
University of Bergen
Department of informatics

A Cubical Implementation of

Homotopical Patch Theory

Åsmund Aqissiaq Arild Kløvstad

Supervised by H̊akon Robbestad Gylterud

May, 2022

Abstract

In this thesis we consider theoretical models of version control systems based on Homo-

topy Type Theory (HoTT). The main contribution is an implementation of Angiuli et al.’s

Homotopical Patch Theory [1] in Cubical Agda1.

Additionally the first chapter contains an approachable introduction to HoTT and Cubi-

cal Agda aimed at an audience of interested computer science students covering dependent

Martin-Löf-style type theory, propositions as types, univalent foundations, higher inductive

types and CCHM cubical type theory.

Finally, we discuss some other approaches to a theory of version control systems in Darcs’

“algebra of patches” and an unsuccessful attempt to model repositories in type theory as

coequalizers.

1Available at https://github.com/Aqissiaq/hpt-experiments.

https://github.com/Aqissiaq/hpt-experiments

Acknowledgements

I would like to thank

my supervisor H̊akon for being generous with his time, enthusiasm and expertise,

Elisabeth Bonnevier for help with a plethora of silly Agda questions, and

my fellow students in the Jafu and bachelor study halls for their camaraderie.

Åsmund Aqissiaq Arild Kløvstad

Tuesday 31st May, 2022

ii

Contents

1 Introduction and Background 1

1.1 Homotopy Type Theory . 2

1.2 (Dependent) Type Theory . 3

1.3 Propositions as Types . 9

1.4 Identity Types . 11

1.5 Spaces as Types . 14

1.5.1 Voevodsky’s Model . 14

1.5.2 Univalence and Canonicity . 15

1.6 Higher Inductive Types . 16

1.6.1 Inductive Types . 16

1.6.2 Higher Inductive Types . 17

1.7 Agda . 20

1.7.1 Programming Language . 20

1.7.2 Proof Assistant . 22

1.8 Cubical Type Theory . 24

1.8.1 Cubical Agda . 25

1.8.2 Function Extensionality and Univalence 28

1.8.3 Canonicity . 29

2 Version Control Systems 31

2.1 Background . 32

2.1.1 Basic Ingredients . 32

2.1.2 (Groupoid) Properties of Patches . 32

2.1.3 Merging . 33

2.2 Theoretical Approaches to VCS . 35

2.2.1 Darcs . 35

iii

2.2.2 Homotopical Patch Theory . 38

3 Formalization 43

3.1 An Elementary Patch Theory . 44

3.1.1 The Circle as a Repository . 44

3.1.2 Merge . 45

3.2 A Patch Theory With Laws . 47

3.2.1 The Patch Theory . 47

3.2.2 A Patch Optimizer . 50

3.3 A Patch Theory With Richer Contexts . 54

3.3.1 The Type of Repositories . 54

3.3.2 A Merge Function . 55

3.4 Computational Results . 58

3.4.1 Elementary Patch Computations . 58

3.4.2 Patch Computations with Laws . 60

3.4.3 Patch Computations with Richer Contexts 62

4 Conclusion 67

4.1 Discussion . 68

4.2 Future Work . 69

Bibliography 72

A Another Type-Theoretic Approach 75

A.1 Repository HIT . 75

A.2 Merge . 77

A.3 Result/Discussion . 78

iv

Chapter 1

Introduction and Background

This thesis is about Homotopy Type Theory (HoTT), its interpretation and use in Cubical

Agda, and an application to version control systems (VCSs). It is accordingly organized into

three parts.

The remainder of this chapter contains an introduction to the Homotopy Type The-

ory setting, a cubical interpretation of this type theory, and an introduction to the syntax

and workings of the Agda programming language [30] in general and Cubical Agda [34] in

particular.

Chapter 2 gives and exposition of Version Control Systems (VCS) and some approaches

to a theory of such systems. We give an account of Darcs’ [6] “Algebra of Patches” as

described by Lynagh [18] and Angiuli et al.’s “Homotopical Patch Theory” [1] which utilizes

HoTT.

Chapter 3 describes the main contribution of this thesis: an implementation of Homo-

topical Patch Theory in Cubical Agda. Following Angiuli et al. we implement three patch

theories of increasing complexity. In section 3.4 we examine the implementations by testing

them on simple examples. We conclude that the theories and models behave as expected,

but are restricted by the current limitations of Cubical Agda – in particular that transp

and hcomp do not compute over inductive families.

Finally, chapter 4 discusses the results of the formalization and possible directions for

future work on homotopical path theory in particular and HoTT models of version control

in general.

1

1.1 Homotopy Type Theory

The purpose of this introduction is to give the reader the prerequisites to follow the formal-

ization in chapter 3. For an excellent in-depth introduction see Egbert Rijke’s 2019 summer

school notes [27]. The canonical text is The Book [33].

We start by giving an intuitive introduction to dependent types and their notation in

terms of inference rules. Then we consider two important interpretations: types as proposi-

tions and types as spaces. We then move on to inductive types and higher inductive types

(HITs), before an introduction to the syntax of the dependently typed language and proof

assistant Agda.

Finally we look at a cubical interpretation of HoTT and Cubical Agda, an implementation

of it in Agda.

2

1.2 (Dependent) Type Theory

Types are a familiar concept to the computer scientist. We are used to working with data,

and this data often has a data type either explicitly or implicitly. For example, 42 is an int,

’c’ is a char, and [’a’,’b’,’c’] is a list of chars (henceforth denoted [char]). We call

int, char and [char] types and 42, ’c’, [’a’,’b’,’c’] terms of those types. While this

is a good basis for intuition, the Type Theory we consider is a bit different.

However, let us stick with the programming intuition to introduce a less familiar concept:

dependent types. First, note that one of the types in the previous paragraph is different from

the others: [’a’,’b’,’c’] is a list of chars. Similarly we could have lists of ints, lists of floats

or even lists of lists! Clearly “lists” comprises many different types, depending on the type

of their elements. We could call list a family of types parametrized by types. Such a

family is actually a whole collection of types – one for each other type we can make lists of.

Dependent types extend this idea by allowing families to be parametrized by terms. Then

we can create new and exciting types like Vec int 3 – lists of exactly 3 integers – and Vec

[char] 4 – lists of exactly 4 lists of characters. Again Vec is actually a whole collection of

types – one for each choice of type and integer.

We can think of Vec as a function that assigns a type to each pair of a type and an

integer, and may refer to Vec char as “a (type) family over int”.

We now leave the familiar world of programming behind and venture in to the exciting

world of foundational mathematics. In this new and wondrous world, a type theory is a

system of inference rules like 1.1 that can be used to make derivations.

Γ ` a : A Γ ` f : A→ B

Γ ` f(a) : B
(1.1)

This particular inference rule is the elimination rule for function types. It says that if a

is a term of type A and f is a function from A to B, then f(a) is a term of type B. Let us

take it apart.

The part above the line is a list of hypotheses, and the part below is the conclusion.

3

Each piece of the rule is called a judgement. They consist of a context, some expression

and a ` separating the two. In this example our judgements are:

Γ ` a : A

“In any context Γ, a is a term of type A”

Γ ` f : A→ B

“In any context Γ, f is a function from A to B”

Γ ` f(a) : B

“In any context Γ, f(a) is a term of type B”

In fact these are all the same kind of judgement: a particular term (resp. a, f, f(a)) is of

a particular type (resp. A,A→ B,B). There are three other kinds of judgements permitted

in (Martin-Löf) type theory:

Γ ` A Type

“A is a type.”

Γ ` a ≡ b : A

“a and b are judgementally equal terms of type A,” (the type may be omitted) and

Γ ` A ≡ B Type

“A and B are judgementally equal types.”

The judgement form Γ ` A Type lets us formally define lists and vectors. Lists are easy:

Γ ` A Type

Γ ` [A] Type

4

This rule says “if A is a type, then lists of A is a type”. Using N for the type of natural

numbers, vectors are very similar:

Γ ` A Type Γ ` n : N
Γ ` Vec A (n) Type

Like lists, vectors are parametrized by another type, but unlike lists they also depend on a

natural number – their length.

The preceding introductions of lists and vectors are clearly not complete specifications

of the types. They do not tell us what the terms of look like, nor how to use those terms

in other expressions. In order to give a complete description we will need need more rules.

This pattern and terminology will be used to introduce new types, so we elucidate it with a

well-known example: the type of (non-dependent) functions.

Γ ` A Type Γ ` B Type

Γ ` A→ B Type
(1.2)

An introduction rule (1.2) tells us how to construct the type. In this case, if A and B

are types, then functions between them is also a type.

Γ, a : A ` f(a) : B

Γ ` λx.f(x) : A→ B
(1.3)

A formation rule (1.3) tells us how to construct a term of the type. In the case of

functions, terms are constructed by lambda abstraction – if for each a : A we have term

b : B, we can make a function that maps a to b. The result is denoted f(a) to emphasize its

dependence on a.

Γ ` f : A→ B

Γ, a : A ` f(a) : B
(1.4)

5

An elimination rule (1.4) describes how a term is used. In the case of functions, we may

evaluate them with an argument in the domain to obtain a term in the codomain.

Γ, a : A ` f(a) : B

Γ, a : A ` (λy.f(y))(a) ≡ f(a) : B
(1.5)

Γ ` f : A→ B

Γ ` λx.f(x) ≡ f : A→ B
(1.6)

Computation rules postulate when two terms are judgementally equal. In the case of

functions we have two: β-reduction (1.5) and η-reduction (1.6). Taken together (and eliding

any complications of variable substitution), they show that function evaluation and lambda

abstraction are mutual inverses [27].

Finally, we consider two important families of dependent types: Σ-types (sometimes

called “dependent pairs”) and Π-types (“dependent functions”). Intuitively, Σ-types consist

of pairs (x, y) where the type of y is allowed to depend on x, and terms of Π-types are

functions λx.y where the type of y may depend on x. If the type of y happens to be

constant, ΣAB is the product type A× B and ΠAB is the type of non-dependent functions

A→ B. First we look at the type of dependent pairs.

Γ ` A Type Γ, x : A ` B(x) Type

Γ ` ΣAB Type

Γ ` x : A Γ ` y : B(x)

Γ ` (x, y) : ΣAB

The introduction and formation rules tell us that:

1. if A is a type, and B is a type family over A, then we can make the type ΣAB of

dependent pairs

2. if we have a term x of type A and a term y of B(x) we can create a term (x, y) of type

ΣAB

6

In a dependent setting we call the most general elimination rule an “induction principle”.

Such a principle describes how to construct a term in a family over the type we are interested

in. For dependent pairs, it looks like this:

Γ, x : ΣAB ` P Type

Γ, a : A, b : B a ` pa,b : P (a, b)

Γ, x : ΣAB ` ind pa,b x : P x

In words: if, given an a : A and b : B(a) we have a term of type P (a, b), then given an x

in ΣAB we can construct a term of type P x. Note that the term pa,b depends on the given

a and b, and ind pa,b x depends on both pa,b and x.

The computational rule associated with the above induction principle postulate that the

result applying the induction rule to a pair (a, b) is the dependent term p.

Γ, x : ΣAB ` P Type

Γ, a : A, b : B a ` p : P (a, b)

Γ, a : A, b : B a ` ind p (a, b) ≡ p

The analogous rules for dependent functions are:

Γ ` A Type Γ, x : A ` B(x) Type

Γ ` ΠAB Type
Π− intro

Γ, a : A ` b(a) : B(a)

Γ ` λx.b(x) : ΠAB
Π− form

Γ ` f : ΠAB

Γ, x : A ` f(x) : B(x)
Π− elim

Γ, a : A ` b(a) : B(a)

Γ, x : A ` (λy.b(y) x) ≡ b(x)
Π− β Γ ` f : ΠAB

Γ ` λx.f(x) ≡ f
Π− η

7

Normalization

One important property of this kind of type theory is normalization. Because the derivations

are made up from introduction rules, and elimination is justified by computation rules all

terms reduce to a “normal form”. One important consequence is that type-checking (the

task of deciding whether a term is of a certain type) is decidable. Another consequence is

canonicity : that any closed term of type N normalizes to a numeral [33].

These properties have important consequences for the interpretations presented in sec-

tion 1.3 and section 1.5, and explain the usefulness of type theory in proof assistants.

8

1.3 Propositions as Types

In this section we consider an important interpretation of type theory: the Curry-Howard

Correspondence.

Under this correspondence types are identified with logical propositions, and terms with

proofs of those propositions. This means we can consider a proposition “true” (or at least

“proved”) if we can construct a term of the corresponding type.

Two very simple types are the empty type ⊥ which has no terms, and the unit type

> which has one term denoted by 1. Under the “types as propositions” interpretation, ⊥
represents false. The type has no terms so there are no proofs of “false”, just like we would

expect from a sound system. (Of course this alone does not prove our type theory sound.)

Similarly, > represents true. It always has a proof: 1.

Let us make some more elaborate propositions. For example given the types (and hence

propositions) A and B what would it mean to prove A∧B? Well if both A and B are true,

we should be able to give a proof of A and and proof of B. But since proofs are terms of the

corresponding type, this is the same as having terms a : A and b : B. To keep track of both,

lets form the ordered pair (a, b). This is precisely an element of the product type A × B!

Hence the product type represents the proposition A∧B, since its terms correspond exactly

to proofs of A ∧B.

As a sanity check, consider the type A×B with A and B ranging over > and ⊥. Its logical

counterpart A ∧ B is true precisely when both A and B are true, and indeed if A = B = >
we can construct the term (1,1) : A×B. Conversely, if A (resp. B) is ⊥ we cannot construct

a pair since there are no terms to put on the left (resp. right) hand side of the pair.

As another example, what does it mean to prove an implication A→ B? One reasonable

answer is that given a proof of A, we can produce a proof of B. In terms of types, that

means a way to produce a term of type B given a term of type A, which is exactly a function

from A to B! Finally, we mention that logical “or” is represented by the sum type (disjoint

union) A+B and negation of A (¬A) by a function A→ ⊥.

