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Abstract
Context:  Hormone reference intervals in pediatric endocrinology are traditionally partitioned by age and lack the framework for benchmarking 
individual blood test results as normalized z-scores and plotting sequential measurements onto a chart. Reference curve modeling is applicable 
to endocrine variables and represents a standardized method to account for variation with gender and age.
Objective:  We aimed to establish gender-specific biomarker reference curves for clinical use and benchmark associations between hormones, 
pubertal phenotype, and body mass index (BMI).
Methods:  Using cross-sectional population sample data from 2139 healthy Norwegian children and adolescents, we analyzed the pubertal 
status, ultrasound measures of glandular breast tissue (girls) and testicular volume (boys), BMI, and laboratory measurements of 17 clinical bio-
markers modeled using the established “LMS” growth chart algorithm in R.
Results:  Reference curves for puberty hormones and pertinent biomarkers were modeled to adjust for age and gender. Z-score equivalents 
of biomarker levels and anthropometric measurements were compiled in a comprehensive beta coefficient matrix for each gender. Excerpted 
from this analysis and independently of age, BMI was positively associated with female glandular breast volume (β = 0.5, P < 0.001) and leptin 
(β = 0.6, P < 0.001), and inversely correlated with serum levels of sex hormone-binding globulin (SHBG) (β = −0.4, P < 0.001). Biomarker z-score 
profiles differed significantly between cohort subgroups stratified by puberty phenotype and BMI weight class.
Conclusion:  Biomarker reference curves and corresponding z-scores provide an intuitive framework for clinical implementation in pediatric 
endocrinology and facilitate the application of machine learning classification and covariate precision medicine for pediatric patients.
Key Words:  pediatric endocrinology, biomarker, references, machine learning
Abbreviations:  AI, artificial intelligence; BGS2, Bergen Growth Study 2; BMI, body mass index; CLSI, Clinical and Laboratory Standards Institute; CV, coefficient 
of variation; E2, estradiol; FSH, follicle-stimulating hormone; IGF1, insulin-like growth factor 1; LC-MS/MS, liquid chromatography–tandem mass spectrometry; 
LH, luteinizing hormone; LLOQ, lower limit of quantitation; ML, machine learning; PCA, principal component analysis; RCV, reference change value; ROC, receiver 
operating characteristics curve; SHBG, sex hormone-binding globulin.

Reproductive hormone references for evaluating blood test 
results in pediatric patients are essential during clinical in-
vestigations of a wide range of conditions including hypo/
hypergonadism, differences of sex development (DSDs), and 
neoplastic and autoimmune conditions that compromise 

endocrine function. Such pathologies may be associated with 
abnormal somatic development and altered puberty timing. 
On the population level, female onset of puberty has de-
creased by 3 months per decade since the 1970s and has ap-
peared to continue to decline (1). With the secular trend of 
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earlier puberty timing, particularly observed in girls, pertinent 
references applied in pediatric endocrinology should period-
ically be updated. Further, the association between childhood 
obesity and earlier puberty timing warrants quantitative 
benchmarking and further attention (2, 3).

During childhood and puberty, circulating levels of hor-
mones and biochemical markers frequently vary consider-
ably with both gender and age. Typically, awakening of the 
adrenal cortex (adrenarche) precedes attainment of pubic 
hair (pubarche) and gonadal function (gonadarche) (4). 
Biochemical reference intervals are fundamental tools to 
evaluate samples and secure correct diagnosis and treatment. 
In pediatric endocrinology this necessitates appropriate ad-
justment or stratification by the major covariates of age, 
gender, and puberty stage. The well-established and widely 
applied nonparametric method imposes arbitrary partitioning 
of age groups to define a series of central 95% CIs in table 
format (5). However, when assigning a pediatric patient to 
such predetermined age partitions, the corresponding refer-
ence interval will not account for the fact that biochemical 
observations within most such partitions are likely to exhibit 
age-dependent skewness, conforming to a non-Gaussian dis-
tribution. Further, the Clinical and Laboratory Standards 
Institute (CLSI) C28-A3c standard upholds that clinically 
valid reference intervals should ideally be sourced from at 
least 120 observations (6). In this regard, ethical limitations 
make it notoriously challenging to recruit cohorts of healthy 
children to establish sufficiently powered and comprehensive 
pediatric references (7-9). Notably, the Canadian Laboratory 
Initiative on Pediatric Reference Intervals (CALIPER) and 
Nordic Reference Interval Project (NORIP) have previ-
ously established comprehensive ranges by nonparametric 
partitioning (10, 11) and quantile regression (12).

