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Abstract

Knowledge graphs (KGs) have risen in both size and use over the past few years, and there

are a range of approaches for evaluating information in them. Symbolic approaches, such

as rule-based machine learning, offer an explainable way to determine the appropriateness

of a new fact based on rules mined from the KG in question. Some of the most successful

approaches for fact prediction in KGs today are knowledge graph embeddings (KGEs) that

use deep neural networks, however, these lack the explainability of symbolic approaches.

We would like to see how the extension of a KG using KGEs affects the rules mined from

the KG. A set of rules is mined from a KG and compared with another set mined from

an extended version of said KG. The experiments examine three classical KGEs: TransE,

DistMult, and ComplEx, and use the rule mining algorithm AMIE3. AMIE3 is treated as

a black box during the experiment, as the study only evaluates factors playing a role in the

KG-extension process, one of which is the choice of KGE. The experiments show that there

can be considerable discrepancies in the rules mined based on the choice of KGE and that

TransE leads to a substantial amount of nonsensical rules being mined.
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Chapter 1

Introduction

1.1 Context and motivation

Knowledge graphs (KGs) are an increasingly popular way to represent data [38]. A KG is

often seen as a directed graph with labelled edges where the nodes represent the elements in

a domain of interest (e.g. people), and the edges represent a relation between two elements.

For instance, a KG such as Wikidata might include the node “Oslo” with an outgoing

edge labelled “capital of” to the node “Norway”. Knowledge graphs that are large and

interesting are generally not complete. They may, for example, be extracted from natural

language resources and may contain facts that are wrong or exhibit gaps in their knowledge.

However, most of the present data is typically correct and implicitly contains meaningful

rules. For example, Wikidata will implicitly contain the rule that siblings tend to have the

same mother:

has sibling(x, z) ∧ has mother(z, y)⇒ has mother(x, y)

There will of course be exceptions to this rule, but generally, it will hold. Such a rule can

be used to infer new information in a KG, and using a set of such rules to make predictions

is the core idea behind rule-based machine learning. Other statistical methods are accurate

and scalable when it comes to inferring new facts from KGs, but one of the main issues of

these approaches is that results usually are not explainable [9]. Rule-based machine learning

approaches, on the other hand, provide an explanation in the form of the rules used to make
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a prediction. Meilicke et al. showed that rule bases mined with the AMIE+ algorithm are

good competitors and often outperform vector embedding models [52]. One explanation

for this is that the standard benchmark datasets, such as WN18 and FB15k, have many

relational regularities, such as symmetry and equivalence. Meilicke et al. also compared

the two approaches for triple prediction and found that they complement each other. An

ensemble of the two families of methods gave better results than either of the two alone.

This work by Meilicke et al. inspired the idea of using knowledge graph embedding (KGE)

models to improve rule bases or vice versa. The idea is to use one technique to “extend” the

original KG and thereafter train the second one on the extended KG. The KG-extension-

and-mining pipeline can be done both ways, as shown in figure 1.1. A rule-base as the end

result was chosen, ultimately because it results in an explainable model.
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Figure 1.1: The two versions of KG improvement for better model creation. In the top
version, an embedding of the original KG is used to improve the graph, from which a rule
base is mined. Red edges represent new links made by the models, which originally weren’t
present in the KG. The bottom half of the figure describes the same process but with the rule
base used to improve the KG, resulting in an embedding of the improved KG.
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1.2 Research questions

With this idea in mind, the general question to be explored is what role different factors

in the KG extension process have on the eventual rules that are mined from the extended

dataset. The extension process can be summarized as follows: first, candidate facts are

generated, then an embedding model ranks the candidates, and finally facts above a certain

threshold are added to the KG. So the factors to be evaluated are:

• How candidate facts are generated.

• How candidates are ranked (choice of KGE model).

• Minimum rank for candidates to be added to the KG.

In addition to evaluation of these parameters, the current work explores three central

research questions:

1. Does adding new plausible facts lead to new rules being mined?

2. How does the quality (approximated with PCA confidence) of new rules compare to

the rules mined from the original KG?

3. Can the rules mined from the original KG also be mined after the KG is extended?

To answer these questions, the mentioned KG-extension-and-mining pipeline is imple-

mented and the results evaluated. Experiments are conducted on two different datasets,

both of which are commonly used for benchmarking KGEs. The most important results

of this work are presented in a paper submitted to this year’s International Workshop on

Knowledge Representation for Hybrid intelligence. The submission can be accessed through

this link: OneDrive.
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1.3 Thesis outline

The outline for the rest of the thesis is as follows:

Chapter 2 - Background provides the reader with the background knowledge required for

a proper understanding of the work.

Chapter 3 - Rule mining on extended knowledge graphs explains the methodol-

ogy and material used for experiments.

Chapter 4 - Results presents and discusses the findings of the experiment.

Chapter 5 - Related work provides the reader with an overview of works related to

the thesis.

Chapter 6 - Discussion evaluates and discusses the current work and explains an ear-

lier approach explored during research.

As a final note, this thesis assumes that the reader is familiar with basic machine

learning concepts, such as training, testing and overfitting. For an introduction or re-

fresher to machine learning basics, chapter 5 in the book Deep Learning, by Goodfel-

low et al. [33] covers the topic quite well. The entire book is publicly available at

https://www.deeplearningbook.org/.
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Chapter 2

Background

This chapter presents KGs and different paradigms for how to interpret information missing

from a KG. Then we continue with KGEs, examining the training and evaluation process and

explaining the ideas behind the three KGE architectures used in the experiments. Finally,

the chapter introduces rule mining by first giving a general overview of rule-based machine

learning before focusing on the association rule mining approach.

2.1 Knowledge Graphs

There is no single agreed-upon definition of KGs [7, 9, 28]. Meanings and usages vary

from specific technical proposals to more general descriptions. In this thesis, we use a more

inclusive definition similar to the one proposed by Hogan et al. [38], where we view a KG

as a graph of data intended to capture the semantic connections within real-world knowledge,

where nodes represent relevant entities and edges represent relations between these entities.

The type of graph may vary, i.e. it may be simple, directed, etc. A graph may contain

knowledge over a broad range of domains, such as Wikidata [46], or be limited to a specific

domain, such as DBpedia [30]. The concept of “knowledge” has been widely debated in

epistemology [15, 43, 81, 34], but here we use it to mean descriptive knowledge, meaning

facts that can be stated. Knowledge can be simple statements, such as “Leo is a cat”,

or quantified statements such as “at least one cat is black”. Additional knowledge can

5



be inferred from KGs through inductive or deductive methods. For example, from a KG

containing the information that “Leo is a cat” and “cats are mammals”, one can deductively

infer that “Leo is a mammal”. If all cats mentioned in the knowledge graph like to eat fish,

one can inductively infer “cats like to eat fish”.

Leo Cat

Mammal

is a

subclass
is

a

Figure 2.1: Example of a KG, where the dotted line represents a relationship that can be
deductively inferred.

In this thesis, we loosely follow the Resource Description Framework (RDF) standard and

view KGs as sets of semantic triples. RDF is a standard for the representation and exchange

of graph data introduced by World Wide Web Consortium (W3C). Semantic triples are the

data types used in the RDF data model. As the name suggests, a triple is a tuple of three

elements. It has the form (subject, predicate, object) and can therefore represent statements

about semantic data, for example, “cats are mammals” or “Ann knows Bob”.

Listing 2.1: Example of RDF triple set written in informal pseudocode.
1 (Leo , is_a , cat)
2 (cat , is_a , mammal)
3 (Ann , is_a , person)
4 (Bob , is_a , person)
5 (Ann , knows , Bob)
6 (Ann , has_pet , Leo)

RDF statements express relationships between two web resources: the subject and the object,

while the predicate encapsulates the nature of the relationship. The relationship is phrased

in a directional way, so a set of RDF statements can also be viewed as a directed graph.

Triple statements are represented by the graph, where the predicate in the triple denotes the

edge going from the subject to the object, both of which are vertices.

With this type of data organisation, one can, for example, query for a list of all people

who own cats in the dataset. Treating KGs as a set of triples is the data model used in this
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Leo

Person

Ann

Bob

Cat

Mammal

is a

is
a

kn
ow

s

has pet

is
a

is a

Figure 2.2: Informal visualization of the KG consisting of the example triples from Listing
2.1

thesis. As a note on use of terminology, when referring to a “fact” in a KG this is the same

as a triple.

2.1.1 Knowledge base vs. knowledge graph

A knowledge-based system consists of two parts: a knowledge base containing the knowledge,

and an inference engine that can be used to derive new facts from or answer questions

about the knowledge base (KB) [3]. KBs often have both a terminological component and

assertional component, respectively called the TBox and ABox [12]. The TBox represents

knowledge about the structure of the domain, while the ABox has knowledge about specific

instances. For example, the fact that cats are mammals would be a TBox statement, while

Leo is a cat would be an ABox statement, as here we are making an assertion about the

individual Leo.

KGs can be thought of as KBs with a graph-structured data model, but often lack the

strict terminological schema. While the combination of a TBox and ABox in a KB allows the

inference engine to derive a potentially infinite number of facts, the lack of rigid structure in

a KG results in limited opportunities for reasoning in a KG. This problem has led to various

approaches for KG completion, some of which are mentioned in chapter 5. The use of a rigid

schema has been key to the success of relational databases [18]. However, it leads to a severe

bottleneck when dealing with the integration of data from heterogeneous, semi-structured,

and dynamic sources, such as Wikipedia. Therefore it is not a bug but a feature for large

KGs to not incorporate the strict schema often used in KBs.
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2.1.2 Incompleteness

Generally, KGs contain only true facts where consensus about truth is assumed. In reality,

however, different and conflicting beliefs about truth are quite common, which can also be

represented in KGs [58]. This thesis will not deal with conflicting beliefs about truth. As

with all databases, there is seldom use in documenting all things that are not true. KGs

are also generally incomplete, as it is impossible to store information about all entities and

relationships in the world. By the closed world assumption (CWA), all facts not present

in the KG are considered false. For example, by the KG in figure 2.2 the statement (Ann,

has sibling, Bob) is false under the CWA, as it is not present in the KG. So under the

CWA Bob is not a sibling of Ann. The open world assumption (OWA) makes no such

claims, and the validity of a triple not present in the KG is considered unknown. In the

above example, under the OWA, Bob is therefore neither considered a sibling of Ann nor

not a sibling of Ann.

In the context of KGs, the OWA is often more justified, as most large interesting KGs are

far from complete. For example, the KG Wikidata5M does not contain information about

the national bird of countries. This fact, of course, does not make the statement “The kiwi

is the national bird of New Zealand” any less true. The information is merely not included

in the KG. Another example is Freebase, the precursor to Wikidata, in which 70% of people

listed had the place-of-birth attribute missing [80].

KG true

NEW falseKG false

NEW true

Predictions

C

BA

D

present in KG new to KG

false

true

Figure 2.3: KG prediction under incompleteness. Based on figure by Galárraga et al. [32].

The OWA has a central problem regarding machine learning; it fails to provide coun-

terexamples. Because missing facts are assumed to be neither true nor false, there are no

8



false facts to give as examples when mining rules or training an embedding model. We used

figure 2.3, similar to the one used in the paper introducing AMIE [32], to aid the explanation

of solutions to this problem. The figure represents all possible triples given the relation r

and entities in a KG. These triples can be split into four types:

1. KG true: True facts in the KG

2. NEW true: True facts not in the KG

3. KG false: False facts known to the KG

4. NEW false: False unknown to the KG

When considering false facts, we use the words “known” and “unknown” as a KG generally

does not contain false triples. We consider a given rule B ⇒ r(x, y), where B denotes the

body of the rule and r(x, y) the consequent. In figure 2.3 the red circle denotes predictions

made by this rule. These predictions can be true and in the KG (A), true and outside the

KG (B), false and known to be false (C), or false and unknown to be false (D).

In the context of the predictions of the rule, we want to maximize B over D. Under the

OWA, however, there are no false facts, so we do not know what B and D are. The authors

of AMIE, therefore, introduced a new paradigm called the partial completeness assumption

(PCA) [32]. It assumes that if r(x, y) ∈ KGtrue for some entities x, y, then

∀y′ : r(x, y′) ∈ KGtrue ∪NEWtrue⇒ r(x, y′) ∈ KGtrue,

where x is the head of the triple (the first variable in the binary predicate), and y is the

tail of the rule (the second variable in the binary predicate). This assumption says that

if the KG already has r-related information about the entity x, it contains all r-related

information about x. For example, if a KG only contains (Ann, has sibling, Bob) and

no other sibling entries with Ann as the head, then Bob is Ann’s only sibling by the PCA.

Therefore, all other facts claiming that Ann has other siblings will be negative examples.

However, if we ask what parents Ann has in a KG without information about Ann’s parents,

we cannot conclude that Ann has no parents. PCA is a more particular version of the broad

partial-closed world assumption (PCWA), where the KG generally is treated under the OWA,

but parts of it that are considered complete are treated under the CWA [57]. The PCA is

more well-defined because it specifically states what parts of the KG should be treated under

closed-world semantics.
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2.2 Knowledge Graph Embeddings

Let K be a KG with triples of the form (h, r, t) with r ∈ P and h, t ∈ E, where P and

E are respectively the set of all relations and the set of all entities in K. Entities and

relations are embedded in a vector space. To simplify the explanation, we let the dimension

of both entities and relations in the embedding space be d. Given K and d, a KGE seeks

to represent all entities and relations in the continuous vector space of d dimensions. These

representations are meant to capture the semantic information in the graph. An embedding

that manages this can then be used to evaluate the probability of new triples being true in

the context of the KG and identify false information in K.

0.2

0.9

...

0.1

0.7

0.3

...

0.5

0.6

0.8

...

0.2

Knowledge Graph Embedding ML Task

Figure 2.4: KGE process. The embedding of a KG can be used for machine learning tasks.
The figure is based on work by Edoardo Ramalli [27].

The procedure for training KGE models is similar to any other statistical-based machine

learning. The values of the embeddings are usually initialized as random values. These

embeddings are continuously optimized through a training loop, which stops once the stop

condition is met. A stop condition could be that a certain number of iterations have been

completed, or when the model starts overfitting on the training set. For each triple in the

training set, η negative counterexamples are generated by triple corruption. This is done by

swapping out either the head h or tail t (not both) with some other h′, t′ ∈ E [10]. Both the

original triple and the corrupted triples are added to the training batch. A scoring function

is used to measure a triple’s “goodness” or plausibility. The model should give a good score

to triples from the KG and a bad score to the corrupted triples. By updating the embedding

to optimize the scoring function, the model should by the end of training have meaningful
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embeddings that can accurately evaluate unseen triples. In the training process this is done

by minimizing the model’s loss function.

2.2.1 Loss functions

A loss function is a function that assigns a “cost” to an event in the form of a real number.

The loss function is minimized with some optimization algorithm, such as stochastic gradient

descent. If the reader is curious, this algorithm is well-described in the Deep Learning book

by Goodfellow et al. [33, p. 149]. In the context of KGE models, the loss function is used

to update the embeddings [22]. There are many different types of loss functions, such as

ranking losses [10], binary logistic regression [72], and multiclass log loss [41]. The next two

subsections will briefly present the ranking loss and multiclass log loss versions used in the

experiments.

