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Abstract

Mathematical programming models have proved to be useful tools for op-

timizing short-term hydropower schedules. This thesis focuses on a set of

applications representing a significant challenge to the performance of such

models: At watercourses where a flooding risk is present, it is essential that

the model recognizes the connection between overflow and water level of the

reservoirs. To that end, the current work proposes a computationally effi-

cient mixed integer programming formulation.

A traditional approach to scheduling at watercourses where floods may occur,

is to apply a continuous optimization model. Owing to the non-linear nature

of the interdependence between reservoir level and volume, as well as tur-

bines described by non-linear production curves, the model is typically solved

by a successive linear programming (SLP) technique. Decision variables can

be introduced to ensure that the model respects that flooding occurs if, and

only if, the water level exceeds the flood limit. Because discrete variables

significantly increase the computational burden of the model, and thereby

its solution time, it is common to define these variables on a continuous 0-

1 scale. A natural and commonly observed shortcoming, is that the model

then predicts overflow even when the reservoir levels are below the flood limit.

This thesis suggests an approach to avoiding such impractical solutions.

While the SLP-technique is pursued, binary variables are introduced in or-

der to ensure that flooding occurs only in instances where it makes physical

sense. The goal is that the unavoidable increase in running time does not

make the model impractical to use.

All binary variables occur in constraints representing relations between flood-

ing and water level in the reservoirs. The upper bound on the volume of the
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overflow appears as a ”big-M” coefficient of the aforementioned variables.

Precise assessment of such coefficients can have a positive effect on the solu-

tion time. Rather than setting all overflow bounds to a fixed value, identical

for all time periods, they are considered as time and reservoir dependent

parameters.

The overflow bounds can be estimated using the start volume and inflow

for each time step and reservoir. This is done in the first iteration of the

SLP-procedure. In later iterations, the volume of overflow is based on the

result from the previous iteration. This is shown to give an even more precise

approximation of the volume of overflow. Such estimates of the maximum

overflow are further shown to agree well with the theoretical value, assessed

by an optimization model with the objective to maximize overflow volumes.

The proposed method has been implemented in the short-term hydro schedul-

ing model SHOP on the Fossdal watercourse in Western Norway, operated by

Eviny Fornybar AS. The result is a reduction in solution time of the problem,

from just below 1000 seconds with constant overflow bounds, and down to

11 seconds using the time dependent bounds.

It has so far not been examined whether, and to what extent, the posi-

tive results obtained at Fossdal carry over to other watercourses. However,

the experimental results indicate a potential for substantial reductions in

running time by rather simple means. It should therefore be investigated

whether other variable and constraint modifications can yield further reduc-

tions in the running time of scheduling models for watercourses with flooding

risks.

iii



List of Figures

1 Global primal energy consumption, showing a clear increase

in energy demand in the last 70 years [1]. . . . . . . . . . . . 2

2 The different categories regarding time horizon, used in hy-

dropower scheduling. . . . . . . . . . . . . . . . . . . . . . . . 3

3 Layout of the Fossdal watercourse. . . . . . . . . . . . . . . . 5

4 Overflow and inflow at Gr̊asidevatn, compared with the elec-

tricity price. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Head of the reservoirs for the whole planning horizon. . . . . . 16

6 Overflow and bypass at Fossdalsvatn. This runs directly into

the ocean. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

7 Production at Fossmark power plant. . . . . . . . . . . . . . . 17

8 Overflow from Gr̊asidevatn to Fossdalsvatn, compared to in-

flow at Gr̊asidevatn. . . . . . . . . . . . . . . . . . . . . . . . 18

9 Head of the reservoirs. . . . . . . . . . . . . . . . . . . . . . . 19

10 Flood gate and bypass gate from Fossdalsvatn. . . . . . . . . . 19

11 Production at Fossmark. . . . . . . . . . . . . . . . . . . . . . 20

12 Example hydro system as a directed acyclic graph . . . . . . . 22

13 Proportion of spillage from Gr̊asidevatn to Fossdalsvatn. . . . 26

14 Illustration for determining the concave piecewise linear I/O

curve for the generator at power plant s . . . . . . . . . . . . 36

15 Solution strategy of SHOP [2]. . . . . . . . . . . . . . . . . . . 39

16 The values ζr (red) and θr (blue) of Mr,t, compared to the

volume of overflow xsr,t for Gr̊asidevatn. . . . . . . . . . . . . 46

17 Dynamic values σr,t(1.5), of the modelling parameter Mr,t,

compared with the volume of overflow xsr,t. . . . . . . . . . . 46

18 Comparing the solution time when Mr,t = ζr (red), with the

solution time when Mr,t = θr (blue). The reduction of the

solution time, in percentages is shown in green. . . . . . . . . 48

iv



19 Solution time using σr,t(g), for different values of g. The value

of g is the same for all iterations. Points plotted as × indicate

that no integer solution, fulfilling a MIP-gap of 0.01%, was

found. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

20 Solution time with g = 2.0 for the first SLP-iteration, and dif-

ferent values of g for the remaining iterations. Points plotted

as × means that no integer solution, fulfilling a MIP-gap of

0.01%, was found. . . . . . . . . . . . . . . . . . . . . . . . . . 50

21 Solution time given g = 1.5 for the first SLP-iteration, and

different values of g for the remaining iterations. Points plot-

ted as × means that no integer solution, fulfilling a MIP-gap

of 0.01%, was found. . . . . . . . . . . . . . . . . . . . . . . . 51

22 Solution time when Mr,t = σr,t(g) for the best performing

values of g, with Mr,t = σr,t(2.0) in the first SLP-iteration. . . 52

23 Solution time when Mr,t = σr,t(g) for the best performing

values of g, with Mr,t = σr,t(1.5) in the first SLP-iteration. . . 52

24 The problem is solved with Mr,t = σr,t(0.3) in the later SLP-

iterations, comparing the impact of different values of g in the

first iteration. . . . . . . . . . . . . . . . . . . . . . . . . . . 53

25 Comparing the solution time in CPLEX when Mr,t = ζr, when

Mr,t = σr,t(1.5) in the first SLP-iteration, and when Mr,t =

σr,t(0.3) in the later iterations. . . . . . . . . . . . . . . . . . . 54

26 σr,t(g), computed by Algorithm 1, compared to φr,t, which is

the maximum volume of overflow xsr,t, i.e. the minimum value

Mr,t can have. . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

v



List of Tables

1 Penalty costs with numerical values, used in SHOP. . . . . . . 13

vi



Acronyms

CPLEX IBM ILOG CPLEX Optimization Studio. v, 44, 54

DP Dynamic Programming. 7, 8

HPF Hydropower Production Function. 7–9, 29, 33, 35, 39

HRL Highest Regulated Level. 6, 11, 12, 14, 15, 24, 44

LP Linear Programming. 7, 9–11, 40, 41

LR Lagrangian Relaxation. 9

LRL Lowest Regulated Level. 24, 44

MAP Method of Approximation Programming. 9

MILP Mixed Integer Linear Programming. 8, 10, 11, 38, 40

MINLP Mixed Integer Non-Linear Programming. 8

MIP Mixed Integer Programming. 12

NLP Non-Linear Programming. 7

SHOP Short-term Hydro Optimization Program. vi, 4–6, 10–14, 18, 21, 32,

33, 38, 40, 41, 44, 45, 47, 48

SLP Successive Linear Programming. 9, 10, 33, 38, 40, 45, 50

STHS Short-term Hydro Scheduling. 2, 3, 7–9, 11

UC Unit Commitment. 38, 40

ULD Unit Load Dispatch. 38, 40

vii



List of Symbols

Constants

CB Cost of using bypass gate [NOK/MWh]

CL Load penalty cost [NOK/MWh]

CR Reservoir penalty cost [NOK/MWh]

CEnd End volume penalty cost [NOK/MWh]

CGS Generator start up cost [NOK/MWh]

CMax Max volume reservoir penalty cost [NOK/MWh]

COver Overflow reservoir penalty cost [NOK/MWh]

Parameters

αs Friction loss coefficient in the production tunnel

from intake reservoir rs to power power plant s [NOK/MWh]

Γt,s Generator discharge cost at power plant s

in time period t [NOK/MWh]

σr,t(g) Value of modelling parameter Mr,t [m3]

θr Value of modelling parameter Mr,t [m3]

ζr Value of modelling parameter Mr,t [m3]

Et Electricity price in time period t [NOK/MWh]

Ls Height at which the water outlet from power plant s is situated [m]

Mr,t Modelling parameter [m3]

Sets

viii



A Set of edges in the directed acyclic graph D, (i, j) ∈ A, ∀ i, j ∈ N

B Set of breakpoints of the I/O curve, b ∈ B

N Set of nodes in the directed acyclic graph D, i ∈ N

R Set of reservoirs, index r ∈ R

S Set of plants, s ∈ S

T Set of time periods, index t ∈ T, T = [T0, Tn]

Ur Set of neighboring upstream reservoirs of reservoir r, r̄ ∈ Ur

State-dependent functions

ηGen
s (ps,t) Generator efficiency at power plant s in time period t [%]

ηTurb
s (qrs,t, h

Net
s,t ) Turbine efficiency at power plant s in time period t [%]

hGross
s,t Gross head at power plant s in time period t [m]

hNet
s,t Net head at power plant s in time period t [m]

o(x, r) Flood curve for reservoir r [m3]

PMax
s Maximum production limit at power plant s [MW ]

PMin
s Minimum production limit at power plant s [MW ]

