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Abstract

In the field of heavy ion collions, jets are often used as probes of the produced quark-gluon

plasma. In this thesis the energy-loss distribution of quark/gluon tagged jets are given a log-

normal parametrization. The motivation for this is the study of single parton traveling through

a uniform QGP based on the BDMPS spectrum, which is calculated numerically. Bayesian

inference is then used to constrain the parameters of the distributions. The data used in the

Bayesian analysis are measurements of the nuclear modification factor from ATLAS in lead-lead

collisions at
√
s = 5.02 TeV.

The results of the Bayesian analysis fits well with the data, and it predicts well the pT depen-

dence of the nuclear modification factor when validated on a different dataset from ATLAS at√
s = 2.76 TeV. However, the model overestimates the amount of jet suppression at this energy.

The uncertainty of the RAA data points for pT above 300 GeV are very large, which makes

for a poor constraint on the quark-jet energy-loss distribution. Therefore, constraining the

parameters using data for γ-jet events are proposed as alternative approach for further work.
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Introduction

Quarks and gluons are the constituents of hadrons (protons, neutrons, etc..). In most condi-

tions in the universe they are confined inside of the hadrons. However, at high temperatures or

high baryon densities, the partons (quarks and gluons) become deconfined. At these conditions

ordinary hadroninc matter does not exist, and the quarks and gluons become the main actors

of this exotic superdense matter dubbed ”quark-gluon plasma” (QGP). This state of plasma

is theorized to exist in the interior of neutron stars and at the earliest moments of our uni-

verse. In the last decades, evidence from particle colliders such as LHC at CERN and RICH at

Brookhaven National Laboratory, suggest the formation of a QGP in high energetic heavy ion

collisions [16]. The field of jet quenching uses high energetic objects called jets as probes of the

QGP, and this is also the approach taken in this thesis.

Quantum Chromodynamics (QCD) is the theory that describes the interaction of quarks and

gluons, and their behavior. Chapter 1 in this thesis contains a short introduction to QCD.

It starts by a basic discussion of Lie groups and the fundamental and adjoint representation.

Then it describes the QCD Lagrangian and the most relevant Feynman rules. Then a somewhat

lengthy derivation of the famous gluon splitting function is shown. The next topic that is covered

are jets and how they arise from the underlying theory. The phenomenon of coherent branching

is introduced. A short overview of hard proton-proton collisions and the basic dictionary used

in jet physics such as transverse momentum and rapidity is given.

In Chapter 2 we take a look at heavy ion collisions and the basic dictionary used in this

field. The different observable signals indicating the formation of QGP, such as the nuclear

modification factor and elliptic flow are then covered. We then move to the study of a single

colored parton traveling through a uniform brick of quark-gluon plasma. The key ingredients of

this analysis is the well known BDMPS medium induced gluon spectrum [7]. The low and high

energy behavior of this spectrum is looked at to get an intuition of it. We then introduce the

energy-loss distribution, and the Poisson approximation which is used to connect the BDMPS

spectrum to the overall energy-loss of parton traversing the QGP. We use this result to motivate

a parametriazation of the energy-loss distribution of a jet. The idea is to use Bayesian inference

on the parameters of this distribution to fit it to measured data.

Therefore, Chapter 3 is dedicated to introducing the famous statistical learning method ”Bayesian

inference”. We start by explaining Bayes rule, which is a rule for updating ones belief after

taking the experimental data in to consideration. The result of using Bayes rule is the so called

”posterior distribution”. We demonstrate the importance of the posterior and how it is used to

predict new data (or other observables). However, both using and obtaining the posterior is not

a trivial task. We will see that a work around way to do Bayesian inference is via MCMC meth-
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ods. The class of Metropolis-Hastings algorithms is then introduce, and the common ”Random

Walk Metropolis” (RWM) method is demonstrated. The weakness of RWM is then discussed,

before moving over to a more dimensionally robust method called Hamiltonian Monte Carlo

(HMC). Which we will use in our Bayesian analysis of jet quenching (suppression of jets in

heavy ion collisions).

Finally in Chapter 4 we apply Bayesian inference on jet quenching using data from the ATLAS

collaboration. First we re-derive the result of [17] while demonstrating the efficiency of the

HMC method. We then move over to use the parametrization obtained in Chapter 2 to make a

model where we distinguish between quark and gluon initiated jets. The spectra of quark and

gluon jets are generated in the event generator Pythia, and the process for this is described.

The results of the Bayesian analysis is then represented and discussed. The developed model is

then validated on a different data set to see how well it generalizes.

All the code developed to produce the results in this thesis is publicly available at GitHub [20].

Interested readers are welcome to download the repository and play around with it. There

should be enough info in the GitHub repository for the reader to understand which scripts to

run. The repository is divided into chapters corresponding to the same chapters as in this thesis.
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Chapter 1

QCD and Jets

Quantum chromodynamics is the theory describing the interaction of quarks and gluons, which

can be found inside hadrons. The development of QCD started back in the 1960s when it

was theorized that hadrons contains smaller particles. It was proposed that these particles

possessed an internal degree of freedom called color. The existence of these so called partons

was confirmed experimentally in deep inelastic scattering, and evidence for the color charge of

the quarks came from jets of e+e− collisions. The goal of this chapter is to introduce the basics

of QCD and jets.

1.1 Lie Groups and Color Factors

The QCD Lagrangian (which we will look at in the next section) is invariant under the Lie group

SU(3). This begs the question, what is a Lie group? This section gives a short introduction to

group theory and the different representations of the group. This leads to the Casimir operators

(color factors) which almost always show up in QCD calculations. This small overview over

group theory follows from Section 10.1 and 25.1 in [23].

A group is a set of element {gi}, and it is defined by a multiplication rule gi × gj = gk, where

gk is also a an element in the group. The rule × satisfies the following conditions

• Associativity: (gi × gj)× gk = gi × (gj × gk)

• There must exist an identity element I such that I× gi = gi × I = gi

• For every gi, an inverse g−1
i exist such that g−1

i × gi = I

A Lie group is then a group with an infinite number of elements, which also is a differentiable

manifold. Any element in the group can be written as

U = eiθ
aTa

I, (1.1)

where summation over a is implied by the summation convention. The numbers θa characterize

the given group element. The quantities T a are called the group generators, and they satisfy

the so called Lie algebra [
T a, T b

]
= ifabcT c, (1.2)
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where the quantity fabc are the so called structure constants, which are anti-symmetric in all

indices. One makes the distinction of an Abelian group where fabc = 0, and a non-Abelian

group where fabc is none zero. The symmetry group SU(3) is an non-Abelian Lie group.

We will now take a look at the two most important representation of the SU(N) groups. A

representation of a given Lie group is constructed by embedding the generators into matrices.

In the fundamental representation of SU(N) the generators are represented by N×N Hermitian

matrices. The infinitesimal transformation of N fields ψi transforming under the fundamental

representation is given by

ψi → ψi + iαa(T a
fund)ijψj . (1.3)

In the case of QCD and SU(3) the matrices T a
fund are commonly written in as T a

fund = λa/2.

