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Abstract: The aim of the present study was to systematically examine the effects of variations in the 

process parameters of the antisolvent precipitation method employed in the preparation of excipi-

ent-free pure nanoparticles of five existing/potential psychotropic drugs, namely amitriptyline hy-

drochloride (AMI), coumarin 6 (COU), curcumin (CUR), nortriptyline hydrochloride (NOR), and 

prochlorperazine dimaleate (PRO). In the preparation protocols employed, AMI and NOR were ex-

pected to be charged enough to be identified as surface-active molecules. Through the employment 

of five different preparation protocols, the effects of varying the flow rate, the compound concen-

tration in the solvent solution ��
�������, the solvent:antisolvent ratio (SAS-ratio), and pH of the anti-

solvent on the final size of the particles ��
�
 were investigated in detail and the results were ex-

plained using available theories for the antisolvent precipitation method. We found that ��
�

 in-

creased with the average of the octanol-water partition coefficients (logP)av of the compound. More-

over, the average of the final particle sizes (��
�

)��  increased linearly with (logP)av. These findings 

are useful for predicting the size of nanodrugs prepared through the antisolvent precipitation 

method. 
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1. Introduction 

Psychiatric disorders represent an increasing health burden on an international level 

and are often associated with a great socio-economical and emotional burden for patients 

and caregivers. Worldwide, around 450 million people have experienced suffering due to 

psychiatric disorders, with depression (300 million), bipolar affective disorder (30 mil-

lion), and schizophrenia (23 million) being the most common conditions [1]. According to 

the World Health Organization (WHO), mental health problems will be the main cause of 

mortality and morbidity by 2030. One of the major problems regarding psychiatric pa-

tients is their significant non-adherence to the treatment [2]. While some patients are in-

capable of taking their medication, others choose to refrain from the treatment, possibly 

because of the experience of the side effects [2], lack of therapeutic effects, or because of a 

delay in the initial response [3]. 

By downsizing the drug particles, a much larger effective surface area could be 

achieved and the accompanied increased dissolution rate and saturated solubility may 

improve the bioavailability of drugs [4,5]. The blood–brain barrier (BBB) is the most im-

portant obstacle encountered during drug delivery to the brain [6]. The BBB hinders many 

psychotropic drugs from obtaining therapeutic levels in the brain without high levels of 

drugs in the systemic circulation, which encourages unwanted side effects (e.g., gastroin-

testinal side effects), e.g., by the intrathecal route [7]. Nanoparticles could be delivered 

once and serve as a long-lasting depot in the brain. They can be easily radiolabeled, so it 

Citation: Wu, C.Y.; Wang, W.  

Application of Antisolvent  

Precipitation Method for  

Formulating Excipient-Free  

Nanoparticles of Psychotropic 

Drugs. Pharmaceutics 2022, 14, 819. 

https://doi.org/10.3390/ 

pharmaceutics14040819 

Academic Editor: Christian Celia 

Received: 11 March 2022 

Accepted: 7 April 2022 

Published: 8 April 2022 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2022 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/). 



Pharmaceutics 2022, 14, 819 2 of 16 
 

 

is possible to precisely deliver the desired dose to the right part of the brain using the 

intra-arterial route [8] and overcome compliance issues of patients with mental illnesses. 

The intra-arterial route is not the only one to go forward as the focused ultrasound of 

intranasally delivered particles is another important approach [9]. Focused ultrasound 

can also improve the interstitial dispersion of stereotactically injected nanoparticles [10]. 

Among all of the nanoparticulate drug delivery systems, those based on polymers 

and lipids (i.e., liposomes) represent a significant portion of the drug delivery systems 

that reach clinical trials [11]. However, for such systems, a substantial number of additives 

are required and the techniques applied for their preparation have a time-consuming na-

ture [12,13]. Thus, in the present study, nanoparticles were synthesized in the absence of 

excipients. Due to their high mass per volume loading, dense and solid-state drugs offer 

many advantages, especially in situations where high dosing is required [14]. Further-

more, high loading is also crucial for low-volume administration routes, e.g., in intramus-

cular and ophthalmic applications [13,15]. 

The preparation of nanoparticles in the absence of excipients can be broadly classified 

into two approaches, namely top-down and bottom-up. The top-down approach focuses 

on the size-reduction of bigger particles to nanosized particles (i.e., milling). Essentially, 

every drug can be milled to smaller particles regardless of their solubility in aqueous or 

non-aqueous solvents [16]. It should be added that top-down techniques are identified as 

time-consuming, high-energy methods with low particle size uniformity and potential 

contamination challenges [17,18]. 