QMax
s,t (hNet

s,t ) Maximum discharge limit at power plant s in time period t
[
m3

s

]
QMin

s,t (hNet
s,t ) Minimum discharge limit at power plant s in time period t

[
m3

s

]
Variables

δr,t Binary decision variable, 1 indicates overflow

at reservoir r in time period t {0, 1}

ix



ωS
s,t Start up variable for the generator in power plant s in

time period t, 1 indicates starting of the generator {0, 1}

ωs,t On/off variable for generator unit i in plant s in

time period t, 1 indicates that the generator is on {0, 1}

fr,t Inflow to reservoir r in time period t [m3]

lpDt Load penalty variable at end of period t,

imbalance caused by too little load on the grid [MW]

lpUt Load penalty variable at end of period t,

imbalance caused by too much load on the grid [MW]

pBt Power bought from the market in time period t [MW]

pSt Power sold to the market in time period t [MW]

qBr,t Water discharge through bypass gate at reservoir r,

in time period t
[
m3

s

]
qb,s,t Water discharge for segment b, at power plant s,

in time period t
[
m3

s

]
qrs,t Water discharge from intake reservoir rs,

to power plant s in time period t
[
m3

s

]
sr,t Spillage from reservoir r in time period t

[
m3

s

]
xEnd
r Water volume at reservoir r at the end of the scheduling horizon [m3]

xMax
r Maximum permissible volume of water at reservoir r [m3]

xr,t Water volume of reservoir r in time period t [m3]

xsr,t Volume of overflow at reservoir r in time period t [m3]

x



zDt,r Penalty variable caused by too little water in reservoir r,

in time period t [m3]

zUt,r Penalty variable caused by too much water in reservoir r,

in time period t [m3]

zeDr End penalty variable caused by too little water in reservoir r,

at the end of the scheduling horizon [m3]

zeUr End penalty variable caused by too much water in reservoir r,

at the end of the scheduling horizon [m3]

xi



Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Hydropower . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Hydropower scheduling . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Short-Term Hydro Optimization Program . . . . . . . . . . . 4

1.4 Data basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Unphysical overflow . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 7

2.1 Optimization methods used in hydropower . . . . . . . . . . . 7

2.2 SHOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Modelling overflow . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Experimental study of the current possibilities in SHOP 13

3.1 Scenario 1 - using continuous decision variables . . . . . . . . 14

3.2 Scenario 2 - using binary decision variables . . . . . . . . . . . 18

4 Optimization methods 21

4.1 Mathematical model . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.1 Objective function . . . . . . . . . . . . . . . . . . . . 23

4.1.2 Water balance of the reservoirs . . . . . . . . . . . . . 25

4.1.3 Modelling overflow from the reservoirs . . . . . . . . . 27

4.1.4 Head variation and friction loss . . . . . . . . . . . . . 28

4.1.5 Water discharge and plant limitation . . . . . . . . . . 29

4.1.6 Power production and generator status . . . . . . . . . 29

4.1.7 Summary of the model . . . . . . . . . . . . . . . . . . 31

4.2 Handling non-linearities . . . . . . . . . . . . . . . . . . . . . 32



4.2.1 Linearization of non-linear constraints . . . . . . . . . 33

4.2.2 Summary of the linearized model . . . . . . . . . . . . 37

4.3 Handling binary variables . . . . . . . . . . . . . . . . . . . . 38

4.4 Calibrating modelling parameter . . . . . . . . . . . . . . . . . 40

4.4.1 Defining the modelling parameter as small as possible . 41

4.4.2 Heuristic for determining modelling parameters . . . . 41

4.4.3 Formulating a model to minimize Mr,t . . . . . . . . . 42

5 Effective elimination of unphysical overflow 44

5.1 Comparing different values of Mr,t . . . . . . . . . . . . . . . . 45

5.2 Experiments when Mr,t = θr . . . . . . . . . . . . . . . . . . 47

5.3 Experiments when Mr,t = σr,t(g) . . . . . . . . . . . . . . . . . 48

5.4 Comparing σr,t(g) with φr,t . . . . . . . . . . . . . . . . . . . . 55

6 Conclusion 57

References 58

A Python code used to solve the model in SHOP 61



1 Introduction

1.1 Hydropower

Ever since running water was first used to power grain mills in the Roman em-

pire [3], hydropower has been a vital part of the evolution of human society.

At the beginning of the 19th century, it played a vital part in the industrial

revolution, providing mechanical energy to large machines in fabric factories.

Later in the 19th century and at the beginning of the 20th century, it was

first used to produce electricity, using one or more turbines to harvest kinetic

energy from running water. This became an important turning point in the

modernization of society, eventually leading us to where we are today.

Today, hydropower is the world’s leading renewable energy source. It has

dominated Norway’s energy production since the early 20th century. Mainly

due to the Norwegian landscape and climate, since high mountains and a

great amount of precipitation are vital components for hydropower produc-

tion. These conditions have made it possible for Norway to become the

largest producer of hydropower in Europe, and the seventh-largest producer

in the world [4].

The global demand for energy and electricity has been rapidly increasing

since the 1950s, as seen in Figure 1. Since fossil fuels such as oil, coal and

gas are the main energy sources used in energy production, the emission of

greenhouse gases has also increased rapidly. Thus the need for clean, re-

newable energy has never been higher. Since hydropower is a relatively old

technology, a great share of its potential around the world today is already

in use. This has forced the hydropower producers to be as efficient as pos-

sible regarding production, ultimately leading to the use of optimization to

develop a production schedule.
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Figure 1: Global primal energy consumption, showing a clear increase in

energy demand in the last 70 years [1].

1.2 Hydropower scheduling

Hydropower scheduling is divided into three main categories regarding the

time horizon being investigated; short-, mid-, and long-term, explained more

closely in Figure 2. They all have the same target, which is to optimize the

power generation schedule of the accessible hydropower units, which generate

maximum energy by utilizing the available potential during a specific period

[5].

Using optimization allows power producers to schedule their production ac-

cording to their specific target. Common objectives for the Short-term Hydro
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Hydro Generation Scheduling

Short-term

Scheduling

2 - 14 days

Mid-term

Scheduling

3 - 18 months

Long-term

Scheduling

1 - 5 years

Figure 2: The different categories regarding time horizon, used in hydropower

scheduling.

Scheduling problem (STHS) are to maximize the total revenue, minimize total

operational costs, or minimize the value of water used or spilt. To maximize

the power generated for a given flow, minimize the total discharge from the

units, and maximize the efficiency of the power plant’s total energy conver-

sion, are other objectives that often are addressed [6]. The objectives are

dependent on the structure of the power plant, e.g the number and size of

the generator units, and the layout and size of the reservoirs, tunnels and

gates. It is also dependent on the structure of the market in which the power

is sold. Along with the optimization problem comes a group of various con-

straints regarding several physical limits connected to the water level of the

reservoirs, discharge, maximum and minimum production limit etc. It also

connects short-term to mid-, and long-term scheduling.

One important condition the power producers need to take into consideration

when calculating a production schedule is to avoid unregulated spillage, i.e.

overflow, from the reservoirs in the hydro system. This is often formulated

as a constraint regarding the water level of the reservoirs and the forecasted

inflow. Such constraints are described in detail in [6, 7].
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1.3 Short-Term Hydro Optimization Program

Short-term Hydro Optimization Program (SHOP) is a programming tool de-

veloped by SINTEF [8]. It allows power producers around the world to sched-

ule their production for optimal results, e.g. minimizing costs, maximizing

profits, and at the same time taking care of vital constraints regarding limi-

tations of the hydro system. Although SHOP is very well developed, it has

some limitations when the risk of flooding, i.e. overflow, from the hydro sys-

tem is high. These limitations will be investigated and outlined more closely,

and ultimately a solution to it is developed.

1.4 Data basis

For this thesis, Eviny has provided data from the Fossdal watercourse, con-

sisting of the power plant Fossmark and reservoirs Gr̊asidevatn and Foss-

dalsvatn. Fossmark is located in Vaksdal municipality, not far from Bergen

where Eviny’s headquarters are located. The power plant was built in 1917

and renovated in 1989. Rivers run from the upper reservoir, Gr̊asidevatn,

down to the intake reservoir Fossdalsvatn situated at 440 meters above sea

level. Fossmark has one Pelton turbine and a maximum production capacity

of 9 MW. Approximately 43 GWh is produced at Fossmark each year.[9]

The layout of the Fossdal watercourse is shown in Figure 3. From the up-

per reservoir Gr̊asidevatn, two gates lead to the lower reservoir Fossdals-

vatn. The dashed line from Gr̊asidevatn is a flood gate leading overflow

from Gr̊asidevatn to Fossdalsvatn, whilst the full line represents a regulated

gate which leads scheduled water release from Gr̊asidevatn to Fossdalsvatn.

From Fossdalsvatn the main water flow goes to Fossmark through the pro-

duction tunnel, whilst there is one flood gate and one bypass gate leading

water directly into the sea. The data is from a specific time period in which

the reservoirs are full, and the forecasted inflow for the next two weeks in-
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Figure 3: Layout of the Fossdal watercourse.

creases the risk of overflow. It is specifically chosen because it challenges

some of SHOP’s limitations regarding flooding risks to appear. The Fossdal

watercourse is also quite simple, lowering the risk of unwanted complications

caused by a too complex hydro system.

1.5 Unphysical overflow

The mentioned limitation of SHOP regarding flooding risks, is the occurrence

of unphysical overflow, which is scheduled overflow when the water level is

below the upper limit of the reservoir, making it physically impossible for

overflow to occur. If the forecast of inflow indicates that flooding from the

hydro system is highly likely, or even inevitable, SHOP will schedule flooding

at a convenient time. This is dependent on the chosen objective which, as

mentioned previously, often is to maximize the total revenue, or to minimize
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the total operational costs [6]. The convenient time could correspond to the

time when producing power is most profitable, i.e. when the electricity price

is at its highest. It could also be the time just before the downstream reser-

voir runs empty, and a lot of water from an upstream reservoir is needed,

which can be seen in Figure 4. Since this does not always happen at a time

where the reservoirs are overfilled, with water physically flowing through the

flood gate, this phenomenon is referred to as unphysical overflow.

Different methods are available to use to avoid unphysical overflow. SHOP

provides an option to use binary decision variables corresponding to overflow

from each reservoir r and in each period t. With these decision variables

active, SHOP will only tolerate flooding from the system if the water level of

reservoir r, in period t, is above the Highest Regulated Level (HRL). In other

words, SHOP now only tolerates overflow from the hydro system if the water

is physically flooding from the reservoir. Usage of these binary variables and

how they impact the results are discussed further in Section 3.2.
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2 Background

2.1 Optimization methods used in hydropower

Hydropower optimization is challenging. It is mainly due to decision variables

being coupled in time, meaning that the optimization problem includes state

variables. Reservoir level and climate-dependent variables, such as inflow,

are examples of such state variables. Thus the full-dimensional optimization

problem is decomposed into sub-problems, as mentioned in Section 1.2, each

solved by different solution techniques [10]. Since this thesis will concentrate

on the short-term sub-problem, solution methods for the long- and medium-

term will not be a subject of discussion.