Where λa are the trace-less Gell-Mann matrices, which can be found on page 485 in [23].

λ1 =


0 1 0

1 0 0

0 0 0

, λ2 =


0 −i 0

i 0 0

0 0 0

, λ3 =


1 0 0

0 −1 0

0 0 0

,
λ4 =


0 0 1

0 0 0

1 0 0

, λ5 =


0 0 −i
0 0 0

i 0 0

, (1.4)

λ6 =


0 0 0

0 0 1

0 1 0

, λ7 =


0 0 0

0 0 −i
0 i 0

, λ8 =


1 0 0

0 1 0

0 0 −2

 1√
3
.

In QCD the quark field transform under the fundamental representation, as opposed to the

gluon field Aa
µ which transform under the adjoint representation. The matrices that describe

the adjoint representation of SU(N) are N2−1 dimensional, and given by the structure constants

T a
adj = −ifabc. (1.5)

Lets check that T a
adj satisfies the commutation relation in Eq. (1.2).[

T a, T b
]
ce

= T a
cdT

b
de − T b

cdT
a
de

= i2facdf bde − i2f bcdfade.
(1.6)

We now use the Jacobi identity f bcdfade + f cadf bde + fabdf cde = 0 to get[
T a, T b

]
ce

= i2
(
f bcdfade + fabdf cde

)
− i2f bcdfade

= i2fabdf cde

= −i2fabdfdce

= ifabdT d
ce −→

[
T a, T b

]
= ifabcT c.

(1.7)

The infinitesimal transformation of N2 − 1 fields Aa
µ, transforming under the adjoint represen-

tation is given by

Aa
µ → Aa

µ − αbfabcAc
µ. (1.8)
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A basis independent way of characterizing the different representations is through the so called

quadratic Casimir C2(R) defiend by

T a
RT

a
R = C2(R)I, (1.9)

where R indicate the representation. The quadratic Casimir (often called color factors in QCD)

for the fundamental F and adjoint A representation of SU(N) is given by

CF ≡ C2(fund) =
N2 − 1

2N
, (1.10)

CA ≡ C2(adj) = N. (1.11)

For SU(3), this gives CF = 4/3 and CA = 3. As mentioned, these quantities appear in almost

all calculations in QCD.

1.2 The QCD Lagrangian

We start by taking a look at the QCD Lagrangian [14] in all its beauty. The QCD Lagrangian

reads

LQCD =
∑
q

ψ̄i
q(i /Dij −mq)ψ

j
q −

1

4
F a
µνF

µν
a , (1.12)

where the sum over q is a sum over all the quark flavours involved. The index1 i (and j) is the

color index for the quarks, summed from 1 to 3 (or sometimes written as i ∈ {r, g, b}). ψi
q is

then the spinor field for quark q with color index i. We have utilized the slashed notation in

Eq. (1.12), /Dij ≡ γµ(Dµ)ij , were (Dµ)ij is the covariant derivative

(Dµ)ij = δij∂µ + igsT
a
ijA

a
µ, (1.13)

where T a for a ∈ {1, . . . , 8}, are the generators of the SU(3) symmetry group, which satisfying

Eq. (1.2). A table of the structure constants fabc is given in Section 1.3 in [25]. The quantity

Aa
µ is the gluon field which is a spin-1 boson field. The last term in Eq. (1.12) contains the field

strength tensor F a
µν , given by

F a
µν = ∂µA

a
ν − ∂νAa

µ − gsfabcAb
µA

c
ν . (1.14)

The last term in Eq. (1.14) is the biggest difference between QCD and QED (which does not

have this non-Abelian term). It is the source of the famous 3-gluon and 4-gluon interactions.

The parameter gs is of course the strong gauge coupling.

In order to use perturbation theory to make predictions from QCD we need to be able to define

Feynman rules. To define the gluon propagator from the Lagrangian of Eq. (1.12) we have to

make choice of gauge. We can then add a gauge fixing term with a parameter ξ (see Section

25.4 in [23] for a derivation of the gluon propagator) to the Lagrangian

L = LQCD − 1

2ξ
(∂µAa

µ)
2. (1.15)

1 Not to be confused with the prefactor i in front of /D which is the imaginary number
√
−1
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In a non-Abelian gauge theory such as QCD, another term must be added to the the gauge

fixing term. This is the famous ghost Lagrangian containing the complex scalar fields called

ghost fields ci, which obeys Fermi statistics. The Lagrangian the becomes

L = LQCD − 1

2ξ
(∂µAa

µ)
2 − c̄i /Dijc

j . (1.16)

The ghost fields only appear in higher order diagrams. They are present to cancel out un-

physcial degrees of freedom in the covariant gauges parametrized by ξ in Eq. (1.15). Using the

Lagrangian in Eq. (1.16) the gluon propagator can be defined,

a, ν b, µ−→
[
−gµν + (1− ξ)p

µpν

p2

]
iδab

p2+iε
.

p
(1.17)

One of the most common covariant gauges to use is the Feynman gauge, where ξ = 1. This

choice makes the gluon propagator very simple. However, we still have to take into account

ghost in higher order diagrams. There exist a class of non-covariant gauges called axial gauges,

where the gauge is fixed in terms of a additional 4-vector n,

Lgauge-fixing = − 1

2ξ
(nµAa

µ)
2. (1.18)

The gluon propagator in this gauge reads

Πµν =

[
−gµν + nµpν + pµnν

np
− (n2 + ξp2)pµpν

(np)2

]
iδab

p2 + iε
. (1.19)

The axial gauge has the nice property that for on-shell (p2 = 0) gluons, pµΠ
µν = 0. Choosing

ξ = 0, the ghost fields will decouple from the gluon field, and the need for them vanishes. With

the choice of n2 = 0 we arrive at the light-cone gauge. The gluon propagator then only contains

the two first terms in Eq. (1.19). In the light-cone gauge only two polarization states propagate,

those transverse to n, because nµΠ
µν = 0, and those transverse to p. The numerator of the

propagator (which in Feynman gauge can be decomposed into a sum over 4 polarizations) can

be written as a sum over 2 physical polarizations for the gluon.

dµν ≡ −gµν + nµpν + pµnν

np
=

2∑
i=1

εµi ε
ν
i (1.20)

This small overview of gauges is taken from Section 1.5 in [14] and Section 25.4.3 in [23]

As mentioned a big difference of QED and QCD is that QCD has pure bosonic interactions, the

3 and 4 gluon vertices. These appear in the last term of Eq. (1.12) as a consequence of the gluon

also carrying color charge (as opposed to the photon who as zero charge). Using Eq. (1.14), we

will find that the term in the Lagrangian containing the 3 gluon interaction is

L3-gluon = gfabc(∂µA
a
ν)A

b
µA

c
ν , (1.21)
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sum over a, b, c and µ, ν implied. The Feynman rule for 3-gluon vertex is [14]

a, µ

b, ν

c, σ

−→
p

q

r

−gfabc[(p− q)σgµν + (q − r)µgνσ + (r − p)νgµσ], (1.22)

where all the momenta are defined as incoming to the vertex. The Feynman rule for the 4-gluon

vertex is given by

a, µ

c, ρ

b, ν

d, σ

−→

−ig2[fabef cde(gµρgνσ − gµσgνρ)
facef bde(gµνgρσ − gµρgνσ)
fadef bce(gµνgρσ − gµρgνσ)].