In the bottom-up approach, nanoparticles are generated from drug molecules in so-

lution using, e.g., the antisolvent precipitation method or evaporative precipitation tech-

nique [19,20]. This approach uses simple instruments that require a low mechanical en-

ergy input during the whole process of dissolution and precipitation/drying [21]. Moreo-

ver, in the bottom-up approach, a narrower size distribution can be achieved (compared 

with the top-down approach) and the manufacturing process can be operated at a low 

temperature, making it suitable for thermolabile drugs [22]. It should be added that the 

quick arrangement of molecules during the precipitation can lead to substantial amor-

phousness [17,22]. 

Thus, in the present study, we employed one of the methods following the bottom-

up approach, namely the antisolvent precipitation method. Nanoparticles were created 

for a number of potential and existing psychotropic drugs, namely curcumin (CUR), cou-

marin 6 (COU), nortriptyline hydrochloride (NOR), amitriptyline hydrochloride (AMI), 

and prochlorperazine dimaleate (PRO). AMI and NOR are well-known antidepressants. 

PRO is used in the symptomatic management of psychotic disorders and short-term man-

agement of nonpsychotic anxiety, while CUR exhibits significant antidepressant effects, 

possibly through the inhibition of monoamine oxidase A and B enzymes [3], and some 

coumarin derivatives are considered as potential atypical antipsychotics [23,24]. Through-

out our experiments, we conducted a systematic study whereby the effects of changes in 

the flow rate, the compound concentration in the solvent solution ��
������� , the solvent:an-

tisolvent volume ratio (SAS-ratio), and pH of the antisolvent on the size of the particles 

were elucidated. In addition, for the obtained particles, we characterized the morphology, 

confirmed the crystalline structure, and determined the surface charge using scanning 

electron microscopy (SEM), X-ray powder diffraction (XRD), and zeta potential measure-

ments, respectively. 

Analysis of the final size of the particles ��
�
 revealed that ��

�
 increased with the av-

erage of the octanol-water partition coefficients (log �)�� of the compound. Furthermore, 

the average of the final particle sizes ���
�

�
��

 increased linearly with (log �)�� . To our 

knowledge, this is the first time that such a relationship between the particle size and log � 

has been identified. Moreover, throughout our experiments, AMI and NOR were expected 

to be charged enough to be identified as surface-active molecules [25]. It is of note that, to 

our knowledge, this is the first time that the antisolvent precipitation method has been 

employed for surface-active drugs. 
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2. Theory of Antisolvent Precipitation Methods 

The principle behind the antisolvent precipitation method is to exploit the solubility 

of a drug in different miscible solvents, one good solvent and one bad solvent (antisol-

vent). First, the drug is dissolved in the solvent and, afterwards, is quickly mixed with the 

antisolvent. The fast diffusion of the drug solvent solution into the antisolvent causes a 

high supersaturation, which is the driving force for the precipitation [19]. The degree of 

supersaturation � can be defined as the ratio between the compound concentration in the 

solution �� (i.e., in the solvent + antisolvent mixture solution) and the compound solubil-

ity at the given condition �∗ [17,22,26,27]: 

� =
��

�∗
 (1)

The precipitation process consists of several steps: (i) nucleation, (ii) particle growth, 

and (iii) agglomeration. Classical nucleation theory describes the initial step of the crys-

tallization as the spontaneous assembly of a few molecules, which creates a thin interface 

between a solid and a liquid phase [28]. Energy fluctuation in supersaturated solutions 

induces the coalescence of randomly diffused molecules, thus creating aggregates of sev-

eral molecules that are called embryos. If the energy released during the formation of an 

embryo is higher than the energy required to stabilize the new surface, the embryos are 

converted into stable nuclei [22]. Thus, a critical energy barrier ∆�∗ should be overcome 

for the nucleation process, which is related to the critical radius �∗. These can be described 

as [27]. 

∆�∗ =
16���Ω�

3��
���(ln �)�

 (2)

�∗ =
2Ω�

��� ln �
 (3)

where � is the interfacial tension between the solid nucleus and the solution, Ω is the 

volume of a molecule inside the nucleus, � is the temperature (in kelvin), and �� is the 

Boltzmann constant. 

The kinetic parameter describing the rate of nucleation � is affected by a prefactor 

(��), which is determined from kinetic considerations [22]: 

� = �� exp �
−16���Ω�

3��
���(ln �)�

� (4)

The parameters ∆�∗, �∗ and � are all dependent on �. Any factor that increases �� 

(e.g., through an increase in ��
�������) or reduces �∗ (e.g., through increasing the amount 

of antisolvent or lowering the temperature) will increase �. According to Equations (2) 

and (4), a higher � and a lower � lead to a lower ∆�∗ and a higher �. Thus, since nucle-

ation becomes preferred over particle growth, smaller particles are generated [22]. Increas-

ing � results in a decrease in the particle size to a certain value [29]. A further increase 

favors a larger particle size through a higher availability of the solute molecules close to 

the growing surface. 

