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Abstract

Let σ, ρ be non-empty subsets of N, a (σ, ρ)-dominating set D in a graph G is a subset
of V (G) with the following property: ∀v ∈ V (G) if v ∈ D then |N(v) ∩ D| ∈ σ. If v ̸∈ D
then |N(v) ∩ D| ∈ ρ. Problems on these (σ, ρ)-dominating sets capture many well known
problems, such as the Independent Set problem and the Dominating Set problem.

We will show the W [1]-hardness of Min-(σ, ρ)-DS param. by l. mim-width + sol.
size for all σ, ρ ⊆ N, where σ and ρ are both non-empty and 0 ̸∈ ρ, and that there are no
algorithms solving Min-(σ, ρ)-DS param. by l. mim-width + sol. size in no(w/ log w)

time, unless ETH is false, for any graph G with |V (G)| = n and with a linear branch
decomposition with mim-width w. Furthermore we will also show the W [1]-hardness of
Max-(σ, ρ)-DS param. by l. mim-width + sol. size whenever σ and ρ are both finite
and ρ ̸= {0}, and that there are no algorithms solving Max-(σ, ρ)-DS param. by l.
mim-width + sol. size in no(w/ log w) time, unless ETH is false.

Moreover we will show that there are no algorithms for Independent Set on H-graphs
running in time no(h/ log h), where h = |E(H)|, unless ETH is false.
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1 Introduction
Graphs are an excellent way to abstractly represent binary relations. They are complex enough
to have a wide array of applications, while also being simple enough to be able to be adapted to
more specific needs. The applications of graphs often require having problems solved on them,
and these problems are often of interest outside their application.

Not every problem is easy to solve fast, and often the problems that we do not know how
to solve fast are of particular interest. Such problems can sometimes be classified into various
groups according to their complexity. However, a problem might only be difficult for general
inputs and be easy for others, as if we know more about the problem it might be easier to solve.
One way to represent this notion of having information about the input can be represented by
(width) parameters. The width parameter of particular interest in this paper is the maximum
induced matching width, or mim-width for short, which measures the size of the largest induced
matching in cuts induced by recursive decompositions of the vertex set of the input graph.

Say we are given a list of speakers who would like to present their results, however each
speaker is only available in a certain time frame, and we only have one room. We would then
like to find a set of speakers such that no two speakers present at the same time. We clearly
would like to have as many people as possible present, as we have rented the room for the
entire day. The problem of finding such a set can be modelled using interval graphs, where the
intervals are the time frames the speakers are available, and two speakers have an edge between
them if their available time frames overlap. Then the problem reduces to finding the maximum
independent set in the interval graph.

Interval graphs can easily be shown to have mim-width of at most 1, and the problem of
finding a maximum independent set on any graph with bounded mim-width can be done in
polynomial time. We can therefore solve our problem concerning speakers in polynomial time
using mim-width. Interval graphs can in one sense be generalized to graphs of bounded mim-
width, and independent sets can be generalized to (σ, ρ)-dominating sets, which will be explained
later.

Interval graphs are one example of a graph class, where a graph class is a family of graphs
having some common attribute(s). In general there are many graph classes which have bounded
mim-width, and there are many problems solvable in polynomial time given a graph of bounded
mim-width. Therefore algorithms for graphs with bounded mim-width often give algorithmic
results on several graph classes, and unifies the study of algorithms on certain graph classes
through the study of graph algorithms parameterized by mim-width.

In problems which are not parameterized there two are large groups of problems of particular
interest: problems solvable in polynomial time P and problems solvable in non-deterministic
polynomial time NP . A third group related to NP is the class of NP -hard problems. NP -
hard problems are problems which can solve any problem in NP , we then think of all NP -hard
problems which also are in NP as the most difficult problems in NP . Because of how powerful
the NP -hard problems are there are many people think that there are no NP -hard problems
which also are in P . Analogous to this we have the class of FPT and W [1]-hard, where many
think that W [1]-hard problems are not in FPT .

However unlike P and NP , where for problems in P we have fast algorithms and for problems
in NP -hard we do not have fast algorithms – and might not expect that fast algorithms exist
– there are two classes which have polynomial-time algorithms solving them in parameterized
complexity: FPT and XP . In both cases the speed of the algorithm depends on a parameter,
which is a natural number describing something either about the desired solution, or something
about the complexity of the input. Problems in XP are polynomial-time solvable where the
degree of the polynomial depends on a parameter, and problems in FPT are polynomial-time
solvable where the degree of the polynomial does not depend on the parameter. An example
of FPT -time is 2kn2, and an example of XP -time is n2k+2, it can then be showed for a large
enough value of n that 2kn2 < n2k+2, and in general XP -time is much slower, for n = 4, n2k+2
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is 23k times larger than 2kn2.
In analogy to the theory of NP -hardness where under the assumption that P ̸= NP we rule

out the existence of a polynomial time algorithms for NP -hard problems, we also rule out FPT
algorithms for W [1]-hard problems. Showing that a problem is W [1]-hard can be done by a
parameterized reduction from problem A to problem B, taking an instance of problem A which
is W [1]-hard and we therefore think is probably not FPT , and using a FPT -time algorithm
to turn it into an equivalent instance of the problem B we would like to show is probably not
FPT . Then if B is FPT then so must A be as FPT -time + FPT -time is still FPT -time. We
do not think A is FPT , therefore we can be as sure that B is not FPT .

Moreover we would often like to know how fast a problem theoretically can be solved in
terms of concrete running times. For instance if there exists an algorithm for a problem running
in nk time, we would like to know if the problem can be solved in no(k) time, or if the algorithm
is optimal. A common hypothesis which is often used to this end is the exponential time
hypothesis, or ETH for short. ETH essentially states that no algorithms can solve the 3-SAT
problem in 2o(n) time, where n is the number of variables of an instance of 3-SAT. Where 3-SAT,
the boolean satisfiability problem where each clause has at most three variables, was one of the
first problems proved to be NP -hard. Then if we have a reduction from 3-SAT to another
problem B, then algorithms solving the problem B inherits a time upper bound depending on
the specifics of the reduction.

We would like to know the complexity class of any problem, but this might not always be easy.
If no FPT algorithms can be found for a problem we would then like to have some reason for
why it is difficult to find. If we then show the problem is W [1]-hard we then get strong evidence
that it is indeed difficult – possibly impossible – to find such an algorithm. Grouping many
similar problems into one more general problem then allows one to make statements about many
problems which all have proven to be difficult to find FPT algorithms for. This then allows us to
make statements about a wide array of problems using (hopefully) fewer arguments. One such
generalisation, and the generalisation of interest here, are the (σ, ρ)-dominating set problems.

The dominating set problem asks given a graph G and an integer k, if G has a set of a size at
most k such that every vertex not in the set is adjacent to at least one vertex in the set. There
also exist similar problems asking if there exists some set in G of size at most k such that every
vertex not in the set is adjacent to a given amount of vertices in the set. One such example is
the perfect dominating set problem where every vertex not in the set is adjacent to exactly one
vertex in the set.

Other examples of dominating set-like problems have additional requirements on how the
vertices in the dominating set interact. For instance the dominating induced matching problem
asks if there exists a dominating set in G of size at most k, which is also an induced matching.
That is every vertex in the set has exactly one neighbour also in the set.

Finally there are dominating sets which generalizes the dominating set by requiring vertices
to be dominated by a certain amount of vertices, and have additional requirements on how to
vertices in the dominating set interact. One example of such a problem is the perfect code
problem, which asks given a graph G if there is a perfect dominating set in G which is also an
independent set in G.

The (σ, ρ)-dominating set is a type of set which can capture all the generalisations of the
dominating set described above, where σ and ρ are sets of natural numbers. σ describes how
vertices in the dominating set interact with the other vertices in the dominating set, and ρ
describes by how many vertices a vertex outside the dominating set should be dominated by.
In particular given a graph G a (σ, ρ)-dominating set in G is a set D ⊆ V (G), such that for all
vertices v in D, |N(v) ∩ D| ∈ σ, and for all vertices v not in D, |N(v) ∩ D| ∈ ρ. The (σ, ρ)-
dominating set problems we will consider are minimisation and maximisation (σ, ρ)-dominating
set problems asking if there is a (σ, ρ)-dominating set in G of size at most k or at least k
respectively, for some k ∈ N.
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The goal of this thesis is to show that all non-trivial minimisation and many non-trivial
maximisation (σ, ρ)-dominating set problems parameterized by linear mim-width and solution
size are W [1]-hard, and therefore probably not FPT . And in addition for the same non-trivial
minimisation and maximisation (σ, ρ)-dominating set problems we show W [1]-hardness for, we
show they cannot be solved in no(w/ log w) time, where w is the mim-width of a linear branch
decomposition given with the graph G and n = |V (G)|, unless ETH is false.

1.1 Related Work

Many problems which can be formulated using (σ, ρ)-dominating sets are at least W [1]-hard
Downey and Fellows (1992, 1999); Bodlaender and Kratsch (2001); Downey and Fellows (1995);
Cesati (2002); Moser and Thilikos (2009); Golovach et al. (2012). In addition the NP -hardness
of several families of (σ, ρ)-dominating set problems have been studied in Telle (1994).

Various width measures have been studied in relation to (σ, ρ)-dominating set problems.
(σ, ρ)-dominating set problems are FPT when parameterized by tree-width Telle and Proskurowski
(1997), and FPT when parameterized by clique-width Bui-Xuan et al. (2010). In addition (σ, ρ)-
dominating set problems are XP when parameterized by mim-width Bui-Xuan et al. (2013).

The W [1]-hardness of the Dominating Set and Independent Set problems parameterized
by both mim-width and solution size, has been studied in Fomin et al. (2020). Furthermore some
(σ, ρ)-domination problems for some pairs of σ and ρ have been further studied in Jaffke et al.
(2019).

2 Preliminaries

2.1 Your Sets are My Sets

We use the following notation: N = {0, 1, 2, 3, ...}, [n] = {1, 2, ..., n}, [n]0 = {0, 1, 2, ..., n}.

2.2 Graph Theory

Basic familiarity with graph theory is assumed, we refer to the book Diestel (2012) for terms
and concepts.

A graph G is a pair of a vertex set V (G) and an edge set E(G) ⊆ V (G) × V (G) connecting
the vertices. We say u ∈ V (G) is adjacent to v ∈ V (G) if uv ∈ E(G).

All graphs we will consider are finite, simple, and have no loops. That is if G is a graph
|V (G)| is finite, there are no identical edges in E(G), and for all v ∈ V (G) the edge vv ̸∈ E(G).

Let the neighbourhood of any vertex u ∈ V (G) be N(u) = {v | uv ∈ E(G)}. Furthermore
the closed neighbour of u is N [u] = N(u) ∪ {u}. The neighbourhood of a set A ⊆ V (G) is
N(A) = ⋃

v∈A N(v) \ A, and the closed neighbourhood of set A is N [A] = N(A) ∪ A.
We say that u is a false twin of v if N(u) = N(v), and u is a true twin of v if N [u] = N [v].
The degree of a vertex u ∈ V (G) is d(u) = |N(u)|
A graph G is connected if for all u, v ∈ V (G) there is a walk from u to v in G, where a walk

from u to v is a sequence of edges, (v1v2, v2v3, ..., vk−1vk) in G where for all i ∈ [k − 1]0 the edge
vivi+1 ∈ E(G), and v1 = u and vk = v.

A cycle is set a of vertices v1, v2, ..., vk for which (v1v2, v2v3, ..., vk−1vk, vkv1) is a walk from
v1 to v1.

A subgraph H of a graph G has V (H) ⊆ V (G) and E(H) ⊆ E(G). The induced subgraph
G[A], where A ⊆ V (G), is the graph G[A] = (A, E(G) ∩ (A × A)). Furthermore the induced
bipartite graph G[A, B] is the graph G[A, B] = (V (G), E(G) ∩ (A × B).

A cycle in a graph G is a set of vertices {v1, ..., vk} such that vivi+1 ∈ E(G) for all i ∈ [k − 1]
and v1vk ∈ E(G).
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A tree is a graph T which does not have any cycles as a subgraph and is connected. The
vertex ℓ ∈ V (T ) is a leaf if the degree of ℓ is 1, and we denote the set of leaves of T by
L(T ) = {ℓ ∈ V (T ) | d(ℓ) = 1}.

A path is a graph P is connected graph such that exactly two vertices have degree 1 and the
rest of the vertices have degree 2. In addition a single vertex is a path. A path with n vertices
is Pn.

For a graph G and an edge e ∈ E(G) we denote by G − e the graph G′ = (V (G′), E(G′)),
where V (G)′ = V (G) and E(G′) = E(G) \ {e}.

A partition of a set A is some sets A1, ..., Ak where Ai ∩ Aj = ∅, for all distinct i, j ∈ [k],
and ⋃

i∈[k] Ai = A.
Let G be a graph. A matching M is a set of edges such that if ab ∈ M then ac ̸∈ M and

db ̸∈ M for all c, d ∈ V (G) such that c ̸= b and d ̸= a. An induced matching M is a matching
such that if ab ∈ M then ac, db ̸∈ E(G).

Let G be a graph. An independent set in G is a set I where for all a, b ∈ I the edge
ab ̸∈ E(G). A clique in G is a set C where for all distinct a, b ∈ C the edge ab ∈ E(G).

A subdivision of an edge uv ∈ E(G) in a graph G is the operation adding the vertex u1 to
V (G) with the edges uu1 and u1v, and removing uv from E(G).

A subdivision of a graph H is a graph H ′ obtained from H by subdividing any edges in H
any number of times.

An H-graph G is a graph where each vertex v in V (G) has a model Mv ⊆ V (H ′) such
that H[Mv] is a connected subgraph of H ′, for a subdivision H ′ of the graph H. Two vertices
u, v ∈ V (G) have an edge in between them in G if and only if Mu ∩ Mv ̸= ∅.

Let G be a graph and let X = {X1, ..., Xp} be a partition of V (G). Then the quotient graph
G/X is a graph where V (G/X) = X and XiXj ∈ E(G/X) for all distinct i, j ∈ [p] if there is
an edge xixj ∈ E(G) for some xi ∈ Xi and xj ∈ Xj .

We say that the graph G is isomorphic to H if there exists a function f : V (G) → V (H)
such that whenever ab ∈ E(G) then f(a)f(b) ∈ E(H).

2.3 Exponential Time Hypothesis (ETH)

ETH is a hypothesis roughly conjecturing that there are no algorithms solving 3-SAT in 2o(n)

time, where n is the number of variables of the instance.
More precisely let δ3 be the infimum – the greatest lower bound – of the set

{c | there exists an algorithm solving 3-SAT in O(2c·n · nO(1)) time}

Then ETH conjectures that δ3 > 0.
ETH is often used to argue lower bounds on the running time of algorithms solving certain

problems. This is done through reductions from ETH (or any problem with an established lower
bound) to the problem we would like to argue the lower bound on. In particular we will use that
unless ETH is false, the Partitioned Subgraph Isomorphism problem cannot be solved in
no(|E(K)|/ log |E(K)|) time Marx (2010).

2.4 Parameterized Complexity

For terms and concepts in parameterized complexity we refer to Downey and Fellows (2013);
Cygan et al. (2015).

A parameterized problem is a language L ⊆ Σ∗ × N, where Σ is a finite alphabet. For any
instance (A, k) of a parameterized problem we call k the parameter.

The set FPT consists of all parameterized problems L which for any input (A, k) it can be
determined in in f(k) · nO(1) time, where k is a parameter and n = |A|, whether (A, k) ∈ L or
not.
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Figure 1: A graph along with one possible branch decomposition of that graph with L given
implicitly.
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A parameterized reduction from a parameterized problem X to a parameterized problem Y
is an algorithm that given an instance (A, k) of X computes an instance (B, l) of Y in f(k) ·nO(1)

time where n = |V (A)| and f(.) is some computable function, such that

1. (A, k) is a yes-instance of X if and only if (B, l) is a yes-instance of Y

2. l ≤ g(k), for some computable function g(.)

We omit the definition of W [1]-hardness, but we say a problem is W [1]-hard if under a
complexity theoretic assumption it is not FPT . Furthermore the property of a problem be-
ing W [1]-hard transfers to another problem using parameterized reductions in the same way
the property of a problem being NP -hard transfers to another problem using polynomial-time
reductions.