Pairwise, margin-based ranking loss

Learning to rank is a machine learning task where a model is trained to rank a set of

datapoints. In the pairwise approach, the problem is approximated to a binary classification

problem, so the task becomes to determine which datapoint out of a pair is the better

datapoint. The classifier takes as input two datapoints, one of higher rank x+ and one of

lower rank x−, and has the goal to minimize the loss function that penalizes cases where x− is

given a higher rank. So the goal is to create a “gap” between positive and negative datapoints

in the model’s internal representation of the training data. In margin-based ranking loss, a

minimum value is set for this distance. Once that distance is achieved, the model no longer

needs to make updates regarding the pair of datapoints with adequate distance, thereby

allowing training to be spent on learning other more challenging differences. The authors of

TransE use this pairwise, margin-based ranking approach as their loss function [10]. Given a

set of training triples S, a scoring function f and a margin γ > 0, the pairwise, margin-based

ranking loss is defined as:

L =
∑

(h,r,t)∈S

∑
(h′,r,t′)∈S′

[γ + f(h, r, t)− f(h′, r, t′)]
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where S ′ is the set of corrupted triples. This loss function favours low scores for corrupted

triples and high scores for non-corrupted triples. The aim is not to give negative triples a

score below a certain value nor positive triples a score above a certain value, rather, the

goal is to create distance between them. This loss function can be used across many KGE

models, as it is the scoring function that differs across models. The scoring functions for

TransE, DistMult, and ComplEx will be presented in Section 2.2.3.

Negative log-likelihood loss

This loss function was used in the paper introducing ComplEx [72]. Simply put, the function

uses likelihood minimization to push the model toward the embedding that minimises the

likelihood of loss. It is the opposite of maximum likelihood estimation, where one wants

to maximise the likelihood of some datapoints given a set of parameters, hence the name

negative log-likelihood. Since the likelihood of facts in a KG are independent, the likelihood

of a set of triples is the same as the product of the likelihoods of each individual triple.

With many datapoints, multiplying many small probabilities with each other quickly leads

to unmanageable small numbers. This causes underflow, where a number is too small for

a computer to be capable of storing it. To solve this problem, we take the log of the

likelihoods so that products become sums. As log functions monotonically increase, the

relative likelihood is maintained. For example, if f(h, r, t) ≥ f(h′, r, t′) then log(f(h, r, t)) ≥
log(f(h′, r, t′)), so the ≥ is maintained. Since the goal is to create a distance between positive

and negative triples, only the relative difference between them needs to be maintained. Thus

the negative log-likelihood loss is:

L =
∑

(h,r,t)∈S∪S′
log(1 + exp(−y f(h, r, t)))

where y ∈ [1,−1] is the truth value of the triple (true or false).

2.2.2 Performance indicators

Three different performance indicators are commonly used to evaluate the embedding quality

of a model. While KGE models assign scores to triples, these scores are relative and cannot
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be used to give an absolute estimate of how well a model evaluates a triple. Instead, the

scores are compared with those of other triples so that the rank of a triple can be used as

an approximation of absolute measurement. A small rank number indicates a good rank,

while a high rank value indicates a bad rank. This can be somewhat confusing, so the reader

is encouraged to take care when distinguishing between rank “number” and high/low rank,

where a low rank number indicates a high rank and vice versa.

As the performance indicators are simple to calculate, they are suitable for measuring

performance on a large scale. With T as the set of ranked triples and S as the set of true

triples, this section defines three performance indexes.

Hits@K

Hits@K is the probability of finding the correct triple in the top K ranked triples. Usually,

k = 10 or lower. This metric measures the model’s ability to rank positive triples higher

than the corrupted triples.

Hits@K =
|{t ∈ T : trank < k, t ∈ S}|

|T |

The larger the value, the better the performance of the model.

Mean rank

Mean rank (MR) is the average rank of all the ranks assigned to the triples in the test set.

A small value indicates a good model because more triples from the knowledge graph have

been given higher ranks, and accordingly, their rank numbers are smaller.

MR =
1

|T |
∑
t∈T

trank

MR has an advantage over Hits@K in being more sensitive to slight changes in the model

because if the changes do not affect the top k ranked triples, then the Hits@K score remains

unchanged.
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Mean reciprocal rank

Mean reciprocal rank (MRR) is a measurement for the number of triples correctly ranked. If

the triple with the best rank is a positive triple, 1 is added. If the triple with the second-best

rank is positive, then 1
2

is added, etc. If a ranked triple is negative, nothing is deducted, the

fraction simply is not added to the MRR.

MRR =
1

|T |
∑
t∈T

trank : t ∈ S

The larger the value, the better the model.

2.2.3 KG embedding model architectures

KGE models differ mainly in three aspects: (1) how entities and relations are represented, (2)

the scoring function, and (3) how the embedding is optimized. The difficulty with embedding

KGs is that there are many different entities and relationships, so the embedding model needs

to be generic enough to capture all the different entities and relationships simultaneously.

We now consider the three models used in this thesis.

TransE

In 2013, Mikolov et al. proposed a technique for natural language processing called word2vec

[56, 55], which used a word-embedding algorithm that managed to capture some of the

semantics in words. Words were represented as vectors, and the authors found that the

embeddings had interesting qualities, such as

−−−−→
Queen−

−−−→
King ≈

−−−−−→
Woman−

−−−→
Man

where the words with an overhead arrow denote word2vec’s vector embedding of the word.

Inspired by this, Bordes et al. applied the idea to embedding entities and relations in KGs

and proposed the embedding model TransE [10]. The main motivation behind this approach

was that “hierarchical relationships are extremely common in KBs and translations are the

natural transformations for representing them.” [10]. This approach learns entity embeddings
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and treats relations as translations in the entity embedding space. For a true triple, the tail

entity should be very close to the head entity plus the relation translation in the embedding

space.

IKEA

sells

furniture, food

Figure 2.5: Visualization of entity and relation embedding for TransE.

If (h, r, t) denote an embedding of a head, relation and tail, then h + r ≈ t. The score

function fTransE is thus defined as the distance between h+r and t, using l1 or l2 to calculate

distance:

fTransE(h, r, t) = ||h + r− t||l1/l2

Let d denote the dimension of the embedding space. The model must learn an entity

vector e ∈ Rd for each entity and a translation vector dr ∈ Rd for each relationship. Let

ne and nr be the number of unique entities and relations, respectively. The number of

parameters needed to be learned for TransE is thus O(ned+ nrd).

TransE does have some limitations. For example, it cannot properly embed complex

relations, meaning 1-N, N-1, or N-N relations [78, 50]. Imagine a complex relation such that

∀i ∈ {1, 2, ..., n}, (h, r, ti) ∈ S, where S is the set of correct triples. Following the TransE

approach, h + r ≈ ti, therefore t1 ≈ t2 ≈ ... ≈ ti, even though the tail entities are not

necessarily semantically similar. Taking an example depicted in figure 2.5, the store IKEA

sells both furniture and food, causing TransE to give the semantically dissimilar concepts a

similar entity embedding.

For a symmetric relation rsym, TransE will assign high scores to both (h, rsym, t) and

(t, rsym, h). This results in the embedding for rsym to be pushed toward zero and the em-

bedding of the entities h and t toward each other [77]. When rsym ≈ 0, then the relation

15



is treated as if it were reflexive. This is problematic when embedding symmetric relations,

especially those that additionally are not reflexive. Other translation-based models, such as

TransH [78], TranR [50] and TransD [40], have later been proposed to alleviate some of the

limitations of TransE.

DistMult

DistMult is based on the tensor factorization-based model RESCAL [60]. A tensor is a

multidimensional array representing the relationships between multiple sets of objects. The

dimension of the array is the number of types of objects in the combinations. In the context

of triples, there is the head entity, the relation, and the tail entity, so three sets of object

types. In such models, triples in a KG are therefore transformed into a 3D binary tensor X .

We want the embeddings of the entities and relations to be such that one can mathematically

combine them to obtain the tensor representing the KG. As seen in fig. 2.6, in the KG tensor

each relation is represented by an n × n matrix, where n is the number of unique entities.

The number of relations is denoted by m, so X ∈ Rn×n×m. An element Xijk = 1 if there is

a triple (ei, rj, ek) in the graph, and Xijk = 0 otherwise.

𝐫𝟏

𝐫𝟐

𝐫𝐦...

𝐞
𝟏

𝐞
𝟐

…
𝐞

𝐧

𝐞 𝟏 𝐞𝟐 … 𝐞𝐧

Figure 2.6: A tensor model of a knowledge graph, inspired by the figure by Dai et al. [22].

RESCAL uses rank-d factorization to obtain the latent semantics [60]. The rank of a

matrix corresponds to its number of linearly independent columns. Given a matrix Y ∈ Rn×m

of rank o, the rank factorization of Y is of the form Y = FG where F ∈ Rm×r and G ∈ Rr×o.

For X the rank factorization is applied so that tensor is “split” into slices, where each slice

corresponds to the semantic embedding of a relation. Rank d is used because the relations

16



are embedded in d × d-dimensional space. Formally we can define the pth slice in the KG

tensor as:

Xp ≈ ARpA
T , for p = 1, 2, ...,m

where A ∈ Rn×d is a matrix representing all entities and Rk ∈ Rd×d is a matrix representing

the pth relation. So the scoring function used in RESCAL is

fRESCAL(h, r, t) = h>Mrt

where h, t ∈ Rd are the embedding vectors of entities and Mr ∈ Rd×d is the semantic

embedding of the relation. This method requires thus O(ned + nrd
r) parameters. In order

to lower this complexity, DistMult restricts Mr to be a diagonal matrix, meaning that all

entries apart from those in the diagonal of the matrix are zero. After Mr = diag(r), r ∈ Rd.

The scoring function is transformed to

fDistMult(h, r, t) = h>diag(r)t

Now only d parameters need to be learned per relationship, and the number of parameters

to be learned for DistMult is O(ned+ nrd). The space required is also O(ned+ nrd).

A main problem with this approach is that fDistMult(h, r, t) = fDistMult(t, r, h), so DistMult

cannot embed the asymmetry of a relation. This issue is addressed by later models, such as

ComplEx [72] and SimplE [42].

ComplEx

ComplEx extends DistMult with complex-valued embeddings, thereby allowing it to distin-

guish between symmetric and asymmetric facts [72]. This was achieved without increasing

parameter or memory complexity. The imaginary and real part of the embeddings repre-

sent the “direction” of the relation, and thus asymmetric qualities can be expressed in the

embedding. The scoring function for ComplEx is quite similar to that of DistMult:

fComplEx(h, r, t) = Re(h>diag(r)t)
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where t represents the complex conjugate of t and Re means we are taking the real values of

the score. With such a scoring function, triples with asymmetric relations are able to obtain

different scores depending on the ordering of entities.

2.3 Rule-based machine learning

Rule-based machine learning aims to create rules that make new true predictions going

beyond the data on which the rule was applied [79]. Other areas of statistical machine

learning often focus on training a single model that can be applied to make a broad range of

predictions. Conceptually, the end result of rule-based machine learning is similar to a rule-

based system. Rule-based systems are often hand-crafted and require a knowledge expert

to be curated, while rule-based machine learning requires no knowledge expert and rules are

automatically created by the learning algorithm.

Classically, a rule comprises of a condition and consequent, or a so-called ”if-then” state-

ment.

IF ‘the condition is met’ THEN ‘the consequent holds’

The rule’s condition specifies attributes in the data on which the rule will be applied. If these

attributes are present in this data, the condition is met. Once this happens, the attributes

in the consequent should necessarily also be met. We define an atom as a triple in which

the head and/or tail are variables. A Horn rule is a rule where the consequent of a rule is a

single atom, while the body is a set of atoms. We denote a Horn rule by B ⇒ r(x, y), where

B is the antecedent and r(x, y) the consequent. Two examples of such rules are 2.1 and 2.2,

where the first is satisfied by the KG in Example 1 below, while the latter is not.

has sibling(x, y)⇒ has sibling(y, x) (2.1)

has sibling(x, y), has parent(y, z)⇒ has parent(x, z) (2.2)

Example 1. A simple KG.
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1 (Ann , has_parent , Carol)
2 (Carol , has_child , Ann)
3 (Carol , has_child , Bob)
4 (Ann , has_sibling , Bob)
5 (Bob , has_sibling , Ann)

Consider the two rules and the example KG with numbered triples given above. Under

this KG the antecedent of the first rule is satisfied by both triple 4 and 5 listed in the

example. The resulting consequent of rule 2.1 is also present in the KG. So the predicate

has sibling is reflexive in this KG. The antecedent of the second rule is satisfied by triples 1

and 5 in the KG, but the resulting consequent would then be has parent(Bob, Carol). Since

(BoB, has parent, Carol) is not present in the KG, rule 2.2 does not hold. If we know

that this rule is reliable, we could for example extend the incomplete KG with this triple.

Within rule-based machine learning there are many different approaches, including learn-

ing classifier systems [68] and association rule mining [2]. The latter is the approach used in

this thesis in the form of the AMIE3 rule mining algorithm. Both methods aim to create a

set of rules to act as a model for a set of data. The association rule mining approach will

now be explained further.

2.3.1 Association rule mining

Association rules [2] are types of “if-then” statements that describe frequent associations

between items in a dataset containing transactions. A transaction can be thought of as a

set of related items. Association rule mining was initially proposed as a new method for

finding relationships between store sales items. The idea of mining association rules over

transactions has successfully been applied to many other scenarios, such as within health

informatics and recommender systems [5, 48]. In the context of convenience store sales, each

transaction can be thought of as a set of items that a customer has purchased. The rules

are of the form {Sugar, F lour, Eggs} ⇒ Butter, meaning that a person who bought sugar,

flour and eggs is likely to also purchase butter. The antecedent is some set of items in the

dataset, while the consequent is an item often found in combination with the antecedent

in the dataset. So sugar, flour, and eggs can be thought of as “associated with” butter.

These original association rules are also not Horn rules over binary predicates as in AMIE3.

However, it is cited as a main inspiration for the AMIE3 algorithm used for experiments in
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this thesis. AMIE3 also limits rules to be in Horn form, meaning that the consequent can

contain at most one predicate.

2.3.2 Significance and quality measurement

The goal is to find formal rules that make true predictions beyond the explicit information

in the KG. If we look back at fig. 2.3 this means we want to maximise B and minimise D.

For this, we need to know what those areas are, and this is where the problem of missing

negative examples from section 2.1.2 occurs as the area KG false is empty. While it is

hard to define quality when evaluating rules, some indicators can be used. We now consider

different measures to address this problem.

Support

The support of a rule is the number of correct predictions. If we recall figure fig. 2.3 with KG

prediction under incompleteness, the support of a rule B ⇒ r(x, y) is area A. What counts

as an instance of a correct prediction can vary. The authors of AMIE point out that if one

chooses the number of instantiations of the rule, then the measure becomes non-monotonic

[44]. They give an example with the rule:

married to(x, y)⇒ married to(y, x)

where if has gender(x,male) is added to the body, then the number of instantiations in the

KG can only decrease because there are stricter requirements for what can be in the body

of the rule. If on the other hand has friend(x, z) is added to the body, then the number of

instantiations may increase, because for every x there can be many z possibly resulting in

many more instantiations of the rule. In order to preserve monotonicity and only a single

measure of support for each rule, the authors of AMIE define support of a rule R to be the

number of true predictions p in the KG K that the rule makes:

support(R) := |{p : (K ∧R |= p) ∧ p ∈ K}|

Now the support of a rule decreases monotonically if more atoms are added to the body, and

two equivalent rules cannot have different values for support.
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Head coverage

Support is not an absolute measurement, but rather a relative measurement. It requires the

complete size of the KG for the values to have meaning. This is countered with a proportional

version of support called head coverage. Given a rule B ⇒ r(x, y), the head coverage is the

ratio of instantiations of the head of the rule r(x, y) that are predicted by the rule:

hc(B ⇒ r(x, y)) =
support(B ⇒ r(x, y))

|{(x, y) : r(x, y) ∈ K
|

Head coverage is fully correlated with support and hence is also monotonic. We now have

an absolute measurement of significance, but this is not a measure of the quality of a rule,

only relevance. For this, we need confidence measures.