After the formation of stable nuclei, particle growth happens through the condensa-

tion of molecules onto an already growing surface, thus reducing the supersaturation in 

the system [22]. The particles will continue to grow until �� reaches the equilibrium con-

centration or �∗. Growth beyond this arises due to aggregation or agglomeration, where 

particles collide and create larger particles, following the Smoluchowski kinetics rate: 

�� = ����
�  (5)

where the particle collision rate �� is dependent on the rate constant ��, calculated from 

the temperature and kinematic viscosity of the medium, and the number of particles per 

unit volume ��. 
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During agglomeration and aggregation, the number of particles decreases and the 

particle size increases. The driving force behind all three stages of the precipitation pro-

cess is supersaturation. Alteration of the parameters affecting supersaturation can there-

fore be used to design particles with desirable sizes. After particles are made, several de-

stabilization routes, such as Ostwald ripening, may lead to further particle growth. Im-

mediate drying, e.g., spray drying or freeze-drying, may provide prolonged stabilization 

[30]. 

3. Materials and Methods 

3.1. Materials 

Curcumin was received as a gift from Capital Medical University in China. Coumarin 

6 (powder, 98%), nortriptyline hydrochloride (powder, ≥98%), amitriptyline hydrochlo-

ride (powder, 98%), prochlorperazine dimaleate (powder), and sodium hydroxide (pel-

lets, ≥98%) were purchased from Sigma-Aldrich, Steinheim, Germany. Absolute ethanol 

(≥99%, Antibac, Asker, Norway), acetone (>99.5%, Sigma-Aldrich), and distilled water 

were used in the experiments. Standard buffer solutions of pH = 4.008, pH = 7.413, and 

pH = 11.00 were purchased from Riedel-de Haën, Steinheim, Germany. 

3.2. Preparation Procedure 

Solvent solutions with saturation concentration (Cs) and half of the saturation con-

centration (½Cs) of CUR, COU, NOR, AMI, and PRO were prepared and subsequently 

filtered through a 0.2-µm nylon syringe filter (Pall Corporation, Washington, DC, USA). 

The solvent solution of the compound (10 mL) was added to the antisolvent (100–200 mL) 

in portions of 1 mL at a fixed flow rate (1 or 2 mL/min) under the stirring speed of 1000 

rpm (IKA RTC digital). A sample was removed after each addition. The samples were 

centrifuged at 20 °C and 3000 rpm (Hettich Universal 320R centrifuge, Bremen, Germany). 

The dynamic light scattering (DLS) data presented correspond to samples that were pre-

pared by the re-dispersion of the centrifuged particles in antisolvent solutions, where a 

volume (950 µL) of the upper layer was removed for analysis. 

The concentration of the compound in the solvent solution (��
�������), centrifugation 

time, and used solvents and antisolvents, together with the details of the preparation pro-

tocols applied, are given in Table 1. The end dispersions were freeze-dried (Lyophilizer 

Alpha 1–2 LD plus, Martin Christ, Osterode, Germany). 

Table 1. Compound concentration in the solvent solution (��
�������; mM), centrifugation time (min), 

and the solvent and antisolvent used for each of the compounds investigated in the present study. 

Compound 
��

������� 

(mM) 

Centrifuging 

Time 
Solvent Antisolvent 

AMIa 39.8–79.7 10 min × 2 Ethanol 0.25 mM NaOH (pH =10.4) 

AMIb 39.8–79.7 10 min × 2 Ethanol 1.0 mM NaOH (pH = 11) 

COU 3.14–6.28 10 min × 2 Ethanol Distilled water 

CUR 3.39–6.79 10 min × 2 Ethanol Distilled water 

NOR 25.0–50.0 10 min × 3 Ethanol 1.0 mM NaOH (pH = 11) 

PRO 4.54–9.07 10 min × 2 Acetone, NaOH 1.0 mM NaOH (pH = 11) 

3.3. Characterization 

3.3.1. Dynamic Light Scattering (DLS) 

The hydrodynamic diameter ��  of the particles was determined by dynamic light 

scattering using a Zetasizer Nano ZS (Malvern Instruments, Worcestershire, England) in-

strument. Re-dispersions of CUR, COU, and NOR were diluted with antisolvent and were 

measured with disposable polystyrene cuvettes (DTS0012, Malvern, Worcestershire, Eng-

land). Re-dispersions of samples of AMI and PRO were measured undiluted in disposable 
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microcuvettes (ZEN0040, Malvern, Worcestershire, England). The temperature was set to 

25 °C, the scattering angle at 173°, and the viscosity at 0.8872 cP. 