In particular for two parameterized problems X and Y , if X is W [1]-hard and there exists
a parameterized reduction from X to Y , then X can be solved in FPT time whenever Y can.
This is as any instance of X can be transformed into an equivalent instance of Y in FPT time,
and the parameter of the instance of Y remains bounded. Therefore the assumption that X is
not FPT transfers to problem Y , and therefore Y is also W [1]-hard.

2.5 The Mim-Width Parameter

The mim-width parameter was introduced by Vatshelle (2012).
A branch decomposition of a graph G is a pair (T, L), where T is a tree where all of its

vertices have degree at most 3, and L a bijection mapping the vertices of the graph V (G) to the
leaves of the tree T . See Figure 1.

For a graph G and A, B ⊆ V (G) with A ∩ B = ∅ we define

cutmimG(A, B) = max{|M | | M is an induced matching in G[A, B]}

Then we define the mim-width of (T, L), in symbols mimwG(T, L) or simply mimw(T, L) if
the graph is clear from context, to be

max
e∈E(T ),{T1,T2}=cc(T −e)

cutmimG(L−1(L(T1)), L−1(L(T2)))

where cc maps a graph to the set of its connected components.
Furthermore, we define the mim-width of a graph G, mimw(G), to be the minimum mim-

width over all branch decompositions of G.
A type of branch decomposition of particular interest is when T is a caterpillar graph, we

then call the branch decomposition for a linear branch decomposition. T is a caterpillar when it
has a path P as a subgraph and each vertex of V (T )\V (P ) is only adjacent to a single vertex in
P . The mim-width of a linear branch decomposition is called linear mim-width, and this linear
branch decomposition is in fact equivalent with a linear ordering on the vertices of the graph.
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Figure 2: A graph ordered by the numbers in the vertices, where the coloured lines indicate
all possible (A, B) cuts induced by the ordering. And an illustration of cutmimG(A, B) where
A = {v | v ≤ 4} and B = V (G) \ A.
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Graph Class Vertex Model Mim-Width Bound
Circular Arc arc on a circle 2
Circular Permutation line between two concentric circles 2
H-Graphs S ⊆ V (H ′) s.t. H ′[S] is connected 2 · |E(H)|
Interval intervals on the real line 1
k-Polygon lines in a regular k-polygon 2k
Permutation line between two lines 2

Table 1: H ′ is the graph obtained from H by subdividing any amount of edges any amount
of times. All the mim-width bounds come from Belmonte and Vatshelle (2013), except for the
H-graph mim-width bound which comes from Fomin et al. (2020).

Therefore for linear mim-width instead of considering branch decompositions of a graph we
can consider linear orderings of the vertex set of the graph. We denote the linear mim-width of
a graph G by linmimw(G). And for some linear ordering Λ of G we say the mim-width of Λ is
mimwG(Λ) or mimw(Λ) if the graph is clear from context.

For an example of a graph with a linear ordering see Figure 2.
There are many graph classes which have bounded mim-width. Among them are many

intersection graphs, whose edges are defined by intersections between models of their vertices.
Table 2.5 show many intersection graph classes which have bounded mim-width. This implies

polynomial time algorithms for problems in XP or FPT when parameterized by mim-width,
on graphs where the graph is in one of these graph classes and for which either the vertex
models are given or can be computed in polynomial time. In particular this implies polynomial
time algorithms for all (σ, ρ)-dominating set problems when the vertex model is given or can be
computed in polynomial time, as (σ, ρ)-dominating set problems parameterized by mim-width
is XP by Bui-Xuan et al. (2013).

2.6 The (σ, ρ)-Dominating Set

(σ, ρ)-dominating sets were introduced by Telle and Proskurowski (1997), and generalize both
dominating set problems and the independent set problem.

Let σ, ρ be non-empty subsets of N, a (σ, ρ)-dominating set D in a graph G is a subset of
V (G) with the following property: ∀v ∈ V (G) if v ∈ D then |N(v) ∩ D| ∈ σ. If v ̸∈ D then
|N(v) ∩ D| ∈ ρ.

Many maximisation and minimisation problems formulated in this manner are not trivial, in
the sense that they are NP -hard and W [1]-hard with solution size as a parameter, as discussed
in Section 1.1. Some of the exceptions where the min. / max. (σ, ρ)-dominating set problems
are polynomial-time solvable for certain σ and ρ will be discussed in the next subsection 2.7.
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Figure 3: Example of a (σ, ρ)-dominating set S.
S V(G)\S

2

3

1

1
0

3

1

1,2,3 ∈ ρ
0,1,3 ∈ σ

For an example of a (σ, ρ)-dominating set see Figure 3.

2.7 Trivial (σ, ρ)-Dominating Set Problems

As discussed many problems which can be formulated with (σ, ρ)-dominating sets are difficult
(NP -hard and W [1]-hard). However, certain problems are trivial, in the sense that they are
polynomial time solvable. We will now discuss some of these trivial problems.

2.7.1 Minimisation

Whenever 0 ∈ ρ notice the empty set will always be a solution of the Min-(σ, ρ)-DS problem,
and will be the smallest solution as the empty set has size 0. Clearly this case is then trivial as
any algorithm could simply always conclude that the empty set is a valid solution and output
accordingly.

Note that these are the only trivial cases for minimisation, as in particular the rest are
W [1]-hard by this thesis.

2.7.2 Maximisation

If σ = N then notice the entire graph will always be a solution of the Max. (σ, ρ)-Dominating
Set problem. Furthermore it is not possible to obtain a larger solution, therefore any algorithm
can always conclude that the entire vertex set of the input graph is a valid solution and output
accordingly.

If ρ = {0} then notice any solution would have to consist of connected components of the
input graph. Then for two connected components C1 and C2 of the input graph, whether or not
C1 is a (σ, {0})-dominating set is independent of whether or not C2 is a (σ, {0})-dominating set.
Furthermore for any connected component C of the input graph we can verify in polynomial
time whether or not C is a (σ, {0})-dominating set.

Therefore we can use a greedy algorithm to solve the problem, by first identifying all con-
nected components of the input graph followed by greedily including them if they are (σ, {0})-
dominating sets. This greedy algorithm then clearly runs in polynomial time and indeed finds
the maximum size of a (σ, {0})-dominating set. Therefore we do not expect that the maximi-
sation of (σ, {0})-dominating sets is NP -hard nor W [1]-hard when parameterized by solution
size.

If σ = N+ then notice every isolated vertex in G cannot be in any (σ, ρ)-dominating set.
Furthermore let I = {v ∈ V (G) | deg(v) = 0}, then V (G)\I is a (σ, ρ)-dominating set if and only
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if 0 ∈ ρ. However if 0 ̸∈ ρ and |I| ≥ 1 then there no (σ, ρ)-dominating sets in G. Furthermore
if 0 ∈ ρ then V (G) \ I is the largest (σ, ρ)-dominating set in G as no vertex in I can be in D.
Therefore any algorithm can simply determine that there is a (σ, ρ)-dominating set of size at
least |V (G)| − |I| if and only if 0 ∈ ρ or |I| = 0.

2.8 Problem Definitions

Min-(σ, ρ)-DS param. by l. mim-width + sol. size
Input: (G, k, Λ), where Λ is a linear ordering of V (G)
Parameter: w + k, where w is the mim-width of Λ
Question: Is there a (σ, ρ)-dominating set in G of size at most k?

Max-(σ, ρ)-DS param. by l. mim-width + sol. size
Input: (G, k, Λ), where Λ is a linear ordering of V (G)
Parameter: w + k, where w is the mim-width of Λ
Question: Is there a (σ, ρ)-dominating set in G of size at least k?

Recall that a linear ordering Λ of G is equivalent with a linear branch decomposition of G.

Independent Set on H-graphs
Input: (G, H, k), where G is a H-graph
Parameter: |E(H)|
Question: Is there an independent set in G of size k.

Partitioned Subgraph Isomorphism
Input: (K, G, ϕ), where ϕ : V (G) → [V (K)] is a colouring function
Parameter: |E(K)|
Question: Does there exists an injective function f : V (K) → V (G) such that ab ∈

E(K) ⇒ f(a)f(b) ∈ E(G) and ϕ(f(a)) = ϕ(a) for all a ∈ V (K)

We say a function f : V (K) → V (G) preserves neighbour if ab ∈ E(K) ⇒ f(a)f(b) ∈ E(G),
and f(.) preserves colours (relative to ϕ : V (G) → [V (K)]) if ϕ(f(a)) = ϕ(a) for all a ∈ V (K).

We will label the vertices of K by letting V (K) = [|V (K)|].
Note that we will only use results relating to the Partitioned Subgraph Isomorphism

problem from Marx (2010), in which the results are shown for a K which can be assumed to be
connected. We will therefore henceforth assume that K is connected.

3 Lemmas for Linear Mim-Width
If for a partition of a graph the linear mim-width of each part of the partition is bounded and
the maximum induced matching between any two parts is bounded, then the linear mim-width
of the graph is bounded.
Lemma 1 (Cf. Lemma 7 in Brettell et al. (2022)). Let G be a graph, let X = (X1, ..., Xp) be a
partition of V (G) such that cutmimG(Xi, Xj) ≤ c for all distinct i, j ∈ [p], and let G/X be the
quotient graph of X. Then

linmimw(G) ≤ |E(G/X)| · c + max
i∈[p]

linmimw(G[Xi])

Moreover, if for all i ∈ [p], Λi is a linear order of Xi, then one can in polynomial time
construct a linear order Λ of G with

mimw(Λ) ≤ |E(G/X)| · c + max
i∈[p]

mimw(Λi)
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Proof. Let Λ = Λ1 < ... < Λp, with the notation that we let Λ′ < Λ′′ = a1 < a2 < ... <
aℓ′ < b1 < b2 < ... < bℓ′′ , for two orderings Λ′ and Λ′′ where Λ′ = a1 < a2 < ... < aℓ′ and
Λ′′ = b1 < b2 < ... < bℓ′′ such that Λ′ and Λ′′ have no vertices in common.

Then let (A, B) be any cut in G induced by Λ, then either A = X1 ∪ X2 ∪ · · · ∪ Xk and
B = Xk+1 ∪ · · · ∪ Xp, or (A, B) cuts some set Xk in two parts: Xk ∩ A and Xk ∩ B, and
A = X1 ∪ X2 ∪ · · · ∪ Xk ∩ A and B = Xk ∩ B ∪ Xk+1 ∪ · · · ∪ Xp. Therefore there are at most
maxi∈[p] mimw(Λi) edges in any induced matching in G[Xk, Xk], as Λk cuts Xk in two parts
(A′, B′) in the same way as Λ does (i.e. for any cut (A, B) of G induced by Λ there exists a cut
(A′, B′) of G[Xk] induced by Λk where A′ = A ∩ Xk and B′ = B ∩ Xk).

If XiXj ̸∈ E(G/X) then cutmimG(Xi, Xj) = 0, as E(G[Xi, Xj ]) = ∅. There are only
|E(G/X)| pairs (i, j) such that XiXj ∈ E(G/X). Therefore there can be at most |E(G/X)| · c
edges in any induced matching with one end point in Xi and the other in Xj for all i ≤ k and
j ≥ k such that i ̸= j, as cutmimG(Xi, Xj) ≤ c.

Therefore we have that mimw(Λ) = |E(G/X)| · c + maxi∈[p] mimw(Λi), and that Λ is com-
putable in polynomial time.

There can at most be one edge with both end points in a clique in any induced matching.

Lemma 2. For any induced matching M of G[A, B] and any graph G and bipartition (A, B) of
G. If C is a clique, then |M ∩ {c′c′′ | c′, c′′ ∈ C}| ≤ 1.

Proof. C is a clique in G and therefore is split in two smaller cliques by the cut (A, B). Therefore,
only one edge with endpoints in the two cliques can be in M , as M is an induced matching in
G.

Let G be a graph, and let {x1, ..., xℓ} ⊆ V (G). Let G′ be the graph obtained from G by
adding the sets of twins Y1, .., Yℓ to G, where for i ∈ [ℓ], Yi are either all true twins or all false
twins, and adding the edge yy′ to G′ if xixj ∈ E(G) for all y ∈ Yi, and for all y′ ∈ Yj for all
distinct i, j ∈ [ℓ]. We call this operation adding identical twins of {x1, ..., xℓ} in G.

Furthermore we call the operation above adding λ identical twins of {x1, ..., xℓ} in G if
|Yi| = λ for all i ∈ [ℓ]. We call the modified operation where all twins added are either all false
twins or all true twins adding identical false twins or identical true twins respectively. And we
say Yi is the twins of xi for all i ∈ [ℓ]. For an illustration of the operation see Figure 4.

We will show that adding identical twins of {x1, ..., xℓ} in G changes the linear mim-width
of G by at most one.

Lemma 3. Let G be a graph, and let Λ be a linear ordering of G. Then G′ obtained from G
by adding identical twins of {x1, ..., xℓ} in G has a linear ordering Λ′ computable in polynomial
time from Λ such that mimw(Λ′) ≤ mimw(Λ) + 1.

Proof. We construct a linear ordering Λ′ of G′ by placing the twins of xi before xi in Λ for all
i ∈ [ℓ]. That is for all y ∈ Yi if a < xi < b then a < y < xi < b. Furthermore let Xi = {xi} ∪ Yi

for all i ∈ [ℓ].
Then let (A, B) be some cut of G′ induced by Λ′. Let M ′ be an induced matching in

G′[A, B], we construct an induced matching M of G[A ∩ V (G), B ∩ V (G)] from M ′ such that
|M | ≥ |M ′| − 1. Notice that A ⊇ X1 ∪ X2 ∪ · · · ∪ Xi ∩ A and B ⊆ Xi ∩ B ∪ Xi+1 ∪ · · · ∪ Xk for
some i ∈ [ℓ], where Xi ∩ A can be but will not always be equal to A.

Let f : V (G′) → V (G) be the function where f(a) =
{

xi, if a ∈ Xi, for some i ∈ [ℓ]
a, otherwise .

Then for all ab ∈ M ′ we add the edge f(a)f(b) to M if f(a) ∈ A ⇔ f(b) ∈ B.
We will first argue that M is then an induced matching. This follows from the fact that if

any edge f(a)f(b) ∈ M "conflicts" with some other edge f(a′)f(b′) ∈ M then ab ∈ M ′ would
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Figure 4: Adding 2 identical twins of {x1, x2, x3}, where xil, are the twins of xi for i, l ∈ [3].
The twins of x1 are true twins, and the twins of x2 and x3 are false twins. The blue region is a
clique.
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also "conflict" with the edge a′b′ ∈ M ′. Where we say one edge conflicts with another edge if
they are both in M , then M cannot be an induced matching.

In particular if f(a)f(b) conflicts with f(a′)f(b′) for f(a), f(a′) ∈ A and f(b), f(b′) ∈ B then
either f(a) = f(a′), or f(b) = f(b′); or f(a)f(b′) ∈ E(G[A ∩ V (G), B ∩ V (G)]), or f(a′)f(b) ∈
E(G[A ∩ V (G), B ∩ V (G)]). Assume that f(a) = f(a′) then notice that a, a′ ∈ Xj , for some
j ∈ [ℓ]. But then a and a′ are twins, therefore ab′ and a′b are both edges in E(G′). The only
way for ab′ and a′b not be edges in E(G′[A, B]) is if a, b′ ∈ A ⇔ a′, b ∈ B. Assume without loss
of generality that a, b′ ∈ A. Then notice that f(a′) < a′ since f(a′) ∈ A and a′ ∈ B, but f(a′)
is either equal to a′ or f(a′) is greater than a′ in the ordering. Therefore ab′ and a′b are edges
in E(G′[A, B]), and M is not an induced matching as ab conflicts with a′b′. The argument for
why f(b) cannot be equal to f(b′) is similar.

If there is an edge f(a)f(b′) ∈ E(G[A ∩ V (G), B ∩ V (G)]) then f(a)f(b) and f(a′)f(b′)
are both edges in M and the edges ab and a′b′ must be in M ′. Moreover ab′ ∈ E(G), as not
then f(a), f(b′) ∈ Xi but then f(a), f(b′) ∈ B contradicting f(a) ∈ A. Furthermore ab′ ∈
E(G′[A, B])) as if not then either a, b′ ∈ A or a, b′ ∈ B. In either case as we have shown above
f(a) > a or f(a′) > a′ which is never true. The argument for when f(a′)f(b) ∈ E(G[A ∩
V (G), B ∩ V (G)]) is similar.

