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Abstract

Planar functions are mappings over a finite field Fpn having the best possible differential unifor-

mity. The differential uniformity is a measurement of the resistance of a function to differential

cryptanalysis, which is one of the most powerful attacks known today that can be used against

block ciphers. While this makes the study of planar functions highly relevant from the point of

view of cryptography, these functions also correspond to important algebraic and combinatorial

structures such as commutative semifields which makes their study important in a much broader

context in mathematics and computer science. Unfortunately, planar functions are difficult to

construct and analyze. One of the reasons that new constructions are difficult is that planar

functions are classified up to a certain notion of equivalence (typically, CCZ-equivalence), and

showing that a given function is new involves demonstrating that it is CCZ-inequivalent to

all known planar functions. The known constructions, or infinite families, of planar functions

can produce very large numbers of planar functions. While most of these will end up being

CCZ-equivalent to one another, it is necessary to test all of them for CCZ-equivalence with

any newly found instance, and doing so can be a very laborious and time-consuming process.

We classify all known planar functions over F3n for n from 3 to 8 up to CCZ-equivalence

and give a table of representatives covering all of their CCZ-equivalence classes. At the time

of writing, such a classification had only been done for n ≤ 6. Even for n ≤ 6, it did not

include some recently discovered planar functions, and therefore needed to be updated. We

also compute invariants for these representatives, including lists of representatives from their

right orbits (as defined in a paper due to Ivkovic and Kaleyski) that can be used to speed up

equivalence tests in the future. We organize all the representatives and invariants in tables for

ease of reference.

We run expansion searches (that is, we try to find new functions by adding terms to existing

functions) over F3n with n ≤ 8 and document their results in order to evaluate the efficiency of

this method for finding planar functions. We describe some tricks and optimizations that can

be used to speed up such a search and reduce the number of functions that have to be classified.

We find seven new planar functions (up to CCZ-equivalence) over F36 and we confirm that no

new planar functions can be obtained in a number of cases.
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A sporadic instace over F38 was introduced in 2007 by Coulter et al., and the problem of

classifying it into an infinite family had remained open since then. We show that this sporadic

instance is, in fact, equivalent to an instance from the Zhou-Pott family of planar functions. We

also find a quadrinomial that is CCZ-equivalent to this sporadic instance, and has a significantly

simpler univariate polynomial representation than both the sporadic instance itself and the

Zhou-Pott functions. Based on this, we generalize the quadrinomial into an infinite family of

planar functions. The instances from this family are equivalent to ones from the Zhou-Pott

family for small dimensions n; we leave the question open of whether this family is new in

general.
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Chapter 1

Introduction

Vectorial functions, that is, functions from the vector space Fnp over the finite field Fp to the

vector space Fmp , are natural objects in many branches of mathematics. For instance, when

p = 2, they take a sequence of n bits as input and produce an output sequence of m bits. In

the general case (for values of p other than two), the input consists of n digits from among

{0, 1, . . . , p− 1}, and the output consists of m such digits.

More precisely, for a prime number p and natural numbers n, m, we call a function from

Fnp to Fmp an (n,m, p)-function. This is also called a vectorial function if the values of n,m, p

are understood from the context. In this thesis, we will mostly focus on the case when n = m

and p = 3, and we will investigate functions F for which the equation F (x) − F (x + a) = b

has a small number δ of solutions x from Fnp for every nonzero element a from Fnp and every b

in Fnp . When δ is equal to 1, these functions are called planar functions, and provide optimal

resistance to differential cryptanalysis, which is one of the most powerful attacks that can be

used against block ciphers. These functions also have many other special properties that make

them interesting to study.

Planar functions can be defined in several different ways, depending on the field of study.

They where first formally introduced by P. Dembowski and T. G. Ostrom in 1968, during their

work on projective planes with special properties in finite geometry [23]. However, already in

1965, J. E. H. Elliot and A. T. Butson published a paper on relative difference sets [28] and later

it was proved that relative difference sets are equivalent to planar functions. This was shown

using the notion that planar mappings may also be seen as projections of relative difference

sets [38]. Therefore, it is obvious that planar functions are a central part of many different

research areas, where they have implicitly played a role, even before their formal introduction.

Since 1968, there has been an increasing interest for the study of planar functions, and
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not just in relation to projective planes where they originated. They have been studied in

several different contexts, among which are design theory, the study of semifields, cryptography

and coding theory. The reason for this increase in interest were the results of Dembowski and

Ostrom, where they proved that the existence of a planar function is equivalent to the existence

of an affine plane whose projective closure satisfies certain criteria [17]. Planar functions are

also important for cryptography because of their optimal differential uniformity, and also in

a broader mathematical context, for their revolutionary role in the study of commutative

semifields. More precisely, it was shown that there is a correspondence between quadratic

planar functions and commutative semifields, and this connection was exploited to construct

new families of semifields that had eluded researchers before.

Even though planar functions have been studied for a long time and are related to many

other fields of study in mathematics, new planar functions have proved to be difficult to find.

We can clearly see this based on the number of infinite families of planar functions and sporadic

instances that we know of so far, which are far from many. There are many reasons for why

finding new planar functions is a difficult task, among which is the vast search space which

results in a huge number of possible candidates for new planar functions. In addition to this,

we have identified the following two problems that add to the complexity of the task . We will

attempt to ease these problems by the work done in this thesis.

The first problem stems from the fact that planar functions are classified up to certain

equivalence relations. When researchers find planar functions they believe might be new,

they need to verify that these functions are inequivalent to all of the previously known ones. In

other words, they have to classify the newly discovered functions up to equivalence. Classifying

functions is difficult because they have to be compared to all representatives from the known

families and sporadic instances. Despite us knowing very few families, in some cases these

families can generate hundreds of thousands of functions (which will however only fall into

very few equivalence classes), which makes this comparison a time-consuming and intense

task.

The second problem is that constructing new families appears to be very difficult per se.

Just finding new planar functions seems to be extremely hard. Finding instances of planar

functions with other desirable properties, such as having a short polynomial representation, is

of course even harder. Besides providing a more compact representation, a short polynomial

form may allow us to more clearly see patterns and structure that the function possesses. For

example for one of the known sporadic instances in dimension 8 with characteristic 3, the

shortest previously known representation consisted of 16 terms. One of our results is that we

found a quadrinomial (that is, a function of only 4 terms) equivalent to it, which allowed us

to generalize this sporadic instance into an infinite family of quadrinomials. We show that

the sporadic instance is also equivalent to an instance from the Zhou-Pott family of planar
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functions (although the Zhou-Pott representation is still significantly more complicated than

the quadrinomial that we find). While both the sporadic instance and the Zhou-Pott family

had been known for some time, this equivalence had never been observed before. In fact, to the

best of our knowledge the problem of classifying the sporadic instance into an infinite family

had been open since its introduction in 2007.

In this thesis, we first generate all possible functions from the known families with charac-

teristic 3 in dimension n for n from 3 to 8 and we classify them up to CCZ-equivalence, together

with the known sporadic instances. We then select a representative for each equivalence class,

and give a table of CCZ-inequivalent representatives from all the known infinite families and

sporadic instances. Using this table, one only has to compare newly found planar functions

for equivalence against a very small number of functions (instead of generating all instances

from the known families and classifying them up to equivalence from scratch). Furthermore,

we compute the values of some of the most useful known invariants for the selected representa-

tives, including the so-called right automorphism orbits as defined in [31]. Knowledge of these

orbits allows the computation time for performing equivalence tests to be reduced even further

when using the algorithm from [31], which at the moment appears to be the most efficient way

for testing equivalence.

We then use these tables to run computational searches (based on the “polynomial expan-

sion” technique) to try and find new planar functions, as well as more compact representatives

of known functions. In this way, we evaluate the efficiency of the “polynomial expansion” ap-

proach for some of the dimensions up to 8. More precisely, we focus on n = 6 and n = 8 since it

is possible to restrict the coefficients in searches to subfields (while for n = 5 and n = 7, being

prime, it is only possible to restrict the coefficients to the prime field F3, and all quadratic

planar functions of this form have already been classified in [22]). Among these, we dedicate

most of our computational efforts to n = 8, since computational tools for efficiently checking

equivalence in this dimension such as [31] have only recently become available, and we expect

that it is more likely to find new instances of planar functions there.

Using polynomial expansion searches, we find seven new classes of planar functions (up to

CCZ-equivalence) over F36 . Over F38 (which we explore in even more depth using expansion

searches), we do not find any new planar functions. However, we show that a known sporadic

instance from [19] over F38 is in fact CCZ-equivalent to an instance from the Zhou-Pott family.

In this way, as mentioned above, we solve the problem of classifying this sporadic instance into

an infinite family, which to the best of our knowledge had remained open since its introduction

in 2007.

Furthermore, we find a significantly more compact polynomial representation (as compared

both to its original representation, and the equivalent instances arising from the Zhou-Pott
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family) of this sporadic instance. Based on this compact representation, we construct an

infinite family of planar quadrinomials that contains the sporadic instance. While our family

intersects the Zhou-Pott functions for n = 4 and n = 8, it provides functions with a significantly

simpler univariate representation, and appears promising from the point of view of further

generalization. Furthermore, the question of whether the two families continue to coincide for

dimensions n greater than 8 remains open.
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Chapter 2

Preliminaries

2.1 Functions over finite fields and their representations

Let p be a prime number and n be a natural number. Then we denote the finite field with pn

elements by Fpn , and we denote the n-dimensional vector space over Fp by Fnp .

