
Received December 15, 2021, accepted December 31, 2021, date of publication January 11, 2022, date of current version January 18, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3141709

Extremely Randomized Trees With Privacy
Preservation for Distributed
Structured Health Data
AMIN AMINIFAR 1, MATIN SHOKRI2, FAZLE RABBI 1,3,
VIOLET KA I. PUN1,4, AND YNGVE LAMO 1
1Department of Computer Science, Electrical Engineering and Mathematical Sciences, Western Norway University of Applied Sciences, 5063 Bergen, Norway
2Faculty of Computer Engineering, K. N. Toosi University of Technology, Tehran 19697-64499, Iran
3Department of Information Science and Media Studies, University of Bergen, 5007 Bergen, Norway
4Department of Informatics, University of Oslo, 0315 Oslo, Norway

Corresponding author: Amin Aminifar (amin.aminifar@hvl.no)

This work was supported by the INTROducing Mental health through the Adaptive Technology (INTROMAT) Project by the Norwegian
Research Council (NFR) under Grant 259293.

ABSTRACT Artificial intelligence and machine learning have recently attracted considerable attention in
the healthcare domain. The data used by machine learning algorithms in healthcare applications is often
distributed over multiple sources, for instance, hospitals or patients’ personal devices. One main difficulty
lies in analyzing such data without compromising patients’ privacy and personal data, which is a primary
concern in healthcare applications. Therefore, in these applications, we are interested in running machine
learning algorithms over distributed data without disclosing sensitive information about the data subjects.
In this paper, we propose a distributed extremely randomized trees algorithm for learning from distributed
data with privacy preservation. We present the implementation of our technique (which we refer to as
k-PPD-ERT) on a cloud platform and demonstrate its performance based on medical data, including Heart
Disease, Breast Cancer, and mental health datasets (Depresjon and Psykose datasets) associated with the
Norwegian INTROducing Mental health through Adaptive Technology (INTROMAT) project.

INDEX TERMS Distributed learning, extremely randomized trees, privacy-preserving machine learning,
structured health data, federated machine learning.

I. INTRODUCTION
Artificial intelligence (AI) and automated decision-making
have the potential to improve accuracy and efficiency in
healthcare applications. In particular, AI is proven to outper-
form medical experts in certain domains. Two examples are
the classification of rhythms in electrocardiography signals
with deep neural networks in [1] and prediction of breast
cancer using the AI system presented in [2]; more related
studies can be found in [3], [4]. However, the application
of AI and machine learning for automated decision-making
in healthcare comes with challenges, such as security and
privacy. For instance, a patient’s privacy is violated if sharing
his/her medical data with a third-party data recipient reveals
that he/she has a medical condition. This becomes more
challenging considering that, in healthcare systems, the data
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could be distributed over a number of sources rather than
being stored in a central database.

In distributed settings, hospitals need to apply data min-
ing methods to extract useful patterns from patients’ data.
Although hospitals may individually be able to use their
limited resources and locally stored health information to
perform data mining, the use of available health information
across several hospitals leads to obtaining more valuable and
accurate information. However, this is a challenging task due
to privacy and legal concerns. Hospitals often need to comply
with privacy regulations that restrict sharing health informa-
tion about patients with other parties, e.g., other hospitals,
family doctors, and specialists [5], [6]. A similar problem
exists when the data is distributed over patients’ personal
devices, such as mobile phones or wearable devices [7]–[11].

Traditionally, it was assumed that all sources holding part
of the data might share their information with a trusted party.
However, such an assumption, i.e., putting this level of trust
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in a third party, is not feasible in every scenario because
the privacy of data sources cannot be protected from the
third party [12]. In order to address the privacy concern,
one solution would be to perturb the data before sharing
it. However, perturbation-based solutions have limitations in
satisfying data privacy and data utility requirements [13],
[14]. This is because the utility of the data will decrease if
the perturbation is not precisely controlled, and the privacy
will not be preserved if the perturbation is not sufficient [14].
Similarly, anonymization techniques, e.g., [15]–[20], share
an altered version of data to prevent the re-identification of
data subjects [21]. Moreover, methods providing differential
privacy [22] share data while preserving the privacy of indi-
viduals by adding noise. Nevertheless, in these techniques,
there is always a trade-off between data privacy and data
utility [13].

Previous studies also consider cryptographic techniques
and secure multi-party computation methods for conducting
privacy-preserving data mining [23]–[25]. However, such
approaches are inefficient, mainly when dealing with large-
scale data, due to considerable communication and compu-
tation costs [14]. Several techniques, e.g., [12], [26], [27],
have been proposed to address these types of overheads in
the privacy-preserving machine learning algorithms and to
improve their efficiency.

In this paper, we target the problem of learning from data
held on multiple sources without explicit sharing of raw
information. We assume that the learning data is horizon-
tally partitioned, meaning that different records of data are
stored on different sources. We focus on the classification
problem and structured health data, which can be stored in
spreadsheets. We build upon our previous work [28] and
propose a scalable privacy-preserving framework for dis-
tributedmachine learning based on the extremely randomized
trees algorithm, which has a linear overhead in the num-
ber of parties and can handle missing values. We refer to
our approach as k-PPD-ERT (Privacy-Preserving Distributed
Extremely Randomized Trees), in which k is the number
of colluding parties in our approach. We use two popular
publicly available healthcare datasets for performance eval-
uation, i.e., the Heart Disease [29] and the Breast Cancer
Wisconsin (Diagnostic) [30] datasets. This data represents
medical applications where missing values are present, and
our algorithm is designed to handle such scenarios. Finally,
we present the implementation of our technique onAmazon’s
AWS cloud and evaluate it in a real-world setting based
on the mental health datasets associated with the Norwe-
gian INTROducingMental health through Adaptive Technol-
ogy (INTROMAT) project [31].

The remainder of this paper is organized as follows.
Section II reviews the state of the art of distributed
privacy-preserving machine learning techniques to address
the discussed problem. Section III covers the background
related to the extremely randomized trees algorithm and
secure multi-party computation. In Section IV, we illustrate
our proposed k-PPD-ERT method, which is an adaptation

and extension of the ERT algorithm for distributed settings.
Section V illustrates the distributed extremely randomized
trees algorithm through a small example. In Section VI,
we evaluate the performance, overhead and privacy of the
proposed technique. Section VII serves as the conclusion of
this article.

II. STATE OF THE ART
The topic of collaborative learning from distributed data has
been discussed in the literature for many years. A wide range
of distributed learning techniques has been proposed in the
literature that do not explicitly consider privacy aspects [26],
[32]–[34]. Nevertheless, such techniques indirectly con-
tribute to privacy preservation by limiting the amount of data
that has to be sharedwith other parties or transferred to central
servers or the cloud.
Randomization has been adopted in several stud-

ies [35]–[38] to preserve the privacy of individuals in data
mining techniques. For instance, a technique that incorpo-
rates noise into raw data before sharing and performing
data mining processes is proposed in [35]. However, the
original values can be estimated using noise removal tech-
niques. Hence, such techniques do not provide strong privacy
guarantees [14], [39]–[41].
Secure multi-party computation (SMC) has been employed

in several studies [12], [23]–[25], [42], [43] to perform data
mining over data distributed in multiple parties, where no
private information except the mining results should be dis-
closed. In SMC, we are interested in the result of a com-
putation without knowing the secret values required for this
computation. Therefore, techniques utilizing SMC usually
compute intermediate results in the learning process without
revealing the secret to other parties. Although such methods
can satisfy the privacy requirements, the incorporation of
inefficient secure computation techniques and homomorphic
encryption in the method can substantially increase the com-
munication and computation overheads. This leads to issues
related to efficiency, particularly when we have a large num-
ber of parties or when we are dealing with a high volume of
data [12].
Cryptographic methods have been adopted by several stud-

ies [23], [24], [44] for achieving privacy [14]. These methods
address classification, clustering, anomaly detection, etc.,
by employing different data mining algorithms [45]–[48].
Nevertheless, such techniques usually suffer from communi-
cation and computation overheads and are impractical when
dealing with large-scale data [49].
Federated learning has been proposed to collaboratively

train a model, with the orchestration of one party, while keep-
ing the training data decentralized [26], [32], [50]. Several
systematic literature reviews of the state-of-the-art federated
machine learning techniques are performed in [51]–[53]. The
majority of previous studies in this domain have focused on
deep neural network algorithms. In such neural network algo-
rithms, in addition to data-holder parties’ contribution, i.e.,
gradients, sharingmodel parameters is also a privacy concern.
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This is due to recent attacks on the neural networks, i.e., mem-
bership inference attack [54], [55]. For addressing privacy
concerns, previous studies adopt differential privacy [22] in
their methods [56]–[58]. However, differential privacy can
degrade the performance of the machine learning model due
to the trade-off between privacy and data utility [13].

