, but instead conduct several differentiation
experiments directly on the scalar model function yhat (In [5]) with N = 2:

In [ 9 ] : s e s s . run ( yhat , f e e d d i c t={x : np . array ( [ [ 1 . , 2 . , 3 . , 4 . ] ,
[ 2 . , 3 . , 4 . , 5 . ] ] ) } )

Out [ 1 ] : array ( [ 3 4 . , 4 8 . ] , dtype=f l o a t 3 2 )

We get back two values (Out [1]) corresponding to the two inner products as
expected. We now take the gradient of the model function with respect to the
model parameters for a single example:

In [ 1 0 ] : s e s s . run ( t f . g r ad i en t s ( yhat , W) ,
f e e d d i c t={X: np . array ( [ [ 1 . , 2 . , 3 . , 4 . ] ] ) } )

Out [ 2 ] : [ array ( [ 1 . , 2 . , 3 . , 4 . ] , dtype=f l o a t 3 2 ) ]

We get back the per-example gradient as expected (Out [2]). We do the same
for the second example:

In [ 1 1 ] : s e s s . run ( t f . g r ad i en t s ( yhat , W) ,
f e e d d i c t={X: np . array ( [ [ 2 . , 3 . , 4 . , 5 . ] ] ) } )

Out [ 3 ] : [ array ( [ 2 . , 3 . , 4 . , 5 . ] , dtype=f l o a t 3 2 ) ]

But when we try to feed two examples:

In [ 1 2 ] : s e s s . run ( t f . g r ad i en t s ( yhat , W) ,
f e e d d i c t={X: np . array ( [ [ 1 . , 2 . , 3 . , 4 . ] ,

[ 2 . , 3 . , 4 . , 5 . ] ] ) } )
Out [ 4 ] : [ array ( [ 3 . , 5 . , 7 . , 9 . ] , dtype=f l o a t 3 2 ) ]

we notice that we do not get back two per-example gradients, but rather the
sum of the two per-example gradients (Out [4]). The important observation
is here that in order to obtain per-example gradients we seemingly need to run
tf.gradients() once per example, which in turn is well known to be very

4



inefficient when N grows large. We will get back to this and discuss solutions
in Sections (5.1) and 5.2).

3.2 Gradient Representa-
tion

In practice, the P model parameters
are represented by a list of tensors (e.g.
[tf.Variable(),...]) correspond-
ing to the different layers of the model
architecture. On the other hand, the
Hessian matrix is only one (P, P)-
shaped tensor (matrix) formed by ev-
ery single variable element contained
in the list of variable tensors.

When differentiating a function
represented by a computational graph
with respect to some variable(s) in
that graph, the variable tensors we

pass to the differentiation function
(tf.gradients()) must be kept in
their original form as upon defining the
graph. One can still pass on the whole
collection of variables as a list to get
hold of the full gradient, but the re-
sult will not be a flat gradient vector –
it will rather be a list of sub-gradients
represented by multiple tensors. This
means that in order to end up with
the (P, P)-shaped Hessian matrix we
want, we need to keep all the variables
in a list during differentiation, and only
afterwards reshape the result into the
desired flat form.

3.2.1 Flattening of Gradients

To illustrate the concept of lists of sub-gradients vs. flat gradients, consider a
dummy multinomial logistic regression model:

In [ 1 3 ] : import t en so r f l ow as t f
In [ 1 4 ] : T1 = 64
In [ 1 5 ] : T2 = 32
In [ 1 6 ] : P = T1∗T2 + T2 # Tota l number o f model parameters
In [ 1 7 ] : W = t f . Var iab le ( t f . ones ( (T1 , T2 ) ) , ’ f l o a t 3 2 ’ )
In [ 1 8 ] : b = t f . Var iab le ( t f . ones ( (T2 , ) ) , ’ f l o a t 3 2 ’ )
In [ 1 9 ] : params = [W, b ]
In [ 2 0 ] : params
Out [ 5 ] : [< t f . Var iab le ’ Var iab le . . . ’ shape=(64 , 32) . . . > ,

<t f . Var iab le ’ Var iab le . . . ’ shape=(32 ,) . . . ]
In [ 2 1 ] : X = t f . p l a c eho lde r ( dtype=’ f l o a t 3 2 ’ , shape=(None , T1) )
In [ 2 2 ] : y = t f . p l a c eho ld e r ( dtype=’ f l o a t 3 2 ’ , shape=(None , T2) )
In [ 2 3 ] : def model fun (X, params ) :

return t f . add ( t f . matmul (X, params [ 0 ] ) , params [ 1 ] )
In [ 2 4 ] : y h a t l o g i t s = model fun (X, params )
In [ 2 5 ] : yhat = t f . nn . softmax ( y h a t l o g i t s )
In [ 2 6 ] : def c o s t f un (y , yha t l o g i t s , params ) :

return t f . l o s s e s . s o f tmax c ro s s en t ropy (y ,
y h a t l o g i t s )

In [ 2 7 ] : c o s t = co s t f un (y , yha t l o g i t s , params )

We thus have model parameters W (In [17]) and b (In [18]) with shapes (T1,

T2) and (T2,), respectively. We can differentiate the cost function represented
by the tensor cost (In [27]) with respect to the individual variables, or the
full list params (In [19]):

In [ 2 8 ] : t f . g r ad i en t s ( cost , W)
Out [ 6 ] : [< t f . Tensor ’ g r ad i en t s . . . ’ shape=(64 , 32) . . . > ]
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In [ 2 9 ] : t f . g r ad i en t s ( cost , b )
Out [ 7 ] : [< t f . Tensor ’ g r ad i en t s . . . ’ shape=(32 ,) . . . > ]
In [ 3 0 ] : t f . g r ad i en t s ( cost , params )
Out [ 8 ] : [< t f . Tensor ’ g r ad i en t s . . . ’ shape=(64 , 32) . . . > ,

<t f . Tensor ’ g r ad i en t s . . . ’ shape=(32 ,) . . . > ]

But if we try to reshape our parameters into a flat vector and then differentiate:

In [ 3 1 ] : pa rams f l a t = t f . concat ( [ t f . reshape (W, [ −1 ] ) , b ] ,
ax i s=0)

In [ 3 2 ] : pa rams f l a t
Out [ 9 ] : <t f . Tensor ’ concat . . . ’ shape=(2080 ,) . . . >
In [ 3 3 ] : t f . g r ad i en t s ( cost , pa rams f l a t )

Out [ 1 0 ] : [ None ]

We get [None] (Out [10]) because the new tensor params flat (In [31]) is
not part of the cost function graph (In [27]). We solve the issue by first
differentiating with respect to the full list, and then flattening the resulting
tensor:

In [ 3 4 ] : grads = t f . g r ad i en t s ( cost , params )
In [ 3 5 ] : grads

Out [ 1 2 ] : [< t f . Tensor ’ g r ad i e n t s . . . ’ shape=(64 , 32) . . . > ,
<t f . Tensor ’ g r ad i e n t s . . . ’ shape=(32 ,) . . . > ]

In [ 3 6 ] : g r a d s f l a t = t f . concat ( [ t f . reshape ( grads [ 0 ] , [ − 1 ] ) ,
grads [ 1 ] ] ,

a x i s=0)
In [ 3 7 ] : g r a d s f l a t

Out [ 1 3 ] : <t f . Tensor ’ concat . . . ’ shape=(2080 ,) dtype=f l oa t32>

3.3 The built-in TensorFlow function tf.hessians()

The fundamental question is, why can we not simply use the built-in TensorFlow
function tf.hessians()? To see why, consider the following:

In [ 3 8 ] : t f . h e s s i an s ( cost , params )
Out [ 1 4 ] : [< t f . Tensor ’ Reshape . . . ’ shape=(64 , 32 , 64 , 32) . . . > ,

<t f . Tensor ’ Reshape . . . ’ shape=(32 , 32) . . . > ]

We observe that we get back two ten-
sors (Out [14]). Let us name the
two HU and HL, respectively. Their
respective shapes are (T1, T2, T1,

T2) and (T2, T2). Firstly, if we
reshape HU into a (T1*T2, T1*T2)-
shaped tensor, it will correspond to the
full Hessian’s upper block diagonal ma-
trix ∈ RT1T2×T1T2 . Secondly, the ten-
sor HL corresponds to the full Hes-
sian’s lower block diagonal matrix ∈

RT2×T2 . In other words, we get no in-
formation about the full Hessian’s two
off-diagonal block matrices ∈ RT1T2×T2

and RT2×T1T2 . Equation (14) illus-
trates the concept.

H =

[
HU ∈ RT1T2×T1T2 ? ∈ RT1T2×T2

? ∈ RT2×T1T2 HL ∈ RT2×T2

]

(14)
The two missing off-diagonal block ma-
trices3 represented by question marks

3The two matrices are equal up to transposition, since H is symmetric
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in Equation (14) correspond to the
partial derivatives involving variable
entities from different tensors in the
parameter list params (In [19]). The
same principle applies for all params

with len(params) > 1.

4 Approximate Hes-
sian Eigendecompo-
sitions

In deep learning, the number of param-
eters P is usually so large that the full
Hessian matrix will be prohibitively
expensive to compute and store. In
this section we present methodology
addressing the issue in terms of ap-
proximate eigendecompositions based
on K eigenpairs. Thus leading to
a space complexity of O(KP ) rather
than O(P 2). As the time complexity is
somewhat more involved, we leave this
discussion for Sections 5.3 and 5.4.

4.1 Low-rank Approxima-
tion

A low-rank approximation of the Hes-
sian matrix can be obtained by a eigen-
decomposition utilizing only K eigen-
pairs corresponding to the K largest
eigenvalues of H (or G),

H̃ = QΛQT ∈ RP×P , (15)

where Q ∈ RP×K is the matrix whose
kth column is the eigenvector qk of H
(or G), and Λ ∈ RK×K is the diagonal
matrix whose elements are the corre-
sponding eigenvalues, Λkk = λk. We
assume that the eigenvalues are alge-
braically sorted so that λ1 ≥ λ2 ≥
. . . ≥ λK .

4.2 Full-rank Approxima-
tion

A full-rank approximation of the Hes-
sian matrix can be obtained by an ex-

trapolation of its smallest eigenvalues.
Assuming that λK+1 = λK+2 = . . . =

λP = λ̃ > 0, a full-rank approximation
is given by

˜̃
H = H̃ + λ̃(I −QQT ) ∈ RP×P , (16)

where H̃ is the low-rank approxima-
tion (15) and where we have used that
Q is an orthonormal basis. Details can
be found in the Appendix 7.2. One
particular choice for λ̃ is to set it equal
to the smallest eigenvalue in the low-
rank approximation, e.g. λ̃ = λK .

5 Implementation

We will now address how to overcome
the basic complications discussed in
Sections 3.3, 3.1 and 3.2. The cur-
rent section is divided into four parts:
we first discuss how to compute the
matrix H in Equation (10), and af-
terwards move on to the matrix G in
Equation (11). Finally, in Sections 5.3
and 5.4 we address how to compute
the aforementioned approximate eigen-
decompositions of both H and G.

5.1 Computing H

We compute the matrix H based on
Hessian vector products [6]. A prac-
tial implementation of Equation (10)
is essentially to form P Hessian vector
products using the full set of basis vec-
tors in RP . As a bonus, the resulting
implementation can easily be paralel-
lized because the columns of the Hes-
sian matrix can be computed indepen-
dently.

In the following we describe the es-
sential parts of this paper’s accompa-
nying Python module pyhessian [11].
The Hessian vector product function
get Hv op(v) can be described as fol-
lows:

1. Differentiates the cost function
with respect to the model param-
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eters contained in the list params
and flattens the result

2. Performs elementwise mul-
tiplication of the flattened
gradient and the vector v;
tf.stop gradient() ensures
that v is treated as a constant
during differentiation. This is
important if the vector v is a
function of the model parame-
ters ω.

3. Differentiates the resulting el-
ementwise vector product with
respect to the model parame-
ters (to get second order deriva-
tives) and flattens the result. As
this step can appear subtle, see
the Appendix 7.1 for a rigorous
derivation.

Note that the function get Hv op(v)

uses the function flatten() which is
based on the insights from Section
3.2.1 and the mathematical operation
defined in Equation (5). Furthermore,
we have defined a parallellized func-
tion get H op() to create the full Hes-
sian matrix operation based on form-
ing P Hessian vector products using
get Hv op(v) for all v’s in RP . The
function get H op() sets up a parallel-

lized operation using tf.map fn() to
get hold of all the P columns of the full
Hessian matrix as defined in Equation
(10). It works by applying Hv op on
all basis vectors in RP represented by
tf.eye(self.P, self.P), where P is
the total number of parameters in the
model.