We have the basic building blocks of propositional logic, but what about first-order logic

with ∃ and ∀? This is where dependent types come in handy.

9

First, let us note that a predicate on a variable is a lot like a dependent type. If simple

types can be interpreted as propositions, and a predicate on some set is a proposition that

depends on an element of it, then it stands to reason that a predicate can be represented by

a type that depends on a term. As such, we view a term of the type B(x) as a proof that

the proposition represented by B holds for the term x.

Extending this thinking to quantifiers, a proof of ∃x.P (x) should consist of some x : A

and a proof that P is true of x. Such a pair is a term of a type we have seen before: the

dependent pair ΣAP . Note that this term actually contains more data than just asserting

∃x.P (x) – it gives us an x.

Similarly, a proof of ∀x.P (x) can be seen as an assertion that whenever a x : A is given,

we can produce a term of P (x). This is exactly a function from x : A to P (x) so we use

ΠAP to represent universal quantification.

Note that both of these constructions quantify over some base type A, so “for all x”

necessarily becomes “for all x of type A”. This is usually left implicit in first-order logic.

The Curry-Howard correspondence also elucidates why dependent elimination rules are

called “induction principles.” Viewing a family of types as a predicate, an induction rule for

some type tells us precisely how to prove that the predicate is true for all terms of that type.

Constructivity

Notably, the propositions-as-types logic is constructive. This is a consequence of the type

theory’s normalization property and means that any proof necessarily constructs a proof

term. For example, a proof of existence must explicitly construct the thing that exists as

discussed above.

Conversely there are some classical propositions that are not necessarily inhabited when

considered as types. Most prominently the law of excluded middle (A + ¬A) cannot be

inhabited for every A. After all, we would have to know whether A is inhabited or not

before even deciding whether to form an A or a ¬A.

10

1.4 Identity Types

Given this notion of propositions as types, one of the things we may want to propose (and

prove) is the equality of two terms. That is, given two terms of some type, how do we show

that they are equal? Note that this propositional equality is different from the judgemental

equality discussed in section 1.2. While judgemental equality is part of the inference rules

of the type theory, the propositional equality of two terms is a type that can be inhabited

and whose terms can be used.

Since propositions are types and “x is equal to y” is a proposition, there should be a

corresponding type. Also, the truth of this proposition depends on x and y (clearly “2 is

equal to 2” should be different from “2 is equal to 3”) so the type should depend on x and

y as well. But how should this type be constructed? What are the terms of such a type?

A solution, proposed by Per Martin-Löf [21], is an inductive family of dependent types

called the identity type. For each type A and pair of terms x, y : A we construct the identity

type x =A y (the subscript may be dropped when the type of x and y is clear). It has the

following formation and introduction rules [27]:

Γ ` a : A

Γ, x : A ` a =A x Type

Γ ` a : A

Γ ` refla : a =A a

and an elimination rule (called the induction principle or simply the J-rule) given by:

Γ ` a : A

Γ, x : A, p : a =A x ` P (x, p) Type

Γ, a : A ` Ja : P (a, refla)

Γ, x : A, p : a =A x ` P (x, p)

This is astonishingly simple! The identity type has one constructor: refl , and in order

to use its terms p : x =A y it is enough to know the case when x ≡ y and p ≡ refl.

Despite the few ingredients, identity types exhibit a great deal of (admittedly expected)

structure. For example, the identity type =A on some type A is an equivalence relation. It

11

is clearly reflexive (x =A x is inhabited by reflx), but it is also symmetric and transitive.

Given proofs p : x = y and q : y = z, let us denote the symmetric proof by p−1 : y = x and

the result of transitivity p · q : x = z.

Given a term a : A the J-rule lets us inhabit a type P (x, p) by providing a term of

P (a, refla). This reduces the task of showing symmetry and transitivity to the cases when

the paths are all refl. The inverse refl−1 is again refl and the composition refl · refl is also refl.

Armed with the J-rule many useful functions on identity types can be constructed. We

mention two closely related functions:

The first is cong f (called apf in [lemma 2.2.1, 33]) which for some function f : A→ B

maps identity proofs a = a′ in A to identity proofs f a = f a′ in B. By the J-rule we may

assume that the path in question is reflx and define cong f reflx := refl(f x).

The second is a dependent version of cong called transport. Given a family P over A and

an identification p : a =A a
′, transportP p gives a function P (a)→ P (a′). In the case where

p is reflx it is the identity function P (x)→ P (x).

UIP and The Groupoid Structure of Types

A question one might ask is “can there be more than one proof of identity?”. The negative

answer is a property known as Uniqueness of Identity Proofs (UIP). A type A satisfies UIP

if for any x y : A and p q : x =A y the type p =x=y q is inhabited1. Now the question of

uniqueness can be posed as “does UIP necessarily hold for every type?” In 1995 Hofman

and Streicher [9] showed that the answer is “no” by constructing a model in which it fails to

hold.

So an identity is not merely a type which either does or does not have an inhabitant, but

does it have more structure? Hofman and Streicher’s model give an answer here too. In it,

types are groupoids and the identity type x =A y is modeled by HomA(x, y). In addition to

the properties we have already seen, they show that composition is associative and respects

1In HoTT we say A is a set or has H-level 0.

12

units and inverses. That is, for proofs p : x = y, q : y = z, r : z = w the following types are

all inhabited:
(p · q) · r =x=w p · (q · r)
p · refly =x=y p

reflx ·p =x=y p

p · p−1 =x=x reflx

p−1 · p =y=y refly

This groupoid structure of identity proofs will be very important in chapter 3.

13

1.5 Spaces as Types

Closely related to their groupoid structure another way to make sense of identity types is

through homotopy theory. With this interpretation, pioneered by Voevodsky [35] and the

HoTT program [33], a type A is a space in the sense of homotopy types2 and a term of

x =A y is a path in A from x to y.

In fact the collection of all such paths is itself a space (and thus a type): the path space.

Additionally there may be paths between paths, paths between paths between paths and so

on. These higher paths are the eponymous “homotopies” and provide a rich field of study

on their own. Geometrically we visualize them as “filling in” the space between paths.

Here, we present an overview of Voevodsky’s model of types as spaces and his influential

concept of univalence. A full exposition by Kapulkin and Lumsdaine is found in [11].

1.5.1 Voevodsky’s Model

We have already seen a model that lets us view types as groupoids. When also considering

higher paths, types have the structure of “weak higher-dimensional” groupoids. A classical

example of weak higher-dimensional groupoids can be found in homotopy theory, where

Kan complexes are a specific kind of “well behaved” space. This was observed by both

Voevodsky and Streicher around 2006 [29] and Voevodsky used the insight to construct a

model for Martin-Löf type theory.

Briefly, the model takes a combinatorial view of spaces by mapping them to simplicial

sets – a sort of arbitrary-dimensional triangulation. To accommodate dependent types, we

only consider Kan complexes – intuitively the simplicial sets where every triangle can be

filled in.

The space containing all the basic spaces also forms a Kan complex called a Universe

and often denoted by a U . Importantly the universe does not contain itself, but may be

contained in another universe “one level up”. If necessary, a cumulative hierarchy of universes

containing all the lower ones is possible, but Voevodsky settles for two.

2Homotopy types are a concept from homotopy theory, and only related to the types of type theory in
the sense described here.

14

1.5.2 Univalence and Canonicity

Voevodsky also shows that his model satisfies the univalence property. Loosely speaking this

property says that the identity type for the universe is equivalent to the type of equivalences.

In other words, equivalent types can be identified.

This property aligns well with mathematical practice where structures are often consid-

ered up to some suitable notion of equivalence. With well defined types, univalence means

groups can be identified when they are isomorphic, categories can be identified when they are

equivalent and so on. Consequently HoTT provides a setting for mathematics with desirable

properties; the “Univalent Foundations” program as introduced in The Book [33] aims to do

mathematics in this setting.

Since the univalence property holds in Voevodsky’s model, we might justifiably want to

include it in our type theory and The Book does exactly that by including the following

axiom (where idToEquiv is a function of type (A =U B)→ (A ' B)):

Γ ` A : U Γ ` B : U
Γ ` univalence A B : isEquiv(idToEquiv A B)

The inverse of idToEquiv is ua, with the computation rule that transport along ua(f) is

propositionally equal to applying f .

However this poses a problem: when extending the type theory with an axiom, the

canonicity property is lost – terms no longer necessarily reduce to a normal form and we

lose the nice constructive properties of the resulting logic. The constructive/computational

meaning of the univalence axiom in homotopy type theory is an open area of research, and

we will return to it in section 1.8.

15

1.6 Higher Inductive Types

Now that we have several useful interpretations of types, we need some ways to construct

more complex types to study. In this section we look at one such way: Higher Inductive

Types (HITs). HITs are motivated by the interpretation of types as spaces. In this section

we first introduce regular inductive types, then their “higher” counter-part and finally an

application of HITs serving as a concrete example.

1.6.1 Inductive Types

One way to construct more elaborate types is by induction. An inductive type is defined by

a number of constructors, which can be either constant terms or functions. Let us return

to the type of lists. It can be constructed from the empty list and the function cons which

takes an element and affixes it to the start of a list. Using [] for the empty list and :: for

the (infix) cons function we have a pair of introduction rules:

Γ ` A Type

Γ ` [] : [A]

Γ ` a : A Γ ` as : [A]

Γ ` (a :: as) : [A]

From these we can construct arbitrarily long lists by starting with the empty list and

affixing new terms of A to obtain [], (a :: []), (a′ :: (a :: [])) etc. For this reason we may refer

to the introduction rules as “constructors” of [A] and say that lists of A are “generated” by

its two constructors.

In order to use this type, we also need an induction principle. The induction principle

tells us how to use terms of the type by defining functions into a family over it. If the family

is constant (i.e. the function is non-dependent) we call such a rule a “recursion principle”.

Γ, l : [A] ` P l Type

Γ ` p[] : P []

Γ ` p:: : Πa:AΠas:[A]P (a :: as)

Γ ` ind[A] p[] p:: : Π[A]P

16

This rule states that a dependent function out of [A] can be constructed by knowing

what it does on the empty list, and – given an a : A and a list as : [A] – what it does on

(a :: as). It is not a coincidence that we require two terms – they correspond precisely to

the two constructors.

The resulting function maps the empty list to p[] and any arbitrary list (a :: as) to p::

by the computation rules:

Γ ` p[] : P []

Γ ` p:: : Πa:AΠas:[A]P (a :: as)

Γ ` ind[A] p[] p:: [] ≡ p[]

Γ ` p[] : P []

Γ ` p:: : Πa:AΠas:[A]P (a :: as)

Γ, a : A, as : [A] ` ind[A] p[] p:: (a :: as) ≡ p::(a, as)

1.6.2 Higher Inductive Types

When constructing ever more complicated types, it is useful to have some control over which

terms are identified. For example we might want to construct a quotient A/∼ where∼-related

terms are identified.

One way to do this is Higher Inductive Types. Like inductive types, HITs are constructed

from generators, but while the generators of an inductive type may only generate terms, the

generators of a HIT may also generate identity proofs. We will often use the language

of spaces and refer to the terms and identity proofs in a HIT as “points” and “paths”

respectively.

There is no reason to stop there! We could apply the same idea to give generators for

paths between paths, paths between paths between paths and so on. In section 3.2 we will

make use of such “higher paths”, but for now let us focus on a simple example.

The Circle

Utilizing the language of spaces we introduce a very simple HIT: the circle S1. This is a

HIT with one point constructor (base) and one path constructor (loop). Its introduction

and formation rules are:

Γ ` S1 Type Γ ` base : S1 Γ ` loop : base =S1 base

17

The circle also comes with a recursion principle 3. Like the induction principle for lists,

a function out of the circle requires one term for each constructor. A point p for the base,

and a path from p to itself for the loop.

Γ ` b : B Γ ` l : b =B b

Γ ` recS1 b l : S1 → B

The computation rules state that the resulting function maps base to b and applying it

around loop gives l. Note that the computation rule for loop does not give a judgemental

equality, but rather postulates a term called loopComp witnessing the result.

Γ ` b : B Γ ` l : b =B b

Γ ` recS1 b l base ≡ b

Γ ` b : B Γ ` l : b =B b

Γ ` loopComp : cong (recS1 b l) loop = l

In homotopy type theory as presented in The Book, HITs are included by adding their

formation, introduction, elimination and computation rule(s) as axioms. Like the univalence

axiom, this means their inclusion interferes with the computational properties of the theory

and once again we lose canonicity. We will look at one possible remedy in section 1.8.

Synthetic Homotopy Theory

An important use of HITs is synthetic homotopy theory [23, 14]. By constructing represen-

tation of spaces as HITs it is possible to formalize results of homotopy theory very directly.

Here we recount parts of a proof that the fundamental group of the circle is Z originally

given by Licata and Shulman [16]. This showcases the use of circle recursion and also proves

useful in section 3.1.

The fundamental group of a space X (with base point x0) π1(X, x0) is the group whose

elements are loops at x0 and whose operation is path concatenation. In type theoretic terms

we define the loop space (at x0) ΩX as the identity type x0 =X x0. Path concatenation is

simply the transitive property of identity proofs.

The proof that π1(S1, base) ' Z has four parts:

3The fully general induction principle requires a notion of dependent paths “over” loop. See section 6.2
in The Book [33]

18

1. a function winding : ΩS1 → Z

2. a function intLoop : Z→ ΩS1

3. a proof that winding and intLoop are mutual inverses

4. a proof that either winding or intLoop is a group homomorphism (it suffices to show

one direction)

We limit ourselves to (1) to showcase circle recursion, but the full details are spelled out in

section 8.1 of The Book [33] an repeated by Mörtberg and Pujet [23].

Since we do not have a recursion principle for ΩS1 we first construct the covering space

of the circle called helix. This is a family over S1 which can be viewed as a function from

S1 to the universe, so we use circle recursion to define:

helix := recS1 Z (ua succEquiv)

Where succEquiv is the equivalence Z ' Z induced by the successor function.