(1.23)

Each vertex comes with a conservation of 4-momentum. The 4-gluon vertex do not appear in

first order calculations due to the g2 factor. The rest of the Feynman rules can be found on

page 10 of [14]. In the next section we will use the Feynman rules to derive the well known

gluon splitting function P̂gg(z).

1.3 The Gluon Splitting Function

Understanding the process of parton branching is crucial for understanding how jets (showers

of hadrons) form. In this section we will look at the process of gluon branching, and derive

the gluon splitting function P̂gg(z). We will follow closely the approach taking in Section 5.1 in

[14]. The Feynman diagram for such a process is

Mn

pb

pc

pa
θ

Figure 1.1: Feynman diagram for the process of a gluon branching fromMn

We star by looking at the kinematics of Fig 1.1, where we assume that p2c , p
2
b ≪ p2a ≡ t > 0.

Defining the energy fraction z = Eb/Ea = 1−Ec/Ea which is fractional energy carried by gluon

10



b. All momenta are defined as outgoing from the vertex. Assuming pb and pc to be on-shell, we

then have

t = p2a = (−pb − pc)2

= p2b + 2pb · pc + p2c = 2
(
p0bp

0
c − p⃗b · p⃗c

)
= 2EbEc(1− cos θ)

smallθ
≈ z(1− z)E2

aθ
2,

(1.24)

where θ is the splitting angle between gluon b and c. We define the coordinate system such that

the 4-momentum of the gluon b and c are given by

pb = [1, sin θb, 0, cos θb] · zEa,

pc = [1,− sin θc, 0, cos θc] · (1− z)Ea,
(1.25)

where θ = θb + θc. We can now start by looking at the amplitude for this process

Mn+1 = igfABC 1

t
[gµν(pa − pb)σ + gνσ(pb − pc)µ + gσµ(pc − pa)ν ]εµaενb εσcMn, (1.26)

where we change the color index of the gluons to capital letters (A, B and C) to distinguish

them from the particle label a, b and c. The factor 1
t comes from the propagator, and εa comes

from the metric tenors in the propagator which can be written as gµρ =
∑

r ε
µ
r ε

ρ
r (for now we

will drop the sum). We then then impose that εi · pi = 0, for i ∈ {a, b, c}. Combining this with

the fact that pa = −pb − pc, the amplitude then becomes

Mn+1 = −2igfABC 1

t
[(εa · εb)(εc · pb)− (εb · εc)(εa · pb)− (εc · εa)(εb · pc)]Mn. (1.27)

Assuming on-shell gluons, the polarization vectors are then transverse to the propagation of the

gluon. Choosing the polarization’s to be either in or out of the plane of the splitting gives

εini · εinj = εouti · εoutj = − 1,

εini · εoutj = εouti · pj = 0. (1.28)

The only non-zero combinations of polarization will be:

εa εb εc
in in in

in out out

out in out

out out in

Lets look at the first case where all polarization states are in the plane of splitting

Mn+1 = −2igfABC 1

t

[
(εina · εinb )(εinc · pb)− (εinb · εinc )(εina · pb)− (εinc · εina )(εinb · pc)

]
Mn

= −2igfABC 1

t

[
−εinc · pb + εina · pb + εinb · pc

]
Mn.

(1.29)
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Given Eq. (1.28), we have

εina = [0, 1, 0, 0],

εinb = [0, cos θb, 0,− sin θb],

εinc = [0, cos θc, 0, sin θc].

(1.30)

Using the small angle approximation, Eq. (1.29) then becomes

Mn+1 = −2igfABC 1

t
[zEaθ − z(1− z)Eaθ + (1− z)Eaθ]Mn

= −2igfABC 1

t

[
z2 − z + 1

]
EaθMn.

(1.31)

Squaring the amplitude, and summing over gluon colors gives

|Mn+1|2 =
4g2CA

t

[
z2 − z + 1

]2
z(1− z)

|Mn|2. (1.32)

After some algebraic gymnastics this can be rewritten as

|Mn+1|2 =
4g2CA

t

[
1− z
z

+
z

1− z
+ z(1− z)

]
|Mn|2. (1.33)

We skip the calculations of the other combinations here because it is only more of the same.

The results for all the combinations are:

εina , ε
in
b , ε

in
c : |Mn+1|2 =

4g2CA

t

[
1− z
z

+
z

1− z
+ z(1− z)

]
|Mn|2 (1.34)

εina , ε
out
b , εoutc : |Mn+1|2 =

4g2CA

t
[z(1− z)]|Mn|2 (1.35)

εouta , εinb , ε
out
c : |Mn+1|2 =

4g2CA

t

[
1− z
z

]
|Mn|2 (1.36)

εouta , εoutb , εinc : |Mn+1|2 =
4g2CA

t

[
z

1− z

]
|Mn|2. (1.37)

To get the un-polarized squared amplitude we now sum over all the polarization vectors. Recall

that we already have a sum over εa from the propagator.

|Mn+1|2un-pol =
∑
pols

|Mn+1|2 =
4g2CA

t
2

[
1− z
z

+
z

1− z
+ z(1− z)

]
≡ 4g2

t
P̂gg(z)|Mn|2, (1.38)

where P̂gg(z) is the will known gluon splitting function,

P̂gg(z) = 2CA

[
1− z
z

+
z

1− z
+ z(1− z)

]
= CA

[
1 + z4 + (1− z)4

]
z(1− z)

. (1.39)

We see that there is an enhancement in P̂gg(z) when z → 0 (gluon b is soft) and z → 1

(gluon c is soft). Therefore, in the limit of an soft emission, the gluon splitting function can be

approximated by P̂gg(z) = 2CA/z. This soft enhancement is when the polarization of the soft

gluon is emitted in the splitting plane. One can also derive splitting functions for the following

processes
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Mn

pb

pc

pa
Mn

pb

pc

pa

Figure 1.2: Feynmann diagrams for the branching process q → g + q (left) and g → q̄ + q
(right)

We will not explicitly do the derivations for the amplitudes in Fig 1.2 here. The main result is

that the amplitude squared will follow the same structure as the last expression in Eq. (1.38)

|Mn+1|2un-pol =
4g2

t
P̂ (z)|Mn|2, (1.40)

where

P̂gq(z) = CF
1 + (1− z)2

z
, (1.41)

P̂qg(z) = TR
[
z2 + (1− z)2

]
, (1.42)

where TR = 1/2. The enhancement in P̂gq(z) is again associated with the emission of soft gluon

(z → 0) in the splitting plane, and the splitting function can again be well approximated (in

the soft limit) by P̂gq(z) = 2CF /z. The splitting functions is an important factor in the cross

section dσn+1 which has the rather simple structure (Section 5.1 in [14])

dσn+1 = dσn
dt

t
dz
αs

2π
P̂ba(z). (1.43)

Using dt = 2z(1− z)E2
aθdθ for a given z this can then be written as

dσn+1 = dσn
αs

π

dθ

θ
dzP̂ba(z). (1.44)