The important remark is now to re-
alize that, by definition, the matrix H
in Equation (10) is the sum of per-
example Hessian matrices. It means
that we can directly leverage from
the fact that tf.gradients() returns
the sum of per-example gradients dis-
cussed in Section 3.1. In other words,
when we run the resulting H op in a
graph session, we get per-example Hes-
sians (below In [43]) if we feed sin-
gle examples, and the average of per-
example Hessians if we feed more than
one example. Thus, we can get a mini-
batch (below using size batch size H)
Hessian matrix if we feed a mini-batch
(below In [45]), or we can obtain the
full Hessian matrix directly by feed-
ing the complete training set. How-
ever, to avoid excessive memory con-
sumption for large N , we can sum
over mini-batch Hessians and divide by
the number of mini-batches (In [46]

- In [56]):

In [ 3 9 ] : from pyhess ian import Hess ianEst imator
In [ 4 0 ] : hes t = Hess ianEst imator ( . . . )
In [ 4 1 ] : H op = hest . get H op ( )
In [ 4 2 ] : # Per−example
In [ 4 3 ] : H = s e s s . run (H op , f e e d d i c t={X: [ X tra in [ 0 ] ] ,

y : [ y t r a i n [ 0 ] ] } )
In [ 4 4 ] : # Mini−batch
In [ 4 5 ] : H = s e s s . run (H op , f e e d d i c t={X: X tra in [ : ba t ch s i z e H ] ,

y : y t r a i n [ : ba t ch s i z e H ]} )
In [ 4 6 ] : # Ful l
In [ 4 7 ] : B = int (N/ batch s i z e H )
In [ 4 8 ] : H = np . z e ro s ( ( hest .P, hest .P) , dtype=’ f l o a t 3 2 ’ )
In [ 4 9 ] : for b in range (B) :
In [ 5 0 ] : H = H + s e s s . run (H op ,
In [ 5 1 ] : f e e d d i c t={ \
In [ 5 2 ] : X: X tra in [ b∗ batch s i z e H : \
In [ 5 3 ] : (b+1)∗ batch s i z e H ] ,
In [ 5 4 ] : y : y t r a i n [ b∗ batch s i z e H : \
In [ 5 5 ] : (b+1)∗ batch s i z e H ]} )
In [ 5 6 ] : H = H/B

Listing 1: Computing H
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5.2 Computing G

Due to the inequality sign in Equa-
tion (12), the computation of G (unlike
H) cannot exploit the implicit sum of
gradients as discussed in Section 3.1.
Instead, we will pursuit another ef-
ficient technique based on parallized
per-example gradients. Although the
technique we present here has been re-
formulated and adapted to our needs,
the original implementation idea is to
our knowledge originating from the au-
thor of [2]. The OPG matrix operation
function get G op() can be described
as follows:

1. Creates batch size G copies of
the model parameters

2. Splits the model input variable
X, and the model output vari-
able y into respective lists of
batch size G elements

3. Creates a list of batch size G

elements holding model output
tensors resulting from evaluating
the model function using respec-
tive inputs and parameter copies

4. Creates a list of batch size G el-
ements holding cost output ten-
sors resulting from evaluating
the cost using respective labels,
model outputs and parameter
copies

5. Stacks up a flat per-example gra-
dient tensor by paralell differ-
entiation of per-example costs
with respect to the correspond-
ing model parameter copy

6. Forms the OPG matrix opera-
tion by matrix multiplication of
per-example cost Jacobians as in
Equation (13)

Note that the function get G op() uti-
lizes the function flatten() which
is based on the insights from Sec-
tion 3.2.1 and the mathematical op-
eration defined in Equation (5). Also
note that the function get G op() re-
quires itself to maintain redundant
model parameter copies which size
scale with batch size G. To avoid ex-
cessive memory consumption, we can
sum over mini-batch OPGs and di-
vide by the number of mini-batches (In
[64] - In [68]):

In [ 5 7 ] : hes t = Hess ianEst imator ( . . . , ba tch s i z e G )
In [ 5 8 ] : G op = hest . get G op ( )
In [ 5 9 ] : # Per−example
In [ 6 0 ] : s e s s . run (G op , f e e d d i c t={X: [ X tra in [ 0 ] ] ,

y : [ y t r a i n [ 0 ] ] } )
In [ 6 1 ] : # Mini−batch
In [ 6 2 ] : s e s s . run (G op , f e e d d i c t={X: X tra in [ : batch s i z e G ] ,

y : y t r a i n [ : batch s i z e G ]} )
In [ 6 3 ] : # Ful l
In [ 6 4 ] : B = int (N/ batch s i z e G )
In [ 6 5 ] : G = np . z e ro s ( ( hest .P, hest .P) , dtype=’ f l o a t 3 2 ’ )
In [ 6 6 ] : for b in range (B) :
In [ 6 7 ] : G = G + s e s s . run (G op ,

f e e d d i c t={ \
X: X tra in [ b∗ batch s i z e G :\

(b+1)∗ batch s i z e G ] ,
y : y t r a i n [ b∗ batch s i z e G :\

(b+1)∗ batch s i z e G ]} )
In [ 6 8 ] : G = G/B

Listing 2: Computing G
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5.3 Computing Eigenpairs
of H

The Lanczos iteration [5] can be ap-
plied to find K < P eigenvalues
(and corresponding eigenvectors) in
O(SNP ) time and O(KP ) space when
Pearlmutter’s technique [6] is applied
inside the iteration. Pearlmutter’s
technique can simply be described as
a procedure based on two-pass back-
propagations of complexity O(NP )
time and O(P ) space to obtain exact
Hessian vector products without re-
quiring to keep the full Hessian ma-
trix in memory. The number S de-
notes the number of Lanczos iterations
to reach convergence. Typically the
convergence of the Lanczos algorithm
will be fast enough so that S is orders

of magnitude less than P .

Essentially, we select the number of
eigenapirs K and use LinearOperator

from the scipy distribution in com-
bination with the Lanczos imple-
mentation eigsh, and setup the
former to compute Hessian vector
products using get Hv op() from
pyhessian (In [69] - In [74]). The
LinearOperator (In [83]) is initial-
ized with a callback function Hv() (In
[75] - In [82]) where the actual
graph session is executed. The eigsh

argument which=’LA’ (In [84]) en-
sures that the eigenpairs returned cor-
responds to the algebraically largest
eigenvalues of H, and the lines In

[85] - In [87] sorts the eigenpairs in
descending eigenvalue order.

In [ 6 9 ] : from s c ipy . spar s e . l i n a l g import LinearOperator
In [ 7 0 ] : from s c ipy . spar s e . l i n a l g import e i g sh
In [ 7 1 ] : K = 10
In [ 7 2 ] : hes t = Hess ianEst imator ( . . . )
In [ 7 3 ] : v = t f . p l a c eho lde r ( shape=(hest .P, ) , dtype=’ f l o a t 3 2 ’ )
In [ 7 4 ] : Hv op = hest . get Hv op ( v )
In [ 7 5 ] : def Hv(v ) :
In [ 7 6 ] : B = int (N/ batch s i z e H )
In [ 7 7 ] : Hv = np . z e ro s ( ( hest .P) )
In [ 7 8 ] : Bs = batch s i z e H
In [ 7 9 ] : for b in range (B) :
In [ 8 0 ] : Hv = Hv + s e s s . run (Hv op ,

f e e d d i c t={X: X tra in [ b∗Bs :\
(b+1)∗Bs ] ,

y : y t r a i n [ b∗Bs :\
(b+1)∗Bs ] ,

v : np . squeeze (v )} )
In [ 8 1 ] : Hv = Hv / B
In [ 8 2 ] : return Hv
In [ 8 3 ] : H = LinearOperator ( ( hest .P, hest .P) , matvec=Hv,

dtype=’ f l o a t 3 2 ’ )
In [ 8 4 ] : L , Q = e ig sh (H, k=K, which=’LA ’ )
In [ 8 5 ] : s i nd s = np . f l i p (np . a r g s o r t (L) )
In [ 8 6 ] : L = L [ s ind s ]
In [ 8 7 ] : Q = Q[ : , s i nd s ]

Listing 3: Computing the Eigendecomposition of H

5.4 Computing Eigenpairs
of G

For the OPG approximation (12), a
slightly different approach can be ap-
plied. Since the OPG matrix can be
written as a Jacobian matrix product
(13), we get by the singular value de-
composition that its eigenvectors will

be the right singular vectors of the Ja-
cobian, and its eigenvalues the squared
singular values

NG = JTJ = (UΣV T )TUΣV T

= V ΣUTUΣV T

= V Σ2V T (17)
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However, even the N × P -dimensional
Jacobian matrix J is prohibitively ex-
pensive to store. Luckily, mini-batches
of J can easily be obtained, and so
an incremental singular value decom-
position [3, 4] can be applied to each
mini-batch. The computational cost is
thus O(KNP ) time and O(KP ) space.
We select the number of eigenapirs
K and use IncrementalPCA from the
sklearn distribution (In [88] - In

[94]). We then make use of J in
(17) which is available via the func-

tion get J op(). The get J op() im-
plementation is similar to get G op()

except from that it excludes the final
matrix product JTJ and just returns
J (In 95). Essentially, the rest of the
details are tied to filling up the buffer J
in a mini-batch fashion and also ensur-
ing that the number of examples per
mini-batch is large enough to support
the selected K (In [96] - In [103]).
Finally, the eigenpairs are computed
based on (17) (In [104]).

In [ 8 8 ] : from sk l e a rn . decomposit ion import IncrementalPCA
In [ 8 9 ] : K = 10
In [ 9 0 ] : Bs = batch s i z e G
In [ 9 1 ] : hes t = Hess ianEst imator ( . . . )
In [ 9 2 ] : N = int (np . c e i l (K / Bs ) )
In [ 9 3 ] : a s s e r t N % N != 0 , ’N must be d i v i s i b l e by \

K/ batch s i z e G ! ’
In [ 9 4 ] : ipca = IncrementalPCA ( n components=K, ba t ch s i z e=Bs∗N,

copy=False )
In [ 9 5 ] : J op = hest . g e t J op ( )
In [ 9 6 ] : J = np . z e ro s ( ( Bs∗ N , hest .P) , dtype=’ f l o a t 3 2 ’ )
In [ 9 7 ] : B = int (N/Bs )
In [ 9 8 ] : for b in range (B) :
In [ 9 9 ] : s1 = Bs∗(b% N)
In [ 1 0 0 ] : s2 = Bs∗(b% N+1)
In [ 1 0 1 ] : J [ s1 : s2 ] = s e s s . run ( J op ,

f e e d d i c t={X: X tra in [ b∗Bs :\
(b+1)∗Bs ] ,

y : y t r a i n [ b∗Bs :\
(b+1)∗Bs ]} )

In [ 1 0 2 ] : i f (b+1) % N == 0 :
In [ 1 0 3 ] : ipca . p a r t i a l f i t ( J )
In [ 1 0 4 ] : L , Q = np . f l o a t 3 2 ( ipca . s i n g u l a r v a l u e s ∗∗2 / N) ,\

np . f l o a t 3 2 ( ipca . components .T)

Listing 4: Computing the Eigendecomposition of G

5.5 Low-Rank Approxima-
tions

Given the implementations of the
eigendecompositions of H and G in
Sections 5.3 and 5.4, low-rank approx-
imations can be computed by

Q@np. diag (L)@Q.T

Listing 5: Computing the Low-Rank
Approximation

However, the primary motivation of
this approximation is to avoid stor-
ing the full Hessian in memory. For
example, if the intent is to evaluate

y = xTHx for x ∈ RP then we can
use

y = (x .T@Q)@np . diag (L)@(Q.T@x)

Listing 6: Implicit Application of the
Low-Rank Approximation

where we have intentionally introduced
superfluous parenthesis to illustrate
that this expression avoids to form a
full P × P matrix as an intermediate
step.
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5.6 Full-Rank Approxima-
tions

Given the implementations of H and
G in Sections 5.3 and 5.4, full-rank ap-
proximations (using λ̃ = λK) can be
computed by

Q@np. diag (L)@Q.T \
+ L[−1]∗(np . eye ( hest .P) \

− Q@Q.T)

Listing 7: Computing the Full-Rank
Approximation

Analogously to the low-rank example,
if we wish to evaluate y = xTHx us-
ing the full-rank approximation with
no intermediate formation of the full
Hessian (nor I), we can use

y = (x .T@Q)@np . diag (L)@(Q.T@x)\
+ L[−1]∗x .T@x \
− L[−1]∗( x .T@Q)@(Q.T@x)

Listing 8: Implicit Application of the
Full-Rank Approximation

6 Summary and Con-
cluding Remarks

We have presented a practical and ef-
ficient TensorFlow implementation for
computing Hessian matrices in a deep
learning context. The naive methods

have a complexity of O(NP 2) time
and O(P 2) space where N is the num-
ber of examples in the training set
and P is the number of parameters in
the model. Furthermore, we have in-
troduced means for efficient computa-
tion of approximate Hessian eigende-
compositions based on K eigenpairs,
and shown how these can be applied
as both low-rank and full-rank opera-
tors. The complexity of the approx-
imate eigendecompositon of the Hes-
sian is O(SNP ) and O(KP ) space
where S represents the number of re-
quired Lanczos steps, whereas for the
OPG approximation O(KPN) time
and O(KP ) space. The novelty of the
naive methodology presented promi-
nently lies in the implementation tech-
nique rather than in the asymptotic
bound analysis point of view. As noted
by [2], a naive method running back
propagation N times with a mini-batch
of size 1 is very inefficient because
TensorFlow’s back propagation imple-
mentation will not be able to exploit
the parallelism of mini-batch opera-
tions by efficient matrix operation im-
plementations. An usage example of
the pyhessian module [11] applied on
a feed-forward neural network Tensor-
Flow model can be found in the in-
cluded file pyhessian example.py.