The winding number is computed by transporting in the helix. Given some x : S1 and

path p : base = x, define:

encode(p) := transporthelix p 0

and finally

winding := encode base

Transporting along loop in helix is equivalent to transporting along cong helix loop in the

identity family, which by loopComp is identified with transportid (ua succEquiv). Compu-

tation rules for ua give the final result: the successor function.

The other direction could be defined by simple recursion on the integers, but this makes

it difficult to prove (3). Instead, Licata and Shulman define a decode-function analogous to

helix such that intLoop is decode of base.

This technique – making use of the recursion principle to define a function on all of S1

before specializing to base – is known as an “encode-decode” style of proof.

19

1.7 Agda

In this section we introduce Agda [30] – a dependently typed programming language and

proof assistant. The goal is to introduce enough of its syntax and workings to follow the

formalization in chapter 3.

The basic syntax of Agda will be familiar to users of Haskell [20], but with : for typing and

significant use of unicode (including → for function types). In general, terms will appear as

term : Type followed by term = ... where the first line provides the type and the second

defines the specific term.

1.7.1 Programming Language

As an example, we consider the type of vectors and operations on them. This is a depen-

dent type that provides a good look at the syntax and features of Agda as a programming

language.

First, we are going to need the natural numbers (recall that vectors are a family of types

indexed by natural numbers). The (Peano) natural numbers are an inductive type, which

we introduce with the data keyword. It has two constructors: zero and suc.

data N : Set where

zero : N
suc : N → N

We can now define vectors as a family of types indexed by a type and a natural number.

Vectors also have two constructors. The empy vector [] has length zero, and a vector of

any length can be extended by adding a new element to the start. The implicit argument

{n : N} should be read as ”for all natural numbers n...” (and in fact we could write ∀ {n}
since Agda can easily infer that n must be a natural number).

data Vec (A : Set) : N → Set where

[] : Vec A zero

:: : {n : N} → A → Vec A n → Vec A (suc n)

20

Note that the data declaration has A before the colon, but N after. This is because A stays

constant over the two constructors, while the natural number varies.

The cons function (::) shows two important features of Agda’s syntax: infix notation

and currying. Infix functions can be used between its arguments – in this case (x::xs) is a

vector – and are denoted by underscores. Each underscore in the name represents a position

in which we may place the corresponding argument.

Currying means that a function like :: that takes two arguments of types A and Vec A n

and produces a Vec A (suc n) can be written as :: : A → Vec A n → Vec A (suc n)

(with → associating to the right) 4.

This style allows for partial application of functions where :: x results in a unary

function Vec A n → Vec A (suc n). Mixfix operators and currying interact wonderfully

with partial application. For example x :: is the function that takes a vector and conses x

onto it.

Now we can construct terms of this new type. For example, here is the 3-vector of natural

numbers [1,2,3]:

one-two-three : Vec N (suc (suc (suc zero)))

one-two-three = suc zero

:: (suc (suc zero)

:: (suc (suc (suc zero))

:: []))

Clearly this way to write out natural numbers is pretty verbose. Agda’s builtin type of

naturals lets us write 3 instead of suc (suc (suc zero)).

We can also define convenient functions on vectors, like map and concatenation. Here map

is defined by pattern matching on the vector. It applies a given function f to each element

of the vector, potentially changing its underlying type, but not its length. The two types

A and B, as well as the length of the vector, are left implicit and can be inferred from the

provided function and vector.

4This is possible because of the product a exponentiation adjunction in cartesian closed categories which
gives a bijection between (A × B) → C and A → (B → C) for all objects A, B and C See IV.6: Cartesian
Closed Categories in [19]

21

map : {A B : Set}{n : N} → (A → B) → Vec A n → Vec B n

map [] = []

map f (x :: v) = (f x) :: (map f v)

Of course, map would work equally well for the non-dependent type of lists. To make use of

the additional power of dependent types we can define map-pointwise which safely applies

a different function to each element of a vector.

map-pointwise : {A B : Set}{n : N} →
Vec (A → B) n → Vec A n → Vec B n

map-pointwise [] [] = []

map-pointwise (f :: fs) (x :: xs) = f x :: map-pointwise fs xs

Concatenation is the binary operation that adjoins one vector to the end of another. This

has the effect of adding their lengths, evidenced by the resulting type Vec A(n + m). Note

that we only pattern match on the left vector. This is actually important, since + is defined

by pattern matching on its left argument, allowing this definition to type-check.

++ : {A : Set} {n m : N} → Vec A n → Vec A m → Vec A (n + m)

[] ++ ys = ys

(x :: xs) ++ ys = x :: (xs ++ ys)

1.7.2 Proof Assistant

In addition to being a dependently typed functional programming language (or perhaps

more accurately, by being a dependently typed programming language) Agda is a proof

assistant. By making use of ”propositions as types” as well as Martin-Löf style identity

types, proofs and programs are the same thing. Note that the Agda type ≡ is not the

same as the judgemental equality from section 1.2. Rather, it is the identity type described

in section 1.4.

The most basic proofs are simply refl. We can use refl to prove that one plus one is

two, or that zero is the left unit of addition.

22

-- 1 + 1 = 2

: (suc zero) + (suc zero) ≡ suc (suc zero)

= refl

-- zero is the left unit for addition

+-lunit : ∀ {n} → zero + n ≡ n

+-lunit = refl

Of course, not all proofs are so simple. In fact, proving that zero is also the right unit

takes some work. This is because addition is defined by induction on the left argument, so

+-lunit is simply the base case.

+-runit : ∀ {n} → n + zero ≡ n

+-runit {zero} = refl

+-runit {suc n} = cong suc +-runit

For +-runit we need a proof by induction. The base case (0 + 0 = 0) is proved by

refl like before, but the induction step requires slightly more work. Luckily, the term

we need has type (suc n + zero) ≡ suc n and the left-hand side computes to suc (n +

zero). Now we have suc applied to both sides of an instance of +-runit so we can use

the induction hypothesis with cong : (f : X → Y) → x ≡ y → (f x) ≡ (f y). (Also

note the pattern matching on an implicit argument.)

Another useful tool, mainly to make complicated proofs easier to follow, is ≡-Reasoning,

which introduces ≡〈 〉 and �. These let the programmer write out the steps of a proof,

like the inductive case of the proof below, such that x ≡〈 p 〉 y means ”x is equal to y by

p”.

open ≡-Reasoning

concat-map : {A B : Set} {n m : N} → (f : A → B) (v : Vec A n) (w : Vec A m)

→ map f (v ++ w) ≡ (map f v) ++ (map f w)

concat-map f [] w = refl

concat-map f (x :: v) w = map f ((x :: v) ++ w)

≡〈 refl 〉 map f (x :: (v ++ w))

≡〈 refl 〉 f x :: map f (v ++ w)

≡〈 cong (f x ::) (concat-map f v w) 〉
(map f (x :: v) ++ map f w) �

23

1.8 Cubical Type Theory

The computational properties of type theory as a foundation is what makes a proof assistant

like Agda possible. However, we have seen that adding axioms to the theory breaks these

properties. That poses a problem when there are axioms we would like to make use of – in

particular the univalence axiom and higher inductive types.

One way to imbue HoTT with computational meaning is Cubical type theory [4]. The

basic idea is to take the “spaces as types”-interpretation of identity types very literally, as

a function from the interval. With this interpretation, univalence and HITs do not need to

be added axiomatically – they become provable theorems [5]. This section introduces the

basic concepts of cubical type theory, Cubical Agda and the Cubical library. In particular

we discuss the theory employed by Cubical Agda: the CCHM (Cohen, Coquand, Huber and

Mörtberg) cubical type theory [4].

The main ingredient of cubical type theory is the interval type. It represents the closed

interval [0, 1] in and we can roughly think of it as a HIT with two points and a path between

them. Denote the interval by I and its two endpoints by 0 and 1. An element along the

interval is represented by a variable i : I.

In addition to its elements, the interval supports three operations. The binary opera-

tions ∧ and ∨ and the unary operation ∼. In the geometric interpretation these represent

(respectively) max,min and 1− . These operations form a de Morgan algebra [23] (and in

fact I may be described as the free de Morgan algebra on a discrete set of variable names

{i, j, k...} [4]).

We can now define a cubical identity type as functions out of the interval type. Concretely,

an identity type x =A y is the type of functions p : I→ A such that p(0) ≡ x and p(1) ≡ y.

This corresponds precisely to the notion of a path with endpoints x and y in homotopy

theory.

Using lambda-abstraction to define the functions from I we obtain the inference rules

seen in Figure 1.1.

By iterating this construction we obtain higher homotopies. I→ A is the type of paths

in A, I→ I→ A the type of squares, I→ I→ I→ A the eponymous cubes and so on. We

24

Γ ` a : A Γ ` b : A
Γ ` a =A b Type

Γ, i : I ` x(i) : A
Γ ` λi.x(i) : x(0) =A x(1)

Γ ` p : a =A b
Γ, i : I ` p i : A

Figure 1.1: Introduction-, formation- and elimination-rules for cubical paths

call the A’s which permit such a mapping of cubes ”cubical sets” and use them to model

types in our theory.

Composition of paths is slightly involved. The most natural notion of composition is

actually ternary because it corresponds to ”putting a lid” on an open box. Given paths

p : x = y, q : y = z and r : z = w the ternary composition is the dotted line in Figure 1.2.

This operation is called hcomp (homogenous composition). In order for hcomp to be

well defined, it must be possible to put a lid on every such open box. This is precisely the

”Kan condition” on cubical sets, so types are modelled by Kan cubical sets. (Recall that

Voevodsky’s model used Kan simplices).

x w

y z

p r−1

q

Figure 1.2: Composition of p, q, r

Note that the right wall is inverted to be parallel with the left. To obtain binary compo-

sition p · q we fill in the box where the right-hand wall is reflz (it does not actually matter

which wall we choose, letting the left-hand wall be reflx gives the same result).

1.8.1 Cubical Agda

Cubical Agda [34] implements support for CCHM cubical type theory in Agda based on the

development by Cohen et al. [4]. Additionally it extends the theory to support records and

co-inductive types, a general schema of HITs and univalence through Glue types. In this

section we look at some examples of Cubical Agda to get familiar with its syntax.

As of Agda version 2.6.0, cubical mode can be activated with:

25

{-# OPTIONS --cubical #-}

First, let us consider the cubical path type as introduced in the preceding section. The

interval type is denoted by I, its two end-points by i0 and i1 and the operations by ∧ , ∨ ,∼
. The most basic notion of a path is actually the heterogenous/dependent path type:

HPath : (A : I → Type) → A i0 → A i1 → Type

The non-dependent identity types as discussed in section 1.4 corresponds to a HPath over a

constant family:

== : {A : Type} → A → A → Type

== {A} x y = HPath (λ → A) x y

As one might expect, refl is the constant path

refl : {x : A} → x ≡ x

refl {x = x} = λ i → x

and symmetry is defined using ∼ :

sym : {x y : A} → x ≡ y → y ≡ x

sym p = λ i → p (˜ i)

Higher inductive types are defined by their point and path constructors. As an example,

consider the circle S1 introduced in section 1.6.

data S¹ : Type where

base : S¹
loop : base ≡ base

Defining functions out of HITs is done by pattern matching. For example, reverse is the

function from the circle to itself which reverses the direction of the loop. Notice the variable

i:I which means the right-hand side is actually a point in S1 “varying along the path”.

reverse : S¹ → S¹
reverse base = base

reverse (loop i) = sym loop i

This is very much like recS1 . In order to define a function we require a point (base) and

loop (sym loop) at that point. Since paths in Cubical Agda are functions from the interval,

26

the loop also includes an argument i which we supply to sym loop, representing travelling

along the path.

Similarly, let us define the helix and winding number from section 1.6.

helix : S¹ → Type

helix base = Z
helix (loop i) = ua succEquiv i

encode : (x : S¹) → base ≡ x → helix x

encode p = subst helix p (pos 0)

winding : base ≡ base → Z
winding = encode base

Since everything computes, we do not need to evoke any computation rules to show that

this function computes the winding number. Each case is witnessed directly by refl.

: winding loop ≡ 1

= refl

: winding (loop · loop) ≡ 2

= refl

: winding (sym loop) ≡ (- 1)

= refl

In addition to the cubical mode, Vezzosi, Mörtberg and Cavallo develop and maintain a

Cubical library 1 containing useful data types, functions and proofs.

1A standard library for Cubical Agda: https://github.com/agda/cubical

27

https://github.com/agda/cubical

1.8.2 Function Extensionality and Univalence

In addition to the higher inductive types, a benefit of cubical type theories is that they make

it possible to prove useful results that are usually only axiomatically defined. Two prominent

examples are function extensionality and Voevodsky’s univalence axiom [35].

In CCHM type theory (and therefore in Cubical Agda) these are not axioms at all, but

provable theorems. Function extensionality is especially straightforward: given two functions

f, g : A→ B and a family of paths p : Π(x:A) f(x) =B g(x), the proof simply swaps the order

of operations.

funExt : {A B : Type} {f g : A → B} → ((x : A) → f x ≡ g x) → f ≡ g

funExt p i x = (p x) i

It is also possible to prove function extensionality from univalence [8, 3], but the above is

much more direct.

Univalence is also provable in the sense that a term of the type

{A B : Type} → (A ≡ B) ' (A ' B)

can be constructed.

Recall that types are modelled by Kan cubical sets which permit filling in the final side

of any open box. Is the universe also such a type? The answer informs what paths in the

universe looks like, so this is where univalence shows up. In Cubical Agda it shows up in

the form of a new type former called Glue.

Conceptually, Glue provides a way to construct lids of open boxes in the universe given a

family of types and equivalences over I. We may think of it as a generalization of composition

which allows a family of equivalences, rather than a family of paths [13].

