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Advances in genomics and molecular biology have revealed an abundance of small open
reading frames (sORFs) across all types of transcripts. While these sORFs are often
assumed to be non-functional, many have been implicated in physiological functions and a
significant number of sORFs have been described in human diseases. Thus, sORFs may
represent a hidden repository of functional elements that could serve as therapeutic
targets. Unlike protein-coding genes, it is not necessarily the encoded peptide of an sORF
that enacts its function, sometimes simply the act of translating an sORF might have a
regulatory role. Indeed, the most studied sORFs are located in the 5′UTRs of coding
transcripts and can have a regulatory impact on the translation of the downstream protein-
coding sequence. However, sORFs have also been abundantly identified in non-coding
RNAs including lncRNAs, circular RNAs and ribosomal RNAs suggesting that sORFs may
be diverse in function. Of the many different experimental methods used to discover
sORFs, the most commonly used are ribosome profiling and mass spectrometry. These
can confirm interactions between transcripts and ribosomes and the production of a
peptide, respectively. Extensions to ribosome profiling, which also capture scanning
ribosomes, have further made it possible to see how sORFs impact the translation
initiation of mRNAs. While high-throughput techniques have made the identification of
sORFs less difficult, defining their function, if any, is typically more challenging. Together,
the abundance and potential function of many of these sORFs argues for the necessity of
including sORFs in gene annotations and systematically characterizing these to
understand their potential functional roles. In this review, we will focus on the high-
throughput methods used in the detection and characterization of sORFs and discuss
techniques for validation and functional characterization.
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INTRODUCTION

An open reading frame (ORF) is defined as a start codon followed by a downstream in-frame stop
codon. ORFs occur randomly and abundantly across the whole genome. Of these, only a fraction
make their way into transcripts and only some of these end up being translated. Eukaryotic
messenger RNAs predominantly have a single main ORF that make up its protein-coding
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sequence (CDS). The CDS is typically the longest ORF in the
mRNA, but many other shorter ORFs are also often present in the
transcript, some with the potential to be translated. Genome-wide
studies have revealed the existence of many of these small ORFs
(sORFs) in a wide variety of transcripts, including presumed non-
coding transcripts, and that several of these are in fact translated.

The most common definition of an sORF is simply an ORF of
less than 100 amino acids (aa). These sORFs can be located within
coding transcripts (5′UTR, CDS or 3′UTR) or even within non-
coding RNAs such as long noncoding RNAs (lncRNAs), circular
RNAs, and mitochondrial RNAs (Figure 1) (Orr et al., 2020).
While some sORFs initiate with the canonical start codon (AUG), a
significant number also initiate at near-cognate codons, differing
by one nucleotide from AUG (Kearse and Wilusz, 2017). Of these,
CUG, GUG, UUG and ACG appear to be the most frequent non-
canonical translation initiation site in eukaryotes (Ivanov et al.,
2011; Kearse andWilusz, 2017; Cao and Slavoff, 2020). Translation
termination sites typically use the conventional stop codons (UAA,
UGA, and UAG), but studies have shown that sORFs can
occasionally make use of unconventional termination (Cridge
et al., 2018). Due to their small size and high abundance in
most genomes (millions of sORF in eukaryotic genomes as
reviewed in Couso and Patraquim, 2017), sORFs are often
excluded from annotations in high-throughput analyses (Couso
and Patraquim, 2017). In gene annotation pipelines, length cut-offs
have traditionally been in common use (e.g., 100 aa) and anything
below this threshold is typically considered to be non-functional.

Although it is challenging to characterize sORFs and to
determine their potential functional role, several studies have
now demonstrated the importance of sORFs in different cellular
mechanisms (Zacharias et al., 2012; Zhang et al., 2018; Qin et al.,
2018; Zheng et al., 2019b) and in the regulation of CDS
translation (Calvo et al., 2009; van Heesch et al., 2019). While

many of these sORFs function through their interaction with the
ribosome and the resulting regulatory effect this enacts, some
sORFs can also encode functional peptides. Several studies have
identified sORF encoded peptides (SEP) demonstrating that
many sORFs can indeed produce a peptide product. For
instance, Ma et al. (2014) discovered 195 new SEPs in K562
human cells with only 29% starting with an AUG, the remaining
having non-canonical start codons. Further examples of SEPs and
their function is discussed in the last section of this review. Briefly,
one can divide sORFs into different categories depending on their
characteristics and the available evidence: 1) non-translated
sORFs or those with no evidence of translation, simply
defined from the genomic sequence (Young et al., 2015) 2)
sORFs that are translated, possibly resulting in SEPs (van
Heesch et al., 2019; Loughran et al., 2020) 3) sORFs and/or
SEPs with a known function (Zacharias et al., 2012; Zhang et al.,
2018; Qin et al., 2018; Zheng et al., 2019b; Cloutier et al., 2020).
Taken together, this reflects a diversity of sORFs in both healthy
and disease conditions and argues for a need to characterize them.
The identification of sORFs and the determination of their
translational status and functional role are of prime
importance and their discovery is likely to reveal many new
molecular players involved in regulatory mechanisms. In the
following section, we will discuss the characteristics of sORFs
and their location in the transcriptome.

SMALL ORFS ARE ABUNDANT IN 59UTRS

The most highly studied sORFs are those found in the 5′UTRs of
coding transcripts. These are referred to as upstream ORFs
(upORF) as they are located completely or partially upstream
of the main coding sequence (CDS). Depending on the location of

FIGURE 1 | Examples of small ORFs in coding (A) and non-coding (B) transcripts. Start and Stop indicate the initiation and termination sites of the coding sequence
(CDS). uORF, upstream open reading frame fully located in the 5′UTR; uStart, upstream start site; uStop, upstream stop site; uoORF, upstream overlapping open
reading frame; intStart, internal start site; intORF, internal open reading frame; intStop, internal stop site; dStart, downstream Start site; dStop, downstream stop site;
sORF, small open reading frame; lncRNA, long non-coding RNA; circRNA, circular RNA.

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 7960602

Kute et al. Highlights of Methods to Identify and Characterise sORFs

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


the stop codon one can further distinguish upORFs into those
that are (Figure 1): 1) completely upstream (uORF), where the
sORF terminate before the CDS and 2) upstream overlapping
(uoORF), where the sORF starts upstream, but extends out-of-
frame into the CDS. Approximately, half of the human coding
transcripts naturally contain upORFs (Calvo et al., 2009; Ye et al.,
2015) and it is now evident that many of these affect the
expression of the main protein (Calvo et al., 2009).