7 Appendix

7.1 Derivation of the Hessian Vector Product Implemen-
tation

Let y be the product between the Hessian matrix and an arbitrary vector v,

y = vTH(ω)|ω=ω̂ ∈ RP , (18)

H(ω)|ω=ω̂ =




∂2C(ω)
∂2ω1

∂2C(ω)
∂ω1∂ω2

· · · ∂2C(ω)
∂ω1∂ωp

∂2C(ω)
∂ω2∂ω1

∂2C(ω)
∂2ω2

· · · ∂2C(ω)
∂ω2∂ωp

...
...

. . .
...

∂2C(ω)
∂ωp∂ω1

∂2C(ω)
∂ωp∂ω2

· · · ∂2C(ω)
∂2ωp



ω=ω̂

∈ RP×P , v =




v1
v2
...
vP


 ∈ RP ,

(19)
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where C(ω) is the scalar cost function (1), ω ∈ RP denotes the model parameter
vector, and where ω̂ is the point in parameter space where we would like to
evaluate the Hessian. The implementation of get Hv op() in pyhessian is as
follows

y = f l a t t e n ( t f . g r ad i en t s ( t f . math . mult ip ly ( f l a t t e n ( t f . g r ad i en t s (C, ω̂ ) ) ,
t f . s t op g rad i en t (v ) ) ,

params ) )

Listing 9: get Hv op() implementation

The inner-most differentiation (e.g. tf.gradients()) will return the gra-
dient of the scalar function C(ω) evaluated at ω = ω̂, which we will denote by
∇ωC(ω)|ω=ω̂ ∈ RP . Furthermore, this gradient is multiplied element-wise by
the vector v, and we get

∇ωC(ω) ◦ v|ω=ω̂ =




∂C(ω)
∂ω1

v1
∂C(ω)
∂ω2

v2
...

∂C(ω)
∂ωP

vP



ω=ω̂

. (20)

Therefore the first argument of the outer-most differentiation (e.g. tf.gradients()),
will be a vector function rather than a scalar function as was not the case in the
inner-most differentiation. Since differentiation of tensors in TensorFlow will
evaluate to the sum of the gradients of the individual elements (of the tensor
which is differentiated), we get

∇ω∇ωC(ω) ◦ v|ω=ω̂ =




∂
∂ω1

∂C(ω)
∂ω1

v1 + ∂
∂ω1

∂C(ω)
∂ω2

v2 + . . . + ∂
∂ω1

∂C(ω)
∂ωP

vP
∂

∂ω2

∂C(ω)
∂ω1

v1 + ∂
∂ω2

∂C(ω)
∂ω2

v2 + . . . + ∂
∂ω2

∂C(ω)
∂ωP

vP
...

∂
∂ωP

∂C(ω)
∂ω1

v1 + ∂
∂ωP

∂C(ω)
∂ω2

v2 + . . . + ∂
∂ωP

∂C(ω)
∂ωP

vP



ω=ω̂

(21)

=




∂2C(ω)
∂2ω1

v1 + ∂2C(ω)
∂ω1∂ω2

v2 + . . . + ∂2C(ω)
∂ω1∂ωP

vP
∂2C(ω)
∂ω2∂ω1

v1 + ∂2C(ω)
∂2ω2

v2 + . . . + ∂2C(ω)
∂ω2∂ωP

vP
...

∂2C(ω)
∂ωP ∂ω1

v1 + ∂2C(ω)
∂ωP ∂ω2

v2 + . . . + ∂2C(ω)
∂2ωP

vP



ω=ω̂

(22)

=




∂2C(ω)
∂2ω1

∂2C(ω)
∂ω1∂ω2

· · · ∂2C(ω)
∂ω1∂ωp

∂2C(ω)
∂ω2∂ω1

∂2C(ω)
∂2ω2

· · · ∂2C(ω)
∂ω2∂ωp

...
...

. . .
...

∂2C(ω)
∂ωp∂ω1

∂2C(ω)
∂ωp∂ω2

· · · ∂2C(ω)
∂2ωp







v1
v2
...
vP



ω=ω̂

(23)

= vTH(ω)|ω=ω̂ � (24)

7.2 Derivation of the Full-rank Approximation

The full eigendecomposition of the Hessian matrix can be written

H = QLΛLQ
T
L + QRΛRQ

T
R, (25)

13



where QL ∈ RP×K is the matrix whose kth column is the eigenvector qk of H,
and ΛL ∈ RK×K is the diagonal matrix whose elements are the corresponding
eigenvalues, ΛLkk = λk. Further, QR ∈ RP×(P−K) is the matrix whose kth
column is the eigenvector qK+k of H, and ΛR ∈ R(P−K)×(P−K) is the diagonal
matrix whose elements are the corresponding eigenvalues, ΛRkk = λK+k. We
assume that the eigenvalues are algebraically sorted so that λ1 ≥ λ2 ≥ λK ≥
. . . ≥ λP . Assuming that the eigenvalues λK+1 = λK+2 = . . . = λP = λ̃ > 0,
we get

˜̃
H = QLΛLQ

T
L + QRλ̃IQ

T
R (26)

= QLΛLQ
T
L + λ̃QRQ

T
R. (27)

Since the columns of QL and QR forms an orthonormal basis, it follows that
I = QLQ

T
L + QRQ

T
R, and thus

˜̃
H = QLΛLQ

T
L + λ̃(I −QLQ

T
L). (28)

Consequently,
˜̃
H will be full-rank since all its eigenvalues are greater than zero.

�
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a b s t r a c t

The Delta method is a classical procedure for quantifying epistemic uncertainty in statistical models,
but its direct application to deep neural networks is prevented by the large number of parameters
P . We propose a low cost approximation of the Delta method applicable to L2-regularized deep
neural networks based on the top K eigenpairs of the Fisher information matrix. We address efficient
computation of full-rank approximate eigendecompositions in terms of the exact inverse Hessian, the
inverse outer-products of gradients approximation and the so-called Sandwich estimator. Moreover,
we provide bounds on the approximation error for the uncertainty of the predictive class probabilities.
We show that when the smallest computed eigenvalue of the Fisher information matrix is near the L2-
regularization rate, the approximation error will be close to zero even when K ≪ P . A demonstration
of the methodology is presented using a TensorFlow implementation, and we show that meaningful
rankings of images based on predictive uncertainty can be obtained for two LeNet and ResNet-based
neural networks using the MNIST and CIFAR-10 datasets. Further, we observe that false positives have
on average a higher predictive epistemic uncertainty than true positives. This suggests that there is
supplementing information in the uncertainty measure not captured by the classification alone.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The predictive probabilities at the output layer of neural net-
work classifiers are often misinterpreted as model (epistemic)
uncertainty (Gal & Ghahramani, 2016). Bayesian statistics pro-
vides a coherent framework for representing uncertainty in neu-
ral networks (Goodfellow, Bengio, & Courville, 2016; MacKay,
1992), but has not so far gained widespread use in deep learning
— presumably due to the high computational cost that tradi-
tionally comes with second-order methods. Recently, Gal and
Ghahramani (2016) developed a theoretical framework which
casts dropout at test time in deep neural networks as approx-
imate Bayesian inference. Due to its mathematical elegance and
negligible computational cost, this work has caught great interest
in a variety of different fields (Litjens et al., 2017; Loquercio,
Segu, & Scaramuzza, 2020; Yan, Gong, Wei, & Gao, 2020; Zhu
& Laptev, 2017), but has also generated questions as to what
types of uncertainty these approximations actually lead (Osband,
2016; Osband, Blundell, Pritzel, & Roy, 2016) and what types
are relevant (Kendall & Gal, 2017). For a general treatment of

∗ Corresponding author.
E-mail addresses: geir.kjetil.nilsen@gmail.com, geir.nilsen@uib.no

(G.K. Nilsen), antonella.zanna@uib.no (A.Z. Munthe-Kaas), hans.skaug@uib.no
(H.J. Skaug), morten.brun@uib.no (M. Brun).

uncertainty in machine learning, we refer to Hüllermeier and
Waegeman (2020).

Epistemic uncertainty is commonly understood as the re-
ducible component of uncertainty — the uncertainty of the model
itself, or its parameters. In our context this amounts to the
uncertainty in the estimated class probabilities due to limited
amount of training data. While the epistemic uncertainty can
be reduced by increasing the amount of training data, the other
component of uncertainty known as aleatoric uncertainty, is irre-
ducible and stems from the uncertainty in the label assignment
process (Song, Kim, Park, & Lee, 2020). However, in this paper we
only address the epistemic part, and treat the labels as constant
when estimating uncertainty.

Our approach goes back to the work of MacKay (1992), and we
show that the above reasoning leads to the method known as the
Delta method1 (Hoef, 2012; Khosravi & Creighton, 2011; Newey
& McFadden, 1994) in statistics. However, as the Delta method
depends on the empirical Fisher information matrix which grows
quadratically with the number of neural network parameters P
– its direct application in modern deep learning is prohibitively
expensive. We therefore propose a low cost variant of the Delta
method applicable to L2-regularized deep neural networks based
on the top K eigenpairs of the Fisher information matrix. We

1 Also known as the Laplace approximation.

https://doi.org/10.1016/j.neunet.2021.10.014
0893-6080/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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address efficient computation of full-rank approximate eigende-
compositions in terms of either the exact inverse Hessian, the
inverse outer-products of gradients (OPG) approximation or the
so-called Sandwich estimator. Further, we exhibit the fact that
deep learning classifiers tend to be heavily over-parameterized.
This leads to flat Fisher information eigenvalue spectra which we
show can be exploited in terms of a simple linearization.

Another classical epistemic uncertainty quantification proce-
dure is the Bootstrap (Efron, 1979; Khosravi & Creighton, 2011).
A comparison of the Delta methodology presented in this paper
and the classical Bootstrap procedure applied to deep learning
classification can be found in Nilsen, Munthe-Kaas, Skaug, and
Brun (2021).

The theoretical Fisher information matrix is always positive
(semi)-definite, and we constrain our empirical counterpart to
be the same. Recent research (Alain, Roux, & Manzagol, 2019;
Ghorbani, Krishnan, & Xiao, 2019; Sagun, Bottou, & LeCun, 2017;
Sagun, Evci, Guney, Dauphin, & Bottou, 2018), consistent with
our own observations, show that the exact Hessian after train-
ing is rarely positive definite in deep learning. To mitigate this,
we propose a simple correction of the right tail of the Hes-
sian eigenvalue spectrum to achieve positive definiteness. We
corroborate our choice with two observations: a) negative eigen-
values of the Hessian matrix are highly stochastic across differ-
ent weight initialization values, and b) correcting the eigenvalue
spectrum to achieve positive definiteness yields stable predictive
epistemic uncertainty estimates which are perfectly correlated
with the estimates based on the OPG approximation — which by
construction is always positive (semi)-definite (Martens, 2020).

As the computational cost of the exact inverse Hessian matrix
or its full eigendecomposition is prohibitively expensive in deep
learning, we propose to use the Lanczos iteration (Trefethen &
III, 1997) in combination with Pearlmutter’s technique (Pearlmut-
ter, 1994) to compute the needed eigenpairs. Consequently, the
matrix inversion will be straightforward, and the net computa-
tional complexity will be O(SPN) time and O(KP) space, where
N is the number of training examples and S is the number of
Lanczos–Pearlmutter steps required to compute K eigenpairs.

Also the inverse OPG approximation or its full eigendecompo-
sition is prohibitively costly in deep learning. Even if we disregard
the cubic time inversion and the quadratic space complexity, one
is first left to compute and store the N × P-dimensional Jacobian
matrix. In deep learning software provisions based on backward-
mode automatic differentiation, only the sum of mini-batch gra-
dients can be computed efficiently. We therefore propose to
compute mini-batches of the Jacobian using efficient per-example
gradients (Nilsen, Munthe-Kaas, Skaug, & Brun, 2019) in combi-
nation with incremental singular value decompositions (Levy &
Lindenbaum, 2000). Since the OPG approximation can be writ-
ten as a Jacobian matrix product, its eigenvectors will be the
right singular vectors of the Jacobian, and its eigenvalues the
squared singular values. This leads to a computational complexity
of O(KPN) time and O(KP) space, also accounting for the inversion.
The Sandwich estimator requires both the inverse Hessian and
the OPG approximation, and is thus O(max{K , S}PN) time and
O(KP) space.

This work is a continuation of Nilsen et al. (2019), and we here
introduce the fully deterministic (Nagarajan & Warnell, 2019)
open sourced TensorFlow module pydeepdelta (pyDeepDelta,
2018-2021), and illustrate the methodology on two LeNet and
ResNet-based convolutional neural network classifiers using the
MNIST and CIFAR-10 datasets. The main contributions of the
paper can be summarized as follows:

• We recognize the Delta method as a measure of epistemic
as opposed to aleatoric uncertainty and break it into two

components: the eigenvalue spectrum of the Fisher informa-
tion (i.e. Hessian) of the cost function and the per-example
sensitivities (i.e. gradients) of the model function.