3.3.2. Scanning Electron Microscopy (SEM) 

Scanning electron microscopy (SUPRA 55-VP, Zeiss, Oberkochen, Germany) was 

used for evaluating the morphology of the particles and confirming the particle size using 

secondary electron detectors (inLens and SE). Samples prepared by the solvent-evapora-

tion or freeze-drying of the compound particles were put on carbon tape and coated with 

iridium (PECS Model 680, Gatan, Pleasanton, CA, USA). For solvent-evaporation, drop-

lets of compound re-dispersions were put on microscopy slides and allowed to dry at 

room temperature. Afterwards, these samples were coated with carbon (Turbo Carbon 

Coater, Agar, Essex, United Kingdom). 

3.3.3. Zeta Potential and pH Measurements 

The zeta potential (ZP) of the re-dispersions (in antisolvent) of the particles of the end 

dispersions of protocol No. 1 was measured using the Zetasizer. The measurements were 

carried out at 25 °C with disposable folded capillary cells (DTS1070, Malvern, Worcester-

shire, United Kingdom) using the Zetasizer and Smoluchowski approximation. The value 

of pH was also measured with a 914 pH/Conductometer (Metrohm, Herisau, Switzerland) 

after calibration with buffers with pH = 4.008, pH = 7.413, and pH = 11.00. 

3.3.4. X-ray Powder Diffraction (XRD) 

The crystal structures of freeze-dried compound particles were determined with a 

Bruker D8 Advance diffractometer (Cu Kα, λ = 1.5600 Å, Billerica, MA, USA) using a spin-

ning flat plate configuration. 

4. Results 

4.1. Size Measurements 

For preparation protocols No. 1–No. 5 (Table 1), the results of the measurement of 

��  are presented in Figure 1 and Table 2. The ranges within which ��  varied for prepa-

ration protocols No. 1–No. 5 were 216–369 nm (AMIa), 197–745 nm (AMIb), 193–401 nm 

(COU), 91–168 nm (CUR), 56–577 nm (NOR), and 120–264 nm (PRO) (Table 2). The value 

of ��  increased with ��, achieved through adding more solvent solution into the antis-

iolvent (Figure 1). For the majority of samples studied, the size distribution was unimodal 

(Supplementary Figure S1). Exceptions included (i) two instances where large particles 

(5000–6000 nm) with very low intensity were observed (Supplementary Figure S1a,) and 

(ii) one instance where a fraction of small particles with low intensity was detected (Sup-

plementary Figure S1c). 

Table 2. The parameters of the preparation protocols, such as the flow rate (mL/min), the compound 

concentration in the solvent solution (��
�������) and the solvent:antisolvent ratio (SAS-ratio) together 

with the range of the particle size (��) are given. If the antisolvent is other than distilled water, its 

pH is indicated. 

P
re

p
a

ra
ti

o
n

 

P
ro

to
co

l 

Process Parameters Range of the Particle Size (��) (nm) 

F
lo

w
 R

a
te

 

�
��

�
��

�
�

�  

S
A

S
-R

at
io

 

AMIa (pH 

= 10.4) 

AMIb 

(pH = 11) 
COU CUR 

NOR 

(pH = 11) 

PRO (pH 

= 11) 

No. 1 1 Cs 1:20 216–313 197–284 193–347 119–152 56–216 163–264 

No. 2 1 ½ Cs 1:10 222–369 231–513 243–344 126–159 200–224 160–230 

No. 3 2 Cs 1:20 213–301 306–745 273–392 104–168 151–235 155–255 

No. 4 1 ½ Cs 1:20 227–361 246–265 337–401 91–157 152–261 120–169 
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No. 5 1 Cs 1:10 225–254 467–582 235–308 120–168 282–577 171–199 

 

Figure 1. Mean particle size (��) of (a) AMIa, (b) AMIb, (c) COU, (d) CUR, (e) NOR, and (f) PRO 

with varying compound concentration in the solvent + antisolvent mixture solution (��). 

4.2. Measurements of Zeta Potential and pH and Colloidal Stability 

The results of the measurements of ZP and pH of the re-dispersions (in antisolvent) 

of the particles of the end dispersions of protocol No. 1 are presented in Table 3. Disper-

sions with ZP above +30 mV or below −30 mV are generally considered colloidally stable. 

CUR is relatively neutral with a low capability to protonate or deprotonate. Apparently, 

its weak basic properties bestowed it some degree of protonation at the studied pH (pH = 

6.784 < pKa = 8.11), which resulted in a low positive ZP value (=1.0 mV; Table 3) for its 

particles. This low ZP value could not induce colloidal stability for the particles of CUR, 

because the surface charge-induced repulsive force between the particles was too low to 

keep them apart from each other. Indeed, after seven days, the only particles that precip-

itated in the solution were those of CUR (Figure 2). AMI and NOR are bases (see Table 3 

for their pKa values), meaning that the positive ZP values observed for these molecules 