Therefore M is an induced matching. Furthermore for each xy ∈ M ′ such that x, y ̸∈ Xi we
add exactly one edge to M . This is obvious whenever x, y ∈ V (G).

If x ∈ Xj for some j ̸= i and y ̸∈ Xi then if there was another edge x′y′ ∈ M ′ with x′ ∈ Xj

and y′ ̸∈ Xi then xy′ ∈ E(G′) as x and x′ are twins. Furthermore x′y ∈ E(G′[A, B]) as for all
i′ ̸= i either Xi′ ⊆ A or Xi′ ⊆ B. Therefore only one such edge can be in M ′ for each j ̸= i.
Therefore for each such xy we add one f(x)f(y) to M as f(x) ∈ A and f(y) ∈ B whenever
x ∈ A and y ∈ B respectively.

Finally there can be at most two edges in M ′ with at least one end point in Xi. Suppose
there are three edges xy, x′y′, x′′y′′ ∈ M such that x, x′, x′′ ∈ Xi then notice that the edge
xy′ ∈ E(G′), but xy′ cannot be in E(G′[A, B]). Therefore x, y′ ∈ A or x, y′ ∈ B. But the edges
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Figure 5: Adding a (5 × 5)-grid of cliques on {x1, x2, ..., x5}. Coloured regions indicate cliques.
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x′′y′ and x′′y are also in E(G′) but y′ ∈ A ⇔ y ∈ B as x ∈ A ⇔ y ∈ B. Therefore either x′′y′

or x′′y is in E(G′[A, B]) and M ′ cannot be an induced matching.
Notice that we only add f(x)f(y) to M if f(x) ∈ A ⇔ f(y) ∈ B. If both xy and x′y′ are

in M ′ with x, x′ ∈ Xi and y, y′ ̸∈ Xi, then only one of f(x)f(y) and f(x′)f(y′) is added to M
as f(x) = f(x′) = xi ∈ B and either y ∈ A or y′ ∈ A but not both by the argument above.
Therefore the only edge which can be added to M is f(x)f(y) if y ∈ A or f(x′)f(y′) if y′ ∈ A. If
there is only one edge xy with x ∈ Xi in M ′ then at most one edge is added to M depending on
whether x ∈ B or not. Further notice that if xy ∈ M ′ with both x, y ∈ Xi, then no more edges
x′y′ with x′ ∈ Xi can be in M ′ as xy′ would be an edge in G′[A, B]. For this case no edges are
added to M .

Therefore |M | ≥ |M ′| − 1, and therefore linmimw(G′) ≤ mimw(Λ′) ≤ mimw(Λ) + 1, and Λ′

is clearly computable in polynomial time.

Let G be a graph, ℓ ∈ N, and let X = {x1, ..., xk} be a clique in G. The operation of
adding a (k × ℓ)-grid of cliques on X takes G, and for all i ∈ [ℓ] and for all j ∈ [k] adds
the clique Xi = {xi, ..., xi

k}, where we let xj = x0
j . Furthermore the operation also makes

Yj = {xj , x1
j , ..., xℓ

j} into a clique.
Furthermore we call Xi the ith column and Yj the jth row of the grid. For an illustration

of the operation see Figure 5.
We will show that adding a (k × ℓ)-grid of cliques on X in G increases the linear mim-width

of G by at most ℓ.

Lemma 4. Let G be a graph, let Λ be a linear ordering of G, and let X = {x1, ..., xk} be a clique
in G. Then for the graph G′ obtained by adding a (k×ℓ)-grid of cliques on X in G, there exists a
linear ordering Λ′ of G′ computable in polynomial time from Λ, where mimw(Λ′) ≤ mimw(Λ)+ℓ.

Proof. We can without loss of generality assume that x1 < x2 < ... < xk in Λ. For all j ∈ [k]
we place all the vertices in Yj in Λ such that (xj−1 <)xj < x1

j < x2
j < ... < xℓ

j(< xj+1), where
the vertex in parenthesis may or may not exist depending on whether j = k or j = 1, or not.
This new ordering we call Λ′.

Let (A, B) be any cut induced by the ordering Λ′, and let M ′ be an induced matching in
G′[A, B].

There is some j ∈ [k] such that A ⊃ Y1 ∪ ... ∪ (Yj ∩ A) and B ⊃ (Yj ∩ B) ∪ Yj+1 ∪ ... ∪ Yk.
Therefore for any induced matching M ′ in G′, M ′ \ E(G′′) is an induced matching in G, for

G′′ = G′
[(( ⋃

j′<j

Yj′
)

∪
(
Yj ∩ A

))
\ X0,

((
Yj ∩ B

)
∪

⋃
j′′>j

Yj′′

)
\ X0

]
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First if there are any edges in M ′ with both end points in some Yj′ then j′ = j as Yj′′ ⊆ A or
Yj′′ ⊆ B for all j′′ ̸= j. Furthermore Yj is a clique and therefore by Lemma 2, M ′ has at most
one edge with both end points in Yj .

Suppose that M ′ ∩ E(G′′) = M ′′ has more than ℓ edges. Then there must be some i ∈ [ℓ]
such that there are two edges with both end points in column Xi in M ′′. Let these two edges
be xi

jxi
j′ , xi

hxi
h′ for distinct j, j′, h, h′ ∈ [k], but Xi is a clique and therefore by Lemma 2, M ′′

can only have one of these edges. Therefore M ′′ has at most ℓ edges.
Let M be the induced matching of G[A ∩ V (G), B ∩ V (G)] such that M = M ′ \ E(G′′), it

then follows that mimw(Λ′) ≤ mimw(Λ) + ℓ.

If we add a constant amount of vertices to a graph and connect them to the graph in any
way, then the mim-width of the new graph can increase by at most a constant relative to the
old graph.

Lemma 5. Let G be a graph, let Λ be a linear order of G, and let G′ obtained from G by adding
X and connecting X to V (G) in any way. Then mimw(Λ′) ≤ mimw(Λ) + |X|, where Λ′ is any
linear order of G where the vertices in X are placed anywhere in Λ.

Proof. Let M ′ be some maximum induced matching in G′[A, B] where (A, B) is any cut induced
by Λ′, then M ′ may or may not have up to |X| edges with one end point in X. Therefore any
induced matching M in G[A \ X, B \ X], where (A \ X, B \ X) must be some cut induced by
Λ, will have the property that |M | + |X| ≥ |M ′| which in particular implies that mimw(Λ′) ≤
mimw(Λ) + |X|.

4 W [1]-Hardness of (σ, ρ)-Dominating Set Problems
In this section we will prove the main result, which is that all non-trivial minimisation and many
non-trivial maximisation (σ, ρ)-dominating set problems parameterized by both the linear mim-
width of the input graph and solution size are W [1]-hard, and cannot be solved in no(w/ log(w))

time for graphs with linear mim-width w, unless ETH is false.

Theorem 1. Let σ, ρ be two subsets of N where 0 ̸∈ ρ. Then the Min-(σ, ρ)-DS param. by l.
mim-width + sol. size problem is W [1]-hard. Moreover, unless ETH is false, if G is the input
graph with |V (G)| = n and with a given linear ordering of G with mim-width w, then there are
no algorithms solving Min-(σ, ρ)-DS param. by l. mim-width + sol. size in no(w/ log(w))

time.
Furthermore, if σ and ρ are both finite subsets of N and ρ ̸= {0}, then the Max-(σ, ρ)-DS

param. by l. mim-width + sol. size problem is W [1]-hard, and it cannot be solved in
no(w/ log(w)) time, unless ETH is false.

The proof is by a reduction from the W [1]-hard problem Partitioned Subgraph Isomor-
phism, where first a core graph H is constructed. Afterwards the graph is modified to obtain
either H0, H1, H2, or H3 depending on σ and ρ in manner such that all possible (finite for
maximisation) non-trivial σ and ρ are described.

Recall the trivial cases discussed in section 2.7, further note the assumptions on σ and ρ in
Theorem 1 imply the (σ, ρ)-dominating set problems are not trivial.

The general idea of the modifications are that we let ς = min(σ) and ϱ = min(ρ) for
minimisation problems and we let ς = max(σ) and ϱ = min(ρ) for maximisation problems. Then
we add some number depending on ς and ϱ vertices such that solving the (σ, ρ)-dominating set
problem on that instance becomes similar to solving the ({0}, {1})-domination problem on it,
which is also known as the perfect code problem.

We show the linear mim-width of these graphs by first arguing that H has the linear mim-
width of O(|E(K)|) by giving a partition Γ of V (H). Followed by showing that for each part Γ′
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Figure 6: Example of H for p = 3, and k = 3, and K is the complete graph with three vertices.
Note the resemblance to the graph obtained by subdividing every edge in K once. Coloured
regions indicate cliques.

of Γ, H[Γ′] has bounded linear mim-width and that cutmimH(Γ′, Γ′′) is bounded for all other
Γ′′ ̸= Γ′. This gives the graph a linear mim-width of O(|E(K)|) by Lemma 1.

Then for each modified graph we argue using the lemmas in Section 3, that the linear mim-
width increases by at most |E(K)| multiplied some number depending on ς and ϱ. Therefore
the linear mim-width of the modified graphs is still O(|E(K)|).

4.1 Construction

We start with an instance of the Partitioned Subgraph Isomorphism problem (K, G, ϕ),
and construct an instance of the Min-(σ, ρ)-DS param. by l. mim-width + sol. size or
Max-(σ, ρ)-DS param. by l. mim-width + sol. size. This instance depends on whether
we are considering the minimisation or maximisation variant, and on σ and ρ. The graph of the
constructed instance will be a supergraph of a core graph H with additional parts depending on
σ and ρ.

We can assume that |Vi| = p, for all i ∈ [k], where p = max{|Vi| | i ∈ [k]}. If this is not
the case then we can simply add isolated vertices to the sets whose cardinality is less than p.
Isolated vertices clearly do not affect the Partitioned Subgraph Isomorphism instance, as
K has no isolated vertices as we assumed it was connected.

For all i ∈ [k] we name the vertices in Vi: {vi
1, ..., vi

p}.
The core graph H is constructed as follows:
We add the vertex xij

a to V (H), for all i, j ∈ [k] such that ij ∈ E(K) and for all a ∈ [p].
Secondly, for all i, j ∈ [k] such that ij ∈ E(K) and for all a, b ∈ [p] such that vi

avj
b ∈ E(G),

we add the vertex rij
ab = rji

ba to V (H). We connect rij
ab to all the vertices in {xij

a′ | a′ ̸= a, a′ ∈ [p]},
and all the vertices in {xji

b′ | b′ ̸= b, b′ ∈ [p]}.
Lastly, for all i ∈ [k] and for all a ∈ [p] we add the vertex si

a. Furthermore for all j ∈ [k]
such that ij ∈ E(K), and all a ∈ [p] we connect si

a to xij
a . Note that there exists at least one
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pair of i and j such that ij ∈ E(K) as K is connected.
For all i, j ∈ [k] such that ij ∈ E(K) we let Si = {si

a | a ∈ [p]}, Rij = {rij
ab | a, b ∈ [p]} = Rji,

Xij = {xij
a | a ∈ [p]}, Xji = {xji

a | a ∈ [p]}, and X = ⋃
i ̸=j,i,j∈[k] Xij , and make all of these sets

into cliques. See Figure 6 for an illustration.
Notice that Rij = Rji but Xij ̸= Xji for all i, j ∈ [k] such that ij ∈ E(K).
As Si and Rij have many similar properties we let Zα be either Rij if α = ij or Si if α = i

for all distinct i, j ∈ [k] such that ij ∈ E(K). Furthermore let I = [k] ∪ {ij | ij ∈ E(K)} and
let J = [p] ∪ [p] × [p].

We let ς and ϱ be m(σ) and m(ρ) respectively, where we let m(.) = min(.) if we are showing
hardness for a Min-(σ, ρ)-DS param. by l. mim-width + sol. size problem and m(.) =
max(.) if we are showing hardness of a Max-(σ, ρ)-DS param. by l. mim-width + sol. size
problem.

The core graph H will be transformed into the graph and solution size pair (H0, k0), (H1, k1),
(H2, k2), or (H3, k3) by a procedure A depending on the values of ς and ϱ, and if we are showing
hardness of the maximisation or the minimisation variant of the problem.

4.2 Miscellaneous Claims

For arguments later it is useful to be able to assume the size of each Si or Rij is larger than
some constant.

Claim 1. For all α ∈ I and any n = O(1), we can assume that |Zα| ≥ n.

Proof. Zα can either be some Si or some Rij , for i ∈ [k] or ij ∈ E(K).
If before applying the reduction on the Partitioned Subgraph Isomorphism instance

(K, G, ϕ) to create H we add n isolated vertices to each of V1, ..., Vk, then this does not affect
whether or not (K, G, ϕ) is a yes-instance of Partitioned Subgraph Isomorphism or not as
K is connected and we can assume that K ̸= P1. Similarly, adding n "isolated edges" to Rij by
adding one vertex to each of Vi and Vj and connecting them for all ij ∈ E(K), does not affect
whether or not (K, G, ϕ) is a yes-instance of Partitioned Subgraph Isomorphism or not as
we can assume that K is connected and is neither P2 nor P1.

Adding the isolated vertices increases the size of Si by n and adding the isolated edges
increases the size of Rij by n. Therefore for all α ∈ I, |Zα| ≥ n.

To avoid unnecessary repetition we identify a common scenario which happens for all the
instances, which imply that (K, G, ϕ) is a yes-instance of the Partitioned Subgraph Iso-
morphism problem. In particular we will argue that in every case the (σ, ρ)-dominating set of
a certain size will always have a subset DH containing certain vertices.

Claim 2. Let DH be a subset of V (H), such that for all i ∈ [k] there exists a ci ∈ [p] such that
si

ci
∈ Si ∩ DH and for all ij ∈ E(K) the vertex rij

cicj
∈ Rij ∩ DH, then (K, G, ϕ) is a yes-instance

of the Partitioned Subgraph Isomorphism problem.

Proof. Let {si
ci

| i ∈ [k]} ⊆ DH, for some c1, ..., ck ∈ [p], then {rij
cicj

| ij ∈ E(K)} ⊆ DH

by assumption. This implies the edges {vi
ci

vj
cj

| i, j ∈ [k]} exist in G. Then the function
f : V (K) → V (G) where f(i) = vi

ci
, is a function preserving neighbours and colours as if

ij ∈ E(K) then rij
cicj

∈ V (H) implying vi
ci

vj
cj

∈ E(G).

4.2.1 The Linear Mim-Width of H

For all i ∈ [k], let Γi = Si ∪
⋃

j∈[k],ij∈E(K) Xij and for all ij ∈ E(K), let Γij = Rij . Then
Γ = {Γα | α ∈ I} is a partition of H.

We give the vertices of H[Γi] the lexicographic ordering Λi: si
1 < xi1

1 < xi2
1 < · · · < xik

1 <
si

2 < xi1
2 < · · · < xik

2 < · · · < si
p < xi1

p < · · · < xik
p . And we give the vertices of H[Γij ] any linear

ordering Λij .
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Claim 3. For all α ∈ I, linmimw(H[Γα]) ≤ mimw(Λα) ≤ 3.

Proof. Suppose α = i for some i ∈ [k] and let (A, B) be a cut of H[Γi] induced by Λi, and let
M be an induced matching in H[Γi][A, B].

The greatest element in A with respect to the ordering is either si
a or xij

a , for some a ∈ [p]
and j ∈ [k] such that ij ∈ E(K).

Firstly suppose that si
a is the greatest element in A. Then

E(H[Γα][A, B]) =
(
(Xij ∩ A) × (Xij ∩ B)

)
∪

(
(Si ∩ A) × (Si ∩ B)

)
∪

{
si

axij
a | j ∈ [k]

}
Note that Si is a clique, therefore Si can only contribute one edge to M by Lemma 2. The same
goes for Xij .

If si
axij

a ∈ M for some j ∈ [k] such that ij ∈ E(K), then for all j′ ∈ [k] such that ij′ ∈ E(K),
si

axij′
a cannot be in M as M is a matching. We then conclude that |M | ≤ 3.
On the other hand suppose that xij

a is the greatest element of A. Then

E(H[Γα][A, B]) =
(
(Xij ∩ A) × (Xij ∩ B)

)
∪

(
(Si ∩ A) × (Si ∩ B)

)
∪

{
si

axij′
a | j′ > j, j′ ∈ [k]

}
But notice then that the same arguments as for when si

a was the greatest element in A still
works, therefore |M | ≤ 3.