1.4 Angular Ordering

What is the motivation for the variable change from Eq. (1.43) to Eq. (1.44)? In the collinear

splitting functions in the last section we saw that there is an soft enhancement whenever a

propagating particle emits a gluon, lets say a quark emits a gluon. However this enhancement

is more general than that. The effect we will now present is called angular ordering, and we

will follow closely Section 5.5 in [14]. Lets consider the process of e+e− → q + q̄, where one of

the quark emit a soft gluon.
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e−

e+

q̄

g

q

e−

e+ q

g

q̄

Figure 1.3: O(αs) Feynman diagrams for the process e+e− → qq̄g

The cross section dσn+1 can then be written as a sum over the two external quark legs

dσn+1 = dσ
dω

ω

dΩ

2π

αs

2π
CF

∑
i,j∈{q,q̄}

Wi,j , (1.45)

where

Wij =
1− vivj cos θij

(1− vi cos θig)(1− vj cos θjg)
, (1.46)

where ω and dΩ is the energy and the solid angle element of the emitted gluon. θij is the splitting

angle of the quark pair, and θig is the gluon emission angle from quark i. vj is the velocity

of the quark i, which we now will approximate to 1 for simplicity. Wij represent interference

between the two diagrams, but it can be separated into two parts Wij =W
(i)
ij +W

(j)
ij where

W
(i)
ij =

1

2

[
Wij +

1

1− cos θig
− 1

1− cos θjg

]
. (1.47)

Now lets do the azimuthal integration for the leg i. We then write dΩ = d cos θig dϕig. The

details of this integration can be found in [14].

∫ 2π

0

dϕig
2π

W
(i)
ij =

1

2(1− cos θig)

[
1 +

cos θig − cos θij
|cos θig − cos θij |

]
=

 1
1−cos θig

, if θiq < θij

0 , otherwise
(1.48)

This a remarkable result, the gluon emission angle has to be smaller than the splitting angle of

the quarks! We will see later that this can used in branching algorithms. But first, in the next

section we will look at proton-proton collisions and how jets can be formed in such events.

1.5 Jets in Proton-Proton Collisions

In this section we will take a brief overview over jet productions in proton-proton collisions. We

will first take a look at the factorization of the proton-proton cross section. Then move over to

look at the kinematics variables used in collider physics. The discussion of pp-collisions is taken

from chapter 7 in [14].
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1.5.1 Factorization of the Cross Section

Hard scattering of two protons can be described by hard scattering of quarks and gluons (par-

tons) inside of the protons. The cross section can be written in the following way:

σ(p1, p2) =
∑
i,j

∫
dx1 dx2 fi(x1, µ

2)fj(x2, µ
2)σ̂i,j(p̂1, p̂2, αs(µ), Q/µ), (1.49)

where p1 and p2 are the four-momenta of the colliding protons, x1 and x2 are the momentum

fractions of the interacting partons defined by x1 ≡ p̂1/p1. Q is the characteristic scale of the

hard scattering. fi(x, µ
2) are the parton distribution functions (PDFs), defined at a scale µ,

which can be thought of as the scale separating the long distance physics from the short distance

physics. σ̂i,j is the scattering cross section of the two interaction partons. The partonic cross

section can be calculated perturbatively, which makes the factorization in Eq. (1.49) pretty

powerful. The structure of the factorization is visualized in Fig 1.4.

fi(x1, µ
2)

σ̂i,j

fj(x2, µ
2)

p1

p2

p̂1

p̂2

Figure 1.4: Schematic diagram of the QCD factorization given in Eq. (1.49) of a hard scattering
of two protons.

It is important to note that Eq. (1.49) do not describe most pp-collisions. There is a lot of

soft non-perturbative physics happening in pp-collisions. However Fig 1.4 with Eq. (1.49) is a

powerful tool for describe the hard events, which are the most interesting ones.

The usual setup is that the colliding protons travel at almost the speed of light towards each

other in the z-direction. This means that in the lab-frame, the protons will be very Lorentz

contracted. Therefore, the four-momenta of the outgoing particles from the partoninc cross

section σ̂i,j is often written as

pµ = (E, px, py, pz)

= (mT cosh y, pT sinϕ, pT cosϕ,mT sinh y),
(1.50)

where pT is the transverse momentum with respect to the z-axis. mT ≡
√
p2T +m2 is called
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the transverse mass. ϕ is the azimuthal angel, and y is the rapidity defined by

y =
1

2
ln
E + pz
E − pz

. (1.51)

The advantage is that the rapidity is additive under a Lorentz boost. A more common use is

pseudorapidity η defined as

η = − ln tan
θ

2
, (1.52)

where θ is the polar angle with respect to the beam. For a massless particle rapidity and

pseudorapidity are the same.

1.5.2 A Simple Jet Definition

The partons coming out of the hard vertex in Fig 1.4 will then start to radiate and fragment

until they hadronize at some scale. Hadronization is a process where a shower of partons are

turned into a shower of hadrons (jets) which is then observed in the detector. Hadronization

is not a subject to be discussed in this thesis, for an overveiw of the different hadronization

models see Section 5.6 in [14].

Before we move over talk about parton fragmentation lets first define what we mean by a

jet. Qualitatively a jet is a collimated shower of hadrons/particles. There is no single ”best”

defenition of jets, but in hadron collisions it is common to use a definition based on a cone

parameter R [14], defined by

R =
√
(∆η)2 + (∆ϕ)2, (1.53)

A jet is then defined as a concentration of transverse energy ET = E sin θ (or transverse mo-

mentum pT ) inside the cone R. Experimentally one constructs a jet by clustering together the

observed particles in the detector. One of the most used clustering algorithms is the so called

”anti-kt” algorithm [11]. The Anti-kt clustering introduces a distance measure dij , were i and

j are are particles (or pseudojets),

dij = min(p−2
T i , p

−2
Tj )

∆2
ij

R2
, (1.54)

diB = p−2
T i , (1.55)

where ∆2
ij = (yi− yj)2 +(ϕi−ϕj)2 and yi and ϕi is the pseudorapidity and azimutal angel. pT i

is the transverse momentum of particle (or pseudojet) i. The cone parameter R is an input to

the algorithm. diB is the distance measure between i and the beam. The algorithm works by

choosing the smallest dij , then combining i and j into a pseudojet. If diB is the smallest, i is

then classified as a jet, and is taken out of the list of particles and pseudojets. The process is

then repeated until there are no particles and pseudejets left, only jets.