In order to define ua of some equivalence e we let the left wall be e, the bottom refl

and the right the identity equivalence. Then Glue closes the box providing the desired path

(Figure 1.3)

The result is one way of the equivalence above. The other direction is called lineToEquiv.

It is easily obtained by transporting along the path.

ua : {A B : Type} → A ' B → A ≡ B

lineToEquiv : {A B : Type} → A ≡ B → A ' B

28

A B

B B

ua(e)

∼e id∼

refl

Figure 1.3: ua(e) in terms of Glue

1.8.3 Canonicity

The benefit of all this is canonicity. Since ua and HITs are non-axiomatic, terms constructed

by their use reduce to a normalized value. This means our formalization actually computes

the result of applying patches.

However, that is not entirely true. There are two exceptions to canonicity at the time of

writing:

1. transp (the primitive used to implement transport) over inductive families, and

2. hcomp (the primitive used to implement path composition) over inductive families.

Inductive families refer to inductive types that are also indexed by some indexing type.

For example, Vec A is an inductive family over A indexed by integers, and as such expressions

like transport (λ i → Vec A (p i)) [] do not reduce [34]. Canonicity-preserving sup-

port for inductive families and its inclusion in Cubical Agda is an ongoing project 5. We will

return to the issue in chapter 4, as it relates to the formalizations and results in chapter 3.

5https://github.com/agda/agda/issues/3733

29

30

Chapter 2

Version Control Systems

A version control system (VCS) is a software development tool used to keep track of data

and changes to it – often the data is the code for a software project. With large projects,

distributed teams and complex dependencies between version this can be a challenge and a

plethora of different tools with a variety of theoretical approaches exist.

By far the most widely used tool is the distributed git [31] which employs a snapshot-

model. In this approach the system stores the state of the repository, and computes patches

in terms of line-by-line differences between snapshots.

The distributed Mercurial [32] and centralized Subversion [2] work by similar models.

These tools are fast, but often poorly understood and have some un-intuitive behavior [24,

25].

An alternative to snapshot-models is a patch-model. VCS with this model instead store

the set of patches explicitly, and then computes the repository state from them. The most

prominent example of such a system is Darcs [6] with its “algebra of patches”, but we also

mention Pijul [26] which takes a more categorical approach.

In this chapter we introduce the basic concepts and terminology, survey the patch theory

of Darcs as presented by Lynagh [18] and finally explore “homotopical patch theory” [1] –

an approach to VCS using homotopy type theory and univalence.

31

2.1 Background

This section introduces the terminology and overall structure of version control systems for

use in the ensuing work. We focus on a patch-theoretic view in the style of Darcs [6, 18, 28,

10] with groupoid properties as in Homotopical Patch Theory [1].

2.1.1 Basic Ingredients

Version control systems keep track of data. In the most common use case this is one or more

files containing lines of text, but we do not need to specialize. The basic ingredients of a

VCS are repositories and patches. A repository contains the data we are keeping track of,

and a patch records a change made to the repository.

2.1.2 (Groupoid) Properties of Patches

In Patch Theory a repository is a collection of patches, from which the data can be recon-

structed. At any given time the specific collection of patches describe a repository state.

A patch records a change like “add the line l to the file f”. This patch is nonsensical

if there is no file f , so each patch has a domain context in which it can be applied. The

context is a repository state, and a patch can be applied to a repository in the appropriate

state. Each patch also has codomain context which is the state it leaves the repository in.

In this section we denote a patch P with domain x and codomain y by xPy. We may leave

out the contexts if they are not important.

For the theory to be useful we should be able to apply more than one patch to a repository.

For this purpose there is patch composition. Given two patches xPy and yQz with matching

contexts there is a composite patch xP ·Qz which represents “apply P and then apply Q”.

In any given patch theory 1 we have some collection of possible patches and laws they

must obey. In the context of this work we assume a few basic laws for all patch theories:

1While Patch Theory refers to the study of VCS as repositories characterized by collections of patches, a
patch theory denotes a specific collection of patches and laws they obey.

32

0

x y

z

P Q

P ′ Q′

Figure 2.1: Merging (P,Q)

1. For each context x there exists a “do-nothing” patch xNx such that for any patches

xPy:

xN · Py = xPy = xP ·Ny

ie. R is both a left and right unit for composition.

2. Associativity of patch composition. Given patches xPy, yQz and zRw:

x(P ·Q) ·Rw = xP · (Q ·R)w

3. For each patch xPy there exists an inverse yP
−1
x such that:

xP · P−1
x = xNx

These laws are not arbitrary. In fact they express the assumption that a the repository

states and patches between them form a groupoid. This will be especially important for

subsection 2.2.2 and the following implementation in chapter 3.

2.1.3 Merging

Another common feature of VCSs is branching. Branching occurs in distributed systems when

two users of the repository have different repository states. If the users wish to reconcile

their states, they perform a merge.

In our setting merge is a function that takes a span of patches (0Px,0Qy) (here 0 is some

shared base context) and produces a cospan (xP
′
z,yQ

′
z) (Figure 2.1).

33

For merge to be well behaved we might also want some other properties. Say merge is

symmetric if

merge(P,Q) = (P ′, Q′) =⇒ merge(Q,P) = (Q′, P ′)

and that merge is reconciling if

merge(P,Q) = (P ′, Q′) =⇒ P · P ′ = Q ·Q′

Note that the groupoid laws imply that there always exists a merge of two patches which

is both symmetric and reconciling: take z = 0, P ′ = P−1 and Q′ = Q−1. This is the cospan

that simply undoes the changes in both users’ repositories and it is not very interesting. We

call this the trivial merge.

34

2.2 Theoretical Approaches to VCS

In this section we introduce two proposed theoretical models of version control systems.

These are the patch theory of Darcs [6, 18] and Angiuli et al.’s “homotopical patch theory” [1]

(HPT).

The former is presented as an example of theoretical approaches to version control system

frameworks, while the latter forms the basis of the formalizations making up the rest of the

thesis.

2.2.1 Darcs

Lynagh [18] proposes an “algebra of patches” as a theoretical basis for the Darcs [6] version

control system.

In this model a repository state is a set of updates (called patches, but we want to avoid

that ambiguity) and a patch is a change to this set. For example adding the update c to the

repository {a, b} results in a new repository {a, b} ∪ {c} = {a, b, c}.

Patches are only applicable to one repository state, and result in a new state. If they

are compatible, we may string them together into a patch sequence. Denoting the previous

example patch by P and the “do-nothing” patch by Id we have {a, b}P{a, b, c}Id{a, b, c} –

adding c followed by doing nothing. The repository state may be omitted from sequences.

Finally a notion of commutation of patches is defined. We say the patch sequence AB

commute if there are patches A′ and B′ such that the following square commutes:

• •

• •

B

A

B′

A′

Figure 2.2: Commuting patches

35

• {b}

{a} {a, b}

A

B

A−1

B′

A−1′

Figure 2.3: Merging A and B by commutation

and write AB ↔ B′A′. Note that the initial and final contexts (bottom left and top

right, respectively) are the same, but the intermediary contexts need not be.

There are four axioms for patches and commutation:

1. Commutativity(3.1): AB ↔ B′A′ ⇐⇒ B′A′ ↔ AB

2. Invertibility (3.2): for each A there is an A−1 s.t AA−1 = A−1A = Id

3. Inv-cong (3.3): AB ↔ B′A′ ⇐⇒ A−1B′ ↔ BA′−1. (we can start in the top left

corner of Figure 2.2 if we want)

4. Circular (3.5): performing all pairwise commutations in a sequence gets us back to the

beginning

These axioms allow us to define some useful operations on repositories. For example,

given a span {a} A←− • B−→ {b} we may want to incorporate the results of both patches to get

{a, b}. We call this operation “merge” and proceed in three steps:

1. by invertibility, we can find a patch {a}A−1•

2. now that we have a sequence A−1B, we commute it to get the sequence B′A−1′

3. define merge(A,B) to be the sequence AB′.

This process is shown in Figure 2.3.

Another useful operation on repositories is “cherry picking”. Cherry picking is the act

of pulling some, but not all, patches from one repository into another. Consider the patch

36

{a, b} {a, b, c}

{a} {a, c}

C

B

C′

B′

Figure 2.4: Commutation for cherry picking

sequence {}A{a}B{a, b}C{a, b, c} and a repository {a}. We want to incorporate the changes

in C, but not the ones in B, but naively combining applying C does not work, since it is

only applicable to the context {a, b}. The solution is to commute BC ↔ C ′B′ (Figure 2.4)

to obtain C ′ with the desired endpoints.

One immediate problem is that patches cannot always be commuted. Lynagh’s solution

is a new type of patch called a conflictor which represents a conflict between two patches,

and whose effect is to “undo” the changes that cause a conflict.

However, conflictors do not entirely solve the problem. In particular they are insufficient

to fill certain gaps, because while conflicting is a symmetric relation, dependencies (often

the cause of a conflict) are not [7].

37

2.2.2 Homotopical Patch Theory

Homotopical Patch Theory [1] (HPT) gives a way to formulate patch theories in homotopy

type theory. The formulation makes intrinsic use of higher inductive types (HITs) and a

univalent universe to encode relationships between patches and models of a theory.

HPT takes advantage of the inherent groupoid structure of types to encode the groupoid

structure of patch theories “for free”. A patch theory is given as a higher inductive type

R with points representing patch contexts and paths representing patches between them.

Paths come with units (refl), inverses (sym) and composition (·), and by the groupoid laws

this composition is associative, unital, and respects inverses.

Patch laws can be given by paths between paths. For example we may want the appli-

cation of two independent patches P and Q to commute – this is done with a such a higher

path between P ·Q and Q · P .

Models of a patch theory are given by a function I : R → Type from the HIT to the

universe of types. Each repository state (point) is mapped to a type, and each patch is

mapped to a path in the universe. By univalence such paths can be given by equivalences

between types, and each patch P : x ≡ y gives rise to a function interp P : I(x) → I(y)

by transport. The functoriality of I ensures that such a model validates all the patch laws

of R.

Angiuli et al. present three example patch theories in order of increasing complexity.

Implementations in Cubical Agda are explored in more depth in chapter 3, but we give a

brief overview here.

An Elementary Patch Theory

An elementary patch theory describes a VCS with one context num, and one patch

add1 : num ≡ num. Being a HIT2, the theory automatically includes identity patches, com-

position and inverses.

2This HIT with one point and one non-identity loop may seem familiar. It is a renaming of the circle S1!

38

The intended interpretation of the theory is a repository consisting of a single integer

where applying add1 adds 1 to it. However, there is nothing stopping us from giving a

different interpretation. For example we may interpret num as the type of booleans and add1

as negation to obtain a theory of a binary repository and an on/off button.

The intended interpretation is realized by mapping num to the type of integers and add1

to ua of the equivalence induced by the successor function.

This example illustrates two important points. Firstly, that paths can carry computa-

tional content (in this case the successor function and its inverse) revealed by mapping into

the universe of types; and secondly that a patch theory may permit multiple models.

A Patch Theory with Laws

In a patch theory with laws we see an example of patch laws – squares in the higher inductive

type. Again the theory has one point and one constructor path, but the path s ↔ t @ i

depends on two strings s,t and an index i.

The theory also includes two patch laws. indep asserts that two patches with different

indexes commute, while noop asserts that a patch where s = t is the same as refl - doing

nothing.

The intended model for this theory is a fixed-length vector of strings where the patch

s ↔ t @ i swaps the strings s and t at index i. In order to define this interpretation it is

also necessary to give squares showing that it respects the patch laws.

The use of patch laws is illustrated by a patch optimizer. This is a function that takes a

patch and produces a smaller patch with the same effect. The key idea is to take advantage

of noop to replace instances of s ↔ t @ i with refl when s and t are equal.

Angiuli et al. give two ways to write the optimizer. In the program then prove approach

they construct a function opt1 : R → R and then prove ∀ x → x ≡ opt1 x. This re-

quires set-truncation of R.

The program and prove approach avoids truncation by instead constructing a function

opt : (x : R) → Σ(y:R) y ≡ x which produces both a new point and and proof that it

is equal to the original. Since the resulting type is contractible, the squares witnessing the

patch laws become trivial.

In both cases the actual patch optimizer is obtained by applying opt along a path.

39

A Patch Theory with Richer Contexts

The previous two examples show the utility of a patch theory as a HIT, but they do not

capture the importance of contexts. In both, there is only one context and every patch is

applicable to that context.

A patch theory with richer contexts has contexts doc h indexed by a history h, and the

two kinds of patches add s i and rm i are only applicable to appropriate histories. In

particular, a history has a records the number of lines in the file it describes and patches are

only applicable when their indexing is within the number of lines

This patch theory also has patch laws describing the relationships between adding and

removing lines in different orders. We leave out the details of these laws for now, but note

that the histories must also respect patch laws.

The interpretation of doc h for a history of length n is a single file containing n lines of

text. What about patches? The rm patch should be a path between files of length n and files

of length n-1 but these types are not bijective. To solve this we compute the unique result

of applying a history and map doc h to the singleton type of the result. Now a bijection

can be obtained, since all singleton types are in bijection with each other.

Angiuli et al. then illustrates an interesting use of models as functions by defining two

different models for this theory. The first model computes the resulting file as a vector of

strings, while the second instead produces a log of all the patches that have been applied.

Merging in this richer theory is reduced to a function on histories from the empty file.

This ensures that only patches in the “forward direction” are merged, and since histories

respect patch laws so does their merge.

Computational Content

All three examples of patch theories make crucial use of HITs and univalence. As we have

seen, that means they will not compute in type theories which treat either axiomatically.

Specifically, the result of applying a patch to a repository will require some additional rea-

soning to obtain.

40

Additionally, the optimizer for a patch theory with laws maps into a contractible type

in a potentially non-trivial way. This may seem pointless, since all the elements in such a

type are in a sense the same3, but nevertheless we expect it to compute the correct patch.

In practice we require some notion of “sub-homotopical” computation [1].