In many applications, tree-based methods can be more
accurate than neural networks. Deep neural network
algorithms are appropriate solutions when dealing with
unstructured data, e.g., for video, audio, and text in [59]–[61].
However, the tree-based methods can outperform such algo-
rithms when dealing with structure data, where the data
attributes are individually meaningful, and we do not have
strong multi-scale structures related to time or space [62].
Therefore, tree-based algorithms are currently being adopted
in many applications in which the training data is structured.
Tree-based machine learning techniques have been inves-

tigated in conjunction with privacy concerns and distributed
learning in several studies [12], [14], [42], [63]. In [14], the
authors consider the problem of learning decision trees, with
Random Decision Trees (RDT) algorithm [63]. They present
a technique based on homomorphic encryption and apply it
for horizontally and vertically partitioned datasets. However,
this approach suffers from high computational complexity.
In [42], the authors propose the utilization of SMC techniques
for learning decision trees based on the ID3 algorithm [64].
In this approach, the data is horizontally partitioned and
distributed among two parties. The number of parties in this
method can be increased to more than two, but the efficiency
and scalability of the technique decrease [49]. Moreover, per-
turbation techniques may also be used to build approximate
decision trees. In [65], the authors propose the application of
Randomized Response techniques to disguise the data before
transferring it to a center for learning decision trees based on
their modified ID3 algorithm. Nevertheless, transferring the
entire data from all sources to one center, even after applying
randomization techniques, undermines our confidence in the
technique’s privacy.
Gradient and tree-based algorithms have been employed

by several studies in conjunction with strategies related to
federated learning [66]–[69]. In [68], the authors propose a
privacy-preserving distributed dataminingmethod for regres-
sion and classification based on the Gradient Boosting Deci-
sion Tree (GBDT) algorithm [70]. The trees are trained
locally on data-holder parties and passed to the following
parties after being modified according to differential privacy
requirements [68]. Nevertheless, injecting noise into partici-
pants’ contribution, model parameters, etc., can increase the
learning time and degrade the results of learning due to the
trade-off between privacy and data utility [13]. Similarly,
in [69], the authors propose a method based on GBDT for
distributed scenarios called SimFL. In this framework, each
party boosts a number of trees utilizing similarity informa-
tion using locality-sensitive hashing. However, their privacy
model is weaker than secure multi-party computation for

improving efficiency, and their model performance is not the
same as GBDT but comparable to it [69].

There are other studies that propose tree-based methods
that are not gradient-based but are under the name of feder-
ated learning, e.g., [71], [72]. In [72], the authors propose a
method employing the decision tree algorithm, ID3, that uses
the combination of differential privacy and secure multi-party
computation for addressing privacy concerns. The model’s
performance is degraded compared to the performance of the
machine learning model in a centralized scenario. In [71],
the authors propose a solution based on the random for-
est algorithm [73], [74]. This method requires a third-party
trusted server and employs encryption, which increases the
communication and computation overheads [12].

Closely connected to this work, the authors in [12] propose
a tree-based method that utilizes a secure multi-party com-
putation technique as an additional layer in their approach to
havemore confidence about its privacy. Particularly, Shamir’s
secret sharing [75] is used to aggregate the results received
from each party at every step of learning with the ID3
algorithm. The limitation in the incorporation of methods
with high communication and computation overheads leads
to higher efficiency. However, Shamir’s secret sharing tech-
nique still introduces major overheads in communication and
computation and suffers from the scalability problem.

In our preliminary study [76], we have considered
the problem of privacy-preserving machine learning using
the extremely randomized trees algorithm, which is only
robust to two colluding parties (in the worst-case scenario).
We extend this idea to k colluding parties in [28]. However,
this approach suffers from quadratic complexity in the worst-
case scenario, i.e., O(n2), and is limited to datasets without
missing values, which is rarely a case in real-world healthcare
applications. In this work, we addressed these problems and
proposed a scalable privacy-preserving distributed extremely
randomized trees framework, withO(kn) complexity, where k
can be adjusted based on the sensitivity of the data.We imple-
ment our technique on Amazon’s AWS cloud and evaluate it
in a real-world setting based on the mental health datasets
associated with the Norwegian INTROducing Mental health
through Adaptive Technology (INTROMAT) project.

III. BACKGROUND
In this section, we present a brief overview of the extremely
randomized trees (ERT) algorithm and secure multi-party
computation (SMC), which provide the basis for our
privacy-preserving distributed machine learning framework.

A. THE ERT ALGORITHM
ERT [77] is a tree-based ensemble learning algorithm that has
been widely used for solving classification problems due to
its learning performance and robustness to overfitting, which
are among the characteristics of tree-based ensemble learning
algorithms [62], [78], [79]. However, the traditional ERT
algorithm is used when the data is stored in a central location.
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We adapt the ERT algorithm for distributed settings where
data is stored and essentially distributed among several par-
ties. In the following, we discuss some of the advantages of
the ERT algorithm compared to other available solutions for
its utilization in distributed settings.

First, since the ERT algorithm is an ensemble learning
method, it is robust in tackling overfitting. Ensemble learning
methods incorporate weak learners to generate weak clas-
sifiers that are independent of other generated classifiers.
Therefore, based on Condorcet’s jury theorem (1785) [80],
the majority vote of this ensemble of learned classifiers
predicts better than the vote of an individual classifier,
and if we increase the number of classifiers, the accuracy
improves [81]. Therefore, in the ensemble learning method,
we generate a collection of classifiers instead of only one,
e.g., in [12], and finally predict based on the voting result of
the learned classifiers. In such ensemble learning methods,
randomness parameters in the learning algorithm cause gen-
erating classifiers different from each other. In the ERT algo-
rithm, the randomness of candidate attributes and the splitting
point for every decision node in the tree are the randomness
parameters [77], which result in learning different classifiers.
The ERT approach follows the logic of bagging in ensemble
learning. Bagging combines the learned classifiers by voting,
i.e., it predicts based on the majority vote among the learned
classifiers. While not increasing the bias, bagging leads to
lower variance in our learned model since we are averaging,
and the lower variance in the learned model reduces the risk
of overfitting [78].