Therefore linmimw(H[Γi]) ≤ mimw(Λi) ≤ 3.
Now suppose that α = ij for ij ∈ E(K) then let (A, B) be a cut of H[Γij ] induced by Λij ,

and let M an induced matching in H[Γij ][A, B]. Then Γij is a clique, and it therefore only
contributes at most one edge to M by Lemma 2.

Therefore in any case linmimw(H[Γα]) ≤ mimw(Λα) ≤ 3 for any α ∈ I, as we have gone
through all possibilities of α.

To simplify the arguments for showing that H has bounded linear mim-width we will argue
that a subgraph H′ of H has bounded linear mim-width. Followed by arguing that the linear
mim-width of H′ and H differ by at most 1. We let H′ be the graph obtained from H by
removing all the edges xij

a xi′j′

b for all distinct pairs of ij, i′j′ ∈ E(K) such that i ̸= i′ and for all
a, b ∈ [p].

So H′ is H but X is not a clique anymore, but for all i ∈ [k] the vertex set ⋃
j∈[k] | ij∈E(K) Xij

is a clique still. Then note that since we removed no vertices, only edges, Γ is still a partition
of H′. Furthermore for all α ∈ I, Λα is still an ordering of H′[Γα], and H′[Γα] = H[Γα].

Claim 4. cutmimH′(Γα′ , Γα′′) ≤ 2, for any distinct α′, α′′ ∈ I.

Proof. Let M be an induced matching in H′[Γα′ , Γα′′ ].
If (α′, α′′) = (i, ij) for some ij ∈ E(K), then E(H′[Γα′ , Γα′′ ]) = {xij

a rij
bb′ ∈ E(H′) | a ̸=

b, a, b, b′ ∈ [p]}.
Suppose for the sake of contradiction that 3 of these edges are in M . This implies that three

vertices from Xij , and three vertices from Rij are endpoints of edges in M .
Then suppose the three distinct edges xij

a rij
bc, xij

a′r
ij
b′c′ , and xij

a′′r
ij
b′′c′′ are in M . xij

a cannot be
connected to rij

b′c′ nor rij
b′′c′′ , as M is an induced matching. Therefore a = b′ = b′′. Similarly xij

a′

cannot be connected to rij
b′′c′′ either, and therefore a′ = b′′. So we have a = b′ = b′′ = a′ and

therefore a = a′, but then M is not a matching.
Therefore |M | ≤ 2. The same argument also works for when (α′, α′′) = (j, ij) for all j ∈ [k]

and all i ∈ [k] such that ij ∈ E(K).
If (α′, α′′) = (i, i′j), (α′, α′′) = (j, ij′), (α′, α′′) = (i, j), or (α′, α′′) = (i′′j′′, i′′′j′′′), for all

i′ ̸= i such that i′j ∈ E(K), for all j′ ̸= j such that ij′ ∈ E(K), for all i ̸= j, and for all
i′′j′′, i′′′j′′′ ∈ E(K). Then E(H′[Γα′ , Γα′′ ]) = ∅ and therefore M = ∅.

That concludes all the possibilities for α′ and α′′, and we can conclude that |M∩E(H′[Γα′ , Γα′′ ])| ≤
2, for any distinct pair of α′, α′′ ∈ I
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Figure 7: On the left side we see H′/Γ superimposed on H′. On the right side we see K ′,
obtained by subdividing every edge in K once.
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Claim 5. linmimw(H) ≤ mimw(Λ) ≤ 4|E(K)| + 4, for an ordering Λ computable in polynomial
time.

Proof. We use the partition Γ described above, and use Λα for the ordering of H′[Γα].
Let H′/Γ be the quotient graph of Γ. Note then that for all distinct α, α′ ∈ I, ΓαΓα′ ∈

E(H′/Γ) if and only if there exists an edge γα, γα′ ∈ E(H′) for γα ∈ Γα, γα′ ∈ Γα′ .
Further note that γα, γα′ ∈ E(H′) if and only if (α, α′) = (i, ij) or (α, α′) = (j, ij) for some

i ∈ [k] and some j ∈ [k] such that ij ∈ E(K) or for some j ∈ [k] and some i ∈ [k] such that
ij ∈ E(K). Therefore H′/Γ is isomorphic to K ′, where K ′ is the graph obtained from K by
subdividing every edge in K once. If we let i×j be the vertex obtained by subdividing the the
edge ij once, for all ij ∈ E(K). Then for all i ∈ [k], the vertex Γi is the vertex mapped to i in
the isomorphism, and for all ij ∈ E(K), the vertex Γij is the vertex mapped to i×j. Therefore
|E(H′/Γ)| = 2 · |E(K)|. See Figure 7.

Therefore by Lemma 1 there exists a linear ordering Λ of H′ computable in polynomial time
from Λα for all α ∈ I, such that linmimw(H′) ≤ mimwH′(Λ) ≤ c·|E(H/Γ)|+maxα∈I mimwH′(Λα),
where c is maxΓ′ ̸=Γ′,Γ′,Γ′′∈Γ cutmimH′(Γ′, Γ′′).

We have that c ≤ 2 by Claim 4, and that maxα∈I mimwH′(Λα) ≤ 3 by Claim 3. Furthermore
Λα is clearly computable in polynomial time. Therefore there exists a linear ordering Λ of H′

computable in polynomial time, where mimwH′(Λ) ≤ 4 · |E(K)| + 3
Furthermore since no vertices, only edges, are added to H′ to obtain H we use the same

ordering Λ for H. Then X is now a clique and therefore by Lemma 2 any induced matching in
a cut (A, B) induced by Λ can have at most one edge with both end points in X. Therefore
linmimw(H) ≤ mimwH(Λ) ≤ mimwH′(Λ) + 1 ≤ 4 · |E(K)| + 4.

4.3 Minimisation problems

For the minimisation problems we let ς = min(σ) and ϱ = min(ρ), note that ς + ϱ = O(1).
If ς = 0 then A constructs the graph solution size pair described in Subsection 4.3.4, otherwise

ς ≥ 1. Then if ϱ = ς + 1 then A constructs the graph solution size pair in Subsection 4.3.1, if
ϱ > ς + 1 the graph solution size pair in Subsection 4.3.2, and if ϱ < ς + 1 the graph solution
size pair in Subsection 4.3.3. Note that one of these cases must be true, and that if ϱ < ς + 1
then ς ̸= 0 as then ϱ < 0 which it cannot be.

4.3.1 When ϱ = ς + 1 and ς ≥ 1

A transforms H into the graph solution size pair: (H0, k0), where k0 = (2ς+2)(k+|E(K)|)+(ς+1)
and H0 is constructed as follows:
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Figure 8: Example of what A does to S1 ∪ X12 for minimisation problems when p = 3, ς = 3,
ϱ = 4. Circles indicate vertices, and grey coloured regions indicate cliques.

B

b a

For all α ∈ I, A creates two cliques Aα and Bα which both have size ς, where Aα is adjacent
to all of Zα. Additionally two vertices are also created aα and bα, aα is adjacent to all vertices
in Aα, and bα is adjacent to all vertices in Bα. Furthermore aα and bα are adjacent. Let
Zα ∪ Aα ∪ {aα} ∪ Bα ∪ {bα} = Zα. For an illustration see Figure 8.

Finally A adds a clique X of size ς + 1, this clique is partitioned in two parts: X1 and X2,
where |X2| = 1. Every vertex in X1 is adjacent to all the vertices in X, and every vertex in X2
is only adjacent to the vertices in X .

Claim 6. The graph H0 has linmimw(H0) ≤ mimw(Λ0) = O(|E(K)|), for some linear ordering
Λ0 of H0 computable in polynomial time.

Proof. The procedure A transforms H into H0 by adding O(|E(K)|) vertex sets of O(ς + 1)
size. Then by (the repeated use of) Lemma 5 there exists a linear ordering Λ0 of H0 where
linmimw(H0) ≤ mimw(Λ0) ≤ mimw(Λ) + O(|E(K)|) · O(ς), where Λ0 can be constructed in
polynomial time from the linear ordering Λ of H.

Moreover there exists an ordering Λ for which mimw(Λ) = O(|E(K)|) and for which Λ is
computable in polynomial time by Claim 5.

Therefore Λ0 can be constructed in polynomial time and linmimw(H0) ≤ mimw(Λ0) +
O(|E(K)|) · O(ς) = O(|E(K)|).

Claim 7. If (K, G, ϕ) is a yes-instance of the Partitioned Subgraph Isomorphism problem,
then there exists a ({ς}, {ϱ})-dominating set of size k0 in H0

Proof. Let f : V (K) → V (G) be the function preserving neighbours and colours. Let f(i) = vi
ci

for all i ∈ [k] and for some c1, ..., ck ∈ [p]. Note that ij ∈ E(K) implies that vi
ci

vj
cj

∈ E(G)
further implying that rij

cicj
∈ V (H) and therefore also rij

cicj
is also in H0.

Then D = ⋃
ij∈E(K){rij

cicj
} ∪

⋃
i∈[k]{si

ci
} ∪

⋃
α∈I Aα ∪ Bα ∪ {bα} ∪ X is a (σ, ρ)-dominating set

of size k0 in H0.
Bα ∪ {bα} is a clique of size ς + 1 and therefore its vertices (all which are in D) are adjacent

to ς vertices in D. Furthermore N(Bα ∪ {bα}) = {aα} and aα ̸∈ D. So the vertices are adjacent
to exactly ς ∈ σ vertices in D. Similarly both Aα ∪ {zα

cα
}, and X are a cliques of size ς + 1 with

neighbourhoods not in D.
N(aα) ⊆ D and |N(aα) ∩ D| = ς + 1, so aα is dominated by ς + 1 ∈ ρ vertices.
The vertex si

c′
i

for all i ∈ [k] and all c′
i ̸= ci and the vertex rij

c′
ic

′
j

for all ij ∈ E(K) and
c′

ic
′
j ̸= cicj is dominated by all the vertices in Ai ∪ {si

ci
} ⊆ D or Aij ∪ {rij

cicj
} ⊆ D respectively.

This adds up to ς + 1 = ϱ ∈ ρ vertices. Furthermore these are all the vertices in N(si
c′

i
) ∩ D and

N(rij
cicj

) ∩ D respectively.
Note that Aα ∪ {aα} ∪ Bα ∪ {bα} ∪ Zα only exists if α ∈ I, and therefore only need to be

considered when α ∈ I, which it is by assumption.
Next for all ij ∈ E(K) and for all a ∈ [p] the vertex xij

a is dominated by the ς vertices
X1 and by either rij

cicj
or si

ci
depending on whether a ̸= ci or a = ci, and as N(xij

a ) \ X =
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{si
a} ∪ Rij \ {rij

cidj
| dj ∈ [p]} ∪ X1 no other vertices in D. This adds up to ς + 1 = ϱ ∈ ρ

vertices.

Claim 8. If there exists a (σ, ρ)-dominating set of size at most k0 in H0, then (K, G, ϕ) is a
yes-instance of the Partitioned Subgraph Isomorphism problem.

Proof. Let D be a (σ, ρ)-dominating set of size at most k0, and let α ∈ I.
Note that for all b ∈ Bα, deg(b) = ς, therefore b cannot be dominated by ϱ = ς + 1 vertices

and therefore b ∈ D. As b ∈ D the vertex b has to be adjacent to ς vertices also in D, but again
deg(b) = ς therefore N [b] = Bα ∪ {bα} ⊆ D.

Similarly, the single vertex in X2 has ς neighbours, therefore it cannot possibly be dominated
by ς+1 vertices. Therefore X2 ⊆ D, but then it needs ς neighbours in D. Therefore X = N [X2] ⊆
D.

Any vertex a ∈ Aα must either be in D and have ς neighbours who also are in D, or be
dominated by at least ς + 1 vertices in D. In either case |N [Aα] ∩ D| ≥ ς + 1. In addition
Bα ∪ {bα} ⊆ D and (Bα ∪ {bα}) ∩ N [Aα] = ∅. Therefore |Zα ∩ D| ≥ 2ς + 2 for all α ∈ I, and
it follows that |V (H0) ∩ D| ≥ (|E(K)| + k)(2ς + 2) + ς + 1. But we know that |V (H0) ∩ D| =
k0 = (|E(K)| + k)(2ς + 2) + ς + 1. And consequently |Zα ∩ D| = 2ς + 2 and X ∩ D = ∅.

The vertex aα must either be in D or not. Suppose for the sake of contradiction that
aα ∈ D. Then |N(aα) ∩ D| ≥ ς and note that |Aα ∩ D| ≥ ς − 1 since bα ∈ N(aα), bα ∈ D, and
N(aα) \ {bα} = Aα, . Therefore ς ≥ |Aα ∩ D| ≥ ς − 1.

First consider when |Aα ∩ D| = ς then we have accounted for all 2ς + 2 vertices in Zα ∩ D
as Bα ∪ {bα} ∪ {aα} ⊆ D. Therefore Zα ∩ D = ∅. But the for all c ∈ J the vertex zα

c ̸∈ D
cannot be dominated by more than the ς ̸∈ ρ vertices in Aα ⊆ D as Zα ∩ D = ∅ and X ∩ D = ∅.
Therefore |Aα ∩ D| cannot be ς.

On the other hand if |Aα ∩ D| = ς − 1, then there is some a ∈ Aα such that a ̸∈ D. But
then a must be dominated by at least ϱ = ς + 1 vertices in D, but N(a) = Zα ∪ {aα} ∪ Aα

and |Aα ∪ {aα} ∩ D| = ς. Therefore there exists some zα
c ∈ Zα ∩ D for some c ∈ J . But note

that N(zα
c ) ∩ D = (Aα ∪ Zα \ {zα

c }) ∩ D since X ∩ D = ∅, but |(Aα ∪ Zα \ {zα
c }) ∩ D| = ς − 1.

Therefore zα
c ∈ D, but it only has ς − 1 ̸∈ σ neighbours in D, which contradicts that D is a

(σ, ρ)-dominating set, and therefore aα ̸∈ D.
As aα ̸∈ D it needs to be dominated by at least ϱ = ς + 1 vertices in D, but deg(aα) = ς + 1,

therefore N(aα) ⊆ D. Finally zα
c , for all c ∈ J , is only adjacent to ς < ϱ vertices in Aα ∩ D and

zero in X ∩ D, therefore some zα
c′ for some c′ ∈ J needs to be in D. We have then accounted

for 2ς + 2 vertices in Zα ∩ D, and therefore there cannot be any more vertices in Zα ∩ D.
Therefore we have that |Zα ∩ D| = 1 and X ∩ D = ∅. Suppose for all i ∈ [k] the vertex

si
ci

∈ D, then for all j ∈ [k] such that ij ∈ E(K) and for all c′
i ̸= ci the vertex xij

c′
i

is not
dominated by si

ci
. As |Si ∩ D| = 1 the vertex xij

c′
i

can only be dominated by some rij
cidj

, for some
dj ∈ [p]. The same argument applies for sj

cj
and rij

dicj
, for some di ∈ [p]. It then follows that

rij
cicj

∈ D.
Therefore DH = D ∩V (H) is a subset of V (H0) such that for all i ∈ [k] there exists a ci ∈ [p]

such that si
ci

∈ DH and for all ij ∈ E(K), rij
cicj

∈ DH, therefore by Claim 2, (K, G, ϕ) is a
yes-instance of the Partitioned Subgraph Isomorphism problem.

4.3.2 When ϱ > ς + 1 and ς ≥ 1

Let ϱ′ = ϱ − ς. The procedure A then turns H into the graph and solution size pair: (H1, k1),
where H1 is a supergraph of H.

The graph H1 is generated from H by for each α ∈ I adding ϱ′ − 1 identical false twins of
{zα

β ∈ V (H) | α ∈ I, β ∈ J } in H. Let β ∈ J be such that zα
β ∈ V (H), then we call the twins

of zα
β : zα

β2, ..., zα
βϱ′ , and we let zα

β = zα
β1. Followed by adding a clique Aα

ℓ of size ς for all ℓ ∈ [ϱ′],
where every vertex in Aα

ℓ is adjacent to every vertex in Zα
∗ℓ = {zα

βℓ | β ∈ J s.t. zα
β ∈ V (H)}. We
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Figure 9: Example of what A does to S1 ∪ X12 for p = 3, ς = 2, ϱ = 5. Circles indicate vertices,
and grey coloured regions indicate cliques. The blue regions indicate vertices not adjacent even
though they should be according to the grey colouring.

call the set containing zα
β with its ϱ′ −1 twins Zα

β∗ = {zα
βℓ | ℓ ∈ [ρ′]}, and we let Zα

∗∗ = ⋃
ℓ∈[ϱ′] Zα

∗ℓ.
We also let Aα = ⋃

ℓ∈[ϱ′] Aα
ℓ .