(Table 3) were due to their protonated states at the studied pH (pH < pKa). In the solution 

of AMI, compared to the solution of NOR, pH was further away from pKa (pKa-pH = 

2.724 versus 0.395, respectively; see Table 3). This resulted in a higher ZP value for AMI 

particles (45.3 mV) compared to NOR particles (15.6 mV). Conversely, COU is an acid 

(pKa = 2.98), meaning that at the studied pH (= 7.203) its molecules were negatively 

charged, resulting in a negative ZP value (−22.8 mV) for its particles. PRO is a weak base 

(pKa = 7.66), and at the studied pH (= 12.426) its molecules were uncharged. Conversely, 

its co-crystal, maleic acid, should be deprotonated at the studied pH. Thus, the 
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observation of a negative ZP value (−44.1 mV) for the particles of PRO was attributed to 

the adsorption of negatively charged maleate molecules by the surface of the particles. 

Table 3. The results of the zeta potential and pH measurements of the re-dispersions (in antisolvent) 

of the particles of the end dispersions of protocol No. 1 together with the values of ���, log � and 
(log �)�� of the compounds. 

Compound ZP ± SD (mV) pH ± SD ��� ��� � (��� �)�� 

AMI 45.3 ± 6.9 6.676 ± 0.071 9.4 a 5.84 b, 4.97 c, 4.54 d, 4.86 e, 4.7 f 5.0 

COU −22.8 ± 0.3 7.203 ± 0.042 2.98 g 4.89 b, 4.92 c, 3.47 d, 5.48 e 4.7 

CUR 1.0 ± 0.1 6.784 ± 0.078 8.11 h 3.20 b, 3.15 c, 1.47 d, 4.04 e, 2.5 i 2.9 

NOR 15.6 ± 0.7 9.605 ± 0.019 10.0 j 5.31 b, 4.63 c, 4.31 d, 4.92 e, 3.57 f 4.5 

PRO −44.1 ± 4.4 
12.426 ± 

0.026 
7.66 k 2.86 c, 2.21 d, 3.85 e, 3 f 3.0 

a [31]; b [32,33]; c [33,34]; d [33,35,36]; e [33]; f [37]; g [38]; h [39]; i [40]; j [41]; k [42]. 

 

Figure 2. Visual inspection of the status of the dispersion for AMI (1 and 2), COU (3 and 4), CUR (5 

and 6), NOR (7 and 8) and PRO (9 and 10) before (i.e., in the solvent solution) and after antisolvent 

precipitation, respectively, performed for (a) fresh samples and (b) after 7 days. 

4.3. Morphology 

The morphology of the produced particles was observed by SEM. All of the particles 

that were dried by the evaporation of solvent were spherical in their shape (Figure 3), 

where the ranges of their sizes were similar to those found by DLS measurements. The 

freeze-dried particles showed two different morphologies. For AMI and PRO, the freeze-

dried particles consisted of clusters of nanoparticles with sizes in the same range as that 

obtained before freeze-drying for solvent-evaporated samples. Freeze-drying induced a 

needle-like morphology for CUR, COU, and NOR particles, where for CUR and NOR the 
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sizes of the particles became much larger than those obtained before freeze-drying for 

solvent-evaporated samples. 

 

Figure 3. SEM images of particles of (a) AMIa, (b) AMIb, (c,d) COU, (e,f) CUR, (g,h) NOR, and (i,j) 

PRO generated by antisolvent precipitation method. (a,c,e,g,i) Solvent-evaporated particles. 

(b,d,f,h,j) Freeze-dried particles. 
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4.4. Analysis of XRD Results 

The X-ray powder diffraction (XRD) patterns for COU, CUR, AMI, NOR, and PRO 

can be found in Figure 4. The Cambridge Crystallographic Data Centre (CCDC) was used 

to identify and analyze the crystal unit cell and to index the peaks. The Miller indices for 

the main peaks of the first four compounds are presented in Figure 4. Prochlorperazine as 

a co-salt with methanesulphonic sulphonic acid was found to crystallize in monoclinic 

space group C2/c [43]. The single crystal structure for prochlorperazine as a co-salt with 

dimaleate was not found. Therefore, the peaks were not indexed for this sample. 

Based on the XRD patterns, all of the compounds gave crystalline particles. CUR has 

been reported to crystallize in two different polymorph forms, namely form 1 and form 2 

[44]. Obtained XRD data for CUR followed the pattern of polymorph form 1. NOR ap-

peared in two polymorphic forms, namely form-α and form-β [45], but further character-

ization is necessary to completely distinguish the two forms, which is beyond the aim of 

the present study. 