Conventional growth charts are ubiquitously used in clin-
ical practice to benchmark the gross anthropometric status 
of pediatric patients. At the heart of this framework is the 
LMS method, originally described by Cole and Green (13, 
14). Notably, the LMS framework is adopted in most con-
temporary national growth references, including the growth 
charts provided by the World Health Organization (WHO) 
and Centers for Disease Control and Prevention (CDC) (15, 
16). Briefly, the LMS algorithm applies a Box-Cox data trans-
formation and uses 3 parameters to account for the skewness 
(L), mean (M) and coefficient of variation (S) for each local 
distribution, effectively providing nonlinear adjustment of 
age while negating heteroscedasticity (eg, increasing variance 
with age). Final LMS models enable calculation of standard 
deviation scores (z-scores) that are typically adjusted for the 
main covariates age and gender. Such z-scores are also cen-
tered at zero (ie, mean for age) and uniformly scaled in terms 
of SDs and normally distributed, that is, properties that make 
for ideal input variables in statistical modeling and machine 
learning (ML). Briefly, supervised ML is an artificial intelli-
gence (AI) method by which an algorithm captures the con-
figuration of several independent feature variables (eg, a 
biochemical profile) in relation to one dependent variable (eg, 
a known dichotomy of “disease” or “healthy”) in order to 
make new and robust predictions (17).

The Bergen Growth Study 2 (BGS2) was conducted in 
2016 and has provided new anthropometric puberty refer-
ences for the Norwegian pediatric population (18, 19) and 
simple nonparametric hormone references (20, 21). In the 

current study, we aimed to provide a comprehensive set of 
LMS gender-specific references curves for 17 pediatric bio-
markers. We hypothesized that biomarker z-scores may be 
useful to quantify associations between hormone levels, pu-
bertal status, and weight class, and thus enable clinical clas-
sifications irrespective of patient gender or age. Furthermore, 
we hypothesized that pediatric overweight may be associated 
with an altered endocrine profile that, in particular, may be 
characterized by increased levels of estrogens due to increased 
adipose tissue aromatase activity. The current reference curves 
have not been published previously but were recently used 
to benchmark biomarker z-scores in an unrelated cohort of 
children exposed to metformin in utero due to maternal poly-
cystic ovary syndrome (22).

Materials and Methods
Cohort Description
The Bergen Growth Study 2 (BGS2) was conducted in 2016 
and comprised a population sample of Norwegian children 
that was representative of the general Norwegian demographic 
composition, consisting of approximately 90% Caucasians as 
described previously (20, 21). Exclusion criteria in the BGS2 
cohort included self-reported chronic disease or a medical 
history of cancer or epilepsy. Data describing puberty status, 
anthropometric profile, and biochemical data were available 
for 650 healthy girls and 465 healthy boys in the age interval 
from 6 to 16 years. The BGS2 total participation rate, that 
is, ratio of children invited and children enrolled in the study 
was 43%.

The Norwegian Fit Futures 1 youth study was conducted in 
2010 and 2011 to benchmark public health parameters per-
taining to lifestyle choices, bone health, and inflammation as 
described previously (23, 24). All 1117 first year high-school 
students in Tromsø and Balsfjord municipalities were invited 
and 1038 participated, yielding a response rate of 93%. From 
this cohort, previously unpublished data pertaining to steroid 
hormone levels in girls and boys aged 15 to 18  years was 
used in the current study. An overview of the current sample 
sizes and applied exclusion criteria is provided (Table 1). Data 
regarding puberty status in the Fit Futures 1 cohort was self-
reported and did not comply with Tanner staging performed 
in the BGS2 cohort; these observations were accordingly 
not included in the current references that were arranged by 
puberty stages.

Both written parental consent and child assent was required 
for any examination, and sourcing biochemical data from the 
biobanks was approved by Norwegian Regional Committees 
for Medical and Health Research Ethics (approval refer-
ences REK-2015/128 for BGS2 and REK-2017/1976 for Fit 
Futures, respectively).

Methods
Puberty Evaluation Protocols
For girls in the BGS2 cohort, the depth and diameter of the 
fibroglandular area was systematically measured with ultra-
sound in each girl’s left breast in a sagittal plane, unless the 
right breast visually appeared more mature. Methodological 
documentation of the ultrasonographic measurement of glan-
dular depth and diameter was described previously (25). 
Briefly, breasts were palpated and evaluated according to 
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Tanner’s classification (26). Ultrasound evaluation of the lar-
gest breast was performed with SonoSite Edge (FUJIFILM 
SonoSite, USA) device with a 15-16 MHz (5 cm) linear trans-
ducer. Two consecutive scans were performed and merged 
when the diameter was 5 to 10  cm, and the measurements 
were summed. Diameters above 10 cm were not measured or 
included in analyses. The more mature breast, according to 
Tanner B or ultrasound breast staging, was used for the ana-
lyses. To calculate glandular volume, the formula for a conical 
shape was applied: volume = (π/3) × radius × 2 × depth. This 
mathematical formula for a conical shape has also been used 
by others (27, 28). Using Tanner stages as the gold standard 
marker of thelarche (Tanner 1 vs Tanner B2+), the optimal 
cutoff to classify puberty onset in girls corresponded to 
0.5 mL of glandular breast tissue volume, and this threshold 
exhibited a positive predictive value of 60.4%, negative pre-
dictive value of 98.6%, and accuracy of 85.2%.