• We show how to approximate the naïve Delta method and
thereby reducing the computational complexity in P from
quadratic in space and cubic in time, to linear in both space
and time. Bounds of the approximation error are provided.

• We provide an accompanying TensorFlow implementation,
and demonstrate how it can be applied on a few well known
architectures using the MNIST and CIFAR-10 datasets.

The paper is organized as follows: In Section 2 we give def-
initions which will be used throughout the paper. In Section 3
we review the Delta method in a deep learning classification
context, and in Section 4 we outline the details of the proposed
methodology. In Sections 5 and 6 we demonstrate the method,
and finally, in Section 7 we summarize the paper and give some
concluding remarks and ideas of future work.

2. Deep neural networks

We use a feed-forward neural network architecture with
dense layers to introduce terminology and symbols, but empha-
size that the theory presented in the paper is directly applicable
to any L2-regularized architecture.

2.1. Architectural

A feed-forward neural network is shown in Fig. 1. There are
L layers l = 1, 2, . . . , L with Tl neurons in each layer. The
input layer l = 1, is represented by the input vector xn =(
xn,1 xn,2 . . . xn,T1

)T where n = 1, 2, . . . ,N is the input
index. Furthermore, there are L − 2 dense hidden layers, l =

2, 3, . . . , L− 1, and a dense output layer l = L, each represented
by weight matrices W (l−1)

∈ RTl×Tl−1 , bias vectors b(l) ∈ RTl and
vectorized activation functions a(l).

2.2. Parameter vectors

The total number of parameters in the model shown in Fig. 1
can be written,

P =

L∑
l=2

P (l)
=

L∑
l=2

Tl−1Tl + Tl, (1)

where P (l) denotes the number of parameters in layer l. By def-
inition, P (1)

= 0 since the input layer contains no weights or
biases. Furthermore, we define parameter vectors representing
the layer-wise weights and biases as follows,

ω(l)
=

[
vec(W (l))

b(l)

]
∈ RP(l) , (2)

for l = 2, 3, . . . , L, with components ω
(l)
i , i = P (l−1)

+ 1, P (l−1)
+

2, . . . , P (l). The notation vec(W ) denotes a row-wise vectoriza-
tion2 of the matrix W A×B into a column vector of dimension RAB.
In the rest of the paper, we consider the full model and define
the parameter vector,

ω =

⎡⎢⎢⎢⎣
ω(2)

ω(3)

...

ω(L)

⎤⎥⎥⎥⎦ ∈ RP . (3)

2 Standard method in TensorFlow: tf.reshape(W, [−1]).
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Fig. 1. A feed-forward neural network with dense layers.

2.3. Training, model and cost function

The model function f : RT1×P
→ RTL associated to the

architecture shown in Fig. 1 is defined as

f (xn, ω) = a(L)[W (L)a(L−1)(· · · a(2){W (2)xn + b(2)} + · · ·)+ b(L)]. (4)

We use a softmax cross-entropy cost function C : RP
→ R and

require L2-regularization with a rate factor λ > 0,

C(ω) =
1
N

N∑
n=1

Cn(yn, ŷn)+
λ

2

P∑
p=1

ω2
p

=
1
N

N∑
n=1

(
−

TL∑
m=1

yn,mlog ŷn,m

)
+

λ

2

P∑
p=1

ω2
p, (5)

where yn represents the target vector for the nth example (N
examples), and where ŷn = f (xn, ω) represents the corresponding
prediction vector obtained by evaluating the model function (4)
using the input vector xn and the parameter vector (3). The
activation function a(L) : RTL → RTL in the output layer is the
vectorized softmax function defined as

a(L)(z) = softmax(z)

=
exp(z)∑TL

m=1 exp(zm)
, (6)

where exp(·) denotes the vectorized exponential function. Train-
ing of the neural network can be defined as finding an ‘optimal’
parameter vector ω̂ by minimizing the cost function (5),

ω̂ = arg min C(ω)
ω∈RP

. (7)

3. The delta method

The Delta method (Hoef, 2012) views a modern deep neural
network as a (huge) non-linear regression. In our classification
setting, we regard the labels as constant, and thus the epistemic
component of the uncertainty associated with predictions of an
arbitrary input example x0 reduces to the evaluation of the co-
variance matrix of the network outputs (Khosravi & Creighton,
2011). By a first-order Taylor expansion (Grosse, 2020), it can be
shown that the covariance matrix of the network outputs ŷ0, i.e.
the model function (4), can be approximated by

Cov(ŷ0) ≈ FΣF T
∈ RTL×TL , (8)

where

F =
[
Fij
]
∈ RTL×P , Fij =

∂

∂ωj
fi(x0, ω)

⏐⏐⏐⏐
ω=ω̂

(9)

is the Jacobian matrix of the model function, and where Σ is the
covariance matrix of the model parameter estimate ω̂. For a given
x0, an approximate standard deviation of ŷ0 is provided by the
formula

σ (x0) ≈
√
diag

(
FΣF T

)
∈ RTL . (10)

Eq. (10) means that when the neural network predicts for an
input x0, the associated epistemic uncertainty per class output is
determined by a linear combination of parameter sensitivity (i.e.
F ) and parameter uncertainty (i.e. Σ). Parameter sensitivity (F )
prescribes the amount of change in the neural network output for
an infinitesimal change in the parameter estimates, whereas the
parameter uncertainty (Σ) prescribes the amount of uncertainty
in the parameter estimates themselves.

We apply and compare three different approximations to Σ .
The first one is called the Hessian estimator, and is defined by

ΣH
=

1
N
H−1

=
1
N

[
1
N

N∑
n=1

∂2Cn

∂ω∂ωT

⏐⏐⏐⏐
ω=ω̂

+ λI

]−1

∈ RP×P , (11)

where H is the empirical Hessian matrix of the cost function
evaluated at ω̂.

The second estimator is called the Outer-Products of Gradi-
ents (OPG) estimator and is defined by

ΣG
=

1
N
G−1

=
1
N

[
1
N

N∑
n=1

∂Cn

∂ω

∂Cn

∂ω

T ⏐⏐⏐⏐
ω=ω̂

+ λI

]−1

∈ RP×P , (12)

where the summation part of G corresponds to the empirical
covariance of the gradients of the cost function evaluated at ω̂.
Finally, the third estimator is known as the Sandwich estima-
tor (Freedman, 2006; Schulam & Saria, 2019) and is defined by

ΣS
=

1
N
H−1GH−1

∈ RP×P . (13)

Across various fields and contexts, the two famous Eqs. (11)
and (12) are often presented and interpreted differently, and the
inconsistency in the vast literature is nothing but intriguing. We
therefore feel that their appearance in this paper requires some
elaboration. Firstly, for the Hessian estimator (11), we note that
the differentials act only on the data dependent part of the cost
function (5), Cn, so the second term, λI , here comes from the
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Fig. 2. The Delta method for quantifying the predictive epistemic uncertainty σ̃ (x0) of ŷ0 = f (x0, ŵ) in deep learning (solid line).

second-order derivatives of the L2-regularization term. Secondly,
for the OPG estimator (12), also here the differentials act on the
data dependent part of the cost function, but the crucial detail
often confused or let out in the literature comes with the second
term, λI: under L2-regularization it must be added explicitly in
order for G to be asymptotically equal to H (See Appendix for
a proof) – as is the primary motivation of the OPG estimator as
a plug-in replacement of the Hessian estimator in the first place.
If let out, G will almost always be singular (Murfet et al., 2020;
Watanabe, 2007), and thus cannot be used in (12).

At this point, we can see that two fundamental difficulties
arise when applying the Delta method in deep learning: (a) the
sheer size of the covariance matrix grows quadratically with P ,
and (2) the covariance matrix must be positive definite. In other
words, we are virtually forced to compute and store the full
covariance matrix, and are in terms of the Hessian estimator
dependent on that the optimizer can find a true local (or global)
minimum of the cost function. Nevertheless, with the OPG and
the Sandwich estimators, the second obstacle is virtually inap-
plicable since they by definition always will be positive definite
when λ > 0.

In the next section we present methodology that addresses
both these aspects. We present an indirect correction leaving the
Hessian estimator positive definite, and introduce methodology
with computational time and space complexity which is linear
in P .

4. The delta method in deep learning

We present our approach to the Delta method in deep learning
as a procedure carried out in two phases after the neural network
has been trained. See Fig. 2.

The first phase – the ‘initial phase’ – is carried out only once,
with the scope of indirectly computing full-rank, positive definite
approximations of the covariance matrices (11), (12) or (13) based
on approximate eigendecompositions of H and G. The second
phase – the ‘prediction phase’ – is carried out hand in hand
with the regular neural network prediction process (4), and is
used to approximate the epistemic component of the predictive
uncertainty governed by (10) using the indirect covariance matrix
approximation found in the ‘initial phase’.

In the next sections, we address the following aspects of the
proposed methods: (a) how to efficiently compute eigenvalues
and eigenvectors of the Hessian estimator via the Lanczos iter-
ation and exact Hessian vector products, (b) how to efficiently
compute eigenvalues and eigenvectors of the OPG estimator via
incremental singular value decompositions, (c) how to combine
the former two to obtain an approximation of the Sandwich
estimator, and (d) how to apply these estimators to efficiently
compute an approximation of (10).

4.1. Computing eigenvalues and eigenvectors of the covariance ma-
trix

The full eigendecomposition of the covariance matrix in (10)
is defined by

Σ = QΛ−1Q T
∈ RP×P , (14)

Table 1
The computational complexity of the outlined methodology is linear in P across
both phases.

Initial phase Prediction phase (Per-Example)

Time Space Time Space

Hessian O(SPN)
O(KP) O(TLPK + T 2

L K + K 2TL) O(max{K , TL}P)OPG O(KPN)
Sandwich O(max{K , S}PN)

where Q ∈ RP×P is the matrix whose kth column is the eigenvec-
tor qk of Σ , and Λ ∈ RP×P is the diagonal matrix whose elements
are the corresponding eigenvalues, Λkk = λk. We assume that the
eigenvalues are algebraically sorted so that λ1 ≥ λ2 ≥ . . . ≥ λP .
Note that in terms of the Hessian estimator, the eigenvalues are
precisely the second derivatives of the cost function along the
principal axes of the ellipsoids of equal cost, and that Q is a
rotation matrix which defines the directions of these principal
axes (LeCun, Simard, & Pearlmutter, 1993).

For the Hessian estimator (11), the Lanczos iteration (Tre-
fethen & III, 1997) can be applied to find K < P eigenvalues
(and corresponding eigenvectors) in O(SNP) time and O(KP) space
when Pearlmutter’s technique (Pearlmutter, 1994) is applied in-
side the iteration (Nilsen et al., 2019). Pearlmutter’s technique
can simply be described as a procedure based on two-pass back-
propagations of complexity O(NP) time and O(P) space to obtain
exact Hessian vector products without requiring to keep the full
Hessian matrix in memory. The number S denotes the number
of Lanczos iterations to reach convergence. We observe that the
convergence of the Lanczos algorithm is quite fast in our experi-
ments, and we find that S is practically orders of magnitude less
than P .

For the OPG estimator (12), a slightly different approach can
be applied. Since the OPG estimator can be written as a Jaco-
bian matrix product (Nilsen et al., 2019), we get by the singular
value decomposition that its eigenvectors will be the right sin-
gular vectors of the Jacobian, and its eigenvalues the squared
singular values. Mini-batches of the Jacobian matrix can eas-
ily be obtained by standard back-propagation, and so an incre-
mental singular value decomposition (Cardot & Degras, 2015;
Levy & Lindenbaum, 2000) can be applied to each mini-batch.
The computational cost is thus O(KNP) time and O(KP) space.
The Sandwich estimator combines the Hessian and the OPG ap-
proximation via the product (13), and thus has a computational
complexity of O(max{K , S}NP) time and O(KP) space. The compu-
tational complexity of the outlined methodology is summarized
in Table 1.3

Our TensorFlow module pydeepdelta (pyDeepDelta, 2018-
2021) utilizes the Lanczos implementation available in the SciPy
distribution (SciPy), as well as the incremental singular value
decomposition available in the scikit-learn distribution (scikit-
learn).

3 Assuming naive matrix multiplication.
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Fig. 3. Log scale eigenvalue magnitude spectra of H and G showing the K = 1500 largest (left tail subspace) and the K = 1500 smallest (right tail subspace) eigenvalues
and their variation across sixteen trained instances of the MNIST network distinguished only by a different random weight initialization. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

4.2. The eigenvalue spectra of H and G

To better understand the proposed covariance approxima-
tions, we first need to explore the prototypical deep learning
eigenvalue spectrum of the empirical Hessian matrix H (11) and
the empirical covariance of the gradients G (12). To this end, we
introduce two LeNet-based convolutional neural network classi-
fiers using the MNIST and CIFAR-10 datasets, and draw parallels
to the findings in the literature.