When ribosomes encounter upORF, several outcomes are
possible (Hinnebusch et al., 2016; Silva et al., 2019). Most
commonly, upORFs inhibit translation of the canonical
protein by preventing some or all scanning ribosomes from
reaching the CDS. This can be accomplished through
numerous mechanisms such as ribosome dissociation (Grant
and Hinnebusch, 1994), ribosome stalling (Law et al., 2001),
RNA degradation through nonsense-mediated decay (Mendell
et al., 2004), induction of ribosomes stalling and/or dissociation
by the upORF peptide (Young et al., 2015) or by extending into
the CDS and thereby preventing initiation (Lu et al., 2004).
upORFs do not, however, always affect the translation of the
canonical CDS. If the initiation context of the upORF is not
optimal, the scanning ribosomes can potentially ignore the start
codon of the upORF and continue to the CDS in a process known
as “leaky scanning” (Palam et al., 2011). In the uORF case, with a
stop codon upstream of the CDS, some ribosomes can also
resume their scanning after translating the uORF and
reinitiate at the CDS (Pöyry et al., 2004; Young et al., 2015).
Which fate the ribosomes choose to depend on the features of the
upORF and the transcript (Table 1), including the distance
between the 5′cap and the upORF (Chappell et al., 2006), the
strength of the upORF initiation sequence (Giess et al., 2020), and
the strength of the upORF termination sequence (Giess et al.,
2020; Wagner et al., 2020), the length of the upORF, the number
of upORFs in the 5′UTR, and stable secondary structures located
in the transcript (Wethmar, 2014). For instance, it has been
shown that many transcripts with longer 5′UTRs are associated
with a significant decrease of the main protein levels due to the
presence of a high number of upORFs in the 5′UTR (Araujo et al.,
2012; Giess et al., 2020).

Recent studies have described the translation of small upORFs
as a common event that can be initiated at both AUG and non-

AUG codons (Slavoff et al., 2013; Rodriguez et al., 2019). Using a
spectral coherence algorithm (SPECtre), Rodriguez and
collaborators found that 4,954 upORFs are translated across
31% of all neuroblastoma transcripts, predominantly by using
non-canonical start codons (Rodriguez et al., 2019). The resulting
peptides can act as cis- regulating factors on the translation of the
CDS. As an example, the SEP translated from an upORF in the
5′UTR of GADD34 represses the translation of the CDS through
induced ribosomal release mediated by a conserved 3 amino acid
sequence at the C-terminal of this peptide (Young et al., 2015).

SORFS OUTSIDE OF 59UTRS

Apart from upORFs, short out-of-frame ORFs located within the
CDS (intORF, for internal out-of-frame ORF) and downstream
ORF (dORF) located within the 3′UTR have also been identified in
human coding transcripts (Couso and Patraquim, 2017; Wu et al.,
2020). While these appear to be less abundant, they should not be
ignored as some have been shown to have a regulatory function
(Couso and Patraquim, 2017; Wu et al., 2020). For example, a
dORF was recently shown to act as a translation enhancer of the
CDS (Wu et al., 2020). By using a reporter assay in human cells, the
authors showed a decrease in the expression of the CDS when
inhibiting the translation of the dORF through mutating its start
codon. This demonstrated a link between the translation of the
dORF and an enhancing effect on the translation of the CDS.

Even though non-coding RNAs (ncRNAs) are defined by their
lack of protein-coding potential, it is becoming increasingly clear
that many of these contain sORFs that are recognized by
ribosomes and result in the generation of SEPs (Ruiz-Orera
et al., 2014). Such sORFs have now been found in most classes
of ncRNAs, including lncRNA, circular RNAs, and ribosomal
RNAs (Pang et al., 2018). While the evidence for translation for
many of these is quite clear, we still do not know to what extent
these sORFs are functional. Across ncRNAs, sORFs seem to be
more frequent in lncRNA than in other non-coding RNA (Couso
and Patraquim, 2017), likely due to their, on average, longer
length. Encoded peptides from ncRNAs and their biological
functions have been recently summarized in the review of
Zheng et al. (2019a).

TABLE 1 | Transcript features defining the regulatory role of upORF. upORF, upstream open reading frame; uORF, fully upstream ORF; uoORF, overlapping upORF.

Feature Comment(s) Reference(s)

Secondary structures Hairpin structures can function as inhibitors of translation initiation Kozak, (1989)

The Kozak consensus
sequence

Initially, the optimal Kozak sequence to initiate the translation was defined by a purine (R)
at position -3 and a G in position +4 surrounding the translation initiation site
(GCCRCCAUGG). However, recent Ribo-seq studies have shown that the optimal
Kozak sequence could be different from the initially defined one, as shown in zebrafish
by Giess et al., 2020

(Kozak, 1987; Giess et al., 2020)

Positioning of upORFs within
the 5′UTR

overlapping upORFs are more often associated with repression of the main protein
levels than non-overlapping upORF

Calvo et al. (2009)

Number of upORF More upORF generally leads to more translational repression Johnstone et al. (2016)

Length of upORF Longer upORF is correlated with greater translational repression Rajkowitsch et al. (2004)

Termination context of the
upORF

The nucleotide context surrounding the uORF stop codon can affect translation
reinitiation

(Hinnebusch et al., 2016; Giess et al., 2020;
Wagner et al., 2020)
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FIGURE 2 | Overview of the commonly used techniques to identify and characterize sORFs and their encoded peptides. Novel sORFs and their products can be
detected by the prediction algorithms using bioinformatic approaches, by generating peptide databases using improvedmass spectrometry-based assays and by using
ribosome profiling and related sequencing techniques to obtain translationally active transcripts. The predicted SEPs can be validated by various assays such as
reporter-based overexpression, epitope tagging etc. Loss of function assays could be done to assess the cellular function of these SEPs.

FIGURE 3 | Profiling and sequencing of translating transcripts. A254 profiles shown before (A) and after digestion with ribonucleases (B,C). The fractions used for
further processing are highlighted, polysomes in purple, 80S in orange and 40S in green. (D) The process of library preparation for next generation sequencing. Size
selection of ∼30 nt is done for ribosome profiling and ribosome complex profiling sequencing and libraries are prepared from the size selected small RNAs, whereas for
polysome profiling, libraries are prepared from total RNA. Meta-coverage shown for reads obtained from polysome profiling sequencing (E), for ribosome profiling
(F) and for ribosome complex profiling [(G) top: 40S, bottom: 80S].
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In the following sections, we will discuss the various
experimental and computational methods used to detect and
identify sORFs, techniques for validation (summarized in
Figure 2) and characterization and finally give some examples
of functional sORFs.