Methodological documentation for ultrasound evalu-
ation of male testicular volume and its mathematical rela-
tion to conventional orchidometer milliliters was detailed 
previously (29). Briefly, the dimensions of the biggest tes-
ticle were recorded, and the ellipsoid volume was calculated 
using Lambert equation (length × width × depth × 0.71). The 
Norwegian growth chart describing male testicular volume-
for-age was sourced from the BGS2 cohort and recently pub-
lished (19). Anthropometric body mass index (BMI), waist 
circumference, and subscapular triceps z-scores assigned to 
participants in the current study were interpolated from the 
Norwegian national growth charts according to gender and 
age (30).

Blood Sample Analyses
Venous blood samples were collected with both parental 
and child consent if the child was younger than 16  years 
of age, and with consent of the person if he/she was older 
than 16 years. Blood samples were collected between 8 am 
and 2 pm in both studies. Isolated serum was stored in regis-
tered biobanks at −80 °C prior to analyses. All biomarkers 
were analyzed in the standard international (SI) unit frame-
work at the Hormone Laboratory, Department of Medical 
Biochemistry and Pharmacology, Haukeland University 
Hospital, accredited in compliance with ISO 15189:2012. 
Androgens and corticosteroids were analyzed by liquid chro-
matography–tandem mass spectrometry (LC-MS/MS) multi-
plex method as described previously (31). For testosterone, 
the analytical inter-assay coefficient of variation (CVA) was 

4% in the range 1.5 to 37 nmol/L and the lower limit of quan-
tification (LLOQ) was 0.02 nmol/L. For BGS2 samples, serum 
levels of estradiol (E2) were quantified using an ultrasensitive 
LC-MS/MS method documented previously (32). Here, the E2 
analytical inter-assay CVA was 9.1% in the range 1.7 to 153.3 
pmol/L and the LLOQ was 0.58 pmol/L. In the Fit Futures 
cohort, E2 levels were determined by an LC-MS/MS method 
with intermediate sensitivity (CVA 13% at 57 pmol/L; range, 
13-2508 pmol/L; LLOQ 13 pmol/L). The 2 methods of E2 
determination are traceable to the CRM BCR-576, and no 
significant bias was detected between the 2 methods when 
biological samples were run in parallel (R2 = 0.96; average 
difference = 1.7 % and t test P = 0.053). Estrogen level data 
from the 2 cohorts were hence merged without mathematical 
adjustments. Follicle-stimulating hormone (FSH; CVA 5% at 
5 IU/L; LLOQ 0.1 IU/L), luteinizing hormone (LH; CVA 7% 
at 10 IU/L; LLOQ 0.1 IU/L), sex hormone-binding globulin 
(SHBG; CVA 6% at 60 nmol/L; LLOQ 2 nmol/L) and insulin-
like growth factor 1 (IGF1; CVA 7% at 18 nmol/L; LLOQ 
4  nmol/L) were quantified in BGS2 serum samples using 
Siemens Immulite 2000 XPi. Enzyme-linked immunosorbent 
assay kits were used to quantify serum leptin (Mediagnost 
Cat# E07, RRID: AB_2813737) and adiponectin (Mediagnost 
Cat# E09, RRID: AB_2813736) in serum samples from 
the BGS2 cohort. Inter-assay CVA was determined to 5% 
at 8.3 µg/L leptin (LOQ 1-100 µg/L) and 8% at 14 µg/mL 
adiponectin (LOQ 0.6-31 µg/mL). Levels of HDL cholesterol 
(CVA 3% at 1.9  mmol/L), LDL cholesterol (CVA 2.5% at 
3.4 mmol/L), total cholesterol (CVA 3% at 4.4 mmol/L) and 
triglycerides (CVA 3% at 1.5 mmol/L) in BGS2 serum samples 
were quantified by Cobas 8000.

Hormone Reference Intervals
Biomarker reference curves were modeled using the LMS 
method provided in the “gamlss” package in R (33). No out-
liers were removed outside cohort exclusion criteria. The 
combined triplet of values assigned for L, M, and S enables 
calculation of z-scores adjusted for gender and age by the fol-
lowing formula: (((X/M)^L)-1)/(L*S) where X is the relevant 
blood test result in SI units. All LMS models in the current 
study are provided in Supplemental Table 1 (34). Quality 
assurance and satisfactory residual distribution of LMS ref-
erences was assured by QQ-plots, worm-plots, and Q-tests 
for normality of each reference model. The computational 
script used to perform the above LMS operations is available 
in R code (35). Traditionally partitioned and nonparametric 

Table 1.  Cohort sample overview

Sample description BGS2 cohort (6 to <16 y) Fit Futures cohort (15-18 y)

