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Abstract

Salmon lice and poor surface conditions are challenging for salmon aquaculture. A new innovative

preventative solution is to submerge the cages below the sea surface to avoid the surface-dwelling

infestation of lice larvae. However, the physostomous salmon require daily surface access, or the

swim bladder will deflate. The ensues negative buoyancy leads to increased swimming speed, and

over a prolonged time (2-3 weeks), the appetite and growth rate may be reduced, resulting in poor

welfare. For 28 days, 500 salmon were placed in a cage submerged to 1 m depth, preventing the

salmon from reaching the sea surface and refilling the swim bladder. Beneath the cage, three EK80

scientific wide-band echo sounders with 70, 120, and 200 kHz split-beam transducers were deployed

to study the acoustic backscatter over time. From the backscattered signals, parameters such as the

target strength (TS), volume backscattering strength (SV ), the frequency response of both TS and SV ,

and the swimming speed could be calculated. These parameters are studied to determine the first to

indicate an insufficient air level based on signal type and frequency. The results show an increase in

swimming speed and a decrease in both TS and SV values. From the measured daily T S values from

both FM and CW signals, the decrease appeared to begin from day 6 of submergence. As the air in the

bladder diminished, the ratio between the values from the three echo sounders increased, which was

evident from TS and SV measurements, and the frequency responses. The swimming speed acquired

from the acoustical recordings decreased from day 5, but the speeds were unexpectedly high. These

findings may be used to develop automatic alarms that detect low swim bladder inflations or poor

welfare and provide new fundamental knowledge about backscattering from salmon.
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Chapter 1

Introduction

1.1 Motivation

Atlantic salmon, Salmo salar, has been one of Norway’s most important export products over the past

decades. Norway produces nearly half of the world’s Atlantic salmon, with approximately 1.1 million

tons exported in 2019 [1]. The global population continues to grow every year, and it is predicted that

there will be 8.5 billion people on this planet by 2030 [2]. To meet the UN’s Sustainable Goal 2: Zero

Hunger, food production needs to keep pace with the population, and an increase in farmed salmon

will contribute to reaching the goal. Although modern technology, vaccines, and medicine have vastly

improved the industry, it still faces significant obstacles.

A major parasite and problem of Norwegian aquaculture is the salmon louse, Lepeophtheirus salmo-

nis [3]. The louse feeds on the salmon’s skin, blood, and mucus, resulting in wounds and infections

[4]. Apart from salmon louse, algae blooms and poor surface conditions like low oxygen, excessive

temperatures, and biofouling stress the salmon’s growth and health [5]. Large budgets and resources

are devoted to devising an answer for the problems, and one solution can be to submerge the cages

below the sea surface [6]. This, however, presents additional challenges due to the salmon’s biologi-

cal structure. They belong to the group of fish known as physostomous, which means that the swim

bladder is connected to the pharynx by a channel. They swim to the surface and swallow or snap

air to adjust the bladder’s volume [7]. Other species are physoclistous, meaning they have no con-

nection between the pharynx and the swim bladder and use gas from the blood to fill and empty it.

Conversely, some species have no swim bladders and continuously swim with negative buoyancy [7].

A low air level is detrimental to their health and gradually results in behavioral changes. Due to in-

sufficient air, salmon have difficulty maintaining neutral buoyancy. The salmon swim faster with a

vertical tilt, head up and tail down, to compensate for the negative buoyancy, and findings show that

a negative buoyancy may reduce appetite, followed by a reduction in growth [7, 8].

Fish have been studied using acoustic instruments throughout the last century, where the first de-

tection of fish using echo sounders dates to 1929 by Kimura [9]. The amount of signal returned to

the echo sounders depends on the species. Due to the air within the swim bladder, physostomous

2
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or physoclistous fish backscatters the signal better than fish without one, as the swim bladder is the

primary source of the backscattering [10]. Thus, acoustic signals, such as target strength (TS) from

individual fish and volume backscattering strength (SV ), are highly relevant for observing the air level

of salmon in submerged cages. Both TS and SV are measures of how much of the transmitted signal

is scattered back to the echo sounder [9].

Hence, a drop in the air level of submerged salmon can be detected using echo sounders. In light of

the acoustic data, a feasible alarm system could be designed to alert farmers that the salmon need

more air. However, research is still in its early stages in this area. Which signal types and frequencies

to use and parameters to look for are still unidentified and will be studied in this thesis.

1.2 Prior work

Echo sounders are essential tools in the fishery industry and have been used to study aquatic species

since the 1930s. Already in 1949, echo sounders were applied in surveys to observe the behavior and

identification of different types of fish [11]. Echo sounders transmitting single frequencies, called

continuous waves (CW)1, are most commonly used [12]. Further development of the technology

led to echo sounders transmitting broadband signals, which have been used in experiments on fish

since the 1990s [13]. Broadband echo sounders transmit a range of frequencies, usually frequency

modulated signals, denoted FM [14]. The scattering of species varies with frequency, and thus FM

signals can provide more information about a fish than CW signals [15]. In 2015, Kongsberg Maritime

released the EK80 wideband scientific echo sounder, which transmits both FM and CW signals [16].

It was not until 2020 that it was discovered how well FM signals could be used for fish identification

[17]. In their study of the classification of targets from TS and SV using FM and simulated CW pulses,

Benoit-Bird et al. saw how FM signals returned better results than CW [17].

The technology within acoustics is still limited in fish farming and not as developed as it is for target

classifications and surveys [12, 18]. In fish farming, the technology is increasingly used where in

commercial aquaculture, CW echo sounders are applied to optimize feeding and monitor the fish’s

behavior [19, 20]. The echo sounders are usually not split beam and cannot see the fish’s position

when swimming through the beam [12]. However, echo sounders have been implemented in more

advanced areas in recent years. SalMar has a pilot project for offshore salmon farming called "Ocean

Farm 1". They use twelve Simard EK80 echo sounders to monitor the behavior of salmon, biomass,

gas bubbles, feed, and more [21]. Sintef Ocean, in cooperation with the Hellenic Centre for Marine

Research in Greece, started "PerformFish" in 2020. As "Ocean Farm 1", they are using Simard’s echo

sounders to measure the biomass of the salmon [22].

The application of acoustics in research has become increasingly appealing regarding the submerged

cages, and the study of the welfare of farmed salmon, in which results from four experiments are ex-

amined [23–26]. Each of the experiments had one or more cages submerged to 3 m [23], or below 10

1FM and CW signals will be further explained in Section 2.1
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m depth [24–26], and they all applied a PC-based echo integration system to measure the echo inten-

sity. Echo integration is used when calculating the backscattered signals from a volume of multiple

depths (ref. Subsection 2.3.4) [9]. The results of the echo integration from the 22 days of submergence

at 3 m depth from [23] can be seen in Fig. 1.1.

Figure 1.1: Total target strength corrected for biomass (TScor r ) given as means per day ± standard error (SE)
for two submerged (Sub 1 and sub 2) and two control cages (C1 and C2) over the 28-day experimental period.
TScor r is a relative quantity and has no unit. (Text and figure taken from [23], pp. 259). The stippled vertical
lines on days 3 and 25 represent the days for submerging and resurfacing the cage.

The 28-day experimental period and T Scor r for C1 and C2, and Sub1 and Sub2 are seen in Fig. 1.1.

The total target strength is denoted T Scor r . However, the notation, in this case, is deceptive, as T Scor r

is the total echo strength for the measured volume divided by biomass to adjust for the growth in size,

and TS is normally a measure of intensity from a single target [23]. For both Sub1 and Sub2, the T Scor r

was decreasing rapidly during the first days before it started to decrease linearly from day 5 [23]. After

22 days of submergence (on day 25), T Scor r were 5-7 times lower compared to day 3. Throughout

the experiment, the swimming speed was measured, where the fish in Sub1 and Sub2 swam 1.6 times

faster than the fish in C1, and C2 [23]. Further, the results from [24] are presented in Fig. 1.2, where

the cages where submerged below 10 m depth.
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Figure 1.2: Total echo strengthcor r (corrected for biomass) given as means per day for three submerged (Sub1,
Sub2, and Sub3) and control cages (Control1, Control2, and Control3) over 50 days. Day 0 was the measurement
prior to submergence, and day 43 was the day where the submerged cages were resurfaced (text and figure
taken from [24], pp. 328)

Fig. 1.2 shows the mean total echo strength corrected for biomass as a function of days for six cages:

Sub1, Sub2, Sub3, Control1, Control2, and Control3. The vertical stippled lines represent the day of

submergence and the day of resurfacing. There are some missing values between days 2 and 10, but

a linear decrease is seen from day 11 until almost no echo intensity some day between days 23 and

31. The fish in the submerged cages swam 1.3 – 1.4 times faster than in the control cages. Further-

more, in [25], three cages were submerged to 10 m depth which were submerged for eight weeks and

resurfaced once a week, and the results can be seen in Fig. 1.3.

Figure 1.3: Percentage echo strength ± SE compared to total echo strength of the submerged fish in the hours
after the first submergence. Some data points are missing due to a malfunction of the echo sounder system.
Vertical grey bars indicate days of lifting of the nets and surface access (Text and figure taken from [25])
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The change in relative echo strength [%], which is the echo strength relative to the total echo strength

measured of the salmon right after the cages were submerged on day 1 is shown in Fig. 1.3. The gray

bars are the days when the cages were lifted, and the salmon had access to the surface. During the

experiment, the relative echo strength exceeded 100 %, which means the measured echo strength was

higher than what was measured on day 1 [25]. As in [23], the echo strength decreased quite rapidly

and linearly after the salmon was submerged. The swimming speed of the submerged fish was 1.4 –

3.4 times faster than the control fish [25]. Lastly, the results from [26] is presented in Fig. 1.4

Figure 1.4: Proportion change in echo strength for the control (black) and submerged (grey) salmon cages.
Data are means ± SE recorded 13 times throughout the experimental period. Vertical dashed lines represent
submergence and resurfacing of submerged cages; n = 3, except for the last time point for submerged cages
when n = 1 due to hardware error. (Text and figure taken from [26], pp. 505)

Fig. 1.4 shows the average total target strength per day for the 42 days experimental period for three

submerged cages, and three control cages [26]. The total strength decreased more rapidly during the

first week and was almost 0 at the end of the experiment. In addition to the acoustical measurements,

they measured the swimming speed in the cages, where the speed of the fish in the submerged cages

was 1.64 times faster than in the control cages [26].

Based on the results from [23–26], the overall echo intensity is expected to decrease and the swimming

speed to increase. However, due to the divergent results, how fast the decrease in echo intensity will

occur is difficult to predict. Common for the four experiments is the use of echo intensity from an

echo sounder transmitting CW signals, which has not been calibrated [18]. In addition, the results

are presented differently in each of the publications, expressing relative values. The use of calibrated,

scientific echo sounders transmitting CW and FM signals and studying swimming speed and TS of

individual farmed salmon in a submerged cage has not been done and is in the preliminary stages of

research [18, 27].

Furthermore, Knudsen et al. [28] studied the correlation between TS and length of Atlantic salmon

using Simard’s EK60 echo sounders, transceiving frequencies at 120 and 200 kHz. The experiment
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resulted in a linear relationship between the two parameters, where the target strength increased with

the increasing fish length. For a 38 cm long salmon with normal conditions: access to the surface

and neutral buoyancy, the anticipated TS values are -30 dB re. 1 m2 from 120 and 200 kHz. The

calculations are based on the Eqs. (2.27) and (2.28), defined in Subsection 2.3.3. Further, the expected

TS from a lower frequency, 50 kHz, calculated using Eq. (2.26), is - 34 dB re. 1 m2. As the air level

decreases, a fish with an empty swim bladder is estimated to result in a TS value at - 55 dB re. 1 m2,

from Eq. (2.29) based on measurements from a 38 kHz echo sounder [29].

Various analytical and numerical models have been developed to increase the understanding of acous-

tic scattering from aquatic species, where models of the TS can be used to support the results from

measurements. The Kirchhoff’s-Ray mode (KRM) [30] is a hybrid between an analytical and numer-

ical model of phystomous fish. In 2000, Horne et al. [31] estimated the TS from a two-chambered

swim bladdered fish, Acanthobrama terraesanctae, by using KRM and compared the results with ex-

perimental measurements. The measurements were done using 120 kHz, and 420 kHz frequencies,

where the measured results were less than the results from the KRM model [31]. Later, in 2008, Hen-

derson et al. [32] studied how the orientation of the fish will affect the TS, and KRM simulations were

an essential tool in the study. Using the acoustic wave’s incident angle, they applied KRM to calculate

the anticipated TS values. Further, Reeder et al. [15] measured the TS from a fish called alewife, using

FM signals with a frequency range from 40 - 95 kHz. In addition, the TS was simulated for three fre-

quencies within 20◦ of the main lobe, using the KRM model [15]. From the simulation, the TS values

were very close to or just below the measured values [15].

1.3 Objectives

The main objective of this thesis is to use acoustic measurements to detect a decrease in the air level

of the salmon swim bladder. The scientific echo sounders applied in the experiment transceive two

pulse types, FM and CW, over three frequency bands, ranging from 55 to 260 kHz. The acquired data

will be used to calculate the TS, SV , the frequency response of TS and SV , and the swimming speed.

These parameters are studied to determine which is the first to indicate an insufficient air level based

on signal type and frequency. In the prior work on salmon in submerged cages, echo sounder has not

been the main focus of the study. The presented echo intensities have been based on relative values,

thus, a prerequisite is that the scientific echo sounders are able to measure the TS from individual

fish. If so, the goal is to quantify the decreasing TS of individual salmon as the air level in the bladder

is diminishing. It will be examined whether FM signals can reveal more information than CW signals

due to their frequency range.

Additionally, the intended post-processing software, LSSS, has been developed for CW signals and

survey data. Thus, through this thesis, the post-processing tool will be explored to see if it is suf-

ficient for FM signals, calculating the swimming speed, and processing data acquired from farmed

salmon. Kirchhoff’s-Ray Mode simulation will be used to model the swim bladder and to simulate

the frequency response of TS and a decrease in TS as the volume of the swim bladder decreases.
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1.4 Outline of thesis

Chapter 2 presents the theory of the thesis. It includes the basic theory of FM and CW signals,

backscattering, target strength, and volume backscattering strength. In addition, it addresses the the-

ory behind the tracking in LSSS. Further, Chapter 3 describes the experimental setup and the methods

used to implement the experiment. Both the acoustic measurement methods and the complemen-

tary measurement methods will be described. Next, Chapter 4 presents Kirchhoff’s Ray Mode (KRM)

method used to simulate the TS for both CW and FM signals. The results obtained from the measure-

ments and modeling are addressed in Chapter 5, while Chapter 6 includes an overall discussion of

the methods used and the results from Chapter 5. Chapter 7 presents a conclusion and some further

work. Lastly, the appendixes are included after the references, containing additional information and

the scripts used when obtaining the data exported from LSSS.



Chapter 2

Theory

This chapter will address the theory behind the thesis. The theory of the two pulse types, FM and

CW, the parameters of interest, TS, SV , the frequency response of both TS and SV , and swimming

speed will be explained. Additionally, it includes a description of the post-processing software ap-

plied, LSSS.

2.1 FM and CW signals

Signals from an echo sounder, e.g., the EK80 echo sounder from Simrad [33], can be transmitted using

either narrowband, referred to as CW (continuous wave) or broadband called FM (frequency modu-

lated), signals. While CW is a sinusoidal signal consisting of one frequency, FM signals are transmitted

over a broader range of frequencies [34]. FM signals are often sent as a chirp signal, which is a signal

where there is a continuous, linear change in the frequency. The chirp is often sweeping from low to

high frequencies [35].

The axial spatial resolution, ∆R, decides the quality and the details of the received signals. If the

scatters from the targets are closer than ∆R, it will be difficult to distinguish between multiple targets

as the received signals may overlap. Therefore, it is important to have a good spatial resolution and

signal-to-noise ratio (SNR) when detecting single targets and measuring TS [14], Eq. (2.1),

∆RCW = cτCW

2
, (2.1)

from [14] shows how to determine the spatial resolution of CW signals, where c is the speed of sound

in seawater and τCW is the duration of the emitted digital signal sent to the transceiver. The band-

width, B, of the input FM signal can be used to express the output pulse duration, τ [14],

τ= 1

f2 − f1
= 1

B
, (2.2)

where f1 and f2 are the start and end frequency in the frequency band, respectively, which are further

9



10 CHAPTER 2. THEORY

used to derive the equation for the axial spatial resolution of FM signals,

∆RF M = c

2B
, (2.3)

as shown in [14]. Both Eq. (2.1) and (2.3) are given in m. Higher frequencies provide a higher spatial

resolution. This makes it easier to distinguish between targets within proximity, but the higher the

frequency, the more energy is lost due to absorption [9]. Using FM signals instead of CW signals can

improve the spatial resolution and SNR of the received data. The spatial resolution of FM signals, Eq.

(2.3), is higher than for CW from Eq. (2.1), and it is, therefore, more accessible to detect single targets,

e.g., in a dense fish shoal and aquaculture. However, since FM signals have a wider bandwidth, the

data often include more noise than the data acquired from CW pulses. Due to the wide range of

frequencies, FM data require more storage, and the speed of processing and analyzing may slow down

[34].

For each frequency in the bandwidth, FM signals return TS and SV values expressed as functions of

frequency, TS(f) and SV ( f ), called the frequency response. As a result of their differences in behav-

ior and structure, every species will have a different frequency response, making it possible to use

acoustics to distinguish between them [9]. The frequency response from TS can provide information

about the size of the species, where two minimums in the frequency band can be used to calculate

the distance, d, between two objects [36],

d = c

2∆ f
, (2.4)

where the two objects are, e.g., the top and bottom of the fish’s body, or the swim bladder, ∆ f is the

frequency band between the two minimums.

2.1.1 Processing of FM data using pulse compression

The EK80 Wide Band Transceiver [37], WBT, converts digital voltage signals, ytx(n), to analog acous-

tical pressure signals, ytx,a(t ), where bold letters implies complex quantities. The analog signal is

sent through the water column and scattered back to the transceiver, where the reflected pressure

signals are filtered, amplified, and converted back to digital voltage signals [37]. Signal processing

and filtering are necessary when targets are close to one another, as in a fish shoal or near a bound-

ary. Processing of FM signals improves the SNR and the spatial resolution, making it easier to detect

single targets [34]. The received signals from the WBT are run through a matched filter, called pulse

compression, to improve the signals [38]. Fig. 2.1 illustrates a four-sectioned split-beam transducer,

where each section, us , receives the signal.
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Figure 2.1: A four-sectioned split-beam transducer, where us represents the individual sections (modified from
[38], pp. 7).

A four-sectioned split-beam transducer, as in Fig. 2.1, is used to estimate the angles and positions

of the targets, where us is the s-th section and s = 1,2,3,4. The signal is filtered through a complex

band pass filter before pulse compression to remove noise [38]. Additionally, it is decimated for a

reduction in data, where the decimation takes place in multiple stages, v, where v = 1, ..., Nv and Nv

is the number of filtering stages [38]. The output signal for each stage is denoted yrx(n,us , v), where

the last stage, yrx(n,us , Nv ), is the data saved as .raw files for further processing, e.g. in LSSS (ref.

Section 2.4) [38]. In LSSS, the transmitted signal, ytx(n), can be used to generate a normalized ideal

transmitted signal [38],

ỹtx(n) = ytx(n)

max(ytx(n))
. (2.5)

Eq. (2.5) is filtered and decimated with the same methods as for yrx(n,us , v). After going through

Nv filter stages, the final output signal, ỹtx(n, Nv ), for simplicity called ymf(n), is applied in the pulse

compression of FM signals [38],

ypc(n,us) = yrx(n,us)∗ymf
∗(−n)

||ymf||22
, (2.6)

where ymf
∗(−n) is the complex conjugate, time-reversed version of the matched filter signal and is

convoluted with the received signal [38]. ||ymf|| is the l 2-norm of the matched filter [38]. The signals

from Eq.(2.6) are obtained for each of the four quadrants, us , in the split-beam transducer. Further,

the mean signal from all quadrants can be found and expressed as in [38],

ypc(n) = 1

4

4∑
u=1

ypc(n,us). (2.7)

Eq. (2.7) is used when calculating the total received power from all of the quadrants [38],
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prx,e = 4

( |ypc(n)|
2
p

2

)2 ( |zrx,e +ztd,e|
zrx,e

)2 1

|ztd,e|
, (2.8)

which is dependent on a receiver load, zrx,e, in series with the impedance of the transducer, ztd ,e [38].

Eq. (2.8) is used when calculating the TS and SV and will be further explained in Section 2.3.

2.2 Absorption

Absorption is when a part of the acoustic energy is converted to heat when a signal is sent through

the water [39]. The process is dependent on the signal’s frequency but also on the temperature and

salinity of the seawater [9]. Absorption is expressed by α, which for seawater is given in dB/km [9].

When waves with higher frequencies interact with particles in seawater, the particles move faster,

which leads to a more significant friction loss than with waves with lower frequencies. Additionally,

the absorption is dependent on the thermal and chemical relaxation [39]. A standard algorithm used

for calculating the absorption is the Francois & Garrison method [40], which is applied by Simrads

EK80 echo sounders [41]. The absorption can be expressed using Np/km instead of dB/km using the

ratio [39],

Np/km = 8.7 dB/km. (2.9)

2.3 Backscattering

2.3.1 Backscattering cross-section from a single target

Waves are the result of the transformation of electrical energy into acoustic energy. When the waves

propagate through water, the acoustic energy is scattered in different directions if it interacts with

a target, e.g., fish [42]. The scattering is dependent on the polar angle, θ, and the azimuth angle,

ϕ, where θ ∈ [0,π] and ϕ ∈ [0,2π]. Fishery acoustics uses active echo sounders, meaning the echo

sounder is used for transmitting signals. The transmitted signals are assumed to be plane pressure

waves, the echo sounder is assumed to be in the far-field of the targets, and the speed of sound in the

seawater is assumed constant [42]. The acoustic field close to the transducer is complicated, hence

the targets are desired to be in the far-field of the transducer [39]. The far-field of a transducer is found

by calculating the Rayleigh length [39],

r > πa2
t

λ
, (2.10)

where at is the radius of the transducer and λ is the wavelength of the transmitted signal [39]. When

the polar angle, θ, equals π, the signal is scattered back to the echo sounder, and this is known as

backscattering [42]. The backscattering cross-section is defined as the extent to which a body scatters
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sound back to the transducer and is given by Eq. (2.11) as shown in [42],

σbs ≡
Ibs

Ip
r 2 = Sbs(θ,φ,ω)A, (2.11)

where Ibs is the intensity of the backscattered wave and Ip is the intensity of the plane incident wave

at the target’s position [42]. As the plane wave is scattered spherically, a geometric loss is included by

introducing r 2, where r is the distance from the target to the echo sounder. The backscattering cross-

section can be expressed using a scattering function, Sbs(θ,ϕ,ω), and a cross-section area, A. The

dimension of σbs is m2 [42]. By using the relationship between the intensity and the pressure of the

waves, along with current response and open-circuit free-field receiving voltage sensitivity, described

in [43], the transmit-receive electrical voltage transfer function can be expressed as [43],

∣∣∣∣VR

VT

∣∣∣∣= FV V G(θ,ϕ)
λ

4π

e−2αr

r 2

p
σbs , (2.12)

where in Eq. (2.12), VR and VT are the received and transmitted electrical voltage, respectively, and

G(θ,ϕ) is the transducer gain, defined in [43], and is the two-way electroacoustic "efficiency," depen-

dent on the direction, (θ,ϕ). The two-way amplitude loss, e−2αr

r 2 , is the loss due to absorption, α (ref.

Section 2.2), here in Np/m, and spherical spreading, 1
r 2 . Lastly, FV V , is the electrical impedance fac-

tor, defined in [43]. Further, the transfer function in Eq. (2.12) can be integrated over time to find the

time-integral-voltage-squared (tivs) for the transmitted voltage signal [44],

[t i v s]T ≡
∫ τp

0
|VT (t )|2d t , (2.13)

and the received voltage signal [44],

[t i v s]st
R ≡

∫ tst2

tst1

|V st
R (t )|2d t . (2.14)

The transmitted signal, Eq. (2.13), is integrated over the time duration of the signal, τp , and starts at t

= 0. For the received voltage signal in Eq. (2.14), the superscript "st" specifies a received signal from a

single target, e.g individual fish. The received signal has a time duration of,

τst ≡ tst2–tst1, (2.15)

where tst1 is the start and tst2 is the end time of the signal [44]. However, applying the peak value

is often chosen for measuring individual targets instead of Eq. (2.14) [44]. The echo integral for the

received signal is written as in [44],

[t i v s]st
R,max ≡ |V st

R |2maxτp . (2.16)
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Eq. (2.16) is a simplified estimate of Eq. (2.14), where |V st
R |max is the maximum value of the backscat-

tered signal. Going from Eq. (2.12), using Eqs. (2.13) and (2.16), to the backscattering cross-section is

shown in [44], and results in,

σbs =
16π2r 4e4αr [t i v s]st

R,max

G2
e f f (θ,ϕ)λ2F 2

V V [t i v s]T
, (2.17)

also known as the electroacoustic power budget equation for single targets. In Eq. (2.17), G2
e f f (θ,ϕ)

an “effective” value of the gain to correct the error from applying Eq. (2.16) [44]. The derivation of Eqs.