Mappings from Fnp to Fmp (for some prime number p and some natural numbers n and

m) are natural mathematical objects that have numerous applications in many branches of

mathematics and computer science. These are called (n,m, p)-functions, or simply vectorial

functions.

Although (n,m, p)-functions are formally defined as mappings between vector spaces, we

can also see them as functions between finite fields. This is due to the fact that the vector

space Fnp can be identified with the finite field Fpn . In this thesis, we will mostly be considering

vectorial functions as functions over finite fields.

Vectorial functions can be represented in a number of different ways, all of which have

advantages and disadvantages. In the following, we introduce some of the most frequently used

representations.

The simplest way to define an (n,m, p)-function F is to represent it as a truth table

(TT). This means to define the function F by explicitly listing the output values F (x) ∈ Fmp
for all possible inputs x ∈ Fnp . In the case of an (n,m, p)-function with p = 3, each input

consists of n variables which can take the values 0, 1 or 2 and corresponds to an output F (x)

of length m. An example of a truth table of a (2, 2, 3)-function is given in Table 2.1.
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x F (x)

00 00
01 11
02 12
10 10
11 20
12 21
20 22
21 01
22 02

Table 2.1: Truth table of an (2, 2, 3)-function

The TT representation is conceptually very simple, and it allows values of the function to

be determined very quickly. On the other hand, the TT can occupy a lot of memory (especially

when n and m are large) so it is only possible to use it for relatively small dimensions. Another

shortcoming is that the TT reveals very little about the structural properties of the function: for

instance, from the algebraic normal form, which will be presented shortly, we can immediately

derive the algebraic degree of the function, but this is very hard to do using the TT.

In the example above, in Table 2.1, we see the TT used to represent a vectorial function,

with two input and two output variables. We can alternatively express this by two functions,

f1 and f2, that represent the outputs of F : F2
3 → F2

3 as a vector of two variables:

F (x1, x2) = (f1(x1, x2), f2(x1, x2)).

Generalizing this to arbitrary m, it follows that any (n,m, p)-function F can be seen as a

vector of (n, 1, p)-functions:

F = (f1, ..., fm),

where the (n, 1, p)-functions f1, ..., fm are called the coordinates, or the coordinate func-

tions of F . Any non-zero linear combination of the coordinates of a function F is called a

component function of F . The component functions are used, for example, in the definition

of nonlinearity, which is an important cryptographic parameter. Since we do not directly deal

with nonlinearity in our work, we do not go into further details.

Another way to represent a vectorial function, is in ANF, short for algebraic normal

form. This is a uniquely defined multivariate polynomial representation with coefficients from

Fmp and variables from Fp, meaning that for a function F : Fnp → Fmp , the ANF of F is of the
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form

F (x1, ..., xn) =
∑
u∈Fn

p

au

n∏
i=1

xuii , au ∈ Fmp .

One of the advantages of the ANF over the TT is that some important properties of the

function can be deduced immediately from the ANF. One such property is the so-called alge-

braic degree, which has many important connotations to the implementation and cryptographic

strength of the function. For example, the higher the degree, the more resistant the function is

to higher-order differential attacks [26] [33]. For an (n,m, p)-function F, the algebraic degree

of F , denoted by deg(F ), is the degree (as a multivariate polynomial) of its ANF.

In this thesis, we are mostly interested in the case of (n,m, p)-functions where n = m. In

this case, representing these functions is often most convenient using the univariate repre-

sentation. The vector space Fnp can be identified with Fpn , and we can consider functions from

Fnp to itself as mappings from Fpn to itself. Any such function F has a unique representation

as a univariate polynomial over Fpn of degree smaller than pn:

F (x) =

pn−1∑
i=0

cix
i, ci ∈ Fpn .

The algebraic degree can also easily be derived from the univariate representation. More

precisely, deg(F ) is the largest p-ary weight of any exponent i for which the coefficient ci is non-

zero. For example, the 3-ary expansion of the integer 17 is (1, 2, 2) since 17 = 32 + 2 ·31 + 2 ·30,

and therefore its 3-ary weight is 1 + 2 + 2 = 5. Consequently, any function having a non-zero

coefficient in front of x17 has algebraic degree at least 5.

Besides the cryptographic significance related to higher-order differential attacks, the alge-

braic degree can be used to define affine, linear and quadratic functions. An (n,m, p)-function

F is affine if the algebraic degree is at most 1, quadratic if the algebraic degree is exactly 2

and cubic if the algebraic degree is exactly 3. If an affine function A satisfies A(0) = 0, we

say that A is linear.

Alternatively, a function F from Fpn to itself is linear if

F (x) =
∑

0≤i<n

cix
pi , ci ∈ Fpn .

If F is a sum of a linear function and a constant, it is affine. Furthermore, we say that the
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function F is a Dembowski-Ostrom polynomial (DO polynomial) if

F (x) =
∑

0≤k≤j<n

ckjx
pk+pj , ckj ∈ Fpn .

Thus, if a function is a sum of a DO polynomial and an affine function, it is quadratic [9].

These types of functions are important when working on planar functions for different

reasons. One reason is for example that there is a relation between commutative semifields

and quadratic planar functions [18]. Affine and linear functions are used in the definition of

various equivalence relations such as linear equivalence and EA-equivalence that we will see

later.

2.2 Cryptographic parameters

Block ciphers are widely known and much used in modern cryptography. The idea is to combine

simple operations in order to construct a complex encryption transformation. Blocks of data

are encrypted by transforming the input (plaintext) block into an output (ciphertext) block,

usually with the same length as the original block. The vast majority of modern block cipher

designs use (n,m, p)-functions as fundamental components of these transformations. In order

for the encryption of these blocks of data to be strong, certain properties are required of the

functions used. If these properties are lacking, it leaves the encryption vulnerable to different

attacks, which might give an attacker the opportunity to obtain information about the original

data block, or even to decrypt the message altogether.

One of the most powerful attacks against block ciphers known today is the so-called

differential cryptanalysis [7]. Very briefly, the basic idea of differential cryptanalysis is to

study how the difference dy = y2 − y1 of two outputs y1 and y2 of a function depends on the

difference dx = x2 − x1 of their corresponding inputs x1 and x2. If some output difference

dy is more likely than uniform for a given dx, this might give an attacker information about

the encryption that can be used to break the cipher. Therefore, the output differences of a

cryptographically strong function should be as uniformly distributed as possible in order to

provide good security against this type of attack.

Given an (n,m, p)-function, its derivative is a function that expresses the relation between

the input and output differences. The formal definition is as follows.

Let F be an (n,m, p)-function. The map DaF (x) = F (x+ a)−F (x) is the derivative of

F in the direction of a ∈ Fnp .
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Alternatively, the derivative of F can be defined as ∆aF (x) = F (x+a)−F (x)−F (a)+F (0).

This has the advantage of having 0 map to 0; in particular, if F is quadratic, then ∆aF is

linear. We will later use this when constructing a family of planar functions (more precisely,

we will use this in the proof that the functions from this family are planar).

The derivative DaF expresses exactly the output difference of all pairs of inputs whose

input difference is equal to a; and we want DaF to be as uniformly distributed as possible in

order to resist differential cryptanalysis. The concept of being uniformly distributed is captured

by the following notion.

An (n,m, p)-function F from Fnp to Fmp , is called balanced if it takes every value of Fnp
the same number of times, pn−m.

In this thesis, we mostly concentrate on the case of n = m. For n = m, the balanced

functions over Fnp are precisely the permutations. While balanced functions represent the

optimal case, the notion of differential uniformity is used to measure how good the resistance

of a function to differential cryptanalysis is even if it is not balanced.

If the equation DaF (x) = F (x)− F (x+ a) = b has at most δ solutions for every nonzero

element a of Fnp and every b in Fmp , it is called differentially δ-uniform.

The maximum number of solutions to the above equation through all a 6= 0 and b is called

the differential uniformity of F and is denoted by ∆F .

In the following, suppose n ≥ m. By the above discussion, (n,m, p)-functions F with the

value ∆F = pn−m, which is the smallest possible value, contribute an optimal resistance to

the differential attack. These functions are called PN, and are the main topic of study in this

thesis. This optimal case occurs precisely when all the derivatives of F are balanced, which

motivates the following definition.

If for any a ∈ Fnp , the derivative of F in the direction of a, DaF (x) = F (x+ a)− F (x), is

balanced, then the function is called perfect nonlinear (PN), or planar if n = m.

In the case of n = m, a function F is clearly PN if and only if all of its derivatives DaF

for a 6= 0 are permutations. These functions exist only for p odd, because if p is even and x0

is a solution of DaF (x) = F (x+ a)− F (x), then x0 + a is also a solution.
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2.3 Presemifields and semifields

As mentioned before, planar functions are useful not only for their cryptographic properties

but because they correspond to optimal objects in other areas of mathematics. Perhaps the

best example are algebraic objects called presemifields and semifields. After the classification of

finite fields was complete, researchers started investigating such more general structures defined

by relaxing conditions and axioms. Semifields are a relaxation of finite fields (they satisfy all

the axioms except that they do not have to be associative). Although the term semifield

was not used in the earlier literature, the study of these algebraic objects was initiated in

the beginning of the 20th century by Dickson [24]. For approximately 60 years they were

referred to as “nonassociative division rings” or “distributive quasifields”, until Knuth [34]

introduced the term semifields in 1965. For a long time after the study of semifields was

initiated, there was little progress in the area. One of the major factors that contributed to

the recent development of semifields was the introduction of planar functions in the 1970s by

Dembowski and Ostrom [23] and the important connection between commutative semifields

and quadratic planar functions, which was precisely formulated in [18]. Another major factor

was the recent progress in the construction of APN polynomials [9]. APN polynomials are

optimal with respects to differential uniformity in the case of even characteristic. Many of the

constructions of APN polynomials could be adopted to the planar case, and therefore to the

construction of semifields.