Standard Confidence

Confidence is the proportion of a rule’s true predictions out of all its predictions. In order to

determine if a new fact is true or false, one must make assumptions about the facts missing

from the KG. The standard confidence adopts the CWA and labels all facts not already

present in the KG as false. Thus, the standard confidence of a rule R in a KG K is the ratio

of its predictions that are in the KG:

conf(R) :=
support(R)

support(R) + |{p : (K ∧R |= p) ∧ p 6∈ K}|

If we take the KG from Example 1 and the rule has child(y, x) ⇒ has parent(x, y),

then the rule implies two datapoints: (Ann, has parent, Carol) and (Bob, has parent,

Carol). The first triple is in the KG, while the second is not, therefore the rule has predicted

one correct and one incorrect triple, thus the standard confidence is 0.5.

If one wants to mine rules that only describe the data at hand, and has a relatively

complete KG, this is a good measure of confidence. If the aim, on the other hand, is to

mine rules that predict new facts, then standard confidence is not a good measurement as

it penalizes rules that make predictions outside of the current knowledge.
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PCA Confidence

This measurement for confidence differs from standard confidence in its definition of what is

a false prediction. Under standard confidence, any triple outside the KG is a false prediction,

while this confidence metric adopts PCA, introduced in section 2.1.2. The definition of a

false prediction is thus more conservative, so not all triples outside the KG are considered

false. The PCA confidence of the rule R is the fraction of its predictions that are not labeled

as false by the PCA [32]:

pca− conf(B ⇒ r(x, y)) :=
support(B ⇒ r(x, y))

|{(x, y) : ∃y′ : B ∧ r(x, y′)}|

Again, given the KG from Example 1 and the rule has child(x, y)⇒ has parent(y, x), the

rule implies two datapoints: (Ann, has parent, Carol) and (Bob, has parent, Carol).

The first is in the KG, therefore correct, while the latter is outside the KG. As there are no

has parent triples with Bob as the subject in the KG, we cannot under the PCA assume

that (Bob, has parent, Carol) is a false triple. Hence, the PCA confidence of the rule is

1.0, in contrast to the standard confidence of 0.5.

This is the standard PCA confidence measure, but it could, of course, also be calculated

on the head entity of the consequent instead of the tail, i.e.:

pca− confh(B ⇒ r(x, y)) :=
support(B ⇒ r(x, y))

|{(x, y) : ∃x′ : B ∧ r(x′, y)}|

Note that the PCA confidence calculated on the tail of the consequent is the metric used

throughout this thesis to indicate the quality of rules.

GPRO and GRANK confidence

Ebisu et al. [26] showed that PCA confidence might underestimate the likelihood of a

predicted triple due to non-unique mappings of variables in rules. Consider, for example,

the rule has parent(x, z) ∧ has child(z, y) ⇒ has sibling(x, y), and the KG from Example

1. By mapping both x and y to the entity Ann, the body of this rule can be instantiated
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with the triples (Ann, has parent, Carol) and (Carol, has child, Ann), resulting in

the incorrect fact that Ann is her own sibling. The refinement of PCA confidence, called

graph pattern probability model (GPro) confidence, excludes instances such as these that do

not map variables to unique entities when computing confidence. As with PCA confidence,

GPro confidence can be calculated on both the head and tail of the consequent.

Ebisu et al. also proposed a refinement of GPro confidence, called graph pattern entity

ranking model (GRank) confidence [26], which takes into account the number of instantia-

tions of the body of the rule for a given instantiation of the head atom. This metric is more

sensitive to the number of facts per relation.

2.3.3 AMIE, AMIE+ and AMIE3

The experiments of this thesis required a rule mining algorithm capable of mining meaningful

rules while maintaining acceptable runtime. The rule mining component of the experiment

would be treated as a black box that only took a KG as input and produced a set of

rules as output. The AMIE-algorithms do precisely this, and require no hyperparameter

optimization, training, nor additional input.

AMIE is a rule mining system introduced in 2013 by Galárraga et al. [32], which was

improved upon in 2015 with the release of AMIE+ [31] and in 2020 with AMIE3 [44]. This

section will summarise the original rule mining algorithm, present the improvements made

with AMIE+ and AMIE3, and finally justify the eventual choice of AMIE3.

The AMIE rule mining algorithm

The algorithm employs a type of breadth-first search when exploring the search space for

possible rules. It starts with the empty rule, and extends it. It is extended in a way that if

this breadth-first extension continues, the entire search space can be generated. Of course,

this is not desired, so AMIE employs a number of methods to limit the search for rules. One

can think of this as methods of pruning the breadth-first search tree. First we will look at

how rules are extended and then how the search space is pruned.
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A rule is treated as a sequence of atoms, where the first atom is the head, and the rest

make up the body. It is considered closed, if every variable is shared by at least two predicates.

These rules can also be thought of as closed-path rules, since the sequence of relations in

the body of the rule form a path from the subject argument to the object argument of

the head atom in the rule. The rule has child(y, x) ⇒ has parent(x, y) is closed. If we

were to add an atom to the body with a fresh (new and unused) variable, a resulting rule

has sibling(z, x) ∧ has child(y, x) ⇒ has parent(x, y), would be open. The algorithm only

outputs closed rules, ensuring that rules do not contain unrelated atoms or variables. When

traversing the search space, AMIE extends rules by adding one of three different atom types:

1. Dangling atom: An atom with a fresh variable and a shared variable is added. A

shared variable is a variable that occurs in some other atom of the rule.

2. Instantiated atom: An atom with an entity and an argument (variable or entity) shared

with the rule.

3. Closing atom: An atom with both arguments shared with the rule.

By only adding atoms to rules, the extension is monotonic in the sense that atoms added

by one operation cannot be modified by a later operation. In the algorithm new rules are

added to a queue. If, however, a generated rule is a duplicate of one already in the queue, it

is not enqueued. Because the length of the rules dequeued increases monotonically, one can

be sure that any potential duplicates still are in the queue – when a rule with n atoms is

dequeued, no rule with n+1 atoms has ever been dequeued. Since equal rules have the same

head coverage and PCA confidence, this limits the search space considerably when checking

for duplicates before enqueuing a new rule.

The head coverage of possible rules must be at least 0.01, meaning rules that correctly

predict less than 1% of the head relations are deemed insignificant. As mentioned in section

2.3.2 head coverage decreases monotonically as atoms are added to a rule. This allows the

algorithm to safely discard and not expand upon rules that score below the head coverage

threshold. With the default setting a rule also needs support ≥ 100.

For more details about the implementation details of AMIE, please refer to the original

paper, AMIE: association rule mining under incomplete evidence in ontological knowledge
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bases [31]. Note that the authors of AMIE present results with rules mined without constants

unless it is explicitly stated. This is also the case for the AMIE+ and AMIE3 publications.

The AMIE-algorithms are capable of mining rules with instantiated atoms, but at the expense

of increased time required to run.

AMIE+ and AMIE3

While the original AMIE algorithm had some intelligent methods for limiting the search

space, it spent 3.62min on a server with 48GB RAM and 8 CPUs [32] when mining rules with

two atoms and no constants from YAGO2, which has around 1 million facts [37]. In recent

years KGs have only increased in size (YAGO4 has 2 billion facts [66]), so the improvements

made in AMIE+ and AMIE3 address this need for improved performance. AMIE+ includes

new pruning techniques, such as the fact that rules with 100% confidence cannot be improved

upon, and hence do not need to be expanded. Computing the PCA confidence of rules is

a quite expensive part of the algorithm, so AMIE+ introduces a method for approximating

the confidence score. This approximation has a 4% error rate, but shortens the runtime

considerably. AMIE3 uses more sophisticated methods for calculating support and PCA

confidence, and does not need to resort to approximations, while simultaneously improving

runtime. It also employs a technique called lazy evaluation, which rests on the idea that if a

rule is bad, there is no need to spend resources calculating exactly how bad it is.

Depending on the intended application of the mined rules, different metrics are more

appropriate than others. For example, standard confidence is more appropriate if one as-

sumes that the information in the KG is complete and one wants rules that model the data

as closely as possible. If the intended use of the rules, on the other hand, is to predict

new facts, then PCA, GPro or GRank confidence are more appropriate. In the release of

AMIE3 all these metrics are implemented, however their implementation of GPro or GRank

confidence was still in the experimental stages, therefore PCA confidence was used in this

thesis.

The role of AMIE3 in experiments

The rule miner required for the experiments in this master project had to have reasonable

running time and have the ability to mine rules of acceptable quality. The PCA confidence
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measure, while not perfect, was deemed an adequate indication of quality, and therefore the

AMIE-algorithms that employed this measure seemed appropriate for the task. The AMIE3

algorithm was the best of the three, and it performed well against other recent rule mining

algorithms, such as Ontological Pathfinding [17] and RudiK [65]. Furthermore, the authors

of AMIE3 had made their publication publicly available on GitHub with clear instructions

on how to use it. For these reasons the AMIE3 algorithm was chosen as the rule miner for

the experiments of the present project.

26



Chapter 3

Rule mining on extended knowledge

graphs

In this chapter, we first briefly summarize the KG extension and mining process, before

exploring each component separately.

The process starts with a KG. From this KG, we want to first mine rules, then extend

it with new plausible facts, and lastly mine rules again on the extended KG. Candidates

for additions to the KG are generated according to strategies that attempt to maximise the

candidates’ plausibility. Once this set of candidate triples has been generated, the best of

these are added to the KG. While there is no direct way to give an absolute score to these

triples, a KGE trained on the original KG can rank the candidate triples against a set of

corrupted triples. With the candidates ranked, one can accept all candidates above some

appropriately chosen cutoff and add them to the KG. Then rules can be mined and evaluated

on both the original and extended KG, and results can be compared.

This chapter also looks at the datasets used in the experiments and the results from

the model selection process. The goal of the model selection process is to produce KGE

models of acceptable quality for the data extension pipeline. Since the models are merely

components of the process and not experimental results, this chapter presents the model

selection outcomes.
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Figure 3.1: Diagram representing KG extension and rule mining pipeline.

3.1 KG datasets

While there are many large KGs publicly available, they are often quite complex in the

number of different relations and entities used. Since we are mining rules over relations,

the range of different relations was kept small. By restricting the number of relations, the

resulting rules will not be overly diverse, and there will be many more candidate triples per

relation when generating new plausible triples. Two different datasets were used to conduct

the experiments, both of which were limited to contain only six different types of relations.

We discuss them next as we look at the KGs individually.

3.1.1 Wikidata5M-family KG

Wikidata5M is a KG dataset containing over 20 million triples with over 800 types of re-

lations. It combines information from the Wikidata KG with Wikipedia pages [75]. Wiki-

data5M uses the same identifier system as Wikidata, where each entity and relation is as-

signed a unique integer ID. The IDs of entities are prefixed with the letter Q and those of

relations with P. For example, the following line

Q146 P279 Q39201
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Listing 3.1: Python dictionary converting family predicate IDs to their names.
1 family_predicates_dict = {
2 ’P40’: ’child’,
3 ’P22’ : ’father ’,
4 ’P25’ : ’mother ’,
5 ’P26’ : ’spouse ’,
6 ’P1038’ : ’relative ’,
7 ’P3373’ : ’sibling ’,
8 }

corresponds to <house cat, subclass of, pet>, where each entity has a corresponding

Wikipedia page. This dataset was chosen due to its size and because it contained family-

related information. Rules about family structure are well-known and easy to comprehend.

For example, the simple rule parent(a, b) ⇒ child(b, a) would be implicitly represented in

the KG.

All triples that did not use one of the six selected family predicates were filtered out,

and the IDs were converted to meaningful names so that the resulting rules mined would

be easily readable. The python dictionary in listing 3.1 shows the chosen predicates. A few

other family predicates were considered, but did not have enough corresponding data points

or were too similar to other selected predicates. Common family-related predicates such as

grandchild or sister are also not currently used in Wikidata. From a discussion in the

Wikidata community, it seems that all properties considered redundant were removed [73].

Pykeen’s distribution of the dataset was used for the experiments [4]. The resulting subset

of Wikidata5M contained around 250 000 triples and will henceforth be referred to as the

family KG.

3.1.2 WN18RR

WN18RR is a smaller KG with 93 003 triples and only 11 relations [23]. It is an improved

version of the WN18 dataset, where it was found that there was information leakage between

the training and test set of WN18. Many test triples could be identified simply by inverting

triples in the training set [71]. For example, the relation has child is the inverse relation

of has parent, meaning that if the triple (Ann, has parent, Carol) is in the training set,

then one can infer that (Carol, has child, Ann) likely is in the test set, thereby the test

data is no longer consideres ”unseen” not a fair data set to evaluate the model on. WN18RR

addresses this issue.
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WN18RR contains triples scraped from WordNet, a lexical database for English [29].

In WordNet nouns, verbs, adjectives, and adverbs are grouped into sets of semantic

synonyms called synsets which express a distinct concept. For example, {man} and

{adult male} belong to the same synset. Synsets are connected to other synsets by

semantic relations. The most commonly used relation in WN18RR is hypernym. A

synset X is a hypernym of synset Y, if every Y is a kind of X. For example, the triple

02121808 hypernym 02121620

represents the information that the synset cat is a hypernym of the synset house cat. Or

more simply phrased: All house cats are cats.

Relation Frequency

In
cl

u
d
ed

hypernym 36873
derivationally related form 31865

member meronym 7912
has part 5131

synset domain topic of 3328
instance hypernym 3118

E
x
cl

u
d
ed

also see 1396
verb group 1220

member of domain region 981
member of domain usage 673

similar to 86

Table 3.1: Frequency of relations in WN18RR KG and whether they were included in the
final KG.

Though it is not vital for the reader to understand the semantics behind the relations

in this dataset, it may be more rewarding to understand the terms when later reading rules

mined from the WN18RR KG. The relation hypernym was described above, so now the

remaining five relations are succinctly explained.

• derivationally related form

A concept A derives from another concept B. perfectly is the derivationally related

form of perfect.

• member meronym

A concept A is a member of a concept B. class is a member meronym of student.

• has part

A whole concept A has a part B. cat has part tail.

30



• synset domain topic of

A concept A is the scientific field which concept B belongs in. computer science is

the synset domain topic of deep learning.

• instance hypernym

It denotes the type of an instance. For example, Bergen has instance hypernym city.

WN18RR was chosen due to the few number of relations in it, and with a KG already

containing few relations, most of the data could be included. By taking all triples containing

one of the six most frequent relations, in total 88227 datapoints, 95% of WN18RR was

used. This was intended to produce a more complete KG. The dataset was loaded using

AmpliGraph [19].

3.2 KGE model architectures

There are many publicly available knowledge graph embedding libraries [13, 14, 4]. The

library AmpliGraph was chosen due to its thorough documentation and because it is an

open source library based on Tensorflow, a well-known library for the development of machine

learning models [1]. The library provides many different KGE models, performance metrics,

and KG datasets. Three different KGE methods were selected: TransE, DistMult, and

ComplEx.

TransE was selected because it is one of the simplest and most intuitive KGE models.

Due to the limited number of relations in the KGs, this architecture may be sufficient for

producing a good embedding. However, as mentioned in section 2.2.3, TransE struggles

with learning complex and symmetric relations, both of which are present in the chosen

KGs, therefore it may not be adequate. In the family KG spouse and relative are symmetric

relationships. child is an example of a complex relation, as a person can have many children.