(2.12) - (2.17) is based on the theory from [43, 44] and the assumptions applied there. The electrical

input values can be measured by an EK80 echo sounder and Eq. (2.17) is used to express the TS from

FM and CW signals, explained in Subsection 2.3.3

2.3.2 Scattering from gas bubbles

Salmon use the swim bladder to maintain a natural buoyancy. From Archimedes’s principle, neu-

tral buoyancy is achieved when the body mass of salmon is equal to the volume of water displaced;

salmon is neutral when the density of their body (tissue + air in the bladder) is equal to the density of

the surrounding seawater [45].

The air in the swim bladder has a lower characteristic acoustic impedance than the surrounding water

and tissue, (ρc)ai r << (ρc)sur r oundi ng s . The high contrast in the characteristic acoustic impedance

between air and surroundings is the main contribution to the backscattered intensity, where larger

contrast leads to more scattering [9]. Foote showed in 1980 that the swim bladder accounted for more

than 90 % of the TS from fish [10]. Due to behavioral similarities between swim bladders and gas bub-

bles, it can be assumed the bladder scatters the pressure wave the same way as a gas bubble [9]. The

common swim bladder is usually cylindrical and surrounded by the fish’s body, but in this approxima-

tion, the bladder is assumed to be a free, spherical gas bubble in water [9]. A bubble is at equilibrium

when it is at rest, but once an external pressure wave influences it, it expands and contracts. When

the frequency of the added force, e.g., from a pressure wave, matches the natural frequency of the

bubble, the bubble resonates [9]. There will be a more significant scattering of intensities at the res-

onance frequency than at other frequencies [9]. The resonance frequency for a swim bladder can be

calculated using Eq. (2.18) [9],

fr = 1

2πa

√
3γP0

ρ
, (2.18)

where a is the equilibrium radius of the swim bladder, P0 is the ambient pressure, ρ is the density

of seawater, and γ is the ratio of the specific heats of the air in the bubble, where γ = 1.4 for air [9].

The calculated resonance frequency of a swim bladder with a radius a = 0.006m (ref. Section 4.2),

measured , at 1 m depth in seawater is 575 Hz. The same bladder at 14 m depth has the resonance

frequency of 850 Hz. Normally, Eq. (2.18) is used for free gas bubbles only surrounded by water, but it



2.3. BACKSCATTERING 15

can be applied as an approximation for the swim bladder’s resonance frequency [9]. The theoretical

scattering cross-section of a gas bubble as derived in [42] is given by Eq. (2.19),

σs = 4πa2[
(ωR
ω −1

]2 +δ2
. (2.19)

The equation includes the resonant angular frequency, ωR , the angular frequency, ω, and the damp-

ing, δ which is comprised of three different fragments [42],

δ= δv +δr +δt , (2.20)

where δr is due to reradiation, δv is due to the shear viscosity in water, and δt is due to the thermal

conductivity in gas [42].

2.3.3 Target strength

The values of σbs can often be very small or very large and increase/decrease exponentially. There-

fore, expressing the values using decibel (dB) is appropriate. Target strength, TS, is defined as the

logarithmic values of σbs and is defined as [9],

T S = 10l og10

(
σbs

A1

)
[dB re. 1m2], (2.21)

were A1 is a reference area, A1 = r 2
1 = 1m2 [9]. The processing software, LSSS, applies σbs from Eq.

(2.17) and prx,e from Eq. (2.8) when obtaining the TS(f). The mathematical transition from σbs to TS

is not that simple, but from [38], TS(f) is given by,

T S( f ) = 10l og10(Pr x,e,t ( f ))+40log10(r )+2α( f )r −10log10

(
pt x,eλ

2g 2(θ,ϕ, f )

16π2

)
. (2.22)

Here, Prx,e,t is the Fourier transform of Eq. (2.8), ptx,e is the transmitted electrical power, and g is the

transducers gain [38]. In addition, the equation addresses the absorption from Section 2.2, here given

in Np/m. Eq. (2.22) can be used for both FM and CW signals, where TS(f) for the CW signals are

independent of f, and Pr x,e,t is the received power before pulse compression. There will be TS values

for each frequency in the frequency band from FM signals, and to obtain a single TS value from the

FM data, the average of TS(f) is calculated. Since TS is logarithmic, the values are converted from

logarithmic to original units,

σbs = 10
T S
10 . (2.23)

Following [46], the average of each σbs,k in the frequency band is found,
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σbs =
1

n

n∑
k=1

σbs,k , (2.24)

where n is the number of σbs,k observations. Using Eq. (2.21), the mean TS can be calculated as,

T S = 10log10(σbs). (2.25)

Further, TS is strongly dependent on the angle of the target relative to the direction of the incident

pressure wave, shown by [47], as seen in Fig. 2.2.

Figure 2.2: Horizontal swim bladder increases the returned signal. Tilted fish creates destructive interference
and a returned signal smaller than the original signal (Modified from [9], pp. 57).

Fig. 2.2 illustrates how the swim bladder of a fish swimming with a tilt affects the scattered signal.

When the fish is horizontal (left), each of the backscattered waves is in phase and creates a signal

with a strong amplitude [9]. In contrast, if the fish is tilted (right), the backscattered signals will be

out of phase, generating destructive interference and a returned signal with a small amplitude [9].

Furthermore, a horizontal fish has a greater cross-section area, A, (ref. Eq. (2.11)), which returns a

stronger backscattered signal than a tilted fish [9]. Thus, the TS is highly dependent on the length and

shape of the swim bladder. Experiments have been done to derive equations for theoretical TS as a

function of the fish’s length, L in cm. [47] expresses TS as a function of the length of salmon based on

data from a 50 kHz echo sounder,

T S = 24.2log10(L)−72.0. (2.26)

Knudsen et. al [28] used a 120 kHz and a 200 kHz transducer and found the correlation between the

length of salmon and the TS. The experiment resulted in the two equations,
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T S = 25log10(L)−69, (2.27)

and,

T S = 24.7log10(L)−69.3, (2.28)

where Eq.(2.27) is for 120 kHz and Eq. (2.28) is for 200 kHz. The constants in Eqs. (2.26) - (2.28) are

found empirically. For fish without a swim bladder, the length-dependent TS,

T S = 20l og10(L)−86.5, (2.29)

is found by [29] using a 38 kHz echo sounder. The equation can be applied, e.g., when calculating the

TS of a physostomous or physoclistous fish with an empty swim bladder.

2.3.4 Volume scattering coefficient, backscattering from multiple-targets

TS is a measure of the backscattered signal of individual targets [9]. However, sometimes the fish is

too close to measure the TS, e.g., in a fish shoal or when studying the biomass. Hence, the volume

backscattering coefficient,

sv =
∑
σbs

V
, (2.30)

is used instead, which is given in m−1 [9]. To calculate the volume backscattering coefficient, it must

be assumed that the scattered intensities from each target in the volume can be summarized. In addi-

tion, only the direct scatter is considered, and both the multiple scattering effects and the scattering

between targets are ignored [48]. Eq. (2.30) summarizes all the backscattered signals from the targets

measured from a volume, V. An observation volume, Vobs , is illustrated in Fig. 2.3, which is assumed

to be in the far-field of the transducer [43]. Additionally, the echos in the volume are assumed to have

random phases, and the effect of volume scattering of power extinction is assumed to be neglectable

[43].
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Figure 2.3: A transducer transmits signals in the positive z-direction, showing the observation volume, Vobs ,
ranging from rmi n to rmax (Modified from [43], pp. 20).

Fig. 2.3 illustrates three transducers transmitting signals facing upwards, measuring the observation

volume, Vobs , which ranges between rmi n and rmax . The thickness of Vobs , ∆RV , is, [43]

∆RV = rmax − rmi n . (2.31)

However, the spatial extension of the transmitted ping insonifying the observation volume is assumed

to be much smaller than Vobs , cτp <<∆RV . The insonified volume by the ping is defined as the “ping

volume”, Vp , with a thickness of drp ≡ rp2 –rp1 [43]. Further, as explained in [43] sv can be defined as

the sum of ∆σbs per unit volume, ∆V ,

sv = lim
∆V →0

∆σbs

∆V
≡ dσbs

dV
, (2.32)

which is used to derive the electroacoustic power budget equation for volume backscattering mea-

sured by the EK80 echo sounders. The size of dV is found [43],

dV = cτp r 2dΩ

2
, (2.33)

were dΩ≡ si nθdθdϕ is the 3D solid angle, given in steradians [sr], and is used to derive the equiva-

lent two-way beam solid angle, ψ, from Fig. 2.3. “Formulation D” from [44] is used by the processing

software to obtain sv , which is given by,
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sv = 32π2r 2e4αr [t i v s]v
R

G2
0,e f f ψλ

2cτg s2
a,cor r F 2

V V [t i v s]T
, (2.34)

where G2
0,e f f is a calibration factor defined in [44], s2

a,cor r is the relationship between the actual aver-

age electrical power and the "maximum average electrical power" of the same echo [44]. τg represents

the gate opening and closure time of the "gated volume" from the received signal [44]. Eq. (2.34) is

applied when obtaining the volume backscattering strength, SV (explained in Subsection 2.3.5). Fur-

ther, from [44],

[t i v s]v
R ≡

∫ tg 2

tg 1

|V v
R (t )|2d t , (2.35)

is the time-integral-voltage-squared for the received signal, integrated over the "gate opening time",

τg = tg 2 − tg 1. Lastly, the two-way beam solid angle of the transducer, as seen in Fig. 2.3 [43],

ψ=
∫

4π
|Bi (θ,φ)|4dΩ, (2.36)

includes the beam pattern of the incident pressure wave, Bi (θ,ϕ). The producer usually provides this

value and the value of the circular beam width, BW, in the transducer’s manual. From the circular

beam width, the diameter, b, of the beam at a certain distance, d, can be calculated using trigonome-

try,

b = 2d · t an

(
BW

2

)
, (2.37)

where d is the distance from the transducer surface to b, given in m. The observation volume is

calculated using,

Vobs =
π

3
·∆RV ·

((
b1

2

)2

+
(

b2

2

)2

+ b1

2
· b2

2

)
, (2.38)

where b1 is the diameter at rmi n , b2 is the diameter at rmax , illustrated in Fig. 3.5. Vobs consists

of a continuous succession of thin ping volumes, Vp . Since sv from Eq. (2.34) is a measure of the

volume backscattering coefficient from Vp , sv has to be integrated from rmi n to rmax to obtain the

area backscattering coefficient of Vobs [44],

sa ≡
∫ rmax

rmi n

sv (r )dr. (2.39)

sa is a dimensionless coefficient, and due to this, the nautical area scattering coefficient (NASC),

sA = 4π18522sa , (2.40)
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is often applied instead of sa [44], by processing tools such as LSSS.

2.3.5 Volume backscattering strength

As for the backscattering cross-section, the volume scattering coefficients are often very small or very

large, and the logarithmic values are preferred [9]. sv expressed in dB re. 1 m−1 is given by [38],

SV = 10log10

(σbs

V

)
(2.41)

which is defined as the volume backscattering strength. The SV applied by the processing software

uses the power-budget equation as shown in [38],

SV ( f ) = 10l og10(Prx,e,v( f ))+20log10(r )+2α( f )r −10log10

(
ptx,eλ

2ctwψ( f )g 2
0 ( f )

32π2

)
, (2.42)

and is based on sv from Eq. (2.34). The mathematical transition from Eq. (2.34) to Eq. (2.42), is

done by [38], but will not be accounted for in this thesis. Prx,e,v is the received electrical power from

the volume [38]. The two-way equivalent beam solid angle, ψ, is a function of the frequency and is

an empirical estimate of ψ and the nominal frequency, fn , shown in [38]. Additionally, Eq. (2.42)

depends on the duration of the time window, tw , and r is, in this regard, the distance to the center of

the volume, r = ctw , and g 2
0 ( f ) is the transducer gain on-axis [38]. As SV is in logarithmic values, Eqs.

(2.23) - (2.25), are applied in order to calculate the average value SV .

2.4 LSSS algorithms

Large Scale Survey System [49], LSSS, was developed by the Institute of Marine Research and CM-

R/NORCE and is used for interpreting survey data from echo sounders. This is a post-processing

tool that consists of several processing modules. Which modules to use is determined by the desired

output information, e.g., splitting recordings from channels with different acoustic frequencies into

separate files or tracking individual fish to retrieve TS, the frequency response of TS, or the fish’s po-

sition [50].

Tracking is applied to distinguish between individual fish from acoustic measurements acquired from

echo sounders, where a single track belongs to an individual fish swimming through the acoustic

beam, see Fig. 2.4. One track is a successive detection of pings, where one ping equals a detected

reflection from a single fish. It is impossible to identify the same fish if it swims through the beam

more than once during the measurement period, hence, one fish can be tracked multiple times. The

tracking in LSSS is done in multiple steps, where the first step is to select samples that are likely to be

representative of a single individual for each ping. Samples are selected according to one of several

algorithms, which will be further explained. Then, a prediction of the following sample is conducted

within the same track for each selected sample. For the next measured ping, the samples are chosen
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according to the same algorithm as for the previous ping. If the sample matches the criteria specified

for the predicted sample, it will be associated to the track [50]. Through this process, successive pings

are investigated to determine whether they may belong to the same track based on a set of criteria.

A further investigation of the potential tracks follows: among the criteria are a minimum length and

a maximum number of pings missing a sample that would be accepted, according to the algorithm

[50].

The selection of samples occurs according to one of the three algorithms in LSSS: aggregation, SED

(single-echo detection), and peak, where aggregation is from Handegards publication [51]. Candidate

samples are detected in each ping based on the TS. The TS-value must exceed a defined TS threshold,

provided their gain compensation (based on the beam shape) is less than a given maximum [50].

For the peak algorithm, several samples that are candidates to belong to different individuals are

selected for each ping. The algorithm employs the same criterion for a sample as aggregation, as

well as it requires that samples belonging to one track must not be too close to other targets (based

on split-beam data) [50]. Peak is a modification of the SED algorithm implemented for the Simrad

EK500, EK60, and EK80 split-beam echo sounders. However, the samples are very dense due to the

high spatial resolution of the EK80 echo sounders, and an individual fish may have two maxima of

equal strength. In contrast to SED, which considers those tops as two separate targets and rejects

both, peak considers the two close local maxima as the same target [50]. The tracking algorithms

return one track per fish, which can be seen in Fig. 2.4.

Figure 2.4: FM data from a 70 kHz echo sounder of a fish shoal after being tracked using the aggregation algo-
rithm. The thick black lines represent one track, seen in the red square. The right side shows the dB threshold.

Fig. 2.4 shows a fish shoal as seen in LSSS, which was acquired from a 70 kHz FM echo sounder.

Individual fish, before tracking, are represented by the dark red color, which indicates a high dB re 1

m2 level (the dB threshold is seen on the right side of the figure). When the data has been tracked, the

output files include tracks for individual fish, seen as dark black lines surrounding the fish in the red

square. The tracks include, amongst others, a timestamp, and x, y, and z positions for each ping in the
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track. Before finding the total time of the track, the time difference between ping n+1 and n is found,

tq = tn+1–tn , (2.43)

where n is the number of pings in the track, and tq is the time difference between the pings. The total

time is then found,

ttot =
n∑

q=1
tq , (2.44)

which summarizes the time differences, tq , between each ping, n. The distance, dq , between each

ping is found by using the x, y, and z positions for ping n+1 and n,

dq =
√

(xn+1 −xn)2 + (yn+1 − yn)2 + (zn+1 − zn)2, (2.45)

and the total distance swam by the fish is then calculated by,

dtot =
n∑

q=1
dq . (2.46)

From Eqs. (2.44) and (2.46) the total swimming speed of a fish can be calculated,

vm = dtot

ttot
, (2.47)

given in m/s or in body length per second, bl/s,

vb = vm

BL
, (2.48)

where BL is the body length of the fish given in m. The experimental standard deviation, svm , of the

swimming speeds within a selected file, can be found [46],

svm =
√∑k

j=1(vm, j − vm)2

k −1
, (2.49)

where vm, j is the j-th value, vm is the average of the swimming speed within the file, and k is the

number of tracks.

2.5 Linear regression

Linear regression can be applied to calculate a linear fit to scattered values. This can be of interest,

e.g., to see how the overall trend is changing over a period and is illustrated in Fig. 2.5 [52].
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Figure 2.5: The regression line f (x) =β0+β1 calculated to fit the scattered values (xi , yi ). The vertical deviations
from the true regression, ε, is drawn for each position (Modified from [52], pp. 618)

The points in Fig. 2.5 are randomly scattered around the true regression line. In order to obtain the

line that fits the scattered value the best, the principle of least square is applied [52]. The princi-

ple proposes a measure of the best possible fit between the scattered values and the linear line and

consists of the relationship between x, an independent variable, and y, a dependent variable, [52],

Y = f (x)+ε=β0 +β1x +ε, (2.50)

were f(x) is the true regression line, β0 is the intercept coefficient and is described as the value of y

when x = 0, and β1 is the slope coefficient, which is the increase in y when x increases. ε, is a random

deviation from the linear line, called true error, seen in Fig. 2.5 [52]. How well the true regression line

fits the scattered values are described by the coefficient of determination [52],

R2 = 1− SSE

SST
, (2.51)

where SSE is the error sum of squares and SST is the total sum of squares, as explained in [52]. Eq.

(2.51) is used to describe how much of the total variation is explained by the linear relationship. A R2

value close to 1, implies the linear regression model (Eq. (2.50)) has done a great job in justifying the y

variation [52]. The true regression line can be used to calculate the total increase or decrease through

a period by implementing,

increase/decrease = fN − f1

f1
×100%, (2.52)

which uses the first and last, N, values of the regression line and returns the decrease/increase in

percentage.



Chapter 3

Experimental setup and method

This chapter addresses the setup in the experimental aspect of the thesis. It includes a description

of the sampling techniques used for acquiring echo data, camera data, and how the data was post-

processed.

3.1 Location and experimental setup

The experiment was conducted in Matre, western Norway, at the Cage Environmental Laboratory at

the Institute of Marine Research’s field station Smørdalen (see Fig. 3.1). Smørdalen and the cages that

were used are located in the inner part of Masfjorden. The Norwegian Food Safety Authority approved

the experiment with the FOTS-id 26559.

Figure 3.1: Location of the experiment, 1.5 hour drive from Bergen. The Cage Environmental laboratory is
shown in the red ellipse at the top left corner (Google maps, 2021)

24
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Fig. 3.2 shows the cages in Smørdalen from above. The cage used, cage 16, had the dimensions 12x12

m2 wide and long and 14 m deep, and is circled with red in the picture.

Figure 3.2: The Cage Environmental Laboratory seen from above. A.1: house where the computer was placed.
16: cage 16. A.2: placement of ABF bouy (Google maps, 2021)

Three transducers with frequencies 70 kHz, 120 kHz, and 200 kHz were used to measure the TS, SV ,

and salmon’s position. The transducers were mounted in a gimbal, a tool used to stabilize the trans-

ducers. The gimbal levels the transducers horizontally even when there are disturbances in the water

column or if the ropes have different lengths. Fig. 3.3 shows the transducer setup and the gimbal.

Each echo sounder consisted of an EK80 scientific wide-band transceiver (WBT) from Kongsberg

Maritime [37] connected to a transducer.

Figure 3.3: Transducer setup and gimbal, illustrating how the transducers were facing upwards when placed
underneath the cage

On the 12th of March 2021, defined as day -7 in Table 3.1, the transducers were set as active and

started transceiving signals. A pan-tilt camera mounted on a profiling winch [53] was placed in the

cage to study the fish visually and their behavior during the experiment (see C in Figs 3.4 and 3.5).

The camera was controlled from a computer placed in Fig. 3.2 A.1, and could be moved vertically and

360 degrees around its own axis. Further, a blue led light 400W [54] was placed at 8 m depth to study

the behavior every other night (B in Figs. 3.4 and 3.5). The light will not be further discussed in this
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thesis as it was used for a different experiment [55]

Figure 3.4: The 12x12 m3 cage setup seen from above. A: transducers. B: light. C: camera. D: box with EK80
WBT

Figure 3.5: The cage setup seen from the side. A: gimbal and transducers at 25 m below the sea surface, B: light
and C: camera 8 m depth. The roof was attached 1 m below the sea surface. b1 was the beam width at 14 m
depth, b2 was the beam width at 1 m depth (ref. Eq. 2.37), ∆RV was the length of the beam, from b1 to b2. Note
this is an schematic drawing and is not proportionally correct.
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Fig. 3.4 and 3.5 show how the camera and light were positioned in the cage relative to the transducers.

The light and camera were placed in the middle of the cage, B and C, respectively. The EK80 WBTs

were placed in a box in D, covered by a tarpaulin to prevent seawater and rain from reaching the elec-

tronics. Further, the transducers were placed at the corners of the cage as salmon normally swim in

circles rather than in the center. Hence, the individual salmon will swim through the beams multiple

times in an hour, resulting in a new track for the fish each time it swims through the beam. Fig. 3.5

shows how the gimbal was attached to a rope on either side and moored to the cage. The 200 kHz

echo sounder were placed 2 cm from both the 70 and 120 kHz echo sounders, while the 70 and 120

kHz echo sounders were placed 1.8 cm from each other. The transducers were hung facing upwards,

at 25 m beneath the sea surface and 10 m below the cage bottom. Two weights were attached to the

ropes to prevent them from leaning against the cage. Note that the illustrations in Figs. 3.4 and 3.5

are not proportionally correct.

The equivalent two-way beam solid angle,ψ, in Fig. 3.5 is 0.009 sr for each of the transducers, and the

circular beam width, BW, is 7◦ [33, 56, 57]. From Eq. (2.37) the theoretical beam width, b2 in Fig. 3.2,

at 1 m from the surface was approximately 3.0 m, and at 15 m, b1, the width was 1.2 m, and was the

same for all three transducers. The total sampling volume inside the cage, calculated using Eg. (2.38),

from 1 m to 15 m was 43 m3. The 70 kHz, 120 kHz, and 200 kHz transducers had diameters of 250

mm [33], 180 mm [56], and 120 mm [57], respectively. From Eq. (2.10) the far-field of the 70 kHz echo

sounder is between between 2-3 m for the 55 - 90 kHz frequency band, for the 120 kHz frequency

band, the far-field is from 1.5 - 2.7 m from the transducer, and for the 160 - 260 frequency band from

the 200 kHz echo sounder, the far-field is 1.2 - 2 m.

The Gantt Chart in Table 3.1 shows the timeline of the experiment. On day 0 at 17.30 local time, a

white roof, made from the same material as the net, was sewn onto the net cage at approximately

1 m depth to prevent the fish from reaching the sea surface. The roof was attached during the 28

days of submerging the cage. On day 24, a Mid-Norwegian ring [58] was placed diagonally from the

transducers underneath the cage. The ring produced air bubbles of sizes varying from 1 – 14 mm

to give the salmon a possibility to refill their swim bladder. Since the bubbles disrupted the echo

sounder signals, the bubbling was turned on and off every 30 minutes, three times on day 24 and five

times on days 25 and 26. In addition, day 26 had continuous bubbling from the hours 16-21 local

time. The days with bubbles will be included in the results but will not be further discussed due to the

short bubbling periods. The roof was removed on day 28 at approximately 13.40 local time, and the

salmon had free access to the surface for five days before the experiment ended on the 20th of April.
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Table 3.1: Gantt Chart showing the experimental period from day -7 (starting the echo sounders) until day 32
(ending of the experiment). The roof was attached on day 0 and removed day 28, and days 24-26 had occasion-
ally bubbling.

As seen in Table 3.1, the yellow period represents the 7 days before the access to the sea surface was

removed. The green period, from day 0, is the days were the roof was attached to the net cage. Lastly,

the red is when the salmon could refill the swim bladder after the roof was detached. Data from

before and after the green period allows the study of a naturally filled swim bladder. Further, the

chart shows that both camera and echo samples were taken daily and which days the fish samplings

were conducted (ref. Section 3.3). The echo samples were continuously sampled for 24 hours a day,

while the camera samples were alternately measured three and five times every other day. Further

explanation of the sampling technique is done in Section 3.3.

3.2 Experimental fish

On day -9, the 10th of March 2021, 524 Atlantic salmon were randomly chosen from supply cage 15

and placed in cage 16. In order to capture the desired number of salmon, a 5x5x5m3 sweep net was

utilized. The number of fish needed to be as few as possible to study individuals, but it was neces-

sary to achieve a typical behavior among fish farmed salmon. Thus, 500 individuals were deemed

adequate to meet both requirements. After eight samplings, explained in Section 3.3, and one death,

there were 376 left on day 32. The surface froze the day before the planned submergence, and it is

believed that the salmon died due to hitting ice on the sea surface. Between 11-26 fish were sam-

pled twice a week to study the swim bladder’s amount of air, and the results can be seen in Appendix

A. Additionally, to monitor the health of the salmon, a welfare measurement was done according to

[59]. The fish were given a score between 0 and 3, where 0 indicates perfect condition up to 3, which

means significant damage. They were also assessed for sea lice. A M1100 Bench scale [60] was ap-

plied to measure the weight of the fish, and a ruler was used to measure the fork length. Fork length

is defined as the length from the tip of the salmon’s nose to the middle of the caudal fin.
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3.3 Sample technique

A small hole was cut in the corner of the roof to reach the salmon. Using pellets, the salmon was

enticed to the hole and brought to the surface using a dead fish collector net. Afterward, they were

netted into an anesthetic bath. The amount of sedation was approximately 10 g per 20 liters of sea-

water and the euthanasia alternated between two diverse types of sedation; Finquel and Tricaine.