2.3.1 Definitions

Before defining the notion of a commutative semifield, we first define that of a presemifield. A

finite presemifield is a finite set S with two binary operations + and ∗ satisfying the following

axioms:

S1 : (S,+) is an Abelian group with identity 0.

S2 : The left and right distributive law holds, i.e. a∗(b+c) = a∗b+a∗c and (a+b)∗c = a∗c+b∗c
for any a, b, c ∈ S.

S3 : If a ∗ b = 0 then a or b is 0.

If, in addition to the axioms for a presemifield, we also have

S4 : There exists an element 1 ∈ S such that 1 6= 0 and 1 ∗ a = a = a ∗ 1 for all a ∈ S then the

presemifield is called a semifield.

In short, a presemifield is a ring with left and right distributivity and no zero divisors, and

a presemifield with a multiplicative identity is called a semifield. A commutative semifield

(or presemifield) is one whose multiplicative operation ∗ is commutative. A presemifield can

be represented by S = (Fpn ,+, ∗), where Fpn is the finite field with pn elements. The prime
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number p is then called the characteristic of S, and the integer n is called the dimension of S
[34].

Given any presemifield, we can construct a semifield from it as follows. Assume the

presemifield S is commutative and does not contain an identity. In order to create a semifield

from S, we choose any a ∈ F∗pn and define a new multiplication ? by (x ∗ a) ? (a ∗ y) = x ∗ y, for

all x, y,∈ Fpn . Now S′ = (Fpn ,+, ?) is a commutative semifield related to S with identity a ∗ a.

In fact, S and S′ are isotopic to each other; we will discuss isotopism in Section 2.4.2.

2.3.2 Commutative semifields and planar functions

Every commutative presemifield defines a planar DO polynomial and vice versa [9]. If we

have a quadratic PN function F over Fpn , then we can define the commutative presemifield

S = (Fpn ,+, ∗), with x∗y = F (x+y)−F (x)−F (y) for any x, y ∈ Fpn . We can then denote the

commutative semifield corresponding to the commutative presemifield S by SF = (Fpn ,+, ?).
Then SF = (Fpn ,+, ?) is a commutative semifield defined by the quadratic PN function F.

It is possible to go the other way as well, from a commutative presemifield to a planar DO

polynomial as follows. Given a commutative presemifield S = (Fpn ,+, ∗) of odd order, we can

define a planar DO polynomial given by the function F (x) = 1
2
(x ∗ x).

Even though commutative semifields have been a popular field of study since their intro-

duction in 1906, there are few cases of commutative semifields of odd order known today [9].

Since almost all known planar functions are DO polynomials, researchers have been able to

find new commutative semifields by exploiting the connection between quadratic PN functions

and commutative semifields. Despite this, constructing new semifields and presemifields re-

mains a very difficult problem, and is one of the major reasons that planar functions and their

constructions are important objects of study.

2.4 Equivalence relations

Finding new planar functions among all (n,m, p)-functions by doing an exhaustive search is an

impossible task to undertake, even for relatively small numbers n,m and p. This is because the

number of (n,m, p)-functions is (pm)(p
n), which increases drastically even when incrementing

only one of m or n by 1. For instance, if we consider the functions that take 2 input variables

and return 2 output variables which can take the values 0, 1 or 2, we have 99 = 387420489

distinct (2, 2, 3)-functions. Furthermore, we’re usually more interested in values of n and m

larger than 2, meaning that with today’s technology it would be impossible to go through all
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of the (n,m, p)-functions when searching for new planar functions.

Even if we are able to find all planar functions in some field Fpn , it is safe to say that

they are going to be too many to handle. If we just find one planar function for every 1000

(n,m, p)-functions we search through, it would leave us with 387420 planar functions, even if

using the uninteresting example of the (2, 2, 3)-functions above. Normally this number would

be significantly larger, which means that going through this set of functions looking for useful

properties would be extremely time consuming, maybe even impossible. Because of this, we use

equivalence relations both to reduce the number of functions found and to also make searches

for new functions easier. The equivalence used must be such that it preserves the properties

of interest, such as being planar in our case. In this section, we introduce the most important

equivalence relations that preserve planarity.

2.4.1 CCZ-equivalence

The most universal equivalence relation used in practice that preserves differential uniformity

for any function is the CCZ-equivalence, short for Carlet-Charpin-Zinoviev-equivalence, intro-

duced in [15]. Of course, not all properties are invariant under CCZ-equivalence; for example,

one such property is the algebraic degree. This can be used constructively, since functions

of high algebraic degree are known to resist higher-order differential attacks. In the case of

planar functions, CCZ-equivalence coincides with EA-equivalence, which does preserve the al-

gebraic degree; however, CCZ-equivalence can be used constructively to find higher-degree

representatives of other classes of functions such as APN functions.

The CCZ-equivalence of two functions is defined in terms of their graphs, where the graph

of a function F : Fpn → Fpn is the set ΓF = {(x, F (x)) : x ∈ Fpn}. Note that the graph is a set of

pairs from Fpn×Fpm . But Fpn×Fpm can be identified with the finite field Fpn+m , which allows us

to define affine permutations of Fpn ×Fpm . Now, two functions F and G are CCZ-equivalent

if there is an affine permutation A mapping ΓF to ΓG, i.e. {A(x, F (x)) : x ∈ Fpn} = ΓG.

The only known way to efficiently test CCZ-equivalence in general is through linear codes.

A linear code C(F ) is associated with each function F , and then F and G are CCZ-equivalent if

and only if C(F ) and C(G) are isomorphic. More details can be found in e.g. [27]. Algorithms

for testing isomorphism of codes have existed for quite some time, but they are slow and

memory-intensive, which means there is currently no known efficient way of testing CCZ-

equivalence in higher dimensions. This is also one of the reasons why little progress has

been made when it comes to finding new planar functions, as the code isomorphism test has

been the only known way for testing the CCZ-equivalence of planar functions. The recently

introduced algorithms for testing linear equivalence of planar functions [31] can be used to

12



test CCZ-equivalence much more efficiently, since in the case of quadratic planar functions

CCZ-equivalence coincides with linear equivalence; more details are given below.

2.4.2 Isotopic equivalence

Isotopic equivalence is even more general than CCZ-equivalence, but it only applies in the

case of quadratic planar polynomials. The notion of isotopic equivalence is based on that of

isotopism, which was originally defined in the study of presemifields and semifields [1]. Two

presemifields, S1 = (Fpn ,+, ∗) and S2 = (Fpn ,+, ?), of the same order are said to be isotopic

if there exist three linear permutations L,M,N over Fpn such that for any x, y ∈ Fpn

L(x ∗ y) = M(x) ? N(y).

The triplet (M,N,L) is called the isotopism between S1 and S2 and if M = N then S1 and

S2 are strongly isotopic.

Because of the correspondence between quadratic planar functions and semifields shown

in section 2.3.2, we can use isotopism to define a notion of equivalence between two quadratic

planar functions. Given two quadratic planar (n, n, p)-functions F and F , they are called

isotopic equivalent if their corresponding presemifields SF and SF ′ are isotopic.

Isotopic equivalence is related to CCZ-equivalence as follows:

• two quadratic planar polynomials are CCZ-equivalent if and only if their corresponding

commutative semifields are strongly isotopic; [13]

• two commutative presemifields of order pn with n odd are strongly isotopic if and only if

they are isotopic; [18]

• a commutative presemifield of order pn with n even can generate at most two CCZ-

equivalence classes of quadratic planar polynomials. [18]

2.4.3 EA-equivalence

Extended affine equivalence, or EA-equivalence for short, is useful because it can be simpler to

use or test than CCZ-equivalence. Actually, in some cases, like in the case of planar functions,

testing CCZ-equivalence can be reduced to testing EA-equivalence; more precisely, two planar

functions are CCZ-equivalent if and only if they are EA-equivalent [12] [11]. Two (n,m, p)-

functions F and G are EA-equivalent if there are affine permutations A1, A2 of Fpn and Fpm ,
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respectively and an affine (n,m, p)-function A such that

A1 ◦ F ◦ A2 + A = G,

where ◦ represents composition.

One reason that EA-equivalence is relevant in practice is because testing it may sometimes

be done in a simpler way than for CCZ-equivalence. For example, in the case of even charac-

teristic, simple algorithms for testing EA-equivalence without going through linear codes have

recently been developed, e.g. [14], [32]. While these algorithms cannot directly be applied

to the case of planar functions, they show that EA-equivalence can be more tractable than

CCZ-equivalence.