1.6 Parton Evolution and Jet Simulation

Consider a timelike parton (p2 > 0), it could for instance be one of the outgoing partons in

Fig 1.4. It is likely that it will start radiate, and loose some of its momentum. The average
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number of collinear emissions within a cone of angel R is given by

N =
αs

π

∫ 1

0
dzP̂ (z)

∫ R

0

dθ

θ
H(Q0 − zθE), (1.56)

where H(Q0− zθE) is the Heaviside step function, with the perturbative condition that zθE >

Q0. E is the energy of the parton. Using the approximation that P̂ (z) = 2CR/z we can evaluate

the integral and get

N =
αsCR

2π

∫ 1

0

dz

z

∫ R

0

dθ

θ
H(Q0 − zθE) =

αsCR

π
log2

ER

Q0
. (1.57)

As an example lets consider the case of a gluon, CR = 3, with energy E = 200 GeV. Lets

choose α = 0.2, R = 0.4 and Q0 = 1 GeV. The average number of collinear emissions is then

N ≈ 3.67. This motivates the existence of jets and jet fragmentation. The radiated particles

will also probably radiate particles and so on, until we get an avalanche of particles. Recall the

principle of angular ordering, radiation will happen at lower and lower angles! Taking this into

consideration gives an qualitative picture of the formation of jet, shown in Fig 1.5.

θ0

θ1

θ2

γ

Figure 1.5: Shows a schematic diagram of jet fragmentation form a photon. Angular ordering
give θ0 > θ1 > θ2.

We can therefore introduce a function f(x, t) which represents the probability of the the particle

having momentum fraction x of the original momentum p. t is an arbitrary evolution parameter,

for instance the virtual mass or emission angle. Even though we cant calculate f(x, t) from

pertubative QCD, we can derive an equation for the t-dependence. It is know as the DGLAP

equation, for a derivation see Section 5.2 in [14]. The DGLAP equation reads

t
∂

∂t

(
f(x, t)

∆(t)

)
=

1

∆(t)

∫
dz

z

αs

2π
P̂ (z)f(x/z, t), (1.58)

where ∆(t) is called the Sudakov form factor, and its defined as

∆(t) = exp

[
−
∫ t

t0

dt′

t′

∫
dz
αs

2π
P̂ (z)

]
. (1.59)

P̂ (z) is the relevant splitting function. The Sudakov is the probability of the parton to evolve

from t0 to t without without branching. The Sudakov is the basis for jet simulation algorithms.
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We will now describe the basics of such branching algorithms, given in Section 5.3 in [14].

Starting with one time-like parton with momentum fraction x1 and virtual mass t1. We first

start by generating a new value for t called t2. This is done by generating a random number u

distributed uniformly between 0 and 1. We then obtain t2 by solving

∆(t1)

∆(t2)
= u. (1.60)

If the value of t2 is lower than the scale were we choose to stop the branching, nothing more

happens. Else we have to generate a new momentum fraction z = x2/x1 for the next branching.

This is done by solving ∫ z

ε
dz′

αs

2π
P̂ (z′) = u′

∫ 1−ε

ε
dz
αs

2π
P̂ (z′) (1.61)

for z, where u′ is new random number between 0 and 1. ε is a chosen cut-off to eliminate the

divergences in the splitting function. The process is then repeated, and the emitted partons

can also branch via a similar algorithm. This will then generate a whole shower of partons. We

then need to introduce a stopping condition, this will depend on what we are interested in. If

we are interested in the distribution of particle in the jet, we would start the evolution at angle

R, and evolve down to a minimal angel Q0/pT , given by the hadronization scale Q0 ∼ 0.2 − 1

GeV. However, if we are interested in distribution of jets originating from a single hard parton,

we would start the evolution at a maximal angle θ ∼ 1 and evolve down to θ = R. There are of

course more subtleties in practice, but the process described above gives the basic ingredients

of a branching algorithm.

18



Chapter 2

Heavy-Ion Collisions and Parton

Energy-loss

In particle accelerators such as LHC at CERN, heavy ions are collided at very high centre of

mass energies. Typically centre of mass energy per nucleon is in the range
√
sNN = 2.76− 5.02

TeV. At such energies the heavy ions are Lorentz contracted discs in the lab frame. For a

collision at
√
sNN = 2.76 TeV the the Lorentz factor is γ = 1400 [10], therefore in the lab frame

the nuclei are basically two colliding circular pancakes.

Figure 2.1: Shows the time evolution of a heavy-ion collision. Figure taken from [22] (colors
inverted for beauty reasons).

The interdisciplinary study of heavy ion collisions give strong indications of the formation of the

quark-gluon plasma. The QGP is a very dense and hot state of strongly interacting quarks and

gluons. Its existence was theorized in 1975 (Section 1.4 in [16]) after the discovery of asymptotic

freedom in QCD. The earliest moments of our universe and the core of superdense neutron stars

are theorized to contain quark-gluon plasma. This is one of the main reasons to understand the

QGP and its properties.

Fig 2.1 shows a schematic overview of the time evolution of the collision of two Lorentz con-
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tracted nuclei. About 1 fm/c after the collision the Quark-Gluon Plasma (QGP) has formed

between the receding discs which is about 2 fm apart at this point. The plasma then expands

and cools down, and after about 10 fm/c hadronization happens. In this chapter we will first

take a look at some of the observable consequences of the formation of QGP in heavy ion colli-

sions. Then we will study the formalism for a single parton energy-loss in a QGP medium by

BDMS [7].

2.1 Basic Terminology and Setup

In high energy heavy ion collisions the following geometrical picture of the collision is often

used:

Figure 2.2: Shows the geometrical picture of the collision of two nuclei. b⃗ is the impact vector.

The vector b⃗ connecting the centers of the two colliding nuclei in the transverse plane is called

the impact vector, and its length |⃗b| is the impact parameter. The impact vector defines the

x-axis, while the beam defines the z-axis. The x-z plane defines the so called reaction plane.

One often distinguishes between the number of spectators Nspec and the number of participants

Npart. Spectators are defined as the nucleons that do not interact with nucleons from the other

nuclei, while participants are the nucleons which do interact. The term wounded nucleons are

used for the participants which suffer at least one inelastic scattering. Npart can be estimated by

zero-degree calorimeter, which are calorimeters place near the beam, but far from the collision

point.

An import classification of different collisions is the centrality, denoted c. Centrality is defined

as the as the percentile of events with the larges number of participants or with the largest

particle multiplicity (page 33 in [16]). The centrality class of 0% will the correspond zero

impact parameter |⃗b|. The centrality c(N) of a given event/collision can be well approximated

by

c(N) =
πb2(N)

σAB
in

, (2.1)

where σAB
in is total inelastic nucleus-nucleus cross section and b(N) is the impact parameter

which matches the multiplicity N and the average multiplicity n(b), which can be calculated

from the Glauber model. The Glauber model treats the distribution of nucleons in the nucleus

as a random distribution given by some density profile. Nucleon-nucleon collisions are given

by the total inelastic nucleon-nucleon cross section. Details on the Glauber model is given in
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Chapter 3 of [16].

2.2 Signals of Quark-Gluon Plasma

What are the different indicators of the formation of QGP in heavy ion collisions? In this

section we will discuss two different observables for the plasma. First we look at elliptic flow

and then the suppression of particle spectra quantified by the nuclear modification factor.