Following, the mouth was cut open with a scalpel to expose the channel from the salmon’s pharynx

to its swim bladder. With tweezers, the opening became more discernible (see Fig. 3.6). The air was

removed from the bladder by inserting a 1.57 mm (outer diameter) polyethylene tube [61], as shown

in Fig. 3.6. In order to measure the amount of air in ml, the tube was connected to a 12 ml plastic

syringe [62]. When the syringe was challenging to pull, the bladder was said to be empty.

Figure 3.6: A physostomous fish’s swim bladder is found in the pharynx, which is seen in the red circle. The
polyethylene tube was inserted, and a pair of tweezers were used to better visualize the opening.

After the air was removed, the fish was carefully placed in a tub filled with seawater (see Fig. 3.7). The

tube was kept inside the bladder the entire time to make sure no air went back into the bladder.

Figure 3.7: The fish was placed in a tub filled with seawater, and the swim bladder was refilled using the syringe.
The bladder was filled until it floated just below the water’s surface.
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The swim bladder was filled with air until the fish was floating right below the water’s surface. This

state was defined as the fish’s neutral buoyancy. Based on neutral buoyancy and the amount of mea-

sured air, the relative quantity of air in the bladder can be calculated. This was done due to the dif-

ficulty in identifying a naturally full swim bladder. Using a similar technique, a bladder can be filled

with more than 30 ml of air without breaking, which is unrealistic. The same person did the proce-

dure each time to achieve more accurate results. Appendix A includes the length, weight, air quantity,

and relative air.

Furthermore, the swimming speed obtained from the echo sounders is a fundamental parameter in

this thesis. As a complementary measure to the acoustic results, the swimming speed was assessed

using the same method as in previous publications [5, 7, 23, 25]. The camera was placed in front of

a reference point, often a rope, and the fish were recorded for five minutes. In order to measure the

swimming speed, a stopwatch was used to time the distance traveled by the fish once it passed the

reference point. The distance is defined as the fish’s fork length, and the procedure was repeated 15

times for each recording. From this method, the speed was found in seconds per body length (s/bl)

and converted to m/s and bl/s by using Eq. (2.48).

3.4 Environmental variables

As seen in Fig. 3.1, the Cage Environmental Laboratory is located in the inner part of Masfjorden. The

site is in a typical fjord location, with a constant brackish water layer varying in depth in response to

precipitation, snowmelt, and the hydroelectric power plant. Water currents in this area are mainly

eastward or westward, are tidal driven, and move at speeds between 1 and 10 cm/s. To quantify the

water column’s conductivity, temperature, depth, and oxygen level, a CTD [63] was connected to an

Automatic Profiling Buoy (APB5) (see A.2 in Fig. 3.2). The CTD instrument did two profilings at 01

and 13 every day, from 0 – 25 m. Fig. 3.8, 3.9, and 3.10 show the change in oxygen, temperature,

and salinity measured by the CTD. Additionally, a CTD profile was taken to calibrate the EK80 echo

sounders before the experiment, where the values are presented in Section 3.5.

Figure 3.8: Change in O2 level, [% of air saturation], as a function of depth in m during the experimental period.
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Figure 3.9: Change in temperature, [◦C ], as a function of depth in m during the experimental period.

Figure 3.10: Change in salinity, [ppm], as a function of depth during the experimental period.

As the experiment progressed, the dissolved O2 concentration varied in the upper 15 m of the water

column (Fig. 3.8). The dissolved O2 in seawater occurs mainly due to the photosynthesis of algae,

where algae absorb the carbon dioxide, CO2, from the ocean, and O2 is released [64]. The % of satu-

ration reached 120 % during the experiment, where the 20 % extra is due to the photosynthesis [18].

3.5 Data collection from echo sounders

The composite split beam transducers was of the type Simrad ES70-7CD, ES120-7CD, and ES200-

7CD [37]. The split beam transducer is divided into four quadrants, as seen in Fig. 2.1. Each of the

four quadrants detects the received signal, and the phase difference between the recorded signals

provides information about the position of the target, which is used to estimate the target’s direction

and swimming speed [51].

Before the experiment, all three transducers were calibrated using a WC (tungsten carbide) 38.1 mm

sphere. On day -9, the calibration was performed next to the cages (Fig. 3.2) at 25 m depth, and Table

3.2 shows the calibration settings for the three transducers. The CTD profile used to calibrate had a
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temperature of T0 = 8.1◦C , speed of sound c0 = 1489m/s, and a salinity s = 33.2ppt . After calibration,

the transducers were placed 25m below the cage facing upwards, measuring the ventral aspect of the

fish.

Table 3.2: The settings used to calibrate the transducers for both CW and FM fast signals. The start and stop
frequencies in the parenthesis was used by LSSS

Serial number Frequency [kHz] Pulse type Pulse duration, τ [ms] Power [W] Start freq. [kHz] End freq. [kHz]

112 70 CW 0.256 50 70 70

FM fast 2.048 50 55 (56.8) 90 (88.2)

113 120 CW 0.256 50 120 120

FM fast 2.048 50 90 (93.5) 160 (156.5)

147 200 CW 0.256 45 200 200

FM fast 2.048 45 160 (165) 260 (255)

Table 3.2 shows the settings used when calibrating the two pulse types for the three transducers. From

the Table, FM was calibrated by using FM fast, where fast means tapering the signal slightly at the

beginning and end of the signal [34]. The table includes the power used on the echo sounders, 50

W for 70 and 120 kHz and 45 W for 200 kHz. The frequencies were chosen to create a continuous

signal from 55 kHz to 260 kHz. However, LSSS removed some of the frequencies at both ends of the

frequency band, resulting in the frequency bands shown in parenthesis in Table 3.2. The frequency

bands used in the measurements were above the resonance frequency for the swim bladder, which is

575 Hz at 1 m depth and 850 at 14 m depth (ref. Eq. (2.18)).

FM and CW signals have different spatial resolutions in z-direction, as explained in Section 2.1. The

spatial resolution was found for the FM pulses by using Eq. (2.3), the bandwidth, B (from Table 3.2),

and speed of sound in seawater, c. While for the CW pulses, Eq. (2.1) and the pulse duration, τcw , of

the signal was applied, which was found in Table 3.2.

Table 3.3: Theoretical spatial resolution in z-direction for each frequency and signal type, [m]

70 kHz 120 kHz 200 kHz

CW 0.2 0.2 0.2

FM 0.02 0.01 0.008

Table 3.3 shows the theoretical spatial resolution for the different frequencies and pulse types in z-

direction. The pulse length for CW signals were equal for all frequencies, resulting in a similar spatial

resolution. For FM signals, the spatial resolution increases with increasing frequency.

The transducers alternated between transmitting one-hour CW signals and one-hour FM signals con-

tinuously throughout the experimental period. The EK80 software was installed on a computer placed

in A.1 in Fig. 3.2. A "mission plan" in EK80 was created, and the software shifted automatically be-

tween the two different pulse types. The first step in creating the mission plan was to assign a channel

to each of the six different pulse types (2 per transducer). In addition to the pulse type, the pulse du-

ration, power, and start- and end frequency were set. Further on, a ping group was created where
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the three CW and three FM channels were gathered into two groups, CW and FM. The ping rate was

defined as 200 ms (18 000 pings/h). Then two ensembles were created, one for each ping group. The

ping groups had to be repeated 60 times in the ensembles to reach the desired number of pings per

hour. Lastly, the mission was created by repeating three CW ensembles followed by three FM ensem-

bles. Each ensemble was run with an iteration of 100 (60 x 3 x 100 = 18 000 pings/h).

3.6 LSSS

Large Scale Survey System (LSSS) [49] was the software applied for post-processing data in this thesis.

LSSS is made for scientific fisheries surveys and abundance estimation and is therefore not optimized

for net cage studies. Additionally, the software is still in the preliminary stages of research when it

comes to processing FM data and data from salmon cages [12]. Integrated into LSSS is a process-

ing program called KORONA [49], which includes different computation modules and can be used in

numerous ways. In this thesis, KORONA was used for splitting recordings from channels with differ-

ent acoustic frequencies into separate files and tracking individual fish, as explained in Section 2.4.

Finally, TS, SV , and the position of the salmon were extracted.

3.6.1 Splitting data

The experiment was conducted with another student [55], and the experimental setup was equal for

both thesis. The other student had two additional cages with a 200 kHz transducer in each, and the

mission planner on EK80 ran all five transducers simultaneously. Due to this, the output files include

data that are not of interest to this thesis. KORONA Relay was applied to split the different cages and

signal types (FM and CW) from each other. By including "channel removal,” which channels to keep

can be chose. In this case, channels 1, 3, and 5 indicate CW-data, and channels 2, 4, and 6 indicate

FM-data, both for cage 16. During the splitting, unnecessary depths (from echo sounder to bottom of

the cage) were removed to decimate the amount of data. After processing, KORONA writes CW- and

FM files in separate folders. A more detailed description can be read in Appendix B.

3.6.2 Tracking data

After splitting and keeping only the necessary data, a new KORONA relay was created to track TS

values and the position of the individual salmon. As tracks were applied to distinguish the individual

fish, the SV values were independent of the tracking. An upper and lower boundary, seen in Fig. 3.11,

was drawn, and only the data inside the regions were processed with the tracking algorithm.
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Figure 3.11: Echogram of FM data as visualized by LSSS. The cage is reversed, where the bottom of the
echogram and the top is reversed relative to the bottom and top of the cage. The two red lines are the boundary
drawn

Fig. 3.11 shows an echogram as seen in LSSS for one hour of FM data from day 9, where the bottom

and top are reversed relative to the bottom and top of the cage. The vertical echogram is the depth,

z, in m, and the horizontal is the time in seconds. The depth was reduced during the splitting, and

data is here seen from 1 m from the surface (24 m in the echogram) to approximately 14 m depth

(10 m in the echogram). On the right side is a threshold bar, showing the colors of different dB re. 1

m2 values and the strength of the measured signal, where red indicates a strong backscattered signal

and purple is a weak signal. The threshold is only for visualization and does not affect the values.

Salmon is defined as the less dense areas in the echogram, pointed out by an arrow in the center

of the figure. The red lines in Fig. 3.11 illustrate the regions for this specific hour of FM data and

were set individually for each hour of FM and CW data. Additionally, areas with much noise were

erased or excluded, illustrated by the gray areas, to avoid tracking noise, where noise is seen as the

denser colored areas. The noise varied with depth and days and is assumed to be tiny organisms like

plankton. If the regions were changed or other alterations to the data sets were made, the changes

were saved in "work files." Thus, two separate LSSS-surveys were created for the FM and CW data to

keep the "work files" from overwriting each other.

Finally, the CW data was tracked by applying the peak tracking algorithm and FM using the aggrega-

tion method. Originally, aggregation was the preferred tracking algorithm, as it returned much more

tracks than peak (on both FM and CW data), but aggregation turned out not to work well on CW data

(ref. Subsection 6.1.6). Thus, CW data was tracked using peak instead. The settings used in KORONA

Relay for tracking are presented in Appendix B.

3.6.3 Exporting data

After the post-processing was finished, LSSS allows the export of the parameters of interest for further

processing. Due to the large files from using FM signals, it was time-consuming to export all 12 hours
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of FM data, and it was decided to export one hour instead. As the fish were fed in in the morning,

around 08.00 local time, the hour of data were extracted in the afternoon, before the sun went down.

The bubbling were initiated around the time of the desired hour of data, which was inconvenient due

to the disturbances from the bubbles on the signal. Hence, areas with much bubbles were excluded.

The tracking using aggregation returned enough data to support the choice of only one hour (ref.

Appendix E). The TS(f) values for FM data were exported using the BBTS(f) tracks function, and the

output file is a .json-file including TS values for all three frequency bands in the same file. For CW

data, the tracks were used for finding both the TS and swimming speed. The desired data was ex-

ported to a text file that contains one of the frequencies, 70, 120, or 200 kHz, the associated TS values,

and x, y, and z positions for each ping. The same function was exported to obtain the positions from

FM data. Further, the swimming speed was calculated using Eqs. (2.43) - (2.47) ((2.48)), and the asso-

ciated standard deviation was obtained from using Eq. (2.49).

Data from the CW pulses was exported first, and unlike FM data, the entire day (12 hours) was ex-

tracted. Two hours of CW data, one before and one after the FM hour, were selected to compare it

better with the results from FM data. This process was done in MATLAB (Appendix F). A Python script

by Geir Pedersen (IMR) [65] was used to extract SV values as a function of frequency automatically.

The script exported the same hours as for TS and swimming speed from FM data.



Chapter 4

Simulating TS of phystomous fish using

the Kirchhoff’s Ray Mode model

This chapter addresses the simulation used in the thesis, the Kirchhoff’s Ray Mode (KRM) simulation

method based on the theory from Clay and Horne [30]. The simulation was applied in the software R

using a package called KRMr: Kirchhoff Ray Mode Model for fisheries acoustics created by Gastauer et

al. [66]. Before doing the simulation, a validation of the method was conducted and can be seen in

Appendix D. The simulation is included to support the results from the acoustical measurements.

4.1 KRM simulation based on Clay and Horne

An example of a simulation model is the Kirchhoff’s-Ray mode (KRM) [30]. The theory in this section

is based on the theory from Clay and Horne, which used Atlantic cod in their modeling of TS from

teleost fish [30], and is applied in the KRMr package in the software R [66] (ref. Appendix F.4). Teleost

fish belongs to the group called actinopterygians, which is a class of ray-finned fish and contains more

than 99.5 % of the ray-finned fishes. Examples of teleost fish are Atlantic salmon and rainbow trout,

amongst others [67]. The KRM model is applied to simulate and approximate the TS of fish based on

the fish’s length and the angle of the incident pressure wave [30] relative to the dorsal aspect of the

fish. When modeling, the fish and swim bladder is divided into j number of sections relative to the

x-axis, as shown in Fig. 4.1 and Table 4.1 [30]. Since the model is based on the bladder and fish body,

other important fish elements, such as the target’s backbone, are not considered.

36
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Figure 4.1: Salmon divided into j number of sections along the x-axis. a) shows a salmon from the lateral aspect,
x-z plane, and b) the dorsal aspect, x-y plane. c) is the j-th element, between x(j) and x(j+1). The u-v coordinates
are defined by the ray and wavefront. The fish’s snout is placed in origin (Modified from [30]). Note that the
bladder is not the right proportional size to the body.

Fig. 4.1 shows the fish’s coordinates in Cartesian coordinates seen from the x-z plane in a) and from

the ventral x-y plane in b), where the snout is positioned in origin. The wavefront of the incident wave

is illustrated in a), where θ is the angle between the x-axis and the incident ray. θ is limited between

65◦ and 115◦ [30]. The x-z plane is rotated into u-v coordinates in the top right corner, where u follows

the wavefront and v the incident ray [30]. Further, the fish is divided into j-number of volume sections,

between x(j) and x(j+1), illustrated in c). Note that Figs 4.1 a), b), and c) are an illustrative display of

the outlines of a salmon and its swim bladder and will not affect the results of the simulation.
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Table 4.1: The coordinates for the j-th element of the fish body and the swim bladder used in the model, where
the subscript b and s indicates the body and swim bladder, respectively [30].

Length Height, upper Height, lower Width

Body xb( j ) zbU ( j ) zbL( j ) wb ( j )
2

Swim bladder xs( j ) zsU ( j ) zsL( j ) ws ( j )
2

Table 4.1 presents the fish body’s and swim bladder’s coordinates. The subscript U denotes the upper

z-coordinates, and L denotes the lower [30]. The segmenting of the fish is done to obtain j number of

small elements. The elements are summarized to achieve the scattering length, also called scattering

amplitude [30], of the body and the bladder, which are given in m. This is done individually for the

bladder and the body, and is then used to find the TS. The coordinates in Table 4.1 are transformed to

the u-v coordinates for the ray and wavefront [30],

u( j ) = x( j )si nθ− z( j )cosθ, (4.1)

v( j ) = x( j )cosθ+ z( j )si nθ, (4.2)

v j ≡
vsU ( j )+ vsU ( j +1)

2
, (4.3)

∆u j = [x( j +1)−x( j )]si nθ, (4.4)

a j = [w( j )+w( j +1)]

4
, (4.5)

where ∆u j is the length of the j-th element given in u-v coordinates, a j is the radius of the j-th ele-

ment, and v j is the middle of the j-th volume element in v direction [30]. The u-v coordinates have

equal subscripts as the x-z coordinates from Table 4.1. Due to the similarity between the plane-wave

reflection coefficients at the body-bladder, Rbc , and water-bladder, Rwc , boundaries, the bladder is

assumed to be surrounded by seawater [30]. Further, for high frequencies, the Kirchhoff-ray approxi-

mation is applied to calculate the scattering length of the fish’s body and swim bladder [30]. The sum

of the scattering length of the swim bladder (soft) in water, as expressed in [30], is

softL ≈−i
Rbc (1−R2

wb)

2
p
π

Ns−1∑
j=0

Asb ×
√[

(kb a j +1)si nθ
]
e−i (2kb v j+ψp )∆u j , (4.6)

where Ns is the number of (x(j), z(j))-coordinates for the swim bladder, hence Ns = 7 in Fig. 4.1.

Further, kb is the body’s wave number, Rwb is the plane-wave reflection coefficient at the water-

body boundary, Asb is an empirical amplitude factor from the Kirchhoff approximation andψp is the
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empirical phase shift for a fluid cylinder in ray-Kirchhoff [30]. Asb and ψp are used for correction of

small kas , where as is the radius of the swim bladder [30].

The scattering length of the fluid cylinders (body) is found by the Kirchhoff approximation as in [30],

and is given by,

fluidL ≈−i
Rwb

2
p
π

Nb−1∑
j=0

√
(ka j )∆u j

[
e−i 2kuU , j −TwbTbw e−i 2kuU j +i 2kb (uU j −uL j )+iψb

]
, (4.7)

where Nb is the number of (x(j), z(j))-coordinates of the fish body, where Nb = 12 in Fig. 4.1 a) and

b) [30]. Twb is the plane-wave transmission at the water-body boundary, and Tbw is the plane-wave

transmission at the body-water boundary [30]. Further, k is the wavenumber of the sea water and ψb

is the empirical phase shift for a soft cylinder in ray-Kirchhoff [30].

The real and imaginary parts of Eqs. (4.6) and (4.7) are added coherently to obtain the total scattering

length/amplitude of the salmon [30],

L = softL +fluidL , (4.8)

which is used to calculate the bakcscatering cross section [30],

σbs = |L |2, (4.9)

and the TS [30],

T S = 20log10

[ |L |
L0

]
. (4.10)

In Eq. (4.10), L0 is a reference length at 1 m [30].

4.2 Implementing the KRM model in the R software

Gastauer et al. [66] have created a package in the R software (ref. Appendix F.4) based on Eqs. (4.6)

- (4.10) and the theory explained in [30] to model the TS of phystomous and physoclistous fish. The

model require the input parameters presented in Tables 4.1 and 4.2. The parameters can be chosen

as desired but were kept constant during this simulation, except for the frequency and swim bladder

size, which were changed to simulate a decrease in TS with decreasing swim bladder volume.



40 CHAPTER 4. SIMULATION

Table 4.2: Input parameters for the KRMr package in the R software. *Frequency can be chosen, either as a
single frequency or over a wider range of frequencies [66]

Input parameters in KRMr Value

Frequency f [Hz] *

Sound speed in sea water c.w, [m/s ] 1489

Density of sea water rho.w, [kg/m3] 1026.8

Angle of incidence theta, [◦] 90

Sound speed in fish body c.fb, [m/s] 1480.3

Sound speed in swim bladder c.sb, [m/s] 345.0

Density of fish body rho.sb, [kg/m3] 1028.9

Density of gas in swim bladder rho.fb, [kg/m3] 1.24

Length of fish L, [m] 0.38

The sound speed in seawater, c.w., was measured during the experiment using a CTD instrument, as

explained in Section 3.5. Further, the sound speed and density of the swim bladder and fish body

were found in [68]. The frequency can be chosen to simulate a CW pulse and a single TS value or an

FM pulse and the frequency response of the swim bladder. Both pulse types were simulated in the

thesis to compare the results from the measured values from the experiment, and the frequencies are

equal to the ones in Table 3.2. In addition to the frequencies, the incident angle, θ, can be changed to

simulate a fish swimming with a tilt. From Subsection 2.3.3, it was explained how the TS is strongly

dependent on the angle of the incident acoustic wave. However, based on the measured camera data,

approximately no tilt was observed, and θ was kept constant at 90◦ during the simulation. When

the incident angle is 90◦, the wavefront is normal to the dorsal aspect of the fish, seen from Fig. 4.1.

This is the opposite of the experiment, where the measurements were done from the ventral aspect

of the fish. However, the KRM model is limited to angles between 65◦ to 115◦ [30], and the simulation

was therefore conducted with incident waves normal to the dorsal aspect of the salmon. From pre-

vious publications [28, 69], measuring the TS from the ventral aspect of the fish resulted in stronger

backscattered signals than from the dorsal aspect, due to the morphometry of the swim bladder [28].

Thus, the simulation of TS with an incident wave normal to the dorsal aspect of the fish will affect the

following simulations, and the results will not be fully comparable to the measured TS values.

As the model uses the sum of j number of small volume elements, the KRMr package in the R soft-

ware requires the coordinates of each element to proceed with the modeling. The coordinates can be

changed to simulate different swim bladder sizes, which implies changes in air level. An x-ray image

used in [6], shown in Fig. 4.2, was used by Pedersen [65] to obtain the size of the fish body and the

swim bladder.
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Figure 4.2: The x-ray image of salmon used in [6], where a) is the dorsal aspect of the salmon and b) is the lateral
aspect. The swim bladder is only seen in b) as the dark gray elongated shadow.

Fig. 4.2 shows a) the dorsal and b) the lateral aspects of a salmon used in an experiment by [6]. Only

the lateral aspect of the swim bladder is seen in the figure, which made it challenging to obtain the

coordinates of the dorsal aspect of the bladder. Due to this, the dorsal coordinates were assumed.

As the objective of the simulation was to support the measured TS values, the assumption was not

deemed a weakness, but nevertheless was not ideal. The coordinates from the x-ray image were based

on an assumed full swim bladder.

Further, a MATLAB script by [65] interpolated the coordinates to achieve a resolution good enough

for the KRM model. MATLAB returned two separate .csv files, including the coordinates of the swim

bladder and the fish body, which were read and plotted by the R software. The volume was decreased

as a percentage of the full, 100%, bladder through the MATLAB script. The radius when the bladder is

full (in the middle of the bladder) was set to a = 0.01m. The upper coordinates of the swim bladder,

zsU , were kept constant for each adjustment [65]. The MATLAB script had to be run each time the

bladder volume was adjusted. This was done five times to simulate the decreasing TS due to a de-

crease in air level. As there are no reasonable measures of how fast the volume decreases during the

experiment, the volume was decreased to 75 %, 50 %, 20 %, 10 %, and 0 % of the assumed full (100 %)

volume. For each volume, the TS was simulated using single frequencies (70, 120, and 200 kHz), as in

a CW signal, and using a broad range of frequencies (56.8 - 88.2, 93.5 - 156.5, 165 - 255 kHz) as in an

FM signal.

Fig. 4.3 shows the swim bladder at a) 100 % and after decreasing to b) 75 %, c) 20 %, and d) 0 % of the

full bladder. The swim bladder is the main contribution for the TS [10]. However, for fish without a

bladder, the backbone contributes to the TS [12]. As the backbone is not included in the KRM model,

the simulation of an empty bladder will be less accurate. The results of the simulation of TS and
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frequency response are presented in Chapter 5

(a) 100 %

(b) 75 %

(c) 20 %

(d) 0 %

Figure 4.3: Fish and swim bladder modeled in the R software. The left figures illustrate the salmon from the
lateral, in the x-z plane, where the axis is the length and height of the fish in m. The right figures are the salmon
seen from the dorsal, in the x-y plane, where the axis is the salmon’s length and width. a) is the assumed full
swim bladder, b) is 75 % of the full bladder, c) is 20 % of the full bladder, and d) is 0 % of the full bladder.
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Fig. 4.3 shows both the lateral (left figures) and the dorsal (right figures) aspect of the salmon and its

swim bladder as the volume of the bladder diminishes from 100 % in a) to 0 % in d). The left figures

show the fish’s length and height in the x-z plane, and the right figures show the length and width in

the x-y plane.



Chapter 5

Results from measurements and

simulation

This chapter presents the findings from the measurements and simulations. TS, SV , swimming speed,

and frequency response from TS(f) and SV (f) will be addressed based on frequency and pulse type.

The complementary measurements, camera, and air quantity will be considered. A discussion of the

findings and results will be included in Chapter 6.