Second, ERT is tree-based, and tree-based algorithms have
been shown to outperform other techniques for structured
data that we are addressing. In [62], the authors report that for
tabular-style data where the data attributes are individually
meaningful and where we do not have strong multi-scale
structures related to time or space, learned models from
tree-based algorithms usually outperform models learned by
standard deep neural networks, e.g., [26], [32]. Moreover,
in the health domain’s applications, the interpretability of the
learned models is advantageous. The patterns that tree-based
learned models unveil, particularly in the healthcare domain,
may be more useful than the prediction capability of the
learned model [62]. Tree-based algorithms are more inter-
pretable compared to deep neural networks [79]. This is an
advantage for ERT. However, since ERT is an ensemble learn-
ing method, and in ensemble methods, instead of learning
a model with a single tree, e.g., in the ID3 algorithm [64],
the algorithm constructs several trees as a model. Hence, this
decreases the explainability of such approaches compared to
the ID3 algorithm.

B. SECURE MULTI-PARTY COMPUTATION
The secure multi-party computation framework, initiated by
Yao’s Millionaires’ problem [82], considers the problem of
collaborative computation among several parties, each of
which holds a secret value. The parties are interested in
the result of a computation performed based on their secret

values, while they refrain from sharing their secret values
with other parties.

A simple solution for computing the desired value without
sharing secret values with other parties is to share them with
a party that is trusted by everyone. The trusted party can
then perform the computation and return the result to all
parties. However, the assumption of trusted parties is not
feasible in many scenarios because the privacy of parties with
secret values cannot be protected from the third party, so such
solutions are not practical. Therefore, based on the type of
the computation and the scenarios, we need to devise other
solutions to perform the desired collaborative computation in
a secure way and without violating privacy.

To illustrate SMC, we describe a simple method for secure
aggregation of secret values. Figure 1 represents the method
for secure aggregation. In this example, we have four parties,
each holding a secret value (S.V .), and the parties are inter-
ested in the summation of all secret values, i.e.,

∑4
i=1 S.V .i.

For securely aggregating the secret values:

(i) The first party generates a random mask, aggregates it
with its secret value (S.V .1), and sends the result to the
next party.

(ii) The following parties receive the input, aggregate it with
their secret values, and send the result to the next party.
The last party sends the result to the first party.

(iii) The first party receives the result from the last party,
removes its random mask from the result, and informs
all parties about the final result.

FIGURE 1. Secure aggregation.

In this way, each party cannot identify the secret value of
the previous parties based on the received information. How-
ever, in this method, if two neighboring parties, i.e., the par-
ties before and after a certain party in the ring, collude, they
will be able to identify the secret value of the victim party.
For instance, if Party 2 reveals the input of Party 3, and at
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the same time, Party 4 reveals the output of Party 3, then they
can reveal the secret value of Party 3. Therefore, theminimum
number of colluding parties required for identifying a secret
value is two in this method. Moreover, in terms of overhead,
for one secure computation operation in this method, each
party sends one message and receives one message. Thus, the
communication overhead for this method is 2n, in which n is
the number of parties.

IV. PRIVACY-PRESERVING DISTRIBUTED EXTREMELY
RANDOMIZED TREES
This section presents the proposed solution, which is based
on the extremely randomized trees (ERT) algorithm and the
secure multi-party computation (SMC) scheme. As men-
tioned in Section I, we refer to our approach as k-PPD-ERT,
where k is the number of colluding parties in our approach
in the secure aggregation process. Note that k is a parameter
that can be tuned based on the privacy requirements. The
algorithm preserves privacy since, on the one hand, the algo-
rithm is distributed and the raw data is not directly shared,
and, on the other hand, the partial information is aggregated
using a secure multi-party computation technique. Finally,
our proposed framework is based on the ERT or Extremely
Randomized Trees algorithm in [77].

A. ADAPTATION OF ERT FOR DISTRIBUTED SETTINGS
This section presents the detailed procedure of learning an
ensemble of decision trees based on the ERT algorithm in the
discussed setting. The pseudocode of the algorithm is also
provided for clarity.

1) INITIALIZATION AND START OF THE LEARNING PROCESS
We have two types of parties in our distributed learning
framework. We have a mediator that mediates and orches-
trates the overall learning process and several data-holder
parties that collaborate with each other and the mediator to
learn a classification model. Algorithm 1 and Algorithm 2
show the pseudocodes of the procedures and functions for the
mediator and data-holder parties, respectively.

(a) Sharing the Random Seeds
To start this process, a global seed for the random func-
tion is agreed upon among all parties (Algorithm 1,
Line 1 and Algorithm 2, Line 1). The global seed
is common among the mediator and all data holders.
In the ERT algorithm, we have two parameters of ran-
domness for learning a weak classifier. First, we need
to randomly select several attributes for the candidate
decision nodes, at every step of building our decision
tree (Algorithm 1, Line 24 Algorithm 2, Line 25).
Second, a random splitting point for every attribute in
the candidate decision node is required (Algorithm 1,
Line 25, and Lines 28–35, andAlgorithm 2, Line 26, and
Lines 29–36). The data-holder parties and the mediator
are required to use the same candidate decision nodes
at every step when learning a decision tree. For this

Algorithm 1Mediator

1 • The global random seed (known to all parties) is set in
the mediator

2 • Wait for data-holder parties’ connection
3 for i = 1 to M do
4 • Generate tree: ti = Build_k-PPD-ERT(0, ‘None’)
5 end
6 E = {t1, t2, . . . , tM }
7 Function Build_k-PPD-ERT(Split_ID, Branch)
8 • Send Secret_aggregation(Split_ID, Branch)

request to data-holder parties
9 • Wait until receiving the results from data-holder

parties
10 • Sum = aggregated the received results form

data-holder parties
11 • Generate_splits() (based on the global seed)
12 if number of classified records is less than nmin or

labels of the classified records are the same then
13 return a leaf label
14 else
15 • Calculate each split’s score (Information

Gain) based on Sum
16 • Select the split with the highest score.
17 • Inform all parties about the selected split (for

Split_ID)
18 • Build tree_T = Build_k-PPD-ERT(next

Split_ID, ‘T’)
19 • Build tree_F = Build_k-PPD-ERT(next

Split_ID, ‘F’)
20 • Create a node with the selected split, attach

tree_T and tree_F as T and F subtrees, and
return the resulting tree.

21 end
22 end
23 Function Generate_splits()
24 • Select D attributes randomly: {a1, . . . , aD}
25 • Generate D splits: {s1, . . . , sD}, where si =

Pick_rand_split(ai)
26 return splits {s1, . . . , sD}
27 end
28 Function Pick_rand_split(a)
29 if a is categorical then
30 return a possible category
31 end
32 if a is numerical then
33 return a possible value in the min and max range
34 end
35 end

purpose, we use the global random seed that all par-
ties, including the mediator, utilize to locally generate
these candidate decision nodes (Algorithm 1, Line 11,
and Algorithm 2, Line 17). This is instead of making
these randomly-made candidate decision nodes in the
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Algorithm 2 Data-Holder Party

1 • The global random seed (known to all parties) is set in
the data-holder party

2 • Wait for completion of data-holder parties
initialization. In initialization, k selected data-holder
parties send their unique seeds to other data holders.
In initialization, SSApipj is sent by party i (i is among the k
selected parties) and received by party j

3 • Connect to the Mediator
4 Function Secret_aggregation(Split_ID, Branch)
5 • secret_valPj = Split_data(Split_ID, Branch)

6 • rand_sum
Pj
others = Generate and aggregate random

masks based the received seeds
7 if the party, Pj, is among k selected data-holder

parties for secure aggregation then
8 • rand_sum

Pj
self = Generate and aggregate

random masks based the sent seeds
9 else
10 • rand_sum

Pj
self = 0

11 end
12 • Result =

secret_valPj − rand_sum
Pj
self + rand_sum

Pj
others

13 • Send Result to the mediator
14 end
15 Function Split_data(Split_ID, Branch)
16 • Ssub = records in the computational node that

should be split based on Split_ID and Branch
17 • {s1, . . . , sD} = Generate_splits() (based on the

global seed)
18 for i = 1 to D do
19 • Split Ssub to two sets (T, F) by si
20 • Append vectors {VecT ,VecF } representing the

records’ labels for each of the above sets to
Result

21 end
22 return Result
23 end
24 Function Generate_splits()
25 • Select D attributes randomly: {a1, . . . , aD}
26 • Generate D splits: {s1, . . . , sD}, where si =

Pick_rand_split(ai)
27 return splits {s1, . . . , sD}
28 end
29 Function Pick_rand_split(a)
30 if a is categorical then
31 return a possible category
32 end
33 if a is numerical then
34 return a possible value in the min and max range
35 end
36 end

mediator and sharing them with all parties for further
tasks. Since all parties use a common random seed,

i.e., the global random seed, they generate the same
candidate decision nodes at every step, without major
communication overhead.
In addition, for the secure aggregation of partial results,
described further in Section IV-B, k selected data-holder
parties send unique seeds for the random function
to other data holders through secure communication
(Algorithm 2, Line 2). These random seeds are exclusive
and private for each pair of data-holder parties.