2.4.4 Linear equivalence

Linear equivalence is one of the simplest notions of equivalence that can be defined for (n,m, p)-

functions. Two (n,m, p)-functions F and G are linear equivalent if there exist linear permu-

tations A1 and A2 of Fpn and Fpm , respectively, such that

A1 ◦ F ◦ A2 = G.

As we can see from the equation above, linear equivalence is the special case of EA-equivalence

when A = 0 and A1, A2 are linear. In addition to this, we also have that linear equivalence

coincides with CCZ-equivalence for DO planar polynomials [11] [12]. This makes our searches

for new planar functions significantly easier; we mostly focus on DO planar polynomials and it is

therefore enough to test linear equivalence. We use the algorithm for testing linear equivalence

between 2-to-1 planar functions from [31]. This method is significantly faster that the code

isomorphism test, and allows us to test many more functions than would have otherwise been

possible. In addition, code isomorphism does not work reliably on the hardware that we have

available in F3n for n > 7 due to memory constraints, so the algorithm from [31] is the only

possible way at the moment to classify functions over F38 .

In addition, since in the case of quadratic planar functions CCZ-equivalence reduces to

linear equivalence, we make use of the following simple trick to significantly reduce the search

space.

Suppose that we are expanding a monomial xd by adding a number K+1 of terms to it, the

first of which is cxe. We thus consider all functions of the form xd+cxe+c1x
e1 + · · ·+cKx

eK for

all possible choices of c, c1, . . . , cK and e, e1, . . . , eK . Let f(x) = xd+ cxe+ c1x
e1 + · · ·+ cKxc

eK .
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The function

f(xp
n−1

)p = xd + cpxe + cp1x
e1 + · · ·+ cpKx

eK

is clearly linear-equivalent to f(x). We can see that it can be obtained from the same exact

polynomial expansion, i.e. by starting with xd and adding terms to it. The difference is

that the coefficient c of the first term has been replaced with cp. Therefore, when searching for

functions up to equivalence, it suffices to only consider one representative from each cyclotomic

coset when guessing the value c of the first term added to xd. Unfortunately, this cannot be

applied to the coefficient c1 of the second term, since raising c1 to the power p also changes c.

Nonetheless, this reduces the number of guesses for c by a factor of approximately n, and has

the effect of significantly reducing the search space.

A similar trick can be performed by taking f(x) as above and taking the linear-equivalent

1

ad
f(ax) = xd + cae−dxe + c1a

e1−dxe1 + · · ·+ cKa
eK−dxeK ,

where a is some non-zero element from Fpn . This means that if we first guess the exponent e

of the first term, then only one coefficient c from each set of the form {cm : m ∈ M} where

M = {ad−e : 0 6= a ∈ Fpn} has to be considered.

2.5 Invariants

Invariants are properties that are preserved under a given equivalence relation. Examples of

such properties include differential uniformity for CCZ-equivalence and both differential uni-

formity and the algebraic degree for EA-equivalence. The fact that the differential uniformity

is invariant under CCZ-equivalence is the reason that CCZ-equivalence can be meaningfully

used to classify planar functions. However, we also have some invariants that can take a mul-

titude of distinct values even when the functions have the same differential uniformity. These

invariants are an important facilitator for classifying functions up to equivalence, because they

can be used to quickly distinguish between inequivalent functions. If for example two given

functions have different values of an invariant under CCZ-equivalence, we can immediately

conclude that they are CCZ-inequivalent. Invariants have been very successfully used in this

way in the case of e.g. APN functions over finite fields of even characteristic. Unfortunately,

for planar functions we do not know that many invariants. In the following, we summarize the

invariants that we do know.

The orders of the nuclei is one of the invariants that has been found to be useful for

quadratic planar functions; the nuclei are restricted to the quadratic case because they are

defined in terms of the corresponding semifield. The nuclei are invariant under isotopism
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and measure how far the semifield S is from being associative. Given a finite semifield S =

(Fpn ,+, ∗), the subsets

Nl(S) = {α ∈ S : (α ∗ x) ∗ y = α ∗ (x ∗ y) for all x, y ∈ S},

Nm(S) = {α ∈ S : (x ∗ α) ∗ y = x ∗ (α ∗ y) for all x, y ∈ S},

Nr(S) = {α ∈ S : (x ∗ y) ∗ α = x ∗ (y ∗ α) for all x, y ∈ S}

are called the left, middle and right nucleus of S, respectively. The set N(S) = Nl(S) ∩
Nm(S)∩Nr(S) is called the nucleus. The subsets Nl(S), Nm(S), Nr(S) are multiplicative cosets

of finite fields, and if S is commutative then Nl(S) = Nr(S) ⊆ Nm(S) [34]. We note in [34], it

is claimed that the nuclei are subfields of Fpn , but in fact they are multiplicative cosets.

Another invariant that can be used to distinguish between CCZ-inequivalent functions is

the order of the monomial automorphism group of a particular linear code associated with the

function [39]. This order is invariant under CCZ-equivalence, and it can take distinct values

for CCZ-inequivalent planar functions. As part of our work, we compute the order of this

automorphism group for representatives from all known CCZ-classes of planar functions.

Finally, the right orbits as defined in [31] can be used to significantly reduce the computa-

tion time for deciding equivalence using the algorithm from the same paper. The number and

sizes of these orbits is an invariant under linear equivalence. In our work, we also compute the

exact orbits for all the represenatives from the known families.

2.6 Known cases of planar functions and commutative

semifields

Constructing planar functions and commutative semifields is known to be very hard. Despite

many years of research, we only know very few constructions. Here, we give a summary of the

known infinite families and sporadic instances of planar functions.

Some of the functions are given by a simple univariate representation. Others are defined

as corresponding to commutative semifields. We list these functions below. The ones given in

univariate form are labeled Ui, and the ones defined through semifields are labeled Si.

(U1) x2 in Fpn (folklore).

(U2) xp
k+1 in Fpn , k ≤ n/2 and n/gcd(k, n) is odd, which corresponds to Albert’s commutative

twisted fields [21, 23].
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(U3) x10 + x6 − x2 in F3n , n ≥ 5 is odd or n = 2 [21]. Corresponds to the Coulter-Matthews-

Ding-Yang semifields (CMDY[1]).

(U4) x10−x6−x2 in F3n , n ≥ 5 is odd or n = 2 [25, 18]. Corresponds to the Coulter-Matthews-

Ding-Yang semifields (CMDY[2]).

(U5) x
3k+1

2 in F3n , k ≥ 3 is odd and gcd(k, n) = 1. They are referred to as the Coulter-Matthews

(CM) planar functions [21, 30] and they do not correspond to any semifield.

(U6) x1+q
′ − vxq2+q′q over Fq3 where p is an odd prime, q = ps, q′ = pt, s′ = s/gcd(s, t), t′ =

t/gcd(s, t), s′ is odd, ord(v) = q2 + q + 1, and at least one of the following conditions

holds:

s′ + t′ ≡ 0 mod 3,

q ≡ q′ ≡ 1 mod 3.

This planar function family corresponds to the Zha-Kyureghyan-Wang (ZKW) semifields

[41, 4]. This construction was motivated by the APN binomials from [10].

(U7) x1+q
′ − vxq3+q′q over Fq4 , where p is an odd prime, q = ps, q′ = pt such that 2s/gcd(2s, t)

is odd, q ≡ q′ ≡ 1 mod 4, and ord(v) = q3 + q2 + q + 1. It corresponds to the Bierbrauer

semifields [5]. This was also motivated by the APN binomial construction from [10].

(U8) The following two families due to Budaghyan and Helleseth (BH):

(a) (bx)p
s+1−

(
(bx)p

s+1
)pk

+
∑k−1

i=0 cix
pi(p

k+1)
, where p is an odd prime, s and k are positive

integers such that gcd(ps + 1, pk + 1) 6= gcd(ps + 1, (pk + 1)/2), gcd(k + s, 2k) =

gcd(k + s, k), and n = 2k, b ∈ F∗pn and
∑k−1

i=0 cix
pi is a permutation over Fpk with

coefficients in Fpk [11].

(b) Tr2kk (bxp
s+1)+cxp

k+1+
∑k−1

i=1 rix
pk+i+pi , where p is an odd prime, s and k are positive

integers, n = 2k, gcd(k+ s, n) = gcd(k+ s, k), b ∈ F∗pn is not a square, c ∈ Fpn \Fpk ,

and ri ∈ Fpk for 0 ≤ i < k [11].

In [6], Bierbrauer presented an alternative expression of the two families of the form

Tr(xq+1) + Tr(βxp
s+1)ω over Fq2 , where p is an odd prime, q = pm,Tr(·) is the trace

function from Fq2 to Fq, ω, β ∈ Fq2 ,Tr(ω) = 0 and s is a positive integer such that the

following holds:

a) βq−1 is not contained in the subgroup of order (q + 1)/gcd(q + 1, ps + 1) in (Fq2 , ∗);

b) there is no 0 6= a ∈ Fq2 , such that Tr(a) = 0 and ap
s

= −a.

We use this representation in our classification, since it has less parameters than the

original Budaghyan-Helleseth functions, and therefore generates a smaller amount of

functions that we need to classify.
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(U9) Tr(x2) + G(xq
2+1) over Fq2m , where q is a power of an odd prime p,m = 2k + 1,Tr(·) is

the trace function from Fq2m to Fqm , and G(x) = h(x−xqm), where h ∈ Fq2m [x] is defined

as

h(x) =
k∑
i=0

(−1)ixq
2i

+
k−1∑
j=0

(−1)k+jxq
2j+1

.