Short-term Hydro Scheduling is not at all a simple task. The earlier mathe-

matical formulations of the problem were widely based on Linear Program-

ming (LP) [6, 11, 12]. However the handling of non-linear and non-convex

elements, together with state-dependencies, is a real challenge.

Such non-linear and non-convex elements are present at the very core of

the STHS problem, namely the Hydropower Production Function (HPF). It

is a function that models the relationship between water discharge as input

and produced power as output. It consists of several complex elements, such

as the net head of the reservoir, turbine efficiency, and generator efficiency.

The HPF will be addressed more in detail in Section 4.1.6.

LP does not fully represent these physical characteristics of the hydro gen-

eration, leading to the use of other optimization methods [13]. Non-Linear

Programming (NLP) can handle non-linearity and non-convexity well, and is

often combined with Dynamic Programming (DP) algorithm to solve specific

types of hydropower scheduling problems. For the case of a single hydropower

plant with few units and low capacity, such as Fossmark, DP has been one of

the most popular optimization techniques used to solve the STHS problem.
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However, as the size and installed capacity of a plant increases, it becomes

harder to apply DP to solve the problem [6, 14].

The recent development of computational and mathematical techniques al-

lows for more details of the problem to be assessed. The discrete nature of

the problem, e.g. the on/off condition of the units, is too important to be

ignored. Such features are modelled by introducing binary integer variables

to the mathematical formulation. If piecewise linear functions are used to

approximate the non-linearity of the HPF, e.g. turbine efficiency, and used

together with the binary integer variables, the STHS problem is modeled as a

Mixed Integer Linear Programming (MILP) problem [6]. J. Kong et al. refer

to several relevant articles regarding MILP-modelling of the STHS problem.

Adding constraints to the optimization problem and effectively finding a

solution are vital features for optimization. These are features that MILP

has good performance with, and this is one of the reasons for it being widely

used to solve large scale STHS problems [6, 15].

The downside of using MILP to solve the STHS problem is the high

demand for computational capacity, which also increases with the scale of

the STHS problem. It is illustrated in Section 3.2. Linearizing non-linear

functions can affect the values calculated by the MILP model, resulting in

deviations between these and the real values, which can ultimately lead to

an infeasible solution [6].

Mixed Integer Non-Linear Programming (MINLP) is another optimization

technique that can be used to solve the STHS problem. It is preferred when

the STHS problem is modelled with more details. The MINLP problem relies

on the hydropower plants to not be too large for it to be solvable. [6]

Decomposing STHS problems of larger scale into a set of smaller subproblems

is an important part of optimization. These subproblems are mathematical
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solvable and demand much less computational power to be solved. One of

the most popular and successful decomposition methods is Lagrangian Re-

laxation (LR). The LR decomposition technique is divided into three steps:

(1) dualization, (2) solving the dual subproblem, and (3) finding a feasible

optimal or near-optimal primal solution [6].

Again the non-linear and non-convex HPF is the complicating factor. Al-

though the LR method can relax some complex linking constraints, the HPF

makes it very difficult to obtain the real dual function. This and the fact that

the process of finding a primal feasible solution often is based on heuristics

are the main problems with the LR method [6].

As mentioned LP has been a popular approach to the STHS problem, due to

its simplicity and efficiency. The issue of non-linear and non-convex elements

needs to be dealt with to use LP successfully. To tackle this, Successive Lin-

ear Programming (SLP) can be applied, as in [10].

SLP was first introduced in [16], where it is referred to as Method of Approxi-

mation Programming (MAP). Here it is shown how a non-linear problem can

be linearized by expansion as a Taylor’s series, and ignoring the terms of a

higher order than linear. This new linear problem can now be solved by an

LP algorithm, which is repeated until an optimal or near-optimal solution is

found. The algorithm uses the previous solution as input and builds on this

for the new solution.

In [10] a linear model for STHS, which is easily solved by LP, is provided.

Then a solution to the issue of accounting for important non-linear elements,

e.g. the efficiencies regarding head of water and energy per m3 of utilized

water, is given. It is done by formulating the non-linear term as a first-order

approximation and updating it within the iterative process of solving the

linear model. Thus a new SLP model of the problem, where the efficiencies

are added as a linear term in the objective function, is given.
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2.2 SHOP

As mentioned in Section 1.3, SHOP is a programming tool for developing

short-term hydro schedules. It was developed by SINTEF’s Energy Research

group in 1989, with financial support from the state-owned power and grid

company Statkraftverkene. The first operational version was finished in 1996.

SHOP was used operationally for the first time by the Norwegian company

Statkraft in 2003. Since then, SHOP has been redesigned in 2008 and again

in 2016, to make sure the solution methods are state of the art [17].

The optimization problem in SHOP was previously modelled at plant level to

reduce the size of the problem, thus reducing the computational time. The

unit-based model, i.e. using binary integer variables to model which gener-

ator unit within a power plant is active, was only implemented in certain

cases [17, 18]. With the development of computational capability and the

need for even more precise calculations, the implementation of unit-based

modelling occurred more and more frequently. It ultimately caused a switch

of the default optimization model in SHOP, from plant-based to unit-based

in 2016 [17].

In the same way that SHOP has been developed over the years regarding

plant- and unit-based modelling, so have the optimization methods which

are in use. Since the earlier years, SLP has been the main optimization

method used in SHOP [10, 19], which means that the problem is formulated

and solved as an LP-problem, within each iteration of an SLP-loop. This was

mainly because of computational limitations at the time. However, as more

and more of the computational limitations vanished, the use of MILP within

the SLP-iterations has increased [17]. Using LP within the SLP-loop is still

the default optimization method in SHOP, but the option to formulate the

problem as an MILP-problem is available. The reason why LP is preferred

is that for most cases, it solves the problem easily, and it is typically faster
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than MILP. However, for some cases of e.g. discrete nature, LP does not

perform that well, and MILP becomes the preferred optimization method.

An example of such a case is the handling of unphysical overflow, which LP

is sensitive to, whilst MILP handles this nicely at the expense of a possible

increase in the computational time.

2.3 Modelling overflow

Modelling the overflow from a hydro system is an important part of STHS

problems. Overflow from a reservoir in a hydro system can have many dif-

ferent consequences. Wildlife and nearby society can be affected, but also

the hydro system itself and its owners. Some of these consequences are

more serious than others, nonetheless, it is important to consider them when

scheduling the production for a hydro system.

Overflow is not necessarily bad in every case. If a hydro system contains

several reservoirs, and discharge from an upper reservoir is a direct source of

inflow to the downstream power plant, then overflow from the upper reservoir

can be useful for the production at the power plant. A typical example of this

situation is when an upper reservoir (or power plant) acts like a bottleneck,

e.g. due to maintenance or a low maximal flow capability. If the electricity

price is high, one would want to use the water stored in the upper reservoir,

now only accessible by using the flood gate.

However, special cases like this can cause new problems to occur. The previ-

ous case is also a good example of why unphysical overflow can occur when

scheduling the hydropower production. This sometimes happens in SHOP.

Within each SLP-iteration in SHOP, modelling of overflow can be done with

either LP, or MILP, or both. LP is sensitive to unphysical overflow since the

optimization model contains continuous decision variables regarding if the

water level of a reservoir is higher than the HRL. Modelling with MILP does

solve the problem of unphysical overflow completely, but with the cost of a
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high and perhaps unsatisfactory solution time.

Unphysical overflow is divided into three categories in SHOP [7]:

- Unphysical overflow: flood gate is used when the reservoir is not

full.

- Partially unphysical overflow: If the situation and the settings of

the system indicate overflow during the time period, it might be ben-

eficial to advance the overflow. Then one would have both unphysical

and physical overflow.

- Model forced unphysical overflow: If one, in the iterative process,

goes from a full model without a plant description based on MIP, to an

incremental model with a MIP-based description of the plant, math-

ematical inconsistencies can occur. These inconsistencies can then be

”solved” in SHOP by unphysical overflow.

A great example of how the first category of unphysical overflow often occurs

is:

If the electricity price is high enough, the penalty for letting water flood to

a lower plant won’t be enough to stop the scheduling problem from getting a

profit. The penalty also only concerns the actual overflow from the reservoir,

not if it is possible for the water to flood, i.e. if the water level is higher than

the HRL. It makes it possible for SHOP to schedule overflow at the most

beneficial time, often resulting in unphysical overflow.
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3 Experimental study of the current possibil-

ities in SHOP

This chapter gives an overview of the current possibilities in SHOP, regard-

ing how unphysical overflow from the hydro system is handled.

All the scenarios are solved with the same settings and data, e.g. start vol-

ume and inflow for each reservoir, electricity prices etc. The tunnel from

Gr̊asidevatn to Fossdalsvatn mentioned in Section 1.4, is closed during the

entire planning horizon. This essentially means that one does not wish to

spend water that is stored in Gr̊asidevatn, during the planning horizon. One

would rather like to save the water for a later time. The different penalty

costs that apply are listed in Table 1. The optimization model used in SHOP,

Penalty cost Value [NOK/MWh]

Overflow 50000

Load 5000

Reservoir endpoint 1000

Reservoir ramping 100

Discharge 100

Table 1: Penalty costs with numerical values, used in SHOP.

which is presented in Chapter 4, is the same for both scenarios. Only a small

adjustment is done to the model solved in Scenario 1. It is the relaxation of

the binary decision variables, which is 0 if there is no overflow at reservoir r

in period t, and it is 1 if there is overflow. For Scenario 1 it is relaxed to be

continuous between 0 and 1.
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3.1 Scenario 1 - using continuous decision variables

SHOP has a relatively large penalty cost regarding overflow from a reservoir.

This is naturally linked with a variable for amount of overflow from a reser-

voir. In this scenario, the decision variable regarding overflow at reservoir

r in period t, is as mentioned continuous between 0 and 1. This usually

works very well, and is the preferred model in many practical applications

of SHOP. However, when the hydro system is nearly full, and the forecasted

inflow suggests flooding, a problem occurs. This type of situation is well

illustrated by the data from Eviny’s watercourse Fossdal, for the period of

two weeks between the 10th of August 2020 and the 24th of August 2020.