 

Figure 4. XRD data of freeze-dried samples of COU, CUR, AMI, NOR, and PRO particles. The XRD 

intensities are presented in logarithmic scales. The Miller indices of the main peaks are indicated for 

COU, CUR, AMI and NOR. 
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5. Discussion 

5.1. General Remarks 

The spherical shape of the particles was confirmed through inspection of the SEM 

images obtained for solvent-evaporated samples (Figure 2a,c,e,g,i). Thus, the assumption 

of a spherical shape for the particles made in the analysis of DLS data for obtaining ��  is 

justified. The crystalline nature of the particles was confirmed through XRD analysis (Fig-

ure 4). Evidently, the colloidal stability of the end dispersions (Figure 3) correlated with 

ZP of the particles (Table 3; for details see Section 4.2). 

Surface-active properties have been reported for AMI [25], NOR [25], and PRO [46]. 

For these compounds, a charged state of the molecule is the prerequisite for exhibiting 

surface-active properties. Since these compounds are weak bases, the percentage of the 

charged compound molecules (�%) can be estimated from the Hendersen–Hasselbach 

equation in the following manner. 

�% =
100

1 + 10(������)
 (6)

Knowing the pH of the antisolvent (Table 1), the values of �% for the end disper-

sions of AMI, NOR, and PRO particles in the preparation process were estimated to be 

9.68(±0.20)% (AMIa), 2.62(±0.06)% (AMIb), 9.68(±0.20)% (NOR), and 0.049(±0.002)% 

(PRO). This means that only AMI and NOR were charged enough to be identified as sur-

face-active molecules during the experiments. 

In the following, the effects of various parameters, including the flow rate, ��
������� , 

the SAS-ratio, and pH of the antisolvent solution, on ��
�
 will be discussed. Moreover, we 

will show that ��
�

 increases with (log �)�� , where ���
�

�
��

 increases linearly with 

(log �)�� . 

5.2. Flow Rate 

Flow rate usually has a minor impact on the particle size, because it exerts two op-

posing effects with respect to supersaturation [47–50]. (I) On the one hand, an increase in 

the flow rate is associated with an increased mixing efficiency, which results in a more 

uniform supersaturation through decreasing the local supersaturation, which induces a 

reduced size for the particles and a narrower particle size distribution [22,29]. (II) On the 

other hand, an increase in the flow rate increases the solvent composition in the solution, 

which increases �∗ and, consequently, decreases �, thus inducing an increase in the size 

of the particles. 

Our results show that increasing the flow rate from 1 mL/min to 2 mL/min (protocols 

No. 1 and No. 3, respectively; Table 2) resulted in a narrower size distribution for NOR, 

AMIa, and AMIb (Supplementary Figure S1). A narrower size distribution for the particles 

has also been observed in other studies upon increasing the flow rate [22,29]. Moreover, 

��
�
 of COU and AMIb increased largely once the flow rate was increased (Figure 5a). Con-

versely, for AMIa, NOR, CUR, and PRO, the changes in ��
�
 were subtle. Apparently, in 

the latter cases, the size-reducing effect explained in (I) and the size-enlarging effect de-

scribed in (II) more or less cancelled each other. 

5.3. Compound Concentration in the Solvent Solution (��
�������) 

In our experiments, increasing ��
�������  from ½Cs to Cs could induce the formation 

of smaller or larger particles (or particles with little change in their size) (Figure 5b). This 

occurred because a change in ��
�������  could influence the particle size in opposing ways 

(that sometimes may cancel each other), as explained in the following. 

(I) On the one hand, a higher ��
������� could induce formation of smaller particles, 

due to a lower �∗ (Equation (3)) and an enhanced � (Equation (4)) brought about by a 

higher �, because of a higher �� (Equation (1)). Nevertheless, it should be pointed out 

that the decrease in the particle size induced by an increased � has a minimum size limit, 
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because � itself approaches an asymptotic maximum upon increasing � (Equation (4)). 

This means that once this minimum size limit is achieved, a further increase in � (e.g., 

through increasing ��
�������) does not affect the particle size through influencing � [51]. 

(II) On the other hand, a higher ��
�������  could induce the formation of larger parti-

cles, because it accelerates the adhesion and agglomeration of particles by increasing ��. 

More specifically, a higher ��
������� could induce the formation of a larger number of nu-

clei due to a to a lower �∗ (Equation (3)) and an enhanced � (Equation (4)) (see the dis-

cussion above in (I)), which results in a larger ��, and thereby a higher �� as described by 

the Smoluchowski kinetics rate (Equation (5)). 

5.4. Solvent: Antisolvent Ratio (SAS-Ratio) 

In our experiments, increasing the SAS-ratio from 1:10 to 1:20 could induce the for-

mation of smaller or larger particles (or particles with little change in their size) (Figure 

5c). This happened because a change in SAS-ratio could influence the particle size in op-

posing ways (that sometimes may cancel each other), as explained in the following. (I) On 

the one hand, a higher SAS-ratio could induce the formation of smaller particles, due to a 

lower �∗ (Equation (3)) and an enhanced � (Equation (4)) brought about by a higher �, 

because of a smaller �∗ (Equation (1)). (II) On the other hand, a higher SAS-ratio could 

induce the formation of larger particles, due to a higher �, which would induce a higher 

�∗ (Equation (3)) and a lower � (Equation (4)). 