This family corresponds to Bierbrauer’s generalization of the semifields discovered by

Lunardon, Marion, Polverino and Trombetti over q6, see [6]. They are referred to as

Lunardon-Marino-Polverino-Trombetti-Bierbrauer (LMPTB) semifields [35].

(U10) x162 +x108−x84 +x2 over F35 discovered by Coulter R.S. and Kosick P. (CK[1]) [20] [40].

(U11) The function over F55 given by the form

f(x) = L(t2(x)) +D(t(x)) +
1

2
x2,

where L(x) = x125 + x25 + 2x5 + 3x and D(x) = 0, or L(x) = 2x25 + x5 and D(x) =

2x130 + 2x26, and t(x) = x5 − x, see [20]. Discovered by Coulter R.S. and Kosick P.

(CK[2]).

Families of planar functions given by their corresponding semifields:

(S12) The functions over Fp2m , corresponding to the Zhou-Pott (ZP) semifields. Defined as

follows: Let m, k be positive integers, such that m
gcd(m,k)

is odd. Define x◦ky = xp
k
y+yp

k
x.

For elements (a, b), (c, d) ∈ Fp2m , define a binary operation ? as follows,

(a, b) ? (c, d) = (a ◦k c+ α(b ◦k d)σ, ad+ bc),

where α is a nonsquare in Fpm and σ is an automorphism of Fpm . Then, (Fp2m ,+, ?) is a

presemifield [42].

(S13) The functions over Fp2k , corresponding to the Dickson semifields [24].

For p = 3, there are some more families as follows:

(S14) The functions over F32k , corresponding to the Cohen-Ganley (CG) semifields [16].

(S15) The functions over F32k , with k odd, corresponding to the Ganley semifield [29].

(S16) The function x2 + x90 over F35 , corresponding to the At-Cohen-Weng (ACW) semifield

[3].
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(S17) The function over F38 , corresponding to the Coulter-Henderson-Kosick (CHK) semifields

[19].

(S18) The function over F310 , corresponding to the Penttila-Wiliams semifield [36].

One of the contributions of this thesis is the construction of an infinite family of planar

quadrinomials, as described in Chapter 5. While we can observe through equivalence tests

that the family intersects the Zhou-Pott family for n = 4 and n = 8 (as well as the sporadic

instance (S17) in the case of n = 8), it does provide functions of a significantly simpler univariate

representation than both (S17) and Zhou-Pott (both of which consist of functions having many

terms in their univariate representation). We also expect that our family can be generalized

further and may then provide other CCZ-classes; we leave this as a problem for future work.

Whether the family is new in general (for dimensions greater than 8) is left as a problem for

future work. In any case, we have resolved the problem of classifying (S17) into an infinite

family which had been open since 2007. We note that the classification from [39] claims that

(S17) is not part of any of the currently known infinite families of planar functions. While

this may be true, we have shown that (S17) is CCZ-equivalent to a representative from the

Zhou-Pott family.

We have also found seven new instances (up to CCZ-equivalence) of quadratic planar

functions over F36 . More details, including polynomial representations of these instances, are

given in Section 4.2.
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Chapter 3

Classification of the known planar

functions

One of the goals of this thesis is to classify the planar functions obtained from the known infinite

families up to CCZ-equivalence. We are able to present CCZ-inequivalent representatives that

cover all of the known infinite families for all finite fields F3n for n up to 8. The tables of

representatives that we give can then be used by researchers to easily check whether or not

a planar function that they have newly discovered is equivalent to one of the known planar

functions, while saving a lot of time. Without tables like these one would have to generate all

planar functions from the families and then classify them up to equivalence, or alternatively

compare the newly found planar functions for equivalence against every single instance from

the known families, which can be quite many. For instance, even just generating the list of

functions for dimension 8 takes more than 10 days of computation.

Planar functions in characteristic 3 from the known families have been classified up to

dimension 6 in [39] in 2010. The same year a new sporadic planar function over F35 was

discovered in [20]. Therefore, the table for F35 needed to be updated, and we have done so. In

addition, we have classified the planar functions from the known families in dimension 7 and

8. The results are presented in table 3.2. This has previously not been possible to do because

there was no efficient enough method for checking CCZ-equivalence between planar functions

for dimensions 7 and above. Until recently, the only algorithm for testing equivalence was

the code isomorphism test. This is quite slow in dimension 7, and is frequently impossible to

use for dimension 8 due to its heavy memory consumption. For classifying the functions for

n = 7, 8, we use the recently proposed algorithm from [31], which is significantly faster and

much less memory intensive than the code isomorphism test. For comparison, testing a single

pair of functions for equivalence in dimension 7 using the code isomorphism test takes around

3 hours; using the algorithm from [31], it takes about 1 minute. Even using this faster method,
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classifying planar functions is a very time-consuming process: in dimension 8, this took just

over 25 days to complete.
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3.1 Representatives from the known infinite families and

sporadic instances

In this section, we present our computational results over F3n for 3 ≤ n ≤ 8. The following

tables list CCZ-inequivalent representatives covering the CCZ-classes of all the known infinite

families and sporadic instances of planar functions. Table 3.1 covers dimensions 3 through 6,

while Table 3.2 contains the results for dimensions 7 and 8. We have also calculated invariants

for each, and we give them in separate tables. Table 3.3 contains invariants for the represen-

tatives over dimension 3 through 6, while Table 3.4 covers the invariants for dimension 7 and

8. Table 3.5 gives the orbit representatives for the functions for dimension 7 and 8.

The number of functions that needed to be classified is quite large; for instance, for n = 8,

we needed to classify more than 20 000 planar functions. Comparing functions for CCZ-

equivalence over F38 is a very time-consuming process; in order to appreciate this, we remark

that the finite field has 38 = 6561 elements. As pointed out in [31], a test for equivalence over

F38 can take around 10 minutes in the positive case; furthermore, such tests were impossible

to conduct using the code isomorphism test due to lack of memory. Creating these tables has

taken almost 60 days, just in computation time. In addition to the time spent on computation,

a significant amount of time was spent implementing the code needed to run the computations.

By creating these tables, we wish to help researchers with further work in this field by saving

them the effort of having to classify planar functions from the known families up to CCZ-

equivalence.

We also compute invariants such as the order of the auotmorphism group described in

[39], and the sizes of the nuclei of the associated semifield in the case of quadratic functions.

In order to compute the nuclei efficiently, we use the following approach. It has been stated

in e.g. [34] that the nuclei of a semifield are always finite fields. This is, in fact, only true if

the identity 1 ∈ Fpn of the finite field is the identity of the semifield as well. If the semifield

has a different identity element, then the nuclei are mutliplicative cosets of fields obtained by

multiplying the elements of a subfield by this identity element. In the following, we assume

that we have accounted for this multiplication by the semifield’s identity element, and treat

the nuclei as subfields.

In our approach, we test whether a given subfield Fpm of Fpn belongs to e.g. the left

nucleus by taking some random element from Fpm that does not belong to any proper subfield

of Fpm and checking whether it belongs to this nucleus from the definition. If not, then the

nucleus cannot be Fpm ; conversely, if the tested element does belong to the nucleus, then the

nucleus must be Fpm . In this way, we are able to compute the nuclei much more quickly then

by testing each element of Fpn for membership in a given nucleus individually.
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The automorphism group of the associated linear code from [39] is computed in a straight-

forward way using the Magma algebra system. Unfortunately, this is only possible to do for F3n

with n ≤ 6; for higher dimensions, the memory needed to perform the computation becomes

prohibitive.

Another useful computational result that we provide in Table 3.5 are lists of representatives

from the right orbits (as defined in [31]) for all the representatives from Table 3.2. In the case

of the newly discovered planar functions over F36 (described in more detail in Section 4.2), the

number of orbits is always 62, and the representatives can be taken to be αi, where α is a

primitive element in F36 and i is from

0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 23, 24, 26, 28, 29, 30, 31, 32,

33, 35, 37, 38, 39, 40, 46, 47, 48, 49, 51, 53, 55, 56, 57, 58, 60, 69, 71, 73, 74, 76, 78, 80, 91, 92,

94, 96, 98, 101, 114, 119, 121, 137, 139.