4.2.1. Classifier architectures, parameters and training
The MNIST classifier has L = 6 layers, layer l = 1 is the

input layer represented by the input vector. Layer l = 2 is a
3 × 3 × 1 × 32 convolutional layer followed by max pooling
with stride equal to 2 and with a ReLU activation function. Layer
l = 3 is a 3 × 3 × 32 × 64 convolutional layer followed by
max pooling with a stride equal to 2, and with ReLU activation
function. Layer l = 4 is a 3 × 3 × 64 × 64 convolutional layer
with ReLU activation function. Layer l = 5 is a 576 × 64 dense
layer with ReLU activation function, and the output layer l = 6
is a 64× TL dense layer with softmax activation function, where
the number of classes (outputs) is TL = 10. The total number of
parameters is P = 93,322.

The CIFAR-10 classifier has L = 6 layers, layer l = 1 is the
input layer represented by the input vector. Layer l = 2 is a
3× 3× 3× 32 convolutional layer followed by max pooling with
stride equal to 2 and with a ReLU activation function. Layer l = 3
is a 3× 3× 32× 64 convolutional layer followed by max pooling
with a stride equal to 2, and with ReLU activation function. Layer
l = 4 is a 3×3×64×64 convolutional layer with ReLU activation
function. Layer l = 5 is a 1024 × 64 dense layer with ReLU
activation function, and the output layer l = 6 is a 64 × 10
dense layer with softmax activation function, where the number
of classes (outputs) is TL = 10. The total number of parameters is
P = 122, 570.

We apply random normal weight initialization and zero bias
initialization. We use (5) as the cost function with a L2-
regularization rate λ = 0.01. We utilize the Adam optimizer (Bot-
tou, Curtis, & Nocedal, 2018; Kingma & Ba, 2014) with a batch
size of 100, and apply no form of randomized data shuffling. To
ensure convergence (i.e. ∥∇C(ω̂)∥2 ≈ 0) we apply the follow-
ing learning rate schedules given by the following (step, rate)
pairs: MNIST = {(0, 10−3), (60k, 10−4), (70k, 10−5), (80k, 10−6)}
and CIFAR-10 = {(0, 10−3), (55k, 10−4), (85k, 10−5), (95k, 10−6),
(105k, 10−7)}. For MNIST, we stop the training after 90,000 steps
– corresponding to a training accuracy of 0.979, test accuracy
0.981, training cost C(ω̂) = 0.257 and a gradient norm
∥∇C(ω̂)∥2 = 0.016. For CIFAR-10, we stop the training after

115,000 steps – corresponding to a training accuracy of 0.701,
test accuracy 0.687, training cost C(ω̂) = 1.284 and a gradient
norm ∥∇C(ω̂)∥2 = 0.030.

4.2.2. The eigenvalue spectrum approximation
The general assumption in deep learning is that H after train-

ing is not positive definite and mostly contain eigenvalues close
to zero (Alain et al., 2019; Ghorbani et al., 2019; Granziol et al.,
2019; Sagun et al., 2017, 2018; Watanabe, 2007). The same holds
true for G although it by definition must at least be positive
semi-definite (Martens, 2020). However, given the discussion in
Section 3, we know that L2-regularization with rate λ/2 has the
effect of shifting the eigenvalues of H and G upwards by λ.

To test this hypothesis, we study the K = 1500 algebraically
largest and the K = 1500 algebraically smallest eigenvalues
of H and G for 16 trained instances of the MNIST network de-
fined in Section 4.2.1. These sixteen networks are thus only
distinguished from each other by a different random weight
initialization prior to training. The two corresponding log-scale
eigenvalue magnitude spectra are shown in Fig. 3.

Firstly, we note that in the midpoint gaps of the spectra,
there are P − 2K = 90, 195 ‘missing’ central eigenvalues which
we have not computed. Since the eigenvalues are sorted in de-
creasing order, all the central eigenvalues must be close to the
L2-regularization rate λ. We refer to this part of the eigenvalue
spectrum as the gap. Secondly, we note that the confidence inter-
vals in the plots are taken across instance space, thus telling how
the eigenvalue spectrum change based on the 16 random weight
initializations. In both plots, the blue confidence interval tells that
the largest eigenvalues of H and G (called left tail) are stable
across the 16 trained networks, but the smallest eigenvalues of
H are changing dramatically (called right tail, left plot). On the
contrary, all the eigenvalues of G are stable. Thirdly, as shown
by the green vertical dotted line in the upper plot representing
the mean zero-crossing, H is clearly not positive definite — even
with L2-regularization. The green confidence interval around the
zero-crossing shows that the number of negative eigenvalues also
change across the networks.

In Granziol et al. (2019) it was hypothesized that negative
Hessian eigenvalues are caused by a discrepancy between the em-
pirical Hessian (i.e. H) and its theoretical counterpart (expected
Hessian) in which the summation of (11) is replaced with an
expectation so that effectively N → ∞. They showed that as
N grows (holding ω̂ fixed), the empirical right tail grows toward
λ whereas the rest of the spectrum is stable. Supported by the
fact that H and G will be equal in expectation (Appendix), the
expected Hessian eigenvalue spectrum might be more similar to
that of G where all the eigenvalues are greater than equal to λ.
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Fig. 4. In terms of its eigenvalue spectrum, the covariance matrix can be partitioned as given by Eq. (15): the left tail subspace (eigenpairs computed), the gap
subspace (eigenvalues approximated, eigenvectors implicitly found by orthonormality) and the right tail subspace (eigenvalues extrapolated, eigenvectors implicitly
found using orthonormality). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

In line with these ideas and the empirical evidence presented
in Fig. 3, we assume that all the smallest eigenvalues of H in
the right tail are inherently noisy, and should not be used by
the Hessian estimator. Therefore, with reference to Fig. 4, for
the Hessian estimator, we (a) calculate all the eigenpairs in the
left tail, (b) approximate all the eigenvalues in the gap and (c)
extrapolate the eigenvalues from the gap into the right tail. The
eigenvectors corresponding to the gap and right tail can implicitly
be accounted for by orthonormality as discussed in the next
section.

For the OPG estimator, the same principle applies apart from
that the extrapolation inherently becomes a part of the gap sub-
space approximation because we know that G always is positive
definite when λ > 0. Finally, for the Sandwich estimator, we
simply apply the aforementioned procedures and estimate the
product (13).

4.3. Closing the gap

Based on the observations in the previous section, we now
propose a partitioning of the eigendecomposition which reveals
that full-rank, positive definite approximations of the Hessian and
OPG estimators can be obtained by computing only the eigenpairs
corresponding to the K algebraically largest eigenvalues of H and
G respectively. Finally, we show how to use these approximations
to construct an approximation of the Sandwich estimator.

4.3.1. The Hessian and OPG estimators
In terms of the Hessian and OPG estimators, the full eigen-

decomposition of the covariance matrix can be partitioned into
three subspaces as shown in Fig. 4

Σ = ΣL + ΣG + ΣR = QLΛ
−1
L Q T

L + QGΛ−1
G Q T

G + QRΛ
−1
R Q T

R . (15)

This decomposition applies to both ΣH (11) and ΣG (12), and thus
we have omitted the superscripts in our notation. In practice, the
two merely differs by which of the two matrices H and G the
calculated eigenpairs come from. The subscript ‘G’ denotes the
gap subspace which is based on eigenvectors with eigenvalues
λK+1 to λP−K−1. Subscript ‘L’ denotes the left tail subspace and
is based on eigenvectors with eigenvalues λ1 to λK . Finally, the
subscript ‘R’ denotes the right tail subspace which is based on
eigenvectors with eigenvalues λP−K to λP . Accordingly, we have
that QL ∈ RP×K , ΛL ∈ RK×K , QG ∈ RP×(P−2K ), ΛG ∈ R(P−2K )×(P−2K ),
QR ∈ RP×K and ΛR ∈ RP×K .

If λK ≈ λ we can safely assume that all the eigenvalues in
the gap subspace must be close to λ. In line with (Granziol et al.,
2019) and the empirical evidence presented in Fig. 3, we assume
that all the eigenvalues in the right subspace are inherently noisy,
and should not be used by the Hessian estimator. Consequently,
we assume that also the eigenvalues in the right subspace are
approximately equal to λ. Since the OPG estimator is always
positive definite when λ > 0, the same assumption also holds
true.

With reference to Fig. 4, there are now two possible extreme
conditions: (a) when all the eigenvalues in the gap and right
subspaces are set to λK (blue), or (b) when all the eigenvalues
in the gap and right subspaces are set to λ (green). By defining
λ̃ (purple) as the harmonic mean of λ and λK , and ϵλ as the
midpoint of their reciprocals,

λ̃ =

(
λ−1

+ λ−1
K

2

)−1

and ϵλ =
λ−1

− λ−1
K

2
, (16)

it follows that λ̃−1
± ϵλ will enclose the interval [λ−1

K , λ−1
]. The

covariance matrix can now be approximated by

Σ̃ =
1
N

[
QLΛ

−1
L Q T

L + λ̃−1(QGQ T
G + QRQ T

R )
]
, (17)

with a worst-case approximation error ∆ given by

∆ =
ϵλ

N

[
QGQ T

G + QRQ T
R

]
, (18)

such that Σ is bounded by Σ̃ ± ∆. Since Q is an orthonormal
basis, we see that it is possible to express (17) and (18) without
an explicit need to compute any of the eigenvectors relative to
the gap nor right tail subspaces because

QGQ T
G + QRQ T

R = I − QLQ T
L . (19)

Inserting (17) into (10) with use of (19), yields the final form of
the approximation to the uncertainty associated with prediction
of x0

σ̃ 2(x0) =
1
N
diag

{
F
[
QLΛ

−1
L Q T

L + λ̃−1(I − QLQ T
L )
]
F T}

∈ RTL , (20)

with a worst-case approximation error δ given by

δ =
ϵλ

N
diag

{
F
(
I − QLQ T

L

)
F T}

∈ RTL , (21)

such that σ 2(x0) is bounded by σ̃ 2(x0)± δ.
In terms of standard deviations, the worst-case approximation

error ϵ of σ̃ (x0) is given by

ϵ =
1
2

(√
σ̃ 2(x0)+ δ −

√
σ̃ 2(x0)− δ

)
∈ RTL , (22)

such that σ (x0) is bounded by σ̃ (x0) ± ϵ. Lastly, we define an
‘uncertainty score’ (which we will use later to rank images) by
summing the variances per class output (class variance), and then
take the square root to get the total uncertainty in standard
deviations

σ̃score(x0) =

√ TL∑
m=1

σ̃ 2
m(x0) ∈ R, (23)

with the corresponding worst-case approximation error ϵscore
given by,

ϵscore =
1
2

⎛⎝
√ TL∑

m=1

σ̃ 2
m(x0)+ δm −

√ TL∑
m=1

σ̃ 2
m(x0)− δm

⎞⎠ ∈ R, (24)
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such that the true quantity is bounded by σ̃score(x0) ± ϵscore. We
note that the worst-case approximation errors (21), (22) and (24)
are functions of x0 but we have notationally dropped this from the
equations to avoid cluttering. The approximation errors should be
thought of as an uncertainty of the predictive uncertainty which
accounts for the worst-case loss of not computing the gap sub-
space explicitly. Since the right tail subspace can be extrapolated
when H is not positive definite, the concept of an approximation
error for the Hessian estimator must be used carefully.

At this point we make a few comments regarding Eq. (20).
The first term on the right hand side, QLΛ

−1
L Q T

L , corresponds
to a low-rank approximation of the covariance matrix based
on K explicitly computed principal eigenpairs. However, when
the second term, λ̃−1(I − QLQ T

L ), is added — the approxima-
tion becomes full-rank. When accounting for the left and right
multiplication of the sensitivity matrix F , the per-class predic-
tive uncertainties of x0 can be interpreted as weighted sums
of the squared sensitivities in the directions expressed by the
eigenbasis Q using the inverse eigenvalues as weights. Hence,
for the low-rank approximation – regardless of the sensitivity
– the contribution to the predictive uncertainty will be zero in
directions k > K , whereas for the full-rank approximation — the
contribution can still be high. We will come back to this when we
discuss out-of-distribution examples in Section 5.