5.1 Target strength

5.1.1 Measured TS from FM signals

The TS from FM data is obtained using the LSSS-function BBTS(f) tracks (see Appendix B.3). When

exported from LSSS, the .json file includes the tracks detected after being processed by using aggre-

gation as explained in Section 2.4, where one track equals one fish. Each track consists of multiple

pings, and each ping in the track returns a TS value for every frequency in the bandwidth. TS values

were taken from the tracked fish within ± 2◦ relative to the center axis of the transducer beam, which

was done in the MATLAB script in Appendix F.1. In order to compare the FM results with the results

from the CW signals, a few frequencies were selected within a 3 kHz bandwidth around the nominal

frequencies. Eqs. (2.23) - (2.25) were used three times to obtain the average TS, T S, per day. First,

the average TS per frequency within the 3 kHz bandwidth was found for each ping in the track. Then,

to express one TS value per track, T S tr ack , the average TS was calculated over the frequency band.

Lastly, the daily TS value, T S, was found by averaging the values from every track, T S tr ack , within the

exported file. Each of the calculations was done using the MATLAB script in Appendix F.1. As salmon

swim in circles in the cage, they pass through the beam multiple times during the recorded hour, and,

thus, the same fish will be tracked several times throughout the experiment.

The experimental period was divided into four sections, as seen in Table 5.1, which were used to

calculate the linear regression line from Eq. (2.50) in order to study the overall decrease/increase

44



5.1. TARGET STRENGTH 45

during the selected period.

Table 5.1: The experimental period is divided into four sections, where Before is the time before the roof was
attached, Mid is during submergence, Bubbles is the days with bubbling, and After is the days when the roof
was removed.

Period Before Mid Bubbles After

Days -4 - 0 0 - 24 24 - 27 28 - 31

Table 5.1 presents the four periods of the experiment; before submergence (day -4 to 0), submerged

(day 0 to 24), submerged with bubbles (day 24 to 27), and when the roof was removed (day 28 to

31). The periods were used to calculate a trend line, which was accomplished using Eq. (2.50), and

MATLAB. The trend lines were calculated for each nominal frequency within the 3 kHz bandwidth.

Additionally, the coefficient of determination, R2, was calculated by using Eq. (2.51), and is a measure

of how well the collected data fit the linear regression line. However, because Before, Bubbles, and

After consists of only a few data points, the R2 values will not be considered as important as for Mid.

The periods defined in Table 5.1 are used for the rest of the thesis, along with the calculation of the

regression line and R2 values. Fig. 5.1 presents the daily change in T S values from the three echo

sounders and includes the associated trends.
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(a) T S of FM signals from the 70 kHz echo sounder

(b) T S of FM signals from the 120 kHz echo sounder

(c) T S of FM signals from the 200 kHz echo sounder

Figure 5.1: Change in T S from FM data over time for the 70 in a), 120 in b), and 200 kHz echo sounder in c). The
TS values were selected with intervals of 10 kHz from f1 to f2, all seen in the lower right corner of the figures.
The shades of blue increase with increasing frequency, and the purple stippled line represents the trend lines.
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Fig. 5.1, shows the three selected frequencies from the 70 kHz echo sounder in a), the six selected

frequencies from the 120 kHz in b), and the nine selected frequencies from the 200 kHz echo sounder

in c). The figures shows how the T S was changing each day during the experimental period. The

chosen frequencies start at f1 and increase with intervals of 10 kHz until f2, and are presented from

light blue to dark blue. Further, the trend line is presented as the purple stippled line and is calcu-

lated based on the nominal frequencies for each of the three echo sounders. The vertical lines show

the days when the cage was submerged, when the bubbling started, and when the roof was removed.

There are variations between the different frequencies within a given day, where the T S values de-

crease as the frequency increases. The daily values vary, but as seen in the purple stippled line, the

overall trend in the submerged period is decreasing. For each echo sounder, the T S values appear to

start decreasing from day 6. After removing the roof, there is a clear leap in the T S, and the values are

back at the same level as before the cage was submerged. To compare the T S from the FM signals for

each echo sounder, the nominal frequencies are plotted in Fig. 5.2.

Figure 5.2: The T S from FM signals of the nominal frequency for each echo sounder is plotted as a function of
time (in days) to compare the results, where the dots are the daily values and the stippled lines are the trends.
The green is from the 70 kHz echo sounder, the purple is from the 120 kHz, and the blue is from the 200 kHz.

In Fig. 5.2, the T S are the daily values of the nominal frequencies from FM data measured by the

three echo sounders. T S is plotted as a function of time in days to study the changes throughout the

experimental period. The green points represent values acquired from the 70 kHz echo sounder, the

purple is from the 120 kHz, and the blue is from the 200 kHz, and the trend line for each frequency

is included. Due to an unknown error when collecting the data, day 23 is missing from the 70 kHz

FM data, and the value from day 22 has been added to day 23. As in Fig. 5.1, there are variations in
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both daily values and between the three frequencies. Initially, the ratio between the frequencies are

small, but as the bladder deflates, the ratio between the T S values increases. The values measured

by the 70 kHz echo sounder are the lowest throughout the experiment, and from day 14, the 200 kHz

returns the highest T S values. The overall trends for the three frequency bands are decreasing during

the submerged period. Once the roof was removed, the values increased and returned to the original

level. The gradients of the T S trends and R2 values are shown in Table 5.2.

Table 5.2: The linear regression trends (as shown in Figs. 5.1 and 5.2) of T S from FM data for the four periods
(as defined in Table 5.1), for each nominal frequency. The trends are presented numerically as in Eq. (2.50),
and include the R2 values for each trend-line.

70 kHz 120 kHz 200 kHz

Trend R2 Trend R2 Trend R2

Before -0.1x - 31 0.03 -0.1x - 29 0.02 -0.5x - 29 0.3

Mid -0.7x - 27 0.9 -0.6x - 26 0.9 -0.6x - 27 0.9

Bubbles -0.9x -24 0.3 -0.4x -35 0.8 -0.3x - 35 0.2

After 0.7x - 48 0.8 0.5x - 42 0.8 0.2x - 36 0.2

Table 5.2 presents the numerical regression lines of the trend-lines from Fig. 5.2 for the three fre-

quency bands, where the different periods are defined in Table 5.1. As the R2 value for each trans-

ducer is close to 1, the calculated linear regression line is a good fit for the T S values obtained from

the FM data. This is consistent with the plotted values in Figs. 5.1 and 5.2. Additionally, the slopes

show how the three frequencies decrease at almost the same rate (-0.7, -0.6, and -0.6), but the values

from the 70 kHz echo sounder decrease slightly faster than the values from the 120 and 200 kHz echo

sounder.

5.1.2 Measured TS from CW signals

The TS from CW data is extracted after using the tracking function peak (ref. Section 2.4). The re-

turned text files include the tracks for each fish, which consist of multiple pings, and each ping in the

track contains one TS value. In order to express a single TS value per track, T S tr ack , the average TS for

each track was calculated by applying Eqs. (2.23) - (2.25). To present the average TS value per day, T S,

the average was calculated over every track within the exported file, using Eqs. (2.23) - (2.25). Each

calculation was done in MATLAB, using the script in Appendix F.2, and the results are presented in

Fig. 5.3.
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Figure 5.3: T S from CW data from all three transducers as a function of time (days) to study the change through-
out the experimental period. 70 kHz is the green dots, 120 kHz is the purple, and 200 kHz is the blue. The trends
of the T S values are presented as stippled lines with the same color as the associated frequency.

Fig. 5.3 shows T S values per day from the CW data for all three frequencies, where the green graph is

obtained from the 70 kHz echo sounder, the purple is from the 120 kHz, and the blue is from the 200

kHz. The stippled lines represent the overall trend for the four periods defined in Table 5.1. The three

frequencies indicate an overall decrease in T S values during the submerged period. As seen by the

FM data in Fig. 5.2, the ratio between the T S values from the three frequencies from the CW data are

closer at the beginning of the experiment than when the bladder starts to diminish. Further, there is

no significant change in the T S values after the bubbling started compared to the three days before.

After the roof was removed, the TS values increased considerably from day 27 to day 28. See Table 5.3

for the trends and R2 values used in the figure.

Table 5.3: Linear regression trends of T S from CW data for the four periods, for each nominal frequency, the
periods are defined as in Table 5.1. The trends are presented numerically as in Eq. (2.50). In addition, the R2

values for each trend-line are included.

70 kHz 120 kHz 200 kHz

Trend R2 Trend R2 Trend R2

Before 0.2x - 26 0.3 -0.1x - 25 0.2 -0.3x - 27 0.6

Mid -0.5x - 25 0.9 -0.5x - 23 0.9 -0.3x - 25 0.8

Bubbles -0.2x - 32 0.9 -0.2x - 31 0.9 -0.1x - 31 1

After 1.3x - 70 0.6 1.3x - 68 0.5 0.9x - 55 0.5

Table 5.3 shows the TS trends from the CW data calculated for the periods defined in Table 5.1. In

Fig. 5.3, it can be observed how the trends for the 70 and 120 kHz echo sounder from the submerged

period are decreasing at the same rate, which is confirmed by the numerical values in Table 5.3. The
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R2 values for the two frequencies show how the trend lines are closer to the scattered values than the

line from the 200 kHz data.

5.1.3 TS values from a simulated CW signal

Based on the theory from [30] and Eqs. (4.6) - (4.10), TS values from a CW signal was simulated in

the R software using the KRM model. The same frequencies were used for the simulation as in the

experiment; 70, 120, and 200 kHz, and the results are presented in Fig. 5.4.

Figure 5.4: TS from a simulated CW signal for frequencies: 70 kHz (green), 120 kHz (purple), and 200 kHz (blue).
The x-axis is based on the bladder size from Fig. 4.2, where the volume has been decreased from 100 % to 75%,
50%, 20%, 10%, and 0 %.

Fig. 5.4 shows the results from simulating the TS for six different swim bladder sizes: 100 %, 75 %,

50 %, 20 %, 10 %, and 0 %. The simulation was conducted three times for every swim bladder size in

order to reproduce the TS from a CW signal from the 70 kHz (green), 120 kHz (purple), and 200 kHz

(blue) echo sounder. The ratio between the 120 and 200 kHz values is approximately equal for each

swim bladder size, while the 70 kHz is constantly higher than the other two frequencies. Moreover,

the TS values decrease with the decreasing swim bladder volume for all frequencies.

5.1.4 Comparing measured TS from FM and CW signals

This subsection combines the daily T S values from FM and CW data for each frequency and compares

the results in Fig. 5.5.
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(a) T S from both FM and CW signals from the 70 kHz echo sounder

(b) T S from both FM and CW signals from the 120 kHz echo sounder

(c) T S from both FM and CW signals from the 200 kHz echo sounder

Figure 5.5: T S of CW and FM data from the a) 70 kHz transducer, b) 120 kHz transducer, and c) 200 kHz trans-
ducer as a function of time (days). The T S values are equal to the ones plotted in Subsections 5.1.1 and 5.1.2.
The purple dots represents the CW data, and the blue is from the FM data.
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Fig. 5.5 a), b), and c) compares the daily changes in T S values from CW data (purple) with the results

from FM data (blue) for the 70, 120, and 200 kHz echo sounders, respectively. The values of T S are

consistently lower for the FM data than for CW data throughout the experiment, except for after the

roof was removed, where the FM signals are higher than the ones from the CW data. The overall trend

decreased for both signal types during the submerged period, and both signal types increased rapidly

after the cage was resurfaced. From the R2 values in Tables 5.2 and 5.3, the linear regression lines are

close to 1 for both the FM and CW data during the submerged period, and as seen in Fig. 5.5, both

signal types are decreasing almost linearly from day 0 to day 24. Moreover, the daily T S values from

the CW signals vary less than the values from FM signals, but both signals appear to start decreasing

after approximately day 6.

Twice a week, around 15 fish were sampled and checked for air. The amount of air and the neutral

buoyancy were measured in order to calculate the relative air in the swim bladder. The sampling

method is described in Section 3.3, and the results can be seen in Appendix A. Eq. (2.24) was used

when calculating the average relative air for each sampling day. Measuring the air in the bladder was

done to support the data collected from the echo sounders and confirm that the air was diminished,

and the results from the samples can be seen in Fig. 5.6.

Figure 5.6: Decrease in relative air throughout the experimental period, where the relative air is the ratio be-
tween the measured air quantity and the neutral buoyancy. The purple is the individual measurements, and
the blue is the average of the individual measurements.

Fig. 5.6 includes the individually sampled values and the average of all measurements as a function

of time (days), purple and blue dots, respectively. The period is divided into sections as defined in

Table 5.1. As for the T S values, the relative air decreases over time until the bubbling starts on day

24. The air increased after the roof was removed, but it did not reach the same level as before the

cage was submerged. The samples were scattered more on the first days, whereas the relative air was

nearly zero when the bladders were assumed empty. Following the removal of the roof, the values
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went back to having more significant gaps amongst the individual values. From Subsection 2.3.2, a

deflated swim bladder will scatter the signal less than a bladder filled with air. Comparing the drop in

air level from day 0 to day 24 in Fig. 5.6 with Fig. 5.5, it is evident that an empty bladder returns lower

values than a full bladder. This can also be seen in the simulated TS values from Fig. 5.4. From the

measured T S from CW and FM data, it appears the decrease is more prominent from day 6, and from

the measured relative air, the biggest change was between day 0 to day 10.

5.1.5 Frequency response of TS(f ) from measured FM signals

Subsection 5.1.1 shows the average TS values from FM signals as a function of time, while this section

addresses the TS values expressed as a function of frequencies, where the data set is equal in both

sections. 5 kHz was excluded to remove the unstable parts of the signal and was done for both sides,

where the new bandwidths were between f1+5 kHz and f2−5 kHz. The average of each frequency of

each ping in the track was found by using Eqs. (2.23) - (2.25). To express the average TS(f), T S(f), for

the exported file, every frequency within a track was averaged over the total amount of tracks in the

file, using Eqs. (2.23) - (2.25). Four days were selected to study the possible change in the frequency

response of measured TS from FM data for swim bladders of different sizes. The frequency response

from the four days is shown in Fig. 5.7.

Figure 5.7: Measured T S as a function of frequency, T S(f), from FM data for the three frequency bands, plotted
for four selected days: -4 (light blue), 13 (purple), 24 (darker blue), and 31(green).

Fig. 5.7 shows the frequency response from FM signals for four selected days for the three echo

sounders. Day -4 (light blue), before the roof was attached, and day 31 (green), after it was removed,

were chosen as they were days with assumed full swim bladders. The 13th day (purple) was chosen as

it is in the middle of the experiment, and it was valuable to observe if the frequency response changed

after two weeks. Lastly, day 24 (dark blue) represents the last day before the salmon got access to air
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bubbles, and the bladder was empty, and shows how the TS values are lowest for each frequency band

compared to the other days. The frequency responses from the 70 kHz and 200 kHz echo sounders

are equal for the four selected days. Further, the frequency response from the 120 kHz frequency

band from day 13 slightly differs from the responses from days -4, 24, and 31. In order to study the

frequency responses from day -4 and day 24, Fig. 5.8 is included.

Figure 5.8: Frequency response from measured TS from FM signals, shown for days -4 in a) and 24 in b). It
includes the frequency response from each of the three frequency bands. Note: the y-axis are scaled differently
in a) and b).

Fig. 5.8 shows the measured frequency response from TS, from the three frequency bands, where a)

is the response from day -4 and b) is the response from day 24. The y-axis are different in order to

compare the responses better. The discontinuity in between the frequency bands is probably due to

an software error in LSSS [12]. From the figure, the frequency response from the two days are approx-

imately equal, with the only difference being the dB re. 1 m2 levels. For day 24, there is an increase

in the ratio between the frequency ranges, which is not observed in day -4. Moreover, the frequency

responses from the 120 kHz echo sounder are increasing and decreasing as a cosine wave, where the

minimums and Eq. (2.4) can be used to estimate the spatial distance between two reflections. For

both days, the spatial distance between the two minimums for the 120 kHz frequency band is 3 cm.

5.1.6 Frequency response from a simulated FM signal

Based on the theory from [30] and Eqs. (4.6) - (4.10), the frequency response of TS(f) from a FM

signal was simulated in the R software using the KRM model [30]. The same bandwidth as in the

parenthesis in Table 3.2 was used to model the measured frequency response and the results from

different bladder sizes are shown in Fig. 5.9.
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Figure 5.9: KRM simulation of TS for the 70, 120, and 200 kHz frequency bands as a function of frequency. The
simulation was run eighteen times to simulate a full bladder at 100 % (light blue), then 75 % of the full bladder
(light purple), 50% (purple), 20% (green), 10% (darker blue), and 0 % (orange).

Fig. 5.9 shows the results from simulating the TS(f) from a FM signal for six different swim bladder

sizes: 100 % (light blue), 75 % (light purple), 50 % (purple), 20 % (green), 10 % (darker blue), and 0 %

(orange). The simulation was conducted three times for every swim bladder size in order to reproduce

the TS(f) from an FM signal from the 70 kHz, 120 kHz, and 200 kHz frequency bands from Table 3.2.

When studying the figure, the shape of the responses is approximately the same for all sizes. The dB

re. 1 m2 values are decreasing with decreasing bladder volume. Comparing the simulated frequency

response in Fig. 5.9 with the measured frequency response in Fig. 5.7, some resemblance can be

observed.

5.2 Measured volume backscattering strength

This section will present the results from SV , where the values were obtained from the EK80 echo

sounders and Eqs. (2.30) - (2.34), and Eqs. (2.41) - (2.42). The data was automatically exported from

LSSS as a function of frequency by using a Python script created by Pedersen [65]. Unlike the TS

values, SV values extract every value within the selected regions regardless of the tracks. The same

regions and time of data as for TS from FM data were used when exporting and analyzing SV . The

returned .json files include one SV value for each frequency in the bandwidth, where a ± 1.5 kHz

bandwidth of the nominal frequencies was selected for further studies. To observe the day-to-day

change in SV values, Eqs. (2.23) - (2.25) were used to calculate the average SV , SV , per day. The result

is shown in Fig. 5.10, including the linear regression lines for each frequency.
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Figure 5.10: SV for each echo sounder, is plotted as a function of time (in days) to compare the results, where
the dots are the daily values, and the stippled lines are the trends. The green is data acquired from the 70 kHz
echo sounder, the purple is from the 120 kHz echo sounder, and the blue is from the 200 kHz echo sounder.

Fig. 5.10 shows the SV as a function of time for the three frequency bands, where the green points

represent the measurements from the 70 kHz echo sounder, the purple is from the 120 kHz, and the

blue is from the 200 kHz. The included trends show the overall change for each period, which are

defined in Table 5.1. Day 23 is missing in the plot due to an error made when collecting the data.

As for the T S from the FM and CW data, there are variations in both daily values and between the

frequencies. The ratio between the three frequencies increases when the air level decreases. Further,

the SV values acquired from the 70 kHz echo sounder are the lowest throughout the experiment, and

the values measured by the 200 kHz echo sounder are the highest. This is also seen for the T S from

both FM and CW data. After removing the roof, the values returned to the same level as before the

cage was submerged. The trend lines from the figure are shown numerically in Table 5.4.

Table 5.4: Linear regression trends of SV for the four periods, for each nominal frequency, where the periods
are defined in Table 5.1. The trends are presented numerically as in Eq. (2.50). In addition, the R2 values for
each trend-line are included.

70 kHz 120 kHz 200 kHz

Trend R2 Trend R2 Trend R2

Before 0.3x - 32 0.1 0.01 -32 0.0001 0.1x - 31 0.02

Mid -0.6x -32 0.4 -0.5x -32 0.3 -0.4x -32 0.3

Bubbles -2.8x +21 0.9 -2.6x + 19 0.8 -2.4x + 18 0.8

After -2.6x + 41 0.8 -3.0 +52 0.8 -2.8x + 50 0.8

Table 5.4 presents the linear regression lines for SV from Fig. 5.10 numerically. As seen in the figure,

the three frequencies decrease at approximately the same rate during the submerged period. Never-
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theless, the R2 values indicate that the linear line does not fit the daily values well, and is due to the

significant daily scattering.

5.2.1 Frequency response from measured SV (f )

The results in Section 5.2 show the daily variation in SV , while this subsection focuses on the SV (f)

as a function of frequency. The data sets are equal to those used in the previous section, but 5 kHz

was excluded to remove the unstable parts of the signal and was done for both sides of the frequency

band. The new bandwidth was between f1 +5 kHz and f2 −5 kHz, and the results are shown in Fig.

5.11.

Figure 5.11: Measured SV from FM data as a function increasing frequency, SV (f), for the three frequency bands
from the four selected days: -4 (light blue), 13 (purple), 24 (dark blue), and 31 (green)

The figure shows the same selected four days as in section 5.1.5 for TS(f). The light blue (day -4) and

green (day 31) are days with assumed full swim bladders, while the purple (day 13) and darker blue

(day 24) are assumed to be nearly empty and empty, respectively. The frequency response from day

24 returns the lowest values, as expected from an empty swim bladder. Additionally, the frequency

response from days -4, 13, and 31 are at approximately the same dB re. 1 m−1 level for the three

frequency bands, while the response from day 24 is increasing from the 70 kHz band to the 200 kHz

band.

5.3 Swimming speed

In this section, the results from the swimming speed will be presented. The text files exported for

swimming speed were based on the "Tracks" function in LSSS, as explained in Section 2.4, and in-

cludes one track for each fish, where every track consists of several pings. Every ping in a track con-
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sists of multiple x,y, and z positions and the timestamp for each position. The total distance swam

by the fish was found by using Eqs. (2.45) - (2.46), and the total time used to swim the distance was

found from Eqs. (2.43) - (2.44). If one fish’s total distance or time were greater than 4 m or 10 s, the fish

were considered invalid and was not used for further calculations. According to Section 3.1, the the-

oretical beam width by the roof was 3 m. Therefore, it is unlikely that a fish would swim through the

beam slower than 10 s and longer than 4 m. If the total distance and time exceed these boundaries, it

suggests that something is not right, which may be due to the tracking algorithm.

The swimming speed for one fish was calculated using the total distance, total time, and Eq. (2.47).

The results from the echo sounders are given in m/s, but by applying Eq. (2.48) the swimming speed

is expressed in body length per second, bl/s. In order to study the daily change in swimming speed,

Eq. (2.24) was applied to obtain the average swimming speed value for each day, and Eq. (2.49)

was applied to calculate the standard deviation of the swimming speed for the whole file. The same

method was applied for finding the swimming speed from both FM and CW signals, and the results

are shown in Subsections 5.3.1 and 5.3.2.

5.3.1 Swimming speed from FM signals

This subsection addresses the swimming speed results from the FM data, given both in m/s and bl/s.

Due to a mistake made in Matre, day 23 from the 70 kHZ echo sounder is missing from the FM data,

and the value from day 22 has been added to day 23. The average swimming speed is calculated

to study the day-to-day variations, which was done using the script in Appendix F.3. Additionally,

the swimming speed trend is included to observe the overall trend for the different periods in the

experiment and can be seen together with the calculated R2 values in Table 5.5. Fig. 5.12 shows the

swimming speed from the FM data as a function of time and includes the associated trends.
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Figure 5.12: Swimming speed given as means per day and standard deviation (± 0.3 m/s) from FM pulses from
the three transducers, where the green is for 70 kHz, purple is for 120 kHz, and the blue is for the 200 kHz. The
graph includes the swimming speed trends, where green is the trend for the 70 kHz, purple is for the 120 kHz,
and blue is for the 200 kHz echo sounder. The left y-axis shows the swimming speed expressed in m/s, while
the right side shows the speed expressed by bl/s.

Fig. 5.12 shows the results after calculating the mean swimming speed per day and standard devia-

tion for all three transducers from FM data. The green represents the 70 kHz transducer, the purple

is for the 120 kHz, and the blue is the 200 kHz. Additionally, the figure includes the swimming speed

trends for the four sections of the experiment, defined in Table 5.1. From the figure, the swimming

speed measured by the 120 kHz is consistently higher than the speed measured by the two other echo

sounders, where the speed acquired by the 200 kHz echo sounder has the lowest value. The maxi-

mum swimming speed during the experiment was measured on day 13 (120 kHz transducer), where

the speed was 1.1 m/s. The minimum speed was found on day 4 and was measured at 0.7 m/s by the

70 kHz transducer. The trends show an overall increase in swimming speed during the submerged pe-

riod. The standard deviation shows that the different frequencies are within each other’s uncertain-

ties. Nevertheless, the standard deviation is high (± 0.3 m/s) and indicates significant uncertainties

within the calculated swimming speed from the three frequencies.

Furthermore, from day 0 to day 24, there is a 15 % increase in swimming speed measured by the

70 kHz transducer, 18 % increase by the 120 kHz, and 3 % increase by the 200 kHz. The percentage

was calculated based on the first and last value of the trend line, using Eq. (2.52). After the roof was

removed, there was a significant leap in the values for all frequencies. Table 5.5 shows the trends for

the three frequency bands and the R2 coefficients.
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Table 5.5: The swimming speed trends for the FM data are shown numerically for each frequencies in m/s,
calculated for the four periods defined in Table 5.1

70 kHz 120 kHz 200 kHz

Trend R2 Trend R2 Trend R2

Before -0.02x + 1.0 0.5 -0.03x + 2.5 0.9 -0.02x + 2.3 1

Mid 0.01x + 0.9 0.2 0.01x + 0.9 0.3 0.001x + 0.9 0.1

Bubbles 0.003x + 0.9 0.6 0.001x + 1.0 0.9 0.002x + 0.9 0.5

After -0.004x + 1.0 0.3 0.004x + 0.9 0.6 0.01x + 0.4 0.4

The values in Table 5.5 shows the swimming speed trends for FM data from Fig. 5.12 numerically,

including the R2 values for each period. The 200 kHz is approximately constant, which is also seen

in Fig. 5.12. The R2 values reveal that the regression lines are not a good fit for the measured values,

and as the y-axes are zoomed out, this is not easily observed in the figure. By omitting the standard

deviation, the scattered values would be more evident.