We will also let Rij
β∗ = Zα

β∗, Rij
∗∗∗ = Zα

∗∗, and Rij
∗ℓ = Zα

∗ℓ whenever α = ij ∈ E(K), and we let
Si

β∗ = Zi
β∗, Si

∗∗ = Zα
∗∗, and Si

∗ℓ = Zi
∗ℓ whenever α = i.

Note that the vertices in Zα
β∗ are not adjacent to any other vertices in Zα

β∗, however they are
all adjacent to Zα

β′∗ for all β′ ̸= β. See Figure 9 for an illustration of what A does to S1 ∪ X12.
Furthermore A adds a clique X of size ς + 1 to H1, this clique is partitioned into two parts

X1 and X2, where |X2| = 1. Every vertex in X1 is adjacent to all vertices in X, and the vertex
in X2 is only adjacent to X .

Finally we let k1 = (ϱ′ς + ϱ′)(k + |E(K)|) + (ς + 1).

Claim 9. The graph H1 has linmimw(H1) ≤ mimw(Λ1) = O(|E(K)|), for some linear ordering
Λ1 of H1 computable in polynomial time.

Proof. A transforms H into H1 by adding |E(K)| + k + 1 = O(|E(K)|) vertex sets Aα and X ,
of size O(ς + ϱ). Followed by adding false identical twins of {zα

β ∈ V (H) | α ∈ I, β ∈ J } in H.
Suppose without loss of generality that A first transforms H into an intermediary graph H′

by adding Aα and X , and finally into the graph H1 by adding the false twins.
By Lemma 5 there exists a linear ordering Λ′ of H′, constructed in polynomial time from

any linear ordering Λ of H. Furthermore mimw(Λ′) ≤ mimw(Λ) + O(|E(K)|) · O(ς + ϱ).
Then by Lemma 3, Λ′ can be further transformed in polynomial time into a linear ordering

Λ1 of H1, where mimw(Λ1) ≤ mimw(Λ′) + 1.
Finally Λ, an ordering of H, can be computed in polynomial time where mimw(Λ) =

O(|E(K)|) by Claim 5. Therefore linmimw(H1) ≤ mimw(Λ1) ≤ mimw(Λ′) + 1 ≤ mimw(Λ) +
O(|E(K)|) · O(ς + ϱ) + 1 = O(|E(K)|), and Λ1 is computable in polynomial time as Λ is.

Claim 10. If (K, G, ϕ) is a yes-instance of the Partitioned Subgraph Isomorphism problem,
then there exists a ({ς}, {ϱ})-dominating set of size k1 in H1

Proof. Let f : V (K) → V (G) be the function preserving neighbours and colours. Let f(i) = vi
ci

for all i ∈ [k] and for some c1, ..., ck ∈ [p]. Note that ij ∈ E(K) implies that vi
ci

vj
cj

∈ E(G)
further implying that rij

cicj
∈ V (H) and therefore also in V (H1).

Then D = ⋃
i∈[k] Si

ci∗ ∪
⋃

ij∈E(K) Rij
cicj∗ ∪

⋃
α∈I Aα ∪ X is a (σ, ρ)-dominating set of size k1 in

H2.
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Note for all ij ̸∈ I the vertex sets Xij and Rij do not exist and therefore they have no
vertices which need to be dominated.

For all ℓ ∈ [ϱ′] and for all ij ∈ E(K) the vertex set {rij
cicjℓ} ∪ Aij

ℓ is a clique contained in D
of size ς + 1, therefore all its vertices are adjacent to ς vertices in D. Furthermore these are all
the vertices in {rij

cicjℓ} ∪ Aij
ℓ ∩ D. Therefore the vertices in {rij

cicjℓ} ∪ Aij
ℓ are adjacent to exactly

ς ∈ σ other vertices in D. The same is true for the vertex set {si
ciℓ

} ∪ Ai
ℓ for all i ∈ [k].

The clique X of size ς + 1 is contained in D and therefore all their vertices are adjacent
to ς vertices in D. Additionally the vertices in X are adjacent to exactly ς ∈ σ vertices, as
N(X ) = X and X ∩ D = ∅.

For all ij ∈ E(K) and a ∈ [p] the vertex xij
a is being dominated by Rij

cicj∗ if a ̸= ci, or by Si
ci∗

if a = ci, in addition it is dominated by the ς vertices in X1. This adds up to ϱ ∈ ρ, furthermore
these vertices are all the vertices in N(xij

a ) ∩ D.
Similarly for all ij ∈ E(K) the vertex rij

c′
ic

′
jℓ for all c′

i, c′
j such that c′

i ̸= ci ∨ c′
j ̸= cj is

being dominated by the ϱ′ vertices in Rij
cicj∗ ⊂ D in addition to the ς vertices in Aα

ℓ ⊂ D, and
N(rij

c′
ic

′
jℓ) ∩ D is exactly these vertices, this adds up to ϱ ∈ ρ neighbours in D. Similarly si

c′′
i ℓ is

dominated by the ϱ vertices Si
ci∗ ∪ Aα

ℓ ⊂ D for all i ∈ [k] and for all c′′
i ̸= ci.

Claim 11. If there exists a (σ, ρ)-dominating set of size at most k1 in H1, then (K, G, ϕ) is a
yes-instance of the Partitioned Subgraph Isomorphism problem.

Proof. Let D be the (σ, ρ)-dominating set of size ≤ k1 in H1, and let α ∈ I.
We will first show that |Zα

∗∗ ∩ D| ≥ ϱ′.

Claim 12. For all ℓ ∈ [ϱ′], Aα
ℓ ⊆ D or |N [Aα

ℓ ] ∩ D| ≥ ϱ.

Proof. For all aα ∈ Aα
ℓ either aα ∈ D or |N(aα)∩D| ≥ ϱ, therefore unless Aα

ℓ ⊆ D, |N [Aα
ℓ ]∩D| ≥

ϱ.

By Claim 12 one of two things can be the case, either for some ℓ ∈ [ϱ′], |N [Aα
ℓ ] ∩ D| ≥ ϱ,

or for all ℓ ∈ [ϱ′], Aα
ℓ ⊆ D and therefore Aα ⊆ D. Let a = |{Aα

ℓ ̸⊆ D | ℓ ∈ [ϱ′]}|, then
|(Zα

∗∗ ∪ Aα) ∩ D| ≥ (ϱ′ − a)ς + aϱ = ϱ′ς + aϱ′ as N [Aα
ℓ ] ∩ N [Aα

ℓ′ ] = ∅ for all distinct ℓ′, ℓ ∈ [ϱ′].
If a > 0 then clearly |(Zα

∗∗ ∪Aα)∩D| ≥ ϱ′ς +ϱ′. But even if a = 0, |(Zα
∗∗ ∪Aα)∩D| ≥ ϱ′ς +ϱ′.

This is as if a = 0 then for all ℓ ∈ [ϱ′], Aα
ℓ ⊆ D by assumption. But |Aα

ℓ | = ς and every vertex in
Aα

ℓ has to be adjacent to at least ς vertices in D. Furthermore N [Aα
ℓ ]∩N [Aα

ℓ′ ] = ∅ for all distinct
ℓ′, ℓ ∈ [ϱ′], therefore for all ℓ ∈ [ϱ′] there must be at least one vertex in N(Aα

ℓ ) ∩ D ⊆ Zα
∗∗ ∩ D.

It then follows that |Zα
∗∗ ∩ D| ≥ ϱ′, and that |(Zα

∗∗ ∪ Aα) ∩ D| ≥ ϱ′ς + ϱ′.
|X ∩ D| ≥ ς, as there is a vertex in X which is only connected to ς < ϱ vertices. In fact

X ⊆ D.
Zα

∗∗ ∪ Aα, X ∪ X , for all α ∈ I, make a partition of V (H1). Furthermore, adding up all
the size bounds of the sets in the partition yields |V (H1) ∩ D| ≥ k1. But |D| ≤ k1, therefore
|D| = k1. And in particular, X ∩ D = ∅ and |(Zα

∗∗ ∪ Aα) ∩ D| = ϱ′ς + ϱ′.
Notice then that a ≤ 1 as if a > 1 then |(Zα

∗∗ ∪ Aα) ∩ D| > ϱ′ς + ϱ′ which cannot be the case.
Assume then that a = 1 and let Aα

ℓ be the set such that Aα
ℓ ̸⊆ D. Note that for all ℓ′ ̸= ℓ

the vertices of Aα
ℓ′ are in D, and therefore have to be adjacent to at least ς vertices in D. But

|Aα
ℓ′ | = ς, therefore there is at least one vertex in N(Aα

ℓ′) ∩ D = Zα
∗ℓ′ ∩ D.

Currently we have accounted for (ϱ′ − 1)(ς + 1) = ϱ′ς + ϱ′ − ς − 1 vertices in (Zα
∗∗ ∪ Aα) ∩ D.

By Claim 12, |N [Aα
ℓ ] ∩ D| ≥ ϱ, but the currently accounted for vertices are not in N [Aα

ℓ ] ∩ D
as N [Aα

ℓ ] ∩ N [Aα
ℓ′ ] = ∅. Therefore, counting these ϱ vertices in addition to the other accounted

vertices adds up to ϱ′ς + 2ϱ′ − 1 accounted vertices in (Zα
∗∗ ∪ Aα) ∩ D. However we know that

|(Zα
∗∗ ∪Aα)∩D| = ϱ′ς +ϱ′, therefore ϱ′ = 1 but we know this is not the case as ϱ′ > 1. Therefore

a = 0.
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Figure 10: Example of what A does to S1 ∪ X12 for p = 3, ς = 6, ϱ = 3

For all ℓ ∈ [ϱ′], Aα
ℓ ⊆ D and therefore |N [Aα

ℓ ] ∩ D| ≥ ς + 1. Furthermore |N [Aα
ℓ ] ∩ D| = ς + 1

since N [Aα
ℓ ] ∩ N [Aα

ℓ′ ] = ∅ for all ℓ′ ̸= ℓ, ⋃
ℓ∈[ϱ′] N [Aα

ℓ ] = Zα
∗∗ ∪ Aα, and |Zα

∗∗ ∪ Aα| = ϱ′ς + ϱ′.
Therefore since |Aα

ℓ | = ς there must exist exactly one b ∈ J for all ℓ ∈ [ϱ′] such that zα
bℓ ∈ D. It

then follows that |Zα
∗∗ ∩ D| = ϱ′.

Suppose that there does not exist any c ∈ J such that Zα
c∗ ⊆ D. Then as |Zα

∗∗ ∩D| = ϱ′ there
must exist some b ∈ J such that |Zα

b∗ ∩ D| ≥ 1. Then |Zα
b∗ ∩ D| < ϱ′ by assumption, let zα

bℓ be
the vertex which is not in D for some ℓ ∈ [ϱ′]. Then N(zα

bℓ) ∩ D ⊆
⋃

b′ ̸=b | zα
b′ ∈V (H) Zα

b′∗ ∪ Aα
ℓ ∪ X,

as N(zα
bℓ) ∩ Zα

b∗ = ∅. But |
⋃

b′ ̸=b | zα
b′ ∈V (H) Zα

b′∗ ∩ D| ≤ ϱ′ − |Zα
b∗ ∩ D| ≤ ϱ′ − 1, |X ∩ D| = 0, and

|Aα
ℓ | = ς. Therefore zα

bℓ is dominated by at most ϱ − 1 ̸∈ ρ vertices, contradicting that D is a
(σ, ρ)-dominating set. Therefore there must exist some c ∈ J such that Zα

c∗ ⊆ D.
Then for all i ∈ [k] there exists a ci ∈ [p] such that Si

ci∗ ⊆ D, and for all ij ∈ E(K) there
exists di, dj ∈ [p] such that Rij

didj∗ ⊆ D. Suppose that ci ̸= di then notice the vertex xij
di

is
only being dominated by the ς < ϱ vertices in X ∩ D, but ς ̸∈ ρ. Therefore ci = di, and by a
similar argument cj = dj . Therefore by Claim 2, (K, G, ϕ) is a yes-instance of the Partitioned
Subgraph Isomorphism problem.

4.3.3 When ϱ < ς + 1

Let ς ′ = ς − ϱ + 1. The procedure A turns H into the graph solution size pair: (H2, k2), where
k2 = (ς + 1) · (|E(K)| + k) + ς + 1. Let α ∈ I, and for each α we associate a value pα = |Zα|.
H2 is constructed from H as follows:

For all β ∈ J such that zα
β ∈ V (H), let zα

β = zα
β0.

A adds a (pα × ς ′)-grid of cliques on Zα in H. We call the ℓth column Zα
∗ℓ, for all ℓ ∈ [ς ′]0,

and the βth row Zα
β∗, for all β such that zα

β ∈ Zα. Let Zα
∗∗ = ⋃

ℓ∈[ς′]0 Zα
∗ℓ.

Similarly as when ϱ > ς +1 and ς ≥ 1 we let Rij
β∗ = Zα

β∗, Rij
∗∗∗ = Zα

∗∗, and Rij
∗ℓ = Zα

∗ℓ whenever
α = ij and Si

β∗ = Zi
β∗, Si

∗∗ = Zα
∗∗, and Si

∗ℓ = Zi
∗ℓ whenever α = i.

If ϱ > 1, then A adds a clique Aα of size ϱ − 1, where the vertices in Aα are adjacent to all
vertices in Zα

∗∗. If ϱ = 1 then Aα = ∅.
Finally A also add a clique X of size ς + 1 to H2. This clique is partitioned into two parts

X1 and X2, where X1 has size ϱ − 1 and all its vertices are adjacent to all vertices in X. The
vertices in X2 are only adjacent to all all vertices in X and X2 has size ς ′ + 1.1

Claim 13. The graph H2 has linmimw(H2) ≤ mimw(Λ2) = O(|E(K)|), for some linear ordering
Λ2 of H2 computable in polynomial time.

Proof. We use the linear ordering Λ of H constructed in Claim 5, which is computable in
polynomial time, and for which mimw(Λ) = O(|E(K)|).

1Note that X is not needed for correctness when ς = 0, but for simplicity we include it anyway.
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We can assume without loss of generality that first for all α ∈ I, (pα × ς ′)-grids of cliques
is added on Zα in H. By Lemma 4 there exists a linear ordering Λ′ of this graph with the
grid of cliques added, which can be constructed in polynomial time from Λ, where mimw(Λ′) ≤
mimw(Λ) + (|E(K)| + k) · ς ′ = O(|E(K)|).

Finally in order to obtain H2 the cliques X and Aα, for all α ∈ I, are added to the inter-
mediary graph. By Lemma 5 there exists a linear ordering Λ2 of H2 constructible from Λ′ in
polynomial time, where mimw(Λ2) ≤ (|E(K)| + k) · O(ς + ϱ) + mimw(Λ′) = O(|E(K)|).

Claim 14. If (K, G, ϕ) is a yes-instance of the Partitioned Subgraph Isomorphism problem
then there exists a ({ς}, {ϱ})-dominating set of size k2 in H2

Proof. Let f : V (K) → V (G) be the function preserving neighbours and colours. Let f(i) = vi
ci

for all i ∈ [k] and for some c1, ..., ck ∈ [p]. Note that ij ∈ E(K) implies that vi
ci

vj
cj

∈ E(G)
further implying that rij

cicj
∈ V (H) and therefore also in H2.

Then D = ⋃
ij∈E(K) Rij

cicj∗ ∪
⋃

i∈[k] Si
ci∗ ∪

⋃
α∈I Aα ∪ X is a (σ, ρ)-dominating set of size k2 in

H2.
For all ij ∈ E(K) the vertex sets Rij

cicj∗ ∪ Aij
ℓ , Si

ci∗ ∪ Ai
ℓ, and X are all cliques contained in

D of size ς + 1. Therefore all the vertices in the cliques are adjacent to at least ς vertices in D.
In addition, for all of these cliques there are no vertices in their neighbourhood which are in D.
Therefore all their vertices are indeed adjacent to exactly ς ∈ σ vertices in D.