Gender Boys Girls Boys Girls 

Unique blood samples, n 451 650 509 486

Excluded due to chronic disease, n 25 27 8 0

Excluded due to oral contraceptives, n 0 12 0 167

Excluded due to corticosteroid use, n 7 10 10 6

Viable blood samples for references, n 414 601 491 319

The current study included observations sourced from the 2 population-based samples of Norwegian children and adolescents enrolled in the Bergen 
Growth Study 2 (BGS2) and Fit Futures 1 cohorts. Indicated numbers of girls and boys were enrolled and the following exclusion criteria were applied: 
self-reported history of chronic disease or cancer (excluded from all biomarker references); use of oral contraceptives (excluded from all female biomarker 
references); use of corticosteroid medication (excluded from cortisol references). The number of viable blood samples used in the current references 
excludes serum samples that were discarded due to hemolysis or insufficient blood draw volume.
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95% reference intervals for all biomarkers were established 
by bootstrapping and Dixon’s outlier removal using the 
“referenceIntervals” package in R (36) and are provided in 
table format in Supplemental Table 2 (37). Partitioning of the 
reference ranges was determined according to CLSI guidelines 
(6).

Girls using oral contraceptives were not included in any 
reference intervals, and children using glucocorticoid medica-
tion were not included in cortisol and 11-deoxycortisol refer-
ences, specifically.

Statistical Analyses
Correlation matrices were computed using the Pearson 
method with the “reshape” and “ggplot2” packages in 
R. The P values for the correlation matrices are provided in 
Supplemental Table 3 (38). Total variance in the biomarker 
z-score dataset was explored by principal component ana-
lysis (PCA), using the “prcomp” and “ggbiplot” functions in 
R as described previously (21). Supervised machine learning 
(ML) to predict weight class (BMI-SDS ≥ 1 or BMI-SDS ≤ −1) 
from all featured biomarker variables was performed by 
establishing a “randomForest” model and evaluating the re-
sulting confusion matrix using the “caret” package in R. The 
pipeline script used to perform the above operations is avail-
able in R code (39). Complete observations for all biomarker 
z-scores were available for 122 boys and 172 girls from the 
BGS2 cohort and combined to one data frame, from which 
the random forest model was trained using 75% of the data 
and tested using 25% of the remaining and unseen data with 
10-fold cross-validation.

Receiver operating characteristics (ROC) curves were con-
structed using the “pROC” package in R to evaluate the 
ability of single biomarkers to distinguish between the weight 
classes specified above. ROC accuracy was calculated as (true 
negatives + true positives)/all classification outcomes.

Results
Continuous Hormone References
We combined data from the 2 Norwegian cohorts of healthy 
children and adolescents and modeled circulating steroid 
hormone levels in girls and boys in relation to chronological 
age using the LMS growth chart algorithm (Fig. 1). Additional 
biomarkers analyzed exclusively in the BGS2 cohort included 
peptide hormones and lipids (Fig. 2). The reference curves 
showed in Fig. 1 and Fig. 2 are provided as supplementary in-
formation and enable anyone to calculate biomarker z-scores 
adjusted for gender and age. Notably, observations located on 
the mean-for-age centile have a z-score of 0, corresponding to 
the 50th percentile.

Age-adjusted Associations Between Endocrine, 
Pubertal, and Anthropometric Variables
From the current biomarker reference curves (Fig. 1 and 
Fig. 2), age-adjusted z-scores were calculated for each co-
hort participant. Combining these biomarker z-scores with 
conventional anthropometric z-scores, we next calculated 
the Pearson correlation between all variables, according to 
gender (Fig. 3). Hence, the provided correlation coefficients 
are standardized beta coefficients that specify relationships 
between all variables in terms of SD and irrespective of age. 
Sample sizes for these analyses were 552 to 995 girls and 

419 to 910 boys, since puberty endpoints were not included 
in the Fit Futures dataset. No correlation was observed be-
tween z-scores and chronological age, indicating successful 
adjustments for age. In boys, both total testosterone and LH 
z-scores were positively associated with testicular volume-for-
age (β = 0.4 and P < 0.001 for both). In girls, LH, FSH, and 
IGF1 z-scores were positively associated with E2 (β = 0.5 to 
0.6, respectively; P < 0.001 for both). BMI z-scores associ-
ated positively with male testicular volume-for-age (β = 0.2 
and P < 0.001) and female glandular breast tissue volume-
for-age (β = 0.5 and P < 0.001) but negatively with SHBG in 
both genders (β = −0.4 and P < 0.001 for both). Strong β co-
efficients were observed between obesometric variables and 
the same was also true for related biomarkers in the steroid 
hormone synthesis pathway, eg, between estrone (E1) and es-
tradiol (E2).

Endocrine Features of Pubertal Phenotypes
A refined analysis of hormone profile in relation to pubertal 
phenotypes was achieved by stratifying the BGS2 cohort ac-
cording to attainment of pubarche or central puberty onset 
at the time of examination (Table 2). Specifically, participants 
were grouped according to attainment of pubic hair (Tanner 
pubic hair stage PH2) and/or canonical markers of pubertal 
onset for boys (testicular volume ≥ 4 mL) and girls (Tanner 
breast stage B2+ ie, thelarche). The earliest and latest occur-
rences of puberty onset were between 10 and 13  years for 
boys and between 8 and 12 years for girls. Boys exhibiting 
central pubertal onset without pubarche had significantly 
higher z-scores of LH, total testosterone, and testicular 
volume than prepubertal peers with or without pubarche. 
Girls exhibiting gonadarche but no pubarche had signifi-
cantly higher z-scores of FSH, E2, and glandular breast tissue 
volume than prepubertal peers without pubarche. Cohort 
participants presenting with both pubarche and gonadarche 
exhibited pubertal and endocrine z-scores markedly above 
the mean for age.