5.3.2 Swimming speed from CW signals

In this subsection, the results from the CW pulses will be presented. The swimming speed was found

using the method explained for the swimming speed obtained from the FM signals and the MATLAB

script in Appendix F.2, and the results are expressed in Fig. 5.13. The associated swimming speed

trends and R2 from the CW data are included in Table 5.6.

Figure 5.13: Swimming speed given as means per day and standard deviation (± 0.2 m/s) from CW pulses from
the three echo sounders, where the green is for 70 kHz, purple is for 120 kHz, and the blue is for the 200 kHz.
The graph includes the swimming speed trends, where green is the trend for the 70 kHz, purple is for the 120
kHz, and blue is for the 200 kHz. The left y-axis shows the swimming speed expressed in m/s, while the right
side shows the speed expressed by bl/s. NB: axes differ from Figs. 5.12 and 5.14 to show the increase more
clearly.
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Fig. 5.13 shows the results, including the standard deviation, after calculating the mean swimming

speed per day for all three transducers. The green represents the 70 kHz transducer, the purple is

for the 120 kHz, and the blue is the 200 kHz. Additionally, the figure includes the swimming speed

trends for the four periods in the experiment defined in Table 5.1. The 70 kHz transducer recorded

the lowest values for most of the submerged period, and 120 kHz recorded the highest. Moreover, the

overall swimming speed increased while the roof was attached, which can be observed for each of

the frequencies. The swimming speeds are mainly between 0.5 and 0.7 m/s, and the speed from each

frequency is within each other’s uncertainty range. However, like the speed from the FM data, the high

standard deviations (± 0.2 m/s) indicate significant uncertainties within the calculated swimming

speeds, which applies to each of the frequencies. During the 24 days of submergence, the values from

the 70 kHz data increased by 20 %, while 120 and 200 kHz increased by 19 % and 20 %. The trends can

be seen numerically in Table 5.6, along with the R2 values.

Table 5.6: The swimming speed trends for the CW data are shown numerically for all frequencies, in m/s,
calculated for the four periods defined in Table 5.1

70 kHz 120 kHz 200 kHz

Trend R2 Trend R2 Trend R2

Before 0.005x + 0.5 0.4 -0.005x + 0.6 0.1 -0.007x + 0.5 0.8

Mid 0.004x + 0.5 0.5 0.004x + 0.5 0.6 0.005x + 0.5 1

Bubbles 0.002x + 0.6 0.04 0.006x + 0.5 0.3 0.005x + 0.6 0.1

After -0.020x + 1.2 1 -0.014x + 1.006 1 -0.02x + 1.16 0.2

Table 5.6 includes the swimming speed trends and R2 coefficients from CW data. The three frequen-

cies increase at approximately the same rate during the submerged period based on the trends, and

from the R2 value, the trend line for the 200 kHz fits better than for the 70 and 120 kHz.

5.3.3 Comparing the swimming speed from FM and CW signals

In this subsection, the differences between the results from FM and CW speed will be compared. Fig.

5.14 presents the results measured by the echo sounders, and includes the complementary measure-

ment of the swimming speed from the camera data. The figures show the speed in both m/s and bl/s,

and the standard deviation calculated using Eq. (2.49).
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(a) Swimming speed acquired by the 70 kHz echo sounder for both CW and FM data, and measured speed from
camera data

(b) Swimming speed acquired by the 120 kHz echo sounder for both CW and FM data, and measured speed from
camera data

(c) Swimming speed acquired by the 200 kHz echo sounder for both CW and FM data, and measured speed from
camera data

Figure 5.14: Swimming speed from CW and FM data from a) the 70 kHz echo sounder, b) 120 kHz, and c) 200
kHz, and the camera measurements. The green represents the CW signals, purple is the FM signals, and blue
is the camera data. The graph includes the swimming speed trends and standard deviations, where the same
color is used for the different data types. The left y-axis shows the swimming speed expressed in m/s, while the
right side shows the speed expressed by bl/s.



5.3. SWIMMING SPEED 63

Fig. 5.14 shows the swimming speed from the CW, FM, and camera data for the a) 70 kHz, b) 120 kHz,

and c) 200 kHz transducer. The green represents the CW values, purple is the FM values, and blue is

the camera data. The associated trends and standard deviations are included, where the same colors

are applied as for the swimming speed values. The swimming speeds are a function of time (days)

and are presented in m/s on the left y-axis and bl/s on the right y-axis.

There are significant differences between the two signal types regarding speed for all three frequen-

cies, with FM data almost twice as fast as the CW data. In addition, the camera data is closer to the

values from the CW signals. As shown in the figure, the standard deviation for CW data overlaps the

standard deviation from FM and camera data each day, while the standard deviation of the FM and

camera data rarely overlaps. Table 5.7 shows the increase from day 0 to day 24 calculated by using Eq.

(2.52), based on the trends for the camera data and the values in Tables 5.5 and 5.6.

Table 5.7: The increase in percentage from day 0 to day 24 for the swimming speed from the two pulse types,
FM and CW, and camera measurements. The percentage is calculated from the first value of the trend to the
last value.

Signal type 70 kHz 120 kHz 200 kHz

FM 15 % 18 % 3 %

CW 20 % 19 % 20 %

Camera 30 %

Table 5.7 presents the increase from the submerged period, day 0 to day 24, in percentage. The table

shows that the increase in the speed from the CW data is approximately the same, while the increase

in speed from the FM signals varies. This is especially between the 200 kHz transducer and the 70 and

120 kHz.



Chapter 6

Discussion of methods and the results

from measurements and simulations

This chapter is divided into two sections, where the first section will discuss the methods and difficul-

ties of the measurements and data processing. The second section will address the results from both

the simulations and the measurements from Chapters 4 and 5.

6.1 Discussion of methods

6.1.1 Number of fish

There are many factors to consider in the experiment, but among the most critical is the number of

fish chosen, where roughly 500 salmon were specified as the appropriate number. A requirement for

choosing this specific number of fish was to achieve normal behavior. Moreover, as TS is an essential

parameter in this study, it was desirable to measure individual salmon, which justified the decision

of having a minimum amount. As SV is a measure of backscattered signals in a volume, the num-

ber of fish was not as decisive as for TS. Observations of unusual behavior were evident the first days

after attaching the roof, and the salmon was swimming individually in the cage as opposed to in a

school. Eventually, they seemed to calm down and started acting as anticipated. As a result of moni-

toring individual fish on the echo sounder and observing expected behavior, 500 fish was deemed an

appropriate quantity.

6.1.2 Environment

The experiment was conducted from mid-March to mid-April, a season with changing weather and

temperatures. The sea surface froze during the night prior to the scheduled day of submersion, pre-

venting salmon from replenishing the bladder. Despite the ice being crushed the same morning, the

start date had to be postponed ensuring the swim bladder had a natural amount of air. Despite wait-

64
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ing a day, it was not guaranteed that all salmon would be refilled before the attached roof. On the

other hand, as it appears in Section 5.1, the values for T S are not declining until the 6th day based on

data from the CW and FM signals, at the earliest. Furthermore, they began refilling immediately after

removing the roof on day 28. Considering these two instances, it is conceivable that one day with ice

will not affect the results.

Rain and snowmelt were not considered when analyzing the data and are two factors that may impact

seawater salinity, which is vital when finding the sound speed in seawater. After studying Fig. 3.10, it

can be assumed that the change in salinity is trivial, and rain and snowmelt were neglected. Addition-

ally, the current fluctuated significantly during the experiment. The transducers were placed in the

corner of the cage and could only measure fish swimming either co-currently or against the current,

depending on the current’s direction. However, this was not taken into consideration when analyzing

the swimming speeds. The cage’s edges shifted into the beam due to the current, which resulted in

noise on the returned signal. In order to avoid including noise in the results, the data was extracted

during hours with less current.

6.1.3 Sampling technique

The salmon were initially fed around 2 kg of pellets every day, but it soon became apparent that it

was nearly impossible to catch the fish in the relatively large pen. As described in Section 3.3, it was

desirable to extract approximately 15 fish two times a week to examine the amount of air in the swim

bladder. Due to salmon being fed daily, they did not swim to the surface as readily as expected. A fur-

ther limitation was the small catcher attached to a pole, making it impossible to reach depths greater

than 3 m. As a consequence of overly feeding, the number of days the fish were fed was reduced.

They became hungrier and more willing to approach the surface on sampling days. Furthermore, the

catcher was replaced with a dead fish collector with a bigger diameter attached to a rope, allowing it

to reach deeper depths. The adjustments made it easier to catch the desired 15 fish. Despite the lack

of food every day, it is assumed that the growth rate was not impacted.

The sampling method may have affected the amount of air in the bladder. Some salmon were ob-

served emitting bubbles while being caught in the catcher. It was hard to say if this was indeed the

salmon’s response to being stressed, how much air they released, and if it applied to every salmon.

Following, the salmon were taken out of the water and placed into a tub filled with seawater and

anesthesia, and once again, air bubbles were observed. Whether the air observed came from the

swim bladder or if the fish snapped air while being transferred to the tub was unclear.

The next step was to perform a welfare measurement [59], as described in Section 3.3, which involved

lifting the fish from the tub and placing them on a table. Since the tests took a while, the salmon were

left on the table for some time before the relative air was measured. The waiting and lifting may have

affected the air level, and it is unknown whether or not salmon open the channel between their swim

bladder and pharynx as they die. These factors have not been conclusively linked to the amount of air

present in the swim bladder and are considered sources of error. If they are affected, it is reasonable
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to assume all salmon have experienced it, and it can be ignored when calculating the relative air.

Numerous errors can occur when measuring the relative air level in the salmon’s swim bladder. The

swim bladder is fragile and can easily break if the end of the tube is pressed against it. Even though 15

fish were removed from the cage, some days had fewer measurements due to ruptured swim bladders.

In order to obtain neutral buoyancy, the swim bladder was injected with air, as explained in Section

3.3. However, from day 19, when the bladder was nearly empty, some fish released the injected air

before the neutral buoyancy could be found. Initially, the hypothesis was that the fish had grown,

and the entrance to the bladder grew proportionally. Consequently, the tube would be too small to

fill the hole, and air would be able to escape through the bladder entrance. Nevertheless, the escape

of the air stopped after the roof was removed and the bladder was replenished, and the hypothesis

proved not to be valid. Further, there was a theory that the bladder ruptured, but further study of the

bladder ruled this theory out. The days with leaks can be seen in Appendix A. The observed neutral

buoyancies for these fish depend on the amount of air right before the injected air escaped. With

all sampled fish nearly empty, the source of error from the escaping air will be deemed trivial as the

calculated relative air was approximately 0 (ref. Table A.2).

6.1.4 Setup and positioning of the transducers

The cage was approximately 14 meters deep, and the transducers were positioned 10 meters beneath

the bottom of the cage, at 25 meters. The results depend on where the transducers were positioned.

Ideally, if the objective is to study the vertical distribution of the fish, the transducers should be placed

further away as the beam gets wider with the increasing distance. It can be argued that the transduc-

ers should be placed closer to the fish for the purposes of the present study, as the individual fish and

TS are more important than the vertical distribution. The LSSS echogram shows singular salmon at

all three frequencies and indicates that the transducers were well-positioned at 25 m below the sur-

face. Fig. 3.5 shows an illustration of the coverage of the fish shoal in the cage. Furthermore, the three

transducers were mounted on a gimbal, relatively close to each other, where each beam measured the

same fish. This was tested by ruling out a single fish on one of the echo sounders and then checking if

the same fish appeared on the other two. Thus, it was observed that all three beams overlapped very

well.

Previous experiments [6] show that fish submerged below 10 m have sufficiently less salmon louse

compared to regular cages. As this experiment was not focused on salmon louse, the roof was only

attached at 1 m depth. This made it possible to collect fish throughout the submerged period. How-

ever, it can be argued whether the results are as representative as those from a cage submerged below

10 meters.
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6.1.5 LSSS: Tracking algorithms for FM data

Compared to previous publications and predictions [23–25], the swimming speed from FM signals

found in this thesis, as seen in Fig. 5.12, is unexpectedly high. Prior to submersion, the fish swam

approximately 0.9 to 1.1 m/s (2.4 to 2.8 bl/s), measured by the FM signals, while in [25] and [23], the

fish swam 0.2 m/s (0.55 bl/s). Hence, it was desirable to determine if this result can be attributed

to applying the aggregation algorithm in LSSS when extracting the swimming speed for FM data. In

this case, it is imperative to underscore that LSSS is primarily being used for CW data; there is per,

today, no well-defined techniques for using tracking algorithms on FM data. A test was performed to

determine whether the algorithm was responsible for the high swimming speed. A six-minute area

was selected on day 3, as shown in Fig. 6.1.

Figure 6.1: Screenshot of an echogram of the salmon from FM data as seen in LSSS. a) shows data from FM
signals tracked using the aggregation algorithm, while b) is the same data set as in a) but has been tracked
using peak. The red boxes represent 6 minutes of tracks and are equal in a) and b). The boxes are divided into
three layers, labeled 1, 2, and 3 on the left side of the red box.
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Fig. 6.1 shows two screenshots from the echogram as seen in LSSS, where both a) and b) are based on

the same FM data set. However, a) shows the tracks from the 120 kHz echo sounder measuring FM

data after applying the aggregation algorithm, while b) shows tracks from FM data after using the peak

algorithm. The tracks are seen as the black lines surrounding the fish, illustrated in the red circles (or

see Fig. 2.4 for a close up). 6 minutes of the data set was selected, seen as the red box in a) and b),

which is equal for the two figures. The colors in the figures are the dB re 1 m2 threshold defined in

the echogram, where red indicates a strong backscattered signal, and pink/purple indicates a weaker

signal (see Fig. 3.11 for the colored thresholds). The box is divided into layers 1, 2, and 3, indicated

on the left side of the boxes, to calculate the swimming speed based on different fish densities. There

are evidently more tracks from aggregation seen in a) than peak in b). The data were exported from

all three layers (1+2+3), layers 1+2, and each layer individually. The swimming speed were calculated

as defined in Section 5.3 and the standard deviation is found by using Eq. (2.49), and the results are

shown in Table 6.1.

Table 6.1: Swimming speed from the 120 kHz transducer, using both aggregation and peak. Results shown both
in m/s and bl/s, including the standard deviation

Aggregation, [m/s] Peak [m/s] Aggregation [bl/s] Peak [bl/s]

Layer 1 + 2 + 3 1.0 ± 0.3 0.4 ± 0.1 2.7 ± 0.8 1.0 ± 0.2

Layer 1 0.9 ± 0.3 0.4± 0.03 2.4 ± 0.9 1.0 ± 0.1

Layer 2 1.1 ± 0.3 0.4± 0.1 2.8 ± 0.8 1.0 ± 0.2

Layer 3 0.7 ± 0.2 0.4± 0.1 2.0 ± 0.6 1.0 ± 0.2

Layer 1 + 2 1.1 ± 0.3 0.4 ± 0.1 2.8 ± 0.8 1.0 ± 0.2

As shown in Table 6.1, there is a significant difference in swimming speed between the two algorithms.

Layers 1 and 3, with fewer tracks and less density than layer 2, slightly decrease in speed for aggrega-

tion and peak. Based on articles [23–26], the swimming speed is more consistent with the results from

using peak. In addition, it matches what has been observed and measured with the camera, seen in

Fig. 5.14. The number of fish tracked by peak is considerably lower than that of aggregation, where

17 fish are tracked while 924 are tracked by aggregation. However, since 45 - 75 observations a day

from the camera data are considered enough, one hour of tracks from peak is sufficient to validate

the results.

The aggregation method was chosen because of the increased number of tracks in the primary fish

school compared to peak. Moreover, this test was carried out after reviewing the results and analyzing

all the data. In contrast, peak may have been the preferred algorithm if the test had been done before

exporting the data. Due to the limited time, the tracking was not repeated, and results were based on

aggregation. The same test was conducted for the 200 kHz transducer and can be seen in Appendix C.

The number of tracks for the 200 kHz data was approximately the same for both peak and aggregation.

However, even with the same amount of tracks, the difference between the speeds was the same as in

Table 6.1.

LSSS is developed and primarily used for surveys using CW pulses. From this test, it can be assumed
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that aggregation has not been established enough to be used on FM data. Even though peak is just

as developed as aggregation, it is still more selective of fish, and the algorithm appears to be better at

choosing individual fish. As seen in Fig. 6.2, some of the tracks follow individual fish quite well, but

in the middle of the shoal, where the fish is denser than the periphery, there is no guarantee that one

track follows only one fish.

Figure 6.2: Tracks from the FM signals acquired from the 70 kHz echo sounder when using aggregation as the
tracking method. The algorithm mostly returns good tracks in the less dense parts of the shoal. Some tracks
seem to overlap, as in the red oval, and in the middle of the school.

Fig. 6.2 shows tracks after using aggregation on data from the 70 kHz echo sounder transmitting FM

pulses. The data set is approximately 4 minutes long and is taken from day -4. The figure shows that

the less dense area at the bottom returns mostly good tracks following individual fish. However, in

the red ellipse, a track can be seen jumping from one fish to the next. Due to the amount of fish and

tracks in the middle of the fish school, it is not certain how accurate the tracking is. Despite the high

swimming speed values, the overall trend and comparison with the CW data are vital to the thesis and

will be discussed further in Subsection 6.2.3.

6.1.6 LSSS: Tracking algorithms for CW data

Ideally, the same tracking algorithm for both FM and CW data should be used for better comparison.

However, the tracks were not as expected when applying aggregation for CW pulses and can be seen

in Fig. 6.3 a)
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Figure 6.3: Screenshot of the tracks on CW data as shown in the echogram in LSSS. a) shows the tracks on
CW data after being tracked using the aggregation algorithm, while b) shows the same data set as in a) after
using peak. Tracks are indicated by the black lines surrounding the fish (see Fig. 6.4). The red boxes represent
approximately 20 minutes of tracks and are equal in a) and b).

Fig. 6.3 illustrates the CW tracks as seen in the echogram in LSSS, and both a) and b) includes the

same fish and data set. a) is after aggregation was applied as the tracking method, while b) is after

using peak. In a), there are tracks on almost every fish, seen as the black lines surrounding the fish

(see Fig. 6.4). Compared to the tracks using aggregation on FM data in Figs. 6.1 a) and 6.2, the tracks

are much thicker as the spatial resolution of CW signals are lower than for the FM signals, see Table

3.3. However, when zooming in on the tracks from aggregation, they are all split into multiple tracks

per fish, as shown in Fig. 6.4. Compared to the number of tracks from aggregation in Fig. 6.3 a),

there are only a few when using peak in b), and most of them are in the periphery of the fish shoal. A

similar test as in Subsection 6.1.5 was conducted for CW data, but only for one layer, and the results

are presented in Table 6.2 together with the standard deviations.
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Figure 6.4: Zoomed in on an individual fish, showing 5 tracks after using the aggregation algorithm. Each arrow
points at the thickest black lines, which indicates the middle of each track.

Fig. 6.4 shows how the aggregation tracks look on one individual fish. The track is divided into multi-

ple tracks, where the thick, black lines (indicated by arrows) represent the middle of each track. Here,

the single fish has five tracks. When each fish have multiple tracks, it will result in more fish than

anticipated, and it may affect the results. Although peak returned fewer tracks, as shown in Fig. 6.3

b), the concern of multiple tracks per fish made peak the preferred choice.

Table 6.2: Swimming speed results and standard deviations from testing peak and aggregation on CW data,
presented in both m/s and bl/s.

Peak Aggregation Peak Aggregation

Frequency [m/s] [m/s] [bl/s] [bl/s]

70 kHz 0.6 ± 0.3 1.3 ± 0.4 1.7 ± 0.8 3.6 ± 0.9

120 kHz 0.6 ± 0.3 1.4 ± 0.4 1.6 ± 0.7 3.6 ± 0.9

200 kHz 0.5 ± 0.2 1.3 ± 0.3 1.6 ± 0.6 3.5 ± 0.9

Table 6.2 shows the speed from CW for peak and aggregation in both m/s and bl/s, for all three fre-

quencies. As in Table 6.1 and the test for FM data, aggregation returns a swimming speed with values

double the values from peak. From Fig. 6.3 b), the lack of tracks might be a reason for the low speed

values from peak on CW data. However, as the results from 2 hours of data in Fig. 5.13, return the

same values, it is more likely the algorithm.

6.1.7 EK80

As this thesis is in the preliminary stages of research when it comes to FM and using scientific echo

sounders in aquaculture, the computer or settings applied in Section 3.5 for the mission plan in EK80

affected the data collection. The mission plan was set to transmit signals from five echo sounders

simultaneously. The echo sounders transmitted one hour of CW signals and one hour of FM. As the

hour progressed, the software failed to maintain the ping rate. Due to the large data files acquired

from the five FM echo sounders, the folders on the computer quickly became full, and the ping rate

was slowed down. According to Kongsberg Maritime, this was a Windows issue [70]. As the issue was
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detected early on, a new folder was created for the files, and the software was restarted every morning.

However, during the data analysis in LSSS, it was found that the restart had no effect on the ping rate.

When CW and FM were split into different files and opened in LSSS individually, the recorded data

time deviated from the desired hour. From Section 3.5, the settings in the EK80 mission planner were

based on the number of pings and not the time. Therefore, the time was affected when the computer

could not maintain the ping rate.

The length of the collected "hour" can be seen in Appendix E. Due to the number of tracks from

tracking FM data using aggregation, additional or fewer values should not affect the results as the

results are based on the average TS and swimming speed. Further, the TS and swimming speed from

CW data were based on two hours of data (ref. Subsection 3.6.3). This was done by subtracting one

hour from the start of the FM period and adding one hour at the end of the period, seen in Appendix

E. If the selected hour of FM data is longer than an hour, the following period of CW data will be less

than an hour, resulting in fewer tracks.

6.2 Discussion of results

6.2.1 Results from measured and modelled TS

Based on previous publications of submerged cages for farmed salmon [23–26], the measured backscat-

tered signals were assumed to decrease as the salmon’s swim bladder deflates. This is consistent with

the theory from Subsection 2.3.2, where the air in a fish’s swim bladder accounts for 90 % of the TS

[10]. The strong backscattered signal is due to the high characteristic acoustic impedance between

the air and the surrounding seawater [9], and with less air, the signal becomes weaker.

The measured T S from the FM data in Fig. 5.2 and from the CW data in Fig. 5.3, shows how the

T S starts to decrease after being submerged for approximately 6 days. This differs from what was

found in [23, 25, 26], where the most significant decrease occurred immediately after the cage was

submerged. However, the overall change in T S from Figs. 5.2 and 5.3 show a similar plot as in Fig. 1.1,

where the values decreases linearly after 4 days of submergence [23]. The R2 values for the measured

T S values in Table 5.2 for the FM data and in Table 5.3 for the CW data, are close to 1 for each of the

echo sounders during the submerged period. Hence, the daily T S values for both signal types are a

good fit for the regression lines and are decreasing almost linearly, which is similar to Fig. 1.1 [23].

However, from Figs. 5.2 and 5.3 the T S is approximately flat the first 6 days after being submerged,

which is seen in Figs. 1.2 and 1.3 [24, 25]. In contrast, in Fig. 1.4, the biggest change occurs the first

10 days of being submerged [26]. This is consistent with the sampled relative air from Fig. 5.6, where

the most significant change was between day 0 and day 10.

Common for the experiments in [24–26] is that the measured echo intensity was based on echo in-

tegration, which is a measure of the backscattered signals from multiple layers in a volume, ref. Eq.

(2.39). Thus, the results from the articles are more comparable to the measured SV data than the

T S. Nevertheless, as the echo intensity in [23–26] is presented as a relative change over time, the
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trends can be compared to the measured T S from this experiment. Moreover, the cages in [24–26]

are submerged to depths between 10 – 24 m, and it can be argued that the results from these exper-

iments are deemed less comparable to the results obtained during this thesis. Further, the cages in

[23] were submerged to 3 m depth, and thus, it is conceivable that the decrease from the experiment

is more reasonable than the results from [24–26]. The relative change in echo intensity [23–26] does

not provide as much information as the measured T S values (from FM and CW) found during this

experiment. The measured values for T S are now quantitative values for 38 cm long salmons and can

be used by others to detect a decrease in the air level.

Furthermore, the theoretical calculated TS values presented in Section 1.2 based on Eqs. (2.26) - (2.29)

from [28, 29, 47] is compared to the simulated TS and the measured T S from FM and CW signals, and

is presented in Table 6.3.

Table 6.3: Theoretical calculated TS and simulated TS, and measured T S from FM and CW signals. Presented
for a full swim bladder, day 0, and when the bladder is assumed empty, day 24. *In [47], Eq.(2.26), is based on
a 50 kHz echo sounder, but is here used to compare to the measured and simulated TS from a 70 kHz echo
sounder.**Eq. (2.29) [29] is based on measurements on mackerel from a 38 kHz echo sounder.