DISCOVERING SORFS THROUGH
RIBOSOME PROFILING

Although RNA-sequencing and mass spectrometric analysis
quantify the abundance of RNA and proteins respectively, they
do not provide information about the translational process itself.
Among the many techniques used to monitor protein synthesis
directly (Chekulaeva and Landthaler, 2016; Dermit et al., 2017),
polysome profiling has played a key role in studying the
perturbation of translation at the global level (Chassé et al.,
2017). Although it is possible to combine transcriptomics and
polysome profiling to perform global mRNA sequencing of
polysomal fractions, this provides information only about the
relative levels of transcripts (Figures 3A,E) across polysomes, not
the positional information.

Ribosome footprinting is a classic biochemical assay where
cellular mRNAs are digested with nucleases to selectively degrade
RNA not protected by interaction with ribosomes and retain
RNA fragments bound by ribosomes (Takanami et al., 1965;
Steitz, 1969; Wolin and Walter, 1988). These ribosome-protected
fragments (RPFs) are approximately 30 nucleotides in length and
are obtained after nuclease digestion from the 80S fraction
(Figure 3B). These RPFs can be converted into small DNA
libraries which are then subjected to deep sequencing
(Figure 3D). This technique of sequencing RPFs is called
ribosome profiling or ribo-seq (Ingolia et al., 2009) and the
reads obtained from such sequencing can be aligned back to
the transcriptome providing a landscape of ribosomal occupancy
across the whole transcriptome (Figure 3F). These reads provide
both positional information such as where does translation take
place and quantitative information such as how much is this
region occupied by ribosomes. By normalizing these reads to the
RNA abundance of the transcript they occupy, the translation
efficiency of transcripts can also be estimated. Besides being an
unprecedented tool for monitoring global translation, ribosome
profiling has also shed light on the pervasive translation occurring
outside of the annotated proteins. In the following sections, we
will highlight studies that attempted to discover novel sORFs
across the transcriptome using ribosome profiling and discuss
extensions to this assay.

Insights From Ribosome Profiling Studies
on the Discovery of Novel sORFs
In the pioneering work introducing ribosome profiling, Ingolia et al.
(2009) identified 1,048 putative upORF candidates initiating with
the canonical AUG start codon, of which 153 candidates showed
evidence of translation in S. cerevisiae (yeast). By further probing the
5′UTRs for non-AUG codons with strong initiation context and 28
nucleotide oligomer footprint alignment downstream of the

initiation context, the authors found an additional 143 upORFs
with evidence of translation. These included genes previously
shown to harbor uORFs such as tRNA synthetases GRS1 and
ALA1 in yeast (Ingolia et al., 2009). With the help of ribosome
profiling, the authors were also able to decipher the role of the four
known upORFs of GCN4 in regulating the translation of the CDS
on nutrient availability. While the upORFs are translated, the
translation of the CDS of the GCN4 transcript is inhibited
during the log phase of growth, but during starvation, the
upORFs are bypassed by the ribosomes and the CDS gets
translated. Such detailed information about the choice of ORF
translated in a single transcript is a good example of the many
insights that can be uncovered using ribosome profiling.

Ribosome profiling has not only been used to visualize the
distribution of ribosomes on coding transcripts, but also on non-
coding transcripts. In an early study, Chew et al. (2013) produced
ribosome profiling from early developmental stages in zebrafish
and showed that the ribosome profiles of many lncRNAs were
engaged with translating ribosomes. This work implied that many
ORFs in lncRNAs are translated and could potentially either be
novel genes or play a role in the localization/stability of the
transcripts. A follow-up study showed that one of the annotated
lncRNAs contained an ORF coding for a 58 aa long conserved
peptide (Pauli et al., 2014) called Toddler. The translation
product of this ORF was validated by mass spectrometric
analysis and expression through GFP fusion constructs and
functionally characterized revealing an important
developmental regulator. Another study from the Pauli group
using the same ribosome profiling dataset discovered yet another
novel conserved peptide in a presumed non-coding transcript
(Herberg et al., 2018). This peptide, called Bouncer, was shown to
play a crucial role in preserving species-specific fertilization. The
discovery of multiple uncharacterized novel genes encoded by
sORFs from a single dataset illustrated the power of ribosome
profiling in detecting novel translated regions. Later studies
expanded on these discoveries and also made use of
compounds to obtain specific subsets of ribosomes (Ingolia
et al., 2011; Lee et al., 2012; Gao et al., 2015).

Initiation Blockers Combined With
Ribosome Profiling Identify Translation
Initiation Sites
The most significant challenge when searching for novel sORFs is
their size. Where canonical proteins often span thousands of
nucleotides and can contain many RPFs, the RPFs mapping to
sORFs are often scarce. Combined with noise from RNA
structure and other RNA binding proteins which may generate
protected fragments, this paucity can lead to difficulty in
detecting high confidence sORFs. The majority of 5′UTRs also
often contain many putative overlapping ORFs in all three
reading frames making it difficult to assign an RPF to a
specific upORF in order to determine which upORF, if any,
are translated. Also, in cases where a single upORF have more
than one potential start codon, the available RPFs are not always
sufficient to determine which of these start codons is in fact the
correct one or indeed if more than one is used.
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To increase accuracy in determining initiation sites, and
thereby gain more confidence in which upORFs are used,
several studies have made use of initiation blockers that halt
ribosomes at start codons and accumulate RPFs at these sites.
This approach is especially helpful for sORF detection, where it is
difficult to get good RPF coverage across the ORF due to their
diminutive length. As one of the first high-throughput studies in
the mammalian system, Ingolia et al. (2011) used mouse
embryonic stem cells (mESCs) to perform ribosome profiling
in the presence of harringtonine. Harringtonine binds to the free
60S subunit and blocks the formation of the bond between the
initiator t-RNA to the A-site but allows the elongation to occur
(Fresno et al., 1977). With the help of support vector machine
(SVM)-based machine learning on a set of annotated genes, the
authors identified features of RPFs that distinguished start codons
from other sites. When applying this model to around ∼5,000
mouse transcripts, the model predicted that 65% of transcripts
possessed more than one initiation site with 16% having four or
more start sites. The authors also reported the presence of
initiation sites at ORFs in most long intergenic non-coding
RNAs (lincRNAs) and at upORFs in ∼68% of the
5,000 protein-coding annotated transcripts. Like previously
observed in yeast (Ingolia et al., 2009), many of these sites
were near-cognate and the authors further commented that
since several non-AUG initiation events are resistant to
harringtonine this could be an underestimate. Further analysis
of the harringtonine-treated dataset showed that annotated start
codons in protein-coding genes and randomly chosen
harringtonine-predicted start codons in classical noncoding
RNAs could not be distinguished (Guttman et al., 2013)
suggesting that initiation blockers can be an important tool in
identifying sORF start codons.