In WN18RR derivationally related form is symmetric, but not reflexive.

DistMult was selected because it is in a different family of embedding vectors, namely

tensor-factorization based models. Recalling its description from section 2.2.3, DistMult is

one of the least computationally-intensive models due to its use of diagonal matrices, which

made it an obvious choice for the experiments of this thesis.
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ComplEx has the same runtime as DistMult, and was therefore an attractive candidate.

The embedding model was chosen due to this and also because it addresses DistMult’s

shortcomings in embedding antisymmetric relations. The relations parent and child in the

family KG are antisymmetric, so it would be interesting to compare the results from these

two models.

AmpliGraph also provides a baseline model, to which the three selected models were

compared to. The baseline model, called RandomBaseline, assigns a pseudo-random score

to each triples it is asked to evaluate. When it comes to extending the KG this would

essentially have the same effect as adding noise to the data.

3.3 Model selection

Each KGE model has a number of hyperparameters that can be optimised. As the search

space grows, it has been shown that random search is more optimal than grid search, where

each combination needs to be tested [8]. Due to limited computational resources, this ap-

proach to hyperparameter optimisation was selected. It is not an optimal approach, but

serves as a practical and effective solution that measures well against more sophisticated

methods such as Baysian optimisation [47].

Hyperparameter Values
Batches count 50, 100
Epocs 50, 100
Embedding dimension 50, 100, 200
η (negative sampes @ rate) 5, 10, 15
Loss function pairwise, nll
Pairwise loss margin 0.5, 1, 2

Table 3.2: Hyperparameter values to search through during model selection.

The AmpliGraph documentation was the primary inspiration when deciding which hy-

perparameters to focus on. It was, for example, stated in the documentation that they

received the best results with the adam optimizer, therefore other optimisers were not con-

sidered in the hyperparameter search [20]. For each hyperparameter combination, a learning

rate randomly chosen in the range of 0.0001 - 0.01 was selected, yet another design choice

borrowed from AmpliGraph.
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PARAM.
WN18RR Family

TransE DistMult ComplEx TransE DistMult ComplEx
Batch size 50 50 100 50 100 50
Epocs 50 100 100 50 50 100
Emb. dim. 50 200 100 50 200 200
η 15 5 10 15 10 15
Loss func. nll nll pairwise nll nll nll
P. l. margin - - 0.5 - - -

Table 3.3: Hyperparameter selection results. The hyperparameter at the bottom of the table,
pairwise loss margin, was only applicable for those models that used a pairwise loss function,
hence the missing values.

For the implementation of model selection, AmpliGraph’s select best mode ranking

was used. It is a model selection routine that allows for both grid and random search. At

the end of each model selection process, the final model for each embedding type is retrained

on the concatenation of the train and validation set, before it is eventually evaluated on the

test set. The eta hyperparameter denotes the number of negative examples generated at

training for each positive example, a process described in section 2.2. The hyperparameters

for the final selected models can be seen in table 3.3.

3.3.1 Model selection results

The final model of all three embedding architectures had good results on the WN18RR

dataset, and even better results on the family KG. Each model had an MRR score above

0.9 on the family KG and around 0.6 on the WN18RR. TransE seemed to perform slightly

worse than DistMult and ComplEx on the family KG. On the WN18RR dataset TransE had

a lower hits@1 score, while it outperformed both DistMult and ComplEx in both hits@3 and

hits@10.
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34
Dataset WN18RR KG Family KG

Model MR MRR
Hits@K

MR MRR
Hits@K

1 3 10 1 3 10

Random 495.32 0.01 0.00 0.00 0.01 498.72 0.00 0.00 0.00 0.10
TransE 34.29 0.60 0.51 0.66 0.76 2.59 0.93 0.88 0.97 0.99
DistMult 152.37 0.62 0.59 0.63 0.66 7.45 0.98 0.99 0.99 0.99
ComplEx 139.36 0.59 0.57 0.60 0.63 4.64 0.99 0.98 0.99 0.99

Table 3.4: Results of selected models evaluated on test set, with the best results per column
marked with bold font.

(a) MRR scores (b) Hits@k scores

Figure 3.2: KGE test performance results for family KG.

(a) MRR scores (b) Hits@k scores

Figure 3.3: KGE test performance results for WN18RR.



3.4 KG extension

The goal of KG extension is to add potentially true statements to the original KG. Ampli-

Graph does have an implementation for this, called discover facts, but due to computa-

tional limitations1 it could not be used. However, the implementation used in our study

follows the same general strategy used in discover facts. It consists of two main compo-

nents:

1. Candidate triple generation

2. Ranking of generated candidates

With a set of ranked candidate triples, all that remains is to decide the minimum rank for

a candidate to be admitted to the KG.

3.4.1 Candidate triple generation

Both in the family KG and in WN18RR the number of potential facts is enormous, and

so in order to avoid having to evaluate all of them, several strategies can be used to select

plausible facts. In AmpliGraph’s implementation of plausible candidate generation, they

make the assumption that densely connected entities are less likely to have missing true

statements. In a KGE tutorial at the European Conference on Artificial Intelligence in

2020, members of the AmpliGraph team claim that this assumption has been true for their

empirical evaluations, but is not necessarily true for all datasets [21]. As stated, AmpliGraph

has implemented different strategies, many of which have to do with graph clustering, but

these were too computationally intensive to be used. Four simpler strategies for entity

selection were instead used:

• Random selection of entities.

• Selecting the most frequent entities.

• Selecting the least frequent entities.

• Probabilistic selection based on the frequency of the entities in the dataset, where the

least frequent entities are most likely to be selected.
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KG Entity Freq.
Ann sibling Bob Ann 4
Ann sibling Carl Bob 3
Ann friend Carl Carl 3
Bob friend Carl Dave 2
Bob friend Dave Eve 2
Ann friend Eve Felix 1

Felix friend Gina Gina 1
Dave friend Eve

Table 3.5: Example KG with frequency table of entities.

If we look at listing 3.5 as an example KG and need to select three entities for candidate

generate, then with the

• most frequent strategy the entity set would be {Ann, Bob, Carl},
• least frequent strategy the entity set would be {Dave, Felix, Gina},
• probabilistic strategy the entity set could be {Gina, Eve, Felix},

and any three candidates would be selected with the random strategy. Note that selection is

without replacement. Once the entities were selected, all possible triples were generated with

them and the six relations. Then, all the triples already included in the original KG were

excluded from the resulting candidate triples. If one were to pick the most frequent strategy,

then the resulting set of candidate triples would be that depicted in table 3.6. Of course, the

more candidate triples there are to choose from, the better the extension will be because then

there is a higher chance of plausible facts being suggested. Again, computational limitations

restricted this. After trying different candidate set sizes, it was eventually decided that

selecting 1000 entities for candidate triple generation was a feasible number. This meant

that 1000× 6× 1000 = 6× 106 triples (minus those that already appeared in the KG) were

considered for each KG extension.

3.4.2 Candidate triple ranking

As discussed in Section 2.2.2, it is not easy to set an absolute score to a triple with a KGE.

Therefore candidate triples are instead ranked against corrupted triples. An accurate KGE

1discover facts uses all entities in the KG to generate counterexamples. In large KGs like the ones
used in our experiments, this is not feasible.
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Candiate Triples
Ann sibling Ann Ann friend Ann
Ann sibling Bob Ann friend Bob
Ann sibling Carl Ann friend Carl
Bob sibling Ann Bob friend Ann
Bob sibling Bob Bob friend Bob
Bob sibling Carl Bob friend Carl

Carl sibling Ann Carl friend Ann
Carl sibling Bob Carl friend Bob
Carl sibling Carl Carl friend Carl

Table 3.6: Candidate triples for the KG in listing 3.5, using entity selection method most
frequent, and entity set size 3. Triples in red are already present in the KG and are removed
from the candidates set.

model will rank well-suited candidates higher than the corrupted triples. Since only one side

of each triple is corrupted at a time, the corrupted triples generated are compliant with the

local closed world assumption. AmpliGraph’s function evaluate performance evaluates the

performance of a trained KGE model by ranking a set of test triples from the KG against

a set of corrupted triples. An embedding model is then evaluated based on how good it is

at ranking the positive test triples higher than the negative corrupted triples. By instead

passing the set of candidate triples to evaluate performance, these could be ranked instead.

Once the candidates have been given ranks, one simply needs to decide on a cutoff rank to

consider the candidate as a true fact and add it to the KG. The rank cutoffs that were

considered were 1, 4, and 7. These values were chosen as they are in the range of typical

Hits@K cutoff values. Rank cutoff 1 is the strictest cutoff possible where only candidates

ranked higher than all the corrupted triples are admitted. Hits@1 is also the strictest Hit

ratio performance metric, where the triple with the highest score must be a true fact in

the KG. As stated in Section 2.2.2, hit ratio cutoff values larger than 10 are rarely used.

Therefore the other two rank cutoff values chosen for experiments were within this range.

3.5 Rule mining and evaluation

Rules are mined using the rule mining algorithm AMIE3 [44]. The authors of AMIE3 have

made an implementation of it available on GitHub. It is released as an executable jar file that

takes a KG in TSV file format as input and outputs rules accompanied by various confidence
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scores. The jar file in release 3.0 was used for rule mining. It was run using the default

settings used in the AMIE3 paper by Lajus et al. [44]. Since default settings change, the

exact command used for rule mining was: java -jar amie-milestone-intKB.jar -bias

lazy -full -noHeuristics -ostd [TSV file].

As previously mentioned, the implementation of AMIE3 outputs the rules accompanied

by confidence scores. Unfortunately, the scores are calculated on the same dataset the

rules have been mined from. Since these datasets have been extended, they may contain

datapoints that are false positives, leading to evaluation based on erroneous data. New rules

that follow this incorrect data will therefore possibly receive high scores despite not making

sense in the given context. To amend this problem, all mined rules are also evaluated on the

original KG. This was not previously available in any release of AMIE3, which only allows

rule evaluation in combination with rule mining, on the dataset from which the rules are

being mined. Evaluation of rules on a custom KG was not possible until one of the authors,

Jonathan Lajus, was kind enough to add a script to do exactly this.

In the final results from the experiments run, each mined rule had two different sets of

confidence scores, one evaluated on the original KG and the other on the extended KG. In

addition to scores, each rule was also accompanied by the parameters under which the KG

was extended. These three parameters are the entity selection method, the KGE model used

to rank candidates, and the rank cutoff value for candidate admittance. In summary, the

output data points in the rule mining and evaluation process had these features:

• Rule

• Metrics

Head Coverage (extended and original KG)

PCA Confidence (extended and original KG)

Positive Examples (extended and original KG)

PCA body size (extended and original KG)

• Parameters

Entity seleciton method

KGE model

Rank cutoff

• Boolean indication for whether the rule was also mined from the original KG
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With this information, one can look at the effect the parameters have on the number of

rules mined and how the measured confidence differs when calculated on the extended KG

versus the original KG.

3.6 Additional experimental setup details

The experiments were run on a server with 64 GB of RAM and an Intel Core i9-7900X

3.3GHz processor.

The implementation of AMIE used in our study is distributed under the Creative Com-

mons Attribution-NonComercial license v3.0 by the YAGO-NAGA team and the DIG team.

The program uses Javatools, a library released under the Creative Commons Attribution

license v3.0 by the YAGO-NAGA team.
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Chapter 4

Results

This chapter begins by presenting some of the central questions mentioned in the introduc-

tion. It continues by giving a general overview of the experimental results, before examining

the findings in more detail. Finally, the discoveries are summarized, and some limitations of

the experiment are highlighted.

4.1 Goals

We study how the extension of KG affects rule mining and the role of extension methods in

the process. Some central questions here are:

1. Does adding new plausible facts lead to new rules being mined?

2. How does the PCA confidence of these rules compare to the rules mined from the

original KG?

3. Can the rules mined from the original KG also be mined after the KG is extended?

Regarding extension methods, we looked at three parameters:

• the entity selection strategy for candidate generation

• the KGE model architecture for ranking candidates

• the rank cutoff value for admitting candidates to the KG

and their role in the quantity and PCA confidence of the rules that are mined.
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4.2 Overview of results

This section gives a brief overview of the results and focuses on the fact that the KGE choice

considerably influences the number of rules being mined. The majority of rules were mined

from TransE-extended KGs, and were rules that upon inspection had little meaning to them.

As speculated in section 3.2, the findings show that the TransE model was not a success,

and this section justifies why results from this model are omitted in later parts of the data

analysis.

4.2.1 KG extension sizes

In the KG extension process there are 48 1 different parameter combinations. This means

that there are 48 different KG extensions for each original KG. Extension set sizes range

from approximately 800 to 33500 triples, where the RandomBaseline model admitted the

most candidates. This makes sense, as the models assign a random score to facts, so that

many more receive a high rank. The trained models give most candidates a low score because

most triples usually are bad candidates. Note that the extension sizes were about the same

for both datasets, while WN18RR and the family KG respectively have 88 227 and 258 235

facts, therefore the extensions for WN18RR are relatively larger than for the family KG. See

figure B.3 for the distribution of KG extension sizes over the KGE models used.

4.2.2 Rule set sizes and mean PCA confidence

Upon examining the number of rules mined per KG extension, one immediately sees some

startling results, displayed clearly in figure 4.1. Most rule sets do not differ drastically in

size, apart from those where TransE was used, where these rule sets are exceptionally larger.

See fig. B.1 for a more detailed overview of the results for all KG extensions. When looking

at the mean PCA confidence of the rules sets, one also notes that the score for the TransE

sets are mostly around 0.1, while the remaining rule sets have a score on average around 0.5.

14 (KGE models) × 4 (entity selection methods) × 3 (rank cutoff) = 48 parameter combinations.
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(a) WN18RR (b) Family KG

Figure 4.1: Distribution of the total number of mined rules over different embedding models,
so the sum of all rules mined over the different KG extensions partitioned by the embedding
models used.

As discussed in Section 2.2.3, TransE cannot learn certain relation qualities. Upon further

inspection of the embedding vectors for relations in TransE, the vector values all tend toward

zero (see B.1 and B.2). This can partially be explained by TransE’s tendency to push the

embeddings of symmetric relations toward the zero vector and its lack of ability to embed

complex relations effectively. Both issues are explained in section 2.2.3. It seems that while

scoring decently on the performance metrics during model selection, TransE has not properly

embedded the relations in the KG and does not do well in completion for learning rules.

Interestingly, the number of rules mined from TransE-extended KGs is not proportional

to the number of triples added to the original KG, which is much lower. There is something

particular about the triples that TransE ranks highly, resulting in the introduction of more

patterns in the dataset. If we look at the mentioned weaknesses of the TransE embedding

model, we can reach some plausible explanations.

To illustrate this, let us again consider the KG from example 2, in which Carol has

children Ann and Bob, and Ann and Bob are explicitly stated to be each other’s siblings. Due

to TransE’s problems in embedding complex relations [78, 50], Ann and Bob are likely to be

identically represented in the embedding space. According to the results, each relation in

the family KG is represented as a null-vector in the TransE embedding. Thus all relations

are considered essentially equivalent to each other. Hence, we find ourselves in a situation

where Ann and Bob are equivalent, and all relations are equivalent. With these assumptions,
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(a) WN18RR KG.
(b) Family KG.