We note that orbit representatives for all previously known planar functions for n ≤ 6

are given in [31], and so together with the results in Table 3.5 and the above paragraph, we

now know such representatives for all dimensions up to 8. As explained in [31], knowing these

representatives allows us to significantly reduce the computation time for checking equivalence

with these functions. In some cases (for functions 7.5, 7.6 and 8.8) we have not listed the

representatives from the orbits, but have denoted the partition by the star symbol (*). In the

case of n = 7, the orbit of each element x ∈ F3n is of the form {(±x)3
k

: 0 ≤ k ≤ n− 1}, i.e. it

consists of the cyclotomic coset of x and its additive inverse. In the case of n = 8, the orbits

have a similar form, but the situation is slightly more complicated, as some of the sets as for

n = 7 belong to a single orbit. Due to lack of space, we do not give the orbit representatives

in the table; they are the elements αi, where α is primitive in F38 , and i is as follows:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,

27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,

54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 75, 76, 78, 79, 81, 82, 83, 84,

85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 107, 109, 110,

111, 112, 113, 114, 115, 117, 118, 119, 120, 121, 122, 123, 125, 126, 127, 129, 130, 131, 132,

133, 134, 135, 136, 137, 139, 142, 143, 146, 147, 148, 149, 150, 151, 153, 154, 155, 157, 158,

159, 161, 162, 163, 164, 165, 166, 167, 171, 172, 173, 174, 175, 177, 178, 179, 181, 182, 183,

185, 186, 188, 189, 190, 191, 192, 195, 196, 197, 199, 200, 201, 202, 203, 204, 205, 207, 208,

209, 210, 211, 212, 213, 214, 215, 216, 217, 219, 220, 222, 224, 225, 226, 227, 228, 231, 232,

233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 244, 246, 247, 248, 249, 253, 254, 256, 257,

258, 260, 261, 263, 264, 266, 267, 269, 270, 271, 274, 275, 278, 281, 282, 284, 287, 289, 291,

292, 293, 294, 299, 304, 305, 306, 307, 308, 309, 311, 312, 314, 315, 317, 320, 321, 323, 324,

326, 329, 333, 334, 336, 340, 342, 346, 347, 349, 351, 359, 360, 361, 363, 365, 369, 372, 373,
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374, 377, 378, 380, 381, 382, 383, 386, 390, 394, 396, 397, 400, 401, 402, 405, 406, 412, 414,

415, 419, 420, 427, 429, 431, 434, 435, 439, 442, 445, 447, 449, 455, 456, 457, 461, 462, 469,

470, 472, 473, 475, 477, 493, 495, 496, 497, 498, 500, 504, 506, 507, 513, 515, 519, 520, 521,

523, 525, 529, 533, 539, 540, 544, 547, 552, 557, 558, 560, 564, 565, 567, 568, 576, 583, 584,

591, 593, 598, 601, 611, 613, 620, 621, 623, 637, 641, 643, 646, 649, 652, 653, 656, 658, 659,

667, 668, 670, 679, 681, 685, 694, 697, 699, 703, 704, 716, 721, 724, 736, 775, 784, 787, 791,

796, 807, 810, 816, 822, 830, 837, 845, 855, 865, 867, 880, 933, 935, 939, 954, 975, 986, 994,

1080, 1107, 1134, 1194.

Due to time constraints, we were not able to compute the orbits for function 8.10. We will

report on them in an upcoming work.
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Table 3.1: Representatives from the known infinite families over F3n for n from 3 to 6

Dim NO Functions Family

3
3.1 x2 Finite Field (U1)

3.2 x4 Albert (U2)

4

4.1 x2 Finite Field (U1)

4.2 x14 CM (U5)

4.3 x36 + 2x10 + 2x4 BH (U8)

5

5.1 x2 Finite Field (U1)

5.2 x4 Albert (U2)

5.3 x10 Albert (U2)

5.4 x10 + x6 + 2x2 CMDY[1] (U3)

5.5 x10 + 2x6 + 2x2 CMDY[2] (U4)

5.6 x14 CM (U5)

5.7 x90 + x2 ACW (S16)

5.8 x162 + x108 − x84 + x2 CK[1] (U10)

6

6.1 x2 Finite Field (U1)

6.2 x10 Albert (U2)

6.3 x162 + x84 + α58x54 + α58x28 + x6 + α531x2 Dickson (S13)

6.4 α75x2214 + x756 + α205x82 + x28 BH (U8)

6.5 2x270 + x246 + 2x90 + x82 + x54 + 2x30 + x10 + x2 LMPTB (U9)

6.6 x270 + 2x244 + α449x162 + α449x84 + α534x54 + 2x36 Ganley (S15)

+α534x28 + x10 + α449x6 + α279x2

6.7 x486 + x252 + α561x162 + α561x84 + α183x54 + α183x28 CG (S14)

+x18 + α561x6 + α209x2

6.8 x122 CM (U5)

α438x486 + α180x324 + α458x270 + α672x252 + α622x246

6.9 +α94x244 + α650x162 + α441x108 + α50x90 + x84 ZP (S12)

+α77x82 + α328x36 + α583x30 + α407x28 + α178x18

+α492x12 + α692x10 + α78x6 + α219x4 + α69x2

6.10 α91x30 + x10 + x2 New

6.11 α91x486 + x10 + x2 New
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Table 3.2: Representatives from the known infinite families over F3n for n from 6 to 8

Dim NO Functions Family

6

6.12 α182x82 + 2x10 + α91x6 + x2 New

6.13 α182x82 + 2x10 + α273x6 + x2 New

6.14 α91x486 + α182x90 + 2x10 + x2 New

6.15 α273x486 + α182x90 + 2x10 + x2 New

6.16 α273x246 + α182x82 + α91x6 + x2 New

7

7.1 x2 Finite Field (U1)

7.2 x4 Albert (U2)

7.3 x10 Albert (U2)

7.4 x28 Albert (U2)

7.5 x10 + x6 + 2x2 CMDY[1] (U3)

7.6 x10 + 2x6 + 2x2 CMDY[2] (U4)

7.7 x14 CM (U5)

7.8 x122 CM (U5)

8

8.1 x2 Finite Field (U1)

8.2 x14 CM (U5)

8.3 x122 CM (U5)

8.4 x1094 CM (U5)

8.5 α3994x244 + α5354x84 + 2x82 BH (U8)

8.6 α264x1458 + x82 Bierbrauer (U7)

8.7 α3698x2188 + α1058x108 + 2x82 BH (U8)

8.8 x4374 + x2430 + x2214 + 2x2190 + 2x1458 + 2x810 + x486 + 2x270 CHK (S17)

+x246 + x82 + x54 + x30 + x18 + x10 + x6 + x2

8.9 α3608x1458 + α3608x738 + α3810x486 + α3810x246 + α3413x162 CG (S14)

+α3413x82 + α3608x18 + α3810x6 + α2565x2

8.10 α164x1458 + α164x738 + α950x486 + α950x246 + α616x162 CG (S16)

+α616x82 + α164x18 + α950x6 + α6297x2
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Table 3.3: Invariants for the representatives over F3n for n from 3 to 6

Dim NO Left nucleus Middle nucleus Right nucleus Code invariant

3
3.1 33 33 33 4212

3.2 3 3 3 4121

4

4.1 34 34 34 51840

4.2 − − − 640

4.3 3 32 3 10368

5

5.1 35 35 35 588060

5.2 3 3 3 588060

5.3 3 3 3 588060

5.4 3 3 3 4860

5.5 3 3 3 4860

5.6 − − − 2420

5.7 3 3 3 53460

5.8 3 3 3 4860

6

6.1 36 36 36 6368544

6.2 32 32 32 6368544

6.3 3 33 3 5832

6.4 3 3 3 454896

6.5 3 3 3 17496

6.6 3 3 3 113724

6.7 3 3 3 2916

6.8 − − − 8736

6.9 3 3 3 227448

6.10 3 32 3 17496

6.11 3 32 3 17496

6.12 3 32 3 17496

6.13 3 32 3 17496

6.14 3 32 3 17496

6.15 3 32 3 17496

6.16 3 32 3 17496
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Table 3.4: Invariants for the representatives over F3n for n from 7 to 8

Dim NO Left nucleus Middle nucleus Right nucleus Code invariant

7

7.1 37 37 37 −

7.2 3 3 3 −

7.3 3 3 3 −

7.4 3 3 3 −

7.5 3 3 3 −

7.6 3 3 3 −

7.7 − − − −

7.8 − − − −

8

8.1 38 38 38 −

8.2 − − − −

8.3 − − − −

8.4 − − − −

8.5 3 3 3 −

8.6 32 32 32 −

8.7 3 3 3 −

8.8 3 34 3 −

8.9 3 34 3 −

8.10 3 34 3 −
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Table 3.5: Right orbit representatives for representatives from all known CCZ-classes of planar
function over F3n for n = 7, 8

Dim NO Number of orbits Orbit representatives

7

7.1 1 1
7.2 1 1
7.3 1 1
7.4 1 1
7.5 157 *
7.6 157 *
7.7 1 1
7.8 1 1

8

8.1 1 1
8.2 2 1, α
8.3 2 1, α
8.4 2 1, α
8.5 6 1, α, α2, α4, α5, α29

8.6 6 1, α, α2, α3, α4, α7

8.7 6 1, α, α2, α3, α6, α35

8.8 410 *
8.9 12 1, α, α2, α4, α7, α10, α13, α14, α17, α20, α41, α43

8.10 ? ?

30



Chapter 4

Expansion search for planar functions

Finding new inequivalent planar functions has proven to be a difficult task despite being in-

vestigated (in one form or another) since the beginning of the last century. We can see this

from the fact that we know very few instances of inequivalent families. One reason for this is of

course the vast search space of (n,m, p)-functions, rendering the chances of finding a new pla-

nar function quite small. In theory, we can find sporadic PN instances by exhaustive searches

over small subclasses of functions. This can be done in a multitude of ways, but no widely

successful method has been found so far. However, in the case of APN functions, a method

called expansion search, or polynomial expansion, has been used successfully to find short and

elegant instances of APN functions [2]. Because of the success of expansion search, one of the

main goals of this thesis was to evaluate how successful this approach would be in the case of

planar functions.