Other studies have refined this approach. Lee et al., 2012
attempted a more comprehensive mapping methodology by also
using the initiation blocker lactimidomycin and comparing the
translation initiation sites identified from this with those from
harringtonine in HEK293 cells. Unlike harringtonine,
lactimidomycin blocks the empty E-site of the 60S effectively
blocking 80S elongation (Schneider-Poetsch et al., 2010). This
technique was named global translation initiation (GTI)-
sequencing (Lee et al., 2012) and was used to detect upstream
initiation site in 54% of the transcripts studied, including that of
the uORFs present in the gene ATF4 (Lee et al., 2012), a
prominent model gene for uORF regulation (Lu et al., 2004).
By comparing the RPF patterns around annotated start codons in
lactimidomycin and harringtonine, the authors concluded that
harringtonine treatment led to the accumulation of ribosomes
downstream of the start codon and therefore did not accurately
predict the initiation site. While an improvement on the protocol
exclusively using harringtonine, GTI-seq did not perform
optimally in all cases. In perturbation experiments with serum
starvation, it was found that GTI-seq obtained poor correlation (r
� 0.069) between the RPFs over the lactimidomycin-identified
start codons and the overall ribosome occupancy in the coding
region (CDS). To overcome this shortcoming and obtain a better
quantification of start codon use, lactimidomycin was combined
with puromycin treatment which depletes elongating ribosomes

(Fritsch et al., 2012). This new technique was named quantitative
translation initiation (QTI) sequencing (Gao et al., 2015) and was
applied to study the translational response to serum starvation in
both HEK293 and mouse embryonic fibroblasts (MEFs) showing
a marked improvement on the correlation obtained by GTI-seq (r
� 0.375).

Other research based on the use of translation inhibitors have
explored the side-effects of these inhibitors (Gerashchenko and
Gladyshev, 2014; Kearse et al., 2019; Eisenberg et al., 2020; Enam
et al., 2020). Thus, the use of these inhibitors requires careful
optimization in terms of concentration, time of incubation and
the system in consideration. Overall, however, the information
obtained through translation initiation site mapping combined
with RPFs obtained from ribosome profiling could be a valuable
tool in mapping novel sORFs.

Profiling of Small Ribosomal Subunits can
Reveal sORF-Mediated Regulation
While ribosome profiling, both in its regular form and in the
presence of initiation blockers provide information about the 80S
elongating ribosomes, it only provides limited insight into the
steps preceding or following translation elongation. Specifically, it
does not capture intermediate ribosome complexes such as the
pre-initiation complex, terminating and recycling ribosomal
complexes. As upORFs can regulate the translation of CDS by
inhibiting the ribosomes on their path to the start codon,
obtaining global profiling of the scanning pre-initiation
complex could provide in-depth analysis into the mechanism
of translation regulation by upORFs.

A method for global profiling of scanning small subunits
(SSUs) was developed by Archer et al., in 2016 and applied in
yeast (Archer et al., 2016). By modifying ribosome profiling and
separating the SSU from the 80S ribosomes post RNase1 digestion
using sucrose density gradient, the authors were the first to map
the SSU-bound mRNA footprints in a transcriptome-wide
manner. This methodology was termed as translation complex
profiling (TCP)- seq and provided global mapping of scanning
complexes. These SSU footprints were abundant in the 5′UTRs,
enriched around the start codons of transcripts and absent in the
3′UTRs. The original TCP-seq protocol only considered SSUs
that were scanning on mRNAs that also contained an 80S
elongating ribosome. A later study aiming to capture all SSUs,
instead used the whole fraction of SSUwithout prior separation of
free vs. 80S-bound in a method they called ribosome complex
profiling (RCP-seq) (Giess et al., 2020) (Figure 3C). This study
addressed the role of upORFs in regulating protein synthesis by
measuring how many SSUs were “consumed” by the upORFs on
their way to the CDS (Figure 3G). On an average, the SSU
footprints density declined minimally across 5′UTRs except in
the presence of an upORF, which also showed a concomitant
increase of 80S footprints. The SSU loss was the highest for the
upORFs starting with an AUG codon, but the study also
demonstrated that the type of stop codon present in the
upORF impacts the ability to reinitiate at the downstream
CDS. For upORFs that contained a TGA stop codon, the least
efficient, a higher rate of downstream translation could be
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observed and a lower rate of scanning indicating extended
translation products. Together, this demonstrated that
transcriptome-wide profiling of both 80S and SSUs can
provide useful insights into sORF regulation and function.

Selective Ribosome Profiling can Decipher
the Function of Individual Factors
Recent studies have adapted TCP-seq to target selected initiation
factors in a technique called selective-TCP-seq (sel-TCP-seq)
(Bohlen et al., 2020; Wagner et al., 2020). By
immunoprecipitation with antibodies against several of the
translation initiation factors (eIF2S1, eIF3A, eIF3B, eIF4E, and
eIF4G1) from the SSU and 80S fractions, the authors attempted to
decipher the role of these factors in the scanning and initiation
mechanism of the SSU and their role in re-initiation of translation
for the CDS. Bohlen et al. (2020) showed that similar to the SSU at
the start codon of the CDS, the SSU on the start codons of the
translated upORFs have eIF3B, eIF4G1, and eIF4E, thus providing
more insights into the translation of upORFs. Parallel studies trying
to decipher the mechanism of upORF translation and translation
re-initiation of CDS have revealed some of the molecular players
participating in upORF translation such as the RNA helicase
DDX3 and the re-initiation factors DENR and MCTS1
(Schleich et al., 2014; Schleich et al., 2017; Chen et al., 2018).
Sendoel et al. (2017) showed that tumour initiation led to
unconventional 5′UTR-mediated translation which is aided by
the initiation factor eIF2A. Ribosome profiling studies from the
malignant tissue showed the presence of footprints in the upORFs
which coded for peptides. 13 of these upORF products were
validated by mass spectrometry using the terminal amine
isotopic labelling of substrates (TAILS) approach. Such
knowledge of factors involved in upORF translation could be
used to perform sel-TCP-seq for the factors of interest. Sel-
TCP-seq could be used to pull down initiation factors such as
eIF2A, DENR or MCTS1 that are involved in the translation of
sORF to enumerate the sORFs present in human cells and to
elucidate the mechanistic details of translation of such sORFs.