(b) Initiate the Process of Learning One Decision Tree
The privacy-preserving distributed ERT algorithm is an
ensemble learning method, therefore, we repeat the pro-
cess of learning a decision tree for M times, until we
have M decision trees (Algorithm 1, Lines 3–5). The
number of trees, M , is a parameter tuned by the user
to make a trade-off between robustness and overhead.
We learn different decision trees every time due to the
randomness in ERT. Finally, after repeating the process
of learning a decision tree M times, we store the trees
in E (Algorithm 1, Line 6). For future prediction, the
ensemble of the learned trees, E , will be used.

2) THE PROCESS OF LEARNING ONE DECISION TREE
The learning of a decision tree based on the privacy-
preserving distributed ERT algorithm is a recursive proce-
dure. The procedure is executed top-down and starts from
the root and ends in the leaves. For the root decision node,
the Split_ID or the ID for the decision node is zero, and
there is no previous branch, so the Branch input is set to
‘None’(Algorithm 1, Line 4).
(a) Generation of Candidate Decision Nodes

For building each decision tree, extremely randomized
tree, themediator generates the candidate decision nodes
(Algorithm 1, Line 11). The mediator will further select
the best decision node among the candidates based on
the results received from data-holder parties. The can-
didate decision nodes are generated randomly, based
on the global random seed, according to Algorithm 1,
Lines 23–35, and Algorithm 2, Lines 24–36. The num-
ber of candidate decision nodes, D, is a parameter in
the ERT algorithm tuned by the user. D attributes from
all possible attributes are selected for candidate deci-
sion nodes (Algorithm 1, Line 24, and Algorithm 2,
Line 25). Then, each candidate decision node’s splitting
point is selected (Algorithm 1, Line 25, andAlgorithm 2,
Line 26). If the attribute is categorical, one random
possible category is selected to be checked (Algorithm 1,
Lines 29–31, and Algorithm 2, Lines 30–32); other-
wise, when the attribute is numerical, a point in the
possible range is selected for comparison in the deci-
sion node (Algorithm 1, Lines 32–34, and Algorithm 2,
Lines 33–35). We assume that all parties already have
the possible categories and ranges for each attribute.

(b) Parties Classify Their Records
To decide about the candidate decision nodes for each
branch, the mediator requires the collective outcome of
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the classification with candidate decision nodes from all
data holders on all their data. By having the combination
of data record labels for each branch (True and False),
the mediator can decide if we require a leaf or we need to
calculate the score, i.e., information gain (Algorithm 1,
Line 12). Information gain captures the extent of sam-
ples’ purity (concerning their class/category) after split-
ting and is used as a basis for comparing decision nodes.
The mediator sends a request to data-holder parties and
waits for receiving the result from all parties, which is
masked according to the secure aggregation technique
described in Section IV-B (Algorithm 1, Lines 8–9).
The masked results are two vectors, one for each of the
True and False branches, representing the combination
of data record labels after classification with each can-
didate decision node.
Each party receives Split_ID and Branch to deter-
mine the local records for classification (Algorithm 2,
Line 16). Then, the party randomly generates candidate
decision nodes based on Lines 24–36 in Algorithm 2 and
the global random seed (Algorithm 2, Line 17). Next,
it classifies the selected local data based on each candi-
date decision node and returns the result (Algorithm 2,
Lines 18–22).
We describe how each party returns the result to the
mediator in the following, using an example. VecT rep-
resents the combination of labels for the records that fall
in the True branch, and VecF represents the combination
of labels for the records that fall in the False branch.
For instance, if three records with labels A, A, and B fall
in the True branch of the candidate decision node, and
we have three labels, A, B, and C in the dataset, then
VecT = [2, 1, 0].

(c) Each Party Sends the Result to the Mediator
After adopting the secure aggregation protocol
described in Section IV-B, each data-holder party returns
the masked result to the mediator to select the best
decision node (or generate a leaf instead of a decision
node). For every candidate decision node, the mediator
receives and aggregates the results from all parties and
obtains two vectors, for True and False branches, rep-
resenting the combination of data labels (Algorithm 1,
Lines 9–10).

(d) Mediator Determines the Best Candidate for the
Decision Node
Now that the mediator has the value of Sum
(Algorithm 1, Line 10), it determines if a decision node
or a leaf node is required here in the tree (Algorithm 1,
Lines 12). If all labels are the same or if the number of
received labels is less than our threshold parameter, the
mediator introduces a leaf node (Algorithm 1, Line 13).
Otherwise, the mediator calculates the score, i.e., infor-
mation gain, of each candidate decision node based
on the results from data-holder parties (Algorithm 1,
Line 15). It then selects the candidate decision node
with the highest information gain and informs all parties

FIGURE 2. Initialization.

about it (Algorithm 1, Lines 16–17). The selected
node will be used to build the tree at the mediator
(Algorithm 1, Line 20). This decision is communicated
to all data-holder parties and is required to select records
for classification at every step (Algorithm 2, Line 16).

(e) The Mediator Initiates Another Round From the
First Step
After selecting the best candidate decision node, the
mediator continues the process for each branch of this
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decision node. Therefore, the same process is performed
from the first step, for each of the True and False
branches (Algorithm 1, Lines 18–19). After returning
from these recursive calls, the selected subtrees for each
branch are returned (Algorithm 1, Lines 13 and 20).

B. SECURE AGGREGATION OF RESULTS FROM
DATA-HOLDER PARTIES
We adopt an SMC technique in our proposed distributed
ERT algorithm to avoid sharing the vectors representing the
combination of the data record labels for each candidate
decision node and each branch in each data-holder party.
In addition to the provided privacy by not sharing the raw
values of data attributes, which is by construction, the adop-
tion of an SMC technique for aggregating the partial results
from data-holder parties contributes to privacy preservation.
In an extreme example, suppose our data has one sensitive
attribute in it, e.g., having conducted transgender surgery
before, and each data-holder party has only one record on it.
Then, sharing the partial results from one party, the vectors for
the combination of data record labels for each candidate deci-
sion node, can reveal sensitive information. If the candidate
decision node is ‘‘whether the record falls into the transgender
branch or not,’’ the mediator can infer if that individual
with the specified record has undergone transgender surgery.
Therefore, to avoid such vulnerabilities, we adopt an SMC
technique to aggregate the partial results from the data-holder
parties.

The secure aggregation procedure begins with an initializa-
tion process. Subsequently, the parties can securely aggregate
their secret values through this approach.