The concept of expansion search is as follows; we take an (n,m, p)-function F (x), repre-

sented as a univariate polynomial, and then we add a number of different terms to it, going

over all possible combinations of coefficients and exponents. If no new planar functions of the

form F (x) + c1x
e1 are obtained after adding one term, then we try adding two terms, i.e. we

consider all functions of the form F (x)+c1x
e1 +c2x

e2 ; then we try three terms, four terms, and

so forth, until the search becomes too slow. Whenever we reach the point where it is too slow,

we can choose to restrict the coefficients to a subfield. The exponents can also be restricted to

a smaller set in order to make the search faster.

The method of expansion search has various advantages when it comes to constructing

planar functions. One of them is that we always find the shortest and simplest polynomial

from its equivalence class first, as we are always adding the smallest number of terms first.

This approach is also a conceptually simple one and can be easily parallelized. Furthermore,

it can be optimized for example by using equivalence relations (as described in Section 2.4.4).
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Possible goals of this approach could be to find completely new planar polynomials (up to

equivalence), or to try to find simpler representations (up to equivalence) of already known

planar polynomials.

In this thesis, we evaluated the efficiency of this approach, and were able to find seven

new instances of planar functions (up to CCZ-equivalence) over F36 . We were unable to find

any new planar functions over F38 , but we did show that the sporadic instance (S17) over F38 is

equivalent to a function from the Zhou-Pott family. Furthermore, we obtained a significantly

simpler representation of this instance (compared to both (S17) and to Zhou-Pott) which we

generalized into an infinite family of planar quadrinomials (described in Chapter 5).

4.1 Implementation

The expansion search was implemented in Magma V2.24-3 [8] since the Magma programming

language makes it easy to work with functions in univariate polynomial form.

Our implementation was continuously improved and modified based on the results that we

observed. For instance, in the beginning we searched through all possible choices of coefficients

in F3n and all possible exponents up to 3n − 1. Obviously, this made the searches quite slow.

However, we observed that most of the functions that we found are quadratic, and so when

conducting searches with more terms, we restricted the exponents to quadratic ones, i.e. of

the form 3i + 3j, with 0 ≤ i, j ≤ n− 1. We note that the Coulter-Matthews planar functions,

i.e. (U5), are the only known instance of planar functions that are not quadratic, and finding

other such cases has been an open problem for quite some time. This suggests that the chances

of finding non-quadratic planar functions are very low. One can also use the case of APN

functions over finite fields of even characteristic as a comparison, where we currently know

thousands of CCZ-inequivalent APN instances, but only one instance that is not equivalent

to a monomial or a quadratic function; computational searches for APN functions are also

typically restricted to the quadratic case.

A further advantage that this restriction gives us, is that we only construct functions with

even exponents (since 3i + 3j is even for any choice of i and j). We know that a quadratic

function F (x) with zero constant term and even exponents is planar if and only if it is 2-to-1,

i.e. if F (0) = 0, and every non-zero element in the image set of F has precisely 2 pre-images

[40]. This allows us to check whether a function of this form is planar much more quickly than

in the general case. More precisely, we only have to count the number of distinct images of F ;

this operation is linear in the size of the field. On the other hand, checking the definition by

verifying that all derivatives of F are permutations is quadratic in the size of the field.
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This also allows us to use the much more efficient algorithm from [31] for classifying the

functions up to CCZ-equivalence. The reason for this is that the algorithm only applies to

functions having even exponents. When running the algorithm, we make use of the orbit

representatives that we have computed in Table 3.5 to reduce the running times (see [31] for

details).

Furthermore, we use the equivalence trick described in Section 2.4.4 to reduce the number

of coefficients that we have to consider for the first term that we add. This not only makes the

search faster but also reduces the number of functions that have to be classified.

An additional trick that we can use to quickly eliminate a large number of functions CCZ-

equivalent to monomials is the following. We know that any planar function with exponents in

a single cyclotomic coset must be equivalent to a monomial. For instance, if all the exponents of

F are in the coset of 2, then F is equivalent to x2, and can thus be removed from consideration.

As an example of the efficiency of this approach, in one of our searches in dimension 8, we

ended up with more than 300 000 planar function to classify. By removing the ones whose

exponents lie in a single coset, we were able to reduce the number of functions to around 30

000.

Even with all of these optimizations, the search eventually gets too slow. When it does,

we restrict the set of possible coefficients to a subfield, which allows us to consider more terms.

The results of our searches are summarized in the next section.

4.2 Computational results

The following tables summarize the expansion searches that we conducted, and the times nec-

essary to find and classify all the planar functions in each case. We have mostly concentrated

on dimension 8 since prior to the introduction of [31], comparing functions for equivalence over

F38 was impossible, and so we naturally could expect higher chances of finding new functions

there. We have also run some searches for lower dimensions, such as 5, in order to experimen-

tally gauge the efficiency of polynomial expansion. In particular, we note that planar functions

over F3n with coefficients in the prime field have been completely classified up to n = 7 [22],

and since 5 and 7 are prime numbers, searches over F35 and F37 cannot be restricted to any

other subfield. This is why we do not carry out any searches for n = 7, and concentrate on

n = 8 instead.

We also run some searches for n = 6 and, somewhat surprisingly, find several instances of
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planar functions that appear to be inequivalent to all the known representatives from Table

3.1. This is especially curious since we have run many more and more extensive searches for

n = 8, and found no new planar functions there. Our results are summarized below.

The entries in each of the following tables give the total time (in hours) necessary for

conducting the search and classifying the functions. In the case when a cell is labeled with

“N”, this means that no planar functions were found. Entries labeled with a star symbol (∗)
give the time of the expansion searches that we were not able to classify (due to lack of time).

Entries marked with “-” means that no expansion searches where run for the given function

with the given number of terms.

The cells in the tables below are given different colors depending on the restrictions used

for the coefficients in the expansion. For some expansion searches we had to restrict the

coefficients to a certain subfield, in order to obtain the results within a reasonable amount of

time. For example, when we tried to run expansion search on x2 in dimension 8 with two terms

and coefficients from F38 , just the expansion search took 269.3 hours and the classification of

the expansion results ran for more than 50 days without being close to finishing.

We also recall that the exponents used in the expansion search are always quadratic.

In the tables showing the results for dimension 6 and 8, cells are colored as follows:

• Results in cells marked with green represent expansion searches where the coefficients

were from the field F36 for dimension 6 and F38 for dimension 8.

• Results in cells marked with orange represent expansion searches where the coefficients

were from the field F33 for dimension 6 and F34 for dimension 8.

• Results in cells marked with yellow represent expansion searches where the coefficients

were from the field F32 .

• Results in cells marked with blue represent expansion searches where the coefficients

were from the field F3.

Table 4.1: Expansion search and classification time for dimension 6 (time in hours)

Dim 6 One term Two terms Three terms Four terms Five terms

x2 0 49 0.9 52.7 -

x10 0 55 11.2 27.6 0.4
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Table 4.2: Expansion search and classification time for dimension 8 (time in hours)

Dim 8 One term Two terms Three terms Four terms Five terms

x2 8.8 24.8 79.9 − −

x4 N 4.9 17.7 642.2 73.6

x28 N 682.4 7.2* 640.5* −

x82 17.4 266.1 901.4* 757.2 87.4

The following subsections describe in more detail the functions that we have observed in

dimension 6 and 8.

4.2.1 Dimension 6

In dimension 6, we find seven new CCZ-classes of planar functions. All of these can be obtained

by expanding x2 and x10 by two or three terms with coefficients in F32 . Two of the classes can

be represented by trinomials, namely

f1(x) = α91x30 + x10 + x2

and

f2(x) = α91x486 + x10 + x2,

where α is a primitive element of F36 . Note also that α91 is primitive in F32 , and so all the

coefficients of these representations lie in the subfield F32 .

The remaining five classes do not appear to have a trinomial representation, but can be

expressed using quadrinomials with coefficients in F33 . These are:

f3(x) = α182x82 + 2x10 + α91x6 + x2,

f4(x) = α182x82 + 2x10 + α273x6 + x2,

f5(x) = α91x486 + α182x90 + 2x10 + x2,

f6(x) = α273x486 + α182x90 + 2x10 + x2,

f7(x) = α273x246 + α182x82 + α91x6 + x2.

We have verified that these functions are inequivalent to each other both using the dupli-

cate equivalence algorithm from [31], as well as the code isomorphism test.
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All of the seven classes represented by these functions have a middle nucleus of size 9,

and a left and right nucleus of size 3, and all of them have exactly 62 right orbits. The orbit

representatives are given above around the start of Section 3.1.

Furthermore, the order of the automorphism of the associated code is equal to 17496 for

all seven classes. We note that the only function from the previously known planar instances

to have this value is 6.5; however, that function has a middle nucleus of size 3, whereas the

aforementioned functions have a middle nucleus of size 9, and so their inequivalence to the

known planar functions can also be established based on invariants alone.

4.2.2 Dimension 8

Throughout all of our searches in F38 , we were not able to find any new planar functions (up

to equivalence). However, we did find the planar quadrinomial

x246 + x82 + 2x6 + x2 (4.1)

which is equivalent to the sporadic instance (S17) with univariate form

x4374 + x2430 + x2214 + 2x2190 + 2x1458 + 2x810 + x486+

2x270 + x246 + x82 + x54 + x30 + x18 + x10 + x6 + x2.