When solving the problem with this data set in SHOP, we clearly see that

the problem of unphysical overflow occurs. In Figure 4 we see that around

22nd of August, a great amount of water is overflowing from Gr̊asidevatn to

Fossdalsvatn. This would suggest that the head of Gr̊asidevatn is increas-

ing rapidly just before the time of the overflow. However, when looking at

Figure 5, it is clear that the head of Gr̊asidevatn does not increase rapidly.

It is actually below the HRL at the time of this spike of overflow from the

hydro system. The overflow in these periods is thus categorized as unphysical

overflow.

This kind of result is only made possible by the aforementioned continu-

ous decision variable regarding overflow. It makes it possible to schedule

overflow, in periods when the water level of the reservoir is below the HRL.

This typically happens at reservoirs with a low discharge capacity. In our

experiment, Figure 5 suggests that Fossdalsvatn is about to use up all its

stored water, before the end of the planning horizon, possibly missing out on

producing power at a time with good electricity prices. To avoid this, and

to keep being able to produce at near maximum capacity, SHOP schedules

a great amount of overflow from Gr̊asidevatn, even though the water level
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of the reservoir is eventually below HRL. This has fixed the issue regard-

ing Fossdalsvatn possibly running out of water, but it has introduced a new

problem, namely unphysical overflow.
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3.2 Scenario 2 - using binary decision variables

In Scenario 2, the aforementioned continuous decision variables, regarding

overflow are replaced by binary decision variables. Thus, the model in SHOP

now only allows physical overflow from the hydro system. In terms of finding

a solution that is realistic and without any non-physicalities, this works great.

However, the computational time of the solver becomes exponential in the

number of binary decision variables, in the worst case. The model in SHOP

has one binary decision variable, for each reservoir and in each time period.

The total number of binary decision variables for our experiment with two

reservoirs, namely Gr̊asidevatn and Fossdalsvatn, a planning horizon of 14

days and a period length of one hour, is 672. Naturally, this increases the

solution time dramatically, which is the main problem of this scenario. Fig-

ures 9–11 display the results obtained by solving the scheduling problem in

SHOP, using the model of Scenario 2.
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4 Optimization methods

SHOP provides several customization options of the optimization model, to

best fit each specific optimization problem. The objective function, con-

straints, variables and parameters can all be customized. This chapter presents

the standard model in SHOP, and provides suggestions that might have a

positive effect on the problem regarding unphysical overflow.

4.1 Mathematical model

The type of optimization problem that is addressed here is often related to

low electricity prices and full or nearly full reservoirs. This typically implies

that one would like to minimize the ”damage” of producing hydropower,

which might not be profitable. The objective would then be to either min-

imize the total operational costs, or to minimize the value of water that is

used or spilled. The hydro system can be defined as a directed acyclic graph,

D = (N,A). Where the set N consists of two types of nodes, namely reser-

voir r ∈ R and power plant s ∈ S. The set N can be defined as N = R ∪ S.

The set of edges A is defined as A ⊆ N ×N .

Figure 12 shows an example of a hydro system, as a directed acyclic graph.

Here, r1, r2, r3, r4, r5, s1, s2 ∈ N , where s1, s2 ∈ S and r1, ..., r5 ∈ R. The

hydro system is connected by edges, and it is only possible to have discharge

from a reservoir node r to node j, if the edge (r, j) ∈ A.

For each reservoir node r, we define the set Ur as the set of all neighbor-

ing, upstream reservoir nodes of r. An example from Figure 12 is that for

reservoir node r4, the set Ur4 = {r2, r3}, whilst the set for reservoir node r1

is Ur1 = ∅.
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Figure 12: Example hydro system as a directed acyclic graph

We assume that each power plant node s is connected to exactly one up-

stream reservoir r, which is referred to as intake reservoir rs. An example of

this can be seen in Figure 12, where the reservoirs r4 and r5 are the intake

reservoirs for power plants s1 and s2, respectively.

Scheduled discharge from reservoir r to node j, at time period t, is given

by qr,j,t. However as shown in Figure 12, discharge can be scheduled from

one reservoir node, to multiple other nodes. The total discharge qr,t out of

reservoir r, in period t, is thus given by

qr,t =
∑

j∈N :(r,j)∈A

qr,j,t, ∀ r ∈ R, t ∈ T. (1)

Equation (1) holds for all nodes r that is a reservoir, i.e. r ∈ R ∈ N . The

total discharge going from intake reservoir rs, into power plant s, at time

period t is given by qrs,t.

Figure 3, presented in Section 1.4, shows an example of D, for the Fossdal wa-
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tercourse. It consists of three nodes, namely the two reservoirs Gr̊asidevatn

and Fossdalsvatn, and the power plant Fossmark. Here, Fossdalsvatn is the

intake reservoir that is directly connected to the power plant Fossmark.

4.1.1 Objective function

The objective of our model is to minimize the total cost of the hydropower

production, while fulfilling several constraints. The objective function min-

imizes a weighted sum of several penalty costs, as well as the amount of

power bought from the grid, the amount of power sold to the grid, the value

of water stored at the end of the planning horizon. The objective function

reads

Minimize
∑
t∈T

(∑
r∈R

(
COver · sr,t + CB · qBr,t + Et

(
pBt − pSt

)
+ CR

(
zUr,t + zDr,t

)
+ CL

(
lpUt + lpDt

) )
+
∑
s∈S

(
CGS · ωS

s,t + Γs,t · qrs,t
))

−
∑
r∈R

(
CEndxEnd

r + CR
(
zeUr + zeDr

) )
.

(2)

A number of penalty costs are present in the objective function. If not oth-

erwise mentioned, the different penalty costs are equal for all reservoirs.

Penalty cost COver, penalizes overflow from reservoir r, i.e. if the flood gate

at reservoir r is used. This is linked with sr,t which is the amount of spillage

from reservoir r, i.e. the amount of water going through the flood gate at

reservoir r.

The cost of using the bypass gate CB, at reservoir r, is naturally linked

with the amount of discharge through the bypass gate, namely qBr,t.
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The amount of power bought or sold in time period t is represented, re-

spectively, by pBt and pSt . Each of them is linked to the electricity price, Et,

for the same period t.

One of the largest valued penalty cost is CR, and it is connected to zDr,t

and zUr,t which are penalty variables regarding violation of LRL and HRL,

respectively. These variables are used to ensure that the problem is solvable,

even though it might be infeasible in practice.

An example of this can be that if power production is scheduled at a time t

when there is not enough water in reservoir r. Then zDr,t will be the volume

of water that is needed to make the production schedule feasible. The reser-

voir penalty cost CR, is also connected to zeUr and zeDr . These are reservoir

penalty variables regarding a violation at the end of the planning horizon.

Avoiding imbalance in the power grid is really important for power produc-

ers, and CL is a penalty cost regarding this. It is connected to lpUt and lpDt ,

which are penalty variables regarding overload and underload of the power

grid, respectively.

The cost of starting up the generator is given by CGS, it is connected to

the binary decision variable ωS
s,t, which is 0 if the generator in power plant s

has not been started in time period t, and 1 if it has been started.

The cost of discharge into power plant s, in time period t, is given by Γs,t.

It is linked with the total discharge qrs,t, from intake reservoir rs, into the

generator at power plant s, in period t.

The value of water at the end of the planning horizon is given by CEnd.

It is linked with xEnd
r which is the amount of water in reservoir r, at the end

of the planning horizon.
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4.1.2 Water balance of the reservoirs

While minimizing the objective function, the optimization model also has

several constraints to fulfill. The constraints

xr,t = xr,t−1 − sr,t +
∑
r̄∈Ur

t−1∑
u=1

βr̄,r,u · sr̄,u − qr,t

− qBr,t + fr,t + zUr,t − zDr,t −
(
zUr,t−1 − zDr,t−1

)
,

∀ r ∈ R, t ∈ T (3)

and

xr,k = xEnd
r + zeUr − zeDr − zUr,k + zDr,k, ∀ r ∈ R, k = Tn (4)

bring water balance of the reservoirs into the model.

Constraint (3) describes how the volume xr,t, of reservoir r at the end of

time step t, is calculated. In short it equals the volume xr,t−1, of the reservoir

at the previous time step, plus the total inflow fr,t +
∑

r̄∈Ur

∑t−1
u=1 βr̄,r,u · sr̄,u,

subtracted by the total volume sr,t+qr,t+q
B
r,t, of water going out. In addition

to this the penalty variables zUr,t − zDr,t −
(
zUr,t−1 − zDr,t−1

)
, are added. This is

done to secure an artificial water balance, thus keeping the problem feasible

in theory, for it to remain easily solvable. If the water in reservoir r is not in

balance at period t, then zUr,t − zDr,t 6= 0, where zUr,t > 0 indicates a shortage

or water and zDr,t > 0 indicates too much water. If there was an imbalance

in reservoir r in the previous time period t − 1, then −(zUr,t−1 − zDr,t−1) 6= 0.

This is added to the constraint to make sure that a potential imbalance at

the previous time period is made up for.

In other words, xr,t relies heavily on xr,t−1, as well as the total water dis-

charge qr,t, and spillage sr,t, from reservoir r in time period t. It also relies

on natural inflow fr,t, at reservoir r in time period t, as well as spillage sr̄,u

from the upstream reservoir r̄, at time period u. The parameter βr̄,r,u equals

the proportion of the spillage from reservoir r̄ that u time periods later flows
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into reservoir r.

Example values of βr̄,r,u is shown in Figure 13. Here it becomes clear that

first after 2 to 3 hours the largest amount of spillage arrives. After 5 hours,

about 55% of the total spillage has arrived.
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Figure 13: Proportion of spillage from Gr̊asidevatn to Fossdalsvatn.