Figure 4.2: Distribution of new rules grouped according to which KGE was used to create
the extended KG from which the rule was mined. Duplicates are removed.

meaningless triples such as (Carol, has spouse, Ann), (Carol, has spouse, Bob) and

(Bob, has child, Ann) would score highly according to our TransE model. TransE will

assign a high score to all original triples with the relation swapped for another. This would

lead to more triples sharing common entities, resulting in more patterns arising in the data.

Therefore any combination of relations in the body and consequent would gain some degree

of support in the extended KG, and hence be mined with AMIE3. The meaningless triples

mentioned above are simply existing triples in the example KG with the relation switched

for another that is, by the model, considered equivalent.

Some resulting nonsense rules from TransE extensions are shown in listing 4.1. Many of

these would make sense if the relations were swapped for another, for example, if relative

in the body of rule 3 were swapped with sibling the rule would make perfect sense. The

second nonsense rule in the listing, mother(x, y)⇒ child(x, y), was also found by DistMult.

This makes sense because for DistMult the two triples (a, mother, b) and (b, mother,

a) will have the same score for all entities a and b, and the rule mother(y, x)⇒ child(x, y)

is likely to have considerable support in the dataset. The remaining rules in listing 4.1 were

only found in TransE-extended KGs.

Of the rules mined, 97% (WN18RR) and 76% (family KG) originate from KGs extended

using TransE. The large number of rules produced marginalizes those mined using other em-

bedding models. Due to this and the fact that the trained TransE model has poor relational
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1 spouse(x, y)⇒ father(x, y)
2 mother(x, y)⇒ child(x, y)
3 relative(y, x)⇒ sibling(x, y)
4 spouse(x, y)⇒ child(x, y)
5 relative(x, y)⇒ sibling(x, y)
6 relative(x, z) ∧ sibling(z, y)⇒ mother(x, y)
7 child(z, x) ∧mother(z, y)⇒ spouse(x, y)
8 relative(y, x) ∧ sibling(y, x)⇒ father(x, y)
9 mother(z, y) ∧mother(x, z)⇒ child(x, y)

10 sibling(y, x) ∧ spouse(x, y)⇒ father(x, y)

Listing 4.1: Selection of nonsense rules mined from KGs extended with TransE.

embeddings, we include rules mined from KGs extended with TransE only when examining

embedding models, but not when looking at entity selection methods or rank cutoff values.

4.3 Effect of parameters

This section examines the effects of the three primary parameters in the KG extension process

on the rules being mined. Note that when looking at rules mined from a KGs extended with

a specific parameter fixed, the sets of rules will be a concatenation of all cases where that

parameter choice was used. Consider the rules mined with ComplEx as the KGE model.

This group contains rules mined from 12 different KG extensions because we need to look at

all the combinations of entity selection methods and rank cutoff values (4× 3 = 12). This is

differentiated from the case where we look at rules mined from a single extended KG, which

we do in section 4.4.

4.3.1 Effect of KG embedding model

At first glance of the boxplots in figure 4.4 it may seem odd that the PCA confidence of

rules mined from RandomBaseline extensions is so high. Boxplots represent the spread of

data through their quartlies [25]. The box itself covers Q1 −Q3, with the horizontal line in

the box marking the median. The dashed line across the plots indicates the median PCA

confidence for the original rules. The boxplots used in this thesis also have whiskers, which

are the lines extending vertically out of the box. Whiskers indicate the variability of the data
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(a) Family KG

(b) WN18RR KG

Figure 4.3: Distribution of rules over KGE models, not counting duplicate rules mined from
multiple KGs. Note that the bar for TransE extends far beyond the chart, so the unusually
high number of different rules mined from TransE extensions is not correctly shown here. The
single original rule not found by DistMult in the family KG is child(x, y) ⇒ mother(y, x).
This rule has the second-lowest PCA confidence of all the original family KG rules.
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(a) Original WN18RR KG (b) Extended WN18RR KG

(c) Original family KG (d) Extended family KG

Figure 4.4: Distribution of PCA confidence of mined rules by KGE models. PCA confidence
scores are calculated on the original KG (4.4a, 4.4c) and the extended KG from which the
rules are mined (4.4b, 4.4d). A rule can be mined from multiple KGs, therefore, this graph
shows duplicates. The dashed line represents the median PCA confidence of the rules mined
from the original KG.



outside the upper and lower quartiles (respectively Q1 and Q3). Points beyond the whiskers

are considered outliers.

By looking at figure 4.3 it becomes apparent that there are few different rules mined

from the RandomBaseline extensions. In the WN18RR case, no new rules were found, and

a single original rule was also never mined. The omitted rule,

has part(x, z) ∧ hypernym(y, z)⇒ has part(x, y)

has the lowest PCA confidence out of all the original rules. Since there already was little

support in the KG for the rule, the addition of noise may have obscured too much evidence

for the algorithm to consider the rule significant. See table A.1 to see all rules mined from

the original WN18RR KG, sorted by their PCA confidence.

Model
Original rules New rules Orig. not found

Count % of mined Count % of mined Count % of original
Baseline 85 100% 0 0% 9 10%
TransE 94 9% 986 91% 0 0%
DistMult 93 51% 90 49% 1 1%
ComplEx 94 69% 43 31% 0 0%

Table 4.1: Distribution of all the rules mined over KGE models. KG: family KG.

Model
Original rules New rules Orig. not found

Count % of mined Count % of mined Count % of original
Baseline 9 100% 0 0% 1 10%
TransE 10 1% 659 99% 0 0%
DistMult 10 67% 5 33% 0 0%
ComplEx 10 59% 7 41% 0 0%

Table 4.2: Distribution of all the rules mined over KGE models. KG: WN18RR.

The family KG produced similar results, where AMIE3 failed to find 9 original rules in

the RandomBaseline-extended KGs. All of these rules were among those with the lowest

PCA confidence of the original rules. Refer to table A.1 for all rules mined from the original

family KG, sorted by their PCA confidence. When the rules with the lowest PCA confidence

in a set are removed, the median PCA confidence naturally goes up. This explains how the

RandomBaseline rules have a higher median PCA confidence than the original, shown in

tables 4.1 and 4.2.
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As presented in section 4.2.2, AMIE3 mines a great deal more rules from KGs extended

with TransE. Due to the low mean PCA confidence for these rules (0.038 for WN18RR and

0.089 for the family KG) it is clear that there is little support for the rules in the original

KGs. However, if one evaluates the TransE rules on the extended KGs they were mined

from, the PCA confidence increases substantially, as seen in figures 4.4b and 4.4d. So even

though most of these rules have little support from the original KGs, it was no mistake that

AMIE3 mined so many rules from the TransE-extended KGs.

DistMult and ComplEx are closely related embedding models as they have similar scor-

ing functions (the scoring function of ComplEx corresponds to that of DistMult but with

real embeddings) and perform similarly on benchmark datasets [72]. As mentioned in sec-

tion 2.2.3, DistMult cannot represent asymmetric relations. AMIE3 can only mine Horn

rules, thereby a rule defining the asymmetry of a relation cannot be mined. However, Dist-

Mult’s shortcomings may still affect the quality of the embedding and thus the KG extension.

From the results, it seems that ComplEx is a somewhat stricter model, in the sense that it

ranks candidate triples lower against corrupted triples than DistMult does. This is evidenced

by the KG extension sizes being larger for DistMult than for ComplEx; DistMult is admit-

ting more candidates. For example, of the candidates generated with the entity selection

method ”probabilistic” from the WN18RR KG, DistMult assigned 1468 candidates rank 1

while ComplEx only did this for 866 candidates. As a result, more rules are mined from

DistMult-extended KGs.
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4.3.2 Effect of entity selection method

The probabilistic, random, and the least frequent entity selection strategies perform relatively

similarly if we look at the PCA confidence box plots in figure 4.5. The most frequent strategy,

however, performs worse, both on the WN18RR and family KG. This is consistent with

AmpliGraph’s assumption that the most frequent entities are less likely to have missing

facts [21].

In the WN18RR KG all original rules were found, but in the family KG only the least

frequent strategy resulted in all the original rules being mined. It also resulted in the least

new rules being mined, while the most frequent strategy led to the most new rules.

Overall it seems like probabilistic, random, and the least frequent entity selection strategies

all are appropriate in regard to maintaining PCA confidence. If, however, the goal is to mine

many new rules, then most frequent appears to be best suited, though at the sacrifice of

PCA confidence.

Strategy
Original rules New rules Orig. not found

Count % of mined Count % of mined Count % of original
Random 90 71% 36 29% 4 4%
Most freq. 88 46% 105 54% 6 6%
Least freq 94 77% 28 33% 0 0%
Probabilistic 91 73% 33 27% 3 3%

Table 4.3: Distribution of all the rules mined over entity selection strategies for the family
KG.

Strategy
Original rules New rules Orig. not found

Count % of mined Count % of mined Count % of original
Random 10 53% 9 47% 0 0%
Most freq. 10 42% 14 58% 0 0%
Least freq. 10 48% 11 52% 0 0%
Probabilistic 10 45% 12 55% 0 0%

Table 4.4: Distribution of all the rules mined over entity selection strategies. KG:
WN18RR.
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(a) Original WN18RR KG (b) Extended WN18RR KG

(c) Original family KG (d) Extended family KG

Figure 4.5: Distribution of PCA confidence of mined rules by entity selection strategies.
PCA confidence scores are calculated on the original KG (4.5a, 4.5c) and the extended KG
from which the rules are mined (4.5b, 4.5d). A rule can be mined from multiple KGs,
therefore this graph shows duplicates. The dashed line represents the median PCA confidence
of the rules mined from the original KG.



4.3.3 Effect of rank cutoff value

Rank cutoff values determine which candidates are admitted to the KG. Only those with

rank on the cutoff or above are accepted. Therefore, the lower the rank cutoff, the more

candidates are added to the KG. The box plots in fig. 4.6 show evidence of this. Tables 4.5

and 4.6 both show that when the rank cutoff was 1, all the original rules were found. A

decrease in rank cutoff led to the mining of more new rules, but also led to some original

rules not being mined, especially in the WN18RR dataset. PCA confidence-wise the rank

cutoff values had a slightly different effect on the two datasets. In the WN18RR dataset

there was little difference in PCA confidence over the ranks when calculated over the original

KG, while for the family KG the PCA confidence was increased at rank cutoff 4 and 7, with

no change at rank cutoff 1. When calculated over the KG extensions, rank 1 and 4 did

worse than the mean of the original rules, while rank cutoff 7 did significantly better. On

the family KG, PCA confidence calculated on the extended KGs led to little variety over the

rank values. Rank 1 resulted on the same median as the original rules, rank 4 just above

and rank 7 just below. Overall, if the goal is to find many new rules, then a higher rank

cutoff values is more appropriate.

(a) WN18RR KG. (b) Family KG.

Figure 4.6: Distribution of KG extension sizes over rank cutoff values.
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(a) Original WN18RR KG (b) Extended WN18RR KG

(c) Original family KG (d) Extended family KG

Figure 4.7: Distribution of PCA confidence of mined rules over rank cutoff values. PCA
confidence scores are calculated on the original KG (4.7a, 4.7c) and the extended KG from
which the rules are mined (4.7b, 4.7d). A rule can be mined from multiple KGs, therefore
this graph shows duplicates. The dashed line represents the median PCA confidence of the
rules mined from the original KG.
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Rank cutoff
Orig. rules New Rules Orig. not found

Count % of mined Count % of mined Count % of original
1 10 50% 10 50% 0 0 %
4 4 27% 11 73% 6 60%
7 3 20% 12 80% 7 70%

Table 4.5: Distribution of all the rules mined over rank cutoff values. KG: WN18RR.

Rank cutoff
Orig. rules New Rules Orig. not found

Count % of mined Count % of mined Count % of original
1 94 90% 11 10% 0 0 %
4 90 51% 85 49% 4 4%
7 88 45% 108 55% 6 6%

Table 4.6: Distribution of all the rules mined over rank cutoff values. KG: family.

4.3.4 Summary of effect of parameters

The three parameters for KG extension were shown to have a varying degree of influence. All

entity selection strategies, apart from most likely, performed equally well. This was consistent

with the assumption of the authors of AmpliGraph, being that the most frequent entities

are less likely to have missing facts [19]. Of the KGE models, TransE led to a substantially

greater number of new rules being mined compared to the other models. However, these

rules had very low PCA confidence when calculated over the original dataset. ComplEx

and DistMult performed similarly concerning PCA confidence, with slightly more new rules

being mined with DistMult due to the model giving candidate triples a higher score than

ComplEx did. The rank cutoff value gave expected results, where a value that accepted

more new candidate triples led to more new rules being minded. When calculated over the

original KG, the PCA confidence of rules did not significantly vary among the rank cutoff

values.
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4.4 Rule comparison

In the WN18RR dataset there was one rule,

derivationally related form(y, x)⇒ derivationally related form(x, y)

which was mined in all 48 KG extensions. It has a PCA confidence of 1, meaning that

there are no data points in WN18RR that do not follow the rule. In table 4.7, all original

rules sorted by their PCA Confidence are listed. How often these rules were mined from KG

extensions is also listed under the ”Frequencies” column. Using Spearman’s rank correlation

coefficient, there was found a correlation coefficient of 0.65 with p-value 0.04. These values

are positively correlated with the PCA confidence, meaning that as the PCA confidence

increases, the frequency also increases. From the family KG, 94 original rules were mined,

and the corresponding table B.3 is listed in the appendix. For these rules, the PCA confidence

and frequencies were also positively correlated with a correlation coefficient of 0.86 and p-

value of 5.85e−29. The rule mined the least number of times is

father(x, z) ∧ sibling(z, y)⇒ relative(x, y)

which only was mined in 10 out of the 48 extensions. Consistent with the correlation be-

tween PCA confidence and mining frequency, this is the rule with the second-lowest PCA

confidence. Table B.3 also shows us that all rules with the relative predicate were not mined

for all 48 extensions, and all with different predicates in the antecedent were mined from all

extensions. This could be due to the simple fact that relative is the least frequently used

relation in the KG, leading to less supporting data points and correspondingly lower PCA

confidence.

4.4.1 PCA distribution

For both the WN18RR and family KG, the PCA confidence of the original rules is relatively

spread out. A few rules have a PCA confidence of 1 or close to 1, and none have PCA

confidence below 0.1. This makes sense because this would imply the absence of supporting

datapoints and thus AMIE3 would never mine the rule. The majority of new rules on the
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Rule Frequencies PCA Confidence

DRF(y, x) ⇒ DRF(x, y) 48 1.000000
IH(x, z) ∧ SDTO(z, y) ⇒ SDTO(x, y) 24 0.886525
hypernym(x, z) ∧ SDTO(z, y) ⇒ SDTO(x, y) 36 0.828871
has part(x, z) ∧ SDTO(z, y) ⇒ SDTO(x, y) 24 0.809524
has part(z, x) ∧ SDTO(z, y) ⇒ SDTO(x, y) 24 0.771739
hypernym(z, x) ∧ SDTO(z, y) ⇒ SDTO(x, y) 34 0.726667
has part(x, z) ∧ IH(y, z) ⇒ has part(x, y) 19 0.532544
DRF(x, z) ∧ SDTO(z, y) ⇒ SDTO(x, y) 24 0.492857
DRF(z, x) ∧ SDTO(z, y) ⇒ SDTO(x, y) 24 0.492857
has part(x, z) ∧ hypernym(y, z) ⇒ has part(x, y) 21 0.104016

Table 4.7: Rules mined from the original WN18RR KG, with their corresponding PCA
confidences and how many times they were mined from the 48 extensions. DRF = “deriva-
tionally related form”, STDO = “synset domain topic of” and IH = “instance hypernym”.

other hand do however have a PCA confidence of 0. This means that most, if not all, the

support for new rules lies in the extension of the KG. If all sets of supporting datapoints

are dependent on the extension, then when PCA confidence is measured on the original KG,

this new rule would get a PCA confidence score of 0. Looking closely at figure 4.8b one can

see that two new rules have PCA confidence above 0.2. However, these were also rejected by

AMIE3 because the PCA body size (the number of instances of that rule) is so small that

the PCA confidence calculated is not very reliable.