Complementary Approaches to Ribosome
Profiling
While ribosome profiling and its variants have provided a deeper
understanding of the coding potential of the genome, these
techniques are not without shortcomings. Ribosomal
occupancy over a particular transcript does not necessarily
imply true coding ability and the production of proteins.
Ribosomes can be associated with the transcripts in a non-
productive manner or ribosome association may have a
regulatory role (Wilson and Masel, 2011; Johnstone et al.,
2016). Additionally, RNA contaminants arising from
structured non-coding RNAs or large ribonucleoprotein
complexes co-precipitated with ribosomes may give false
readouts of translation (Ingolia et al., 2014). To minimize
noise from such interactions and discern true translation
events, various approaches, both computational (discussed in a
later section) and experimental, have been developed.

To address the issue of spurious, non-productive binding of
ribosomes, several studies have made use of a more classical
approach, polysome profiling (Aspden et al., 2014; Yang et al.,
2018; Ye et al., 2021). In this approach, mRNAs are separated
based on the number of ribosomes bound to them. Polysome-
associated mRNAs, which are likely to be productively translated,
can then be subjected to RNA-sequencing providing an estimate
of their translation status (King and Gerber, 2016). Although
mRNAs bound by multiple ribosomes and representing bonafide
translation can be identified in this way, such datasets lack the
positional information provided by ribosome profiling. Taking
inspiration from ribosome profiling, Aspden et al. (2014)
therefore, carried out nuclease digestion of the polysome
fractions, in a technique they called Poly-Ribo-seq. This
method was used to identify the translation of thousands of
sORFs in drosophila S2 cells, which the authors categorized as
long ORFs (∼80 amino acids) and dwarf ORFs (∼20 amino acids).

To deplete RNA contaminants originating from RNP
complexes, Ingolia et al. (2014) introduced a variant of
selective ribosome profiling using affinity purification of
tagged ribosomes. Here the large subunit ribosomal protein L1
(formerly L10) was biotinylated in vivo in HEK 293 cells, and the
ribosomes were purified by streptavidin pulldown. RPFs obtained
from such affinity purification were deprived of the classical non-
coding RNAs such as RNase P, which are known contaminants in
conventional ribosome profiling datasets. Affinity purified
profiling samples also lacked mitochondrial coding sequences
since mitochondrial ribosomes lacked the biotin tag. Other
studies have used enhanced GFP tagged ribosomal protein
(RPL10a or RPL22) expressed in a cell-type specific manner
that allows for monitoring cell type- or tissue-specific
translation (Heiman et al., 2008), also known as translating
ribosome affinity purification (TRAP-seq). By isolating
ribosomes using anti-EGFP antibody-coated beads and using
RNase digestion, the protocol was able to obtain cell- or tissue
-type specific RPFs (Sapkota et al., 2019) which the authors
termed as translating ribosome affinity purification-ribosome
footprinting (TRAP-RF). Such additional tools and techniques
can complement ribosome profiling and help identify novel
sORFs and discern the true coding potential of non-coding
transcripts.

VALIDATION OF SEPS BY MASS
SPECTROMETRY TECHNOLOGIES

While ribosome profiling-based approaches can reveal
associations between ribosomes and RNA, another
complementary approach to detecting translated sORFs is
identifying the peptides resulting from their translation, the
SEPs. While it is reasonable to expect a translated sORF to
result in a SEP, due to the lack of conservation of sORFs, it is
generally assumed that most of these SEPs are not functional.
Furthermore, even if they are produced, many SEPs may be
rapidly degraded. For individual SEPs, the use of overexpression
constructs with reporter tags and fluorescence and epitope-based
assays (discussed later) can be used to validate candidates.
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However, for large scale detection of SEPs, mass spectrometry
(MS)-based techniques have been crucial. The recent
developments in the MS field to accurately detect and validate
SEPs have been well summarized in a recent review (Fabre et al.,
2021). In the following section, we will discuss a few studies that
have optimized MS to search for SEPs in human cells.

Conventional mass spectrometric based assays are not
optimized to detect small peptides, as these small peptides
may be degraded by peptidases, their levels may be masked by
degraded products of other proteins, or they could remain
undetected due to their low abundance. There are several
approaches used to circumvent the problem of degradation of
small peptides: alternative lysis methods such as boiling in hot
water or trichloro acetic acid (TCA) and precipitation of proteins
to denature endogenous peptidases (Slavoff et al., 2013; Wang
et al., 2020). SEPs can then be enriched by size selection using
ultrafiltration or by SDS PAGE separation for low molecular
weight bands (Sapkota et al., 2019; Tharakan et al., 2020; Wang
et al., 2020). Finally, instead of using trypsin to digest the
peptides, other enzymes such as lys C were shown to increase
the fraction of SEPs identified (Bartel et al., 2020). In addition, to
better identify small peptides and avoid their degradation,
peptidomics approaches inhibiting proteolysis that reduces the
complexity of the proteome and using electrostatic repulsion
hydrophilic interaction chromatography to separate peptides
prior to HPLC- MS/MS has been used to identify novel SEPs
(Slavoff et al., 2013).

In order to identify SEPs, mass spectrometry is often
combined with RNA-seq techniques or ribosome-profiling to
first annotate potential sORFs based on the nucleotide sequence
and RPFs. For instance, several studies have utilized the published
ribosome profiling datasets to search for SEPs and validate them
by mass spectrometry. These studies have been summarized in
Table 2. Interestingly, of the studies mentioned in the table, the
micropeptide Nobody was successfully captured in both human
and mouse systems (D’Lima et al., 2017; Budamgunta et al., 2018;
Tharakan et al., 2020). Of note is a recent study in human iPSCs
where Chen et al. (2020) combined ribosome profiling, the ORF-
RATER algorithm, and MS-based proteomics to identify
functional ORFs in different human cell types. Human
leukocyte antigen class I (HLA-I) peptidomics approach was

used to identify 240 novel peptides, some of which were
validated to be lncRNA derived SEPs (ranging from size
55–124 aa) and upORF derived SEPs (ranging from size 15–70
aa). HLA-I based peptidomics has been successfully applied in
other systems to identify SEPs, especially in tumour cells, thus
implying that SEPs can be a source of antigens presented by
T-cells (Bassani-Sternberg et al., 2015; Chong et al., 2020;
Martinez et al., 2020). Oyama and others in their search for
SEPs generated their own protein database through the 6-way
translation of annotated RNA sequences to uncover non-
annotated coding sequences in human cells. This approach of
finding coding regions in the entirety of the RNA sequences led to
the discovery of 54 SEPs out of which four were novel peptides in
the human leukaemia K562 cell line (Oyama et al., 2004; Oyama
et al., 2007). Additionally, by improving the SEP isolation and
identification protocol, three studies from Table 2 have identified
a total of 274 novel peptides (Slavoff et al., 2013; Ma et al., 2014;
Ma et al., 2016) from human cell lines.