For all ij ∈ E(K) and for all a ∈ [p] the vertex xij
a is dominated by the ϱ − 1 vertices in X2

2. Furthermore xij
a is also dominated by rij

cicj
if and only if a ̸= ci, and xij

a is also dominated by
si

ci
if and only if a = ci. These are all the vertices in N(xij

a ) ∩ D, therefore xij
a is dominated by

exactly ϱ ∈ ρ vertices in D.
For all ij ∈ E(K) and for all c′

i, c′
j ∈ [p] such that c′

i ̸= ci ∨ c′
j ̸= cj , the vertices in Rij

c′
ic

′
j∗ are

dominated by the exactly ϱ ∈ ρ vertices in Rij
cicj∗ ∪ Aij ⊂ D. The same is true for all i ∈ [k],

where all the vertices in Si
c′′

i ∗, for all c′′
i ̸= ci, are dominated by the ϱ ∈ ρ vertices in Si

ci∗ ∪Ai.

Claim 15. If there exists a (σ, ρ)-dominating set of size at most k2 in H2, then (K, G, ϕ) is a
yes-instance of the Partitioned Subgraph Isomorphism problem.

Proof. Let D be the (σ, ρ)-dominating set in H2 of size at most k2, and let α ∈ I.
We will now show that |(Zα

∗∗ ∪ Aα) ∩ D| ≥ ς + 1.

Claim 16. If (Zα
∗∗ \ Zα) ∩ D ̸= ∅ then |(Zα

∗∗ ∪ Aα) ∩ D| ≥ ς + 1.

Proof. Let z ∈ Zα
∗∗ \ Zα. If z is in D then it needs ς neighbours in D, these ς vertices have to

be in Zα
∗∗ as N(z) ⊆ Zα

∗∗. Therefore if z ∈ D then |Zα
∗∗ ∩ D| ≥ ς + 1.

Suppose that |(Zα
∗∗ ∪ Aα) ∩ D| < ς + 1 then by Claim 16, (Zα

∗∗ \ Zα) ∩ D = ∅. Therefore for
all a ∈ J and for all ℓ ∈ [ς ′], the vertex zα

aℓ ∈ Zα
∗∗ \ Zα has to be dominated by some vertex in

Zα as 0 ̸∈ ρ by assumption. Note that N(zα
aℓ) ∩ Zα = {zα

a }, and therefore zα
a ∈ D.

Then for all a ∈ J , zα
a ∈ D and therefore Zα ⊆ D. We can by Claim 1 assume that

|Zα| ≥ ς + 1, therefore |Zα ∩ D| ≥ ς + 1 contradicting that |(Zα
∗∗ ∪ Aα) ∩ D| < ς + 1. We can

therefore conclude that in any case |(Zα
∗∗ ∪ Aα) ∩ D| ≥ ς + 1

There either exists some x ∈ X2 ∩D or X2 ∩D = ∅. For the first case the vertex x ∈ D needs
to be adjacent to at least ς other vertices in D, but N(x) = X \ {x} which has size ς, therefore
X ⊆ D. For the second case let x′ ∈ X2, x′ then needs to be dominated by at least ϱ vertices in
D. Furthermore these vertices have to be in X1 as X2 ∩ D = ∅ by assumption, and N(x′) ⊆ X .
But |X1| = ϱ − 1, therefore x′ cannot be dominated by at least ϱ vertices which contradicts that

2X2 is empty if ϱ = 1, but the arguments still hold.
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D is a (σ, ρ)-dominating set, and therefore there must be some x ∈ X2 ∩D which in turn implied
that X ⊆ D. And therefore clearly |X ∩ D| ≥ ς + 1. 3

The vertex sets Zα
∗∗ ∪ Aα, X ∪ X , for all α ∈ I, make a partition of V (H2). Furthermore,

adding up all the size bounds of the sets in the partition yields |V (H2) ∩ D| ≥ k2. But |D| ≤ k2,
therefore |D| = k2, |(Zα ∪ Aα) ∩ D| = ς + 1, and X ∩ D = ∅.

Note that because |(Zα
∗∗ ∪Aα)∩D| = ς +1, the only subset of Zα

∗∗ which can also be a subset
of D must be a clique of size ς + 1. If not then there is at least two vertices in D which are
adjacent to less than ς vertices which cannot be the case. The only cliques of size at least ς + 1
in Zα

∗∗ are Zα
∗ℓ ∪ Aα for all ℓ ∈ [ς ′]0, and Zα

b∗ ∪ Aα for all b ∈ J , and possibly their subsets.
Suppose that Zα

∗ℓ ∪ Aα, for some ℓ ∈ [ς ′]0, has a subset of size ς + 1 in D. Then note that
because of Claim 1 we can assume that |Zα

∗ℓ′′ | > ς +1 for all ℓ′′ ∈ [ς ′]0. In particular, there exists
c ∈ J such that zα

cℓ ̸∈ D. Furthermore for all ℓ′ ̸= ℓ the vertex zα
cℓ′ is not in D either. But notice

that even if Aα ⊆ D the vertex zα
cℓ′ is dominated by less than ϱ vertices in D as |Aα| = ϱ − 1,

X ∩ D = ∅, and N(zα
cℓ′) ∩ Zα

∗ℓ = {zα
cℓ} ̸⊆ D and we assumed that Zα

∗∗ ∩ D = Zα
∗ℓ.

Therefore, only some subset of Zα
b∗ ∪ Aα, for some b ∈ J , of size ς + 1 can be in D. But

|Zα
b∗ ∪ Aα| = ς + 1. Therefore Zα

b∗ ∪ Aα ⊆ D.
Then for all ij ∈ E(K) there exists di, dj ∈ [p] such that Rij

didj∗ ∪ Aij ⊆ D. Similarly for all
i ∈ [k] there exists ci ∈ [p] such that Si

ci∗ ∪ Ai ⊆ D. Assume that ci ̸= di then xij
di

is adjacent
to all of X1 but not to Rij

didj∗ nor to Si
ci∗. But |X1| = ϱ − 1 and X ∩ D = ∅. Therefore in order

for xij
di

to be dominated by ϱ vertices di must be equal to ci. By a similar argument dj = cj .
Therefore by Claim 2, (K, G, ϕ) is a yes-instance of the Partitioned Subgraph Isomorphism
problem.

4.3.4 When ϱ ≥ 1 and ς = 0

A transforms H into the graph solution size pair: (H3, k3), where k3 = (ϱ)(k + |E(K)|) and H3
is constructed as follows:

The graph H3 is generated from H by for each α ∈ I adding ϱ − 1 4 identical false twins of
{zα

β ∈ V (H) | α ∈ I, β ∈ J } in H. For all β ∈ J such that zα
β ∈ V (H), we call the twins of zα

β :
zα

β2, ..., zα
βℓ, and we let zα

β = zα
β1.

Similarly as when ϱ > ς + 1 and ς ≥ 1, we let Zα
β∗ = {zα

βℓ | ℓ ∈ [ρ]}, Zα
∗ℓ = {zα

βℓ | β ∈
J s.t. zα

β ∈ V (H)}, and we let Zα
∗∗ = Zα ∪

⋃
ℓ∈[ϱ′] Zα

∗ℓ.
We will also let Rij

β∗ = Zα
β∗, Rij

∗∗∗ = Zα
∗∗, and Rij

∗ℓ = Zα
∗ℓ whenever α = ij ∈ E(K), and we let

Si
β∗ = Zi

β∗, Si
∗∗ = Zα

∗∗, and Si
∗ℓ = Zi

∗ℓ whenever α = i.
In addition we add a clique Aα of size ϱ, and we connect all of its vertices to to all the

vertices in Zα
∗∗.

Claim 17. The graph H3 has linmimw(H3) ≤ mimw(Λ3) = O(|E(K)|), for some linear ordering
Λ3 of H3 computable in polynomial time.

Proof. The proof is very similar to the proof of Claim 9. Essentially by Claim 5, H has linear
mim-width O(|E(K)|). Then false twins are added to H (possibly 0 false twins in which case use
the same ordering as H), for which there is an linear ordering with linear mim-width O(|E(K)|+
1) by Lemma 3. Finally |E(K)|+k cliques of size ϱ are added on top of that to obtain H3 which
has a linear ordering Λ3 such that mimw(Λ3) = O(|E(K)|) + (|E(K)| + k) · ϱ = O(|E(K)|) by
Lemma 5. Furthermore all of these orderings are computable in polynomial time.

Claim 18. If (K, G, ϕ) is a yes-instance of the Partitioned Subgraph Isomorphism problem,
then there exists a ({ς}, {ϱ})-dominating set of size k3 in H3

3The argument still holds even if ϱ = 1 and therefore X1 = ∅, as the vertices in X still need to be dominated
by at least one vertex and |X | = |X2| = ς + 1.

4If ϱ = 1 then no identical twins are added.
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Proof. Let f : V (K) → V (G) be the function preserving neighbours and colours. Let f(i) = vi
ci

for all i ∈ [k] and for some c1, ..., ck ∈ [p]. Note that ij ∈ E(K) implies that vi
ci

vj
cj

∈ E(G)
further implying that rij

cicj
∈ V (H) and therefore also rij

cicj
is also in H3.

Then D = ⋃
i∈[k] Si

ci∗ ∪
⋃

ij∈E(K) Rij
cicj∗ is a (σ, ρ)-dominating set.

Notice that every vertex in Si
∗∗ \ Si

ci∗ is dominated by Si
ci∗ ⊂ D and only Si

ci∗ ⊂ D which has
ϱ ∈ ρ vertices. The same is true for Rij

∗∗∗ \ Rij
cicj∗ and Rij

cicj∗ ⊂ D. Furthermore Si
ci∗ and Rij

cicj∗
are independent sets as they only consist of false twins of si

ci
and rij

cicj
respectively.

Finally xij
a is dominated by the ϱ vertices in Rij

cicj
⊂ D if and only if a ̸= ci and to the ϱ

vertices in Si
ci∗ ⊂ D if and only if a = ci. And there are no other vertices in N(xij

a )∩D, therefore
in either case xij

a is dominated by ϱ ∈ ρ vertices in D.

Claim 19. If there exists a (σ, ρ)-dominating set of size at most k3 in H3, then (K, G, ϕ) is a
yes-instance of the Partitioned Subgraph Isomorphism problem.

Proof. Let D be a (σ, ρ)-dominating set of size at most k3, and let α ∈ I.
First note that |N [Aα] ∩ D| ≥ ϱ, as every vertex in Aα either needs to be in D and |Aα| = ϱ,

or there is a vertex in Aα that is not in D that needs be dominated by at least ϱ vertices in its
neighbourhood.

Then N [Aα] for all α ∈ I, and X make a partition of H3. Adding up the lower bounds of
|N [Aα] ∩ D| then yields |D| ≥ k3, but |D| ≤ k3. Therefore |N [Aα] ∩ D| = ϱ and X ∩ D = ∅.

Suppose that there is some zα
aℓ ∈ D for some a ∈ [p] and ℓ ∈ [ϱ], then Zα

a∗ ⊆ D. This is
trivially true if ϱ = 1 and otherwise it is true by the following argument. If Zα

a∗ ̸⊆ D then
there exists some ℓ′ ∈ [ϱ] such that zα

aℓ′ ̸∈ D. But notice then that zα
aℓ′ cannot be adjacent to ϱ

vertices in D as it is not adjacent to zα
aℓ ∈ D, and |Zα

∗∗ ∩ D| ≤ ϱ as Zα
∗∗ ⊆ N [Aα]. Furthermore,

X ∩ D = ∅. Therefore |N(zα
aℓ′) ∩ D| ≤ ϱ − 1 ̸∈ ρ but this cannot be the case therefore Zα

a∗ ⊆ D.
For all ij ∈ E(K) and for all a ∈ [p], the vertex xij

a needs to be dominated by ϱ vertices
in D. Note that since X ∩ D = ∅, xij

a needs to be dominated by a subset of Si
a∗ or a subset

of ⋃
a′,b∈[p] Rij

a′b∗, or a combination of both subsets. Suppose xij
a is dominated by a vertex in⋃

a′ ̸=a,a′,b∈[p] Rij
a′b∗, then notice by the argument above there must be some a′ ̸= a and some

b ∈ [p] such that Rij
a′b∗ ⊆ D. But notice then that xij

a′ needs to be dominated by ϱ vertices in D,
but this can only be done by Si

a′∗ as |Rij
a′b∗| = ϱ and Rij ∩ D = ϱ, therefore Si

a′∗ ⊆ D. Similarly
if xij

a is being dominated by a vertex in Si
a∗ then Si

a∗ ⊆ D. And xij
a′ , for all a′ ̸= a, has to be

dominated by ϱ vertices in D. This can only be done by ⋃
b∈[p] Rij

ab∗ but again by the argument
above this leads to Rij

ab∗ ⊆ D for some b ∈ [p].
Therefore for all i ∈ [k] there exists some ci ∈ [p] such that Si

ci
and for all ij ∈ E(K),

Rij
cicj∗ ⊆ D. Therefore by Claim 2, (K, G, ϕ) is a yes-instance of Partitioned Subgraph

Isomorphism.

4.4 Maximisation problems

For the maximisation problems we let ς = max(σ) and ϱ = max(ρ). Here we see why we require
σ and ρ to be finite, we can only find a maximum of a subset of the natural numbers if the
subset is finite. Recall that ρ ̸= {0} by assumption, and therefore ϱ ̸= 0.

4.4.1 When ς < ϱ

We use the same procedure A as for when min(σ) < min(ρ) − 1, except using our new values of
ϱ and ς, turning H into the graph solution size pair (H1, k1).

The graph is the same as for the minimisation problem, except new but still constant values
of ϱ and ς, and therefore there also exists a linear ordering Λ1 of H1 computable in polynomial

27



time that has linear mim-width O(|E(K)|) by Claim 9 as ς + ϱ is still O(1). Additionally, Claim
10 still holds for maximisation.

We still let ϱ′ = ϱ − ς and k1 = (ϱ′ς + ϱ′)(|E(K)| + 1) + (ς + 1). Note that ϱ′ can be 0, in
which case we do not add any identical twins of {zα

β ∈ V (H) | α ∈ I, β ∈ J }, and in general we
will evaluate ϱ′ − 1 as 0 if ϱ′ = 0, but all arguments still hold.

Claim 20. If there exists a (σ, ρ)-dominating set of size at least k1 in H1, then (K, G, ϕ) is a
yes-instance of the Partitioned Subgraph Isomorphism problem.

Proof. Let D be a (σ, ρ)-dominating set in H1 of size at least k1.
For all ℓ ∈ [ϱ′], Aα

ℓ ∪ Zα
∗ℓ

5 is a clique, therefore any vertex in (Aα
ℓ ∪ Zα

∗ℓ) ∩ D can at most be
adjacent to ς other vertices in D. Therefore |(Aα

ℓ ∪ Zα
∗ℓ) ∩ D| ≤ ς + 1. This is true for all ℓ ∈ [ϱ′]

therefore |(Aα ∪ Zα
∗∗) ∩ D| ≤ ϱ′ς + ϱ′.

Furthermore |(X ∪ X1) ∩ D| ≤ ς + 1 as X1 ∪ X is a clique. Because |X | = |X1| + 1 we then
have that |(X ∪ X ) ∩ D| ≤ ς + 2.

The vertex sets Aα ∪Zα
∗∗, X ∪X , for all α ∈ I, make a partition of V (H1). Therefore, adding

up all the size bounds of the sets in the partition yields |V (H1) ∩ D| ≤ k1 + 1. But |D| ≥ k1,
therefore |D| = k1 or |D| = k1 + 1.

First we will show that |(X ∪ X ) ∩ D| = ς + 1. Assume for the sake of contradiction that
|(X ∪ X ) ∩ D| = ς + 2. X1 ∪ X is a clique, therefore at most ς + 1 vertices of the clique
can be in D. Therefore the last vertex has to be in X2 and therefore X2 ⊆ D. Furthermore
X ∩D ̸= ∅ as |X | = ς +1, every vertex in X ∩D is adjacent to ς vertices in D, and ϱ′ς +ϱ′ −1 ≤
|(Zα

∗∗ ∪ Aα) ∩ D| ≤ ϱ′ς + ϱ′. As a consequence ϱ′ − 1 ≤ |Zα
∗∗ ∩ D| ≤ ϱ′ since |Aα| = ϱ′ς.