Constraint (4) is a final state condition that says that water volume xr,k, of

reservoir r at the last time step k of the scheduling horizon, needs to be equal

to the end volume of the reservoir xEnd
r .
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4.1.3 Modelling overflow from the reservoirs

Description of overflow, and how this is related to e.g. volume of reservoir is

described by the following constraints

xsr,t ≥ xr,t − xMax
r , ∀ r ∈ R, t ∈ T, (5)

xsr,t ≤ xr,t − xMax
r · δr,t, ∀ r ∈ R, t ∈ T, (6)

xsr,t ≤Mr,t · δr,t, ∀ r ∈ R, t ∈ T, (7)

sr,t = cr · xsr,t, ∀ r ∈ R, t ∈ T. (8)

Constraint (5) defines the lower bound of the volume of overflow xsr,t, to be

greater than or equal to the difference between the volume xr,t, in reservoir r

at time period t, and the maximum volume xMax
r , in reservoir r. Constraints

(6) and (7) defines the upper bounds of xsr,t. The binary decision variable

δr,t, is 1 if there is overflow at reservoir r, at time period t, and 0 if there is

no overflow from the reservoir. This variable is used in both constraints (6)

and (7), and in constraint (6) it makes sure that if there in fact is overflow

at the reservoir, then the volume of overflow xsr,t, is defined as less than or

equal to difference between the volume xr,t, in reservoir r at time period t,

and the maximum water volume xMax
r , in reservoir r.

It is now clear that when δr,t = 1, i.e. there is overflow at reservoir r, in

time period t, constraints (5) and (6) defines the volume of overflow xsr,t,

as less than or equal to, and greater than or equal to the difference between

the volume xr,t and the maximum volume xMax
r , in reservoir r and at time

period t, respectively. The volume of overflow xsr,t, can thus be defined as

this volume difference.

Constraint (7) ensures that the volume of overflow xsr,t, is zero when there

is no overflow at reservoir r in period t, i.e. when δr,t = 0. Further discussion

of the definition of the modelling parameter Mr,t, and its importance on the
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solution time of the problem, will occur later in Section 4.4. Constraint (8)

defines that the flow of spilled water sr,t, going through the flood gate at

reservoir r at time period t, is the volume of overflow xsr,t multiplied with a

parameter cr. This parameter converts water volume into water flow. It is

reservoir dependent since different structures of the reservoir dam, results in

different flow capacities.

4.1.4 Head variation and friction loss

Head is a typical hydropower-term, and it is not very intuitively defined.

Nonetheless it is important because of its impact on the amount of power

that a power plant can produce. Head is divided into two categories; gross

head and net head. The two following constraints define these two categories,

respectively

hGross
s,t = lrs,t−1(xrs,t−1)− Ls, ∀ s ∈ S, t ∈ T, (9)

hNet
s,t = hGross

s,t − αs · q2
rs,t, ∀ s ∈ S, t ∈ T. (10)

Constraint (9) defines gross head hGross
s,t , as the height difference between the

water level lrs,t−1(xrs,t−1), at the intake reservoir rs, and the height Ls, at

which the water outlet from power plant s is situated. This difference is the

height which the water, used in production, needs to fall in order to reach

the turbine.

The net head hNet
s,t , is defined by constraint (10) as the mentioned height

difference, i.e. hGross
s,t , subtracted any friction loss αs · q2

rs,t, that occurs within

the production tunnel leading water from intake reservoir rs, to power plant

s [2].
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4.1.5 Water discharge and plant limitation

The limitations of the total water discharge qrs,t, from intake reservoir rs,

into power plant s are described by

qrs,t ≥ QMin
s,t

(
hNet
s,t

)
· ωs,t, ∀ s ∈ S, t ∈ T, (11)

qrs,t ≤ QMax
s,t

(
hNet
s,t

)
· ωs,t, ∀ s ∈ S, t ∈ T. (12)

Constraint (11) states that if the generator at power plant s is active in

time period t, then qrs,t needs to be greater or equal to the lower bound,

QMin
s,t

(
hNet
s,t

)
. Simultaneously, constraint (12) states that qrs,t needs to be

less than or equal to QMax
s,t

(
hNet
s,t

)
. These bounds are dependent of the net

head, hNet
s,t . The minimum total discharge QMin

s,t , is the minimum amount of

discharge needed at power plant s, in time period t, for the generator to be

activated, i.e. ωs,t = 1. The maximum total discharge QMax
s,t , is the maximum

permissible amount of discharge at power plant s, in time period t.

4.1.6 Power production and generator status

The hydropower production function (HPF), which was first mentioned in

Section 2.1, is defined as

ps,t = G · ηGen
s (ps,t) · ηTurb

s

(
qrs,t, h

Net
s,t

)
· hNet

s,t · qrs,t, ∀ s ∈ S, t ∈ T. (13)

It is a complex state-dependent, non-linear and non-convex function [6]. The

generator efficiency ηGen
s (ps,t), is a function of the production ps,t. The tur-

bine efficiency ηTurb
s

(
qrs,t, h

Net
s,t

)
, is a function of both the discharge qrs,t, and

the net head hNet
s,t . The conversion constant G includes both gravity acceler-

ation and water density, making the unit conversion from [m] and [m3/s] to

[MW ]. The value of G is 9.81 · 10−3kgm2/s2.

The boundaries on power production, power balance, and the status of the
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generator are described, respectively, by the following constraints

PMin
s · ωs,t ≤ ps,t ≤ PMax

s · ωs,t, ∀ s ∈ S, t ∈ T, (14)

ps,t = pSt − pBt + lpUt − lpDt , ∀ s ∈ S, t ∈ T, (15)

ωs,t ≤ ωs,t−1 + ωS
s,t, ∀ s ∈ S, t ∈ T. (16)

The lower and upper bounds on power generation variable ps,t, i.e. PMin
s and

PMax
s , respectively, for the generator at power plant s, is given by constraint

(14). They are naturally linked with the binary decision variable ωs,t, which

is 1 if the generator at power plant s is on at time period t, and 0 if the

generator is off. It secures that power can only be produced at power plant

s and period t, if the generator is active.

Maintaining balance of the electricity grid is of crucial importance, and con-

straint (15) describes this by stating that the total power produced ps,t, needs

to equal the power sold, pSt , subtracted the power that is purchased pBt . If

this equation is not in balance, one of the load penalty variables, lpUt or lpDt

takes a positive value. A proportional penalty cost CL, is then incurred in

the objective function.

Constraint (16) describes the operating status of the generator at power

plant s, in time period t. This is done by stating that the operating status

of the generator at power plant s and in time period t, is either the same as

the operating status at the previous period t − 1, or it has been started up

in period t. The binary decision variable ωS
s,t, has value 1 if the generator at

power plant s has been started up in period t.
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4.1.7 Summary of the model

The complete model is

Minimize
∑
t∈T

(∑
r∈R

(
COver · sr,t + CB · qBr,t + Et

(
pBt − pSt

)
+ CR

(
zUr,t + zDr,t

)
+ CL

(
lpUt + lpDt

) )
+
∑
s∈S

(
CGS · ωS

s,t + Γs,t · qrs,t
))

−
∑
r∈R

(
CEndxEnd

r + CR
(
zeUr + zeDr

) )
.
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Subject to

qr,t =
∑

j∈N :(r,j)∈A

qr,j,t, ∀ r ∈ R, t ∈ T,

xr,t = xr,t−1 − sr,t +
∑
u∈T ∗

βu · s̄t−u − qr,t

− qBr,t + fr,t + zUr,t − zDr,t −
(
zUr,t−1 − zDr,t−1

)
,

∀ r ∈ R, t ∈ T,

xr,k = xEnd
r + zeUr − zeDr − zUr,k + zDr,k, ∀ r ∈ R, k = Tn,

xsr,t ≥ xr,t − xMax
r , ∀ r ∈ R, t ∈ T,

xsr,t ≤ xr,t − xMax
r · δr,t, ∀ r ∈ R, t ∈ T,

xsr,t ≤Mr,t · δr,t, ∀ r ∈ R, t ∈ T,

sr,t = cr · xsr,t, ∀ r ∈ R, t ∈ T,

hGross
s,t = lr,t−1(xr,t−1)− Ls, ∀ s ∈ S, t ∈ T,

hNet
s,t = hGross

s,t − αs · q2
rs,t, ∀ s ∈ S, t ∈ T,

qrs,t ≥ QMin
s,t

(
hNet
s,t

)
· ωs,t, ∀ s ∈ S, t ∈ T,

qrs,t ≤ QMax
s,t

(
hNet
s,t

)
· ωs,t, ∀ s ∈ S, t ∈ T,

ps,t = G · ηGen
s (ps,t) · ηTurb

s

(
qrs,t, h

Net
s,t

)
· hNet

s,t · qrs,t, ∀ s ∈ S, t ∈ T,

PMin
s · ωs,t ≤ ps,t ≤ PMax

s · ωs,t, ∀ s ∈ S, t ∈ T,

ps,t = pSt − pBt + lpUt − lpDt , ∀ s ∈ S, t ∈ T,

ωs,t ≤ ωs,t−1 + ωStart
s,t , ∀ s ∈ S, t ∈ T,

xr,t, sr,t ≥ 0, ∀ r ∈ R, t ∈ T,

hGross
r,t , hNet

r,t ≥ 0, ∀ r ∈ R, t ∈ T,

δr,t ∈ {0, 1}, ∀ r ∈ R, t ∈ T,

ωs,t, ω
Start
s,t ∈ {0, 1}, ∀ s ∈ S, t ∈ T.

4.2 Handling non-linearities

Handling non-linear functions in an effective way is important. How this is

done in SHOP will be explained in the next sections.
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4.2.1 Linearization of non-linear constraints

SHOP needs to be able to calculate the nonlinear HPF, and at the same time

be computationally efficient. To do this, the HPF is converted into a linear

input/output (I/O) curve, which is described in detail by [2].

A given number of SLP-iterations are performed to stabilize the head varia-

tion, i.e. the gross head hGross
s,t , between the intake reservoir rs and the height

Ls of which the water outlet at power plant s is situated. For each SLP-

iteration hGross
s,t is linearized. The result, i.e. the volume x∗rs,t−1, and water

level lrs,t−1(x∗rs,t−1) of intake reservoir rs, from the previous SLP-iteration, is

used as the input point for the current SLP-iteration. Thus, equation (9)

can be rewritten as

hGross
s,t = lrs,t−1(x∗rs,t−1)− Ls, ∀ s ∈ S, t ∈ T. (17)

This result is then used later on, when calculating the net head. The same

is done with the gate spillage variable sr,t defined in constraint (8). It is

rewritten as

∆sr,t = cr · xsr,t − s∗r,t, ∀ r ∈ R, t ∈ T. (18)

Here, s∗r,t is the spillage from the previous SLP-iteration, and ∆sr,t is the

difference in spillage between the previous and the current SLP-iteration.