To optimize the identification of SEPs, the acquisition
parameters can also be improved. Usually, data dependent
acquisition (DDA) is the method of choice where tryptic
peptides of top mass intensities in MS1 are chosen to be
further fragmented in MS2. A study combined DDA MS
analysis and optimized enrichment and extraction methods, to
identify more than 100 SEPs in human cell lines (Ma et al., 2016).
In contrast, data independent acquisition (DIA), in an
advantageous manner selects a whole mass range for further
fragmentation, increasing the chances to detect a single peptide.
While this provides data with high coverage and precision this
large dataset is highly convoluted and requires specialized data
analysis (Bruderer et al., 2017; Fabre et al., 2017). Trapped ion
mobility spectrometry (TIMS) using a time of flight (TOF)
analyzer is another acquisition method, where the ionized
molecules are separated in a gas phase. TIMS-TOF enhances
peptide coverage and identification by resolving more ions,
specifically isomers but with reduced chemical noise
(Garabedian et al., 2018). Some of the features of both DIA
and TIMS-TOF are promising in the quest of discovering low
abundant small peptides.

Importantly, mass spectrometry can also be used to
understand the interactome of SEPs, thereby opening avenues

TABLE 2 | Studies detecting SEPs through transcriptomic and/or mass spectrometry techniques.

Species Technique Number
of SEPs discovered

Reference

Human MS of HLA-I complexes 240 Chen et al. (2020)
Human MS of HLA-I complexes and Ribo-seq >500 Chong et al. (2020)
Human MS of HLA-I complexes and Ribo-seq 320 Martinez et al. (2020)
Human MS 1 D’Lima et al. (2017)
Human MS and RNA-seq >100 Ma et al. (2016)
Human MS and RNA-seq 311 Ma et al. (2014)
Human MS and RNA-seq 90 Slavoff et al. (2013)
Human MS 197 Oyama et al. (2007)
Mouse Ribo-seq and MS 1 Tharakan et al. (2020)
Mouse MS 4 Budamgunta et al. (2018)
Zebrafish Ribo-seq and MS 1 Pauli et al. (2014)
Zebrafish Ribo-seq and MS 1 Herberg et al. (2018)
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to the biological functions of SEPs. Further advances in the
successful extraction of the small protein fractions and mass
spectrometric detection undoubtedly will have a large impact on
the field of protein function in general and in the context of
human diseases.

COMPUTATIONAL APPROACHES
COMPLEMENTING SEQUENCING
TECHNIQUES IN THE SEARCH FOR SORFS
Classical gene prediction algorithms make use of numerous
features common to the majority of genes, such as promoter
sequences, polyadenylation signals, AUG start codons, codon bias
and sequence conservation. Traditionally, however, these gene
annotation pipelines have typically excluded ORFs shorter than
300 nucleotides since the lack of statistical power canmake it hard
to classify such short ORFs based purely on sequence (Frith et al.,
2006). While pipelines for genome annotations are rapidly
improving, in particular, due to the extensive sequencing of
numerous genomes that can be used for comparative analyses,
sORFs face many of the same problems that short genes have
faced previously. sORF prediction is further complicated by the
comparative lack of consensus features. For instance, many
sORFs have non-AUG as start codons and have little to no
sequence conservation (Ingolia et al., 2011; Lee et al., 2012), so
searching for novel peptides is difficult using the standard
features derived from protein-coding CDSs. Still, recent
developments in computational approaches to predict sORFs
have relied on gene-prediction methods such as detecting
conservation of the sORF by comparison to other species,
quantifying sORF codon bias and coding potential, and
analyzing transcriptomic or proteomic datasets to identify
sORFs that show evidence of translation. We will highlight
some of the pipelines used to obtain predictions of sORFs and
specifically focus on the algorithms going beyond sequence and
using ribosome profiling to identify sORFs.

While most protein coding genes can easily be detected simply
due to the unlikelihood of observing very long ORFs by random
chance, functional sORFs are hidden in a genomes containing
millions of similarly sized non-functional sORFs. Therefore,
many methods exist to assess the conservation and coding
potential of ORFs. An early tool was Coding Region
Identification Tool Invoking Comparative Analysis
(CRITICA), which analyzed synonymous and non-
synonymous substitutions to predict proteins in the FANTOM
collection of mouse cDNAs (Frith et al., 2006). Another
computational tool called coding potential calculator (CPC)
(Kong et al., 2007) defined six sequence features to distinguish
non-coding from coding transcripts with the help of a support
vector machine classifier. These features were calculated for the
longest reading frame of a transcript and included determining its
coverage (length relative to transcript length) and the extent of
homologous protein sequences in other organisms. A later tool,
PhyloCSF (Lin et al., 2011), featured a more direct conservation
assessment quantifying the extent of synonymous to non-
synonymous mutations based on sequence alignments. This

method was shown to outperform other similar methods such
as CSF (codon substitution frequencies) metric, PAML
parameters, etc. and identified unknown SEPs. Finally, sORF
finder (Hanada et al., 2010) is a bioinformatic package that uses
nucleotide composition similarity to that of bonafide coding
genes to identify sORFs. These potential sORFs are further
tested for sequence conservation to assess their functional
potential. While sequence-based predictors can be useful,
additional accuracy can be achieved by combining these with
information from ribosome profiling. For instance, one study
used PhastCons, which can predict conserved elements from
multiple sequence alignment (Siepel et al., 2005), together with
ribosome profiling data available from mouse cell lines (Crappé
et al., 2013) to gain more confidence in assigning a functional role
to sORFs. However, more recent tools feature direct integration of
ribosome profiling data in prediction pipelines. These ribosome
profiling based tools can be broadly separated into two main
groups: The first uses a variety of features of novel ORFs and
compares these to known coding regions while the second is
primarily oriented around finding periodicity in the ribosome
profiling data caused by ribosome translocation.