Let xij
a be a vertex in X ∩ D for some ij ∈ E(K) and a ∈ [p], then (N(xij

a ) \ (X ∪ X )) ∩ D
must be empty as xij

a has ς neighbours in (X ∪ X ) ∩ D by assumption and therefore can have no
more neighbours in D. Therefore Rij

∗∗∗ ∩ D must be a subset of {rij
abℓ ∈ V (H1) | b ∈ [p], ℓ ∈ [ϱ′]},

and Si
∗∗ ∩D must be a subset of Si

∗∗ \Si
a∗. Note that Rij

∗∗∗ ∩D is then adjacent to all the vertices
in Xij \ {xij

a }.
Furthermore there must exist some b ̸= a such that Si

b∗ ∩ D ̸= ∅ as |Zα
∗∗ ∩ D| ≥ ϱ′ − 1 for all

α ∈ I. But then xij
b cannot be in D as it would be adjacent by at least one vertex in Si

b∗ ∩ D,
at least ϱ′ − 1 vertices in Rij

∗∗∗ ∩ D, and ς vertices in (X ∪ X1) ∩ D, which adds up to at least
1 + ϱ′ − 1 + ς = ϱ > ς vertices in N(xij

b ) ∩ D which cannot be the case. But notice that if
xij

b is not in D, then it is adjacent to ς + 1 vertices in (X ∪ X1) ∩ D) in addition to at least
ϱ′ − 1 + 1 vertices in (Si

b∗ ∪ Rij
∗∗∗) ∩ D. This adds up to ϱ + 1 > ϱ vertices in D dominating

xij
b which cannot be the case. Therefore (X ∪ X ) ∩ D = ς + 1 and furthermore for all α ∈ I,

|(Zα
∗∗ ∪ Aα) ∩ D| = ϱ′ς + ϱ′.

Claim 21. If for all ℓ ∈ [ϱ′], |(Aα
ℓ ∪ Zα

∗ℓ) ∩ D| = ς + 1, then there exists a c ∈ J such that
Zα

c∗ ⊆ D. Furthermore for all c′ ̸= c, Zα
c′∗ ∩ D = ∅.

Proof. First note that for all ℓ ∈ [ϱ′], |(Aα
ℓ ∪ Zα

∗ℓ) ∩ D| = ς + 1 and |Aα
ℓ | = ς. Therefore for all

ℓ ∈ [ϱ′] there exists a zα
aℓ ∈ D for some a ∈ J .

Suppose for the sake of contradiction that there is no c ∈ J such that Zα
c∗ ⊆ D. By the

argument above there then must exist two distinct a, b ∈ J such that zα
aℓ, zα

bℓ′ ∈ D, for two
distinct ℓ, ℓ′ ∈ [ϱ′]. If there are no such distinct a and b then clearly there exists a c ∈ J such
that Zα

c∗ ⊆ D. But notice that zα
aℓ and zα

bℓ′ are adjacent, therefore zα
aℓ is adjacent to the ς + 1

vertices in (Zα
ℓ ∪ Zα

∗ℓ ∪ {zα
bℓ′}) ∩ D. But this cannot be the case as ς + 1 ̸∈ σ.

Therefore there exists a c ∈ J such that Zα
c∗ ⊆ D. Suppose for the sake of contradiction

that there exists d ∈ J and ℓ ∈ [ϱ′] such that zα
dℓ ∈ D. Then notice that for all ℓ′ ̸= ℓ the vertex

zα
cℓ′ and zα

dℓ are adjacent but zα
cℓ′ is adjacent to ς vertices in (Zα

ℓ′ ∪ Zα
∗ℓ′) ∩ D by assumption, and

5Note that ς = 0 in which case Aα
ℓ = ∅, however all such arguments, and similar arguments when a set is the

empty set, still hold.
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zα
dℓ ̸∈ Zα

ℓ′ ∪ Zα
∗ℓ′ . Therefore zα

cℓ′ ∈ D is adjacent to ς + 1 ̸∈ σ vertices in D. Therefore no such d
and ℓ can exist.

Claim 22. If Si
a∗ ⊆ D and Rij

bb′∗ ⊆ D then a = b. Similarly if Sj
a∗ ⊆ D and Rij

bb′∗ ⊆ D then
a = b′

Proof. Assume that a ̸= b. The vertex xij
a is then adjacent to all vertices in Si

a∗ and Rij
bb′∗ both

of which are contained in D. Therefore xij
a has 2ϱ′ neighbours in Si

a∗ ∪ Rij
bb′∗ ⊆ D, in addition

xij
a has ς neighbours in (X ∪ X ) ∩ D as |(X ∪ X1) ∩ D| = ς since |X2| = 1. This adds up to

ϱ + ϱ′ > ϱ > ς neighbours in D. Therefore xij
a can neither be in D nor not be in D which is a

contradiction. Therefore a = b.
The symmetric case for Sj

a∗ ⊆ D and Rij
bb′∗ ⊆ D has a similar proof.

Notice that |(Zα
∗∗ ∪ Aα

∗ ) ∩ D| = ϱ′ς + ϱ′ and |(Zα
∗ℓ ∪ Aα

ℓ ) ∩ D| ≤ ς + 1 for all ℓ ∈ [ϱ′], therefore
|(Zα

∗ℓ ∪ Aα
ℓ ) ∩ D| = ς + 1 for all ℓ ∈ [ϱ′]. Therefore by the Claims 21 and 22, for all i ∈ [k] there

exists ci ∈ [p] such that Si
ci∗ ⊆ D. Furthermore if ij ∈ E(K) then Rij

cicj∗ ⊆ D and therefore by
Claim 2, (K, G, ϕ) is a yes-instance of the Partitioned Subgraph Isomorphism problem.

4.4.2 When ς ≥ ϱ

We still use the procedure A to construct (H2, k2), except using our new values of ϱ and ς. The
graph still has a linear ordering computable in polynomial time with bounded linear mim-width
by Claim 13, and Claim 14 still holds for maximisation.

Claim 23. If there exists a (σ, ρ)-dominating set of size at least k2 in H2, then (K, G, ϕ) is a
yes-instance of the Partitioned Subgraph Isomorphism problem.

Proof. Let D be a (σ, ρ)-dominating set in H2 of size at least k2, and let α ∈ I.
We will first show that |(Zα

∗∗ ∪ Aα) ∩ D| ≤ ς + 1.
If ϱ > 1 let a ∈ Aα. Note that a is adjacent to all vertices in Zα

∗∗ ∪ Aα. Therefore if
|(Zα

∗∗ ∪ Aα) ∩ D| > ϱ then a ∈ D as otherwise it would be dominated too many times. This
applies for all vertices in Aα, therefore if |(Zα

∗∗ ∪ Aα) ∩ D| > ϱ then Aα ⊆ D.
Therefore assume that |(Zα

∗∗ ∪ Aα) ∩ D| > ϱ and suppose that both zα
bℓ and zα

b′ℓ′ are in D,
for some ℓ, ℓ′ ∈ [ς ′]0 and for two distinct b, b′ ∈ J . If ℓ = ℓ′ then note that zα

b′′ℓ, for some b′′ ̸= b
and b′′ ̸= b′, is being dominated by (ϱ − 1) vertices in Aα ⊆ D 6 and the vertices zα

bℓ, zα
b′ℓ′ ∈ D,

which adds up to ϱ + 1 > ϱ vertices in D and therefore zα
b′′ℓ must be in D. This argument can

be repeated until all of Zα
∗ℓ is in D. But because by Claim 1 we can assume that |Zα

∗ℓ| > ς + 1,
therefore all vertices in Zα

∗ℓ, which are also in D, are adjacent to more than ς other vertices in
D. Therefore ℓ ̸= ℓ′.

Because ℓ ̸= ℓ′ the vertices zα
bℓ′ and zα

b′ℓ are adjacent to both zα
bℓ and zα

b′ℓ′ . Therefore by a
similar argument as above zα

bℓ′ and zα
b′ℓ are adjacent to (ϱ − 1) + 2 > ϱ vertices, and hence both

zα
bℓ′ and zα

b′ℓ must be in D. But then notice that we are in the same situation as above, where
all of Zα

∗ℓ (and Zα
∗ℓ′) must be in D. But this led to a contradiction, therefore either b = b′ or

|Zα
∗∗ ∩ D| = 1. Furthermore if b = b′ all the vertices in Zα

b∗ are being dominated by ϱ − 1 + 2 > ϱ
vertices, and therefore must be in D.

We can therefore conclude with that either |(Zα
∗∗ ∪ Aα) ∩ D| ≤ ϱ or Zα

∗∗ ∩ D = Zα
c∗ for some

c ∈ J . In particular |(Zα
∗∗ ∪ Aα) ∩ D| ≤ ς + 1 in either case.

We will now show that |(X ∪ X ) ∩ D| ≤ ς + 1. First note that |(X ∪ X1) ∩ D| ≤ ϱ, as if
|(X ∪ X1) ∩ D| > ϱ then all vertices in X must be in D, but |X| can be assumed to be bigger
than ς, as for all α′ = i ∈ [k], |X| ≥ |Xα′ | = |Zα′ | and Zα′ can be assumed to be larger than ς
by Claim 1.

6Note that ϱ ̸= 0, and even if ϱ = 1 the argument, and other arguments later in this proof, still hold.
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Therefore if |(X ∪ X ) ∩ D| > ς + 1 then at most ϱ vertices can be in |(X ∪ X1) ∩ D|. The
rest has to be in X2 which has size ς − ϱ + 2 and therefore X2 ⊆ D and |(X ∪ X ) ∩ D| = ς + 2.
But then the vertices in X1 ∩ D are adjacent to ς − ϱ + 2 vertices in X2 ∩ D and at least ϱ − 1
vertices in (X ∪ X1) ∩ D which adds up to ς + 1 vertices in D. Therefore the vertices in X1 can
neither be in D nor not be in D, which is a contradiction, therefore |(X ∪ X ) ∩ D| ≤ ς + 1.

Zα
∗∗ ∪ Aα and X, X , for all α ∈ I, make a partition of V (H2). Therefore, adding up all

the size bounds of the sets in the partition yields |V (H2) ∩ D| ≤ k2. But |D| ≥ k2, therefore
|D| = k2, and all the size bounds are exact.

As a consequence |(Aα ∪ Zα
∗∗) ∩ D| = ς + 1 and as ς + 1 > ϱ we have that Zα

∗∗ ∩ D = Zα
c∗ for

some c ∈ J .
Note that |(X ∪ X ) ∩ D| = ς + 1. Suppose that |(X ∪ X1) ∩ D| = ϱ, then Zα

∗0 ∩ D = ∅
but by the argument above zα

c ∈ Zα
∗0 ∩ D. Therefore |(X ∪ X1) ∩ D| < ϱ and in particular

|(X ∪ X1) ∩ D| = ϱ − 1 and |X2 ∩ D| = ς − ϱ + 2, as |X2| = ς − ϱ + 2. Furthermore X1 ⊆ D as
if there is some vertex in X1 but not in D, then it would be adjacent to ς + 1 > ϱ vertices in D
contradicting that |(X ∪ X1) ∩ D| = ϱ − 1, as the vertex would have to be in D.

Finally we have shown there exists some si
ci

∈ D, implying that rij
c′

idj
cannot be in D, for

some c′
i ̸= ci and all j ∈ [k]. As if both si

ci
and rij

c′
idj

are in D then the vertex xij
ci

is being
dominated by ϱ + 1 vertices, which cannot be the case. Therefore, xij

ci
would have to be in D,

but this cannot be the case either as X ∩ D = ∅ by the argument above. Therefore if si
ci

∈ D

then rij
cidj

∈ D. And by a similar argument if sj
cj

∈ D then rij
dicj

∈ D.
Therefore by Claim 2, (K, G, ϕ) is a yes-instance of the Partitioned Subgraph Isomor-

phism problem.

4.5 Proof of Theorem 1

Proof of Theorem 1. Let σ and ρ be two subsets of N where 0 ̸∈ ρ.
The W [1]-hardness of both Min-(σ, ρ)-DS param. by l. mim-width + sol. size and

Max-(σ, ρ)-DS param. by l. mim-width + sol. size will be shown by a reduction from
the W [1]-hard problem Partitioned Subgraph Isomorphism Fellows et al. (2009); Pietrzak
(2003) 7, taking the instance (K, G, ϕ) of the Partitioned Subgraph Isomorphism problem
and constructing the graph H. The graph H is further transformed into the graph solution
size pair (H0, k0), (H1, k1), (H2, k2), or (H3, k3). The construction of H can clearly be done in
polynomial (polynomial in k + |V (G)|) time, and all the transformations on H can also clearly
be done in polynomial time.

For the Min-(σ, ρ)-DS param. by l. mim-width + sol. size problem we let ς = min(σ)
and ϱ = min(ρ). Then if ς = 0, H is transformed into (H3, k3), otherwise ς ≥ 1. If ϱ = ς + 1
then H is transformed into (H0, k0), if ϱ > ς + 1 into (H1, k1), and if ϱ < ς + 1 into (H2, k2).
Note that one of these cases must be true, and that if ϱ < ς + 1 then ς ̸= 0 as then ϱ < 0 which
it cannot be.

For a ∈ [3]0 and for some linear ordering Λa of Ha, we say (Ha, ka, Λa) retains correctness for
a problem P if (Ha, ka, Λa) is yes-instance of P is equivalent with (K, G, ϕ) being a yes-instance
of the Partitioned Subgraph Isomorphism problem. We first let P be the Min-(σ, ρ)-DS
param. by l. mim-width + sol. size problem.

Then (H0, k0, Λ0) retains correctness for P by Claim 7 8 and Claim 8, (H1, k1, Λ1) retains
correctness for P by Claim 10 and Claim 11, (H2, k2, Λ2) retains correctness for P by Claim 14
and Claim 15, and (H3, k3, Λ3) retains correctness for P by Claim 18 and Claim 19.

7The W [1]-hardness follows from the fact that Multicoloured Clique is a special case of Partitioned
Subgraph Isomorphism where K is a complete graph, and Multicoloured Clique is W [1]-hard Fellows et al.
(2009); Pietrzak (2003)

8Note that every ({ς}, {ϱ})-dominating set is also a (σ, ρ)-dominating set as ς ∈ σ and ϱ ∈ ρ.
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Further note that there exists linear orderings Λ0, Λ1, Λ2, and Λ3 of the graphs H0, H1,
H2, and H3 computable in polynomial time by the Claims 6, 9, 13, and 17 respectively. Where
linmimw(Ha) ≤ mimw(Λa) = O(|E(K)|) for all a ∈ [3]0, as ϱ and ς are both O(1). Therefore
the Min-(σ, ρ)-DS param. by l. mim-width + sol. size problem for the given σ and ρ is
W [1]-hard.

Now let P be the Max-(σ, ρ)-DS param. by l. mim-width + sol. size problem, then by
assumption we let σ and ρ be finite subsets of N and ρ ̸= {0}. We can therefore find maximum
elements ς and ϱ of σ and ρ respectively.

The graph H is then transformed into the graph solution size pair (H1, k1) if ϱ > ς and into
the pair (H2, k2) if ϱ ≤ ς. Clearly either ϱ > ς or ϱ ≤ ς.

Then (H1, k1, Λ1) retains correctness for P by Claim 10 and Claim 20, and (H2, k2, Λ2)
retains correctness for P by Claim 14 and Claim 23.

Furthermore as shown above there exists linear orderings for both H1 and H2 computable
in polynomial time with linear mim-width O(|E(K)|), as ς and ϱ are still O(1). Therefore the
Max-(σ, ρ)-DS param. by l. mim-width + sol. size problem for the given σ and ρ is
W [1]-hard.

Moreover, unless ETH is false, there are no algorithms solving the Partitioned Subgraph
Isomorphism problem in no(|E(K)|/ log |E(K)|) time, where n = |V (G)| by Corollary 6.3 in Marx
(2010). Assume that there exists some algorithm solving Min-(σ, ρ)-DS param. by l. mim-
width + sol. size or Max-(σ, ρ)-DS param. by l. mim-width + sol. size in time
no(w/ log w), for some input graph G with n = |V (G)| and with a linear graph decomposition
of G with the mim-width w. We then create an algorithm for Partitioned Subgraph Iso-
morphism determining if the instance (K, G, ϕ) is a yes-instance of Partitioned Subgraph
Isomorphism.