70 kHz [dB re. 1 m2] 120 [dB re. 1 m2] 200 [dB re. 1 m2]

Day 0 Day 24 Day 0 Day 24 Day 0 Day 24

Measured T S, FM -32 -44 -29 -44 -28 -42

Measured T S, CW -28 -36 -27 -35 -27 -33

Theoretical calculated TS -34* -55** -30 -55** -30 -55**

Simulated TS -33 -44 -37 -47 -37 -47

Table 6.3 addresses the simulated, theoretical calculated, and measured T S values from day 0 (as-

sumed full bladder) and day 24 (assumed empty bladder). Eq. (2.26) is based on measurements from

a 50 kHz echo sounder but is used in comparison with values from a 70 kHz signal. Further, Eq. (2.29)

was established from measurements from a 38 kHz echo sounder on mackerel, a fish without a swim

bladder, and is used for comparison with the salmon’s empty swim bladder. As seen in Table 6.3,

the measured T S from the FM data from day 0 is closer to both the theoretical calculation and the

simulated TS than the values from CW data.

For an empty bladder, the measured T S from FM data acquired from the 70 kHz transducer fits the

simulated TS perfectly. The measured T S from the CW signals and the 120 and 200 kHz echo sounders

transmitting FM signals, however, do not correspond to the low simulated TS values. The theoretical

calculated TS for an empty bladder is –55 dB re. 1 m2 (ref. Eq. (2.29)), and is not comparable to

the simulated TS or the measured T S from either FM or CW signals from day 24. Eq. (2.29) was

established after studying mackerel and thus is not the best estimation for calculating the theoretical

TS from an empty salmon swim bladder. As the measured T S from CW signals stabilizes from day

22 (ref. Fig. 5.3), and the sampled air levels are approximately 0 from day 10 (ref. Fig. 5.6), it can

be assumed the bladder was empty, and the backscattered signal from a salmon will most likely not

reach -55 dB re. 1 m2 as from Eq. (2.29).
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From Fig. 5.5 the T S from CW signals in a), b), and c) are consequently higher than the T S values

from FM signals. This applies for the periods Before, Mid, and Bubbles (defined in Table 5.1), while

after the cage was resurfaced, the values from the FM signals are higher or at a level equal to the

values from CW data. The high T S values from the CW data might be explained by the dense shoal

and the spatial resolution of the CW signals. A high fish school density may prevent the CW pulses

from clearly distinguishing between the targets, creating a stronger backscattered signal.

A recurrence in the measured T S from the FM and CW data in Figs. 5.2 and 5.3 is how the 70 kHz echo

sounder returned the lowest and the 200 kHz the highest values throughout the submerged period.

Additionally, the ratio between the measured values are closer at the beginning of the period than

when the bladder was assumed empty. This is mainly seen in Fig. 5.2 for the FM data but is observed

in Fig. 5.3 for the CW data as well, where the 200 kHz echo sounder differs from the 70 and 120

kHz. From this, the ratio of T S at different frequencies might serve as an indicator of deflated swim

bladders. However, the simulated TS from Fig. 5.4 shows the opposite, where the 70 kHz signal returns

the highest and the 200 kHz signal the lowest TS values as the swim bladder volume diminishes.

When tracking the FM data from the 200 kHz echo sounder, from Fig. C.1, there are few tracks com-

pared to the number of tracks from the 70 and 120 kHz (ref. Fig. 6.1). Despite this, the .json files

returned an equal amount of tracks for all three echo sounders. This suggests something is not cor-

rect and should be further investigated. As a result, the credibility of the measurements from tracking

FM data using aggregation can be deemed weakened.

The simulated TS values from Fig. 5.4 deviate from the measured T S from FM and CW data, and

the theoretically calculated values from Eqs. (2.26) - (2.29). The simulated TS values are likely to

be less reliable given the insufficient x-ray image of the swim bladder in Fig. 4.2. Since the x-ray

image does not show the swim bladder from the dorsal side, the size of the bladder was based on

estimations. Hence, the modeled bladder is likely to differ from a real bladder. Additionally, the size

was adjusted by the percentage of the assumed full swim bladder while keeping the upper boundary

constant. From [71], the bladder is asymmetrically compressed when it diminishes, where one end

of the bladder is more compressed than the other. This was not taken into account when adjusting

the volume of the bladder. The TS was simulated from a signal normal to the dorsal aspect of the

fish, while the measurements were done from the ventral aspect. From [28], the measured TS of

salmon from the dorsal and ventral recordings returned different results, where the backscattered

values from the ventral aspect were higher than from the dorsal. The same was observed in [69],

which measured the TS from gilthead sea breams, where the TS from the ventral aspect gave better

signals than from the dorsal. The differences in TS signals from ventral and dorsal measurements

are due to the morphometry of the swim bladder [28]. Considering this, the simulations of TS in this

thesis are considered less reliable. For better results, the swim bladder in Fig. 4.2 could be modeled

180◦ to simulate a ventral swim bladder.

As explained in Subsection 2.3.3, the backscattered values are strongly dependent on the tilt angle, i.e.,

the fish is swimming forward horizontally with head up and tail down as in Fig. 2.2. However, from

[7] when fish were less than 500 g and submerged for shorter periods, tilt angles due to insufficient
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air did not occur. The fish in this thesis had an average weight of 580 g and can be categorized as a

small fish, as in [7]. Only a few fish were observed swimming with a tilt by the end of this experiment.

Based on this and the observations from [7], the tilt angles are assumed to be trivial for the measured

backscattered signal.

TS is the logarithmic value of σbs (ref. Eq. (2.21)), which is a value dependent on the size, shape,

orientation, and material of the studied target [9]. Occasionally, individual salmon separate from the

school and swim with a different orientation than the rest. If this happens while they are swimming

through the beam, it will lead to variations in the measured T S values, which is illustrated in Fig. 6.5

a) and b).

(a) Number of tracks with equal T S values, measured from FM signals

(b) Number of tracks with equal T S values, measured from CW signals

Figure 6.5: Number of tracks with equal T S values. The blue columns represent the dB re. 1 m2 values, and how
many tracks returned equal values. a) is based on one hour FM data from the 70 kHz frequency band from day
31. Showing the T S values from 2993 tracks. b) shows the number of tracks from two hours of CW data from
the same day, including 3543 tracks.
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Fig. 6.5 shows an overview of the number of tracks returning equal T S values within one and two

hours of data, presented in a histogram. a) illustrates the tracks from one hour of FM data from day

31, acquired from the 70 kHz frequency, which returned 2993 tracks. b) shows the T S data from

two hours of CW data from the same day, which obtained 3543 tracks. There are significant variations

among the measured T S values from both signal types, and it is assumed that the biological variations

in the experiment exceed the uncertainties from the echo sounders and the measurement setup.

FM signals can provide information not available from CW signals, such as the measured frequency

response from TS in Fig. 5.7. The frequency response from an empty swim bladder on day 24 shows

an increase from the 70 kHz frequency band to the 120 kHz and from the 120 kHz to the 200 kHz. This

frequency response is found typically among fish without swim bladders, such as Atlantic mackerel,

and is due to the fish’s backbone [27]. The same results can be seen in the frequency response from

SV , in Fig. 5.11. Comparing the simulated frequency response in Fig. 5.9 to the measured frequency

response in Fig. 5.7, it can still be observed some resemblance. Despite this, the increasing dB re.

1 m2 for increasing frequency is not visible for a 0 % swim bladder in Fig. 5.9, since the simulation

does not consider the backbone. By implementing Eq. (2.4), the distance between objects within the

fish can be calculated. The minimums for the 120 kHz frequency band in Fig. 5.7 were calculated

to be 3 cm apart and can be assumed to be from the top of the fish body to either the top or the

bottom of the swim bladder. Day 24, when the bladder is assumed empty, shows the same frequency

response, and as the bladder is flat, it is more likely to be from the top of the fish to the top of the

swim bladder. The responses are averaged over 100s of fish; thus, some information may be lost

due to the averaging. Studying the frequency response from one individual salmon would probably

provide more information than the averaged frequency response and should be considered further

studied.

6.2.2 Results from measured SV

As for the measured T S, the measured SV from FM signals was expected to decrease along with the di-

minishing air level in the swim bladder [23–26]. SV is a measure of every backscattered signal within a

volume (ref. Eq. (2.40)) and is therefore strongly dependent on the number of fish swimming through

the beam. Ultimately, this will even out over time, but the one hour of measured SV from the FM data

in Fig. 5.10 might not be long enough for this to happen. As seen from Fig. 5.10, the daily SV values

vary significantly throughout the experimental period. The hour of FM data was chosen at approx-

imately the same timestamp each day to make the daily results more comparable. However, when

processing the data in LSSS, some days had more fish swimming through the beam than others due

to the fish’s swimming pattern. With fewer fish within the selected hour, the measured SV decreases,

which might be the reason for the day-to-day variations in Fig. 5.10. The low R2 values from Table 5.4

indicate that the linear regression line is not a good fit for the scattered SV values, and as seen in Fig.

5.10 the measured values do not seem to start decreasing before around day 15.

From Section 3.2, 500 salmon were deemed adequate to achieve normal schooling behavior and, at
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the same time, observe individual salmon. In the aquaculture industry, cages can contain thousands

of salmon swimming in dense fish shoals, making it difficult to distinguish between individuals and

measure TS. Hence, since SV is measuring all salmon in the sampling volume, this parameter might

be better to study the diminishing air in the bladder than TS when applied in a full scaled cage.

In Fig. 5.10 the measured SV values from the three echo sounders are in proximity of each other

when the bladder is assumed full, but as the air in the bladder diminishes, the ratio between the three

different frequencies increases. A similar pattern can be observed in the measured T S from FM (ref.

Fig. 5.2) and CW (ref. Fig. 5.3) signals, but is more evident in Fig. 5.10. The increased ratio between

the measured SV from the three echo sounders could therefore be implemented as an alert that the

air level in the swim bladder is decreasing, e.g., if the ratio exceeds a defined quantity.

The increased ratio between the frequency bands can be seen when studying the measured frequency

response of SV (f) in Fig. 5.11. On day 24, when the bladder is assumed empty, the responses increase

for each frequency band; the band from the 70 kHz echo sounder has the lowest dB re. 1 m−1 values,

and the values increase with increasing frequency. The two frequencies returning the lowest and

highest dB re. 1 m−1 values can be selected, e.g., 70 and 240 kHz. Then, the ratio between them can

be implemented as an alert saying the bladder is diminishing. However, as this is most evidently seen

when the bladder is said to be empty, it would not work as early detection of decreasing air levels.

From the measured SV values in Fig. 5.10, the ratio between the values from the 200 kHz and the 70

and 120 kHz echo sounder is most prominent from day 16. Hence, it would be valuable to study the

frequency response of SV between day 13 and day 24.

Furthermore, the frequency response from measured SV differs from the frequency response from

measured T S from the FM data in Fig. 5.7. The clearly seen ups and downs in T S values in Fig. 5.7

from the 120 kHz frequency band is not found for the frequency response from SV in Fig. 5.11. As

SV measures the total backscattering within a volume, valuable information from individual salmon

might be lost due to the averaging. Information such as the size of the salmon and the swim bladder,

and also the fish’s backbone can be seen from the frequency response of TS in Fig. 5.7. However, if

every fish in a shoal is of the same age and has equal swimming patterns, a similar frequency response

as TS can be obtained from SV .

6.2.3 Swimming speed from measured CW and FM data

From former experiments, [23–26], the swimming speed was expected to increase as the air in the

fish’s swim bladder decreased. The increased swimming speed is an indicator of negative buoyancy,

which is a result of an insufficient air level in the bladder; the salmon swim faster to compensate

for the negative buoyancy [7]. This increase in swimming speed during submergence was observed

from both the FM signals (ref. Fig. 5.12) and the CW signals (ref. Fig. 5.13) and additionally from

the complementary measurements based on the camera data (ref. Fig. 5.14). The most significant

change in swimming speed measured by the echo sounders is observed from day 5, for both signal

types.
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Compared to previous publications, the swimming speed for the FM and CW data is higher than ex-

pected. The swimming speeds from control cages are usually between 0.2 – 0.4 m/s [23–26]. However,

from this experiment, the swimming speed before submergence was 0.8 – 0.9 ± 0.3 m/s from the FM

data and 0.5 - 0.6 ± 0.2 m/s from the CW data. On day 24, the FM signal returned swimming speeds

between 0.9 – 1.0 ± 0.3 m/s, while CW returned 0.6 – 0.7 ± 0.2 m/s. The speed measured from the

camera data increased from 0.3 ± 0.1 m/s on day 0 to 0.5 ± 0.2 m/s on day 24.

The overall increase from day 0 to day 24 in Table 5.7 is based on the trend lines in Tables 5.2 and

5.3, from the FM and CW measurements respectively. The increase in swimming speed was approx-

imately equal when measured with CW signals, where the increase from the 70 and 200 kHz echo

sunders were 20 %, while for the 120 kHz the increase was 19 %. In contrast, there are some variations

in the overall increase from the FM signals. Here, the speed measured by the 200 kHz echo sounder

increased only 3 % during the submerged period, while the increase was 15 and 18 % from the 70 and

120 kHz echo sounders.

After being submerged for 4 and 6 days, the fish from [25] swam 1.0 m/s and 1.3 m/s, respectively.

The swimming speed increased more during the four days than the entire submerged period for both

signal types in this experiment. Nevertheless, in Glaropoulos’ study, the cages were submerged at 10

m depth rather than 1 m, which may have contributed to stressing the salmon [25]. However, the

cages in [24, 26] were submerged below 10 m depth as in [25], but the swimming speeds increased

only to 0.3 m/s in both experiments. The results from [23] was similar to the ones from [24, 26], even

when the cages were submerged to 3 m depth. These increases from [23, 24, 26] were not as significant

as in [25] and are comparable to the overall change from this experiment for both FM and CW. In the

previous experiments [7, 23–25], the swimming speed was measured using a camera and the same

technique as described in Section 3.4 and not from acoustical recordings. This method deals with a

few fish per measurement and depends on the reaction time from the person using the stopwatch,

which can cause uncertainties among the measurements. Due to the high swimming speeds from the

acoustical data, the large standard deviations, and the unknown accuracy of the tracking in LSSS, the

speed from the camera measurements appears to be the most accurate.

Acoustical recorded data of farmed salmon acquired from EK80 echo sounders have never been pro-

cessed in LSSS before. In LSSS, positions extracted from FM and CW data depend on the KORONA

tracks, where FM was tracked by applying aggregation, and the CW data was tracked using peak. A

drawback to LSSS is that it is developed with the most utilized features, so targets’ positioning and

swimming speed have not been prioritized. It is also likely that FM’s high swimming speed is owed

to the method used on the FM data, which is designed for CW data. However, the same results were

obtained when using aggregation on CW data, as seen in Table 6.2, where aggregation returned higher

values than peak. From this, it can be believed that the aggregation tracking method is the reason for

the high values, not the FM data alone. According to the results in Figs. 5.12 and 5.13, it indicates that

the speed is dependent on the frequency, which is implausible as the fish pass through the beams

from three transducers at the same speed. As seen in Figs. 5.12 and 5.13, both signal types have high

standard deviations, which reduces the plausibility of the findings.
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However, even if the swimming speed is higher than anticipated, the overall change is still of interest.

Figs. 5.12 and 5.13 illustrate how day 5 of submersion appears to be a decisive day for both signal

types and all three echo sounders. Further, the results from FM keep increasing before it stabilizes

at around day 15. There are fewer day-to-day variations from the FM data than from CW, making

it easier to detect the changes. Additionally, there is nearly no difference between the trends from

the echo sounders when looking at the graphs from CW signals in Fig. 5.13, which is confirmed by

the similar trends in Table 5.3. While for FM data, the values from the 120 kHz echo sounder are

increasing slightly faster than the other two frequencies, shown both in Fig. 5.12 and in Table 5.2.
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Conclusion

7.1 Conclusions

Different signal types, FM and CW, and frequency bands between 55 - 260 kHz have been studied

to determine which parameters are most useful for detecting a diminishing swim bladder; these pa-

rameters include TS, SV , the frequency response from TS and SV , and the swimming speed. The

measured daily T S values from both FM and CW signals start to decrease after approximately 6 days.

FM data appears to have a slightly faster decline in T S than CW data. Moreover, the T S measured

at 70 kHz, from both FM and CW signals, are decreasing somewhat more rapidly than when measur-

ing using 120 and 200 kHz frequencies. Based on this, FM signals transmitted using a 70 kHz echo

sounder are preferred when seeking early detection of low air levels. However, the credibility of the

TS measurements from tracking with aggregation is less reasonable and should be further investi-

gated. As a result of this experiment, T S is found for individual salmon of 38 cm lengths at different

frequencies and can be further used to detect an insufficient air level in the swim bladder.

When studying the daily SV values from the FM data, it is difficult to conclude when the decrease

in values begins due to the significant variation from day to day, but it appears to be as of day 15.

The SV values from the 200 kHz echo sounder return the highest values and the 70 kHz the lowest.

Additionally, the ratio between SV at 70 kHz and SV at 200 kHz increases as the air decreases and was

seen in both the daily values and the frequency response. This can be implemented to indicate a low

level of air in the swim bladder. Measuring T S, in contrast to SV , requires few individuals in order

to distinguish between them, which is often not the case in commercial aquaculture. Additionally,

the uncertainty from the tracking is avoided by using SV . Hence, even with the late detection of a

decreased air level, observing SV might be better to use than T S for farmed salmon.

FM data has proven to include valuable information about the salmon from studying both the fre-

quency response from TS(f) and SV (f). The frequency response from TS can reveal information about

a fish’s body and swim bladder size based on two minimums within the frequency range. From the

frequency response, other frequencies than the nominal frequency can be used when studying the

ratio between TS and SV values at different frequencies.

80
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From the studied parameters, the swimming speed seems to be the first to indicate a decreasing air

level, where day 5 appears to be a decisive day for both FM and CW signals. There are variations be-

tween the daily values recorded at different frequencies for both signal types, which is not expected

since the fish swim through the three transducer beams simultaneously. The unexpected high swim-

ming speed from FM signals and the large standard deviations reduce the plausibility of the findings.

This is probably due to the aggregation algorithm used when tracking the FM data. Because of the

high density of fish in the middle of the fish shoal, it is not certain how accurate the tracking is. De-

spite being slightly inaccurate, using a camera and stopwatch to record swimming speed is more

reliable than tracking the salmon’s position. Considering this, and that both swimming speed and

T S decreased approximately at the same time, measuring the swimming speed with echo sounders

would not be recommended.

FM and CW data from EK80 scientific split beam echo sounders have not previously been used when

studying submerged salmon. Due to this, the post-processing program LSSS has not been applied

to such data sets before, and it turned out not to properly work when tracking the speed using the

aggregation algorithm. Since the tracking algorithms in LSSS are developed for CW data, it is insuffi-

cient for FM data and needs to be improved if the same approach is used for future research on data

acquired using FM signals. Machine learning or an automatic system is essential to make this work

and be used in the aquaculture industry, as it takes much time to analyze the data manually.

Kirchhoff’s Ray Mode simulation of the air in the swim bladder is a good approximation for modeling

both TS and the frequency response but returned relatively low values compared to the measured

values. The results can be considered dubious due to the insufficient x-ray images and assumptions

made when creating the swim bladder. Due to the fact that the simulation was done from the dorsal

angle of the salmon, whereas the measurements were taken from the ventral angle, the results are not

quite comparable. However, similarities were observed between the measured frequency response of

TS from the 120 kHz frequency band and the simulated 120 kHz band. Additionally, the decrease in

swim bladder was done by a percentage of the full bladder, but in practice, the bladder is diminishing

asymmetrically.
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7.2 Further work

There are many opportunities for further research based on the outcomes of this master’s thesis. The

chosen number of fish, 500, is not representable for commercial scaled cages. Hence, it would be

necessary to explore the possibility of detecting individual salmon in a much denser fish shoal. More

attention needs to be paid to finding the most effective tracking settings on CW and FM signals, while

LSSS features should be improved to accommodate FM data. Additionally, if fish farmers are going to

use this in submerged cages in the aquaculture industry, the processing needs to be done automati-

cally.

Further, the acquired data set from this thesis contains information from frequencies spanning from

55 – 260 kHz, which can be used for further studies on physostomous and physoclistous fish.

In terms of the simulation, better x-ray images of the swim bladder would provide a more accurate

modeled TS. The simulation would be improved if the diminishing volume of the bladder could be

done asymmetrically. In addition, it would be interesting to simulate the incident wave with different

angles and examine how tilted swimming relates to the TS.
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Appendix A

Weight, length and air quantity

Here, the results from the samplings described in section 3.3 will be presented in two tables, where

Table A.1 includes the average values of every measured value per day (purple dots in Fig. 5.6), while

Table A.2 includes the individual measurement per fish (blue dots in Fig. 5.6). The tables include

the day of sampling, as seen in Table 3.1, the number of fish sampled, and the length and weight of

the fish. Additionally, the measured air quantity and neutral buoyancy are included, along with the

calculated relative air quantity. The uncertainty in the tables is from the steps (0.2 ml) on the syringe

[62] and is classified as a Type B evaluation of the uncertainty [46].

Table A.1: The daily average of the length, weight, air and neutral buoyancy measurements, and the calculated
relative air from Table A.2

Day Fish Length Weight Air Neutral buoyancy Relative air

± 0.5 [cm] ± 0.5 [g] ± 0.1 [ml] ± 0.1 [ml] ± 0.1

0 25 38 578 5.0 28.3 0.2

7 12 39 606 3.7 33.1 0.1

10 11 38 559 2.1 30.7 0.0

14 14 38 574 1.9 34.3 0.1

19 18 38 536 1.1 33.6 0.0

24 16 39 579 0.2 29.2 0.01

27 26 39 566 0.5 27.2 0.0

32 25 38 584 1.6 28.4 0.1
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Table A.2: All measurements of length, weight, air, neutral buoyancy, and relative air throughout the experi-
ment. *bubbles came out of the mouth, resulting in a less accurate measure of the neutral buoyancy.

Day Fish Length Weight Air Neutral buoyancy Relative air

± 0.5 [cm] ± 0.5 [g] ± 0.1 [ml] ± 0.1 [ml] ± 0.1

0 1 35.5 500 4.6 22.0 0.2

2 39.5 660 4.1 20.0 0.2

3 36.0 500 5.8 25.9 0.2

4 41.0 695 7.3 36.2 0.2

5 37.0 570 4.6 25.2 0.2

6 33.0 405 3.4 18.0 0.2

7 38.0 585 3.5 27.5 0.1

8 39.5 620 5.2 32.2 0.2

9 39.0 640 n.d n.d n.d

10 36.0 530 4.0 27.9 0.1

11 37.5 545 1.1 28.2 0.04

12 37.5 525 4.4 25.6 0.2

13 39.0 645 8.9 35.5 0.3

14 36.5 530 3.8 34.5 0.1

15 37.5 560 10.2 34.9 0.3

16 42.0 785 6.2 43.8 0.1

17 38.0 565 2.8 24.2 0.1

18 38.0 610 4.8 27.8 0.2

19 38.0 605 3.6 28.7 0.1

20 37.0 650 5.7 24.4 0.2

21 39.5 645 n.d n.d n.d

22 35.5 480 6.1 20.8 0.3

23 37.0 555 8.6 35.0 0.3

24 36.0 520 2.6 28.6 0.1

25 36.5 515 2.6 24.6 0.1



92 APPENDIX A. WEIGHT, LENGTH AND AIR QUANTITY

Day Fish Length Weight Air Neutral buoyancy Relative air

± 0.5 [cm] ± 0.5 [g] ± 0.1 [ml] ± 0.1 [ml] ± 0.1

7 1 37.5 545 2.4 n.d n.d

2 39.5 685 0.9 35.4 0.03

3 39.5 660 4.0 30.0 0.1

4 39.5 625 10.8 34.9 0.3

5 41.0 735 9.6 44.4 n.d

6 36.5 515 2.7 27.3 0.1

7 40.5 660 0.7 39.0 0.02

8 37.5 540 1.6 35.1 0.1

9 39.5 675 8.2 n.d n.d

10 37.5 565 0.9 35.2 0.03

11 39.5 670 0.6 30.0 0.02

12 34.0 400 2.5 19.8 0.1

10 1 38.5 585 0.2 39.8 0.01

2 40.0 640 3.8 37.9 0.1

3 38.5 595 0.4 32.6 0.01

4 38.5 600 3.0 27.8 0.1

5 37.5 555 7.9 27.4 n.d

6 34.5 405 0.1 23.8 0.00

7 41.0 670 0.2 28.2 0.01

8 37.0 485 n.d nd n.d

9 39.0 610 2.0 28.3 0.1

10 37.5 520 1.2 nd n.d

11 36.5 480 nd nd n.d

14 1 39.5 620 3.1 38.7 0.08

2 36.0 420 0.5 28.0 0.02

3 39.5 620 2.0 28.0 0.1

4 37.0 515 1.8 35.0 0.1

5 39.0 615 0.0 32.1 0.00

6 37.0 520 0.9 32.4 0.03

7 36.0 500 0.7 34.2 0.02

8 41.5 710 3.6 40.0 0.1
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Day Fish Length Weight Air Neutral buoyancy Relative air

± 0.5 [cm] ± 0.5 [g] ± 0.1 [ml] ± 0.1 [ml] ± 0.1

9 42.0 740 5.3 40.0 0.1

10 39.0 580 1.0 36.2 0.03

11 36.0 485 0.5 27.6 0.02

12 41.5 720 3.4 42.6 0.1

13 36.0 480 2.2 28.4 0.1

14 37.0 505 1.4 36.4 0.04

19 1 39.0 580 4.0 33.2 0.1

2 39.0 660 0.0 37.2 0.00

3 41.5 690 2.8 42.0 0.1

4 39.0 600 3.6 38.8 0.1

5 36.5 460 0.2 30.0* 0.01

6 36.0 460 0.1 35.8 0.00

7 38.0 540 1.4 37.8 0.04

8 34.5 405 0.4 28.0* 0.01

9 39.0 595 2.0 38.2 0.1

10 38.5 580 0.0 47.0* 0.00

11 34.0 405 0.5 29.6 0.02

12 38.0 550 0.0 35.6 0.00

13 39.0 575 1.7 38.0* 0.04

14 38.5 535 0.0 36.2 0.00

15 35.0 410 0.0 30.0* 0.00

16 37.5 505 2.8 30.0* 0.1

17 40.0 600 n.d. n.d. n.d.