One of the earliest examples of a ribosome profiling based
ORF predictor is the translated ORF classifier (TOC) (Chew et al.,
2013). This belongs to the first group of classifiers defining
features based on patterns of ribosome footprints and using
these to distinguish canonical annotated ORFs from those
present in the UTRs. The authors defined two types of
translation: coding and leader-like translation, where the latter
was based on the translation patterns observed for uORFs. ORFs
from transcripts were then classified into either of these categories
or non-coding. While transcripts predicted to be coding
resembled classical genes, leader-like transcripts were shown to
frequently have more than one sORF. A similar observation was
made by Guttman et al. (2013) based on their ribosome release
score (RRS). This metric was based on the fact that ribosomes are
typically released after translating a protein and was defined as
the ratio of the total number of reads from the putative coding
region to the number of reads from the putative 3′UTRs.
Although some of the non-coding RNAs showed ribosomal
occupancy at similar levels to protein-coding genes (Ingolia
et al., 2011), they scored significantly lower than protein-
coding genes on the RRS metric (median score ∼1 versus ∼112
for proteins). Other studies have argued along the same lines that
many non-coding transcripts are associated with ribosomes in a
non-productive manner and either do not undergo active
translation or do not result in functional peptides (Wilson and
Masel, 2011). In an attempt to increase accuracy from regions
covered by RPFs, Ingolia et al. (2014) developed a metric to
distinguish genuine 80S footprints from non-ribosomal sources
of footprints based on the footprint size distribution. Fragment
length organization similarity score (FLOSS) measures the degree
of disparity between the length distribution of footprints obtained
for an abundant transcript and the characteristic RPF size
(26–34 nt). In yet another study, Bazzini et al. set out to
estimate the coding potential of ORFs by utilizing the bias in
read distribution introduced by the translocation of the ribosome
and developed a metric to capture this (ORFscore). This was
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combined with a tool to detect conserved peptides: micro-peptide
detection pipeline (micPDP) (Bazzini et al., 2014). ORFscore
identified 303 novel protein-coding transcripts out of the 2,450
previously predicted ncRNAs. micPDP based on PhyloCSF
identified 63 conserved zebrafish peptides with only 23
overlapping with those found by ORFscore.

The second group of ribosome profiling ORF classifiers uses
spectral analysis of nucleotide periodicity to detect statistically
significant regions with a 3 nucleotide periodic signal. Among
these are SPECTre (Chun et al., 2016) RiboTaper (Calviello et al.,
2016), ORFquant (Calviello et al., 2020), Ribotricer (Choudhary
et al., 2020) and RiboNT (Song et al., 2021). RiboNT and
Ribotricer both apply weighted codon scores to mitigate noise,
Ribotricer, in addition, presented evidence for sustained recall
when the size of ORF is decreased (dropping at < 20 codons).
Although these state-of-the-art tools perform well on typical
cases, none of them have been benchmarked on more complex
cases such as highly overlapping sORFs and very short sORF,
where periodicity is limited (Brar and Weissman, 2015). It is
therefore unclear how well prediction tools work for these more
complex cases. Complete annotation of sORFs therefore, remains
a challenging task and as argued by an earlier review (Pauli et al.,
2014) a combination of these ribosome profiling based predictors
together with sequence-based metrics are likely to yield the most
robust performances.

Beyond detection, more general analysis frameworks for
ribosome profiling are implemented in the python package
Plastid for exploratory data analysis (Dunn and Weissman,
2016). The Bioconductor package ORFik, uses ribosome
profiling datasets to quantify ribosome elongation and RCP-
seq and TCP-seq datasets to quantify ribosome scanning and

initiation (Tjeldnes et al., 2021). For proteomic validation, tools
such as PinStripe and PROTEOFORMER can be used to predict
and validate sORFs at the proteomic level. (Gascoigne et al., 2012;
Verbruggen et al., 2019). These proteomics tools can add a layer
of verification but can be challenged with short ORFs since the
probability of random hits increases. Table 3 categorizes these
tools depending on the input dataset requirement (sequence,
Ribo-seq and/or proteomic data) and summarizes the output of
these tools. Finally, sORF databases such as sORFs.org and
smPROT have compiled most of the studies to generate a
repository of sORFs discovered in various model systems
(Olexiouk et al., 2016; Olexiouk et al., 2018; Hao et al., 2018).
This reflects the effort to study sORFs and the need to identify
and characterize sORFs to discover the hidden/neglected parts of
the human genome and their crucial role in gene regulation and
diseases.

VALIDATION AND FUNCTIONAL
CHARACTERIZATION OF SORFS

Beyond high-throughput detection, many techniques can be used
at the individual gene level to validate sORFs, their interaction
with ribosomes and their potential translation into SEPs. These
techniques include toeprinting in its classical and fluorescent
versions (Koš et al., 2002; Egorova et al., 2019), epitope tagging
(Aspden et al., 2014), in vitro translation (Raney et al., 2000), and
proteomic peptide phage display (Garrido-Urbani et al., 2016).
While these validate the translation of an ORF, additional
experiments are necessary to determine the potential function
of an identified sORF. Most of these approaches are similar to

TABLE 3 | Overview of the computational tools aiding in the prediction of sORFs.

Method Features utilized Input
requirement

Output dataset Reference and links

Sequence-based prediction tools
CPC2 Nucleotide composition, sequence similarity RNA-seq Coding potential of especially lncRNAs (Kang et al., 2017) and GitHub
micPDP Codon conservation RNA-seq sORF detection from non-coding RNA Bazzini et al. (2014)
PhyloCSF Codon substitution RNA-seq Coding potential (Lin et al., 2011) and GitHub
PhastCons Nucleotide composition Whole genome Conserved elements, especially signatures

outside a protein-coding region
(Siepel et al., 2005; Crappé et al.,
2013) and GitHub

sORF finder Nucleotide composition similarity Any nucleotide
sequence

sORFs (Hanada et al., 2010) and Link

Ribosome profiling-based tools
FLOSS Ribosome fragment length Ribo-seq True ribosome footprints Ingolia et al. (2014)
ORFscore 3-nt periodicity Ribo-seq Ribo-seq ORFs Wu et al. (2020)
ORFquant 3-nt periodicity, transcript features such as

exonic bins and splice junctions
Ribo-seq Ribo-seq ORFs on multiple transcript

isoforms
(Calviello et al., 2020) and GitHub

ORF-RATER Read density over start and stop codons Ribo-seq Ribo-seq ORFs (Fields et al., 2015) and GitHub
RiboTaper 3-nt periodicity Ribo-seq,