1) INITIALIZATION
In the initialization phase, k selected data-holder parties share
their unique seeds for the random function with all parties.
These seeds are unique and private between each pair of
parties. Without loss of generality and for the simplicity of
the presentation, we assume that the k selected data-holder
parties are Pi (∀i ∈ {1, . . . , k}). Party Pi (∀i ∈ {1, . . . , k})
sends unique seeds to party Pj (∀j ∈ {1, . . . , n | i 6= j}).
Figure 2a shows this process.

The seed party Pi shares with party Pj is represented with
SSAPiPj , and it is a unique seed; SSA is the short form of
Seed for Secure Aggregation. Parties 1 to k, send n − 1 and
receive k − 1 seeds. Parties k + 1 to n, receive k seeds.
This is shown in Figure 2b. Therefore, k parties send n − 1
and receive k − 1 messages, and n − k parties send zero
and receive k messages. The total communication overhead
for initialization is 2k(n− 1). The communication overhead
by adopting this approach is equal to O(kn), which can be
adjusted by adapting k based on the sensitivity of the data.
If all parties were required to send and receive seed, then, the
communication overhead would be equal to 2n(n − 1). The
communication overhead by adopting this approach is equal
to O(n2) [28].

FIGURE 3. Secure aggregation.

2) SECURE AGGREGATION
In the adopted SMC technique, shown in Figure 3, parties add
random masks to their partial result vectors and pass them
to the mediator. The mediator aggregates the partial results
received from all parties. After aggregation, the random
masks from all parties cancel each other. We now describe
the proposed technique in detail:
• Step 1: The mediator initiates the secure aggregation
process round (Algorithm 1, Line 8). This is shown in
Figure 3a.

• Step 2: Data-holder parties generate random masks and
aggregate them with their secret values (Algorithm 2,
Line 12). This is shown in Figure 3b.
– Parties Pi (∀i ∈ {1, . . . , k}) generate random masks

based on the sent and received seeds (Algorithm 2,
Lines 6–11).

– Parties Pi (∀i ∈ {k + 1, . . . , n}) generate ran-
dom masks based on received seeds (Algorithm 2,
Lines 6–11).
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• Step 3: In the next step, the parties send the masked
results to the mediator (Algorithm 2, Line 13). Then,
the mediator receives the results from all parties
(Algorithm 1, Line 9). Figure 3c shows this.

• Step 4: In the last step, the mediator aggregates all
the received results to obtain the desired value, i.e., the
aggregated secret values from all parties (Algorithm 1,
Line 10). This is shown in Figure 3d.

3) PRIVACY
We now show that the secret values of the parties are kept
private in our proposed protocol. The partial result ResultPi ,
which is shared with the mediator, consists of three compo-
nents: secret_valPi , rnd_sumPiself , and rnd_sum

Pi
others. The two

components, rnd_sumPiself and rnd_sum
Pi
others, mask the secret

value.
• For Pi (∀i ∈ {1, . . . , k}), the value of rnd_sumPiself can
only be identified by the collusion of n − 1 parties
holding the random seeds for generating the random
masks, which are the components of rnd_sumPiself . At the

same time, rnd_sumPiothers can only be identified by the
collusion of k − 1 parties that generate the components
of rnd_sumPiothers. Therefore, the minimum number of
colluding parties required to reveal the secrete value of
Pi is n− 1.

• For Pi (∀i ∈ {k + 1, . . . , n}), the value of rnd_sumPiself
is zero and known to all, and secret_valPi is masked
by rnd_sumPiothers. However, rnd_sum

Pi
others can only be

identified by the collusion of k parties that generate the
components of rnd_sumPiothers, i.e., the k selected parties
for secure aggregation.

In the worst case, i.e., for Pi (∀i ∈ {k + 1, . . . , n}), the k
selected parties for secure aggregation are required to collude
to identify a secret value; hence, the minimum number of
colluding data-holder parties is equal to k . Moreover, since
only the mediator receives the victim’s partial result, the
collusion of other parties without the mediator’s participation
is not possible. Therefore, for identifying a secret value,
the collusion of k data-holder parties and the mediator is
necessary.

4) CORRECTNESS
We also show that the final value of the aggregation of
partial results is equal to the aggregation of secret values. The
aggregation of all the partial results sent to the mediator is as
follows:
n∑
j=1

ResultPj

= secret_valP1 − rnd_sumP1self + rnd_sum
P1
others...

+secret_valPn − rnd_sumPnself + rnd_sum
Pn
others

=

n∑
j=1

secret_valPj−
n∑
j=1

rnd_sum
Pj
self +

n∑
j=1

rnd_sum
Pj
others.

(1)

In addition, we also have the following equations for the
data-holder parties:
• For Pi (∀i ∈ {1, . . . , k}), rnd_sum

Pi
self =

∑n
j=1 rnd

Pi
Pj −

rndPiPi , where rnd
Pi
Pj is the shared random mask between

Pi and Pj. On the other hand, rnd_sumPiothers =∑k
j=1 rnd

Pj
Pi − rnd

Pi
Pi .

• For Pi (∀i ∈ {k + 1, . . . , n}), rnd_sumPiself = 0. On the

other hand, rnd_sumPiothers =
∑k

j=1 rnd
Pj
Pi .

Substituting these in Equation 1, we obtain:
n∑
j=1

ResultPj

=

n∑
j=1

secret_valPj−
n∑
j=1

rnd_sum
Pj
self +

n∑
j=1

rnd_sum
Pj
others

=

n∑
j=1

secret_valPj−
k∑
j=1

(
n∑
i=1

rnd
Pj
Pi − rnd

Pj
Pj )−

n∑
j=k+1

(0)

+

k∑
j=1

(
k∑
i=1

rndPiPj − rnd
Pj
Pj )+

n∑
j=k+1

(
k∑
i=1

rndPiPj )

=

n∑
j=1

secret_valPj−
k∑
j=1

(
n∑
i=1

rnd
Pj
Pi )+

k∑
j=1

(rnd
Pj
Pj )

+

k∑
j=1

(
k∑
i=1

rndPiPj )−
k∑
j=1

(rnd
Pj
Pj )+

n∑
j=k+1

(
k∑
i=1

rndPiPj )

=

n∑
j=1

secret_valPj−
n∑
i=1

(
k∑
j=1

rnd
Pj
Pi )+

n∑
j=1

(
k∑
i=1

rndPiPj )

=

n∑
j=1

secret_valPj . (2)

The above equation shows that the aggregation of partial
results from data-holder parties is equal to the aggregation of
data-holder parties’ secret values.
As shown above, the correctness and accuracy of our SMC

technique do not depend on k or the minimum number of
colluding parties. By increasing k, the minimum number
of colluding parties required for revealing a secret value
increases, which in turn improves the privacy of the method.
Increasing k increases the communication overhead in the ini-
tialization phase. Therefore, the trade-off is between privacy
and communication overhead of the initialization phase.

C. HANDLING MISSING VALUES
In this section, handling missing values when the data
is distributed is explained in the context of our pro-
posed privacy-preserving distributed learning framework,
i.e., k-PPD-ERT. In the application of distributed learning
approaches, particularly in the healthcare domain, we deal
with data with missing values. Missing values in a dataset
may occur as a result of improper collection of data, refusal of
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TABLE 1. Example of structured data distributed among two parties with
missing values.

patients to share information, etc. In scenarios where the data
is distributed, handling missing values can require a different
procedure in comparison to scenarios in which the data is held
in one center.

Several approaches can still be used in such scenarios,
e.g., deleting records with missing values. However, they
might not be helpful in all cases, e.g., where we have a low
number of data records or when the percentage of records
with missing values is high. Another solution is to replace
the missing values in an attribute with the mean/average of
the available values in that attribute. This approach avoids
deleting data records and is particularly relevant when dealing
with smaller datasets with missing values.