Leveraging Biomarker Z-Scores for Clinical 
Classifications
We initially hypothesized that weight classes would associate 
with differential biomarker profiles, and we pursued this hy-
pothesis as a classification problem. In order to characterize 
the biomarker profile and explore the utility of z-scores in 
clinical classifications, we applied a principal component ana-
lysis (PCA) to “fingerprint” the biomarker profiles associated 
with BMI weight class. This analysis included the biomarker 
z-score profile for 154  “underweight” (BMI z-score ≤ −1.0) 
and all 140 “overweight” (BMI z-score ≥ 1.0) girls and boys 
in the BGS2 study. In addition to biomarker z-scores, female 
glandular tissue-for-age and male testicular volume-for-age 
were included to evaluate associations between gonadal de-
velopment and weight class. The resulting PCA biplot showed 
a partially distinct clustering of underweight and overweight 
biomarker z-score profiles (Fig. 4). From the previous beta 
coefficients matrices (Fig. 2), we observed a positive and as-
sociation between BMI and circulating levels of leptin for 
both genders (β = 0.6 and P < 0.001). In line with this finding, 
the PCA factor analysis (arrows) indicated that leptin, along 
with SHBG and IGF1, were important biomarkers of weight 
class. Subsequent ROC analyses verified that classification of 
overweight was achieved by leptin (88.8% accuracy), SHBG 
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Figure 1.  Continuous steroid hormone reference curves. Steroid hormone levels in individuals enrolled in the Bergen Growth Study 2 (black dots) and 
Fit Futures cohort (green dots) were quantified by LC-MS/MS. Male (left column panels a, c, e, g, i, k) and female (right column panels b, d, f, h, j, l) 
references were modeled separately for indicated hormones. Continuous centiles indicating the mean for age (p50, solid lines) and discrete SDs from 
the mean (dashed lines) were fitted using the LMS algorithm. The −2 and + 2 SD curves correspond to percentiles p2.2 and p97.8, respectively, and the 
vertical range between these centiles approximate the 95% CI at any age. Abbreviations: 11-DOC, 11-deoxycortisol; 17-OHP, 17-hydroxyprogesterone; y, 
chronological age in years.
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(75.2% accuracy), and IGF1 (69.4% accuracy), respectively. 
As a proof-of-concept for weight class prediction using the 
entire biomarker z-score profile, we trained a supervised 

machine learning (ML) model using the decision tree–based 
“random forest” algorithm. By evaluating only biomarker 
z-scores, this ML classification model was able to predict BMI 

Figure 2.  Continuous biomarker reference curves. Biomarker levels quantified in serum samples from the BGS2 cohort were modeled as reference 
curves using the LMS algorithm. Male (left column panels a, c, e, g, i, k) and female (right column panels b, d, f, h, j, l) references were modeled 
separately. Abbreviations: FSH, follicle-stimulating hormone; IGF1, insulin-like growth factor 1; LH, luteinizing hormone; SHBG, sex hormone-binding 
globulin; y, chronological age in years.
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weight class with an accuracy of 94.5% (95% CI, 86.6% to 
98.5%), as shown in the classification table (Table 3).

Discussion
A critical function of clinical laboratories is to construct and 
maintain updated biochemical references to guide medical 

decision making. Establishing suitable references for the 
pediatric population is especially challenging due to ethical, 
practical, and regulatory impediments to the recruitment of 
healthy blood donors while also keeping up to date with 
the secular trend of earlier pubertal onset. The current and 
widely adopted nonparametric method to construct refer-
ence intervals for arbitrarily partitioned age groups may not 

Figure 3.  Standardized β coefficient matrices for puberty development, anthropometry, and hormone profile. Age-adjusted z-scores derived from 
anthropometric LMS growth charts and the current biomarker LMS reference curves were correlated to obtain standardized beta coefficients that 
describe relationships between all variables. To exemplify the readout, 1 SD score increase in BMI incurs a 0.6 SD score increase in circulating levels 
of leptin, regardless of age. Testicular volume-for-age z-scores were included in the top (a) male matrix and corresponding z-scores for female glandular 
tissue volume-for-age were included in the bottom (b) female matrix. Standardized β coefficients were calculated as the linear regression (Pearson r) 
between pairwise z-scores and colored according to the indicated heatmap scale. Complete statistical analyses including β coefficient P values are 
available in Supplemental Table 3. (38).
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satisfactorily capture the age-dependent trends that are con-
tinuous in nature. Compared with the continuous distributions 
and centiles obtained by the LMS method, nonparametric ref-
erence intervals would necessarily require partitioning of age 
groups (eg, 6 to < 9 years; 9 to < 13 years, and so on) into dis-
crete distributions. Furthermore, there is a demand to device 
new reference frameworks that enable quantitative precision 
medicine and integrate with AI approaches to improve clin-
ical investigations and patient treatment strategies. Although 
growth curves were implemented decades ago and have be-
come standardized tools in pediatrics, the potential for more 
advanced clinical utilization of this framework remains un-
explored, particularly with respect to nonanthropometric 
variables. Although there are several examples of AI tools im-
plemented to enhance radiologic predictions of disease and 
bone age in pediatrics (40, 41) and biochemistry profiles for 
hematologic disease in adults (42), equivalent progress has 
not been made to enable computer-aided diagnosis in pedi-
atric endocrinology.