When plotting the PCA confidence of new rules calculated over the KGs from which

they were mined, the new rules become somewhat more evenly distributed along the PCA

confidence interval. Figures 4.8c and 4.8d show this, where the PCA confidence of the new

rules here is not calculated over the original KG, but the KG from which they were mined

that gave them the best PCA confidence score. This method was chosen to highlight how

the KG extensions changes the PCA confidence of new rules.

4.5 Summary of findings

We restate the central questions for the experiment posed at the beginning of this chapter.

These questions were:
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(a) WN18RR - Original KG (b) Family - Original KG

(c) WN18RR - Extended KG (d) Family - Extended KG

Figure 4.8: Distribution of PCA confidence of original rules and new rules. In subfigures
4.8a and 4.8b the PCA confidence is calculated over the original KG. For subfigures 4.8c
and 4.8d the PCA confidence is the best score calculated over the extended KG from which
the new rules was mined. The PCA confidence of original rules is always calculated over the
original KG.



1. Does adding new plausible facts lead to new rules being mined?

2. How does the PCA confidence of these rules compare to the rules mined from the

original KG?

3. Can the rules mined from the original KG also be mined after the KG is extended?

Questions 1 is the simplest, and our experiment has clearly shown that, yes, adding new

plausible facts does result in new rules being mined. Examples of rules that were mined after

extending the KGs are:

relative(z, x) ∧ relative(y, z) ⇒ relative(x, y)

father(x, y) ∧ mother(x, y) ⇒ child(x, y)

father(y, z) ∧ mother(x, z) ⇒ sibling(x, y)

relative(z, y) ∧ spouse(x, z) ⇒ relative(x, y)

relative(x, z) ∧ relative(y, z) ⇒ relative(x, y)

father(x, z) ∧ mother(y, z) ⇒ sibling(x, y)

At close inspection, these rules are relatively poor, and as seen in figure 4.8, the PCA

confidence of new rules was most often zero or close to zero when calculated over the original

KG. However, when measured on the extended KGs from which they were mined, the scores

were significantly better and had similar distributions to the original rules, which answers

question 2. Regarding question 3, a strong correlation was found between the PCA confidence

of original rules and how often the rule was mined from extended KGs. The higher the PCA

confidence, the more likely the rule will be mined from the extended KG.

4.6 Limitations of experiment

The experiment has many limitations, most related to computational restrictions. For ex-

ample, when generating candidates, the optimal approach would be to generate all possible

candidates and evaluate them all. This is simply not possible due to computational limita-

tions. As mentioned in section 3.4.1, there are more intelligent strategies for entity selection,

but these were also too computationally intensive to take into use. A larger and better set
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of candidate triples would substantially strengthen the conclusions about the KGE model

and rank cutoff values when evaluating the KG extension process parameters. When only a

small fraction of the possible candidates are ranked by models, we get an incomplete picture

of the model’s behaviour.

The hyperparameter search for the KGE models could also be improved upon with greater

computational resources, but it is not as influential as increasing the candidate set size and

quality. This is because random search has been shown to measure well against grid search

[47], so the effect on the performance of the model is likely to be minimal.
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Chapter 5

Related work

The related work chapter is divided into three sections, KGEs, rule mining, and approaches

combining the two methods. For perspective, it is worth noting that KGEs and rule mining

are two knowledge graph completion (KGC) methods at the opposite ends of the rule vs.

predictive spectrum, depicted in figure 5.1. On the left-hand side there are methods that

prioritize rule extraction over triple prediction. As one moves from the left gradually to the

right, there are methods that to an increasing degree prioritize triple prediction over rule

extractions. KGEs are furthest to the right on this scale, while rule mining methods are

furthest to the left. These two groups have been used in the present study and hence works

within these areas are focus of the related work chapter. This figure can, however, serve as

a reminder that there are many other methods in the grey area between the two extremes.

5.1 Knowledge graph embedding techniques

A wide range of statistical-based relational learning techniques have been proposed for KGC

[61]. Out of these methods, vector space embedding approaches are one of the most successful

due to their performance and scalability. One of the main problems with vector space

embeddings, as with many other statistical machine learning methods, is that the results

are not explainable [9]. Rule-based approaches alleviate this problem to some degree. Early

works within vector space embeddings include TransE [10] and DistMult [82], which employ
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Rule finding Triple prediction

Symbolic reasoning
Neural reasoning

Symbolic-driven Neural reasoning

Symbolic-driven probabilistic reasoning

Path-based reasoning

Graph-based reasoning

Matrix-based reasoning

AMIE

CogGraph TransE
ComplEx

ConvE

PRA

TensorLog
NLIL

KALE
RUGE
IterE

MLN
Prolog

Figure 5.1: KGC techniques arranged by the degree to which rule finding or triple prediction
is the focus. Based on work by Zhang et al. [83].

simple vector space operations for link prediction. These simple models can handle large-

scale KGs, but this is often at the cost of expressiveness [23]. There have been many attempts

at increasing expressiveness while maintaining simplicity, such as SimplE [42], HolE [62], and

RotatE [70]. A more direct approach for increasing expressiveness is the employment of deep

neural networks. This has been done using multi-layer perceptrons [24], semantic matching

energy networks [11] and neural tensor networks [69]. It has however been shown that these

approaches have more parameters and are prone to overfit [61]. Improving upon this, there

have been many recent approaches using convolutional neural networks [23, 59, 67, 74] .

5.2 Rule mining

Traditional rule mining methods find rules of quality by statistically evaluating support and

confidence in candidate rules. AMIE and its successors are part of this group and have for

a while been considered at the forefront of both scalability and performance when it comes

to mining first-order Horn rules from knowledge graphs. Exact statistical evaluation of rules

is expensive, so there have been approaches adopting embedding methods to score rules

[82, 63, 64]. The rule miner AnyBURL uses rule generation methods different from AMIE,

where rules are generated by sampling paths in the KG [53]. These rules are evaluated

with the same metrics, but scores are approximated based on sampling in contrast to the
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exact evaluation done in AMIE3. AnyBURL used reinforcement learning to improve their

sampling of paths, leading to higher quality rules being found earlier in the search. A more

recent approach to rule mining with reinforcement learning takes advantage of embedding

information to achieve better performance and allows scalable mining of long rules [16]. This

method outperforms AMIE+, and the authors point out that the many optimizations made

to AMIE+ (resulting in AMIE3) could be applied to any top-down rule mining methods,

including theirs. Top-down in this context means beginning the search with the most general

rules and then expanding on them, essentially performing a breadth-first search in the space

of possible rules. The bottom-up approach, on the other hand, works from the data, starting

with very specific rules and then generalizing them.

A KGC family similar to rule mining is path-based reasoning methods. One of the first

of these was the path ranking algorithm (PRA) [45]. This approach trains a binary classifier

for each relation r in the KG, that given two entities h and t determines if they are connected

via a relation r. Path ranking algorithms struggle with sparseness in KGs [51], so there have

been attempts to combine PRAs and embedding methods. An example of this is PTransE,

which considers relation paths with multiple steps, and uses embedding methods similar to

TransE to represent these paths [49].

5.3 Approached combining KGE and rule mining

When it comes to combining the rule-based and embedding-based approach there seem to be

two main ideas. The first idea is to integrate the two approaches tightly. An example of this is

KALE [35], which initially learns rules from a TransE embedding and thereafter retrains the

embeddings on a joint model for rules and triples, resulting in a unified framework. Based

on KALE, Guo et al. proposed RUGE [36], which learns entity and relation embeddings

through iterative guidance from soft rules. The soft rules are queried to obtain soft labels

for unlabeled triples, and these newly labeled triples are then used to update the embedding

model. However, it has been noted that these systems generally do not allow for rules that

contain constants [54]. KALE and RUGE infer rules once at the beginning of the process,

therefore the embedding can benefit from information in the rules, but the rules are never

improved upon with the embedding. IterE [84] addresses this issue and also infers new rules

based on the updated embedding. The update of rules and embeddings is done iteratively,

and the rules are given a score based on the embedding of the relations included in the rules.
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The second idea proposes to combine the rule-based and embedding models into an

ensemble. An ensemble is a machine learning method that uses multiple models to obtain

a better prediction than one would with a single model. This is often done by allowing

models to “vote” upon a prediction. The ensemble approach has been studied by Wang et

al. [76] and was the focus of the experimental study by Meillicke et al. [52] mentioned in

the introduction. The authors recently extended this study with a more up-to-date analysis.

They explain “why a naive way to combine symbolic and latent knowledge graph completion

techniques works surprisingly well” [54]. The work in the present study combines rule-based

and embedding models in a different manner, where the information gained by one model is

passed on to the next in the form of an extended, or more “complete”, KG. While the first

model influences the outcome of the next, it does not play a direct role in the final outcome;

in this case the outcome being the rules mined from the KG.
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Chapter 6

Discussion

Prior to developing the idea explored in this thesis, a different proposal for extracting rules

from KGs was considered. It has similarities with the current work, but ultimately was

deemed unachievable to implement. This chapter starts by explaining this failed idea and

explain why it was unsuccessful, before summarising the findings of the more successful

work described in this thesis and provide an overall evaluation. Certain design choices are

assessed, and the chapter concludes with propositions for further work.

6.1 Mining ontologies through queries

This abandoned approach is similar to the KG extension and mining pipeline used for exper-

iments in this study, but differs in the manner in which the KGEs are used to add implicit

information to the KG. Instead of a rule mining algorithm that takes a KG as input, this

approach uses the HORN algorithm by Angluin et al [6], which requires an “oracle” to learn

from. The oracle can be viewed as a teacher who is considered an expert on the rules we

would like to learn, with the idea being to use a well-trained KGE model as the oracle for

the HORN algorithm. The HORN algorithm outputs rules in the form of propositional logic.

If the reader is unfamiliar with propositional logic, a brief introduction covering the rele-

vant aspects can be found in the appendix at section C. Below, we will examine the HORN

algorithm, before explaining why it was incompatible with RDF-style KGs.
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6.1.1 The HORN algorithm

Similarly to AMIE3, the HORN algorithm is designed to output a set of rules in the form

of a Horn sentence. It does this by posing equivalence queries and membership queries. An

equivalence query asks if the current hypothesis, a Horn sentence, is equivalent to the target

Horn sentence that the oracle knows. If the oracle answers “yes”, the target set of rules has

been found, and the algorithm terminates. Otherwise, a “no” answer is accompanied with

a valuation in which the target and hypothesis are evaluated to different boolean values.

A positive valuation is one which makes the target Horn sentence true, while a negative

valuation is one which evaluates the target to false.

A membership query asks whether a given valuation is positive or negative, to which the

oracle only answers “yes” or “no”. We will now focus on the implementation of the oracle

and why this was incompatible with the set-of-triples data format. For more information

on the HORN algorithm, please refer to the work Learning conjunctions of Horn clauses by

Angluin et al. [6]. The important takeaway for this algorithm is that it runs in polynomial

time on the size of the target and the number of variables considered.

6.1.2 The difficulty in translating triples to valuations

If the oracle were a machine learning model, it would need to be able to classify valuations

as positive or negative. The equivalence query could be simulated with many member-

ship queries, where if enough valuations are tested one can with high probability determine

whether the target is logically equivalent with the hypothesis. So all one needs to simulate

the oracle is a binary classifier. This approach rested on the idea that with enough valuations

labeled as positive/negative, one could train a model to implicitly represent the target Horn

sentence that determines if the valuations are positive or negative.

The problem with applying this idea to KGs arises immediately when trying to express

all entities and relations of a KG with literals. This is necessary in order to create a set

of positive valuations that collectively represent all information in the KG. The approach

of assigning an individual literal to each entity and relation is not feasible. YAGO4 [66],

for example, contains over 50 million distinct entities, meaning that each data point in the

training set would have at least 50 million features. One can attempt to assign shared roles
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to entities to limit the number of elements to encode, but the erasure of the unique identity

of entities leads to further problems when it comes to maintaining patterns in the data. To

demonstrate this, let us again use the KG from Example 1. Assume we have some intelligent

way of assigning roles to all the individuals in the KG, which in this simple example will be

the role of “adult” and “child”. Carol will be an adult, and Ann and Bob children. Now we

have reduced the number of entities by one, and the KG now looks like this:

Example 2. An even simpler KG.

1 <child > <hasParent > <adult >
2 <adult > <hasChild > <child >
3 <adult > <hasChild > <child >
4 <child > <hasSibling > <child >
5 <child > <hasSibling > <child >

Now the KG has been simplified, and almost half the data points have become redundant.

If we now consider the rule

hasSibling(x, y) ∧ hasParent(y, z)⇒ hasParent(x, z)

which previously predicted the new triple (Bob, hasParent, Carol), it now only predicts

(child, hasParent, adult), which is not new information. By removing the identity of

the individuals in the family, we removed the information that Ann is specifically the sibling

of Bob and has Carol as a parent, which implied that Bob also has Carol as a parent. Hence,

the valuations must represent all unique entities, or find a way to create replacement labels

that maintain all the relevant information about the roles entities have in the KG. This

becomes unfeasible with large KGs, such as the mentioned YAGO4.

6.2 Conclusion of findings

This study examined how adding new facts deemed plausible by a KGE affected the rules

mined from the extended KG. We showed that extending KGs in such a way did in fact

lead to new rules being mined and that the quality of these rules (approximated by PCA

confidence) was similar to that of the original rules, but only when the confidence score was

calculated over the extended KG from which the new rule is mined. It was also shown that
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there was a strong correlation between the PCA confidence of an original rule and whether

it was re-mined after the KG was extended.

When evaluating the effect of the three parameters in the experiment, the choice of

KGE was shown to clearly be the one with the highest impact. The RandomBaseline model

led to no new rules being mined and the omittance of original rules with the lowest PCA

confidence (calculated over the original KG). As RandomBaseline was the only KGE that

led to no new rules, we can conclude that the other embeddings found non-trivial patterns

in the data, reflected by the new rules mined on the extended dataset. KGs extended with

TransE led to an unusually large number of new rules, as the triples ranked highly by TransE

contributed significantly to introducing new patterns in the KG. There was surprisingly little

overlap between the new rules mined from KGs extended with different KGEs, underlining

the impact of the choice of KGE.

6.3 Discussion of design choices

The area under the precision-recall curve (AUC-PR) is a metric appropriate for evaluating

the performance of KGE models [39]. A precision-recall curve is a plot of the precision

over the y-axis and recall over the x-axis. AUC-PR is thus the area under this curve and

describes how well a model correctly predicts the positive class. A model that assigns a

random score to a triple will result in a horizontal line based on the distribution of classified

triples (positive or negative). Therefore an AUC-PR score of 0.5 is good if 99% of the

classified triples are negative, but if the triples are evenly distributed then an AUC-PR score

of 0.5 would indicate that the model classified no better than randomly. This metric could

have been used in the study for evaluation of the KGE models, but was omitted as it requires

context for interpretation.