5.5. Surface Active Compounds 

Sometimes, changing a process parameter could induce a very large change in ��
�
 of 

AMI and NOR, which are surface-active compounds (Figure 5a–c). In particular, very 

large increases were noted in one instance for ��
�
 of NOR upon increasing ��

�������  (Fig-

ure 5b), and three instances for NOR and AMIb upon decreasing the SAS-ratio (Figure 

5c). For AMIb and NOR, the value of �% was low (�% < 3%; see subSection 5.1), mean-

ing that an aggregation/adhesion tendency for the particles was not unexpected, because 

the stabilizing electrostatic repulsive force between the particles was low. Examination of 

the data of Figure 1b,e revealed that in these instances, the rate of increase in ��  in the 

protocols employed (No. 2 and No. 5 for AMIb and No. 5 for NOR) was very large at the 

early stage of the process of adding the solvent into the antisolvent (i.e., a jump was ob-

served in �� ), whereas in the protocols that were used for comparison with these in-

stances (No. 1 and No. 4 for AMIb and No. 1 and No. 2 for NOR), the rate of increase in 

��
�
 was more or less constant during the whole process. Thus, we suggest that in these 

instances of very large increases in ��
�
, an enhanced aggregation/adhesion tendency was 

in play during the early stage of the process of adding the solvent into the antisolvent. 

5.6. pH of the Antisolvent 

For studying the effect of pH of the antisolvent on the particle size, we selected AMI 

(Figure 5d), where two pH values of pH = 10.4 (AMIa) and pH = 11 (AMIb) were chosen 

for the experiments (Table 1). Lowering pH from 11 to 10.4 affected ��
�
 of AMI in oppos-

ing manners via increasing �% from 2.62 (±0.06)% to 9.68 (±0.2)%. (I) On the one hand, 

an increased �% could result in smaller particles through a reduced γ and/or a decreased 

aggregation/adhesion tendency, where the latter is achieved through a larger degree of 

stabilizing electrostatic repulsion between the particles. (II) On the other hand, an in-

creased �% could induce the formation of larger particles through a reduced � brought 

about by a higher AMI solubility (�∗; Equation (1)) [31]. In the following, the underlying 

physical chemistry of these two tendencies will be discussed in detail. 

For bases (B) that are much less soluble in water than their corresponding salts (e.g., 

amitriptyline hydrochloride [31]), the relationship between the water solubility ��
∗,� and 

pH is described by the following expressions [31]. 
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��
∗,� = ��.�.

∗,� �1 +
[��]

��

� (7)

�� =
[��][�]

[���]
 (8)

where ��.�.
∗,� is the water solubility of the free base of compound B and �� is the ionization 

constant. Thus, using the values of AMI free base water solubility (��.�.
∗,� = 3.5 × 10�� �) 

and ionization constant (��� = 9.4) (measured at 24 ± 1 °C [31]), the values of the water 

solubility of AMI in the end dispersion at different pH values of the antisolvent were cal-

culated to be ����
∗,� = 3.6 × 10��M (pH = 11) and ����

∗,� = 3.9 × 10��M (pH = 10.4). This 

change in ����
∗,�  affects � through changing �∗ (Equation (1)). More specifically, lower-

ing the pH of the antisolvent decreases �, which could increase ��
�
 through inducing a 

larger �∗ (Equation (3)) and a lower � (Equation (4)). 

A change in the water solubility of AMI also affects �. AMI is a surface-active mole-

cule that self-assembles into micelles in water [25]. The critical micelle concentration 

(CMC) of this compound is CMC = 3.6 × 10−2 M and its aggregation number is 7 (measured 

at 303 ± 0.01 K [25]). The surface-active properties of AMI are pH-dependent, because it is 

a weak base. Add to this is the fact that its CMC is three orders of magnitude larger than 

the water solubility of its free base. This means that the contribution of the free base to 

CMC is negligible, and the occurrence of CMC is due to the presence of the ionized form 

of AMI. Besides, it is a well-known characteristic of aqueous solutions of surfactants that 

the surface tension sharply decreases with the surfactant concentration if the latter is less 

than CMC. This behavior continues up to CMC, after which the surface tension achieves 

a plateau value. Thus, because at pH = 11 and pH = 10.4 the water solubility of AMI is 

much smaller than CMC (i.e., ����
∗,� ≪ CMC), lowering the pH from 11 to 10.4 reduces �, 

which results in a decrease in ��
�

 through inducing a smaller �∗ (Equation (3)) and a 

higher � (Equation (4)). 