18 37.0 490 0.0 3.4 0.00

24 1 40.0 645 1.0 33.2 0.03

2 37.5 515 0.0 23.2 0.00

3 40.0 625 0.4 21.0 0.02

4 39.0 580 0.0 28.0* 0.00

5 42.0 720 0.0 36.2 0.00

6 40.0 620 0.0 30.0* 0.00
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Day Fish Length Weight Air Neutral buoyancy Relative air

± 0.5 [cm] ± 0.5 [g] ± 0.1 [ml] ± 0.1 [ml] ± 0.1

7 39.5 610 0.2 28.2 0.01

8 37.0 495 0.0 25.8 0.00

9 41.5 640 0.1 31.6 0.00

10 39.5 625 0.2 n.d. * n.d.

11 36.5 460 0.0 n.d.* n.d.

12 38.0 515 0.2 29.0* 0.01

13 42.0 665 0.4 39.2 0.01

14 37.5 530 0.0 28.8 0.00

15 35.0 480 0.1 26.8 0.00

16 38.0 535 0.0 28.0 0.00

27 1 36.0 470 0.2 23.6 0.01

2 39.0 565 0.3 25.0 0.01

3 38.5 560 0.6 28.0* 0.02

4 37.5 515 0.5 25.0* 0.02

5 39.5 540 0.4 30.2 0.01

6 37.0 480 0.4 22.0 0.02

7 41.0 655 0.3 29.2 0.01

8 38.5 530 0.3 29.0* 0.01

9 37.5 495 0.5 20.0* 0.03

10 37.0 465 0.4 27.2 0.01

11 40.0 625 0.3 30.4 0.01

12 39.5 570 3.6 23.6* 0.2

13 38.0 530 0.5 27.6 0.02

14 41.0 690 0.4 33.6 0.01

15 40.5 625 0.4 30.0 0.01

16 41.0 650 0.4 29.8 0.01

17 41.0 645 0.2 30.2 0.01

18 36.0 445 0.6 21.0* 0.03

19 40.0 570 0.3 28.0* 0.01

20 38.5 530 0.3 23.4* 0.01

21 40.0 605 0.6 28.0* 0.02
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Day Fish Length Weight Air Neutral buoyancy Relative air

± 0.5 [cm] ± 0.5 [g] ± 0.1 [ml] ± 0.1 [ml] ± 0.1

27 21 40.0 605 0.6 28.0* 0.02

22 39.0 535 0.5 26.0* 0.02

23 43.0 805 0.4 30.0* 0.01

24 37.5 510 0.3 26.0* 0.01

25 41.0 620 0.9 29.2* 0.03

26 36.5 480 0.4 30.0* 0.01

32 1 41.0 640 3.4 30.6 0.11

2 3.0 565 2.5 32.8 0.1

3 42.5 720 0.0 33.6 0.00

4 38.0 525 2.0 26.6 0.1

5 36.0 460 2.4 23.6 0.10

6 45.0 810 0.8 41.0 0.02

7 39.5 580 1.0 26.2 0.04

8 40.5 640 0.0 29.8 0.00

9 40.0 585 0.0 31.8 0.00

10 39.0 590 1.6 26.2 0.1

11 42.5 735 0.7 34.8 0.02

12 41.5 645 5.3 28.6 0.19

13 37.0 480 3.5 24.4 0.14

14 42.0 710 0.0 32.2 0.00

15 40.5 640 0.5 29.8 0.02

16 36.0 415 0.2 19.8 0.01

17 41.0 600 2.0 30.0 0.1

18 38.5 520 0.4 25.4 0.02

19 40.5 620 0.0 29.6 0.00

20 40.0 590 0.5 28.6 0.02

21 39.5 560 7.4 26.6 0.3

22 36.0 455 5.7 22.2 0.3

23 38.0 540 0.2 27.6 0.01

24 38.5 505 0.1 24.2 0.00

25 37.0 476 0.5 23.6 0.02
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LSSS: Splitting, Tracking, and Exporting

In this appendix, the settings in LSSS from sections 2.4 and 3.6 will be presented. This includes the

settings used when splitting the recordings from different channels into separate files, which settings

were used tracking FM and CW data, and an overview of the exporting.

B.1 Splitting

The experiment was conducted in conjunction with another student [55], and the experimental setup

was the same for both master’s theses, where the student had two additional pens equipped with a

200 kHz transducer each. The mission planner in EK80 was configured to run all five transducers si-

multaneously. Therefore, the output files contain data not relevant to this thesis. A setup was created

in KORONA to split the data files and the different signal types, FM and CW, from each other. Which

channel to keep can be decided when when choosing "channel removal" in KORONA Relay. For cage

16, channels 1, 3, and 5 indicate CW pulses, and channels 2, 4, and 6 indicate FM pulses. Fig. B.1

shows the setting module applied for splitting.
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Figure B.1: Settings applied for splitting the two pulse types from each other and which channels to keep

Fig. B.1 shows a screenshot from LSSS KORONA Relay. There are two lines in the upper part of the

figure, each representing a pulse type. The first module adds a comment to state the pulse type and

the channels used in that line. Temporary computations begin is then added to make the line begin.

Without this module, the settings that come after will not initiate. Further, in data reduction, unnec-

essary depths can be removed. Since the bottom of the cage was at 14 m and the transducers at 25 m,

it is possible to exclude 11 m and reduce the amount of data. LSSS shows the data set upside down;

the minimum depth must be written as the maximum depth and vice versa.

The following module is channel removal. The module allows the user to decide which channels to

keep and which ones to discard. Channels 1, 3, and 5 are kept for CW pulses, and 2, 4, and 6 are

kept for FM. To ensure that the specified channels are kept, check the box next to "Keep specified."

Otherwise, all channels are maintained except the ones defined. Lastly, the files are written to a folder,

and the line is closed.

B.2 Tracking

After splitting the data set into FM and CW files, the fish could be tracked. CW and FM have been

tracked with different methods, which will be presented in subsections B.2.2 and B.2.1.

B.2.1 Tracking FM data

For the FM signals, aggregation was the chosen tracking algorithm. The setup used for tracking can

be seen in Fig. B.2.
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Figure B.2: Settings from KORONA Relay used when tracking FM data with the aggregation algorithm.

In Fig. B.2, the setup used when tracking the data set from the FM signals is presented, which is

equal for all three frequencies. As seen in the figure, aggregation is the tracker type used. MinTS was

changed throughout the data set as the air level decreased, see Table B.1 for the applied TS thresholds.

Table B.1: dB re. 1 m2 thresholds used for different periods during the experimental period, when tracking FM
data using aggregation as tracking algorithm.

Days, from-to Threshold [dB re. 1 m2]

-4 to 1 -45

2 to 13 -50

14 to 27 -55

28 to 31 -45

KORONA Playbox was run every other day to see how the tracks changed with different thresholds,

and the observations were the basis for choosing the minimum TS values seen in Table B.1. KORONA

Playbox is a feature in LSSS where different settings can be applied to a few files before the processing

is applied to the data set. The thresholds were chosen based on observations and might not be the

best possible. It was challenging to determine which threshold was best since the thresholds were

changed only by a few dB re. 1 m2 during each observation. Both the values in "Target filtering set-

tings" and "track initialization settings," which are based on [51], were kept constant throughout the

tracking. Moreover, the "track acceptance settings" were set based on observations in the KORONA

playbox, but as with the "Target detector settings," it was challenging to observe the changes. The

MaxMissingPingsFraction is set to 0.7, which means the track will not be accepted if 70% of the pings
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in the tracks are missing. Additionally, the track needs to include 12 pings to be accepted. In addition

to the tracking module, the algorithm included a "TS detection" module, as seen in Fig. B.3.

Figure B.3: Settings used to for TS detection of FM data

The figure shows peak as detector type, even when aggregation has been used for tracking. The only

detector type in TS detection is peak or SED, which is the reason for choosing peak.

B.2.2 Tracking CW data

The setting used in KORONA Relay to track the CW files is shown in Fig. B.4, where peak was used as

the tracking algorithm.
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Figure B.4: Settings from KORONA Relay used when tracking CW data with the peak algorithm.

The settings in Fig. B.4 were applied for all three frequencies. Every setting was kept constant through-

out the processing, except MinTS which was changed as the air level decreased. The threshold was

tested in KORONA Playbox every third – fourth day to check the quality of the tracks for a given thresh-

old before being applied for the actual tracking, and the values can be seen in Table B.2. Further, as

opposed to aggregation (seen in Fig. B.2), the minimum and maximum echo length can be changed

when choosing peak.

Table B.2: Selected dB re. 1 m2 threshold for different periods in the experiment when tracking CW data using
peak

Days, from-to Threshold [dB re. 1 m2]

-4 to 0 -45

1 to 12 -50

14 to 20 -55

21 to 27 -60

28 to 31 -45

The same method for FM tracking was applied to obtain the thresholds for CW tracking. Comparing

Fig. B.2 and B.4, the only difference is the target detector settings. Further, the TS detection settings

used for CW tracking are presented in Fig. B.5.
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Figure B.5: Settings used to for TS detection of CW data

B.3 Export

Exporting was different for FM and CW data, TS, SV , and swimming speed. The tracks were used when

studying TS from FM and CW data and the swimming speed for both FM and CW. BBTS(f) tracks were

used when extracting TS from FM data, and all three frequencies were returned in the same .json file.

For the TS from CW data and the swimming speed for both FM and CW, the function "Tracks" was

used. "Tracks" returns a text file including an ID per fish, but only for one of the frequency bands,

thus, three files were extracted, one per frequency. The resulting tracks include multiple pings with

the same ID within the same track. Due to this, it is possible to distinguish between the different

tracks in the file.

Figure B.6: Showing the different parameters that can be exported from using the "Export" feature in LSSS. The
BBTS(f) tracks and Tracks are selected.
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Fig. B.6 shows which parameters can be exported from LSSS using the "Export" feature. Only the

BB TS(f) tracks and Tracks were used in this thesis. Moreover, exporting can be done without the

"Export" function, e.g., with a separate Python script.



Appendix C

LSSS: Testing peak and aggregation as

tracking methods on FM data from the 200

kHz echo sounder

The tests as described in section 6.1.5 were repeated for the same area and boxes using 200 kHz in-

stead of the 120 kHz. Fig. C.1 shows the tracks from using aggregation in a) and peak in b). Fig. C.1

shows an approximately equal number of tracks for the two tracking algorithms.
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FROM THE 200 KHZ ECHO SOUNDER

Figure C.1: The red boxes represents 6 minutes of tracks and is equal in a) and b), and is based on the data from
200 kHz transducer from using aggregation in a) and peak in b). The boxes are divided into layers 1, 2, and 3 to
study the swimming speed from different amount of tracks

Fig. C.1 a) shows the tracks from the 200 kHz FM echo sounder after applying the aggregation algo-

rithm, where the black lines represent one track/fish. While Fig. C.1 b) shows tracks from 200 kHz

FM data after using the peak algorithm. In addition to the swimming speed, the MATLAB script from

appendix F returns the number of individual tracks. The results show 118 tracks from applying ag-

gregation and 100 tracks using peak as the tracking method. Further, the swimming speeds for both

algorithms are shown in Table C.1.

Table C.1: Swimming speed from the 200 kHz transducer, when using both aggregation and peak for tracking.
Results are shown both in m/s and bl/s

Aggregation [m/s] Peak [m/s] Aggregation [bl/s] Peak [bl/s]

Layer 1 + 2 + 3 0.9 ± 0.3 0.4 ±0.1 2.5 ± 0.9 1.0 ± 0.2

Layer 1 0.8 ± 0.2 0.4 ± 0.1 2.0 ± 0.6 1.0 ± 0.2

Layer 2 1.0 ± 0.3 0.4 ±0.1 2.6 ± 0.9 1.0 ± 0.2

Layer 3 0.7 ± 0.3 0.4 ± 0.04 1.9 ± 0.8 1.0 ± 0.1

Layer 1 + 2 1.0 ± 0.3 0.4 ± 0.1 2.6 ± 0.9 1.0 ± 0.2
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Even if the number of tracks was approximately equal, it is still a gap between the speed of the two

algorithms. The speeds for both aggregation and peak in Table C.1 are approximately the same as for

the 120 kHz transducer despite the number of tracks from aggregation in Fig. 6.1. When zooming in

on Fig. C.1 a), the tracks are not following individual fish as accurately as in b). There are more cases

of tracking two fish at once and the background noise when comparing aggregation in Fig. C.1 a) to

peak in b). As a result of this test, it appears that the high values of swimming speed are not due to

the number of tracks from aggregation used on the 120 kHz transducer in Fig. 6.1, but aggregation as

a tracking method.



Appendix D

Validation of the Kirchhoff’s Ray Mode

method

To determine if the KRM method [30] from chapter 4 is an approving approximation to simulate TS

from a swim bladder, a validation of the model is required and is given by [66]. This is done in the

software R for a fluid-filled and a gas-filled sphere surrounded by water. The KRM simulation is con-

ducted using Eqs. (4.6) - (4.10) and the theory from [30], while the analytical simulation is based on a

built-in analytical benchmark from [72], based on Data Envelopment Analyses (DEA) and Stochastic

Frontier Analyses (SFA) [72].

The validation is considered for frequencies between 10 to 400 kHz. Additionally, the function de-

pends on the radius of the sphere, a, and the input values shown in Table D.1. In this instance, the

radius is set to 0.02 m, and the sphere can be seen in Fig. D.1,

Figure D.1: The modeled sphere seen from the lateral and the dorsal aspect, with a radius of 0.02 m.

106



107

Fig. D.1 shows a generated sphere from the lateral and dorsal aspect, where the coordinates are found

by [66],

x = si n
(
ψ · π

180

)
+1, (D.1)

w = 2cos
(
ψ · π

180

)
, (D.2)

zU = cos
(
ψ · π

180

)
, (D.3)

zL =−cos
(
ψ · π

180

)
, (D.4)

where ψ is an angle between −90◦− 90◦ with a resolution of 60 steps [66]. The coordinates are the

same as defined in Table 4.1.

Table D.1: Values for speed of sound and density used in the simulation

Speed of sound, c [m/s] Density, ρ [kg /m3]

Surroundings, water 1477.4 1026.8

Sphere, fluid 1480.3 1028.9

Sphere, gas 345.0 1.24

Table D.1 includes the necessary input values for simulating the TS. Firstly, the KRM method was

compared to a sphere filled with fluids. The simulation was run using the values from Table D.1 and

the results can be seen in Fig. D.2

Figure D.2: Simulating the TS from a fluid-filled sphere using both an analytical method and the KRM model.
Where the red represents the analytical [72] and the blue is the KRM [42]
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Fig. D.2 are the results from running the KRM simulation, blue, and comparing it with the analytical

model, red. This shows that the KRM simulation provides a close approximation to the analytical

model for a sphere filled with fluids. In addition to a fluid-filled sphere, the validation was done for a

sphere filled with gas. For this simulation, the values in the bottom row, c in air and ρ of air, in Table

D.1 were used. The results from running the simulation are shown in Fig. D.3.

Figure D.3: Simulating the TS from a gas-filled sphere using both an analytical method [72] and the KRM model
[42]. Where the red represents the analytical and the blue is the KRM.

Fig. D.3 shows the analytical TS as a function of frequency (red) and the simulated TS as a function of

frequency (blue). The results indicate that KRM is a better approximation for higher frequencies than

for frequencies below 100 kHz. The results seen in Figs. D.2 and D.3 indicate that the KRM approach

provides a plausible approximation of the TS from gas-filled swim bladders.
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Hours of collected data

This appendix includes the selected hours of FM and CW data, explained in 3.6. First, 12 hours of

CW data was extracted every day, which was a quick process as the data files were relatively small.

However, the FM files include much more information than the CW files, resulting in a prolonged

process when extracting the files. Due to this, it was decided to analyze only one hour of FM data,

and the timestamps can be seen in Table E.1. The table shows that the FM "hour" is seldom precisely

one hour.

In order to compare CW with FM, it was decided to analyze two hours of CW data; one hour before

and one hour after the FM hour. To avoid retrieving the data all over again, a small line was included

in the MATLAB script used to process the CW data, see appendix F. The line is based on the columns

"startTime(FM)" and "endTime(FM)" and subtracts one hour to obtain an hour before the FM hour

and adds an hour in order to obtain the hour after. The data is extracted based on the length of the

whole FM period and not by the hour, resulting in varying lengths in the data setss.
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Table E.1: The timestamps used for extracting the FM data. One hour from FM is added and subtracted to
obtain two hours of CW data.

Day CW - 1 hour endTime(CW)/startTime(FM) endTime(FM)/startTime(CW) CW + 1 hour

-4 15:37:24 16.37.24 17:36:13 18:36:13

-3 14:23:18 15:23:18 16:26:18 17:26:18

-2 13:19:41 14:19:41 14:44:08 15:44:08

-1 13:45:23 14:45:23 15:59:28 16:59:28

0 16:15:38 17:15:38 19:01:00 20:01:00

1 14:56:57 15:56:57 17:32:04 18:32:04

2 13:56:11 14:56:11 16:21:02 17:21:02

3 13:55:08 14:55:08 15:59:35 16:59:35

4 14:10:56 15:10:56 16:56:14 17:56:14

5 14:50:20 15:50:20 17:00:55 18:00:55

6 13:05:06 14:05:06 15:40:21 16:40:21

7 14:57:13 15:57:13 16:56:10 17:56:10

8 14:02:45 15:02:45 16:27:16 17:27:16

9 13:05:22 14:05:22 15:49:42 16:49:42

10 16:05:49 17:05:49 19:07:43 20:07:43

11 14:23:14 15:23:14 15:56:29 16:56:29

12 12:58:37 13:58:37 15:21:17 16:21:17

13 13:56:22 14:56:22 16:01:08 17:01:08

14 13:00:28 14:00:28 15:04:57 16:04:57

15 13:02:17 14:02:17 15:00:33 16:00:33

16 13:13:51 14:13:51 15:58:30 16:58:30

17 14:36:55 15:36:55 17:24:06 18:24:06

18 14:58:24 15:58:24 17:02:33 18:02:33
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Date CW - 1 hour endTime(CW)/startTime(FM) endTime(FM)/startTime(CW) CW + 1 hour

19 13:15:55 14:15:55 15:34:49 16:34:49

20 12:55:29 13:55:29 15:01:20 16:01:20

21 13:10:55 14:10:55 15:24:27 16:24:27

22 12:57:45 13:57:45 15:07:44 16:07:44

23 12:59:39 13:59:39 15:48:03 16:48:03

24 13:02:30 14:02:30 15:07:34 16:07:34

25 13:22:15 14:22:15 15:55:40 16:55:40

26 13:02:42 14:02:42 15:01:06 16:01:06

27 12:57:00 13:57:00 15:01:27 16:01:27

28 13:03:21 14:03:21 15:38:52 16:38:52

29 13:11:52 14:11:52 15:37:38 16:37:38

30 12:56:33 13:56:33 15:01:01 16:01:01

31 11:00:35 12:00:35 12:43:19 13:43:19



Appendix F

Codes

F.1 TS_FM.m

1 %==========================================================================

2 % MATLAB R2021b script for calculating the average TS

3 % from FM data

4 %==========================================================================

5 % Script to read .json files extracted from LSSS

6 %

7 % AUTHOR: Maren Forstr nen Rong

8 % INSTITUTE OF PHYSICS AND TECHNOLOGY

9 % UNIVERSITY OG BERGEN

10 % 2021−2022

11 %======================================

12 close all

13 clear all

14

15 path = ''; %Reading from folder

16 files = dir(fullfile([path, '*.json'])); %Finds files with * name in folder

17

18 %Reads one file/day at the time

19 for k=1:length(files)

20 jsonData = jsondecode(fileread([files(k).name]));

21 deg = 2; %bounday, excludes values outside 2 degrees

22

23 %creating structs for the desired TS and standard deviations

24 Target_strength(length(files)) = struct('Date', [], 'TS_60', [], 'TS_70', ...

25 [], 'TS_80', [], 'TS_70_all', [], 'TS_100', [], 'TS_110', [], 'TS_120', ...

26 [], 'TS_130', [], 'TS_140', [], 'TS_150', [], 'TS_120_all',[], 'TS_170', ...

27 [], 'TS_180', [], 'TS_190', [], 'TS_200', [], 'TS_210', [], 'TS_220', [], ...

28 'TS_230', [], 'TS_240', [], 'TS_250', [], 'TS_200_all', []);

29

30

31 %Goes through every track in the file

32 for l = 1:length(jsonData.tracks)

33 s = 1;

112
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34

35 %Goes through the three channels (70, 120, 200 kHz) seperately and

36 %extracts maksimum and minimum frequencies

37 for q = 1:length(jsonData.tracks(l).channels)

38 minFr=jsonData.tracks(l).channels(q).minFrequency;

39 maxFr=jsonData.tracks(l).channels(q).maxFrequency;

40 nominal =jsonData.tracks(l).channels(q).nominalFrequency;

41 df = (jsonData.info.parameters.FrequencyResolution);

42 fr = minFr:df:maxFr;

43 f1=minFr+5e3; %selected lower freq

44 f2=maxFr−5e3;%seleced higher freq

45 indf=((f1≤fr)&(fr≤f2)); %indexes of wanted frequency range

46 n = 1500; %CW has a 3 kHz bandwidth. Included here to match

47

48 %Goes through every TS value in each channel

49 for m = 1:length(jsonData.tracks(l).channels(q).tsc(:,1))

50 ang_atv(:,:) = jsonData.tracks(l).channels(q).athwartshipAngle(m);

51 ang_alo(:,:) = jsonData.tracks(l).channels(q).alongshipAngle(m);

52 theta(:,:) = (sqrt((ang_atv(:,:).^2) + (ang_alo(:,:).^2)));

53

54 %If the TS value is within the 2 degree boundary, the

55 %desired TS from the selected frequency is extracted

56 if −deg≤ang_alo(:,:) && ang_alo≤deg(:,:) && ang_atv≤deg(:,:) && −deg≤ang_atv(:,:)

57 if theta(:,:)≤deg

58

59

60 if nominal == 70000

61 fr1 = minFr:df:maxFr;

62 f1_1=minFr+5e3; %selected lower freq

63 f2_1=maxFr−5e3;%seleced higher freq

64 indf_1=((f1_1≤fr1)&(fr1≤f2_1)); %indexes of wanted frequency range

65 x_60 = fr≥60000−n & fr≤60000+n;

66 x_70 = fr≥70000−n & fr≤70000+n;

67 x_80 = fr≥80000−n & fr≤80000+n;

68

69 tsc_70_all = jsonData.tracks(l).channels(q).tsc;

70 tsc_60 = jsonData.tracks(l).channels(q).tsc(:,x_60);

71 tsc_70 = jsonData.tracks(l).channels(q).tsc(:,x_70);

72 tsc_80 = jsonData.tracks(l).channels(q).tsc(:,x_80);

73

74 avg_70_all(:,:) = 10*log10(mean(10.^(tsc_70_all./10)));

75 avg_70_all(avg_70_all==0) = [];

76 avg_60(:,:) = 10*log10(mean(10.^(tsc_60./10)));

77 avg_60(avg_60==0) = [];

78 avg_70(:,:) = 10*log10(mean(10.^(tsc_70./10)));

79 avg_70(avg_70==0) = [];

80 avg_80(:,:) = 10*log10(mean(10.^(tsc_80./10)));

81 avg_80(avg_80==0) = [];

82 avg_70_all(:,:) = 10*log10(mean(10.^(tsc_70_all./10)));

83 avg_70_all(avg_70_all==0) = [];

84

85 %For the frequency response

86 avg_70_all_2(l,:) = avg_70_all;

87 avg_70_all_2( ¬any(avg_70_all_2,2), : ) = [];
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88

89 avg_60_2(l,:) = 10*log10(mean(10.^(avg_60./10)));

90 avg_60_2(avg_60_2==0) =[];

91 avg_70_2(l,:) = 10*log10(mean(10.^(avg_70./10)));

92 avg_70_2(avg_70_2==0) =[];

93 avg_80_2(l,:) = 10*log10(mean(10.^(avg_80./10)));

94 avg_80_2(avg_80_2==0) =[];

95

96 end

97

98 if nominal == 120000

99 fr2 = minFr:df:maxFr;

100 f1_2=minFr+5e3; %selected lower freq

101 f2_2=maxFr−5e3;%seleced higher freq

102 indf_2=((f1_2≤fr2)&(fr2≤f2_2)); %indexes of wanted frequency range

103 x_100 = fr≥ 100000−n & fr≤ 100000+n;