Is it possible to formulate HPT in a setting with both HITs and univalence in such a way

that application and optimization of patches reduces completely? In the following chapter

we explore that question in one candidate setting: Cubical Agda.

3In fact any function of the type (x : R) → Σ(y:R) x ≡ y is homotopic to the “identity function” that
maps x to (x , refl). [1]

41

42

Chapter 3

Formalization

This section describes the development of a formalization of Homotopical Patch Theory [1]

in Cubical Agda. The development follows Angiuli et al. in defining three patch theories of

increasing complexity.

“An elementary patch theory” uses the fundamental group of S1 to implement a patch

theory of integers and the successor function, “A patch theory with laws” extends to fixed-

size vectors of strings and includes a patch law which is used to implement a patch optimizer,

and “a patch theory with richer contexts” allows for more complex patch contexts with a

repository indexed by its history.

The aim of this chapter is to explain implementation choices alongside the key code and

definitions. The full implementation is available on github 1.

Lastly, we look at some concrete computations using the formalization and show that

the elementary patch theory performs as expected, but that “a patch theory with laws” and

“a patch theory with richer contexts” require further development of Cubical Agda to fully

explore.

1https://github.com/Aqissiaq/hpt-experiments

43

https://github.com/Aqissiaq/hpt-experiments

3.1 An Elementary Patch Theory

This section discusses the implementation of an elementary patch theory as described by

section 4 of hpt [1].

3.1.1 The Circle as a Repository

In the elementary patch theory the repository is a single integer and there is exactly one

kind of patch: adding one to the integer. This means the underlying type has one point

constructor num and one path add1 : num ≡ num.

The structure of this type may seem familiar - it is just the circle with its constructors

renamed! The cubical library already implements some HITs, including the circle so we will

simply rename it and its constructors.

In fact this implementation comes with a proof that the fundamental group of S1 is the

integers, which contains many of the ingredients we will need. Specifically the loop space

ΩS1 is the type of patches, and helix : S¹ → Type is precisely the interpretation of points

in R as types of repositories. Concretely helix maps base to the integers, and loop to ua

of the equivalence Z ' Z induced by the successor function.

open import Cubical.HITs.S1.Base public

renaming(

S¹ to R

; base to num

; loop to add1

; ΩS¹ to Patch

; helix to I)

With this machinery we can easily define an interpretation of patches as bijections on Z
by applying I along the patch and weakening the resulting path. For convenience we also

define a function to apply a patch to a given integer.

44

interp : Patch → Z ' Z
interp p = pathToEquiv (cong I p)

apply : Patch → Z → Z
apply p n = equivFun (interp p) n

3.1.2 Merge

Knowing that addition on the integers is commutative, merging two patches simply swaps

the order.

merge : (Patch × Patch) → (Patch × Patch)

merge (p , q) = (q , p)

We now prove some properties of merge. Symmetry is essentially trivial, since swapping the

order twice gets us back to where we started.

symmetric : { f1 f2 g1 g2 : Patch }
→ merge (f1 , f2) ≡ (g1 , g2) → merge (f2 , f1) ≡ (g2 , g1)

symmetric p = cong merge p

Reconcile turns out to be more involved, but luckily some work is done for us. It boils down

to showing that composition of patches commutes, which relies on two facts:

1. intLoop is a group homomorphism

2. addition on the integers is commutative

Both of these facts are in the standard library, so the task reduces to stitching them

together. First we convert the patches to explicit integers n,m using the fact that intLoop

is surjective. We then apply the proof of commutativity for integers, and convert back to

patches.

It is noteworthy that we were able to define merge without reference to explicit numbers,

but in order to prove its properties we require a ”detour” into the integers.

45

intLoop-sur : (p : Patch) → ∃[n] (p ≡ intLoop n)

intLoop-sur p = apply p 0 , sym (decodeEncode num p)

patch-comm : (p q : Patch) → p · q ≡ q · p

patch-comm p q = let (n , p-is-n) = intLoop-sur p

(m , q-is-m) = intLoop-sur q in

p · q ≡〈 cong2 · p-is-n q-is-m 〉
intLoop n · intLoop m ≡〈 intLoop-hom n m 〉
intLoop (n + m) ≡〈 cong intLoop (+Comm n m) 〉
intLoop (m + n) ≡〈 sym (intLoop-hom m n) 〉
intLoop m · intLoop n ≡〈 cong2 · (sym q-is-m) (sym p-is-n) 〉
q · p �

With the commutativity of patches established, reconcile follows easily:

reconcile : {f1 f2 g1 g2 : Patch}
→ merge (f1 , f2) ≡ (g1 , g2) → f1 · g1 ≡ f2 · g2

reconcile p = let f1=g2 = cong snd p

g1=f2 = cong fst (sym p) in

(cong2 · f1=g2 g1=f2) · (patch-comm)

46

3.2 A Patch Theory With Laws

In this section we explore a formalization of HPTs section 5: A Patch Theory with Laws.

This is a more complicated patch theory in which the type R has not only repositories and

patches, but also a patch law represented by a square (a path between path).

We start by implementing the patch theory, followed by a ”patch optimizer” that com-

putes smaller patches with the same effect. This optimizer makes crucial use of the patch

law.

3.2.1 The Patch Theory

In this patch theory we consider repositories consisting of a single file with lines of text.

There is one type of patch which permutes the line at a given index. Let Patch denote the

type doc ≡ doc.

Additionally we enforce a patch law with the noop constructor which states that swapping

a string for itself is the same as doing nothing.

In the geometric interpretation of HITs this is a space with one point, loops for each

choice of (s1, s2, i) and a cylinder between each loop where s1 == s2 and the constant

path.

data R : Type where

doc : R

↔ AT : (s1 s2 : String) (i : Fin size) → (doc ≡ doc)

noop : (s : String) (i : Fin size) → s ↔ s AT i ≡ refl

Angiuli et al’s original definition also includes an additional law:

indep : (s t u v : String) (i j : Fin size) → (i 6≡ j) →
(s ↔ t AT i) · (u ↔ v AT j)

≡ (u ↔ v AT j) · (s ↔ t AT i)

47

This law states that swapping strings commutes as long as the indices are different. We

do not include this law as it would lead to problems later. See subsection 3.2.2.

In order to interpret this model in the universe of types (called Type in Cubical Agda)

we will need three things:

1. a type of repository contexts repoType,

2. a path swap from repoType to itself for each choice of strings and index, and

3. a path of paths between swap s s i and refl

The type of repositories is vectors of strings of a fixed size.

repoType : Type

repoType = Vec String size

To create a path swap s1 s2 i : repoType ≡ repoType we will first construct an iso-

morphism and then use ua to make a path in the universe.

Semantically, our patch should swap the line at index j if it is equal to either s1 or s2

and otherwise leave it alone. This behavior is encoded in permute and permuteAt applies it

to the appropriate index.

permute : (String × String) → String → String

permute (s1 , s2) s with s =? s1 — s =? s2

... — yes — = s2

... — no — yes = s1

... — no — no = s

permuteAt : String → String → Fin size → repoType → repoType

permuteAt s t j = [j]%= (permute (s , t))

To show that permuteAt is an isomorphism (and hence an equivalence) we need some

additional results.

First we show that updating at the same index twice is equal to updating once with the

composition of the functions.

48

[]%=twice : ∀ {n} {A : Type0} (f : A → A) (v : Vec A n) (i : Fin n)

→ (v [i]%= f [i]%= f) ≡ (v [i]%= f ◦ f)

Then we show that updating by the identity function does not change the vector.

[]%=id : ∀ {n} {v : Vec String n} {j : Fin n} → v [j]%= id ≡ v

Both are proven by induction on the index. Finally, permuting twice is equivalent to the iden-

tity function. The pointwise result permuteTwice’ : ∀ x → permute (s , t) (permute

(s , t) x) ≡ id x is straightforwardly (but laboriously) proven by case analysis, from

which the full result follows by function extensionality.

permuteTwice : ∀ {s t} → (permute (s , t) ◦ permute (s , t)) ≡ id

permuteTwice = funExt permuteTwice’

With these facts it follows that permuting at an index is its own inverse, and an equivalence

swapat can be constructed from this isomorphism.

permuteAtTwice : ∀ s t j v → permuteAt s t j (permuteAt s t j v) ≡ v

permuteAtTwice s t j v = permuteAt s t j (permuteAt s t j v)

≡〈 []%=twice (permute (s , t)) v j 〉
v [j]%= permute (s , t) ◦ permute (s , t)

≡〈 cong (v [j]%=) permuteTwice 〉
v [j]%= id

≡〈 []%=id 〉 v �

swapat : (String × String) → Fin size → repoType ' repoType

swapat (s , t) j = isoToEquiv

(iso (permuteAt s t j) (permuteAt s t j) (permuteAtTwice s t j) (permuteAtTwice s t j))

For the noop law we need to show that swapat respects it. We proceed in two steps. First

swapssId shows that the underlying function of the equivalence swapat (s , s) j is the

identity function. Then, since two equivalences are equal if their underlying functions are

equal we get an identification of swapat (s , s) j and the identity equivalence.

49

swapssId : {s : String} {j : Fin size} → equivFun (swapat (s , s) j) ≡ idfun (repoType)

swapssId {s} {j} = funExt pointwise

where

pointwise : (r : repoType) → equivFun (swapat (s , s) j) r ≡ idfun repoType r

pointwise r = equivFun (swapat (s , s) j) r ≡〈 cong (λ x → r [j]%= id x) permuteId 〉
r [j]%= id ≡〈 []%=id 〉
id r �

swapatIsId : {s : String} {j : Fin size} → swapat (s , s) j ≡ idEquiv repoType

swapatIsId = equivEq swapssId

With these pieces we are ready to interpret the repository HIT. I sends doc to the type

of string vectors, each patch to ua of the swapat equivalence and each noop square to

swapatIsId composed with uaIdEquiv which is the path identifying ua (idEquiv) and

refl.

Then we can interpret and apply patches like before.

I : R → Type

I doc = repoType

I ((s1 ↔ s2 AT j) i) = ua (swapat (s1 , s2) j) i

I (noop s j i i’) = (cong ua (swapatIsId {s} {j}) · uaIdEquiv) i i’

interp : Patch → repoType ' repoType

interp p = pathToEquiv (cong I p)

apply : Patch → repoType → repoType

apply p = equivFun (interp p)

3.2.2 A Patch Optimizer

With the patch theory above it is possible to implement a patch optimizer – a function that

takes a patch and produces a new and (potentially) smaller patch with the same effect. The

development makes use of the noop patch law.

50

Specifically we implement the program and prove approach from section 5.3 of HPT [1].

With this approach we produce a function of type (p : Patch) → Σ(q : Patch) p ≡ q.

The result is a patch q, along with a proof that q is equal to the original patch.

We proceed in two steps. First creating a function

opt : (x : R) → Σ[y ∈ R] y ≡ x

that performs the desired optimization on points, and then applying it along a patch with

cong.

The point constructor doc gets mapped to itself along with refl. This is natural since

we want to optimize patches and leave the repositories unchanged.

opt doc = (doc , refl)

The path constructor s1 ↔ s2 AT j is where we implement our optimization. If the two

strings are different, we do nothing. Note that x here captures the interval parameter, so

that (x , refl) may be a point along the path.

If the strings are equal we replace the patch with refldoc by mapping to doc regardless

of the interval parameter. Now, our result type also requires a proof that refl is in fact

equal to permuting two equal strings and we have exactly what we need: it’s noop!

There are two complications. Firstly noop requires a swap-patch with identical strings.

Luckily we can use the proof that they are equal to get a patch of the correct type. Secondly

the noop square goes the wrong way – from the patch to refl – but this is easily fixed by

inverting one interval argument.

opt x@((s1 ↔ s2 AT j) i) with s1 =? s2

... — yes s1=s2 = doc

, λ k → ((cong (↔ s2 AT j) (ptoc s1=s2) · noop s2 j) (˜ k) i)

... — no = x , refl

For the noop constructor we make use of the fact that our codomain is contractible. Since

we are mapping into a contractible type (and hence a Set) we know that all paths are equal,

and can construct a square with sides matching the paths above.

51

However, since the sides must be definitionally equal in Cubical Agda we employ a trick

from the set-truncation HIT elimination rule in the Cubical library. isOfHLevelDep 2 is

the dependent version of isSet. We can then provide the sides cong opt (s ↔ s AT j)

and refl (or really cong opt refl). Since we are constructing a dependent square we also

need a family of types I → I → Type, but this is exactly what noop s j is!

opt (noop s j i k) = isOfHLevel→isOfHLevelDep 2

(isProp→isSet ◦ isContr→isProp ◦ result-contractible)

(cong opt (s ↔ s AT j)) refl (noop s j) i k

Contractibility of the result type is immediate from the characterization of paths in Σ-types

and the inverse of the provided path.

result-contractible : {X : Type} → (x : X) → isContr (Σ[y ∈ X] y ≡ x)

result-contractible x = (x , refl) , (λ (, p) → ΣPathP (sym p , λ i j → p (˜ i ∨ j)))

This trick is the reason indep was left out. Because we need to apply opt to the paths

to compute the sides of the square it would not terminate, instead constructing squares

back and forth between (s ↔ t AT i) · (u ↔ v AT j) and (u ↔ v AT j) · (s ↔ t

AT i) for eternity.

There is one additional complication: The result of cong opt p for some patch p is

actually of type Pathover (λ x → Σ(y : R) y ≡ x) p (doc,refl) (doc,refl). Luckily

this type is equivalent to our desired target type by:

e : {p : Patch} →
(PathP (λ i → Σ[y ∈ R] y ≡ p i) (doc , refl) (doc , refl))

≡ (Σ[q ∈ Patch] p ≡ q)

We present the steps of the proof here. By the characterizations of paths over constant fami-

lies and paths in Σ-types the Pathover is equivalent to Σq:Patch (transport x 7→ (x ≡ doc) p) ≡ refl.