4.3.2. The sandwich estimator
The approximation of the Sandwich estimator is defined by

Σ̃ =
1
N
H̃−1G̃H̃−1. (25)

We introduce two separate linearization constants for the ap-
proximation of the gap (and right tail) subspace of G and H−1

using the harmonic means

λ̃H
=

(
λ−1

+ λH
K
−1

2

)−1

, (26)

λ̃G
=

(
λ−1

+ λG
K
−1

2

)−1

. (27)

The approximation of H−1 is thus given by

H̃−1
= QH

L ΛH
L
−1

QH
L

T
+ λ̃H−1

(I − QH
L QH

L
T
), (28)

and the approximation of G given by

G̃ = Q G
L ΛG

LQ
G
L

T
+ λ̃G(I − Q G

L Q
G
L

T
). (29)

The superscripts ‘H’ and ‘G’ are used to distinguish the eigenvec-
tors and eigenvalues of H and G respectively. By inserting (28)
and (29) into (25) and working out the product, we define the
following eight matrices

S = QH
L ΛH

L
−1

QH
L

T
Q G
L ΛG

LQ
G
L

T
QH
L ΛH

L
−1

QH
L

T
(30)

A = QH
L ΛH

L
−1

QH
L

T
(I − Q G

L Q
G
L

T
)QH

L ΛH
L
−1

QH
L

T
(31)

N = (I − QH
L QH

L
T
)Q G

L ΛG
LQ

G
L

T
QH
L ΛH

L
−1

QH
L

T
(32)

D = (I − QH
L QH

L
T
)(I − Q G

L Q
G
L

T
)QH

L ΛH
L
−1

QH
L

T
(33)

W = QH
L ΛH

L
−1

QH
L

T
Q G
L ΛG

LQ
G
L

T
(I − QH

L QH
L

T
) = N T (34)

I = QH
L ΛH

L
−1

QH
L

T
(I − QH

L QH
L

T
)(I − Q G

L Q
G
L

T
) = DT (35)

C = (I − QH
L QH

L
T
)Q G

L ΛG
LQ

G
L

T
(I − QH

L QH
L

T
) (36)

H = (I − QH
L QH

L
T
)(I − Q G

L Q
G
L

T
)(I − QH

L QH
L

T
). (37)

The uncertainty associated with prediction of x0 can now be
written

σ̃ 2(x0) =
1
N
diag

{
F
[
S + λ̃GA

+ λ̃H−1
(N + N T )

+ λ̃Gλ̃H−1
(D + DT )

+ λ̃H−2C

+ λ̃Gλ̃H−2H
]
F T}

∈ RTL , (38)

with the worst-case approximation error given by

δ =
1
2N

diag
{
F
[
(λG

K − λ)A

+ (λ−1
− λH

K
−1

)(N + N T )

+ (λG
Kλ−1

− λH
K
−1

λ)(D + DT )

+ (λ−2
− λH

K
−2

)C

+ (λ−2λG
K − λH

K
−2

λ)H
]
F T}

∈ RTL , (39)

such that σ 2(x0) is bounded by σ̃ 2(x0) ± δ. In terms of standard
deviations, the approximation error is readily found by inserting
(38) and (39) into (22).

4.4. On the relation between the effective number of parameters and
K

In MacKay (1992), the so-called effective number of parame-
ters is defined in terms of the eigenvalues of the Hessian matrix.
It is noted that directions in parameter space for which the
eigenvalues are close to λ do not contribute to the number of
good parameter measurements. Therefore, the effective number
of parameters is a measure of the number of parameters which
are well determined by the training data. In other words, when
we select K so that λK ≈ λ, we loosely cover the data dependent
part of the Hessian matrix (first term of right hand side of (5))
and can therefore expect that K will be a crude estimate of the
number of effective parameters.

As seen by Eqs. (21) and (39), the approximation error will be
zero when the smallest eigenvalue λK in the left tail subspace (of
H and G) is exactly equal to the L2-regularization rate λ.

5. Demonstration and proof of concept

In the following Section we explore and demonstrate the
approximate predictive epistemic uncertainty estimate governed
by (10) for the two LeNet-based neural network classifiers that
were introduced in Section 4.2.1. We establish by the use of
regressions that the three estimators (11)–(13) yield close to
perfectly correlated predictive epistemic uncertainty estimates
for both of the classifiers.

5.1. The distribution of approximate predictive epistemic uncertainty

Fig. 5 shows nonparametrically smoothed versions of the pre-
dictive epistemic uncertainty for the three proposed estimators
against class probability for all the images in the MNIST and
CIFAR-10 test sets. Clearly, the three estimators yield close to
identical results. Further, we observe that the average predic-
tive epistemic uncertainty associated with false positives (yellow
line) is higher than for true positives (blue line). The banana-
shaped appearance of these plots suggests that there is a negative
quadratic relationship between probability and uncertainty. The
explanation for this is attributed to the softmax activation func-
tion whose gradient (i.e. sensitivity F ) will always be weighted by
a quantity which is negative quadratic in probability (i.e. ŷ(1−ŷ)).

The evolution of the nonparametrically smoothed uncertainty
levels and approximation errors for the OPG estimator as func-
tions of the number of computed eigenpairs K and class prob-
ability is displayed in Fig. 6. As expected, for a growing K , the
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Fig. 5. Nonparametrically smoothed versions of the predictive epistemic uncertainty (10) for the true positives (blue) and false positives (orange) in the MNIST
(upper row, K = 1500) and CIFAR-10 (lower row, K = 2500) test sets as functions of class probability for each of the three estimators. The shaded gray bullets
(N × TL such bullets) represent the raw predictive uncertainty for all TL classes against probability. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 6. Nonparametrically smoothed versions of the predictive epistemic uncertainty (upper row) and the approximation error (lower row) in the MNIST and CIFAR-10
test sets as functions of the number of computed eigenpairs K and class probability using the OPG estimator.

approximation errors diminish and the uncertainty stabilizes.
Although we do not display similar plots for the other two es-
timators, we note that for MNIST, the approximation errors are
smallest for the OPG estimator, followed by the Hessian estimator
and the Sandwich estimator. The larger the difference between
λ and the smallest eigenvalue λK , the higher the average ap-
proximation error. As seen by the eigenvalue spectra in Fig. 3,
the drop-off rate toward λ is faster for G, thus explaining why
the OPG estimator leads to the lowest approximation errors on
MNIST. We note that since the Sandwich estimator is dependent
on both the approximation of H and G, its approximation errors
are not unexpectedly the highest. Furthermore, the fall-off rate
toward λ in the eigenvalue spectrum for CIFAR-10 is slightly
lower than for MNIST. This means that the CIFAR-10 classifier has

a greater number of effective parameters — and thus requires a
higher K to achieve acceptable approximation error levels. This
fact is evident by Fig. 6, where we see that the OPG approximation
errors for CIFAR-10 are dropping off to zero slower than for
MNIST.

For all three estimators, it is evident by Fig. 6 that most of the
contribution to the predictive epistemic uncertainty comes from
the left subspace corresponding to the largest eigenvalues of H
and G. This observation can be counter-intuitive since it is the
directions with the smallest eigenvalues that will be the largest
contributors to the variance when accounting for the inversions
in (11), (12) or (13).

The explanation for this phenomenon is attributed to the sen-
sitivity F (9). We observe that the training and test set sensitivity
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Fig. 7. The uncertainty score (a) as a function of K for the MNIST OoD example in (b) using the full-rank OPG approximation (green curve) vs. its low-rank
counterpart (blue curve) from Eqs. (20) and (23). The green interval corresponds to the approximation error. The reference images (black curves) are computing
using the full-rank approximation, and corresponds to the ten images in the training set with the highest uncertainty scores sorted in descending order. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 2
Regression comparison of σ̃H , σ̃G and σ̃ S across all the images in the MNIST and CIFAR-10 training and test sets. The respective superscripts H , G and S denote
Hessian, OPG and Sandwich. The regression intercept, slope and squared correlation coefficient are denoted by α, β and R2 , respectively.

Hessian vs. OPG σ̃G(xn) = α + βσ̃H(xn) Hessian vs. Sandwich σ̃ S(xn) = α + βσ̃H(xn) OPG vs. Sandwich σ̃ S(xn) = α + βσ̃G(xn)

R2 α β R2 α β R2 α β

MNIST Training set 0.997 0.000 1.206 0.998 0.000 0.923 0.990 0.000 0.761
Test set 0.998 0.000 1.219 0.999 0.000 0.915 0.995 0.000 0.748

CIFAR-10 Training set 0.999 0.000 1.062 0.999 0.000 1.017 0.997 0.000 0.956
Test set 1.000 0.000 1.066 1.000 0.000 1.014 0.998 0.000 0.950

drops to zero in directions k for which λk ≈ λ and is thus
canceling with the reciprocals of the smallest eigenvalues in the
linear combinations formed by (20) or (38). Nevertheless, as the
sensitivity for data not belonging to the same distribution as the
training can still be high in these directions, the corresponding
predictive epistemic uncertainty can still receive significant con-
tributions from directions k > K . This emphasizes the importance
of making the estimators full-rank using the orthonormal basis
technique presented in Section 4.3. We add that due to the full-
rank property, the number K should be thought of as the number
of explicitly computed eigenpairs rather than the number of
utilized eigenpairs — as the latter will effectively be equal to P .

To illustrate the concept of a low vs. full-rank approximation,
Fig. 7a displays the uncertainty scores as functions of K for the
low and full-rank version of the OPG estimator applied to the
out-of-distribution (OoD) example shown in Fig. 7b. For refer-
ence, we also plot the uncertainty scores for the ten images in
the training set with the highest uncertainty scores sorted in
descending order. Comparing the green curve with the blue curve
shows that the OoD example has a sensitivity spectrum stretching
out far beyond K = 1500 because the low-rank version (blue)
has not yet reached the stable level achieved by the full-rank
approximation (green) at this K . That the full-rank approximation
quickly stabilizes already at around K = 600, can be explained by
that it receives contribution from the full spectrum even though
only K principal eigenpairs are computed explicitly at each stage.
The reference images (black curves) are computing using the
full-rank approximation, and are all lower ranked than the OoD
example.

A detailed comparison of the three estimators is shown in
Table 2. By regressing their outcomes against each other, we
clearly see that the relative estimated uncertainty levels are near

to perfectly correlated since the squared correlations coefficients
are close to 1. As seen by the slopes β , only the absolute levels
of the estimated uncertainty differ, and since the intercepts α are
zero, there are no offsets.

5.2. Ranking images based on the ‘uncertainty score’

We propose to validate our results by studying the MNIST
and CIFAR-10 images associated with the maximum and mini-
mum amount of total predictive epistemic uncertainty as defined
in (23) using the Hessian estimator. Unsurprisingly, since the
squared correlation coefficients in Table 2 are close to 1, the OPG
and Sandwich estimators yield almost identical results and are
not shown.

The idea is based on the following reasoning: if a neural
network classifies an image with low predictive epistemic ‘un-
certainty score’, the image should be easy to classify also for a
human. Conversely, if the neural network classifies an image with
a high predictive epistemic ‘uncertainty score’, the image should
be hard to classify for a human. Effectively, the predictive epis-
temic ‘uncertainty score’ ranks images according to the degree
of ‘doubt’ expressed by the neural network — and by the figures
we find striking evidence that this corresponds well with human
judgment.

6. Computational considerations and larger architectures

Despite the fact that we have reduced the naïve Delta method’s
computational complexity to be linear in P , the presented
methodology still requires considerable amount of computing
power when P grows very large. For reference, the Hessian es-
timator’s initial phase on the MNIST LeNet with P in the order of

172



G.K. Nilsen, A.Z. Munthe-Kaas, H.J. Skaug et al. Neural Networks 145 (2022) 164–176

Fig. 8. The MNIST and CIFAR-10 images ranked by the predictive epistemic ‘uncertainty score’ per class: (a) lowest 5 in the training set, (b) lowest 5 in the test set,
(c) highest 5 in the training set and (d) highest 5 in the test set.

105 using K = 600 (as seen by Fig. 6, K = 600 leads to acceptable
approximations errors), amounts to an order of Tflops as N =

60, 000 and as the final number of Lanczos steps turned out to be
S = 2330 in this case. This corresponds to a computational time
of about one hour using an AMD Ryzen 5 2600 CPU @ 3.4 GHz
with eight cores and 32 GB memory along with an NVIDIA RTX
2080 Ti based GPU with 11 GB memory. The Hessian estimator’s
memory requirement amounts to about 500 MBs assuming single
precision. For comparison, the naïve Delta method would clock in
at the order of Pflops with a theoretical memory requirement of
35 GBs. Since in practice one would need to store both H and its
inverse, as well as temporary variables depending on the type of
inversion algorithm, the effective memory consumption can be
as much as 320 GBs.4 On top of this, handling the possibility of
an indefinite H would require an additional explicit eigenvalue
decomposition and several large matrix multiplications. In this
regime, the use of direct linear algebra methods is infeasible.

With larger architectures such as ResNets (He, Zhang, Ren,
& Sun, 2016), P is several orders of magnitude larger than for
the LeNets discussed so far. In particular, ResNet-18 has a P in
the order of 107. To further investigate the practicality of our
methodology in this context, we present supplementing exper-
iments for the Hessian estimator with MNIST and CIFAR-10 using
the pre-activation ResNet-18 architecture.

6.1. ResNet-18

Adapting pre-activation ResNet-18 (He et al., 2016) to MNIST
and CIFAR-10 leads to a total number of parameters
P = 11, 175, 818 and P = 11, 176, 970, respectively. A vital

4 Try running numpy.linalg.inv(np.diag(10**5).astype(‘float32’)) and watch
the memory consumption throughout the whole process.

building block of the ResNet architecture family is the batch-
normalization (BN) layer (Ioffe & Szegedy, 2015). The β and γ
parameters of the BN layers are in the following experiments
treated as trainable parameters, and are thus included in both P
and all relevant computations (e.g. Hessians). Furthermore, since
the operation of BN layers depends on the mode to which they
are configured (i.e. training mode or inference mode), we use
the following rule: all quantities involving the training set as
input data are computed in training mode (e.g. training cost,
training accuracy, gradients, Hessians), while quantities involving
the test set as input data are computed in inference mode (e.g.
test predictions/test accuracy and sensitivity matrices (9)).