104 x_110 = fr≥ 110000−n & fr≤ 110000+n;

105 x_120 = fr≥ 120000−n & fr≤ 120000+n;

106 x_130 = fr≥ 130000−n & fr≤ 130000+n;

107 x_140 = fr≥ 140000−n & fr≤ 140000+n;

108 x_150 = fr≥ 150000−n & fr≤ 150000+n;

109

110 tsc_100 = jsonData.tracks(l).channels(q).tsc(:,x_100);

111 tsc_110 = jsonData.tracks(l).channels(q).tsc(:,x_110);

112 tsc_120 = jsonData.tracks(l).channels(q).tsc(:,x_120);

113 tsc_130 = jsonData.tracks(l).channels(q).tsc(:,x_130);

114 tsc_140 = jsonData.tracks(l).channels(q).tsc(:,x_140);

115 tsc_150 = jsonData.tracks(l).channels(q).tsc(:,x_150);

116 tsc_120_all = jsonData.tracks(l).channels(q).tsc;

117

118 avg_100(:,:) = 10*log10(mean(10.^(tsc_100./10)));

119 avg_100(avg_100==0) = [];

120 avg_110(:,:) = 10*log10(mean(10.^(tsc_110./10)));

121 avg_110(avg_110==0) = [];

122 avg_120(:,:) = 10*log10(mean(10.^(tsc_120./10)));

123 avg_120(avg_120==0) = [];

124 avg_130(:,:) = 10*log10(mean(10.^(tsc_130./10)));

125 avg_130(avg_130==0) = [];

126 avg_140(:,:) = 10*log10(mean(10.^(tsc_140./10)));

127 avg_140(avg_140==0) = [];

128 avg_150(:,:) = 10*log10(mean(10.^(tsc_150./10)));

129 avg_150(avg_150==0) = [];

130 avg_120_all = 10*log10(mean(10.^(tsc_120_all./10)));

131 avg_120_all(avg_120_all==0) = [];

132

133 %For the frequency response

134 avg_120_all_2(l,:) = avg_120_all;

135 avg_120_all_2( ¬any(avg_120_all_2,2), : ) = [];

136

137 avg_100_2(l,:) = 10*log10(mean(10.^(avg_100./10)));

138 avg_100_2(avg_100_2==0) = [];

139 avg_110_2(l,:) = 10*log10(mean(10.^(avg_110./10)));

140 avg_110_2(avg_110_2==0) = [];

141 avg_120_2(l,:) = 10*log10(mean(10.^(avg_120./10)));
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142 avg_120_2(avg_120_2==0) = [];

143 avg_130_2(l,:) = 10*log10(mean(10.^(avg_130./10)));

144 avg_130_2(avg_130_2==0) = [];

145 avg_140_2(l,:) = 10*log10(mean(10.^(avg_140./10)));

146 avg_140_2(avg_140_2==0) = [];

147 avg_150_2(l,:) = 10*log10(mean(10.^(avg_150./10)));

148 avg_150_2(avg_150_2==0) = [];

149

150 end

151

152 if nominal == 200000

153 fr3 = minFr:df:maxFr;

154 f1_3=minFr+5e3;

155 f2_3=maxFr−5e3;

156 indf_3=((f1_3≤fr3)&(fr3≤f2_3));

157 x_170 = fr≥170000−n & fr≤170000+n;

158 x_180 = fr≥180000−n & fr≤180000+n;

159 x_190 = fr≥190000−n & fr≤190000+n;

160 x_200 = fr≥200000−n & fr≤200000+n;

161 x_210 = fr≥210000−n & fr≤210000+n;

162 x_220 = fr≥220000−n & fr≤220000+n;

163 x_230 = fr≥230000−n & fr≤230000+n;

164 x_240 = fr≥240000−n & fr≤240000+n;

165 x_250 = fr≥250000−n & fr≤250000+n;

166

167 tsc_170 = jsonData.tracks(l).channels(q).tsc(:,x_170);

168 tsc_180 = jsonData.tracks(l).channels(q).tsc(:,x_180);

169 tsc_190 = jsonData.tracks(l).channels(q).tsc(:,x_190);

170 tsc_200 = jsonData.tracks(l).channels(q).tsc(:,x_200);

171 tsc_210 = jsonData.tracks(l).channels(q).tsc(:,x_210);

172 tsc_220 = jsonData.tracks(l).channels(q).tsc(:,x_220);

173 tsc_230 = jsonData.tracks(l).channels(q).tsc(:,x_230);

174 tsc_240 = jsonData.tracks(l).channels(q).tsc(:,x_240);

175 tsc_250 = jsonData.tracks(l).channels(q).tsc(:,x_250);

176 tsc_200_all = jsonData.tracks(l).channels(q).tsc;

177

178 avg_170(:,:) = 10*log10(mean(10.^(tsc_170./10)));

179 avg_170(avg_170==0) = [];

180 avg_180(:,:) = 10*log10(mean(10.^(tsc_180./10)));

181 avg_180(avg_180==0) = [];

182 avg_190(:,:) = 10*log10(mean(10.^(tsc_190./10)));

183 avg_190(avg_190==0) = [];

184 avg_200(:,:) = 10*log10(mean(10.^(tsc_200./10)));

185 avg_200(avg_200==0) = [];

186 avg_210(:,:) = 10*log10(mean(10.^(tsc_210./10)));

187 avg_210(avg_210==0) = [];

188 avg_220(:,:) = 10*log10(mean(10.^(tsc_220./10)));

189 avg_220(avg_220==0) = [];

190 avg_230(:,:) = 10*log10(mean(10.^(tsc_230./10)));

191 avg_230(avg_230==0) = [];

192 avg_240(:,:) = 10*log10(mean(10.^(tsc_240./10)));

193 avg_240(avg_240==0) = [];

194 avg_250(:,:) = 10*log10(mean(10.^(tsc_250./10)));

195 avg_250(avg_250==0) = [];
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196 avg_200_all = 10*log10(mean(10.^(tsc_200_all./10)));

197 avg_200_all(avg_200_all==0) = [];

198

199 %For the frequency response

200 avg_200_all_2(l,:) = avg_200_all;

201 avg_200_all_2( ¬any(avg_200_all_2,2), : ) = [];

202

203 avg_170_2(l,:) = 10*log10(mean(10.^(avg_170./10)));

204 avg_170_2(avg_170_2==0) = [];

205 avg_180_2(l,:) = 10*log10(mean(10.^(avg_180./10)));

206 avg_180_2(avg_180_2==0) = [];

207 avg_190_2(l,:) = 10*log10(mean(10.^(avg_190./10)));

208 avg_190_2(avg_190_2==0) = [];

209 avg_200_2(l,:) = 10*log10(mean(10.^(avg_200./10)));

210 avg_200_2(avg_200_2==0) = [];

211 avg_210_2(l,:) = 10*log10(mean(10.^(avg_210./10)));

212 avg_210_2(avg_210_2==0) = [];

213 avg_220_2(l,:) = 10*log10(mean(10.^(avg_220./10)));

214 avg_220_2(avg_220_2==0) = [];

215 avg_230_2(l,:) = 10*log10(mean(10.^(avg_230./10)));

216 avg_230_2(avg_230_2==0) = [];

217 avg_240_2(l,:) = 10*log10(mean(10.^(avg_240./10)));

218 avg_240_2(avg_240_2==0) = [];

219 avg_250_2(l,:) = 10*log10(mean(10.^(avg_250./10)));

220 avg_250_2(avg_250_2==0) = [];

221

222 end

223

224 end

225

226 end

227

228 end

229 end

230

231

232 end

233

234 %calculating the average TS of each frequency to obtain one TS value

235 %per day

236 if k 6= 28

237 %For TS from 70 kHz

238 avg_60_TS = 10*log10(mean(10.^(avg_60_2./10)));

239 avg_70_TS = 10*log10(mean(10.^(avg_70_2./10)));

240 avg_80_TS = 10*log10(mean(10.^(avg_80_2./10)));

241 avg_70_TS_all_TS = 10*log10(mean(10.^(avg_70_all_2(:,:)./10)));

242 Target_strength(k).TS_60 = avg_60_TS;

243 Target_strength(k).TS_70 = avg_70_TS;

244 Target_strength(k).TS_80 = avg_80_TS;

245 Target_strength(k).TS_70_all = avg_70_TS_all_TS;

246

247 end

248

249
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250 %For TS from 120 kHz

251 avg_100_TS = 10*log10(mean(10.^(avg_100_2./10)));

252 avg_110_TS = 10*log10(mean(10.^(avg_110_2./10)));

253 avg_120_TS = 10*log10(mean(10.^(avg_120_2./10)));

254 avg_130_TS = 10*log10(mean(10.^(avg_130_2./10)));

255 avg_140_TS = 10*log10(mean(10.^(avg_140_2./10)));

256 avg_150_TS = 10*log10(mean(10.^(avg_150_2./10)));

257 avg_120_TS_all_TS = 10*log10(mean(10.^(avg_120_all_2(:,:)./10)));

258

259 Target_strength(k).TS_100 = avg_100_TS;

260 Target_strength(k).TS_110 = avg_110_TS;

261 Target_strength(k).TS_120 = avg_120_TS;

262 Target_strength(k).TS_130 = avg_130_TS;

263 Target_strength(k).TS_140 = avg_140_TS;

264 Target_strength(k).TS_150 = avg_150_TS;

265 Target_strength(k).TS_120_all = avg_120_TS_all_TS;

266

267

268 %For TS from 200 kHz

269 avg_170_TS = 10*log10(mean(10.^(avg_170_2./10)));

270 avg_180_TS = 10*log10(mean(10.^(avg_180_2./10)));

271 avg_190_TS = 10*log10(mean(10.^(avg_190_2./10)));

272 avg_200_TS = 10*log10(mean(10.^(avg_200_2./10)));

273 avg_210_TS = 10*log10(mean(10.^(avg_210_2./10)));

274 avg_220_TS = 10*log10(mean(10.^(avg_220_2./10)));

275 avg_230_TS = 10*log10(mean(10.^(avg_230_2./10)));

276 avg_240_TS = 10*log10(mean(10.^(avg_240_2./10)));

277 avg_250_TS = 10*log10(mean(10.^(avg_250_2./10)));

278 avg_200_TS_all_TS = 10*log10(mean(10.^(avg_200_all_2(:,:)./10)));

279

280 Target_strength(k).TS_170 = avg_170_TS;

281 Target_strength(k).TS_180 = avg_180_TS;

282 Target_strength(k).TS_190 = avg_190_TS;

283 Target_strength(k).TS_200 = avg_200_TS;

284 Target_strength(k).TS_210 = avg_210_TS;

285 Target_strength(k).TS_220 = avg_220_TS;

286 Target_strength(k).TS_230 = avg_230_TS;

287 Target_strength(k).TS_240 = avg_240_TS;

288 Target_strength(k).TS_250 = avg_250_TS;

289 Target_strength(k).TS_200_all = avg_200_TS_all_TS;

290 Target_strength(k).Date = (jsonData.channelInfo(1).parameters.startTime);

291

292 end
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F.2 TS_vel_CW.m

From this script both the swimming speed and T S from CW data were found. The swimming speed

is seen in Fig. 5.13 and T S in Fig. 5.3.

1 %==========================================================================

2 % MATLAB R2021b script for calculating the swimming speed and average TS

3 % from CW data and

4 %==========================================================================

5 % Script to read .text files extracted from LSSS

6 %Name of file: TS_vel_CW.m

7 %

8 % AUTHOR: Maren F. Rong

9 % INSTITUTE OF PHYSICS AND TECHNOLOGY

10 % UNIVERSITY OG BERGEN

11 % 2021−2022

12 %

13 %CO−AUTHOR: Tonje Nesse Forland

14 %THE INSTITUTE OF MARINE RESEARCH

15 %2021 − 2022

16 %======================================

17

18 clear all

19 close all

20

21 path = 'C:'; %Reading from folder

22 files = dir(fullfile(path, '*.txt')); %Finds files with * name in folder

23

24 %average fish length throughout the experiment [m]

25 avg_length = 0.38;

26

27 %Reading one file at the time

28 for i = 1:length(files)

29 data(:,i) = importdata(fullfile([path '\' files(i).name]));

30 d = data(i).data(:,2);

31 time = data(i).data(:,3);

32 Time = num2str(time,'%08.f'); %adding zeros to the time in order to have 8 digits

33 T=zeros(length(Time),1);

34

35 %find time in order to select wanted time−range:

36 for c=1:length(Time)

37 tmp = [num2str(d(c)),'T',(Time(c,:))];

38 T(c)=datenum(tmp,'yyyymmddTHHMMSS');

39 end

40

41 D=datenum(num2str(d(1)),'yyyymmdd'); %creating date

42 %Reads timestamps for FM data from xlsx file

43 [¬,¬,raw] = xlsread('Tp.xlsx');

44

45 %Defining a struct

46 fish(50000) = struct('distx', [], 'disty',[], 'distz', [], 'distT', ...

47 [], 'Tot_dist', [], 't', [], 'Tot_time', [], 'tsc', [], 'avg_tsc', []);
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48 avg_speed(length(files)) = struct('Date', [], 'mps', [], 'std_mps', ...

49 [], 'flps', [], 'std_flps', [], 'avg_TS', []);

50 m = 1; %counting the number of tracks/fish in the file

51 n = 1; %counting the number of pings within a track

52

53 %−1 hour returns 1 hour Cw before FM, − 3 returns 1 hour CW after FM

54 %File 28 = 11 april, only data at night

55 %−1143, starts at 021614, −9, stops at 06.45

56 if i == 28

57 t_start=datenum(raw(i,10),'yyyymmddTHHMMSS')−datenum(0000,0,0,11,43,0);

58 t_stop=datenum(raw(i,11),'yyyymmddTHHMMSS')−datenum(0000,0,0,9,0,0);

59 %File 36 = 19 april, end of experiment.

60 elseif i == 36

61 t_start=datenum(raw(i,10),'yyyymmddTHHMMSS')−datenum(0000,0,0,3,0,0);

62 t_stop=datenum(raw(i,11),'yyyymmddTHHMMSS');

63 else

64 t_start=datenum(raw(i,10),'yyyymmddTHHMMSS')−datenum(0000,0,0,1,0,0);

65 t_stop=datenum(raw(i,11),'yyyymmddTHHMMSS')+datenum(0000,0,0,1,0,0);

66 end

67

68 %find indexes to keep − giving data for the selected period

69 t_test=datenum(raw(i,10),'yyyymmdd');

70

71 if t_test==D

72 ind_tid = T>t_start & T≤t_stop; %read t_start and stop values from excel sheet

73 %Extracts the values within the time boundaries

74 id = data(i).data(ind_tid,1);

75 d = data(i).data(ind_tid,2);

76 time = data(i).data(ind_tid,3);

77 tsc = data(i).data(ind_tid,7);

78 x = data(i).data(ind_tid,8);

79 y = data(i).data(ind_tid,9);

80 z = data(i).data(ind_tid,10);

81 end

82

83 %Loop to extract tracks for each fish

84 for l = 1:length(id)−1

85 dist(l,:) = id(l)−id(l+1);

86

87 %Goes through the length of the ID's. If the difference between two ID's

88 %are equal to 0, the ID belongs to the same track/fish. The distanc

89 % between x, y, and z is found

90 if dist(l,:) == 0

91 fish(m).tsc(n) = tsc(l);

92 fish(m).distx(n) = x(l+1) − x(l);

93 fish(m).disty(n) = y(l+1) − y(l);

94 fish(m).distz(n) = z(l+1) − z(l);

95 fish(m).distT(n) = sqrt((fish(m).distx(n))^2 ...

96 + (fish(m).disty(n))^2 + (fish(m).distz(n))^2);

97 %time between pings in sec:

98 fish(m).t(n) = (time(1+l) − time(l))*0.01;

99 %avg TS value for each fish:

100 fish(m).avg_tsc = 10*log10(mean(10.^(fish(m).tsc./10)));

101 avg_tsc(m,:) = fish(m).avg_tsc;
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102 n = n + 1;

103 else

104 m = m + 1;

105 n = 1;

106 end

107 end

108

109 %Removing the access spaces from the fish struct

110 fish=fish(1:m);

111

112 bbb = 1; %counts time/distance outside boundaries

113 aaa = 1; %counts number of tracks within the boundaries

114

115 for b=1:length(fish)

116 fish(b).Tot_time = sum(fish(b).t);

117 fish(b).Tot_dist = sum(fish(b).distT);

118

119 %notes row number of time and speed outside boundary

120 if (fish(b).Tot_time > 10 || fish(b).Tot_dist > 4)

121 ind_F(bbb,:)=b;

122 bbb=bbb+1;

123 %calculates the swimming speed for the fish within the boundary

124 else

125 Speed_mPs(aaa) = fish(b).Tot_dist/fish(b).Tot_time;

126 Speed_flPs(aaa) = (Speed_mPs(aaa)/avg_length); %Fish length per second

127 aaa=aaa+1;

128 end

129

130 end

131 %average TS for the whole file:

132 avg_TS = 10*log10(mean(10.^(avg_tsc./10)));

133 %average swimming speed in m/s for the whole file:

134 avg_mps = mean(Speed_mPs(¬isnan(Speed_mPs)));
135 std_mps = std(Speed_mPs(¬isnan(Speed_mPs)));
136 %average fish length per sec, for the whole file

137 avg_fl = mean(Speed_flPs(¬isnan(Speed_flPs)));
138 std_flps = std(Speed_flPs(¬isnan(Speed_flPs)));
139

140 avg_speed(i).Date = d(i);

141 avg_speed(i).mps = avg_mps;

142 avg_speed(i).std_mps = std_mps;

143 avg_speed(i).flps = avg_fl;

144 avg_speed(i).std_flps = std_flps;

145 avg_speed(i).avg_TS = avg_TS;

146

147 clear data %to prevent using previous data in next run

148 end

149

150 speed_TS_200 = (avg_speed); %table with values from the struct speed

151 save('speed_TS_200');
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F.3 Velocity_FM.m

This script was applied when calculating the average swimming speed per day, seen in Fig. 5.12.

1 %==========================================================================

2 % MATLAB R2021b script for calculating the swimming speed from FM data

3 %==========================================================================

4 % Script to read .text files extracted from LSSS

5 %Name of file: Velocity_FM.m

6 %

7 % AUTHOR: Maren Forstr nen Rong

8 % INSTITUTE OF PHYSICS AND TECHNOLOGY

9 % UNIVERSITY OG BERGEN

10 % 2021−2022

11 %

12 %======================================

13

14 clear all

15 close all

16

17 path = 'C:'; %Reading from folder

18 files = dir(fullfile(path, '*.txt'));

19

20 avg_length = 0.38; %average fish length throughout the experiment [m]

21

22

23 %Goes through each file and extracts the necesarry values to calculate the

24 % swimming speed.

25 for i = 1:length(files)

26 data(:,i) = importdata(fullfile([path '\' files(i).name]));

27 id = data(i).data(:,1); %Every ID in the file

28 d = data(i).data(:,2);

29 time = data(i).data(:,3);

30 x = data(i).data(:,8);

31 y = data(i).data(:,9);

32 z = data(i).data(:,10);

33

34 %creating structs for saving the desired parameters

35 fish(50000) = struct('distx', [], 'disty',[], 'distz', [], 'distT', [], ...

36 'avg_tsc', [], 'Tot_dist', [], 't', [], 'Tot_time', [], 'Date', [], ...

37 'Speed', [], 'Fish_length', []);

38 avg_speed(length(files)) = struct('Date', [], 'mps', [], 'std_mps', ...

39 [], 'flps', [], 'std_flps', []);

40 m = 1; %Counts the number of trakcs/fish in the file

41 n = 1; %Counts the length of the track (number of pings in the track)

42

43 %Goes through the length of the ID's. If the difference between two ID's

44 %are equal to 0, the ID belongs to the same track/fish. The distance

45 %between x, y, and z is found.

46 for l = 1:length(id)−1

47 dist(l,:) = id(l)−id(l+1);

48 if dist(l,:) == 0
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49 fish(m).distx(n) = x(l+1) − x(l);

50 fish(m).disty(n) = y(l+1) − y(l);

51 fish(m).distz(n) = z(l+1) − z(l);

52 fish(m).distT(n) = sqrt((fish(m).distx(n))^2 + ...

53 (fish(m).disty(n))^2 + (fish(m).distz(n))^2);

54 fish(m).t(n) = (time(1+l) − time(l))*0.01; %time between pings in sec

55 n = n + 1;

56 else

57 m = m + 1;

58 n = 1;

59 end

60 end

61

62 %Shortens the length of the struct

63 fish = fish(1:m);

64

65 aaa = 1; %counts the fish within the boundaries

66 bbb = 1; %counting the time and distance outside the defined conditions

67 for b=1:length(fish)

68 fish(b).Tot_time = sum(fish(b).t);

69 fish(b).Tot_dist = sum(fish(b).distT);

70

71 %The indexes of fish outside the boundaries

72 % set for the time and distance

73 if (fish(b).Tot_time > 10 || fish(b).Tot_dist > 4)

74 ind_F(bbb,:) = b; %Finds index for the fish that exceeds the conditions

75 bbb = bbb + 1;

76 else %If within the boundaries: calculates the swimming speed

77 Speed_mPs(aaa) = fish(b).Tot_dist/fish(b).Tot_time;

78 Speed_flPs(aaa) = (Speed_mPs(aaa)/avg_length);

79 aaa = aaa + 1;

80 end

81 end

82

83 %calculating the average values over every fish in the file to obtain

84 %one value per day.

85 avg_mps = mean(Speed_mPs(¬isnan(Speed_mPs)));
86 std_mps = std(Speed_mPs(¬isnan(Speed_mPs)));
87 avg_fl = mean(Speed_flPs(¬isnan(Speed_flPs)));
88 std_flps = std(Speed_flPs(¬isnan(Speed_flPs)));
89

90

91 %Creating a struct for the desired values

92 avg_speed(i).Date = d(i);

93 avg_speed(i).mps = avg_mps;

94 avg_speed(i).std_mps = std_mps;

95 avg_speed(i).flps = avg_fl;

96 avg_speed(i).std_flps = std_flps;

97

98 end

99 speed_200_FM = (avg_speed);

100 %save('speed_200_FM')
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F.4 KRMr_Salmon.R

Script from [66] applied in the R software to simulate the TS from a swim bladder, as explained in

Chapter 4.

1 library(KRMr)

2 library(dplyr)

3 #################################################################

4 # Run KRMr on salmon body and swimbladder

5 # Author: Geir Pedersen (IMR), Bergen, Norway

6 #################################################################

7

8 fb <− read.csv('C:')

9 sb <− read.csv('C:/')

10

11

12 layout(matrix(c(1,2,3,3), 2, 2, byrow = TRUE))l

13 par(mar=c(1,1,1,1))

14 shplot(x_fb = fb$x_fb, w_fb = fb$w_fb,

15 x_sb = sb$x_sb, w_sb = sb$w_sb,

16 z_fbU = fb$z_fbU, z_fbL = fb$z_fbL,

17 z_sbU = sb$z_sbU, z_sbL = sb$z_sbL)

18

19 # Define parameters for the sphere (fluid) and water

20 # Feel free to use something else e.g. for water if you have measurements

21 #freqs = c(70,120,200)*1000

22 #freqs = 56.8:88.2 * 1000 #Hz frequencies to be considered in Hz, 70

23 #freqs = 93.5:156.5 * 1000 #Hz frequencies to be considered in Hz, 120

24 freqs = 165:255 * 1000 #Hz frequencies to be considered in Hz, 200

25 #freqs = 1:30*1000 #Hz frequencies to be considered in Hz

26 cw = 1489 # m/s sound speed surrounding water

27 cfb = 1480.3 #m/s sound speed inside the fish body

28 csb = 345.0 #m/s soundspeed inside the swimbladder

29 rhow = 1026.8 #kg/m3 density surrounding water

30 rhofb = 1028.9 #kg/m3 density fish body

31 rhosb = 1.24 #kg/m3 density gas in swimbladder

32

33 kfs = krm.sim(frequency = freqs,

34 c.w =cw,

35 rho.w = rhow,

36 # Angle of incidence, 90=normal to the fish, max 20'ish degrees of 90:

37 theta=90,

38 c.fb = cfb,

39 rho.fb = rhofb,

40 c.sb = csb,

41 rho.sb = rhosb,

42 # This can be used to scale length e.g. L=0.38 the fish length will be 38 cm:

43 L=0.38,

44 # Width, height parameters:

45 x_fb = fb$x_fb,

46 x_sb = sb$x_sb,

47 w_fb = fb$w_fb,
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48 w_sb = sb$w_sb,

49 z_fbU = fb$z_fbU,

50 z_sbU = sb$z_sbU,

51 z_fbL = fb$z_fbL,

52 z_sbL = sb$z_sbL)

53

54 colors <− c("KRM" = "blue")

55 ggplot2::ggplot()+

56 ggplot2::geom_point(data=kfs, ggplot2::aes(x=frequency/1000,y=TS, group=L,

57 col='KRM'),lwd=1)+

58 ggplot2::scale_color_manual(values = colors, name='')+

59 ggplot2::xlab('Frequency [kHz]')+

60 ggplot2::ylab('Target Strength [dB re m^2]')+

61 ggplot2::theme_classic()+

62 ggplot2::theme(text=ggplot2::element_text(size=16),

63 legend.position='top')
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