52

(PathP (λ i → Σ[y ∈ R] y ≡ p i) (doc , refl) (doc , refl))

≡〈 PathP≡Path (λ i → Σ[y ∈ R] y ≡ p i) (doc , refl) (doc , refl) 〉
Path (Σ[y ∈ R] y ≡ doc) (transport (λ i → Σ[y ∈ R] y ≡ p i) (doc , refl)) (doc , refl)

≡〈 cong (λ x → Path (Σ[y ∈ R] y ≡ doc) x (doc , refl)) (ΣPathP (refl , sym (lUnit p))) 〉
Path (Σ[y ∈ R] y ≡ doc) (doc , p) (doc , refl)

≡〈 sym ΣPath≡PathΣ 〉
(Σ[q ∈ Patch] (PathP (λ i → q i ≡ doc) p refl))

≡〈 Σ-cong-snd (λ q → PathP≡Path (λ i → q i ≡ doc) p refl) 〉
(Σ[q ∈ Patch] (transport (λ i → q i ≡ doc) p) ≡ refl)

Then we apply lemma 2.11.2 from the Book2 to obtain the Σ-type of patches q and proofs

that q−1 · p ≡ refl. The proof path-transport-lemma is by path induction. It was written

for this purpose and has been contributed to the Cubical library.

(Σ[q ∈ Patch] (transport (λ i → q i ≡ doc) p) ≡ refl)

≡〈 Σ-cong-snd (λ q → cong (≡ refl) (path-transport-lemma q p)) 〉
(Σ[q ∈ Patch] (sym q · p) ≡ refl)

We reach the desired type by the groupoid properties of path composition.

(Σ[q ∈ Patch] (sym q · p) ≡ refl)

≡〈 Σ-cong-snd (λ q → invLUnique q p) 〉
(Σ[q ∈ Patch] p ≡ q) �

In particular, invLUnique identifies p−1 · q ≡ refl with q ≡ p. The proof is by path induc-

tion and application of groupoid laws. Finally, optimize can be implemented as discussed

– by applying opt and transporting along e.

optimize : (p : Patch) → Σ[q ∈ Patch] p ≡ q

optimize p = transport e (cong opt p)

2For the category theorist: this is the functorial action of the contravariant hom-functor [33]

53

3.3 A Patch Theory With Richer Contexts

The previous patch theories have both described repositories with a single context – in

which patches are always applicable. In this section we explore a theory with more complex

contexts by implementing Angiuli et al.’s Patch Theory With Richer Contexts.

3.3.1 The Type of Repositories

The intended model for this theory is one where the patches either insert a string s on the

lth line (ADD s AT l), or remove the lth line (RM l).

Clearly these patches are not always applicable. It does not make sense to remove the

4th line of a file with only 3 lines, nor to insert something on line 14 in the same context.

To incorporate this more complicated patch language, the repository type must also be

more complicated. This is accomplished by indexing R by a type of patch histories, where

History m n is the type of sequences of patches which takes an m- line file to an n-line file.

data History : N → N → Type where

[] : {m : N} → History m m

ADD AT :: : {m n : N} (s : String) (l : Fin (suc n)) →
History m n → History m (suc n)

RM :: : {m n : N} (l : Fin (suc n)) →
History m (suc n) → History m n

It would also be possible to include higher constructers to specify patch laws, but we refrain

in order to simplify other developments.

data R : Type where

doc : {n : N} → History 0 n → R

addP : {n : N} (s : String) (l : Fin (suc n))

(h : History 0 n) → doc h ≡ doc (ADD s AT l :: h)

rmP : {n : N} (l : Fin (suc n))

(h : History 0 (suc n)) → doc h ≡ doc (RM l :: h)

54

Another challenge with this richer theory is its interpretation. In the previous theories, the

context was modelled by a single type, and patches by an equivalence on this type. In this

setting we need a slightly different approach.

While it is natural to model a file of n lines as an n-vector of strings, such a solution

would lead to problems for patches. For example, add "hello" 0 [] would need to be an

equivalence of Vec String 0 and Vec String 1 which is not possible since these types are

not equivalent.

Instead we note that a history actually determines a particular vector (by replay), and

use the singleton type of this vector. Now, since any function between singletons determines

a bijection (singl-biject) and a function on elements determines a function on singletons

(mapSingl), it suffices to define appropriate functions on vectors (add and rm) to obtain the

needed equivalences.

replay : {n : N} → History 0 n → Vec String n

replay [] = []

replay (ADD s AT l :: h) = add s l (replay h)

replay (RM l :: h) = rm l (replay h)

Interpreter : R → Type

Interpreter (doc x) = singl (replay x)

Interpreter (addP s l h i) = ua (singl-biject {a = replay h} (mapSingl (add s l))) i

Interpreter (rmP l h i) = ua (singl-biject {a = replay h} (mapSingl (rm l))) i

3.3.2 A Merge Function

We now turn our attention to defining a merge function. For this purpose we introduce an

alternate interpreter which interprets repositories not as vectors, but just as their history.

The purpose is to reduce the problem of defining the merge of patches to the problem of

defining a merge of histories.

55

InterpreterH : R → Type

InterpreterH (doc x) = singl x

InterpreterH (addP s l h i) = ua (singl-biject {a = h} (mapSingl (ADD s AT l ::))) i

InterpreterH (rmP l h i) = ua (singl-biject {a = h} (mapSingl (RM l ::))) i

interpH : ∀ {n m}{h : History 0 n}{h’ : History 0 m} → doc h ≡ doc h’ → singl h ' singl h’

interpH p = (pathToEquiv (cong InterpreterH p))

applyH :{n1 n2 : N} {h1 : History 0 n1} {h2 : History 0 n2} →
doc h1 ≡ doc h2 → InterpreterH (doc h1) → InterpreterH (doc h2)

applyH p = equivFun (interpH p)

Another issue is the following: when is a merge a meaningful operation? To answer that

question we introduce the concept of an extension. A history h2 is an extension of h1 if h2

has h1 as a prefix (there exists a h3 such that h1 +++ h3 is equal to h2).

Extension : {n m : N} → History 0 n → History 0 m → Type

Extension {n} {m} h1 h2 = Σ[h3 ∈ History n m] (h1 +++ h3) ≡ h2

Here +++ denotes straight-forward concatenation of histories.

It is simple to turn a history into a path in R by using the constructors of R, and likewise

to turn an extension into a path. Note that extToPath actually ignores the extension itself,

instead computing the patch going ”via” the empty file.

toPath : {n : N} (h : History 0 n) → doc [] ≡ doc h

toPath [] = refl

toPath (ADD s AT l :: h) = (toPath h) · addP s l h

toPath (RM l :: h) = (toPath h) · rmP l h

extToPath : {n m : N} {h : History 0 n} {h’ : History 0 m} →
Extension h h’ → doc h ≡ doc h’

extToPath {h = h} {h’ = h’} = sym (toPath h) · toPath h’

This successfully reduces merging to a function on histories. Let us assume such a function:

mergeH : {n m : N} →
(h1 : History 0 n) (h2 : History 0 m) →
Σ[n’ ∈ N] (Σ[h’ ∈ History 0 n’] (Extension h1 h’ × Extension h2 h’))

56

We can then obtain histories through InterpreterH, apply the history merger, and turn

the resulting extensions back into paths.

merge : {n1 n2 : N}{h1 : History 0 n1}{h2 : History 0 n2}
→ (doc [] ≡ doc h1) → (doc [] ≡ doc h2)

→ Σ[n’ ∈ N] (Σ[h’ ∈ History 0 n’] (doc h1 ≡ doc h’) × (doc h2 ≡ doc h’))

merge p1 p2 = let (p1H , p1P) = applyH p1 ([] , refl)

(p2H , p2P) = applyH p2 ([] , refl)

(, (h’ , ((ext1 , ext1-proof) , (ext2 , ext2-proof)))) = mergeH p1H p2H

e1 = ext1 , cong (+++ ext1) p1P · ext1-proof

e2 = ext2 , cong (+++ ext2) p2P · ext2-proof

in (, (h’ , extToPath e1 , extToPath e2))

57

3.4 Computational Results

Having implemented several patch theories in a cubical setting, we may inspect their com-

putational properties to see what application of patches does. In this section we do exactly

that, considering some concrete examples of repositories, patches and merges for the three

theories.

3.4.1 Elementary Patch Computations

First, consider the elementary patch theory implemented in section 3.1. Recall that this

theory has one type of repositories – the integers – and one patch: add1.

By the usual path operations we obtain some more patches: the ”do nothing”-patch

noop, the inverse sub1 and compositions like add2.

noop sub1 add2 : Patch

noop = refl

sub1 = sym add1

add2 = add1 · add1

All of these suggestively named patches behave as one might expect:

: apply noop 1 ≡ 1

= refl

: apply add1 1 ≡ 2

= refl

: apply sub1 1 ≡ 0

= refl

: apply add2 1 ≡ 3

= refl

: apply (add1 · sub1) 1 ≡ 1

= refl

58

We can generalize further and create patches to add or subtract any integer, and these also

compute as expected.

: apply (addN 22) 20 ≡ 42

= refl

: apply (addN (- 22)) 42 ≡ 20

= refl

Clearly, this patch theory is a fully functioning calculator (for integer addition and subtrac-

tion), but the detour through algebraic topology takes a computational toll. The following

proof typechecks, but takes on the order of minutes.

: apply (addN 1000) 0 ≡ 1000

= refl

Finally, we look at merge. The function merger neatly computes the two patches p′ and

q′ resulting from merging patches p and q from the original repository n and returns a pair

of integers obtained by applying them.

merger : Z → Patch → Patch → Z × Z
merger n p q = let x = apply p n

y = apply q n

(p’ , q’) = merge (p , q)

in (apply p’ x , apply q’ y)

Applying merger to a few test cases, it too behaves as expected. The resulting two

integers are always equal, which is exactly what we want merge to do. Of course this is a

consequence of the general case proven by reconcile in section 3.1.

: merger 0 noop sub1 ≡ (-1 , -1)

= refl

: merger 0 (addN 5) (addN (-3)) ≡ (2 , 2)

= refl

59

3.4.2 Patch Computations with Laws

Next we examine the patch theory with laws and its patch optimizer from section 3.2. In this

theory the repository is a fixed-length vector of strings, and the patches permute the string

at a given index. For concrete examples, consider the starting repository and patches:

repo : repoType

repo = "hello" :: "world" :: []

nop swap swap’ comp : Patch

nop = "nop" ↔ "nop" AT (# 0)

swap = "hello" ↔ "greetings" AT (# 0)

swap’ = "world" ↔ "earthlings" AT (# 1)

comp = swap · swap’

When applying these patches, we encounter the current limits of Cubical Agda. In

particular, Vec String size is an inductive family so transp and hcomp do not com-

pute on it. In the simple case of applying just one patch the issue is resolved by

transportRefl : (x : A) → transport refl x ≡ x, giving the expected result.

: apply nop repo ≡ repo

= transportRefl repo

: apply swap repo ≡ "greetings" :: "world" :: []

= transportRefl

In the case of composition it gets more difficult. The following cannot be proven by

transportRefl, since the computation gets stuck on the composition.

: apply comp repo ≡ "greetings" :: "earthlings" :: []

= {!!}

Of course it is possible to compute the result by hand. Here we have some more information

about the patches being composed, and are able to eliminate the composition before applying

the patch.

60

: apply (nop · swap) repo ≡ "greetings" :: "world" :: []

= apply (nop · swap) repo

≡〈 cong (λ p → apply (p · swap) repo) (R.noop "nop" (# 0)) 〉
apply (refl · swap) repo

≡〈 cong (λ p → apply p repo) (sym (lUnit swap)) 〉
apply swap repo

≡〈 transportRefl 〉 ("greetings" :: "world" :: []) �

Applying the patches one after the other also produces the expected result.

: apply swap (apply swap’ repo) ≡ "greetings" :: "earthlings" :: []

= cong (apply swap) (transportRefl ("hello" :: "earthlings" :: [])) · transportRefl

The Patch Optimizer

In addition to the patches themselves this theory includes an optimizer making use of the

patch laws. In our implementation these optimized patches come equipped with a proof that

they are equal to the original patch, so testing the results should not reveal anything new –

nevertheless it is interesting to note just how slow these computations are.

Consider the following applications of optimized patches:

nopOpt swapOpt compOpt : Patch

nopOpt = fst (optimize nop)

swapOpt = fst (optimize swap)

compOpt = fst (optimize comp)

-- : apply swapOpt repo ≡ "greetings" :: "world" :: []

-- = transportRefl "greetings" :: "world" :: []

-- : apply nopOpt repo ≡ repo

-- = transportRefl repo

-- : apply compOpt repo ≡ "greetings" :: "earthlings" :: []

-- = transportRefl

All three exhaust the heap, taking on the order of 10s of minutes to do so, swapOpt is

particularly notable since optimize does not actually do anything. The strings in swap are

not equal, and so the patch should be kept as it is.

61

3.4.3 Patch Computations with Richer Contexts

Finally, we consider the patch theory with richer contexts from section 3.3. For this theory

we have implemented two interpretations, we will look at them in turn before considering

merging. For the purpose of testing, define a few simple patches:

addPatch : doc [] ≡ doc (ADD "hello" AT zero :: [])

addPatch = addP "hello" zero []

rmPatch : doc (ADD "hello" AT zero :: []) ≡ doc (RM zero :: (ADD "hello" AT zero :: []))

rmPatch = rmP zero (ADD "hello" AT zero :: [])

Vector Interpretation

The first interpretation sends each doc h to a singleton type of the vector determined by

replay. For the simplest patches this works as expected with transportRefl. (Here S is the

inclusion into the singleton type.)

: apply addPatch (S []) ≡ S ("hello" :: [])

= transportRefl

: apply rmPatch (S ("hello" :: [])) ≡ S []

= transportRefl

: apply rmPatch (apply addPatch (S [])) ≡ S []

= cong (apply rmPatch) (transportRefl ("hello" :: [] , refl))

· (transportRefl ([] , refl))

Again, direct composition of patches runs in to the current limits of Cubical Agda. Because

hcomp does not reduce in singletons (which is a Σ-type), we get stuck trying to compute an

enormous composition term.