The training details are as follows: we apply uniform He (He,
Zhang, Ren, & Sun, 2015) weight initialization and zero bias ini-
tialization. We use (5) as the cost function with a L2-
regularization rate λ = 0.01. We utilize the Adam optimizer (Bot-
tou et al., 2018; Kingma & Ba, 2014) with a batch size of 100,
and apply no form of randomized data shuffling. To ensure
convergence (i.e. ∥∇C(ω̂)∥2 ≈ 0) we apply the following learning
rate schedules given by the following (step, rate) pairs: MNIST =

{(0, 10−3), (60k, 10−4), (70k, 10−5), (80k, 10−6)} and CIFAR-10 =

{(0, 10−3), (55k, 10−4), (85k, 10−5), (125k, 10−6), (155k, 10−7),
(205k, 10−8), (255k, 10−9)}. For MNIST, we stop the training after
90,000 steps — corresponding to a training accuracy of 0.999,
test accuracy 0.995, training cost C(ω̂) = 0.281 and a gradient
norm ∥∇C(ω̂)∥2 = 0.018. For CIFAR-10, we stop the training after
285,000 steps – corresponding to a training accuracy of 0.994, test
accuracy 0.773, training cost C(ω̂) = 0.520 and a gradient norm
∥∇C(ω̂)∥2 = 0.076.

To stay within the 32 GB memory bound of the aforemen-
tioned computer specification, we managed to compute up to
K = 200 eigenpairs for the Hessian estimator. For both MNIST
and CIFAR-10, the Lanczos algorithm converged at exactly
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Fig. 9. Comparison of the Hessian eigenvalue spectra of LeNet and ResNet-18
for MNIST and CIFAR-10 data.

S = 502 iterations with total computation times of about 14 and
15 h, respectively.

In agreement with the findings in Yao, Gholami, Keutzer, and
Mahoney (2020), Fig. 9 shows that the curvature (i.e. Hessian
eigenvalue spectrum) of the ResNets has a slower decay to λ. In
other words, for a given K , we can expect that a (large) ResNet
will yield larger approximation errors (18) than for a (small)
LeNet.

Fig. 10 shows the nonparametrically smoothed versions of the
predictive epistemic uncertainty for the ResNets against the class
probability for all the images in the MNIST and CIFAR-10 test sets.
For reference, the corresponding plots for the LeNets were shown
in Fig. 5. The absolute level of the predictive uncertainty for the
ResNets is larger than for the LeNets, and exceeds the theoretical
maximum standard deviation of 0.5 for softmax-based neural
networks. A simple inspection of the computed approximation
errors (22) for the ResNets rules out a too low K = 200 as the
only culprit, because the MNIST test set image with the largest
approximation error corresponds to σ̃ ± ϵ ≈ 19 ± 4 and the
CIFAR-10 equivalent to σ̃ ± ϵ ≈ 50 ± 13 (i.e. lower bounds still
greater than the theoretical bound 0.5). We leave to investigate
the root cause of this anomaly, but speculate that the number of
training examples N might simply be too small now that N ≪ P .
Nevertheless, the relative uncertainty levels are still reasonable
in terms of the raised level for false positives (as seen by Fig. 10),
and in terms of that meaningful rankings similar to those shown
in Fig. 8 for the LeNets still can be obtained for the ResNets.

7. Summary, concluding remarks and further work

We have presented a computationally tractable framework
for traditional Fisher information based (epistemic) uncertainty
quantification in deep learning classification. To this end, we have
introduced full-rank, positive definite covariance estimators using
approximate eigendecompositions in terms of the Hessian, the
OPG approximation and the so-called Sandwich estimator. We
have recognized the Delta method as a measure of epistemic as
opposed to aleatoric uncertainty and break it into two compo-
nents: the eigenvalue spectrum of the Fisher information (i.e.
Hessian) of the cost function and the per-example sensitivities
(i.e. gradients) of the model function. Further, we have proposed
to utilize the Lanczos algorithm in combination with Pearlmut-
ter’s technique to compute the needed eigenpairs of the Hessian,
and to compute mini-batches of the Jacobian matrix using ef-
ficient per-example gradients in combination with incremental
singular value decompositions for the OPG approximation. As the
computational complexity of these methods scale linearly with
the number of model parameters, they are therefore suited for
deep learning. However, since the computational complexity also
scales (linearly) with the number of eigenpairs K , it seems that
with today’s computing power, the bottleneck of our methodol-
ogy is reached when the number of parameters is in the order of
107.

We have shown that the three estimators yield almost iden-
tical prediction uncertainty estimates when applied on two dif-
ferent LeNet-based neural network classifiers. We have seen that
only the top K ≪ P Fisher information matrix eigenpairs con-
tribute significantly to the predictive uncertainty for data in the
same distribution as the training set. As this does not necessarily
hold true for OoD examples, we have shown that thanks to
the full-rank property of the proposed estimators, these too will
converge quickly under the same framework.

We have also seen that when images are ranked according
to their relative level of predictive epistemic uncertainty, the
ordering corresponds well with human judgment: ambiguous
images tend to be highly ranked, and we clearly see why data
augmentation is beneficial — since the top ranked images often
are prone to unusual perspectives and/or rare colors. Generally,
we conjecture that deep learning classifiers can benefit from
incorporating also the uncertainty measure in the classification
rule. As a corroborative example we have empirically shown
that false positives appears to have an average higher prediction
uncertainty than true positives.

Looking forward, we point at several specific areas of research
which could be investigated. The first candidate is to establish

Fig. 10. Nonparametrically smoothed versions of the predictive epistemic uncertainty (10) based on the Hessian estimator for the ResNets using K = 200. The true
positives (blue) and false positives (orange) are shown for MNIST in (a) and for CIFAR-10 in (b) using the test sets as input data and are plotted as functions of the
class probability. The shaded gray bullets (N × TL such bullets) represent the raw predictive uncertainty for all TL classes against probability. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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how the Fisher information eigenspectrum of very large networks
and datasets behave. If the contraction of the eigenspectrum
toward λ continues to be fast with growing network and dataset
sizes, the methodology presented can be tractable even for the
most complex models. However, if the largest affordable K yields
a λK far from λ, it can render the methodology intractable as
the approximation errors can be too large. This points to under-
standing what causes the contraction phase in the first place, and
hence uncovering the factors that drive it. Promising research
in this direction is the Stochastic Lanczos algorithm (Lin, Saad,
& Yang, 2016; Yao et al., 2020) as well as the investigation of
pathological spectra of the Fisher information (Karakida, Akaho,
& Amari, 2019). However, inconveniently for our methodology,
we find evidence in agreement with recent literature (Yao et al.,
2020) showing that ResNets have a higher number of effective
parameters than LeNets. In other words, for a given K , we can
expect that a (large) ResNet will yield larger approximation errors
than for a (small) LeNet. Secondly, we leave the discussion regard-
ing which of the three estimators (or other combinations) one
should use – and when – as an opportunity for future research.
Thirdly, as this work has been focused on the classification task,
a natural extension is to see how the framework behaves under
deep learning regression (Khosravi & Creighton, 2011). Fourthly,
we point at a fundamental issue with the Delta method itself.
The Delta method is inevitably based on the local curvature
around the parameter estimate ω̂, hence incorporating no means
about the uncertainty of the parameter estimate outside this local
region. What is lost, and how much, by disregarding the broader
perspective of the solution space – a space potentially within
reach for sampling methods.
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Appendix

The cost function C(ω) can be interpreted as the negative log
posterior,

C(ω) = − log p(D|ω)p(ω), (40)

for the parameter ω and some training data D, where p(D|ω) is
the likelihood and p(ω) the prior. Under L2-regularization with
rate λ/2, the prior takes the form of a multivariate normal distri-
bution with zero mean and covariance (λ/2)−1I

ω ∼ N
(
0, (λ/2)−1I

)
. (41)

It follows that

HC(ω) = −Hlog p(D|ω)p(ω) = −Hlog p(D|ω) + λI, (42)

where we have used that Hlog p(ω) = −λI . Taking expectation with
respect to p(D|ω), and drawing on the well known result for the
expected Fisher information matrix (Lehmann & Casella, 1998):

E
p(D|ω)

[
Hlog p(D|ω)

]
= − E

p(D|ω)

[
∇ log p(D|ω)∇ log p(D|ω)T

]
, (43)

it follows that

E
p(D|ω)

[
HC(ω)

]
= E

p(D|ω)
[G]+ λI � (44)
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Abstract

We validate the deep learning classification adapted Delta method
introduced in [11] by a comparison with the classical Bootstrap. We
show that there is a strong linear relationship between the quantified
predictive epistemic uncertainty levels obtained from the two methods
when applied on two LeNet-based neural network classifiers using the
MNIST and CIFAR-10 datasets. Furthermore, we demonstrate that the
Delta method offers a five times computation time reduction compared
to the Bootstrap.

1 Introduction

It can be beneficial to distinguish between epistemic and aleatoric uncertainty
in machine learning models [5]. Bayesian statistics provides a coherent frame-
work for representing epistemic uncertainty in neural networks [9], but has
not so far gained widespread use in deep learning [3] – presumably due to
the high computational cost that traditionally comes with Fisher information
based methods. In particular, the Delta method [4, 6] depends on the empirical
Fisher information matrix which grows quadratically with the number of neu-
ral network parameters P – and its direct application in modern deep learning
is therefore prohibitively expensive. To mitigate this, [11] proposed a low cost
variant of the Delta method applicable to L2-regularized deep neural networks
based on the top K eigenpairs of the Fisher information matrix.

In this paper, we validate the methodology introduced in [11] by a com-
parison with the classical Bootstrap [2, 6, 8, 12, 13]. We show that there is
a strong linear relationship between the quantified epistemic uncertainty lev-
els obtained from the two methods when applied on two LeNet-based neural
network classifiers using the MNIST and CIFAR-10 datasets.

The paper is organized as follows: in Section 2 we review the Bootstrap
and the Delta method in a deep learning classification context. In Section 3
we introduce two LeNet-based classifiers which will be used in the comparison
in Section 4, and finally, in Section 5 we summarize the paper and give some
concluding remarks.
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2 Introduction to the Methodologies

In the following, we denote the training set by {xn ∈ RT1 , yn ∈ RTL}Nn=1,
the test set by {xn ∈ RT1 , yn ∈ RTL}Ntest

n=1 and an arbitrary input example
by x0. The parameter space is denoted by the vector ω ∈ RP , where P is the
number of parameters (weights and biases) in the model. The parameter values
after training is denoted by the vector ω̂ ∈ RP . Furthermore, a prediction
for x0 is denoted by ŷ0 = f(x0, ω̂) ∈ RTL where f : RT1×P → RTL is a
deep neural network model function [3] and where TL denotes the number of
classes. Furthermore, it is assumed that the cost function denoted by C is
L2-regularized with a regularization-rate factor λ/2.

2.1 The Bootstrap in Deep Learning Classification

In the context of deep learning classification, the classical Bootstrap method
starts by creating B datasets from the original dataset by sampling with re-
placement. Subsequently, B networks are trained separately on each of the
bootstrapped datasets. The epistemic uncertainty for each of the TL class pre-
dictions (in standard deviations) associated with prediction of x0 is obtained
by the sample standard deviation over the ensemble of B predictions,

σ̃boot(x0) =

√√√√ 1

B − 1

B∑

b=1

(ŷ
(b)
0 − ŷ0)2 ∈ RTL , (1)

where the vector ŷ
(b)
0 represents the TL predictions for x0 (one probability per

class) obtained from the bth bootstrapped network, and where ŷ0 is the sample
mean,

ŷ0 =
1

B

B∑

b=1

ŷ
(b)
0 ∈ RTL . (2)

The method is easy to implement efficiently in practice. Training B networks
is an ‘embarrassingly’ parallel problem, and the space complexity for the boot-
strapped datasets is just O(BN) when an indexing scheme is used for the
sampling with replacement. The experiments conducted in this paper is based
on the example pydeepboot.py provided in the pydeepdelta provision [14].

2.2 The Delta Method in Deep Learning Classification

The Delta method was adapted to the deep learning classification context by
[11]. The adaption addresses several fundamental difficulties that arise when
the method is applied in deep learning. In essence, it is shown that an approx-
imation of the eigendecomposition of the Fisher information matrix utilizing
only K eigenpairs allows for an efficient implementation with bounded worst-
case approximation errors. We briefly review the standard method here for
convenience.

An approximation of the epistemic component of the uncertainty associated
with the prediction of x0 can be found by the formula

σ̃delta(x0) =
√

diag
(
FΣFT

)
∈ RTL , (3)

2



where the sensitivity matrix F in (3) is defined

F =
[
Fij

]
∈ RTL×P , Fij =

∂

∂ωj
fi(x0, ω)

∣∣∣∣
ω=ω̂

. (4)

The covariance matrix Σ in (3) can be estimated by several alternative esti-
mators. In [11] it was demonstrated that the Hessian estimator, the Outer-
Products of Gradients (OPG) estimator and the Sandwich estimator lead to
nearly perfect correlated results for two different deep learning models. Since
the models discussed in this paper are identical to those in [11], we thus focus
only on one of the estimators, namely the OPG estimator defined by

Σ =
1

N
G−1 =

1

N

[
1

N

N∑

n=1

∂Cn

∂ω

∂Cn

∂ω

T ∣∣∣∣
ω=ω̂

+ λI

]−1

∈ RP×P , (5)

where the summation part of G corresponds to the empirical covariance of the
gradients of the cost function evaluated at ω̂. As discussed in [11], the term λI
is explicitly added in order to make the OPG estimator asymptotically equal to
the Hessian estimator, as is the primary motivation for the former as a plug-in
replacement of the latter in the first place.