The current study applied the conventional “LMS” growth 
chart framework to model reference curves for 17 biomarkers 
in the pediatric population. Serum levels of several of these 
biomarkers increase by powers of 10 throughout puberty 
and are challenging to resolve in age-partitioned reference 
intervals. Precedence for using the semiparametric LMS al-
gorithm to model anthropometric parameters of pediatric 
development is provided in the official WHO, CDC, and na-
tional growth charts worldwide. Furthermore, some previous 
publications demonstrate the successful application of this 
framework applied to steroid sex hormones (43, 44) and the 
biomarker IGF1 (45, 46). Importantly, disclosing the L, M, 

and S parameters enables health personnel elsewhere to im-
plement the relevant reference curves and calculate z-scores 
according to their patients’ gender and age. Reference curves 
in the current study describe the gender-specific and age-
dependent variation of 17 different biomarkers, and these 
have been made available in Supplemental Table 1 (34).

The references presented in the current manuscript were 
generated from a population sample representative of the 
general Norwegian demography, corresponding to approxi-
mately 89% Caucasian, 6% Asian, 3% African, and 0.5% 
Hispanic according to the latest census update (47). Although 
our use of LC-MS/MS and common mainstream commer-
cial instruments to quantify biomarkers may provide more 
robust generalization to other laboratories, the current refer-
ences should be interpreted with caution and validated prior 
to clinical implementation elsewhere, and also with respect to 
other ethnicities.

Diurnal variation was not accounted for in the current ref-
erence curves but decreasing in hormone levels throughout 
the day should be considered in clinical practice, particularly 
with respect to cortisol and testosterone where we observed 
significantly higher hormone levels in morning samples (be-
fore 10:00) than afternoon samples (after 10:00) in pubertal 
children. Statistical tests were performed according to CLSI 
guidelines to determine whether stratification of reference 
ranges according to time of blood draw was warranted, 
and appropriately stratified nonparametric reference inter-
vals accounting for sample time of day in the current study 
are provided in the Supplemental Table 2 (37). Further, cyc-
lical hormone variation should be considered when sam-
pling gonadotropins, estradiol, 17-hydroxyprogesterone, and 

Table 2.  Baseline characteristics of male and female puberty phenotypes

Male baseline characteristics (puberty onset age range, 10-13 years)

Boys, ages 10-13 TV < 4 mL; PH1 TV ≥ 4 mL; PH1 TV < 4 mL; PH2+ TV ≥ 4 mL; PH2+ 

Sample size, n 69 23 20 37

Attained testicular vol. ≥ 4 mL, % 0% 100% 0% 100%

Attained pubic hair ≥ PH2, % 0% 0% 100% 100%

Age, y 10.74 (10.07 to 12.54) 11.82 (10.37 to 12.92) 11.64 (10.36 to 12.78) 12.47 (11.01 to 12.93)

Testicular volume, z-score −0.55 (−1.84 to 1.01) 0.79 (−0.69 to 3.13) −0.72 (−1.82 to 0.71) 0.34 (−0.95 to 2.30)

LH, z-score −0.75 (−1.97 to 1.44) 0.81 (−0.93 to 1.99) −0.30 (−1.95 to 1.92) 0.54 (−0.55 to 2.39)

FSH, z-score −0.25 (−2.39 to 1.35) 0.07 (−0.86 to 1.93) 0.16 (−1.66 to 1.42) 0.27 (−1.43 to 1.77)

Testosterone, z-score −0.37 (−1.59 to 0.85) 0.19 (−1.10 to 2.92) −0.46 (−1.43 to 1.34) 0.64 (−0.66 to 2.29)

Female baseline characteristics (puberty onset age range, 8-12 years)

Girls, ages 8-12 No thelarche; PH1 Thelarche; PH1 No thelarche; PH2+ Thelarche; PH2+

Sample size, n 92 28 11 35

Attained breasts ≥ Tanner B2, % 0% 100% 0% 100%

Attained pubic hair ≥ PH2, % 0% 0% 100% 100%

Age, y 9.23 (8.08 to 11.67) 10.46 (8.58 to 12.30) 9.93 (8.15 to 11.26) 11.31 (9.90 to 11.95)