We can also observe that the quadrinomial is CCZ-equivalent to an instance from the Zhou-Pott

family; nonetheless, the latter has a significantly more complicated univariate representation.

In the next chapter, we describe how we generalize this function into an infinite family of

planar quadrinomials. While this family intersects the Zhou-Pott functions (up to equivalence)

in dimensions 4 and 8, it is not clear at present whether this will still be the case for higher

dimensions. We also expect that our construction may be further generalized, and so might

provide instances of functions whose CCZ-classes lie outside the Zhou-Pott family.
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Chapter 5

New infinite family of planar functions

In the following, we define a family of quadrinomials which contains the one that we found in

F38 , i.e. (4.1), as a special case, and we prove their planarity.

Recall that the derivative of F : F3n → F3n in direction a ∈ F3n can be defined as

∆aF (x) = F (a+ x)− F (a)− F (x).

For convenience, we define the conjugate of an element x ∈ F3n for n = 2m as x = x3
m

.

The proof of planarity is contained in the following theorem.

Theorem 1. Let n = 2m = 4k for some k ∈ N, and let us denote q = 3m. Then the function

F (x) = x2 − (x2)3 + xq+1 + (xq+1)3 (5.1)

is planar over F3n.

Proof. Let a ∈ F3n . Then the derivative of F has the form

∆aF (x) = A− A3 +B +B3, (5.2)

where A = (x+ a)2− x2− a2 = 2ax = −ax and B = (x+ a)q − xq − aq = xaq + xqa = xa+ xa.

Since F is quadratic, it suffices to show that ∆aF (x) = 0 implies a = 0 or x = 0.

Since B = xa+ xa = xa+ xa = B, we see that B ∈ Fq. Since A−A3 +B +B3 = 0, this

implies that A−A3 ∈ Fq as well, i.e. A−A3 = δ for some δ ∈ Fq. This, however, implies that

A ∈ Fq, which can be seen as follows: the absolute trace of the left-hand side is Tr(A−A3) = 0,

so the same must be true for the right-hand side as well, i.e. we must have Tr(δ) = 0. This is
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satisfied by precisely one third of the elements δ ∈ F3m . Furthermore, x 7→ x − x3 is a 3-to-1

function over Fq, and any element A ∈ Fq satisfies A−A3 ∈ Fq. This means that the elements

A ∈ Fq account for all possible solutions of A − A3 ∈ Fq, and therefore we must necessarily

have A ∈ Fq. This then means that A = −ax ∈ Fq, so that also ax ∈ Fq.

By substituting A = −ax and B = ax+ ax in (5.2), we get

−ax+ a3x3 + ax+ ax+ a3x3 + a3x3 = 0;

regrouping the terms, we obtain

(a− a)x+ (a3 + a3)x3 + ax+ a3x3 = 0. (5.3)

The conjugate of (5.3) is

(a− a)x+ (a3 + a3)x3 + ax+ a3x3 = 0. (5.4)

Adding (5.3) to (5.4), we obtain

(−a− a)x+ (a3 − a3)x3 + (−a− a)x+ (−a3 + a3)x3 = 0. (5.5)

This becomes

(a+ a)(x+ x) = ((a− a)(x− x))3. (5.6)

Since ax ∈ Fq, we can write ax = ε for some ε ∈ Fq. Then we have a = ε/x. Substituting

this into (5.6), we get ( ε
x

+
ε

x

)
(x+ x) =

(( ε
x
− ε

x

)
(x− x)3

)
,

which becomes
ε(x+ x)2

xx
= −

(
ε(x− x)2

xx

)3

.

This simplifies to

(x+ x)2 = −ε
2(x− x)6

(xx)2
.

Substituting ax for ε in this, we arrive at

−a2 =

(
(x+ x)xx

x(x− x)3

)2

,

that is,

−a2 =

(
(x+ x)x

(x− x)3

)2

.
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We have an equation of the form −a2 = X2 for some expression X, i.e. a2 = −X2. The

solutions to this equation are ±ωX, where ω is a square root of −1, i.e. ω2 = −1. We can

take ω = α(3n−1)/4 since then we see that ω2 = α(3n−1)/2, and this must be −1 since its square

is (α(3n−1)/2)2 = α3n−1 = 1, and since clearly α(3n−1)/2 6= 1.

In other words, we have

a = ±ω (x+ x)x

(x− x)3
.

Multiplying both sides by x, we get

ax = ±ω (x+ x)xx

(x− x)3
.

Since ax ∈ Fq, we must have

ω
(x+ x)xx

(x− x)3
∈ Fq;

and since x+ x and xx are in Fq for any x, this is equivalent to

ω

(x− x)3
∈ Fq. (5.7)

Since the dimension n is doubly even, i.e. n = 2m = 4k, we have ω = ω. This is because

ω = ωq = ω · ωq−1 = ω · (−1)(q−1)/2; thus, ω is either ω or −ω. When q = 3m for even m, we

can see by induction on m that (q − 1)/2 is even, and so ω = ω. Thus, (5.7) is equivalent to

ω

(x− x)3
=

ω

(x− x)3
,

that is, x − x = x − x (since x 7→ x3 is a permutation of F3n), i.e. x = x, i.e. x ∈ Fq. Since

ax ∈ Fq, this also means that a ∈ Fq as well. Substituting x = x and a = a in (5.3), we have

−a3x3 + ax+ a3x3 = 0,

that is

ax = 0,

implying that either a = 0 or x = 0. Thus, for a 6= 0, ∆aF (x) = 0 only has x = 0 as a solution,

and hence F is planar.

It only remains to show that for n = 8, the function F (x) above is CCZ-equivalent to the

sporadic instance S18(x) from [19]. Using the algorithm from [31], we can see that taking

L1(x) =α3936x2187 + α5084x729 + α2132x243 + α1804x81 + α820x27+

α1804x9 + α5412x3 + α5084x
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and

L2(x) = α3485x729 + α3567x81 + α6273x9 + α3567x

where α is a primitive element of F38 , we have L1 ◦F ◦L2 = S18, so that F and (S17) are indeed

equivalent.

Unfortunately, this family is not new (at least for n ≤ 8) up to equivalence, since we can

observe that for both n = 4 and n = 8, its instances are equivalent to ones from the Zhou-Pott

family. Nonetheless, (S17) was listed as a sporadic instance in [37], and so we have resolved

the problem of classifying it into an infinite family which had been open since its introduction

in 2007.

More precisely, we can show that the instance from our quadrinomial family is linear-

equivalent to

G(x) = α602x2268 + α3882x2188 + α411x162 + α6042x108 + α2542x82 + α2762x28 + α491x2, (5.8)

which is a representative from the Zhou-Pott family that we obtain for σ(x) = x3 and k = 4.

Taking

L′1(x) = α3478y2187 + α1518y729 + α1518y243 + α1518y81 + α1716y27 + α4798y9 + α4798y3 + α4798y

and

L′2(x) = α779y243 + α6233y81 + α4059y3 + α3033y,

we can see that L′1(x) ◦ F ◦ L′2(x) = G(x).

We note that the Zhou-Pott instance (5.8) is significantly simpler than the sporadic in-

stance (S17) (the former having only 7 terms, while the latter has 16 terms). The representation

coming from our quadrinomial family is simpler still, since not only does it have four terms,

but all of the coefficients lie in the prime field F3.

We also remark that the family presented in the above theorem may very well be susceptible

to further generalizations; for instance, it could potentially be adapted to charactristics other

than 3, or to a wider family of functions that may include other CCZ-classes. Whether our

family continues to intersect Zhou-Pott in dimensions higher than 8 is anothr question that we

leave for future work.
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Chapter 6

Conclusion and future work

We provided a classification up to CCZ-equivalence of all known planar functions (from both

infinite families and sporadic instances) over F3n for n ≤ 8. We computed values of the known

invariants for each equivalence class, and compiled all the data into tables that we hope will

facilitate searches for new planar functions undertaken by researchers in the future.

We ran numerous expansion searches for planar functions in order to test their efficiency,

and found seven new instances (up to CCZ-equivalence) of planar functions over F36 . We also

concluded that no new planar functions (up to equivalence) can be found in many cases. We

described tricks and methods that can be used to speed up the search and reduce the number

of resulting functions. We found a shorter representation for the equivalence class of a known

sporadic instance over F38 , and generalized it into an infinite family of planar quadrinomials,

as well as shown that it is equivalent to an instance from the Zhou-Pott functions in small

dimensions. The question of whether this quadrinomial family is new in general is left open.

We note that the problem of classifying (S17) into an infinite family had been open since its

introduction by Coulter et al. in 2007. In [39], it was pointed out that (S17) was not contained

in any of the known infinite families of planar functions; nonetheless, we have shown that it is

equivalent to a representative from the Zhou-Pott family (S12).

There are many directions left for future work. Using newly developed approaches such

as [31], it might be possible to extend the classification of the known functions to higher

dimensions, such as 9 or 10, and to characteristics other than 3. More expansion searches can

be run, both for dimensions that have not been covered by our searches (including the prime

dimensions 5 and 7, as well as dimensions greater than 8), as well as for more terms and a

broader range of coefficients and exponents in the dimensions that we investigated.

It might be worth considering the structure of the newly introduced family, and considering
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whether it can be generalized to obtain further constructions. The properties of this family

and its exact relationship to e.g. the Zhou-Pott family, still need to be investigated.
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