2.2.1 Elliptic Flow

In flow analysis of heavy ion collisions one represents the momentum distribution of the observed

particles as a Fourier expansion (Section 2.5 in [16])

dN

dyd2pT
=

dN

2πpTdpTdy

[
1 + 2

∞∑
k=1

vk cos(k(ϕ−ΨRP))

]
, (2.2)

where ϕ is the azimuthal angle, and the angle ΨRP defines the reaction plane. The coefficients vk
are called the kth harmonic flow, and they are generally functions of rapidity y and transverse

momentum pT . The v2 coefficient is called ”elliptic flow”. The reason behind the name ”flow”

is because is because v2 is qualitatively understood as an effect of hydrodynamic-like collective

expansion of the matter produced in the collision.

In central collisions of two nuclei the area of particle production is almost circular in the trans-

verse plane. This will result in isotropic expansion in the radial direction. However, in non-

central collisions the area of particle production (blue area in Fig 2.3) will have an almond

shape as seen from the beam direction.

Figure 2.3: Shows the almond shaped overlapping region in a peripheral collisions of two
nuclei, as seen from the beam direction.

The particles in the almond will interact with each other. The pressure gradient will be larger

in the reaction plane as Fig 2.3 indicates. There will therefore be a more rapid expansion in

this direction, which will lead to a momentum anisotropy favoring the momentum to be in

the reaction plane. The measurements of v2 (Figure 2.12 in [16]) match the predictions of

ideal hydrodynamics indicating fluid behavior of the medium produced in the almond. The

measurements of v2 indicate a perfect fluid, meaning a very low viscosity to entropy ratio [26].

More details of elliptic flow can be found in [26].
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2.2.2 Jet Quenching

One of the main observable of QGP is jet quenching, an extensive overview can be found in

[13]. This is where a jet (collimated streams of particles) is modified due to the medium. This

manifest itself through the suppression of the high pT spectrum of jets compared to that in

proton-proton collision. This is often quantified by the ”nuclear modification factor” RAA,

defined experimentally as [16]

RAA =
1

nAA

dNAA

dpTdη
/
dNpp

dpTdη
, (2.3)

where nAA (sometimes written as Ncoll) is the average number of binary nucleon-nucleon col-

lisions. NAA is the average particle multiplicity, and Npp is the multiplicity in proton-proton

collisions. Fig 2.4 shows measurements of the nuclear modification factor for jets from ATLAS

[1] at different centrality classes with R = 0.4 and rapidity range |y| < 2.8. The right panel

shows RAA for different species of hadrons, as well as direct photons.

Figure 2.4: Left panel shows RAA measurements for jets with R = 0.4 and rapidity range
|y| < 2.8 at ATLAS [1] as a function of pT for different centrality classes. Right panel shows
RAA for different species of hadrons and direct photons, taken from [13]

If heavy ion collisions were mere superpositions of binary nucleon-nucleon collisions, the scaling

with Ncoll should set the nuclear modification factor to one. However as we can see from Fig 2.4

this is not the case. There is a significant suppression of the jet and hadron spectra in heavy ion

collisions. There is a different story for the photons, which after accounting for scaling the RAA

is actually one. In the presents of a QCD meduim this makes perfect sense. Because photons

carry no color charge, they will not interact with the medium, and there will be no suppreseion.

From now on we will focus om jets. If we wanted tho model the spectrum for hadrons, we would

need to introduce fragmentation functions. Which are non-pertubative functions describing the

momentum fraction distribution of the give hadron. Jets on the other hand are pertubative and

infra-red safe observable. The suppression of the jet spectrum will be because of out of cone

energy-loss of particles in the medium. Partons produced in the initial collision will fragment

into jets, while this is happening the the partons will interact with the medium through elastic

and inelastic collisions with the meduim, as shown in Fig 2.5.
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Figure 2.5: (left) Shows the the elastic interaction with the medium leading to collisions
energy-loss. (right) Shows the inelastic interaction leading to radiative energy-loss. The blue
particles represents the transversing quark. Figure taken from [13].

This will lead to a modified fragmentation of the jet, which again will lead to a modification

of the jet cross section in heavy ion collisions. An approach we will use later is to encapsulate

this modification into an energy-loss distribution D(ε) [7]. Which represents the probability of

loosing energy ε to the QGP. We then relate dσAA

dpT
(the jet cross section in heavy ion collisions,

where the medium is present) to dσpp

dpT
(the jet cross section on pp-collisions) via the convolution

dσAA

dpT
=

∫ ∞

0
dεD(ε)

dσpp

dpT
(ε+ pT ). (2.4)

This has a simple interpretation. Jets in AA collisions are produced, and then they have some

probability D(ε) for loosing energy ε (or transverse momentum) to the medium. We then

integrate over all possible values of ε. In the following sections we will study the energy-loss

distribution for a single colored particle traveling through a uniform brick of QGP, and we will

study this in context of the famous BDMPS medium induced gluon spectrum.

2.3 The BDMPS Spectrum

While a parton moves through a droplet QGP it will undergo collisions with the medium

(Fig 2.5). This will lead the parton to emit gluons (medium induced gluons). Each gluon will

take away a small amount of energy ω from the parton. Baier, Dokshitzer, Mueller, Peigne and

Schiff (BDMPS) calculated the emission probability in such collisions in the medium. Later

Arnold [6] showed that the BDMPS result could be cast into a rather simple formalism. He

showed that

ω
dI

dω
=
α

π
xPgs(x) ln |c(t = 0)|, (2.5)

where c(t) satisfies the following boundary value problem:

d2c

dt2
= ω2

0(t)c(t), c(t→∞) = 1, (2.6)

where ω2
0(t) is a complex number given by

ω2
0(t) = −i

[
(1− x)CA + x2CR

]
ˆ̄q(t)

2x(1− x)E
, (2.7)

where E is the energy of the hard parton s, CR ˆ̄q(t) = q̂(t) is the average transverse momentum

broadening of a hard parton with Casimir representation CR moving through the medium. I is
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the probability of the hard parton to emit a medium induced gluon with energy ω. x the energy

fraction ω/E and last but not least Pgs(x) is the splitting function for the process s → sg.

Moving forward we will work in the soft gluon approxiamtion, meaning that we will say x≪ 1.

This means that both Pgq and Pgg can be approximated by 2CR/x, as we saw earlier. The

complex number ω2
0(t) can also be approximated.

ω2
0(t) ≈ −i

CR ˆ̄q

2xE
= −i q̂

2ω
. (2.8)

We will now solve this for a uniform brick of QGP with length L in the soft gluon approximation.

We then have

ω2
0(t) =

−i q̂
2ω , t < L

0 , t > L.
(2.9)

It is then fairly easy to show that the solution to the boundary value problem in Eq. (2.6) is

c(t) =

cos(|ω0|(L− t)) , t < L

1 , t > L.
(2.10)

where

|ω0| =
√

q̂

4ω
(1− i). (2.11)

Plugging all of this into Eq. (2.5) gives

ω
dI

dω
=

2αCR

π
ln | cos

√
q̂

4ω
(1− i)L|. (2.12)

And after some mathematical gymnastics we arrive at the BDMPS spectrum

dI

dω
=

ᾱ

2ω
ln

[
cosh2

√
ωc

2ω
− sin2

√
ωc

2ω

]
, (2.13)

where ᾱ = 2αsCR/π, and ωc is the characteristic gluon energy given by

ωc =
1

2
q̂L2. (2.14)

We will now study the effect of energy-loss of a hard parton using the BDMPS spectrum defined

in Eq. (2.13), this analysis is due to BDMS [7] and Arleo [5]. To get a better feeling for the

gluon spectrum in Eq. (2.13) we can look at the small and large ω behavior. For ω ≫ ωc we

can Taylor expand the expression for small u ≡
√

ωc
2ω and get:

ω
dI

dω
=

ᾱ

12

(ωc

ω

)2
(2.15)

and for small energies, meaning ω ≪ ωc, we get
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ω
dI

dω
=
ᾱ

2
ln

(exp
(√

ωc
2ω

)
+ exp

(
−
√

ωc
2ω

)
2

)2

− sin2
√
ωc

2ω


≈ ᾱ ln

[
exp
(√

ωc
2ω

)
2

]
= ᾱ

[√
ωc

2ω
− ln(2)

]
.