Glandular tissue volume, z-score −0.49 (−2.09 to 1.24) 0.68 (−1.01 to 1.82) −0.13 (−1.61 to 1.44) 1.16 (−0.86 to 1.96)

LH, z-score 0.20 (−1.95 to 1.90) 0.06 (−1.54 to 2.34) −0.41 (−1.39 to 1.85) 1.05 (−2.05 to 1.85)

FSH, z-score −0.15 (−2.06 to 1.59) 0.53 (−0.72 to 2.41) −0.05 (−1.44 to 1.14) 0.53 (−1.49 to 1.84)

E2, z-score −0.40 (−2.55 to 1.21) 0.42 (−1.26 to 2.64) −0.12 (−1.61 to 1.24) 0.88 (−1.73 to 2.03)

Participants in the BGS2 cohort were stratified by differential puberty phenotypes at the time of examination, and the resulting sample sizes and baseline 
characteristics are presented as median (p2.5 to p97.5). The earliest and latest occurrences of puberty onset in the dataset, defined by attainment of 4 mL 
orchidometer testicular volume (boys) or Tanner stage B2 (girls), were set as respective age limits for this stratification analysis. Abbreviations: E2, estradiol; 
FSH, follicle-stimulating hormone; LH, luteinizing hormone; PH, Tanner pubic hair stage; SDS, z-score measured in SD from the mean for age; US, 
ultrasound; y, years.
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4-androstenedione in girls. For girls exhibiting a regular men-
struation cycle in the Fit Futures cohort, we were able to par-
tition reference intervals by both menstrual cycle week and 
use of oral contraceptives, and for menarcheal patients we 
therefore recommend consulting the reference limits provided 
as supplemental information.

The clinical utility of anthropometric growth charts is inte-
gral in pediatric practice, and we propose that this statistical 
framework is also applicable to biomarkers in pediatric endo-
crinology. While nonparametric hormone references represent 
clinical cutoff values and primarily provide a qualitative indi-
cation as to whether the patient is within or outside the refer-
ence interval, LMS models enable quantitative benchmarking 
and longitudinal tracking of patients’ biomarker levels in 
terms of z-scores. This feature was recently leveraged to quan-
tify endocrine abnormalities in a pediatric cohort that were 
exposed to metformin in utero due to treatment of maternal 
polycystic ovary syndrome (22). Applying reference curves to 
monitor individual patients over time may also be useful for 

evaluating pediatric endocrinopathies, differences of sex de-
velopment, and general follow-up. In this respect, the steroid 
hormone 11-deoxycortisol is an integral biomarker of con-
genital adrenal hyperplasia due to 11-hydroxylase deficiency, 
and a general biomarker of virilization, hirsutism, and further 
used in other diagnostic contexts of suspected Cushing disease 
or adrenal insufficiency (48). We were unfortunately not able 
to quantify levels of dehydroepiandrosterone (DHEA) or 
DHEA sulfate (DHEAS) in the current study.

Biomarker z-scores are subject to the same considerations 
of biological (CVI) and analytical (CVA) variation as results 
denoted in absolute concentration units. The “critical dif-
ference” threshold obtained by calculating reference change 
value (RCV) by the classical formula [RCV = 21/2 × Z × 
(CVA

2 + CVI
2)1/2] defines whether or not a new sample result 

(eg, during longitudinal tracking) should be regarded as a sig-
nificant patient change. The “critical difference” obtained by 
multiplying the absolute value of the previous sample with 
the RCV percentage can be readily converted to equivalent 
z-scores using the LMS formula outlined in the “Methods” 
section.

By application of the current reference curves and calcula-
tion of multiple z-scores for each cohort participant, we were 
able to parameterize a quantitative profile of biochemical 
and anthropometric measures that may enable personalized 
medicine. The standardized correlations between biomarker 
and anthropometric z-scores in Fig. 3 are novel and mean-
ingful, because it is otherwise not feasible to obtain the ab-
solute unit correlation between 2 variables (eg, testicular 
volume measured in mL, and serum LH measured in IU/L) 
that are both confounded by age-dependent and nonlinear 
variation. Similarly, with regard to Table 2, the observed dif-
ferences in biomarker z-scores according to pubertal pheno-
types are not attributable to variation in age. Results from 
Table 2 show that boys and girls exhibiting pubarche without 

Figure 4.  Association between biomarker levels and weight class. Dimension reduction by principal component analysis (PCA) was applied to 17 
biomarkers and puberty status in terms of testicular volume or glandular tissue volume in 154 underweight (BMI-SDS ≤ −1.0) and 140 overweight (BMI-
SDS ≥ 1.0) boys and girls. Directional contribution of individual variables to dataset variance is shown in the biplot in relation to clusters for underweight 
(red dots) and overweight (blue dots) BMI weight classes. The 1.5 SD confidence ellipses define each weight class cluster in terms of the dataset 
variance.