When the Delta method is implemented under the framework of [11], it
has several desirable properties: a) requires only O(PK) space and O(KPN)
time, b) fits well with deep learning software frameworks based on automatic
differentiation, c) works with any L2-regularized neural network architecture,
and d) does not interfere with the training process as long as the norm of the
gradient of the cost function is approximately equal to zero after training.

3 The Neural Network Classifiers

We deploy two LeNet-based neural network architectures which differs only by
the number of neurons in two of the layers in order to individually match the
formats of the MNIST and CIFAR-10 datasets. Our TensorFlow code for the
Delta method is based on the pydeepdelta Python module [14], and is fully
deterministic [10]. The corresponding Bootstrap implementation can be found
in the same repository.

3.1 MNIST

There are L = 6 layers, layer l = 1 is the input layer represented by the input
vector. Layer l = 2 is a 3 × 3 × 1 × 32 convolutional layer followed by max
pooling with stride equal to 2 and with a ReLU activation function. Layer l = 3
is a 3× 3× 32× 64 convolutional layer followed by max pooling with a stride
equal to 2, and with ReLU activation function. Layer l = 4 is a 3× 3× 64× 64
convolutional layer with ReLU activation function. Layer l = 5 is a 576 × 64
dense layer with ReLU activation function, and the output layer l = 6 is a
64 × TL dense layer with softmax activation function, where the number of
classes (outputs) is TL = 10. The total number of parameters is P = 93322.

3.2 CIFAR-10

There are L = 6 layers, layer l = 1 is the input layer represented by the input
vector. Layer l = 2 is a 3 × 3 × 3 × 32 convolutional layer followed by max
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pooling with stride equal to 2 and with a ReLU activation function. Layer l = 3
is a 3× 3× 32× 64 convolutional layer followed by max pooling with a stride
equal to 2, and with ReLU activation function. Layer l = 4 is a 3× 3× 64× 64
convolutional layer with ReLU activation function. Layer l = 5 is a 1024× 64
dense layer with ReLU activation function, and the output layer l = 6 is a
64 × 10 dense layer with softmax activation function, where the number of
classes (outputs) is TL = 10. The total number of parameters is P = 122570.

3.3 Training Details

For the Bootstrap networks, we test two different weight initialization variants:
dynamic random normal weight initialization (DRWI) and static random nor-
mal weight initialization (SRWI). The former uses a different (e.g. dynamic)
seed across the replicates, meaning that each network in the DRWI Bootstrap
ensemble will start out with different random weight values. The latter case
uses the same (e.g. static) seed across the replicates, and hence all the networks
in the SRWI Bootstrap ensemble receives the same random initial weight val-
ues. For all networks, we use zero bias initialization. Futhermore, to investigate
the impact of random weight initialization on the Delta method, we apply the
Delta method 16 times on a set of 16 networks distinguished only by DRWI.

We use the cross-entropy cost function with a L2-regularization rate λ =
0.01, and utilize the Adam [7, 1] optimizer with a batch size of 100, and no form
of randomized data shuffling. To ensure convergence (e.g. ||∇C(ω̂)||2 ≈ 0),
we apply two slightly different learning rate schedules given by the following
(step, rate) pairs: MNIST = {(0, 10−3), (60k, 10−4), (70k, 10−5), (80k, 10−6)}
and CIFAR-10 = {(0, 10−3), (55k, 10−4), (85k, 10−5), (95k, 10−6, (105k, 10−7)}.
For MNIST, we stop the trainings after 90, 000 steps, while for CIFAR-10, after
115, 000 steps – corresponding to the overall training statistics shown in Table
1.

Networks Dataset
Training Set

Accuracy
Test Set
Accuracy C(ω̂) ||∇C(ω̂)||2

DRWI
Bootstrap

B=100

MNIST 0.979± 0.000 0.981± 0.001 0.253± 0.006 0.016± 0.013
CIFAR-10 0.705± 0.025 0.684± 0.020 1.248± 0.042 0.035± 0.020

SRWI
Bootstrap

B=100

MNIST 0.979± 0.000 0.981± 0.001 0.254± 0.002 0.017± 0.013
CIFAR-10 0.715± 0.010 0.693± 0.009 1.235± 0.018 0.031± 0.014

Delta
16 reps
(DRWI)

MNIST 0.979± 0.000 0.981± 0.001 0.257± 0.002 0.016± 0.005
CIFAR-10 0.701± 0.032 0.687± 0.029 1.284± 0.053 0.030± 0.012

Table 1: Training statistics for the Delta and Bootstrap networks. The DRWI
and SRWI Bootstrap ensembles each consists of B = 100 bootstrapped net-
works, while the Delta method is applied repeatedly on 16 networks distin-
guished only by DRWI. Averages ± two standard deviations are calculated
across the B = 100 networks for the Bootstrap, and across the 16 repetitions
for the Delta method.

4 Comparison

The basic comparison design entails a set of 16 linear regressions on the pre-
dictive uncertainty estimates obtained from the two methods using test sets as
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input data

σ̃boot(xn)m = αd + βdσ̃delta(xn)m,d + en,m,d, n = 1, 2, . . . , Ntest

m = 1, 2, . . . , TL

d = 1, 2, . . . , 16. (6)

Accounting for the two variants of the Bootstrap (SRWI/DRWI), this leads to
two sets of squared correlation coefficients, intercepts, slopes and Delta method
approximation errors, respectively denoted by {R2

d, αd, βd, εd}16d=1. Further-
more, as we wish to analyze the impact of the number of Bootstrap replicates
and the number of Delta method eigenpairs, we generate these sets for various
B and K. An outline of the setup is shown in Figure 1.

Figure 1: Regression (6) of σ̃boot onto σ̃delta.

Figure 2 shows scatter plots of the regression results for the first repetition
(d = 1) of the Delta method against the DRWI Bootstrap ensemble. These
plots are based on B = 100 bootstrap replicates, and we have selected K = 1500
eigenpairs for MNIST and K = 2500 eigenpairs for CIFAR-10. Clearly, there is
a strong linear relationship between the two methods: the squared correlation
coefficients are R2

1 = 0.94 for MNIST and R2
1 = 0.90 for CIFAR-10. On the

other hand, the absolute uncertainty level differs between the methods and
datasets. This can be seen by the slope coefficients, where the Delta method is
overestimating (β1 < 1) on MNIST, and underestimating (β1 > 1) on CIFAR-
10. Further, since the estimated intercepts (α1) are zero, there are no offsets
between the methods. Finally, we see that the maximum across examples and
class outputs of the Delta method approximation errors (ε1) are zero, so there
is nothing to be achieved by increasing K. As we will see later, K has here
been selected unnecessarily high and can be significantly reduced with no loss
of accuracy.

4.1 Discussion of the Regression Results as a Function of
B and K

The results from the full set of regressions (d = 1, 2, . . . , 16) holding a fixed
B = 100 are shown in Figure 3. The primary observations are as follows:
The mean squared correlation coefficients R2 are generally high for MNIST
and CIFAR-10, meaning that there is a strong linear relationship between the
uncertainty levels obtained by the Bootstrap and the Delta method. For the
lowest K, the R2 starts out at 90% for MNIST, and at 81% for CIFAR-10.
As K grows, an increase by only 4% is observed for MNIST, while 8% for
CIFAR-10. The major difference observed as K increases lies in the absolute
uncertainty levels expressed by the slope β: for MNIST, the slope stabilizes
at around K = 600 while at about K = 1000 for CIFAR-10. The same trend
is reflected in the maximum approximation errors ε, where we respectively see
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(a) MNIST (b) CIFAR-10

Figure 2: Predictive uncertainty estimates obtained from the Delta method
(first repetition, d = 1) against the DRWI Bootstrap for (a) MNIST using
B = 100 replicates and K = 1500 eigenpairs, and (b) CIFAR-10 using B = 100
replicates and K = 2500 eigenpairs.

them approach zero at the same values for K. Although not shown in the plots,
the regression intercepts α are always zero, meaning that there is no offset in
the uncertainty estimates by the two methods.

The main difference found from applying DRWI opposed to SRWI for the
Bootstrap ensembles, is that the absolute level of uncertainty increases with
DRWI. This is expected, since the DRWI version of the Bootstrap will be
more prone to reaching different local minima, and therefore also captures
this additional variance. Supporting evidence for this hypothesis is evident by
CIFAR-10’s wider confidence intervals. A more pronounced geometry difference
across various local minima will ultimately lead to higher variability in the R2

and β. A slightly higher mean R2 (+1-2%) is also observed for the DRWI
version of the Bootstrap. This is reasonable given the fact that also the Delta
method networks are more prone to reaching different local minima across the
16 repetitions because of DRWI.

Figure 4 shows the same type of comparison when the number of Boot-
strap replicates B varies, and the number of eigenpairs are fixed (K = 1500
for MNIST and K = 2500 for CIFAR-10). The main observation from this
experiment is that there is very little to achieve by selecting a larger ensemble
size B than about 50, as this is the point where the mean slope and squared
correlation coefficient stabilizes.

4.2 Computation Time

Table 2 shows the computation time for the two methods when executed on
a Nvidia RTX 2080 Ti based GPU. For MNIST, the smallest K leading to
acceptable approximation errors and stable absolute uncertainty levels for the
Delta method is at K = 600, while for CIFAR-10 the same applies at K =
1000. Furthermore, the smallest acceptable B leading to stable correlation and
absolute uncertainty levels for the Bootstrap is at B = 50. We conclude that
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(a) MNIST
Delta vs. SRWI Bootstrap

(b) MNIST
Delta vs. DRWI Bootstrap

(c) CIFAR-10
Delta vs. SRWI Bootstrap

(d) CIFAR-10
Delta vs. DRWI Bootstrap

Figure 3: Summaries of the regressions of σ̃boot onto σ̃delta as given by (6), for
different values of K and a fixed B = 100. The solid lines and the associated
confidence intervals represent the mean and the variation of the regression
results across the 16 repetitions of the Delta method.
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(a) MNIST
Delta vs. SRWI Bootstrap

(b) MNIST
Delta vs. DRWI Bootstrap

(c) CIFAR-10
Delta vs. SRWI Bootstrap

(d) CIFAR-10
Delta vs. DRWI Bootstrap

Figure 4: Summaries of the regressions of σ̃boot onto σ̃delta as given by (6), for
different values of B and a fixed number of eigenpairs K. The solid lines and
the belonging confidence intervals represent the mean and the variation of the
regression results across the 16 repetitions of the Delta method.
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in these experiments the Delta method outperforms the Bootstrap in terms of
computation time by a factor 4.6 on MNIST, and a factor 5.9 for CIFAR-10.

Method Classifier B K Initial Phase [h:mm:ss]
Prediction Phase [mm:ss]

Total [h:mm:ss]
Training Set Test Set

Bootstrap
MNIST

50 N/A
4:08:28 00:19 00:03 4:08:50

CIFAR-10 7:37:16 00:40 00:07 7:38:04

Delta
MNIST

N/A
600 0:42:33 9:52 1:37 0:54:02

CIFAR-10 1000 1:00:54 14:44 02:56 1:18:35

Table 2: Computation time for the Bootstrap and Delta method. For the Boot-
strap, the ‘initial phase’ accounts for the parallelized training of B networks,
while the ‘prediction phase’ accounts for the predictive epistemic uncertainty
estimation (1), which is further divided into the training and test sets. For the
Delta method, the ‘initial phase’ accounts for the approximate eigendecompo-
sition of the covariance matrix (5), while the ‘prediction phase’ accounts for
the predictive epistemic uncertainty estimation (3), further divided into the
training set and test sets.

5 Concluding Remarks

We have shown that there is a strong linear relationship between the pre-
dictive epistemic uncertainty estimates obtained by the Bootstrap and the
Delta method when applied on two different deep learning classification mod-
els. Firstly, we find that the number of eigenpairs K in the Delta method can
be selected order of magnitudes lower than P with no loss of correspondence
between the methods. This coincides with the fact that when the Delta method
approximation errors are sufficiently close to zero, there is no nothing to achieve
by a further increase in K, and therefore the correspondence will stabilize at
this point.

Secondly, we find that the DRWI version of the Bootstrap yields the best
correspondence, and that there is little to achieve by using more than B = 50
replicates. Thirdly, we observe that the most complex model (CIFAR-10) yields
a high variability in the correspondence across multiple DRWI Delta method
runs. We interpret this effect as caused by cost functional multi-modality, and
that the Delta method fails to capture the additional variance tied to reaching
local minima of different geometric characteristics. Finally, in our experiments
we have seen that the Delta method outperforms the Bootstrap in terms of
computation time by a factor 4.6 on MNIST and by a factor 5.9 for CIFAR-10.
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