(2.16)

We can also define N(ω), which is the multiplicity gluons with energy larger than ω

N(ω) ≡
∫ ∞

ω
dω′ dI

dω′ . (2.17)

Using the analytical expression in Eq. (2.16), we can obtain

N(ω ≪ ωc) =

∫ ∞

ω
dω′ dI

dω′ =

∫ 0.01ωc

ω
dω′ ᾱ

ω′

[√
ωc

2ω
− ln(2)

]
+

∫ ∞

0.01ωc

dω′ dI
Full

dω′

= ᾱ

[√
2ωc

ω
− ln 2 ln

ω

ωc
− 1.44136

]
,

(2.18)

where the last integral is calculated numerically with full BDMPS spectrum given in Eq. (2.13).

We can also calculate the high energy behavior

N(ω ≫ ωc) =

∫ ∞

ω
dω′ ᾱ

12

ω2
c

ω′3 =
ᾱ

24

(ωc

ω

)2
. (2.19)

The figure below shows the gluon multiplicity of the full spectrum and the analytic low and

high energy behavior.

Figure 2.6: N(ω) of a quark (CR = CF = 4/3) defined in Eq. (2.17). The black solid
curve shows the full numerical result. The red dashed curve shows the analytic IR result from
Eq. (2.18). The blue dashed curve shows the high energy behavior given in Eq. (2.19). We
have also included the so called analytic BDMS estiamte (dashed grey curve), which is given in
Eq. (2.20). ᾱ is set to 0.42
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From Fig 2.6 we see that it is extremely unlikely to emit medium induce gluons with energy

larger than ωc. The low and high energy approximations given in Eq. (2.18) and Eq. (2.19)

fits very well with the numerical result in their respective regions. While the BDMS estimate,

given by

N(ω) = ᾱ

√
2ωc

ω
, (2.20)

only really works in the very low energy regime. Now that we have a better feeling for the

medium induce gluon spectrum, we will now look at how this translates into the energy-loss

distribution D(ε) of the parton.

2.4 The Poisson Approximation

Recall that when an hard parton transverses the medium it undergoes several scatterings with

the medium, which leads to medium induce gluon emissions. If we assume that each such

emission is independent, and neglect interference between the emitted gluons. The energy-loss

distribution can take the form of a Poisson distribution [7]

D(ε) =

∞∑
n=1

1

n!

[
n∏

i=1

∫
dωi

dI(ωi)

dω

]
δ

(
ε−

n∑
i=1

ωi

)
exp

(
−
∫

dω
dI

dω

)
, (2.21)

where n is then the number of emitted gluons, and the nth term in the sum gives the contribution

of n emissions, shown in Fig 2.7.

E E −
∑
ωi

ω1 ω2 ωn

· · · · · ·

Figure 2.7: Show n medium induced gluon emissions from a quark. The total energy-loss of
the quark is the sum of the energies of the emitted gluons.

The delta function gives the constraint that the sum of the energy of the emitted gluons is the

energy that the parton looses. The last exponential factor is a normalization factor, to ensure

that ∫ ∞

0
dεD(ε) = 1. (2.22)

Now, given an expression for the gluon distribution dI
dω it would be very hard to calculate

D(ε) using Eq. (2.21). Luckily we can simplify this procedure by first using the following

representation for the delta function

δ

(
ε−

n∑
i=1

ωi

)
=

∫
C

dν

2πi
eνε

n∏
i=1

e−νωi , (2.23)
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where the contour C runs parallel to the imaginary axis. Plugging this into Eq. (2.21) gives

D(ε) =
∞∑
n=1

1

n!

[
n∏

i=1

∫
dωi

dI(ωi)

dω

]∫
C

dν

2πi
eνε

n∏
i=1

e−νωi exp

(
−
∫

dω
dI

dω

)

=

∫
C

dν

2πi

∞∑
n=1

1

n!

[
n∏

i=1

∫
dωi

dI(ωi)

dω
e−νωi

]
eνε exp

(
−
∫

dω
dI

dω

)
=

∫
C

dν

2πi
exp

(∫
dω

dI

dω
eνω
)
exp

(
−
∫

dω
dI

dω

)
eνε

=

∫
C

dν

2πi
exp

[
−
∫

dω
dI

dω
(1− eνω)

]
eνε

=

∫
C

dν

2πi
exp

[
−ν
∫

dωN(ω)e−νω

]
eνε

≡
∫
C

dν

2πi
D̃(ν)eνε,

(2.24)

where

D̃(ν) = exp

[
−
∫ ∞

0
dω

dI

dω
(1− eνω)

]
. (2.25)

To evaluate the contour we make the substitution ν = ib→ dν = idb

D(ε) =

∫ ∞

−∞

db

2π
exp

[
−ib

∫
dωN(ω)e−ibω

]
eibε

=

∫ ∞

−∞

db

2π
exp

[
−ib

∫
dωN(ω)(cos bω − i sin bω) + ibε

]
≡
∫ ∞

−∞

db

2π
exp[ib(ε− Ic(b))] exp[−bIs(b)]

=

∫ ∞

0

db

π
exp[−bIs(b)] cos[bε− bIc(b)],

(2.26)

where

Is(b) =

∫ ∞

0
dωN(ω) sin bω, (2.27)

Ic(b) =

∫ ∞

0
dωN(ω) cos bω. (2.28)

Now given an expression for dI
dω we can calculate the energy-loss distribution D(ε) by doing

the following. First calculate N(ω) by Eq. (2.17), then evaluate the integrals Is(b) and Is(b).