: apply (addPatch · rmPatch) (S []) ≡ S []

= apply (addPatch · rmPatch) (S (replay []))

≡〈 transportRefl 〉
≡〈 {!!} 〉 S (replay (RM zero :: (ADD "hello" AT zero :: []))) �

62

History Interpretation

The second interpretation eludes replaying the patches, instead sending doc h to the sin-

gleton history h. In a familiar turn of events the simple patches give expected results, but

composition poses a problem. (Note that [] in these examples is the empty history rather

than the empty vector.)

: applyH addPatch (S []) ≡ S (ADD "hello" AT zero :: [])

= transportRefl

: applyH rmPatch (S (ADD "hello" AT zero :: []))

≡ S (RM zero :: (ADD "hello" AT zero :: []))

= transportRefl

Merge

In section 3.3 we reduced the task of merging patches to merging histories. As a concrete

example, consider a merger of histories which keeps one history if the other is empty, but

simply undos the changes in both branches if there is a possibility of conflict.

undo-merge : {n m : N} →
(h1 : History 0 n) (h2 : History 0 m) →
Σ[n’ ∈ N] (Σ[h’ ∈ History 0 n’] (Extension h1 h’ × Extension h2 h’))

undo-merge { } {m} [] h2 = m , h2 , (h2 , +++-left-id h2) , ([] , refl)

undo-merge {n} { } h1 [] = n , h1 , ([] , refl) , (h1 , +++-left-id h1)

undo-merge { } { } h1 h2 = 0 , [] , (undo h1 , undo-inverse h1) , (undo h2 , undo-inverse h2)

open merging {undo-merge}

We further define some simple patches

p1 : doc [] ≡ doc (ADD "hello" AT zero :: [])

p1 = addP "hello" (zero) []

63

p2 : doc (ADD "hello" AT zero :: [])

≡ doc (ADD "world" AT suc zero :: (ADD "hello" AT zero :: []))

p2 = addP "world" (suc zero) (ADD "hello" AT zero :: [])

and observe that the merged histories (or at least their lengths) give the expected results

by transportRefl. Merging p1 with refl keeps p1:

: fst (merge refl p1) ≡ 1

= fst (undo-merge (fst (applyH refl ([] , refl))) ((fst (applyH p1 ([] , refl)))))

≡〈 cong {y = []} (λ x → fst (undo-merge x (fst (applyH p1 ([] , refl))))) (transportRefl) 〉
fst (undo-merge [] ((fst (applyH p1 ([] , refl)))))

≡〈 cong {y = ADD "hello" AT zero :: []} (λ x → fst (undo-merge [] x)) (transportRefl) 〉
fst (undo-merge [] (ADD "hello" AT zero :: [])) �

Merging two non-empty patches results int he empty patch:

: fst (merge p1 p1) ≡ 0

= fst (undo-merge (fst (applyH p1 ([] , refl))) ((fst (applyH p1 ([] , refl)))))

≡〈 cong {y = (ADD "hello" AT zero :: [])}
(λ x → fst (undo-merge x (fst (applyH p1 ([] , refl))))) (transportRefl) 〉

fst (undo-merge (ADD "hello" AT zero :: []) (fst (applyH p1 ([] , refl))))

≡〈 cong {y = (ADD "hello" AT zero :: [])}
(λ x → fst (undo-merge (ADD "hello" AT zero :: []) x)) (transportRefl) 〉

fst (undo-merge (ADD "hello" AT zero :: []) (ADD "hello" AT zero :: [])) �

Finally we note that composition does not pose a problem here, since undo-merge extracts

the history and does not need to compute the actual composition of patches.

64

: fst (merge (p1 · p2) refl) ≡ 2

= fst (undo-merge (fst (applyH (p1 · p2) ([] , refl))) ((fst (applyH refl ([] , refl)))))

≡〈 cong {y = []} (λ x → fst (undo-merge (fst (applyH (p1 · p2) ([] , refl))) x)) (transportRefl) 〉
fst (undo-merge (fst (applyH (p1 · p2) ([] , refl))) [])

≡〈 cong {y = ADD "world" AT (suc zero)

:: transport refl (ADD "hello" AT zero :: transport refl [])}
(λ x → fst (undo-merge x [])) (transportRefl) 〉

fst (undo-merge (ADD "world" AT (suc zero)

:: transport refl (ADD "hello" AT zero :: transport refl [])) [])

≡〈 cong {y = ADD "hello" AT zero :: []}
(λ x → fst (undo-merge (ADD "world" AT suc zero :: x) [])) (transportRefl) 〉

fst (undo-merge (ADD "world" AT (suc zero) :: (ADD "hello" AT zero :: [])) []) �

65

66

Chapter 4

Conclusion

In this thesis we have constructed and outlined an implementation of homotopical patch

theory in Cubical Agda1. The implementation makes use of higher inductive types and

univalence, and since the cubical model imbues univalence with computational meaning we

are able to show that models of the theory behave as expected – at least for simple examples.

A full exploration of the behavior is (at the time of writing) limited by two factors: the

efficiency of typechecking for complicated terms, and the fact that Cubical Agda does not

fully reduce transp and hcomp for inductive families of types.

The former means that it is computationally expensive (and time consuming) to verify

the behavior of the implementation, while the latter makes it impossible to compute results

for the more complicated models. In particular for compositions of patches (using hcomp)

when modeling the repository as a vector of strings since it is an inductive family of types.

This chapter discusses the implementation and results of chapter 3 and outlines directions

for future work on homotopical patch theory.

1Available here: https://github.com/Aqissiaq/hpt-experiments

67

https://github.com/Aqissiaq/hpt-experiments

4.1 Discussion

Cubical Agda provides a good setting for formalizations relying on univalence, function

extensionality and higher inductive types. Implementation of the ideas of HPT was direct,

avoiding complicated elimination rules associated with HITs and univalence 2.

However, a few complications were encountered. In particular the independence patch

law in “a patch theory with laws” is a glaring omission. While it is easy to state, it does

not play well with our technique – adapted from the Cubical library’s set truncation – for

mapping out of higher path constructors. This is not a fundamental limitation, and may

have solutions, but was a hurdle.

The other omission is the patch laws of “a patch theory with richer contexts”. In this

case the issues arose already trying to define Interpreter. The cases for patch laws should

encode the fact that replay respects these patch laws, but since repositories are already

indexed by a HIT of histories, the resulting type becomes very complicated and I was unable

to state it correctly.

We might also expect that any square will do, since all four corners are singletons and all

singletons are equivalent. However, this does not appear to pass Cubical Agda’s typechecking

because the sides must definitionally agree with the mapping of points and patches.

The computational results are promising, but also reveal the current limits of the Cubical

Agda implementation. There are two distinct issues: firstly the issue of transp and hcomp

over inductive families which simply does not reduce, and secondly an issue of performance.

The performance limitations are also visible in two distinct places. First, recall the

elementary computations in subsection 3.4.1. A detailed performance analysis is outside

the scope of this thesis, but it is noteworthy that computing 1000 successor functions takes

significant time.

Second, the results of optimize appear to be very slow. In fact, the author has been

unable to compute the result of applying any optimized patch due to memory constraints. As

2Compare the length of just the contractibility proof in https://github.com/dlicata335/hott-agda/
blob/master/programming/PatchWithHistories3.agda to our one-liner.

68

https://github.com/dlicata335/hott-agda/blob/master/programming/PatchWithHistories3.agda
https://github.com/dlicata335/hott-agda/blob/master/programming/PatchWithHistories3.agda

noted in section 3.4 the results themselves are not in question, since optimize also produces

a proof that the resulting patch is equal to the original, but the resource use is interesting

nevertheless.

Possible causes include the trick used to define opt of the noop constructor and the

transport along the long sequence of paths constituting e.

4.2 Future Work

There are two main avenues for future work. Firstly on the formalization of HPT and

secondly on other type-theoretic approaches like the one discussed in Appendix A.

The HPT formalization also permits two directions of further inquiry. One is to imple-

ment more of the original paper. In particular the indep law for the patch theory with laws

and all patch laws for the theory in section 6 are missing. Their inclusion would require

a different way to map higher-dimensional paths into the universe which is guaranteed to

terminate.

Additionally, Angiuli et al. implement an alternative version of the patch theory with

laws in which R is set-truncated by adding another constructor. This is used as an alternative

to the contractibility of the target type when defining opt and may offer a solution to the

termination problems of the independence patch law.

The other is to work towards more computational results. Specifically we are limited by

inductive families, and further work in Cubical Agda’s normalization would lead to more

results “for free” 3.

It would also be interesting to look at the computation of opt, as it requires some notions

of sub-singletons [1] and is very time consuming at the time of writing.

Additionally, it might be possible to obtain more results by writing a more direct imple-

mentation. In May of 2022 Mörtberg and Ljungström succeeded in computing the Brunerie

3This is an active area of work for Cubical Agda, see for example https://github.com/agda/agda/
issues/3733#issuecomment-903581647, https://github.com/agda/cubical/pull/309 and section 3.2.4
of [34]

69

https://github.com/agda/agda/issues/3733#issuecomment-903581647
https://github.com/agda/agda/issues/3733#issuecomment-903581647
https://github.com/agda/cubical/pull/309

number in Cubical Agda in a matter of seconds [17] – where previous attempts had resulted

in programs that ran for over 90 hours without a result [22]. The new proof achieves this

by providing a more direct construction and avoiding computationally expensive equiva-

lences (in particular S3 ' S1 ∗ S1). Their development suggests that more results may be

achieved by identifying the computationally expensive aspects of the current construction,

and avoiding these with more direct alternatives.

Other type theoretic approaches could also be investigated. While HPT provides an

elegant encapsulation of groupoid properties and separation of theories from models, it does

not provide tools to reason about the semantics of patches and operations on them. In

particular, a different model could incorporate merging and its properties. Another direction

for expansion would be a more modular theory in which different patch theories (e.g for text

files and integers) could be combined in a principled way to form something like a directory.

An attempt at an alternative approach is included in Appendix A.

70

71

Bibliography

[1] Carlo Angiuli et al. “Homotopical patch theory”. In: Journal of Functional Program-

ming 26 (2016). issn: 14697653. doi: 10.1017/S0956796816000198.

[2] Apache. Apache Subversion. 2022. url: https://subversion.apache.org/.

[3] Andrej Bauer and Peter LeFanu Lumsdaine. A Coq proof that Univalence Axioms

implies Functional Extensionality. 2011. url: http://nlab-pages.s3.us-east-

2.amazonaws.com/nlab/files/BauerLumsdaineUnivalence.pdf.

[4] Cyril Cohen et al. “Cubical type theory: a constructive interpretation of the univalence

axiom”. In: arXiv preprint arXiv:1611.02108 (2016). url: https://arxiv.org/pdf/

1611.02108.pdf.

[5] Thierry Coquand, Simon Huber, and Anders Mörtberg. “On higher inductive types in

cubical type theory”. In: Proceedings of the 33rd Annual ACM/IEEE Symposium on

Logic in Computer Science. 2018, pp. 255–264. url: https://arxiv.org/pdf/1802.

01170.pdf.

[6] darcs. 2022. url: http://darcs.net/.

[7] Darcs Theory: Conflictors. 2022. url: http://darcs.net/Theory/Conflictors.

[8] Nicola Gambino, Chris Kapulkin, and Peter LeFanu Lumsdaine. “The univalence ax-

iom and functional extensionality”. In: (2016). url: https://www.uwo.ca/math/

faculty/kapulkin/notes/ua_implies_fe.pdf.

[9] Martin Hofmann and Thomas Streicher. “The groupoid interpretation of type theory”.

In: Twenty-five years of constructive type theory (Venice, 1995). Vol. 36. Oxford Logic

Guides. New York: Oxford Univ. Press, 1998, pp. 83–111.

[10] Judah Jacobson. “A formalization of darcs patch theory using inverse semigroups”. In:

(2009). url: ftp://ftp.math.ucla.edu/pub/camreport/cam09-83.pdf.

72

https://doi.org/10.1017/S0956796816000198
https://subversion.apache.org/
http://nlab-pages.s3.us-east-2.amazonaws.com/nlab/files/BauerLumsdaineUnivalence.pdf
http://nlab-pages.s3.us-east-2.amazonaws.com/nlab/files/BauerLumsdaineUnivalence.pdf
https://arxiv.org/pdf/1611.02108.pdf
https://arxiv.org/pdf/1611.02108.pdf
https://arxiv.org/pdf/1802.01170.pdf
https://arxiv.org/pdf/1802.01170.pdf
http://darcs.net/
http://darcs.net/Theory/Conflictors
https://www.uwo.ca/math/faculty/kapulkin/notes/ua_implies_fe.pdf
https://www.uwo.ca/math/faculty/kapulkin/notes/ua_implies_fe.pdf
ftp://ftp.math.ucla.edu/pub/camreport/cam09-83.pdf

[11] Chris Kapulkin and Peter LeFanu Lumsdaine. “The Simplicial Model of Univalent

Foundations (after Voevodsky)”. In: (2012). doi: 10.48550/ARXIV.1211.2851. url:

https://arxiv.org/abs/1211.2851.

[12] Nicolai Kraus and Jakob von Raumer. “Path Spaces of Higher Inductive Types in

Homotopy Type Theory”. In: (2019). arXiv: 1901.06022 [math.LO].

[13] Amélia Liao. 1Lab.Univalence. 2021. url: https://1lab.dev/1Lab.Univalence.

html.

[14] Daniel R Licata and Guillaume Brunerie. “A cubical approach to synthetic homotopy

theory”. In: 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science.

IEEE. 2015, pp. 92–103.

[15] Daniel R Licata and Robert Harper. “2-dimensional directed type theory”. In: Elec-

tronic Notes in Theoretical Computer Science 276 (2011), pp. 263–289.