For calculating the mean of the available values for an
attribute, we require the summation of these values. Due to
privacy concerns, data-holder parties refrain from sharing the
summation of their available values with others. In particular,
this is a major privacy concern when each data-holder party
holds only one record. Therefore, we adopt the approach
presented in Section IV-B to address this issue, as we merely
require the final summation of the available values.

We explain the approach using an example. Suppose we
have two parties, and each party holds three records. Table 1
represents the data for each party. Each record contains the
sex and height of record owners or patients. Two records
miss the value for height. Assume that by preserving privacy,
we can calculate the summation of available values for the
height, i.e., 668 in our example, as well as the summation of
the number of records not missing the height value, i.e., 4 in
our example. In that case, we can calculate the mean for the
height, i.e., 167 in our example.

The summation of the available values and the number of
available values are calculated using our secure aggregation
method. Finally, the mediator divides the summation of the
available values by the number of available values and calcu-
lates the mean. Then, the mean is shared with all parties to
replace the missing values.

Our technique may also be modified based on the problem
settings. For instance, in the above example, suppose the user
requires the mean of values for male and female patients sep-
arately, i.e., 174 and 160, respectively. Then, our technique
can be adjusted by only securely aggregating the available
values belonging to male or female patients.

We use the same technique for categorical attributes, i.e.,
to calculate the frequencies of categories in one attribute.
Then, we may decide how to fill the missing values based
on these frequencies. We may decide to replace all values

with the most frequent category, i.e., the mode. The missing
category can also be drawn randomly based on the distribu-
tion of frequencies. Moreover, we may also decide on filling
the missing values by jointly considering the frequencies and
information from other attributes.

V. ILLUSTRATIVE EXAMPLE
In this section, we provide an illustrative example to clarify
the procedure of learning for our algorithm. This procedure
is shown in Figure 4. For the sake of simplicity of the pre-
sentation, we do not consider the secure aggregation in this
section. In the learning process initiation, the global random
seed, secure aggregation’s random seeds, number and type of
data attributes, possible categories or range of data attributes,
and learning parameters for the algorithm are shared among
all parties. In our example, we have two data-holder parties
and a mediator. The first and second parties hold three and
two training data records, respectively, as shown in Figure 4a.
Each record has three attributes (two numerical and one
categorical) and one label.

The goal is to learn an ensemble of decision trees from
all the records available on the data-holder parties based on
our algorithm. The mediator initiates a round of learning a
decision tree and, after finishing the procedure for learning
one tree, repeats it to have an ensemble of decision trees.
At every step of choosing a decision node for the decision
tree, each party, including the mediator, generates two ran-
dom decision nodes based on the global seed. Since all parties
use the same seed, they locally generate candidate decision
nodes that are similar to the generated decision nodes in other
parties. Figure 4a shows the local generation of the candidate
decision nodes for the first decision tree’s root.

In the next step, the parties classify their records using
each randomly generated candidate decision node, as shown
in Figure 4b. Several data records fall under the True branch
(for each candidate decision node) and several fall under
the False branch. Therefore, based on the records’ labels
(classes), we make two vectors for each branch that repre-
sent the combination of the labels. For instance, for the first
candidate decision node in the first party: the True vector is
[0, 1], and it means that zero records of this party belonging
to class (label) A, and one record of this party belonging to
class (label) B fall under the True branch of this candidate
decision node. Thus, each data-holder party, for each can-
didate decision node, generates two vectors representing the
combination of records labels (that fall under True and False
branches).

The resulting vectors for each candidate decision node and
in all data-holder parties should be returned to the mediator
and, then, be aggregated there. Figure 4c shows this proce-
dure, in which all vectors for the True and False branches of
each candidate decision node are returned to the mediator.
At this point, for each candidate decision node, the mediator
has the combination of labels for the True and False branches.
In addition to deciding on making a leaf or decision node in
the decision tree’s current position, such vectors determine
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FIGURE 4. Illustrative example.

which candidate decision node has a higher score/information
gain and should be selected. For calculating the score (infor-
mation gain) for a decision node, the combination of labels at
each branch is required. In our example, the second decision
node has a higher information gain and is selected.

As shown in Figure 4d, the second candidate decision node
is selected for the root of the decision tree. After checking the
labels in its True branch, [2, 0], we observe that all the records
falling in the True branch belong to the same class (have
the same label: A). Therefore, instead of making a decision
node, we make a leaf in the True branch. We follow the same
procedure of making a decision node for the False branch.
However, this time, the data-holder parties only consider
the records that fall in the root’s False branch, i.e., 2, 3,
and 5. We continue the same procedure for the rest of the
tree.

VI. EVALUATION AND DISCUSSION
In this section, we evaluate our proposed approach with
respect to classification performance, scalability and over-
head, and privacy criteria [83].

A. DATA
We consider two sets of data for the evaluation in this paper.
First, we consider two popular publicly available health-
care datasets, i.e., Heart Disease [29] and Breast Cancer
Wisconsin (Diagnostic) [30]. For the Heart Disease case,
we utilize the processed Cleveland’s data [84] to predict the
presence or absence of heart disease. In the other case, Wis-
consin Diagnostic Breast Cancer (WDBC) data [84] is used
to predict breast cancer’s diagnosis as benign or malignant.

In addition to the above publicly available datasets,
we also consider two mental health detests associated with
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the Norwegian INTROMAT (INTROducing Mental health
through Adaptive Technology) project:
• The Depresjon dataset [85] contains motor activity data
from 55 individuals (30 females and 25 males) recorded
using an ActiGraph wristband worn on the right wrist.
23 individuals in this dataset have been diagnosed with
depression, including both unipolar and bipolar individ-
uals, while the remaining 32 are in the control group.
Each individual wore an ActiGraph wristband for an
arbitrary number of days, ranging from 5 to 20 days. The
condition and control groups were monitored for 291
and 402 days in total, respectively.

• The Psykose dataset [86] contains motor activity data
from 54 individuals (23 females and 31 males) recorded
using an ActiGraph wristband worn on the right wrist.
22 individuals in this dataset have been diagnosed with
schizophrenia, and all used antipsychotic medications,
while the remaining 32 are in the control group. Each
individual wore an ActiGraph wristband for an arbitrary
number of days, ranging from 8 to 20 days. The condi-
tion and control groups were monitored for 285 and 402
days in total, respectively.

B. PERFORMANCE EVALUATION METRICS
The performance of the proposed algorithm is evaluated
by measuring the F1-score (F1), Accuracy (ACC), and
Matthews Correlation Coefficient (MCC), which are defined
as follows:

F1 =
TP

TP+0.5 · (FP+FN )

ACC =
TP+TN

TP+FP+TN+FN

MCC =
TP · TN − FP · FN

√
(TP+FP)(TP+FN )(TN+FP)(TN+FN )

where FP, TN , TP and FN definitions are the false positive,
true negative, true positive, and false negative, respectively.

C. EVALUATION AND RESULTS
1) CLASSIFICATION PERFORMANCE FOR WIDELY USED
HEALTHCARE DATASETS
To evaluate the classification performance for Heart
Disease [29] and Breast Cancer Wisconsin (Diagnostic) [30]
datasets, we perform a three-fold cross-validation. We divide
the dataset into three parts, and in each round, we use one of
the parts as the test set and the rest as the training set and
finally report the averaged results. We adopt the F1-score
(weighted average) and accuracy as our classification perfor-
mance metrics. The F1-score is the harmonic mean between
the precision and recall metrics, while the accuracy mea-
sures the ratio of correctly classified samples. Table 2 exhibits
the classification performance of our approach, k-PPD-ERT,
against the distributed ID3 algorithm [12]. We compare our
approach against the distributed ID3 [12] since, similar to
our approach, it is a state-of-the-art tree-based method that

TABLE 2. Classification performance for our proposed method,
distributed ID3, and centralized ERT.

employs SMC techniques for secure aggregation of partial
results and addresses classification problems in scenarios
where the data is horizontally partitioned. Moreover, the
classification performance of the centralized version of ERT
is also provided for comparison.