Equation (8) can hence be replaced by equation (18), and equation (3) is

replaced by

xr,t = xr,t−1 −∆sr,t +
∑
u∈T ∗

βu · s̄t−u − qr,t

− qBr,t + fr,t + zUr,t − zDr,t −
(
zUr,t−1 − zDr,t−1

)
,

∀ r ∈ R, t ∈ T. (19)

Water discharge is also needed to calculate the net head, thus the minimum

water discharge QMin
s,t , the best efficiency water discharge QBest

s,t , and the

maximum water discharge QMax
s,t , are determined next. They are used as the
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initial points in the I/O curve of the generator in power plant s. The rest

of the breakpoints of the I/O curve are obtained by uniformly partitioning

the interval between QMin
s,t and QBest

s,t into bDown segments, and the interval

between QBest
s,t and QMax

s,t into bUp segments. The set B is the set of all

breakpoints b, B =
[
0, b− 1, b, bDown, ..., bDown + bUp

]
. The discharges at the

bDown + 1 breakpoints are then

Q̄b,rs,t = QMin
s,t +

QBest
s,t −QMin

s,t

bDown
· b, ∀ b = 0, ..., bDown, s ∈ S, t ∈ T. (20)

The corresponding discharges at the bUp breakpoints are

Q̄b,rs,t = QBest
s,t +

QMax
s,t −QBest

s,t

bUp
· (b− bDown),

∀ b = bDown + 1, ..., bDown + bUp, s ∈ S, t ∈ T.
(21)

Additionally, if the optimal water discharge q∗rs,t, from the previous SLP-

iteration, differs from the breakpoints determined in the next SLP-iteration,

it is added to the I/O curve as an extra breakpoint. This is done to improve

convergence.

Then, given a water discharge point Q̄b,rs,t in breakpoint b, for power plant

s, in time period t, the net head HNet
b,s,t, in breakpoint b, is determined, and

the turbine efficiency ηTurb
s

(
Q̄b,rs,t, H

Net
b,s,t

)
, is calculated. The power output

P̄b,s,t at each breakpoint b is then calculated using equation (13).

When both water discharge and power output is determined at every break-

point in the I/O curve, the slope of the line segment, between breakpoints b

and b− 1, equals

γb,s,t =
P̄b,s,t − P̄b−1,s,t

Q̄b,rs,t − Q̄b−1,rs,t

, ∀ b ∈ B, s ∈ S, t ∈ T. (22)

It is important that the I/O curve is concave, to keep the computational

burden as low as possible. Thus, breakpoints that make the I/O curve non-

concave, e.g. the white dots in Figure 14, are removed.
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The I/O curve is limited by the permissible discharge limits QMin
s,t and QMax

s,t ,

of the turbine at power plant s, in time period t. They define the first and last

breakpoints of the I/O curve, respectively. Lastly, the production bounds of

power plant s, are included as limits on the curve. They are defined, by the

most restrictive rule, as

P̂Min
s,t = MAX

[
P̄0,s,t, P

Min
s

]
, ∀ s ∈ S, t ∈ T, (23)

P̂Max
s,t = MIN

[
P̄bDown+bUp,s,t, P

Max
s

]
, ∀ s ∈ S, t ∈ T. (24)

Here PMin
s and PMax

s , are the production limits of the generator at power

plant s. The final I/O curve for the generator at power plant s is illustrated,

in red, in Figure 14. The minimum operating limit P̂Min
s,t at power plant s,

in time period t, is constrained by the minimum production limit PMin
s of

power plant s. The maximum operating limit P̂Max
s,t , at power plant s, in

time period t, is constrained by the maximum permissible water discharge

QMax
s,t at the plant. Thus, the final operating limits, i.e. the first and last

points of the I/O curve, are (P̂Min
s,t , Q̂Min

s,t ) and (P̂Max
s,t , Q̂Max

s,t ), respectively.

Here, P̂Min
s,t = PMin

s , Q̂Max
s,t = QMax

s,t , while Q̂Min
s,t and P̂Max

s,t are calculated by

linear interpolation.

The HPF is now represented by a piecewise linear I/O curve. Hence the

power output, i.e. the total power production, from power plant s in time

period t, is given by

ps,t =
∑
b∈B

γb,s,t · qb,rs,t + P̂Min
s,t · ωs,t, ∀ s ∈ S, t ∈ T. (25)

Equation (25) states that the power production ps,t, at power plant s in

period t, is given by the sum of the slope of the I/O curve γb,s,t, multiplied

with the water discharge qb,rs,t, over all breakpoints b. The lower bound of the

production ps,t, is integrated in equation (25), stating that if the generator

at power plant s is active in period t, i.e. ωs,t = 1, then ps,t needs to be at
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qb,rs,t

Production
[MW ]

Discharge
[m3/s]

Breakpoint
indicies 0 b− 1 b bDown bDown + bUp

Breakpoints QMin
s,t Q̄b−1,rs,t Q̄b,rs,t QBest

s,t q∗rs,t QMax
s,t

PMin
s

PMax
s

P̄b−1,s,t

P̄b,s,t

Final operating
limits

Q̂Min
s,t Q̂Max

s,t

P̂Min
s,t

P̂Max
s,t

γb,s,t

Figure 14: Illustration for determining the concave piecewise linear I/O curve

for the generator at power plant s

[2].

least as large as P̂Min
s,t . The upper bound of the production ps,t, is defined by

the following inequality

ps,t ≤ P̂Max
s,t · ωs,t, ∀ s ∈ S, t ∈ T. (26)

Constraint (26) makes sure that, if the generator at power plant s is active

in period t, i.e. if ωs,t = 1, the production variable ps,t is less than or equal

to its upper bound, P̂Max
s,t . Constraints (13) and (14) are thus replaced by

constraints (25) and (26), respectively.
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The total water discharge at power plant s, in period t is now given by

qrs,t = Q̂Min
s,t · ωs,t +

∑
b∈B

qb,rs,t, ∀ s ∈ S, t ∈ T, (27)

0 ≤ qb,rs,t ≤ Q̄b,rs,t − Q̄b−1,rs,t, ∀ b ∈ B, s ∈ S, t ∈ T. (28)

Constraints (11) and (12) are thus replaced by constraints (27) and (28).

4.2.2 Summary of the linearized model

The complex and non-linear model, which was presented in Section 4.1.7,

can now be updated by approximating the non-linear constraints by the

new, linear constraints found in Section 4.2.1. The new model is

Minimize∑
t∈T

(∑
r∈R

(
COver ·∆sr,t + CB · qBr,t + Et

(
pBt − pSt

)
+ CR

(
zUr,t + zDr,t

)
+ CL

(
lpUt + lpDt

) )
+
∑
s∈S

(
CGS · ωS

s,t + Γs,t · qrs,t
))

−
∑
r∈R

(
CEndxEnd

r + CR
(
zeUr + zeDr

) )
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Subject to

(1),(4)− (7), (10), (15)− (16),

xr,t = xr,t−1 −∆sr,t +
∑
u∈T ∗

βu · s̄t−u − qr,t

− qBr,t + fr,t + zUr,t − zDr,t −
(
zUr,t−1 − zDr,t−1

)
,

∀ r ∈ R, t ∈ T,

∆sr,t = cr · xsr,t − s∗r,t, ∀ r ∈ R, t ∈ T,

hGross
s,t = lr,t−1(x∗r,t−1)− Ls, ∀ s ∈ S, t ∈ T,

ps,t =
∑
b∈B

γb,s,t · qb,rs,t − P̂Min
s,t · ωs,t, ∀ s ∈ S, t ∈ T,

ps,t ≤ P̂Max
s,t · ωs,t, ∀ s ∈ S, t ∈ T,

qrs,t = Q̂Min
s,t · ωs,t +

∑
b∈B

qb,rs,t, ∀ s ∈ S, t ∈ T,

0 ≤ qb,rs,t ≤ Q̄b,rs,t − Q̄b−1,rs,t, ∀ b ∈ B, s ∈ S, t ∈ T.

4.3 Handling binary variables

As mentioned in Section 4.1.6, ωStart
s,t is a binary decision variable that says,

for period t, if the generator at power plant s is turned on. SHOP’s solu-

tion algorithm is described in [2], and it is divided into two modes: Unit

Commitment (UC) and Unit Load Dispatch (ULD), which are illustrated in

Figure 15. In UC mode, SHOP solves the scheduling problem, as well as the

question if the generator unit at power plant s should be turned on in period

t. This is solved as a MILP-problem, due to the previously mentioned binary

decision variable ωStart
s,t , within a SLP-loop. After this is done for a given

number of SLP-iterations, or after the convergence criterion is met, SHOP

continues in ULD mode.

The SLP-iterations are performed to stabilize the head variation, in the reser-

voirs. For each SLP-iteration, the volume and water level of the reservoirs

are updated. This is then used to calculate the gross head for the next SLP-
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Figure 15: Solution strategy of SHOP [2].

iteration. The mentioned convergence criterion can be chosen as either of

the following:

(i) The highest mismatch of the water level for each period before and

after the reservoirs gets updated.

(ii) The maximum imbalance between the optimal power production that

is found by solving the optimization model, and the power production,

calculated based on the original HPF.

(iii) The change in objective function value between two consecutive itera-

tions.

If the value is smaller than a given tolerance, the iterative process stops.
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An alternative, fourth approach, is to define a stopping criteria after a finite

number of iterations. The iterative process (SLP-loop) would then complete

this given number of iterations, and then stop, whether the convergence has

occurred or not. This eliminates the possibility that the iterative process

could continue endlessly if the convergence criterion is never met.

The ULD mode builds on the results from the last SLP-iteration of the UC

mode. Since the question, regarding which generator unit in power plant s,

should be used for each time period t, has been answered in UC mode, the

ULD mode’s only focus is to calculate an optimal production schedule that

fits with the ”generator status”-plan, found in UC mode. Here, only commit-

ted generator units are included in ULD mode. Then the model turns into a

LP-problem, in the absence of binary decision variables regarding overflow.

In our case the model remains as a MILP-problem, since such variables are

present.

Usually the convergence criterion, chosen from (i)–(iii), is met after three

to five iterations for the UC mode, while the ULD mode needs two to three

iterations. In our case, a stopping criterion of three iterations are used for

both UC- and ULD mode.