RNA-seq
Ribo-seq ORFs (Calviello et al., 2016) and Link

RiboNT 3-nt periodicity (noise tolerant), codon usage Ribo-seq Ribo-seq ORFs (Song et al., 2021) and GitHub
Ribotricer 3-nt periodicity Ribo-seq Ribo-seq ORFs, especially sORFs (Choudhary et al., 2020) and

GitHub
RRS Read density drop after stop codon Ribo-seq Ribo-seq ORFs Guttman et al. (2013)
SPECtre 3-nt periodicity Ribo-seq Ribo-seq ORFs (Chun et al., 2016) and GitHub
TOC Ribosome footprint patterns Ribo-seq Ribo-seq ORFs Chew et al. (2013)

PROTEOFORMER
3-nt periodicity, Mass spec hits Ribo-seq, Mass

spec
Ribo-seq ORFs, MS ORFs (Verbruggen et al., 2019) and

GitHub
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determining the function of ordinary genes but with the added
complexity that sORFs may share their transcript with other
ORFs and often do not exert their function through its peptide
product. Also, even though an upORF may exerts its function
through its peptide product, perturbing it in order to functionally
characterizing it may have side effects that affect the stability or
translation of the main CDS, confounding the process of
uncovering the upORFs function.

Other common approaches for functional assays include
cellular localization assays and CRISPR-mediated knockdown.
A more unconventional approach, however, was used in a recent
study that employed antisense oligonucleotides (ASOs) against
upORFs to upregulate the expression of the CDS (Liang et al.,
2016). While the mechanism is not precisely understood, upORF-
targeting ASOs have been used to restore levels of the main
protein by modulating the efficiency of ribosome initiation at the
upORF (Liang et al., 2016; Liang et al., 2017). Thus, ASOs are a
functional tool that can be used to assess the effect of a given
upORF on the expression of the CDS.

Implication of sORFs and Their Encoded
Peptides in Humans: Relevant Examples
Translation of sORFs into SEPs has been demonstrated in many
coding and non-coding transcripts but their functions are not
systematically determined. Many examples of human translated
sORFs from upORFs in coding genes or intergenic sORF with
well-identified functions have been reviewed (Andrews and
Rothnagel, 2014). More recently, another review summarized
the main functional SEPs, and the methods used for their
identification (Yeasmin et al., 2018). These techniques are
mainly based on the identification of SEP-protein interactions.
For instance, to reveal interactions between the C11orf98
micropeptide from C11orf98 gene and proteins, proteomic
analysis, immunoblotting and immunoprecipitation
experiments have been performed on cells transfected with
constructs containing the micropeptide with a tag (APEX,
ascorbate peroxidase 2) associated with biotin-phenol labelling
(Chu et al., 2017). Thus, the authors discovered the interaction of
the micropeptide with nucleolar proteins nucleophosmin and
nucleolin. Moreover, the authors confirmed the association of the
69 aa long modulator of retroviral infection (MRI) protein with
Ku70 and Ku80, suggesting its implication in DNA repair (Chu
et al., 2017). That shows the utility of defining SEP-associated
proteins as a powerful hypothesis-generating approach.

Another example is the 46 aa long SEP, Myoregulin (MNL)
encoded from a presumed lncRNA and shown to be expressed in
skeletal muscle and involved in the regulation of Ca2+ handling
by inhibiting the pump activity of SERCA, a membrane pump
that controls muscle relaxation by regulating Ca2+ uptake into
the sarcoplasmic reticulum (SR) (Anderson et al., 2015). Very
recently, Koh and collaborators identified short ORF-encoded
histone binding protein (SEHBP) as a transcriptional regulator
(Koh et al., 2021). In their study, the authors developed an
experimental assay identifying partners of SEP in cells by
introducing a photo-crosslinking non-canonical amino acid
into SEP transgenes and using enhanced affinity purification

mass spectrometry-based mapping strategy. This method
allowed the authors to identify the interaction between SEHBP
and chromatin-associated proteins. Further, transient
overexpression of SEHBP-eGFP in human cells, followed by
RNA-seq showed a significant modulation of the transcript
levels suggesting a role of SEHBP in the transcription regulation.

In a recent study, Sun et al. (2021), identified an onco-
micropeptide APPLE (90 aa) encoded by the non-coding RNA
ASH1L-AS1 using a combinatorial approach of ribosome
profiling, mass spectrometry and RNA-seq analyses. The
authors showed that APPLE is overexpressed in subtypes of
acute myeloid leukaemia and led to a poor prognosis.
Functional assays showed that APPLE exhibited a pro-cancer
role both in in vitro and in vivo models of acute myeloid
leukaemia. Using sub-cellular fractionation, APPLE was
identified to be in the endoplasmic reticulum and by
interacting with poly-A-binding protein C (PABPC1),
enhanced the translation and synthesis of certain
oncoproteins. By regulating a specific pro-cancer translation
program, APPLE may be one of several undiscovered SEPs,
playing a crucial role in cancer biology.

In some cases, SEP could act as antigens recognized by
immune cells and that could be used as targets in therapy. For
instance, Charpentier and collaborators have described the
generation of three small peptides from three sORF located
within the lncRNA Meloe (Charpentier et al., 2016). These
small peptides have been described as antigens implicated in
melanoma. Starck and his collaborators have shown that uORFs
of the BiP transcript act as (HLA)-presented epitopes recognized
by human T cells (Starck et al., 2016). Also, small peptides
deriving from mitochondrial DNA (Humanin and MutS-C),
called mitochondria-derived peptides (MDPs), have been
described to have a protective role in cardiovascular diseases
(Yang et al., 2019). Most of the characterized human SEPs and
their physiological and functional roles have been reviewed
recently (Wright et al., 2021).

CONCLUSION

In this review, we have summarized computational and
experimental techniques that can be used for the identification
and characterization of small ORFs and their encoded SEPs. Most
of the well performing methods use a combination of sequence
information paired with data from ribosome profiling. Based on
these predictions, validation assays such as mass spectrometry
and epitope tagged expression analysis can provide the
concluding evidence of the presence of sORF encoded
peptides. Indeed, the application of these techniques in
different species has led to the identification of several sORFs
and SEPs. Beyond identification, high-throughput techniques
such as TCP-seq and RCP-seq and selective ribosome profiling
can be used to probe the function of the sORFs at the genome-
wide level in different disease models and even patient samples.
We have further given examples of sORFs showing their
importance in a wide range of contexts. By now, several
studies have demonstrated the diversity of sORF function and
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their role in normal and disease contexts, arguing that sORFs are
abundant in many genomes and significant efforts should be put
towards their annotation and characterization.
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