The k-PPD-ERT and ERT algorithms follow the same
learning procedure. This means that, for both algorithms,
the same steps for selecting candidate decision nodes and
building the decision tree are followed. In our experiments,
we set the same seeds for the random functions and the same
learning parameters for both algorithms, e.g., the number of
candidate decision nodes.Moreover, the datasets are split into
train and test sets in the samewaywith the same random seed,
so these sets are the same for both experiments. Therefore,
both algorithms result in the same classification performance,
i.e., by following the same procedure, setting the same seeds
and parameters, and having the same train and test data.

In our experiments, for our approach, k-PPD-ERT, and
the ERT algorithm, we learn an ensemble of 25 decision
trees. For the number of candidate decision nodes’ param-
eter in the algorithm, we use 5-fold cross-validation on the
training set for the model selection (concerning classifica-
tion performance measured by the F1-score). In the case
of the Heart Disease dataset, k-PPD-ERT outperforms the
distributed ID3 [12] by up to 5.9%. For the Breast Cancer
dataset, our approach outperforms the distributed ID3 by
up to 4.1%.

2) CLASSIFICATION PERFORMANCE FOR MENTAL HEALTH
DATASETS ASSOCIATED WITH INTROMAT PROJECT
In addition to the widely used public datasets, we also con-
sider the data associated with the Norwegian INTROMAT
(INTROducing Mental health through Adaptive Technology)
project, i.e., Depresjon dataset [85] and Psykose dataset [86].
We use F1-score (weighted average), Accuracy (ACC), and
Matthews Correlation Coefficient (MCC) for measuring the
classification performance, which are the metrics used for
performance evaluation on these datasets [85], [86]. We con-
sider both the original and augmented data for each dataset.
The original data includes the mean and the standard devia-
tion of the activity level along with the proportion of minutes
with no activity [85], [86]. The augmented sample reflects
the activity level of an individual in a day by locally resam-
pling the raw data from the same individual. The problem
related to the difference in the number of recorded days for
each individual, which makes the dataset more imbalanced,
is addressed by augmentation. Augmentation also addresses

VOLUME 10, 2022 6021



A. Aminifar et al.: Extremely Randomized Trees With Privacy Preservation for Distributed Structured Health Data

TABLE 3. Classification performance (leave one patient out) of different classification algorithms for mental health datasets associated with the
Norwegian INTROMAT project, i.e., Depresjon dataset [85] and Psykose dataset [86].

TABLE 4. Communication complexity and privacy of different SMC approaches.

the problem of samples with a shorter length, i.e., motor activ-
ity signals recorded starting from the middle of the day [87].

We compare our approach against several state-of-the-art
machine learning algorithms, including ERT [77], random
forest [73], XGBoost [88], Decision Tree [64], and linear
SVM algorithm [89]. Table 3 shows the classification per-
formance of different algorithms for the INTROMAT data.
The results demonstrate that the proposed approach performs
on par or better than state-of-the-art techniques. We also
compare our approach against the distributed ID3 [12]. For
the Depresjon dataset [85], the k-PPD-ERT technique out-
performs distributed ID3 [12] by 0.7% in terms of F1-score,
0.5% in terms of ACC, and 0.014 in terms of MCC for the
original data and by 11.2% in terms of F1-score, 11.8% in
terms of ACC, and 0.232 in terms of MCC for the aug-
mented data. For the Psykose dataset [86], the k-PPD-ERT
technique outperforms distributed ID3 [12] by 2.4% in terms
of F1-score, 2.4% in terms of ACC, and 0.05 in terms of
MCC for the original data and by 12.9% in terms of F1-score,
13.2% in terms of ACC, and 0.261 in terms of MCC for the
augmented data.

3) PRIVACY AND OVERHEAD OF SECURE MULTI-PARTY
COMPUTATION TECHNIQUES
We now discuss the privacy and overhead of our proposed
approach. We adopt an SMC technique to avoid direct shar-
ing of the vectors representing the combination of record
labels for each candidate decision node with other parties and
the mediator. We compare the communication overhead and
privacy of our adopted SMC technique against three other
techniques, including the SMC methods employed in [12],

i.e., Shamir’s technique [75]. Table 4 presents the commu-
nication overhead and privacy evaluation of each approach.
In the table, N is the number of parties, and k is a parameter
in k-PPD-ERT and Shamir’s secret sharing for the minimum
number of colluding parties to identify a secret value. The
communication overheads in the table are for one round of
secure aggregation.

In the first approach (NOSMC), no SMC technique is
adopted, and all values are directly shared with the medi-
ator and known to it. This approach has the lowest possi-
ble communication cost and number of colluding parties,
and, here, it is considered as a baseline. The other approach
for the aggregation of partial results is the straightforward
SMC (STSMC) approach. In this approach, in the first round,
each party aggregates its random mask and its secret value
to the received result from the previous party and passes it
to the next party, and in the second round, parties subtract
their randommasks from the aggregated result of the previous
round. This method’s communication overhead is of the same
order as NOSMC, O(N ), but it is more robust to collusion.
On the other hand, Shamir’s secret sharing is an SMCmethod
employed in [12] for secure aggregation. This approach can
tolerate the highest number of colluding parties, although it
has a high communication overhead, i.e., O(N 2).

Our approach’s communication overhead, similar to
NOSMC and STSMC, is from order O(N ), which is consid-
erably more efficient compared to Shamir’s approach with an
order of O(N 2). Concerning the number of colluding parties,
by adopting our approach, it takes k (k < N ) data-holder par-
ties and the mediator to collude for identification of the secret
values. In our approach, the participation of the mediator for

6022 VOLUME 10, 2022



A. Aminifar et al.: Extremely Randomized Trees With Privacy Preservation for Distributed Structured Health Data

TABLE 5. The scenarios for our experiments on Amazon’s AWS cloud.

collusion is required to reveal a secret value. The mediator
is assumed as an honest party in many scenarios, and in the
case of a secret value revelation, we know that the mediator
has been involved in the collusion. Shamir’s secret sharing
requires k (k < N ) parties to collude for identifying a secret
value but suffers from scalability and high communication
overhead.

4) LATENCY FOR OUR PROOF-OF-CONCEPT
IMPLEMENTATION
Finally, we have also implemented our proposed approach
on Amazon’s AWS cloud to evaluate the latency and scala-
bility of the k-PPD-ERT.1 We consider four scenarios where
we change the number of data-holder parties. We consider
four datasets, i.e., Heart [29], Breast [30], Depresjon [85],
Psykose [86]. For each dataset, the training data (75% of the
dataset) is distributed equally among the data-holder parties.
The mediator includes a 2 core 2.40 GHz CPU and 512 MB
RAM, runs Ubuntu 20.04, and is located in Sweden. The
machines in all other locations include a 1 core 2.40 GHz
CPU and 512 MB RAM and run Ubuntu 20.04.