4.4 Calibrating modelling parameter

As mentioned in Section 4.1.3, the modelling parameter Mr,t, in constraint

(7), can be calibrated in an attempt to reduce the solution time of SHOP.

The default value of Mr,t is defined as ζr.
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4.4.1 Defining the modelling parameter as small as possible

In order to obtain a strong LP-relaxation of the model in Section 4.2.2, the

modelling parameter Mr,t, which occurs in constraint (7), should be kept as

small as possible without cutting off feasible solutions.

Depending on the design and size of the dam in reservoir r, the maximum

volume of water in r is denoted x̄r. It is limited by certain physical and

hydrological properties, and is given as input to SHOP as part of a flood

curve o(x, r) which describes the amount of overflow from reservoir r, given

volume x. The largest value that xsr,t can be assigned, in theory, is defined

as

θr = x̄r − xMax
r , ∀ r ∈ R. (29)

When Mr,t = θr, it is as small as possible, without risking to cut off solutions

that fulfill constraint (6). Constraint (7) can hence be rewritten as

xsr,t ≤ θr · δr,t, ∀ r ∈ R, t ∈ T. (30)

4.4.2 Heuristic for determining modelling parameters

Letting Mr,t = x̄r − xMax
r does not necessarily yield a strong relaxation to

make a great impact on the solution time of the problem. There might be a

substantial gap between the realistic volume of overflow xsr,t, and the maxi-

mum volume now given by θr, for reservoir r in time period t.

By inspecting the data given as input, which typically includes starting vol-

ume, inflow, and a flood curve for reservoir r, one can use that to approximate

the volume of the reservoirs, before the first SLP-iteration. This can in turn

be used to approximate a value of Mr,t, which is tighter than θr, without

taking a great risk of cutting off any valid solutions. This is done by defin-

ing the modelling parameter, not only for each reservoir r, but also for each
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period t. It is computed by Algorithm 1, where g is a user-specified percent-

age that is used to increase the estimate of the volume xr,t, of reservoir r in

time period t. The values of xr,t, for the first SLP-iteration, is as mentioned,

approximated based on the input data. For the rest of the iterations, xr,t is

equal to the reservoir volume x∗r,t, from the previous SLP-iteration. As long

as σr,t(g) is not larger than θr, the solution time of the problem should de-

crease. Figure 17 illustrates example values of σr,t(g) for Gr̊asidevatn, when

the added percentage g is equal to 2.0, i.e. σr,t(2.0).

Algorithm 1: Determining σr,t(g)

Input : Start volume xStartr , reservoir volume limit xMax
r , inflow

fr,t, flood curve o(x, r), added percentages gFirst and

gLater, current SLP-iteration i

Output: Modelling parameter σr,t(g)

if i = 1 then

x0
r,t = xStartr + fr,t

xr,t = x0
r,t − o(x0

r,t, r)

g = gFirst

end

else
xr,t = x∗r,t

g = gLater

end

σr,t(g) = MAX
[
0,
(
1 + g

100

)
· xr,t − xMax

r

]
Return σr,t(g)

4.4.3 Formulating a model to minimize Mr,t

In an attempt to minimize the modelling parameter Mr,t, for all instances,

a new optimization problem is formulated. Here the goal is to maximize the

volume of overflow xsr,t, which is the variable that is constrained by Mr,t.
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Thus, by maximizing xsr,t, one finds the minimum value that Mr,t can be

assigned. The model needs to be solved for each period t and each reservoir

r. The optimal objective function value is thus φr,t, for reservoir r and time

period t. The model is defined as

Maximize xsr,t

Subject to

(1), (4)− (6), (10), (15)− (19), (25)− (28).

Since the problem needs to be solved for each period t and reservoir r, the

total solution time would be too large to have any value for the end-users.

Thus, the result φr,t, will be used as a guideline of how good the values of

σr,t(g), i.e. the result of Algorithm 1, are.
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5 Effective elimination of unphysical overflow

The problem regarding the occurrence of unphysical overflow, when the op-

timization problem is solved effectively by using continuous variables, was

outlined in Chapter 3. It was also shown how SHOP eliminates unphysical

overflow, by introducing binary decision variables. However, this results in a

very long solution time and thus the question that arises is:

What can be done to eliminate unphysical overflow effectively?

The natural answer is to, if possible, formulate a new optimization model

for SHOP, such that unphysical overflow is eliminated, without using binary

decision variables, or to reduce the solution time of the model that already

eliminates unphysical overflow.

We will now direct our focus at the latter answer, and Section 4.4 makes

several suggestions of how manipulation of the modelling parameter Mr,t,

can have this desired effect. The next sections present the result of the

experiments that have been conducted. The results mainly consist of the

solution time that is spent in CPLEX, when SHOP solves the optimization

problem. Several figures that compare the solution time in SHOP given dif-

ferent values of Mr,t, are presented and discussed.

The experiments are solved in SINTEF’s SHOP-lab, using SHOP-version

14.2.2.0. The data basis describing the Fossdal watercourse, which consists

of the Fossmark power plant and the reservoirs Gr̊asidevatn and Fossdals-

vatn, has been provided by Eviny. It includes:

- Inflow fr,t to both reservoirs, for each time period (hour), for the whole

planning horizon of 14 days.

- Start head and start volume, HRL and LRL of both reservoirs.
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- Electricity price Et in each time period, for the whole planning horizon.

- Flood-curve o(xr,t, r) for each reservoir.

- Minimum and maximum discharge- (QMin
s,t , QMax

s,t ) and production (PMin
s,t ,PMax

s,t )

limit for the power plant Fossmark.

Some predefined settings of SHOP is:

- MIP-gap = 0.01%. This means that an integer solution is only consid-

ered optimal if its objective O1, is within an optimality gap of 0.01%

from the objective O2 of the best found lower bound on the optimal

objective value. To be more precise, O1 is within the optimality gap of

0.01%, relative to O2 if O2−O1

O1
≤ 0.0001.

- A time limit per SLP-iteration of 600 seconds. This means that if no

integer solution fulfills the MIP-gap, before 600 seconds have passed,

SHOP ends the SLP-iteration, and the best found integer solution of

the iteration is used as input for the next SLP-iteration.

- Penalty cost values presented in Table 1.

5.1 Comparing different values of Mr,t

Figures 16 – 17 give an overview how the different values of Mr,t, presented in

Sections 4.4.1 – 4.4.2, compare to each other as well as to the actual volume

of overflow xsr,t.
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Figure 16: The values ζr (red) and θr (blue) of Mr,t, compared to the volume

of overflow xsr,t for Gr̊asidevatn.
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Figure 17: Dynamic values σr,t(1.5), of the modelling parameter Mr,t, com-

pared with the volume of overflow xsr,t.
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It is clear that the dynamic values σr,t(g) of Mr,t in Figure 17, is far tighter

than the constant values ζr and θr in Figure 16. It also highlights how the

values of σr,t(g), used in the first SLP-iteration, are a bit tighter than the

values of σr,t(g), used in the later iterations. This suggests that it is possible

to reduce the added percentage g for the later iterations, and hopefully reduce

the solution time even more.

5.2 Experiments when Mr,t = θr

The value θr for the modelling parameter Mr,t, defined in Section 4.4.1 as,

as small as possible without risking to cut off any valid solutions, have been

implemented and experimented with in SHOP. The results are presented in

Figure 18. Here it becomes clear that this value assignment to Mr,t in some

instances reduces the solution time, whereas in other instances the solution

time increases. It increases the solution time with nearly 50 % and 20 %,

for the 5 and 10 day time horizons, respectively. While for both the 7- and

14-day time horizons, the solution time is decreased by almost 30 %.

Ideally, the solution time is decreased for all time horizons. However, since

a time horizon of 14 days is the most preferred setting, and 7 days is the

second most preferred setting, their results should be weighted more than

the results of a time horizon of 5 or 10 days. The result shows that SHOP

is sensitive to the value assigned to the modelling parameter, and that the

value θr does not guarantee an improved solution time. Nevertheless, it is an

important result, it shows a clear potential in reducing the solution time.

It is also worth mentioning that the Fossdal watercourse, with Fossmark

power plant and the two reservoirs Fossdalsvatn and Gr̊asidevatn, is a small

and quite simple hydro system. Thus, the result of using θr instead of ζr,

might have an even larger impact on the solution time of a larger and more

complex hydro system.
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Figure 18: Comparing the solution time when Mr,t = ζr (red), with the so-

lution time when Mr,t = θr (blue). The reduction of the solution time, in

percentages is shown in green.

5.3 Experiments when Mr,t = σr,t(g)

The definition of σr,t(g), i.e. a dynamic calculation of a minimal and case

dependent value of the modelling parameter Mr,t for each reservoir r and

in each time period t, was given in Section 4.4.2. It has been implemented

in SHOP, and experimented with. Figure 19 shows that the solution time

varies a lot as the values of g are modified. With no added percentage, i.e.

g = 0, SHOP does not manage to find an integer solution that is within

a predefined MIP-gap of 0.01%. The solution time is substantially reduced

when the user-specified added percentage is g = 1.5% or g = 2.0%. These

values of g will thus be further experimented with.
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Figure 19: Solution time using σr,t(g), for different values of g. The value of

g is the same for all iterations. Points plotted as × indicate that no integer

solution, fulfilling a MIP-gap of 0.01%, was found.

Figure 17 shows that Mr,t = σr,t(1.5), plotted in yellow, which is based on

an approximation of the overflow volume of reservoir r, for the first SLP-

iteration, is barely larger than the actual overflow volume xsr,t, plotted in

green. This needs to be kept in mind when calibrating the values of g further,

hence the value of g for the first SLP-iteration should be a bit larger than the

value of g for the remaining iterations. This, and the result of it are shown

in Figures 20 – 23.

Figures 20 – 21 show how the solution time varies with the added percentage

g. As g gets smaller, so does the solution time. However with g = 0.2, the so-
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Figure 20: Solution time with g = 2.0 for the first SLP-iteration, and differ-

ent values of g for the remaining iterations. Points plotted as × means that

no integer solution, fulfilling a MIP-gap of 0.01%, was found.

lution time dramatically increases and no solution within the aforementioned

MIP-gap is found. This could be explained by that the value σr,t(0.2), for

some time period t, is smaller than the real-life upper limit of the overflow.