We have used the PCA when generating and evaluating rules, which is merely an ap-

proximation of the truth. Just because only one child of a person is listed in Wikidata does

not mean that this person does not have more children. These missing children were per-

haps just not as famous and thus not mentioned in the database. Expanding on this idea

of measuring the “truth” of rules, rule mining approaches have been especially popular due

to their explainablity, and the induced knowledge can lead to interesting new knowledge. It
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is, however, also prone to errors that occur when creating rules based on bias or errors in

the data. For example, in Wikidata5M 99% of all football players are men, leading to the

erroneous rule that if a person is a football player, they are a man. This is, of course, not an

accurate rule by our understanding, but it captures the bias in the data. Therefore the fact

that rules in this study are only evaluated on PCA confidence is a severe limitation when

evaluating their quality.

6.4 Further work

There are many ways to expand upon the work in this thesis. As mentioned in section 4.6, the

main limitations of the experiment itself are due to computational restrictions. The quality

of the results could most likely be substantially improved if larger and more interesting KGs

were used, as when KGs are restricted to only six relation types there is a relatively small

area to create rules within. The form of the rules was also limited. Rules contained no

entities, only variables, therefore relevant rules such as

won award(x, Spellemannprisen)⇒ citizen of(x,Norway)

were never considered. Section 2.3.3 explained how AMIE3 is capable of mining such rules

with instantiated variables, but at the expense of increased runtime, which is why why it

was not done the experiments.

The RandomBaseline KGE assigns a random score to each triple. If the candidates

are randomly generated, then the extension of a KG with the RandomBaseline would be

equivalent to adding noise to the data. In the experiments of the present study it was shown

that not all original rules were mined when the KG was extended with the RandomBaseline.

This was, however, only a mere observation, and the extent to which the addition of noise

to the data affects the rules being mined from it would be an interesting direction of further

research.

As mentioned in the introduction, the process of first applying a KGE and then a rule

mining algorithm could be swapped. In this reverse approach, a set of mined rules would be

used to extend the KG, and thereafter a KGE would be trained on the extended KG. Instead

of evaluating the eventual rules mined from the extended dataset, one would evaluate the
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resulting KGEs trained on the extended KG. In this way, one could perhaps gain new insight

into the choice that rule mining algorithms have on the KGE trained on the extended data.
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List of Acronyms and Abbreviations

AUC-PR area under the precision-recall curve.

CWA closed world assumption.

GPro graph pattern probability model.

GRank graph pattern entity ranking model.

KB knowledge base.

KG knowledge graph.

KGC knowledge graph completion.

KGE knowledge graph embedding.

MR mean rank.

MRR mean reciprocal rank.

OWA open world assumption.

PCA partial completeness assumption.

PRA path ranking algorithm.

RDF Resource Description Framework.

W3C World Wide Web Consortium.
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Appendix A

Original rules

Rule PCA Conf. Found

has part(x, z) ∧ hypernym(y, z) ⇒ has part(x, y) 0.104 False

DRF(x, z) ∧ SDT(z, y) ⇒ SDT(x, y) 0.493 True

DRF(z, x) ∧ SDT(z, y) ⇒ SDT(x, y) 0.493 True

has part(x, z) ∧ IH(y, z) ⇒ has part(x, y) 0.533 True

hypernym(z, x) ∧ SDT(z, y) ⇒ SDT(x, y) 0.727 True

has part(z, x) ∧ SDT(z, y) ⇒ SDT(x, y) 0.772 True

has part(x, z) ∧ SDT(z, y) ⇒ SDT(x, y) 0.810 True

hypernym(x, z) ∧ SDT(z, y) ⇒ SDT(x, y) 0.829 True

IH(x, z) ∧ SDT(z, y) ⇒ SDT(x, y) 0.887 True

DRF(y, x) ⇒ DRF(x, y) 1.000 True

Table A.1: All rules mined with AMIE3 from the original WN18RR KG, sorted by their
calculated PCA confidence in ascending order. The rightmost column indicates whether this
rule was found in at least one of the KG extensions made with the RandomBaseline KGE.
As the table shows, the rule not found after extending the KG in such a way is that with the
lowest PCA confidence. DRF = derivationally related form, IH = instance hypernym and
SDT = synset domain topic of.

Rule PCA Confidence Found

relative(z, y) ∧ relative(x, z) ⇒ relative(x, y) 0.100 False

father(x, z) ∧ sibling(z, y) ⇒ relative(x, y) 0.101 False

mother(z, x) ∧ relative(y, z) ⇒ relative(x, y) 0.101 False
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child(x, z) ∧ spouse(z, y) ⇒ relative(x, y) 0.102 False

child(x, z) ∧ spouse(y, z) ⇒ relative(x, y) 0.102 False

mother(x, z) ∧ relative(y, z) ⇒ relative(x, y) 0.104 False

father(z, y) ∧ father(x, z) ⇒ relative(x, y) 0.109 False

relative(y, z) ∧ sibling(x, z) ⇒ relative(x, y) 0.120 True

relative(y, z) ∧ sibling(z, x) ⇒ relative(x, y) 0.120 True

father(z, x) ∧ spouse(z, y) ⇒ relative(x, y) 0.122 False

child(x, z) ∧ relative(z, y) ⇒ relative(x, y) 0.124 True

father(z, x) ∧ spouse(y, z) ⇒ relative(x, y) 0.124 False

relative(z, y)∧ sibling(z, x) ⇒ relative(x, y) 0.127 True

relative(z, y) ∧ sibling(x, z) ⇒ relative(x, y) 0.128 True

child(z, y) ∧ child(x, z) ⇒ relative(x, y) 0.131 True

father(z, x) ∧ relative(z, y) ⇒ relative(x, y) 0.141 True

child(x, z) ∧ relative(y, z) ⇒ relative(x, y) 0.148 True

child(x, z) ∧ father(y, z) ⇒ relative(x, y) 0.154 True

child(z, y) ∧ father(z, x) ⇒ relative(x, y) 0.167 True

father(z, x) ∧ relative(y, z) ⇒ relative(x, y) 0.179 True

father(z, x) ∧ father(y, z) ⇒ relative(x, y) 0.196 True

relative(z, x) ∧ spouse(z, y) ⇒ relative(x, y) 0.206 True

relative(z, x) ∧ spouse(y, z) ⇒ relative(x, y) 0.206 True

mother(z, y) ∧ relative(z, x) ⇒ relative(x, y) 0.224 True

mother(y, z) ∧ relative(z, x) ⇒ relative(x, y) 0.242 True

child(y, z) ∧ relative(z, x) ⇒ relative(x, y) 0.273 True

child(z, y) ∧ relative(z, x) ⇒ relative(x, y) 0.275 True

mother(z, y) ∧ relative(x, z) ⇒ relative(x, y) 0.284 True

father(y, z) ∧ relative(z, x) ⇒ relative(x, y) 0.294 True

father(z, y) ∧ relative(z, x) ⇒ relative(x, y) 0.301 True

relative(x, z) ∧ spouse(y, z) ⇒ relative(x, y) 0.305 True

relative(x, z) ∧ spouse(z, y) ⇒ relative(x, y) 0.305 True

child(y, z) ∧ relative(x, z) ⇒ relative(x, y) 0.343 True

relative(z, x) ∧ sibling(y, z) ⇒ relative(x, y) 0.349 True

child(z, x) ∧ spouse(z, y) ⇒ father(x, y) 0.350 True

mother(y, z) ∧ relative(x, z) ⇒ relative(x, y) 0.350 True

relative(z, x)∧ sibling(z, y) ⇒ relative(x, y) 0.351 True
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child(z, x) ∧ spouse(y, z) ⇒ father(x, y) 0.351 True

child(z, y) ∧relative(x, z) ⇒ relative(x, y) 0.364 True

father(z, y) ∧ relative(x, z) ⇒ relative(x, y) 0.372 True

father(y, z) ∧ relative(x, z) ⇒ relative(x, y) 0.378 True

child(z, x) ∧ spouse(y, z) ⇒ mother(x, y) 0.382 True

child(z, x) ∧ spouse(z, y) ⇒ mother(x, y) 0.386 True

child(y, z) ∧ sibling(z, x) ⇒ mother(x, y) 0.422 True

child(y, z) ∧ sibling(x, z) ⇒ mother(x, y) 0.423 True

child(y, z)∧ father(z, x) ⇒ spouse(x, y) 0.470 True

child(x, z) ∧ father(z, y) ⇒ spouse(x, y) 0.472 True

child(x, z)∧ child(y, z) ⇒ spouse(x, y) 0.472 True

child(x, z) ∧ mother(z, y) ⇒ spouse(x, y) 0.478 True

child(y, z) ∧ mother(z, x) ⇒ spouse(x, y) 0.481 True

relative(x, z) ∧ sibling(z, y) ⇒ relative(x, y) 0.483 True

relative(x, z) ∧ sibling(y, z) ⇒ relative(x, y) 0.485 True

child(y, x) ⇒ mother(x, y) 0.535 True

sibling(z, x) ∧ sibling(z, y) ⇒ sibling(x, y) 0.565 True

child(y, z) ∧ sibling(z, x) ⇒ father(x, y) 0.584 True

child(y, z) ∧ sibling(x, z) ⇒ father(x, y) 0.584 True

sibling(z, x) ∧ sibling(y, z) ⇒ sibling(x, y) 0.585 True

sibling(z, y) ∧ sibling(x, z) ⇒ sibling(x, y) 0.588 True

father(y, z) ∧ spouse(x, z) ⇒ child(x, y) 0.588 True

father(y, z) ∧ spouse(z, x) ⇒ child(x, y) 0.589 True

sibling(x, z) ∧ sibling(y, z) ⇒ sibling(x, y) 0.590 True

father(x, z) ∧ father(y, z) ⇒ sibling(x, y) 0.659 True

child(z, y) ∧ father(x, z) ⇒ sibling(x, y) 0.662 True

child(z, x) ∧ child(z, y) ⇒ sibling(x, y) 0.665 True

child(z, x) ∧ father(y, z) ⇒ sibling(x, y) 0.668 True

child(z, y) ∧ spouse(z, x) ⇒ child(x, y) 0.688 True

child(z, y) ∧ spouse(x, z) ⇒ child(x, y) 0.689 True

father(x, z) ∧ spouse(y, z) ⇒ mother(x, y) 0.702 True

mother(z, x) ∧ sibling(z, y) ⇒ child(x, y) 0.703 True

mother(z, x) ∧ sibling(y, z) ⇒ child(x, y) 0.704 True

mother(x, z) ∧ mother(y, z) ⇒ sibling(x, y) 0.707 True
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father(x, z) ∧ spouse(z, y) ⇒ mother(x, y) 0.709 True

child(z, y) ∧ mother(x, z) ⇒ sibling(x, y) 0.709 True

child(z, x) ∧ mother(y, z) ⇒ sibling(x, y) 0.710 True

child(y, x) ⇒ father(x, y) 0.770 True

mother(z, y) ∧ sibling(z, x) ⇒ mother(x, y) 0.787 True

mother(z, y) ∧ sibling(x, z) ⇒ mother(x, y) 0.788 True

mother(y, z) ∧ spouse(x, z) ⇒ child(x, y) 0.838 True

mother(y, z) ∧ spouse(z, x) ⇒ child(x, y) 0.840 True

relative(y, x) ⇒ relative(x, y) 0.846 True

child(x, z) ∧ sibling(z, y) ⇒ child(x, y) 0.851 True

child(x, z) ∧ sibling(y, z) ⇒ child(x, y) 0.851 True

mother(x, z) ∧ spouse(y, z) ⇒ father(x, y) 0.868 True

mother(x, z)∧ spouse(z, y) ⇒ father(x, y) 0.873 True

father(z, x) ∧ mother(z, y) ⇒ spouse(x, y) 0.953 True

father(z, x) ∧ sibling(z, y) ⇒ child(x, y) 0.954 True

father(z, x) ∧ sibling(y, z) ⇒ child(x, y) 0.955 True

father(z, y) ∧ sibling(x, z) ⇒ father(x, y) 0.961 True

father(z, y) ∧ sibling(z, x) ⇒ father(x, y) 0.961 True

father(z, y) ∧ mother(z, x) ⇒ spouse(x, y) 0.968 True

sibling(y, x) ⇒ sibling(x, y) 0.990 True

mother(y, x) ⇒ child(x, y) 0.992 True

spouse(y, x) ⇒ spouse(x, y) 0.992 True

father(y, x) ⇒ child(x, y) 0.998 True

Table A.2: All rules mined with AMIE3 from the original family KG, sorted by their
calculated PCA confidence in ascending order. The rightmost column indicates whether this
rule was found in at least one of the KG extensions made with the RandomBaseline KGE.
As the table shows, the rules not found after extending the KG in such a way were among
those with the lowest PCA confidence.
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Appendix B

Results

child father mother relative sibling spouse

0.009 -0.010 -0.010 -0.001 0.000 0.000

0.002 -0.002 -0.002 0.000 0.000 0.000

-0.001 0.001 0.002 0.001 0.000 0.000

-0.005 0.005 0.005 0.000 0.000 0.000

-0.012 0.012 0.012 0.001 0.000 0.001

-0.007 0.008 0.007 0.001 0.000 -0.001

0.006 -0.006 -0.006 -0.001 0.000 0.000

-0.004 0.005 0.004 0.001 0.000 0.000

0.003 -0.002 -0.002 0.001 0.000 0.000

0.016 -0.016 -0.015 0.000 0.000 0.000

-0.002 0.002 0.002 0.000 0.000 0.000

-0.001 0.001 0.001 0.001 0.000 0.000

0.006 -0.005 -0.006 -0.001 0.000 0.000

0.003 -0.004 -0.004 0.000 0.000 0.000

-0.001 0.001 0.002 -0.001 0.000 0.000

-0.013 0.014 0.013 -0.001 0.000 0.000

0.008 -0.008 -0.008 0.000 0.000 0.000

0.006 -0.006 -0.006 -0.002 0.000 0.000

-0.013 0.013 0.013 0.000 0.000 0.000

-0.009 0.009 0.009 0.000 0.000 0.000

-0.005 0.005 0.005 0.001 0.000 0.000

-0.007 0.007 0.007 0.001 0.000 0.000
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0.001 -0.001 -0.001 0.000 0.000 0.001

0.009 -0.009 -0.008 -0.001 0.000 0.000

-0.003 0.003 0.003 0.000 0.000 0.000

0.003 -0.003 -0.003 0.000 0.000 0.000

-0.014 0.014 0.014 0.001 0.000 0.001

0.005 -0.006 -0.005 0.000 0.000 0.001

-0.006 0.005 0.005 0.000 0.000 0.001

0.000 0.000 0.000 0.001 0.000 0.000

-0.003 0.003 0.003 0.000 0.000 0.000

-0.003 0.003 0.004 0.001 0.000 0.000

-0.009 0.009 0.009 -0.001 0.000 0.000

-0.011 0.011 0.010 0.001 0.000 0.000

-0.001 0.001 0.001 -0.001 0.000 0.000

-0.009 0.009 0.008 -0.001 0.000 -0.001

0.006 -0.006 -0.006 -0.001 0.000 0.000

-0.002 0.002 0.002 0.002 0.000 0.000

0.002 -0.002 -0.002 0.000 0.000 0.000

0.005 -0.005 -0.005 -0.002 0.000 0.000

-0.005 0.005 0.004 0.001 0.000 0.000

0.007 -0.007 -0.006 0.001 0.000 0.000

0.004 -0.004 -0.003 0.000 0.000 0.000

0.005 -0.006 -0.006 0.001 0.000 0.000

-0.005 0.006 0.005 0.001 0.000 0.001

0.007 -0.008 -0.008 -0.001 0.000 0.000

0.005 -0.005 -0.004 0.000 0.000 -0.001

0.002 -0.002 -0.002 -0.001 0.000 0.000

0.003 -0.003 -0.002 -0.001 0.000 0.001

0.007 -0.007 -0.007 0.001 0.000 0.000

Table B.1: TransE’s 50-dimensional embedding vectors for the different relations in the
family dataset, rounded to the third decimal. This table shows that the vectors for all relations
are close to the zero-vector.