Inspection of the data of Figure 5d reveals that in preparation protocols No. 2, No. 3, 

and No. 5, lowering the pH from pH = 11 to pH = 10.4 induced a decrease in ��
�
. This 

means that, in these experiments, upon a decrease in pH, the size-reducing effect arising 

from a reduced aggregation/adhesion tendency and/or a reduced � outweighed that of 

the size-enlarging effect of a reduced �. Conversely, in protocols No. 1 and No. 4, it was 

the size-enlarging effect of a reduced � that dominated the system, which resulted in an 

increased ��
�
 for a lower pH value. Thus, the fact that a small change in pH (ΔpH = 0.6) 

could exert such a great influence on ��
�
 of AMI particles is directly related to the surface-

active properties of this compound. 

5.7. (��� �)�� 

For COU, CUR, and PRO particles, the concentration of the compound in the solvent 

solution varied in the range 3 �� < ��
������� < 10 �� (Table 1). This means that ��

�������  

was of the same order of magnitude in the preparation experiments. Interestingly, we 

found that for all of the preparation protocols applied for COU, CUR, and PRO, ��
�
 in-

creased with (log �)��  (Figure 6a). We suggest that this happened, because a higher 

(log �)�� translated into a higher �, and thereby a larger ��
�
, achieved through a larger 

�∗ (Equation (3)) and a lower � (Equation (4)). 

As discussed before in Section 5.1, in the employed preparation protocols, AMI and 

NOR were expected to be charged enough to be identified as surface-active molecules. In 

addition, the concentration of these compounds in the solvent solution varied in the range 

25 �� ≤ ��
������� < 80 �� (Table 1), which was one order of magnitude larger than the 

case for COU, CUR, and PRO. For these two reasons, analysis of the relationship between 

(log �)��  and ��
�
 for AMI and NOR for each preparation protocol cannot be included 

within that performed for COU, CUR, and PRO and should be carried out separately. 
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Thus, upon comparing ��
�
 of AMIa, AMIb, and NOR, the same conclusion regarding the 

relationship between (log �)�� and ��
�
 was reached, meaning that in the majority of the 

preparation protocols employed, the compound with a lower (log �)�� (i.e, NOR) exhib-

ited a smaller ��
�
 (Figure 6b). Furthermore, as can be seen in Figure 6c, ���

�
�

��
 increased 

linearly with (log �)�� (���
�

�
��

 was calculated by making an average of ��
�
 values ob-

tained for the five preparation protocols employed. Notice that for the calculation of 

���
�

�
��

 of AMI, both AMIa and AMIb particles were taken into account). These findings 

regarding the relationship between the final particle size and log � could be used as a 

general principle to predict the particle size in the preparation of nanodrugs using the 

antisolvent precipitation technique. 

 

Figure 5. The effects of (a) flow rate, (b) compound concentration in the solvent solution ��
�������, 

(c) SAS-ratio (for AMIa, COU, CUR, NOR and PRO), and (d) pH of the antisolvent (for AMI particles 

prepared by protocols No.1–No.5; Table 2) on the final particle size ��
�
. All subfigures share the 

legend provided in (a). 
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Figure 6. For CUR, PRO, COU, AMI and NOR, the relationship between the average of log � values 

for each compound (log �)�� (Table 3) and (a,b) the final particle size ��
�
 for various particle prep-

aration protocols, and (c) the average of the values of the final particle size ���
�

�
��

. In (c), the solid 

line is the result of fitting a line to the data (R2 = 0.52). 

6. Conclusions 

The antisolvent precipitation method was successfully employed in the preparation 

of excipient-free, pure nanoparticles of amitriptyline hydrochloride (AMI), coumarin 6 

(COU), curcumin (CUR), nortriptyline hydrochloride (NOR), and prochlorperazine di-

maleate (PRO) using five different preparation protocols (Table 2). The final size of the 

particles ��
�
 varied in the ranges of 245–745 nm (AMI), 308–401 nm (COU), 152–168 nm 

(CUR), 216–577 nm (NOR), and 169–264 nm (PRO). The effects of varying the flow rate, 

��
������� , SAS-ratio, and pH of the antisolvent on ��

�
 were examined in detail and the re-

sults were explained using available theories for the antisolvent precipitation method. The 

morphology of the particles, their crystalline structure, and their surface charge were char-

acterized using SEM, XRD, and zeta potential measurements, respectively. Importantly, 

we showed that ��
�

 increased with (log �)�� , where ���
�

�
��

 increased linearly with 

(log �)��. 
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https://www.mdpi.com/article/10.3390/pharmaceutics14040819/s1, Figure S1: Representative size 

distributions of particles of (a) CUR, (b) COU, (c) NOR, (d) PRO, (e) AMIa and (f) AMIb. The prep-

aration protocols employed are indicated. 
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