First we apply the reductions above, which takes polynomial (polynomial in n and |E(K)|)
time. We then get the instance (Ha, ka, Λa) for some a ∈ [3]0 where mimw(Λa) ≤ b · |E(K)| of
the problem Min-(σ, ρ)-DS param. by l. mim-width + sol. size or of the problem Max-
(σ, ρ)-DS param. by l. mim-width + sol. size. This instance can then by assumption be
solved in time

no(w/ log w) = no(b·|E(K)|/ log(b·|E(K)|)) = no(|E(K)|/ log |E(K)|

But notice that we then have an algorithm solving Partitioned Subgraph Isomorphism in
(n + |E(K)|)O(1) + no(|E(K)|/ log |E(K)|) = no(|E(K)|/ log |E(K)|) time, contradicting that there are
no such algorithms.

We only have a reduction from Partitioned Subgraph Isomorphism to Min-(σ, ρ)-DS
param. by l. mim-width + sol. size when 0 ̸∈ ρ and from Partitioned Subgraph
Isomorphism to Max-(σ, ρ)-DS param. by l. mim-width + sol. size when ρ ̸= {0} and σ
and ρ are both finite subsets of N.

Therefore there are no algorithms solving Min-(σ, ρ)-DS param. by l. mim-width +
sol. size when 0 ̸∈ ρ in time no(w/ log w). And there are no algorithms solving Max-(σ, ρ)-DS
param. by l. mim-width + sol. size, when σ and ρ are finite sets and ρ ̸= {0}, in time
no(w/ log w). Where n is the size of the input graph and w is the linear mim-width of a branch
decomposition given with the input graph.

5 ETH Based Lower Bound for the Independent Set Problem
on H-graphs

We will show a ETH based lower bound on the running time of any algorithm solving the
Independent Set problem on H-graphs, using a reduction from Partitioned Subgraph
Isomorphism to Independent Set on H-graphs. The reduction is a modified reduction from
Fomin et al. (2020), modified so that it starts from Partitioned Subgraph Isomorphism
instead of the Multicoloured Clique problem.
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Theorem 2. The Independent Set problem on H-graphs cannot be solved in time no(h/ log h),
where n is the number of vertices in the input graph and h = |E(H)|, unless ETH is false.

Note that Theorem 2 does not follow from Theorem 1 as the Independent Set problem
is the Max-({0},N)-DS problem, but for maximisation problem we require both σ and ρ to be
finite sets, and N is not finite. The W [1]-hardness of Independent Set on H-graphs is already
known, therefore we focus on the ETH based time bound.

Given an instance of the Partitioned Subgraph Isomorphism problem (K, G, ϕ), we give
a reduction from the Partitioned Subgraph Isomorphism problem to the Independent Set
problem on H-graphs.

We will then construct an instance of the Independent Set problem on H-graphs (G′, K ′, |V (K)|+
|E(K)|), where G′ is a K ′-graph, and G′ will have an independent set of size |V (K)| + |E(K)| if
and only if there is a function mapping V (K) to V (G) which preserves neighbours and colours.

Proof of Theorem 2. Firstly, we partition the vertices of V (G) into k groups such that Vi =
{v | ϕ(v) = i}. Notice that adding isolated vertices to V (G) does not change whether such a
function exists or not as K is connected and therefore has no isolated vertices.

Label each Vi with {vi
1, ..., vi

p}, and recall that we let V (K) = {1, ..., k}.
Add k vertices, u1, ..., uk, to K ′. For all 1 ≤ i < j ≤ k if ij ∈ E(K) add wij and two pairs

of the edges uiwij and wijuj .
Then subdivide the edges p times and label the resulting vertices from one of the two edges

between ui and wij : xij
1 , ..., xij

p , and label the vertices from the other edge between ui and wij :
yij

1 , ..., yij
p . Similarly label the vertices from the one of the edges between wij and uj : xji

1 , ..., xji
p ,

and the other edge between wij and uj : yji
1 , ..., yji

p .
Furthermore let xij

0 = ui = yij
0 , xji

0 = uj = yji
0 , xij

p+1 = yij
p+1 = xji

p+1 = yji
p+1 = wij

For all i ∈ [k], s ∈ [p] add the vertex zs
i to G′ with the model

Mzi
s

=
⋃

j∈[k],j ̸=i

{xij
0 , ..., xij

s−1, yij
0 , ..., yij

p−s}

If vi
svj

t ∈ E(G) and ij ∈ E(K), for s, t ∈ [p] and 1 ≤ i < j ≤ k, then add rij
st to G′ with the

model
M

rij
st

= {xij
s , ..., xij

p+1, yij
p−s+1, ..., yij

p+1, xji
t , ..., xji

p+1, yji
p−t+1, ..., yji

p+1}

This construction is the same as for the Multicoloured Clique problem to the Inde-
pendent Set problem in Theorem 8 in Fomin et al. (2020), except we only add wij , and the
vertices that depend on wij , if ij ∈ E(K).

We will now give some small Claims which all follow from the construction of G′.

Claim 24. ∀a, b, c, d ∈ [p], ∀i, j, i′, j′ ∈ [k] :

rij
abr

i′j′

cd ∈ E(G′) ⇐⇒ i = i′ ∧ j = j′

Claim 25. ∀a, b ∈ [p], ∀i, j ∈ [k] :

zi
azj

b ∈ E(G′) ⇐⇒ i = j

Claim 26. ∀a, b, c ∈ [p], ∀i, j, i′ ∈ [k] :

zi
arji′

bc ∈ E(G′) ⇐⇒ [i = j ∧ a ̸= b] ∨ [i = i′ ∧ a ̸= c]

And now we will argue that (K, G, ϕ) is a yes-instance of Partitioned Subgraph Iso-
morphism if and only if G′ has an independent set of size |E(K)| + |V (K)|.
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Claim 27. If (K, G, ϕ) is yes-instance of Partitioned Subgraph Isomorphism, then G′ has
an independent set of size |E(K)| + |V (K)|.

Proof. Suppose there exists an injective mapping, f : V (K) → V (G), which preserves neighbours
and colours. Then f(V (K)) = {v1

c1 , ..., vk
ck

}, for some c1 to ck. These vertices correspond to
{z1

c1 , ..., zk
ck

} ⊆ V (G′). By Claim 25 these vertices are pairwise non-adjacent, since they have
different "colour" indices. Hence we will add all of them to I.

Secondly ∀i, j ∈ [k] i ̸= j, ij ∈ E(K) ⇒ bi
ci

bj
cj

∈ E(G) ⇒ rij
cicj

∈ V (G′). Add rij
cicj

to I.
The vertex rij

cicj
is non-adjacent to all other vertices in I, as rij

cicj
can only be connected to

rij
ab ∀a, b s.t. cj ̸= a ̸= b ̸= ci, by Claim 24. Or it can be connected to zi

a with a ̸= ci, or zj
b with

b ̸= cj , by Claim 26. However, rij
ab was never added, as if it were it would imply f maps one

vertex in K to multiple in G. Nor can it be connected to zi
a, nor zj

b as only one zi
a′ and zj

b′ was
added with a′ = ci and b′ = cj different to a and b. Hence rij

cicj
is not connected to any other

vertex in I.
Hence I is an independent set of size |E(K)| + |V (K)|.

Claim 28. If G′ has an independent set of size |E(K)| + |V (K)|, then (K, G, ϕ) is yes-instance
of Partitioned Subgraph Isomorphism.

Proof. Suppose there exists an independent set I of size |E(K)| + |V (K)|.
There can at most be |E(K)| vertices from

R = {rij
ab ∈ V (G′) | a, b ∈ [p], i, j ∈ [k]}

as rij
ab ∈ V (G′) only if ij ∈ E(K). And if there were multiple vertices from R with same i and

j value, say rij
ab and rij

a′b′ , for some a ̸= a′, b ̸= b′ then the set would not be independent as
rij

abr
ij
a′b′ ∈ E(G) by Claim 24.
Similarly there can be at most |V (K)| vertices from

Z = {zi
a ∈ V (G′) | a ∈ [p], i ∈ [k]}

as otherwise, two vertices from Z of the same colour would be in I, say zi
a and zi

b. However,
these would be connected by Claim 25, and hence the set would not be independent.

The vertex rij
ab is adjacent to all vertices: zi

a′ , zi
b′ with a′ ̸= a, b′ ̸= b by Claim 26. Therefore

if the vertices: {z1
c1 , ..., zk

ck
} are in I then {rij

cicj
| i, j ∈ [k], i ̸= j} also have to be in I, as they

are the only vertices in R which are not adjacent to any of the zi
ci

∈ I.
Assume {z1

c1 , ..., zk
ck

} ⊆ I then {rij
cicj

| i, j ∈ [k], i ̸= j} ⊆ I which means that I =
{z1

c1 , ..., zk
ck

} ∪ {rij
cicj

| i, j ∈ [k], i ̸= j}.
The vertices of the set {z1

c1 , ..., zk
ck

} corresponds to the vertices {v1
c1 , ..., vk

ck
} ⊆ V (G). There-

fore let the mapping f : V (K) → V (G). Where f(i) = vi
ci

. Clearly this mapping preserves
colours as vi

ci
∈ Vi.

The vertex set {rij
cicj

| i, j ∈ [k], i ̸= j} ⊆ I. Therefore ∀ij ∈ E(K), rij
cicj

∈ I ⇒ vi
ci

vj
cj

∈
E(G). Hence the mapping f(.) preserves neighbours and colours, and the Partitioned Sub-
graph Isomorphism instance is therefore a yes-instance.

The construction of G′ and K ′ can trivially be done in polynomial in |V (G)| time, as |V (K)| ≤
|V (G)|.

Furthermore |E(K ′)| is linearly bounded by |E(K)|, as for each edge ij ∈ E(K) the graph
K ′ has two copies of the edges uiwij and wijuj . Furthermore these are the only edges in K ′.
Therefore there are 4 edges added per edge in K. Hence |E(K ′)| = 4 · |E(K)|.

Therefore by the Claims 27 and 28 and the same arguments as in Theorem 1, an algorithm
solving the Independent Set problem on H-graphs in no(h/ log h) time, where h = |E(H)|
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and n is the size of the H-graph, would imply an algorithm solving the Partitioned Sub-
graph Isomorphism problem in no(|E(K)|/ log |E(K)|) time, contradicting Marx (2010). We can
then conclude that unless ETH is false there is no algorithm running in no(h/ log h) time solving
Independent Set on H-graphs.

In particular notice that the linear mim-width on H-graphs is at most 2·|E(H)| by Theorem 1
in Fomin et al. (2020), therefore there are no algorithms solving the Independent Set problem
on graphs with a given linear ordering of the graph with mim-width w in no(w/ log w) time.

Furthermore, as mentioned the reduction in Theorem 2 is a modification of a reduction from
the Multicoloured Clique problem to Independent Set problem in Fomin et al. (2020).
Another similar reduction in Fomin et al. (2020) is from the Multicoloured Clique problem
to the Dominating Set problem. The only difference is a vertex which is only connected to
Zi = {zi

a | a ∈ [p]} and a vertex which is only connected to Rij = {rij
ab ∈ V (G′) | a, b ∈ [p]} = Rji

are added for all distinct i, j ∈ [k], and this new graph is also a H-graph with the same H
as for the Independent Set reduction. We claim that the same modifications work for the
Dominating Set problem, therefore also getting the result that there are no algorithms solving
the dominating set problem on H-graphs in no(h/ log h) time.

There are also other similar reductions to other (σ, ρ)-dominating set problems which prob-
ably can be adapted in the same way.

6 Conclusion
We proved that the Min-(σ, ρ)-DS param. by l. mim-width + sol. size problem, for
all non-trivial pairs of σ, ρ ⊆ N, is W [1]-hard. Furthermore we proved that for all finite pairs
σ, ρ ⊆ N such that ρ ̸= {0}, the Max-(σ, ρ)-DS param. by l. mim-width + sol. size
problem is W [1]-hard.

Note since a reduction to Min-(σ, ρ)-DS param. by l. mim-width + sol. size is also a
reduction to Min-(σ, ρ)-DS Param. by Solution Size, we have strengthened Theorem 1 in
Golovach et al. (2012), as that showed only W [1]-hardness for Min-(σ, ρ)-DS where σ and ρ are
finite subsets of N.

Moreover we proved that unless ETH is false there can be no no(w/ log w) time algorithms,
where n = |V (G)| for some input graph G and w is the linear mim-width of some linear ordering
given along with G, solving Min-(σ, ρ)-DS param. by l. mim-width + sol. size nor Max-
(σ, ρ)-DS param. by l. mim-width + sol. size for the same respective sets σ and ρ that we
showed W [1]-hardness for.

We also proved that unless ETH is false there are no no(h/ log h) time algorithms solving
Independent Set on H-graphs, where n = |V (G)| and h = |E(H)| for some input graph G.
Which in particular implies that there are no no(w/ log w) algorithms solving Independent Set
on graphs with a linear ordering with mim-width w.

Table 6 shows the W [1]-hardness of some Max-(σ, ρ)-DS param. by l. mim-width + sol.
size problems. Note that all the problems in the table with ρ = N are trivial for minimisation,
but for the rest they are W [1]-hard for minimisation. Furthermore as discussed in Section 2.7,
we do not expect W [1]-hardness for the Maximum Total Dominating Set problem as it is
trivial for maximisation since σ = N+.

The reductions of the problems in Table 6, which are shown in Jaffke et al. (2019), are adap-
tations of the Independent Set reduction in Fomin et al. (2020), and therefore these reductions
can probably be further adapted to reduce from Partitioned Subgraph Isomorphism instead
of from Multicoloured Clique. Thereby obtaining a lower bound of no(|E(H)|/ log |E(H)|), un-
less ETH is false, for algorithms solving Max-(σ, ρ)-DS on H-Graphs.

A natural question is then: Can we adapt the reduction in Theorem 2 to work for all non-
trivial (σ, ρ)-domination problems? Or more generally are there no algorithms solving Min. or
Max. (σ, ρ)-DS on H-Graphs in no(|E(H)|/ log |E(H)|) time, under ETH?
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σ ρ Standard Name W [1]-Hardness known for Max.
{0} N+ Maximal Dominating Set No
N+ N+ Total Dominating Set No
{1} N+ Dominating Induced Matching Yes
{1} N Induced Matching Yes
{d} N Induced d-Regular Subgraph Yes
N \ [d − 1]0 N Subgraph of Min Degree ≥ d No
[d] N Induced Subgraph of Max Degree ≤ d Yes

Table 2: W [1]-Hardness of Max-(σ, ρ)-DS param. by l. mim-width + sol. size, the
W [1]-hardness is shown in Jaffke et al. (2019).

Open Problem 1. Under ETH can no non-trivial Min. or Max. (σ, ρ)-domination problem
on H-graphs, be solved in no(|E(H)|/ log |E(H)|) time?

We only showed W [1]-hardness for Max-(σ, ρ)-DS param. by l. mim-width + sol. size
when σ and ρ are finite subsets of N, and ρ ̸= {0}. Furthermore in Section 2.7 we showed that
for σ = N+ and σ = N the Max-(σ, ρ)-DS problem is trivial. This leads to the question:

Open Problem 2. For which σ, ρ ⊆ N is the Max-(σ, ρ)-DS param. by l. mim-width +
sol. size problem W [1]-hard?

Furthermore, we showed that there are no algorithms solving Min-(σ, ρ)-DS param. by
l. mim-width + sol. size or Max-(σ, ρ)-DS param. by l. mim-width + sol. size for
certain σ and ρ in no(w/ log w) time, where for a graph G given with the input n = |V (G)| and w
the mim-width of a linear ordering given with G. But are there actually any algorithms solving
these problems in nO(w/ log w) time?

Open Problem 3. Can Min-(σ, ρ)-DS param. by l. mim-width + sol. size and Max-
(σ, ρ)-DS param. by l. mim-width + sol. size for σ and ρ such that the problems are not
trivial, be solved in nO(w/ log w) time?

Note that no such algorithm is currently known for any non-trivial (σ, ρ)-dominating set prob-
lem parameterized by mim-width, and the existence of such an algorithm would be surprising.
As if there is a reduction from Partitioned Subgraph Isomorphism to the (σ, ρ)-dominating
set such that the linear mim-width of the constructed graph is O(|E(H)|), the reduction would
imply the lower bound in Marx (2010) is tight as the reduction would imply the existence of
a nO(|E(H)|/ log |E(H)|) algorithm for the Partitioned Subgraph Isomorphism problem. In
particular we have these reductions for all σ and ρ such that the minimisation problem is not
trivial, and for all finite σ and ρ such that the maximisation problem is not trivial.
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