DRF has part hypernym IH MM SDT

0.000 -0.002 -0.003 -0.004 -0.027 -0.028
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0.000 0.000 0.012 0.081 -0.001 0.010

0.000 -0.003 0.007 0.010 -0.012 0.009

0.000 -0.003 0.003 -0.148 -0.042 0.000

0.000 0.017 0.003 0.005 0.002 0.007

0.000 -0.001 0.002 0.139 -0.014 0.003

0.000 -0.002 -0.002 -0.115 0.031 -0.006

0.000 -0.006 0.005 0.005 -0.015 0.008

0.000 -0.001 0.001 0.150 -0.021 0.010

0.000 -0.007 -0.011 0.119 0.012 0.019

0.000 -0.004 0.013 0.118 -0.019 0.012

0.000 -0.004 -0.002 -0.069 0.042 -0.001

0.000 -0.002 0.002 -0.165 -0.025 0.002

0.000 0.000 -0.012 -0.017 0.007 -0.012

0.000 -0.018 -0.002 -0.111 0.008 0.015

0.000 0.021 0.001 0.006 0.003 -0.041

0.000 0.001 -0.015 0.005 0.043 -0.026

0.000 -0.002 0.005 -0.152 -0.017 -0.006

0.000 0.002 0.002 -0.082 -0.002 -0.009

0.000 -0.002 0.001 0.134 -0.048 0.044

0.000 -0.001 0.007 0.142 -0.003 0.016

0.000 -0.001 -0.001 -0.134 -0.060 -0.009

0.000 0.018 -0.003 -0.142 -0.020 -0.016

0.000 0.002 -0.008 -0.084 0.010 -0.030

0.000 -0.004 0.009 -0.062 -0.007 -0.019

0.000 0.005 0.005 0.067 0.000 0.011

0.000 -0.003 0.005 0.113 -0.009 0.028

0.000 0.002 -0.005 0.002 -0.038 -0.010

0.000 0.007 0.001 -0.127 0.000 -0.010

0.000 -0.002 0.000 0.036 -0.007 0.013

0.001 -0.005 0.002 0.002 0.009 -0.010

0.000 -0.004 0.004 -0.075 -0.045 0.017

-0.001 0.016 0.001 0.110 0.018 -0.024

0.000 0.009 0.000 0.156 -0.002 -0.020

0.001 0.000 0.007 0.023 -0.043 -0.001
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0.000 -0.002 -0.003 -0.103 0.001 0.000

0.000 -0.008 0.007 0.167 -0.005 0.019

0.000 0.000 -0.017 0.021 0.012 -0.020

0.000 -0.007 -0.003 -0.001 0.025 -0.002

0.000 -0.008 -0.006 0.029 0.047 0.006

-0.001 0.002 0.000 -0.001 0.047 -0.004

0.000 -0.002 0.014 0.139 -0.036 0.005

0.000 0.001 0.010 0.010 -0.056 0.003

0.000 -0.001 0.001 -0.005 0.000 0.019

0.000 -0.002 -0.001 -0.128 0.005 0.007

0.000 -0.001 0.002 0.131 0.001 -0.002

0.000 -0.004 0.011 0.137 -0.008 0.024

0.000 0.005 -0.002 -0.092 -0.045 -0.006

0.000 0.001 0.011 -0.058 -0.005 -0.023

0.000 0.004 -0.013 -0.041 0.021 -0.046

Table B.2: TransE’s 50-dimensional embedding vectors for the different relations in the
WN18RR dataset, rounded to the third decimal. This table shows that the vectors for
all relations are close to the zero-vector. DRF = derivationally related form, IH = in-
stance hypernym, MM = member meronym and SDT = synset domain topic of.
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Original rules

New rules

WN18RR KG Family KG

Figure B.1: Distribution of all mined rule sets. Each rule set is labeled with the entity
selection strategy, embedding model, and rank cutoff used for that particular KG extension.
As mentioned in section 4.2.2, we can see that when the KGs are extended using TransE,
the number of new rules that are mined increases drastically.
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Original rules

New rules

WN18RR KG Family KG

Figure B.2: Distribution of all mined rule sets, excluding the sets mined from KGs extended
using TransE. Each rule set is labeled with the entity selection strategy, embedding model,
and rank cutoff used for that particular KG extension. We can observe that no new rules
were mined when the RandomBaseline was used to extend the KGs.



Rule Frequencies PCA Confidence

father(y, x) ⇒ child(x, y) 48 0.998071

spouse(y, x) ⇒ spouse(x, y) 48 0.992355

mother(y, x) ⇒ child(x, y) 48 0.991906

sibling(y, x) ⇒ sibling(x, y) 48 0.989634

father(z, y) ∧ mother(z, x) ⇒ spouse(x, y) 48 0.967952

father(z, y) ∧ sibling(z, x) ⇒ father(x, y) 48 0.961199

father(z, y) ∧ sibling(x, z) ⇒ father(x, y) 48 0.961023

father(z, x) ∧ sibling(y, z) ⇒ child(x, y) 48 0.954603

father(z, x) ∧ sibling(z, y) ⇒ child(x, y) 48 0.954328

father(z, x) ∧ mother(z, y) ⇒ spouse(x, y) 48 0.953170

mother(x, z) ∧ spouse(z, y) ⇒ father(x, y) 48 0.872686

mother(x, z) ∧ spouse(y, z) ⇒ father(x, y) 48 0.867655

child(x, z) ∧ sibling(y, z) ⇒ child(x, y) 48 0.851012

child(x, z) ∧ sibling(z, y) ⇒ child(x, y) 48 0.850519

relative(y, x) ⇒ relative(x, y) 48 0.846306

mother(y, z) ∧ spouse(z, x) ⇒ child(x, y) 48 0.839947

mother(y, z) ∧ spouse(x, z) ⇒ child(x, y) 48 0.838288

mother(z, y) ∧ sibling(x, z) ⇒ mother(x, y) 48 0.787816

mother(z, y) ∧ sibling(z, x) ⇒ mother(x, y) 48 0.787401

child(y, x) ⇒ father(x, y) 48 0.769746

child(z, x) ∧ mother(y, z) ⇒ sibling(x, y) 48 0.709805

child(z, y) ∧ mother(x, z) ⇒ sibling(x, y) 48 0.709139

father(x, z) ∧ spouse(z, y) ⇒ mother(x, y) 48 0.708957

mother(x, z) ∧ mother(y, z) ⇒ sibling(x, y) 48 0.707149

mother(z, x) ∧ sibling(y, z) ⇒ child(x, y) 48 0.704016

mother(z, x) ∧ sibling(z, y) ⇒ child(x, y) 48 0.703385

father(x, z) ∧ spouse(y, z) ⇒ mother(x, y) 48 0.701812

child(z, y) ∧ spouse(x, z) ⇒ child(x, y) 48 0.688723

child(z, y) ∧ spouse(z, x) ⇒ child(x, y) 48 0.687653

child(z, x) ∧ father(y, z) ⇒ sibling(x, y) 48 0.668446

child(z, x) ∧ child(z, y) ⇒ sibling(x, y) 48 0.664745

child(z, y) ∧ father(x, z) ⇒ sibling(x, y) 48 0.662206
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father(x, z) ∧ father(y, z) ⇒ sibling(x, y) 48 0.658865

sibling(x, z) ∧ sibling(y, z) ⇒ sibling(x, y) 48 0.590059

father(y, z) ∧ spouse(z, x) ⇒ child(x, y) 48 0.588533

father(y, z) ∧ spouse(x, z) ⇒ child(x, y) 48 0.588257

sibling(z, y) ∧ sibling(x, z) ⇒ sibling(x, y) 48 0.588151

sibling(z, x) ∧ sibling(y, z) ⇒ sibling(x, y) 48 0.584857

child(y, z) ∧ sibling(x, z) ⇒ father(x, y) 48 0.584069

child(y, z) ∧ sibling(z, x) ⇒ father(x, y) 48 0.583590

sibling(z, x) ∧ sibling(z, y) ⇒ sibling(x, y) 48 0.564657

child(y, x) ⇒ mother(x, y) 48 0.535350

relative(x, z) ∧ sibling(y, z) ⇒ relative(x, y) 40 0.484528

relative(x, z) ∧ sibling(z, y) ⇒ relative(x, y) 40 0.483459

child(y, z) ∧ mother(z, x) ⇒ spouse(x, y) 48 0.480628

child(x, z) ∧ mother(z, y) ⇒ spouse(x, y) 48 0.477785

child(x, z) ∧ child(y, z) ⇒ spouse(x, y) 48 0.471973

child(x, z) ∧ father(z, y) ⇒ spouse(x, y) 48 0.471666

child(y, z) ∧ father(z, x) ⇒ spouse(x, y) 48 0.469716

child(y, z) ∧ sibling(x, z) ⇒ mother(x, y) 48 0.422559

child(y, z) ∧ sibling(z, x) ⇒ mother(x, y) 48 0.422363

child(z, x) ∧ spouse(z, y) ⇒ mother(x, y) 48 0.386296

child(z, x) ∧ spouse(y, z) ⇒ mother(x, y) 48 0.382227

father(y, z) ∧ relative(x, z) ⇒ relative(x, y) 37 0.378085

father(z, y) ∧ relative(x, z) ⇒ relative(x, y) 37 0.372340

child(z, y) ∧ relative(x, z) ⇒ relative(x, y) 37 0.364472

child(z, x) ∧ spouse(y, z) ⇒ father(x, y) 48 0.351479

relative(z, x) ∧ sibling(z, y) ⇒ relative(x, y) 40 0.351014

mother(y, z) ∧ relative(x, z) ⇒ relative(x, y) 36 0.350490

child(z, x) ∧ spouse(z, y) ⇒ father(x, y) 48 0.350117

relative(z, x) ∧ sibling(y, z) ⇒ relative(x, y) 40 0.348765

child(y, z) ∧ relative(x, z) ⇒ relative(x, y) 37 0.343180

relative(x, z) ∧ spouse(z, y) ⇒ relative(x, y) 37 0.305043

relative(x, z) ∧ spouse(y, z) ⇒ relative(x, y) 37 0.305043

father(z, y) ∧ relative(z, x) ⇒ relative(x, y) 37 0.301061

father(y, z) ∧ relative(z, x) ⇒ relative(x, y) 37 0.294304
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mother(z, y) ∧ relative(x, z) ⇒ relative(x, y) 33 0.283544

child(z, y) ∧ relative(z, x) ⇒ relative(x, y) 37 0.275454

child(y, z) ∧ relative(z, x) ⇒ relative(x, y) 37 0.273356

mother(y, z) ∧ relative(z, x) ⇒ relative(x, y) 33 0.241645

mother(z, y) ∧ relative(z, x) ⇒ relative(x, y) 30 0.224490

relative(z, x) ∧ spouse(y, z) ⇒ relative(x, y) 35 0.206044

relative(z, x) ∧ spouse(z, y) ⇒ relative(x, y) 32 0.205761

father(z, x) ∧ father(y, z) ⇒ relative(x, y) 30 0.196078

father(z, x) ∧ relative(y, z) ⇒ relative(x, y) 33 0.179144

child(z, y) ∧ father(z, x) ⇒ relative(x, y) 26 0.166667

child(x, z) ∧ father(y, z) ⇒ relative(x, y) 27 0.153584

child(x, z) ∧ relative(y, z) ⇒ relative(x, y) 32 0.148287

father(z, x) ∧ relative(z, y) ⇒ relative(x, y) 30 0.140871

child(z, y) ∧ child(x, z) ⇒ relative(x, y) 25 0.130759

relative(z, y) ∧ sibling(x, z) ⇒ relative(x, y) 39 0.127978

relative(z, y) ∧ sibling(z, x) ⇒ relative(x, y) 39 0.126881

father(z, x) ∧ spouse(y, z) ⇒ relative(x, y) 21 0.124101

child(x, z) ∧ relative(z, y) ⇒ relative(x, y) 31 0.123643

father(z, x) ∧ spouse(z, y) ⇒ relative(x, y) 17 0.122083

relative(y, z) ∧ sibling(z, x) ⇒ relative(x, y) 38 0.120448

relative(y, z) ∧ sibling(x, z) ⇒ relative(x, y) 38 0.120360

father(z, y) ∧ father(x, z) ⇒ relative(x, y) 16 0.108774

mother(x, z) ∧ relative(y, z) ⇒ relative(x, y) 21 0.104492

child(x, z) ∧ spouse(y, z) ⇒ relative(x, y) 13 0.102020

child(x, z) ∧ spouse(z, y) ⇒ relative(x, y) 13 0.102020

mother(z, x) ∧ relative(y, z) ⇒ relative(x, y) 18 0.101064

father(x, z) ∧ sibling(z, y) ⇒ relative(x, y) 10 0.100971

relative(z, y) ∧ relative(x, z) ⇒ relative(x, y) 29 0.100440

Table B.3: Rules mined from the original family KG, with their corresponding PCA con-
fidences and how many times they were mined from the 48 extensions. Note that all rules
with the relative predicate in the consequent have lower PCA confidence and were mined less
frequently.
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(a) WN18RR KG. (b) Family KG.

Figure B.3: Distribution of KG extension sizes over KGE models.



Appendix C

Propositional logic

Propositional logic (PL) is a branch of logic that deals with statements, or “propositions”,

that can be either true or false. Propositions can be combined using boolean operators,

for example, “and” ∧ (conjunction) and “or” ∨ (disjunction). Atomic propositions are

propositions without operators, and are also called literals. Literals are boolean variables v

or their negation ¬v. For example, two literals v1, v2 can be combined into one proposition

P with the “or” operator:

P = ¬v1 ∨ v2

Now P evaluates to true if v1 is evaluated to false or if v2 is evaluated to true. The proposition

P will only evaluate to false if v1 is true and v2 is false. A clause is a disjunction of literals,

so P is a clause. The proposition P is also considered a Horn clause, which is a clause where

at most one literal is not negated.

The implication operator is denoted by→, and can be thought of as an ”if-then” operator.

The proposition v1 → v2 can be read as “if v1 is true, then v2 is true”. The statement is

thus only falsified if v1 is true and v2 is false. If v2 is true, then it does not matter what v1

evaluates to, and similarly, if v1 is false, then it does not matter what v2 evaluates to. If

we compare this to the circumstances under which P is evaluated to true or false, we also

see that P = v1 → v2 = ¬v1 ∨ v2. Thus, Horn clauses can be treated as rules, where all

the negated literals are in the antecedent (on the left side of the implication arrow), and the

single non-negated literal is the consequent (on the right side of the implication arrow). For

example the proposition

Q = v1 ∧ v3 ∧ v4 → v2 = ¬v1 ∨ ¬v3 ∨ ¬v4 ∨ v2
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is also a Horn clause. The rule mining algorithm AMIE3 used in this thesis mined rules in

the form of Horn clauses. One could also say that it mines a single Horn sentence, which is

a conjunction of Horn clauses. A Horn sentence is true only if every Horn clause within is

evaluated to true.

The truth value of propositions is determined by the valuation of the literals used. A

valuation assigns truth values to each literal. For example, under the valuation

V+ = {v1 = false, v2 = false, v3 = true, v4 = true}

Q would be true, while under the valuation

V− = {v1 = true, v2 = false, v3 = true, v4 = true}

Q would be false.
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