Table 3.  Classification of BMI weight class by applying machine 
learning to the biomarker profile

  Reference

  Underweight Overweight 

Prediction Underweight 37 3

Overweight 1 32

Biomarker z-scores from 294 underweight (BMI z-score ≤ −1.0) and 
‘overweight’ (BMI z-score ≥ 1.0) children were included in the analysis, 
and the random forest decision tree classification model was trained using 
75% of the data prior to prediction of BMI weight class in the remaining 
25% unseen data shown in the current confusion matrix. Classification 
performance of the ML model exceeded that of any individual biomarkers 
of BMI weight class. A satisfactory measure of classification agreement was 
estimated for the ML model: Cohen’s kappa of 0.89 (95% CI, 0.74-0.89).

D
ow

nloaded from
 https://academ

ic.oup.com
/jcem

/advance-article/doi/10.1210/clinem
/dgac155/6550279 by SIR

U
S user on 20 M

ay 2022



10 The Journal of Clinical Endocrinology & Metabolism, 2022, Vol. XX, No. XX

testicular maturation or breast development had significantly 
lower LH-for-age compared to children with established pu-
bertal onset. Surprisingly, no significant differences in adrenal 
steroid hormones were observed between any of the groups. 
The gender-specific beta correlation matrices in Fig. 3 provide 
quantitative adjustments to be applied to patient endpoints 
during a clinical investigation. The standardized beta coef-
ficients featured in Fig. 3 warrant some further discussion. 
First, the association between weight class and early puberty 
timing is well established, particularly with respect to fe-
male development (2). The results in Fig. 3 provide a quan-
titative measure of the association between BMI and female 
glandular tissue volume (β = 0.5; P < 0.001). With regard to 
boys, we observed only a minor standardized association be-
tween BMI and male testicular volume (β = 0.2; P < 0.001). 
Irrespective of age and gender, BMI was negatively associated 
with SHBG (β = −0.4; P < 0.001). In clinical practice, the re-
sults shown in Fig. 3 can be used as follows: since a 1 SD 
increase in BMI z-score associates with a 0.4 decline in SHBG 
z-score, blood sample results of underweight or overweight 
persons can be calibrated according to the patient’s weight 
class. Conversely, weight class and adiposity may be regarded 
as significant covariates of SHBG levels in children. Our refer-
ence beta coefficient matrices should enable clinicians to im-
plement adjustments for gender, age, BMI, and other clinically 
relevant features when evaluating patient biomarker levels. 
We propose that applying such quantitative adjustments for 
key clinical covariates is an effective practice of personalized 
precision medicine in pediatric endocrinology.

Lastly, we visualized systemic differences in the biomarker 
profile according to BMI weight classes and demonstrated a 
use-case for leveraging the biomarker z-scores interpolated 
from the current reference curves in ML classification. This 
analysis sought to examine whether the endocrine profiles 
(comprising all biomarkers featured in Figs. 1 and 2, total 
cholesterol, HDL cholesterol, LDL cholesterol, and trigly-
cerides) associated with “overweight” and “underweight” 
BMI weight classes could be resolved by a machine learning 
model. Importantly, using normalized biomarker z-scores ad-
justed for age and gender, it was feasible to combine girls and 
boys of all ages in this analysis, whereas this would not be 
the case with biomarkers denoted in absolute concentration 
units. Notably, adiponectin and leptin are adipocyte-derived 
adipokines that modulate whole-body energy balance and 
exhibit profoundly dysfunctional signaling in obese and 
insulin resistant individuals (49). Peripheral insulin resist-
ance and hyperinsulinemia further dysregulate circulating 
cholesterol composition and hepatic synthesis of SHBG and 
IGF1 (50, 51). Results from the current PCA demonstrated 
that children with mild overweight (BMI z-score ≥ 1) ex-
hibit a materially altered biomarker profile compared with 
underweight (BMI z-score ≤ −1) peers. Moreover, the cor-
responding PCA biplot demonstrated that more advanced 
pubertal characteristics for age was a defining feature of 
overweight children. Supervised machine learning is an AI 
method to produce an inferred function from labeled data 
(eg, using several feature variables to explain a known pheno-
type dichotomy) in order to computerize classification of 
new cases. The current “random forest” classification model 
to infer BMI weight class by biomarker profile outperformed 
the predictive values of any individual biomarkers. Although 
the population samples in the current study included only 
healthy children, we propose that supervised training of such 

classification models may provide useful clinical tools to 
diagnose and manage pediatric diseases, unfavorable meta-
bolic profiles, and endocrinopathies.

In conclusion, the LMS framework was used to configure 
reference charts for 17 circulating biomarkers, by which pa-
tients may be benchmarked in terms of age- and sex-adjusted 
equivalent z-scores. Differential attainment of pubic hair and/
or gonadarche during the puberty onset age window was as-
sociated with distinct differences for both anthropometric 
and biomarker z-scores. Finally, we compiled a comprehen-
sive association map of clinical variables and demonstrate 
high-accuracy machine-aided classification of a clinical di-
chotomy only by evaluating the biomarker z-score profile.
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