The latency results are shown in Figure 5. In the first
scenario, as shown in Table 5, we consider two data-holder
parties located in Canada and Germany. Learning one
extremely randomized tree through our approach takes 15.9±
1.5, 11.8±3.5, 3.5±1.0, 2.4±0.7 seconds for Heart, Breast,
Depresjon, and Psykose datasets, respectively. In the second
scenario, as shown in Table 5, we consider five data-holder
parties located in Canada, Germany, the United States,
Japan, and Australia. Learning one extremely randomized
tree through our approach takes 43.5±4.1, 32.4±9.6, 9.5±
2.7, 6.6 ± 2.0 seconds for Heart, Breast, Depresjon, and
Psykose datasets, respectively. In the third scenario, as shown
in Table 5, we consider ten data-holder parties located in
Canada, Germany, the United States, Japan, Australia, Sin-
gapore, India, South Korea, France, and England. Learn-
ing one extremely randomized tree through our approach
takes 43.8 ± 4.2, 32.6 ± 9.7, 9.6 ± 2.7, 6.7 ± 2.0 seconds
for Heart, Breast, Depresjon, and Psykose datasets, respec-
tively. In the fourth scenario, as shown in Table 5, we con-
sider twenty data-holder parties located in Canada, Germany,
the United States, Japan, Australia, Singapore, India, South
Korea, France, and England, with two parties at each loca-
tion. Learning one extremely randomized tree through our
approach takes 43.6 ± 4.1, 32.5 ± 9.7, 9.6 ± 2.7, 6.8 ± 2.0

1The source code of our implementations is available at
https://github.com/AminAminifar/kPPDERT_cloud

FIGURE 5. The mean and standard deviation of learning time (ten times
performed) of one extremely randomized tree through k-PPD-ERT for
different datasets in several scenarios on Amazon’s AWS cloud.

seconds for Heart, Breast, Depresjon, and Psykose datasets,
respectively.

To better understand the reason for the increase and
decrease in the latencies reported above and the shape of the
graphs in Figure 5, it should be noted that the latency depends
on the geographical location of the data holders and commu-
nication delays. In scenario two, the latency has increased
due to the fact that the bottleneck communication distance
between the data holders and the mediator is increased. How-
ever, the results in scenario three are similar to scenario two
because the bottleneck communication distance remains the
same. In scenario four, the slight reduction in the latency is
due to the fact that we distribute the data among data-holder
parties (each party has fewer data samples to process), and the
learning process on each party is performed simultaneously
and in parallel, similar to big data analysis. These explain the
increase of latencies from scenario one to two and the almost
flat shapes of the graphs from scenario two to scenario four
in Figure 5.

5) COMMUNICATION LATENCY OF SECURE MULTI-PARTY
COMPUTATION TECHNIQUES
We also evaluate the communication latency of one secure
aggregation round for each SMC approach based on their
algorithms, the location of data holders in each scenario, the
volume of packets transferred between parties, and the net-
work bandwidth between parties. This shows to what extent
adopting each approach can increase the latency.

In this paper, we consider the propagation and transmission
delays for communication latency [90], [91]. The latency
of transferring a packet from Pi to Pj is equal to the sum
of propagation and transmission delays and is denoted by
L(Pi,Pj). The propagation delay is equal to the distance
between parties divided by the velocity of signal propagation,
which for unguided transmission through air or space is equal
to the speed of light [90]. The transmission delay is equal
to the number of bits in the packet divided by the rate of
transmission. For transmission delay, we divide the volume of
the message to be transferred from Pi to Pj by the bandwidth
between these parties.
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FIGURE 6. The mean and standard deviation of estimated communication latency of different methods for aggregation of secret values in learning
one extremely randomized tree (ten times performed) based on different datasets in several scenarios on Amazon’s AWS cloud.

The network bandwidth between two Amazon machines is
measured as 1.05 Mbits/sec using the iPerf tool [92]. When a
packet contains two arrays for true and false branches, each
including information for five candidate decision nodes for a
binary classification task, the volume of each packet is 384
bytes. The volume of the packet depends on the data, i.e., the
number of candidate decision nodes and the number of target
classes.

The following are the analysis of communication latency
for each method:
• For NOSMC and k-PPD-ERT, all parties (Pi, ∀i ∈
{1, . . . , n}) send one message to the mediator (M ) in
parallel. Since the messages are sent in parallel, the
communication latency is equal to the arrival duration of
the last message. Therefore, the communication delay is
equal to maxi L(Pi,M ), i ∈ {1, . . . , n}.

• For STSMC, we have two loops of message passing
between parties in each round, and finally, the first
party sends the result to the mediator. Therefore, the
communication delay is equal to 2·(

∑n−1
i=1 L(Pi,Pi+1)+

L(Pn,P1))+ L(P1,M ).
• For Shamir, each round of secure aggregation consists
of two parts performed sequentially. In the first part, all
data-holder parties send one message to n − 1 parties.
When all parties receive these messages, they calcu-
late the intermediate results [12] and send them to the

mediator. Therefore, the communication delay is equal
to maxi,j L(Pi,Pj), i, j ∈ {i, j ∈ {1, . . . , n} | i 6= j} plus
maxi L(Pi,M ), i ∈ {1, . . . , n}.

The number of required secure aggregation operations is
also recorded for the experiments in Section VI-C4. The
mean and standard deviation of the required number of
secure aggregation operations for learning one extremely
randomized tree (ten times performed) are 98.8±9.4, 73.6±
21.9, 22.0 ± 6.2, 15.4 ± 4.5 operations for Heart, Breast,
Depresjon, and Psykose datasets, respectively. For estimating
the total communication latency of each method for aggre-
gating secret values, the calculated latencies should be mul-
tiplied by the number of secure aggregations performed for
learning the classification model.

Figure 6 shows the mean and standard deviation of com-
munication latency of different methods for aggregation of
secret values for each scenario and each dataset. This figure
shows that k-PPD-ERT has the same communication latency
as the NOSMC procedure. Shamir’s technique has lower
communication latency compared to STSMC, but it still has
higher communication latency compared to k-PPD-ERT and
NOSMC procedures.

It should be noted that the communication latency of these
methods should not be confused with the communication
overhead presented in Table 4. The orders of communication
overhead for NOSMC, STSMC, and k-PPD-ERT are the
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same and lower than Shamir’s technique. However, since in
STSMC, we have two loops of message passing between
parties that are performed sequentially, this technique has
more delay for a secure aggregation operation. Shamir’s
technique has two rounds for each SMC operation, and in
each round, the message passings are performed in parallel,
so it has a lower delay compared to STSMC. For NOSMC
and k-PPD-ERT, we have one round of message passing that
is performed in parallel and has the lowest communication
latency.

Finally, we demonstrate that our proposed k-PPD-ERT
approach provides a solution for the classification of
structured data distributed over multiple sources with
privacy-preservation considerations, without performance
degradation.

VII. CONCLUSION
In this paper, we present the privacy-preserving distributed
extremely randomized trees algorithm for learning without
privacy concerns in the healthcare domain. We have evalu-
ated our proposed algorithm extensively using two popular
structured healthcare datasets and two mental health datasets
associated with the Norwegian INTROducing Mental health
through Adaptive Technology (INTROMAT) project. Our
approach outperforms the state of the art in distributed
tree-based models by up to 11.2% in terms of F1-score,
11.8% in terms of ACC, and 0.232 in terms of MCC for
the Depresjon augmented dataset, and by up to 12.9% in
terms of F1-score, 13.2% in terms of ACC, and 0.261 in
terms of MCC for the Psykose augmented dataset. Moreover,
we present the implementation of our technique on Amazon’s
AWS cloud, as a proof of concept, to evaluate the latency
and scalability of our framework. The proposed algorithm has
linear overhead with respect to the number of parties and can
also handle datasets with missing values. We demonstrated
our framework’s efficiency in terms of prediction perfor-
mance, scalability, and overheads, as well as privacy. The
proposed framework provides the possibility of developing
high-quality and accurate machine learning models without
privacy concerns and is expected to contribute to a better
healthcare system in the long term. As future work, we plan to
explore the possibility of extending the proposed framework
to settings where the parties do not follow the honest-but-
curious security model, which is beyond the scope of this
work.
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