[16] Daniel R. Licata and Michael Shulman. “Calculating the Fundamental Group of the

Circle in Homotopy Type Theory”. In: 2013 28th Annual ACM/IEEE Symposium on

Logic in Computer Science. USA: IEEE Computer Society, 2013, pp. 223–232. isbn:

9780769550206. doi: 10.1109/LICS.2013.28. url: https://doi.org/10.1109/

LICS.2013.28.

[17] Axel Ljungström and Anders Mörtberg. Direct Proof that the Brunerie Number is 2.

May 2022. url: https://github.com/agda/cubical/blob/b1e3cebc42bfe2e2d734cc5f2277de0e815c1406/

Cubical/Homotopy/Group/Pi4S3/DirectProof.agda.

[18] Ian Lynagh. “An algebra of patches”. In: (2006). url: http://urchin.earth.li/

~ian/conflictors/paper-2006-10-30.pdf.

[19] Saunders Mac Lane. Categories for the working mathematician. 1998. Vol. 5. 1998.

[20] Simon Marlow et al. “Haskell 2010 language report”. In: (2010).

[21] Per Martin-Löf. “An intuitionistic theory of types: Predicative part”. In: Studies in

Logic and the Foundations of Mathematics. Vol. 80. Elsevier, 1975, pp. 73–118.

[22] Anders Mörtberg. Yet Another Cartesian Cubical Type Theory yacctt. 2018. url:

https : / / www . youtube . com / watch ? v = oc _ ChPjL - Rk & t = 350s & ab _ channel =

HausdorffCenterforMathematics.

[23] Anders Mörtberg and Löıc Pujet. “Cubical synthetic homotopy theory”. In: Proceedings

of the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs.

2020, pp. 158–171.

73

https://doi.org/10.48550/ARXIV.1211.2851
https://arxiv.org/abs/1211.2851
https://arxiv.org/abs/1901.06022
https://1lab.dev/1Lab.Univalence.html
https://1lab.dev/1Lab.Univalence.html
https://doi.org/10.1109/LICS.2013.28
https://doi.org/10.1109/LICS.2013.28
https://doi.org/10.1109/LICS.2013.28
https://github.com/agda/cubical/blob/b1e3cebc42bfe2e2d734cc5f2277de0e815c1406/Cubical/Homotopy/Group/Pi4S3/DirectProof.agda
https://github.com/agda/cubical/blob/b1e3cebc42bfe2e2d734cc5f2277de0e815c1406/Cubical/Homotopy/Group/Pi4S3/DirectProof.agda
http://urchin.earth.li/~ian/conflictors/paper-2006-10-30.pdf
http://urchin.earth.li/~ian/conflictors/paper-2006-10-30.pdf
https://www.youtube.com/watch?v=oc_ChPjL-Rk&t=350s&ab_channel=HausdorffCenterforMathematics
https://www.youtube.com/watch?v=oc_ChPjL-Rk&t=350s&ab_channel=HausdorffCenterforMathematics

[24] Russell O’Connor. Git is Inconsistent. http://r6.ca/blog/20110416T204742Z.html.

Apr. 2011.

[25] Zooko O’Whielacronx. badmerge – abstract version. Jan. 2009. url: https://tahoe-

lafs.org/~zooko/badmerge/simple.html.

[26] Pijul. 2021. url: https://pijul.org/.

[27] Egbert Rijke. Introduction To Homotopy Type Theory. Lecture Notes: https://hott.

github.io/HoTT-2019/images/hott-intro-rijke.pdf. 2019.

[28] Ganesh Sittampalam. “Some properties of Darcs patch theory”. In: (2005). url: http:

//urchin.earth.li/darcs/ganesh/darcs-patch-theory/theory/formal.pdf.

[29] T. Streicher. “A model of type theory in simplicial sets: A brief introduction to Vo-

evodsky’s homotopy type theory”. In: Journal of Applied Logic 12.1 (2014). Logic

Categories Semantics, pp. 45–49. issn: 1570-8683. doi: https://doi.org/10.1016/

j.jal.2013.04.001. url: https://www.sciencedirect.com/science/article/

pii/S1570868313000347.

[30] Agda development team. Agda. 2021. url: https://wiki.portal.chalmers.se/

agda/pmwiki.php.

[31] git development team. git. 2022. url: https://git-scm.com/.

[32] Mercurial development team. Mercurial. 2022. url: https://www.mercurial-scm.

org/.

[33] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations

of Mathematics. Institute for Advanced Study: https://homotopytypetheory.org/

book, 2013.

[34] Andrea Vezzosi, Anders Mörtberg, and Andreas Abel. “Cubical Agda: A dependently

typed programming language with univalence and higher inductive types”. In: Journal

of Functional Programming 31 (2021). url: https://staff.math.su.se/anders.

mortberg/papers/cubicalagda2.pdf.

[35] Vladimir Voevodsky. “The equivalence axiom and univalent models of type theory.

(Talk at CMU on February 4, 2010)”. In: (2014). doi: 10.48550/ARXIV.1402.5556.

url: https://arxiv.org/abs/1402.5556.

74

http://r6.ca/blog/20110416T204742Z.html
https://tahoe-lafs.org/~zooko/badmerge/simple.html
https://tahoe-lafs.org/~zooko/badmerge/simple.html
https://pijul.org/
https://hott.github.io/HoTT-2019/images/hott-intro-rijke.pdf
https://hott.github.io/HoTT-2019/images/hott-intro-rijke.pdf
http://urchin.earth.li/darcs/ganesh/darcs-patch-theory/theory/formal.pdf
http://urchin.earth.li/darcs/ganesh/darcs-patch-theory/theory/formal.pdf
https://doi.org/https://doi.org/10.1016/j.jal.2013.04.001
https://doi.org/https://doi.org/10.1016/j.jal.2013.04.001
https://www.sciencedirect.com/science/article/pii/S1570868313000347
https://www.sciencedirect.com/science/article/pii/S1570868313000347
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://git-scm.com/
https://www.mercurial-scm.org/
https://www.mercurial-scm.org/
https://homotopytypetheory.org/book
https://homotopytypetheory.org/book
https://staff.math.su.se/anders.mortberg/papers/cubicalagda2.pdf
https://staff.math.su.se/anders.mortberg/papers/cubicalagda2.pdf
https://doi.org/10.48550/ARXIV.1402.5556
https://arxiv.org/abs/1402.5556

Appendix A

Another Type-Theoretic Approach

In this section we explain a different approach to modeling VCSs in homotopy type theory

based on a specific class of HITs called coequalizers. The basic idea is again to take advantage

of the groupoid structure of types by modeling a VCS as a HIT with point constructors for

contexts and path constructors for patches.

By giving the paths explicitly with endpoints, the result is essentially a (type-theoretic)

coequalizer: the type of repository contexts quotiented by patches between them. Then,

functions out of this type can be defined through a characterization of its patch space given

by Kraus and von Raumer [12].

The goal of this approach is to define patch theories that are – in some sense – semantic.

Operations and laws on patches should be definable in terms of both their endpoints and

the kind of patch. Constructing such theories in terms of higher inductive types leads to

coequalizers.

We present an unsuccessful attempt at implementing this approach in Cubical Agda along

the results of Kraus and von Raumer, followed by a discussion of the problems encountered.

A.1 Repository HIT

Aiming to construct a HIT in which point constructors are repository contexts and path

constructor represent patches, we arrive at an inclusion of some base type into the HIT and

one or more named paths with endpoints specified in the base type.

75

The result is much like the coequalizers discussed by Kraus and von Raumer.

The data of a coequalizer is a type A and a doubly indexed family of types ∼: A→ A→
Type called a “proof relevant relation” on A. We write a ∼ b for the type Π(a,b:A) ∼ a b of

two related terms in A (leaving out explicit introduction of a and b). Then the coequalizer

A//∼ is a higher inductive type with points [a] for a : A and paths glue p : [a] ≡ [b] for

p : a ∼ b [12].

In formal terms this is the introduction rule:

Γ ` A Type

Γ, a b : A ` a ∼ b Type

Γ ` A//∼ Type

(A.1)

And the two formation rules:

Γ ` a : A

Γ ` [a] : A//∼

Γ ` p : a ∼ b

Γ ` glue p : [a] ≡ [b]

(A.2)

As a concrete running example we will consider a very simple VCS in which a repository

consists of a single value that can be either Nothing or Just x for some term x, and a patch

that sets a Nothing to Just some value.

module repo (A : Type) where

data Maybe : Type where

Nothing : Maybe

Just : A → Maybe

data Simple : Type where

[] : Maybe → Simple

sett : ∀ a → [Nothing] ≡ [Just a]

76

A.2 Merge

Kraus and von Raumer’s characterization of the path spaces of such coequalizers take the

form of an induction principle for their paths. Given a coequalizer like before, a term a0 : A,

and a path-indexed family

P : Π(b:A)([a0] ≡ [b]→ Type)

the induction principle gives a way to construct a term of the type:

Π(b:A)Π(q:[a0]≡[b])P b q

a dependent function out of the (based) path type of A//∼.

For non-HIT types the J-rule is the appropriate such principle, but this is not the case

once we allow higher constructors. While the J-rule adequately covers the reflexive identities,

it does not cover identities constructed by glue. We might try to remedy this by also requiring

a term of P (glue s) for any s : a0 ∼ b, but this is also not sufficient. In particular, such a

construction is not closed under symmetry and transitivity of identities. The solution is to

instead require an equivalence P q ' P (q · (glue s)) for each q : [a0] ≡ [b] and s : b ∼ c.

The complete induction rule is given by:

Γ ` a0 : A

Γ, b : A ` P : [a0] ≡ [b]→ Type

Γ ` r : P refl[a0]

Γ, b c : A, q : [a0] ≡ [b], s : b ∼ c ` P q ' P (q · (glue s))
Γ ` ind r e : Π(b:A)Πq:[a0]≡[b]P q

(A.3)

We will attempt to use this induction rule to define a merge function for our example VCS.

For this purpose we introduce the types of spans and cospans indexed by their endpoints:

Span : Maybe → Maybe → Type

Span x y = Σ[a ∈ Maybe] ([a] ≡ [x]) × ([a] ≡ [y])

CoSpan : Maybe → Maybe → Type

CoSpan x y = Σ[b ∈ Maybe] ([x] ≡ [b]) × ([y] ≡ [b])

77

and, since merging is a binary operation, a binary induction rule

bin-path-ind : {` : Level} → (a0 : Maybe) →
(P : {b c : Maybe} → [a0] ≡ [b] → [a0] ≡ [c] → Type `) →
(P refl refl) →
({x : A} → (p : [a0] ≡ [Nothing]) → P refl p ' P refl (p · sett x)) →
({x : A} (p : [a0] ≡ [Nothing]) →

({c : Maybe} (q : [a0] ≡ [c]) → P p q)

' ({c : Maybe} (q : [a0] ≡ [c]) → P (p · sett x) q)) →

{b : Maybe} → (p : [a0] ≡ [b]) → {c : Maybe} → (q : [a0] ≡ [c]) → P p q

bin-path-ind a0 P r e e’ = ind (λ p → ({c : Maybe} → (q : [a0] ≡ [c]) → P p q))

(ind (λ p → P refl p) r e) e’

Armed with binary path induction we can define the trivial merge which simply maps every

span to the cospan reversing both patches.

mergeId : {x y : Maybe} → Span x y → CoSpan x y

mergeId {x = x} {y = y} (base , p , q) =

bin-path-ind base

(λ → CoSpan x y)

(base , (sym p , sym q))

(λ → idEquiv)

(λ → idEquiv)

p q

A.3 Result/Discussion

Attempting to write more useful merges proved both laborious and difficult. In particular,

the final term of bin-path-ind is an equivalence of (dependent) function types that is

difficult to reason about and construct.

One possible intuition, in the case of merge, is that it represents an equivalence between

”ways to merge an arbitrary q with p” and ”ways to merge an arbitrary q with p · settx”.

78

However, this has not proven fruitful and despite efforts to construct more fitting equivalences

the result has been the same ”reverse everything”-merge.

In their discussion of homotopical patch theory [1] Angiuli et al. mention that the

requirement that all patches must have strict inverses presents difficulties. Their solution is

the history-inedxed repositories of ”a patch theory with richer contexts,” which introduces a

lot of complexity. Our problem may be related, since the requirement that the final induction

term be an equivalence arises from the need for paths to have inverses.

Possible solutions include a directional indexing like HPT’s histories and further investi-

gation of directed type theory [15] which treats paths non-symmetrically.

As presented, this approach leaves a lot to be desired. Apart from the trivial merge, it

does not provide an intuitive or useful way to define merges even for very simple examples,

and it is not immediately clear that it extends to more complicated theories with multiple

kinds of patches and patch laws.

79

	Introduction and Background
	Homotopy Type Theory
	(Dependent) Type Theory
	Propositions as Types
	Identity Types
	Spaces as Types
	Voevodsky's Model
	Univalence and Canonicity

	Higher Inductive Types
	Inductive Types
	Higher Inductive Types

	Agda
	Programming Language
	Proof Assistant

	Cubical Type Theory
	Cubical Agda
	Function Extensionality and Univalence
	Canonicity

	Version Control Systems
	Background
	Basic Ingredients
	(Groupoid) Properties of Patches
	Merging

	Theoretical Approaches to VCS
	Darcs
	Homotopical Patch Theory

	Formalization
	An Elementary Patch Theory
	The Circle as a Repository
	Merge

	A Patch Theory With Laws
	The Patch Theory
	A Patch Optimizer

	A Patch Theory With Richer Contexts
	The Type of Repositories
	A Merge Function

	Computational Results
	Elementary Patch Computations
	Patch Computations with Laws
	Patch Computations with Richer Contexts

	Conclusion
	Discussion
	Future Work

	Bibliography
	Another Type-Theoretic Approach
	Repository HIT
	Merge
	Result/Discussion