The heuristic uses reservoir volume from the previous SLP-iteration to ap-

proximate the volume of overflow. Since, for each SLP-iteration, it is possible

that the volume of reservoir r has not yet converged, the added percentage g

needs to be large enough to handle the possible gap in volume between the

SLP-iterations. For this particular case we have experienced that g should

not be smaller than 0.3.

Figures 22 – 23 show only the best performing values of g, for the later iter-

ations. All the values give similar results, with g = 0.3 performing slightly

better overall. Figure 24 shows how much the value of g for the first SLP-
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Figure 21: Solution time given g = 1.5 for the first SLP-iteration, and dif-

ferent values of g for the remaining iterations. Points plotted as × means

that no integer solution, fulfilling a MIP-gap of 0.01%, was found.

iteration, impacts the solution time. Decreasing g by just 0.5, from 2.0 to

1.5, results in a 67% reduction in solution time, when solving the problem

for the whole 14-day planning horizon.

The results presented in Figures 22 – 24 indicate that the added percentage

g should be 1.5 in the first SLP-iteration, and 0.3 in later iterations, when

solving the scheduling problem. Figure 25 compares the solution time of the

problem when Mr,t = σr,t(1.5) in the first SLP-iteration and Mr,t = σr,t(0.3)

in the later iterations, to the solution time when Mr,t = ζr. It shows how the

solution time is just beneath 1000 seconds when solving the problem with

Mr,t = ζr, whilst the proposed method, using Mr,t = σr,t(g), reduces the

solution time to 11 seconds.
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Figure 22: Solution time when Mr,t = σr,t(g) for the best performing values

of g, with Mr,t = σr,t(2.0) in the first SLP-iteration.
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Figure 23: Solution time when Mr,t = σr,t(g) for the best performing values

of g, with Mr,t = σr,t(1.5) in the first SLP-iteration.
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Figure 24: The problem is solved with Mr,t = σr,t(0.3) in the later SLP-

iterations, comparing the impact of different values of g in the first iteration.
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Figure 25: Comparing the solution time in CPLEX when Mr,t = ζr, when

Mr,t = σr,t(1.5) in the first SLP-iteration, and when Mr,t = σr,t(0.3) in the

later iterations.

54



5.4 Comparing σr,t(g) with φr,t

As seen in Section 5.3, letting Mr,t = σr,t(g) does give a substantial reduction

in the solution time. However, Algorithm 1 which computes σr,t(g), does not

guarantee a great result in every case, or even a feasible solution, as seen in

Figures 20 – 21. Nor can it guarantee that a solution is optimal.

Figure 26 compares the performance of Algorithm 1, to the maximum vol-

ume of overflow φr,t, i.e. the minimum value the modelling parameter Mr,t can

have, at Gr̊asidevatn. The figure shows that φr,t at Gr̊asidevatn, coincides

perfectly with the actual volume of overflow xsr,t. This is logical since the

gate regarding scheduled water from Gr̊asidevatn is closed, and the volume

of the reservoir is thus only dependent of inflow and overflow.

This is the idea behind Algorithm 1, and it is clear from Figure 26 that

the values of σr,t(g), with gFirst = 1.5 and gLater = 0.3, are close to the val-

ues of φr,t. Intuitively one would like σr,t(g) to be equal to φr,t. This would

then mean that in the later SLP-iterations, where convergence is likely to

have occurred, it would be possible to reduce gLater even more. However, our

observations from Figures 19 – 21 suggest otherwise, where g < 0.3 in the

later iterations causes the solving time to increase dramatically. This could

possibly be explained by that convergence is yet to occur, or that some of

the constraints in the model are too strict. However, we have verified that

convergence occurs, and that none of the constraints are overly strict. We

therefore do not know, at this moment, why g cannot be smaller than 0.3.
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6 Conclusion

We started with the problem regarding the occurrence of unphysical overflow.

A model, based on Eviny’s power plant Fossmark, with adjacent reservoirs,

was introduced. It then became clear that by introducing binary decision

variables to model the relation between overflow and reservoir level, unphys-

ical overflow is eliminated completely. However, it also increased the solution

time dramatically.

Thus, in an attempt to reduce the solution time, an optimization method

involving more precise formulations of the modelling parameter ζr, which

acts as an upper limit on the volume of overflow, was suggested. By using

the modelling parameter σr,t(g), calculated by Algorithm 1, the solution time

was reduced dramatically, from just beneath 1000 seconds, to around 11 sec-

onds.

Although we were able to achieve some great results for this case, there

is no guarantee that the aforementioned method performs well in every case.

Observations indicate that the optimization problem is very sensitive to the

value of g in σr,t(g).

With this being said, the results show a potential for substantial reduc-

tion of the solution time of the problem. It should therefore be investigated

whether other variable and constraint modifications result in a further re-

duction of the solution time, of scheduling problems for other hydro systems

with flooding risks.
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Appendix

A Python code used to solve the model in

SHOP

import pandas as pd

import numpy as np

from pyshop import ShopSession

tick_label = ["Aug 10","Aug 12","Aug 14","Aug 16",

"Aug 18","Aug 20","Aug 22","Aug 24"]

# Create a new SHOP session.

shop = ShopSession(silent=False, log_file='')

# Setting the start time of the model

starttime = pd.Timestamp('2020-08-10 00:00:00')

# Setting the end time of the model

endtime = pd.Timestamp('2020-08-24')

# Setting the start and end time to the shop instance,

# and defining the time unit

index = [pd.Timestamp(2020, 8, 10, 0)]

resolution = [1]

time_resolution = pd.Series(index=index, data=resolution)

shop.set_time_resolution(starttime = starttime, endtime = endtime,

timeunit = 'hour',

timeresolution = time_resolution)

# Import file with the model and load model into ShopSession
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from Fossmark import fossmark_LP as fossmark

fossmark.load(shop.shop_api)

def discharge_to_Mvolume(discharge):

return discharge*3600/1000000

def volume_to_head(vol,reservoir):

if reservoir == 'Gråsidevatn':

vol_head = shop.model.reservoir.Graasidevatn.vol_head.get()

else:

vol_head = shop.model.reservoir.Fossdalsvatn.vol_head.get()

if vol not in vol_head:

vol_head.loc[vol] = np.nan

vol_head = vol_head.sort_index().interpolate(method='index')

return vol_head[vol]

def head_to_discharge(head,reservoir):

if reservoir == 'Gråsidevatn':

flow = shop.model.reservoir.Graasidevatn.flow_descr.get()

else:

flow = shop.model.reservoir.Fossdalsvatn.flow_descr.get()

if head not in flow:

flow.loc[head] = np.nan

flow = flow.sort_index().interpolate(method='index')

return flow[head]

def calculate_future_volume(reservoir):

if reservoir == 'Gråsidevatn':

start_vol = shop.model.reservoir.Graasidevatn.start_vol.get()

inflow = shop.model.reservoir.Graasidevatn.inflow.get()
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else:

start_vol = shop.model.reservoir.Fossdalsvatn.start_vol.get()

inflow = shop.model.reservoir.Graasidevatn.inflow.get()

volume = [start_vol]

head = volume_to_head(start_vol,reservoir)

flow = head_to_discharge(head,reservoir)

volume[0] -= discharge_to_Mvolume(flow)

for e,i in enumerate(inflow):

vol_inflow = discharge_to_Mvolume(i)

volume.append(volume[-1]+vol_inflow)

head = volume_to_head(volume[-1]+vol_inflow,reservoir)

flow = head_to_discharge(head,reservoir)

volume[e+1] -= discharge_to_Mvolume(flow)

return np.array(volume)

def calculate_bigM(reservoir, percentage):

vol = calculate_future_volume(reservoir)

if reservoir == 'Gråsidevatn':

max_volume = shop.model.reservoir.Graasidevatn.max_vol.get()

else:

max_volume = shop.model.reservoir.Fossdalsvatn.max_vol.get()

return (1 + percentage/100) * vol - max_volume

def update_bigM(reservoir, percentage):

if reservoir == 'Gråsidevatn':

volume = shop.model.reservoir.Graasidevatn.storage.get()

max_volume = shop.model.reservoir.Graasidevatn.max_vol.get()

else:

volume = shop.model.reservoir.Fossdalsvatn.storage.get()

max_volume = shop.model.reservoir.Fossdalsvatn.max_vol.get()
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return (1+percentage/100) * volume - max_volume

# Build and solve model:

percentage_start = 1.5

percentage = 0.3

BigM_G = -calculate_bigM('Gråsidevatn',percentage_start)

BigM_F = -calculate_bigM('Fossdalsvatn',percentage_start)

shop.model.reservoir.Fossdalsvatn.overflow_mip_flag.set(True)

shop.model.reservoir.Graasidevatn.overflow_mip_flag.set(True)

iterations = 6

for i in range(iterations):

if i > 0:

BigM_G = -update_bigM('Gråsidevatn',percentage)

BigM_F = -update_bigM('Fossdalsvatn',percentage)

BigM_G.loc[BigM_G>0] = 0

BigM_F.loc[BigM_F>0] = 0

if i == 3:

shop.set_code(['incremental'],[])

# Create a file with the LP-model

model_name = 'printed_model_%s.lp'%(i+1)

shop.print_model([],[model_name])

# Set up the model in SHOP

shop.lp_model.build()
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shop.lp_model.load_model()

# Change the values of the "Big M" in the model:

# find the id number of the row (constraint) corresponding

# to "reservoir volume over maximum limit"

row_id = shop.lp_model.row_type['rsv volume over limit max'].id

# find every such row (constraint) in the model

ovfl = shop.lp_model.row.filter(row_type = row_id)

counter_G = 0

counter_F = 0

# for every such row, change the coefficient of

# the binary variable to BigM_G[counter_G] (for Gråsidevatn).

for j in ovfl:

if abs(shop.lp_model.row[j].vars[1][1]) < 1.06:

shop.lp_model.row[j].set_parameters(variables =

[shop.lp_model.row[j].vars[1][0]], coefficients =

[BigM_G[counter_G]])

counter_G += 1

if abs(shop.lp_model.row[j].vars[1][1]) > 1.35:

shop.lp_model.row[j].set_parameters(variables =

[shop.lp_model.row[j].vars[1][0]], coefficients =

[BigM_G[counter_F]])

counter_F += 1

# Solve the model

shop.lp_model.solve()
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