Once this is done we can finally calculate D(ε) via Eq. (2.26). We will now do this calculation

with the full BDMPS spectrum given in Eq. (2.13), and also using the BDMS estimate given in

Eq. (2.20). For the full spectrum we will do it the way suggested by Arleo in [5]. The way he

suggests we do it is by splitting the integrals in Eq. (2.27) and Eq. (2.28) into three parts

Is(b) =

(∫ 0.01ωc

0
+

∫ 2ωc

0.01ωc

+

∫ ∞

ωc

)
dωN(ω) sin bω. (2.29)

For the first integral term we will use the low energy N(ω < ωc) approximation given in

Eq. (2.18), and for the last integral term we will use the approximation given in Eq. (2.19). For

the middle part we will use the full BDMS spectrum, and this has to be done numerically. This
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works because both the low and high energy approximations of N(ω) works extremely well in

their respective integration limits, as shown in Fig 2.6. For the analytical estimate we have

Is(b) = ᾱ

∫ ∞

0
dω

√
2ωc

ω
sin bω = ᾱ

√
πωc

b
= Ic(b). (2.30)

Inserting this into Eq. (2.26) gives

D(ε) =

∫ ∞

0

db

π
exp[−bIs(b)] cos[bε− bIc(b)]

=

∫ ∞

0

db

π
exp
[
−ᾱ
√
πωcb

]
cos[εb− ᾱ

√
πωcb]

= ᾱ

√
ωc

2ε3

[
cosh

(
πᾱ2ωc

2ε

)
− sinh

(
πᾱ2ωc

2ε

)]
= ᾱ

√
ωc

2ε3
exp

(
−πᾱ

2ωc

2ε

)
.

(2.31)

Fig 2.8 shows the full numerical result, and the analytical BDMS estimate, for a quark (CR =

CF =/3) and a gluon (CR = CA = 3). We see that the full numerical result and the analytic

Figure 2.8: Shows ωcD(ε/ωc) for the full numerical spectrum for a hard quark (dark-blue solid
line), and for an hard gluon (dark-red solid line). While the dark-red and dark-blue dashed lines
are Log-Normal distributions fitted to the solid lines. The light-blue and light-red curves show
the BDMS analytic estimate Eq. (2.31) for a quark and a gluon

approximation for a quark has its peak at more or less the same location. For a gluon however,

the analytical approximation is pretty wide compared to the numerical result. Another thing

worth mentioning is that the energy-loss distributions in Fig 2.8 exhibits a tail towards larger

ε. This means that the mean energy-loss defined by

⟨ε⟩ ≡
∫ ∞

0
dε εD(ε), (2.32)

28



will not lie at the peak of the distribution, but at the tail to the right of the peak. We can

also conclude that it is not common (and extremely rare for a quark) that the hard parton

loses energy larger than ωc. While the full numerical result in Fig 2.8 is nice, it is not very

practical. To use the result to make further predictions for observables such as RAA, it would

be convenient to have a parametric expression for the energy-loss distribution. In Fig 2.8 we

can see that the log-normal distribution given by

LogNormal(x|µ, σ) = 1√
2πσx

exp

[
−(log x− µ)2

2σ2

]
, (2.33)

fits remarkably well to the numerical result with Dq(x) = LogN(x|µ = −1.50, σ = 0.73) and

Dg(x) = LogN(x|µ = −0.50, σ = 0.52). We can then easy get an estimate for the mean

energy-loss for the hard partons. The mean of a log-normal is given by

⟨x⟩ =
∫ ∞

0
dxxLogN(x|µ, σ) = eµ+

1
2
σ2
. (2.34)

The mean energy-loss will then be ⟨ε⟩ = ⟨x⟩ωc = exp
[
µ+ 1

2σ
2
]
ωc , which gives

quark(CR = CF ) : ⟨ε⟩ = exp

[
−1.51 + 0.732

2

]
ωc ≈ 0.32ωc, (2.35)

gluon(CR = CA) : ⟨ε⟩ = exp

[
−0.51 + 0.522

2

]
ωc ≈ 0.78ωc. (2.36)

As [5] points out, this pretty close to the analytical estimate of

⟨ε⟩ =
∫ ∞

0
dε ᾱε

√
ωc

2ε3
exp

(
−πᾱ

2ωc

2ε

)
= ᾱ

∫ ∞

0
dε

√
ωc

2ε
exp

(
−πᾱ

2ωc

2ε

)
=
αsCR

2
ωc, (2.37)

which is

quark: ⟨ε⟩ = αsCF

2
ωc ≈ 0.33ωc,

gluon: ⟨ε⟩ = αsCA

2
ωc = 0.75ωc.

(2.38)

How well does the energy-loss distributions in Fig 2.8 fit with the RAA data for lead-lead

collisions. We can use the two distributions to calculate the nuclear modification factor in the

following way

RAA =
dσAA

dpT
/
dσpp

dpT
, (2.39)

where Ncoll = 1 and dσAA

dpT
is modelled by by

dσAA

dpT
=

∫ ∞

0
dε

∑
i∈(q,g)

Di(ε)
dσpp→i

dpT
, (2.40)

where Di(ε) is the energy-loss distribution for parton i, dσpp→i

dpT
is cross section for producing

parton i (as outgoing from the hard vertex). These cross sections can be generated in Pythia [9].

The dσpp

dpT
is then the sum of the two contributions

∑
i
dσpp→i

dpT
. Lets compared this to the RAA
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data in central collisions (0− 10%) for jets from ATLAS [1] at
√
sNN = 5.02 TeV in Fig 2.4.

The distributions can somewhat explain the data, however it is not very good fit. This might

not be so surprising because the log-normal distributions are fitted to the numerical result for

partons in an uniform static brick of QGP. However the medium produced in heavy ion collisions

is expanding. Another difference is that the data in Fig 2.9 show the suppression of jets (and

not single partons). What if we could go the other way? Could we extract the energy-loss

distributions from the data? This is topic of the last two chapters. The next chapter will cover

the basics of Bayesian inference which we will use. While in the last chapter we will present the

results of such an approach.

Figure 2.9: Comparison of RAA measurements from ATLAS and the RAA computed from
the log-normal estimations of the energy-loss distributions computed numerically from the full
BDMPS spectrum for different values of ωc
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Chapter 3

Bayesian Inference and MCMC

Bayesian inference is powerful tool used in many fields of science. It is an statistical learning

method used to update ones belief about some model parameter(s) after taking observed data

into account. This is done using the famous Bayes rule. In this chapter we introduce Bayesian

inference, and show how this is done in practice. In almost all real life scenarios Markov Chain

Monte Carlo (MCMC) methods must be employed. We therefor look the famous Metropolis-

Hastings algorithm, and two different MCMC methods called Random Walk Metropolis and

Hamiltonian Monte Carlo, and discuss their strength and weaknesses.

3.1 Bayes Theorem

In scientific endeavors we often want to make a model of how nature works. These models often

dependent upon an unknown number of parameters, denoted θ =
[
θ1, . . . , θn

]
∈ Rn. In many

cases we have some prior knowledge of what θ might be, it could for instance that we know that

θj (being the jth element of θ) is positive or that it must have a value between 1 and 10. This

knowledge could come from some physical constrains, limitations of the model or what ever.

At this point it does not really matter! The thing that matters is that Bayesian inference is

then a tool we can use to update our belief about θ in a probabilistic way, by taking data into

consideration. So how do we do that? The answer is via Bayes rule (often also called Bayes

theorem). Lets say that we have observed some data D, Bayes theorem then reads [27]

P (θ|D) =
P (D|θ)P (θ)

P (D)
. (3.1)

The quantity of interest is the so called posterior P (θ|D), which is the probability distribution

of θ after taking the data D into account. The flipped quantity P (D|θ) is called the likelihood,

and it is the likelihood of observing D given that θ is correct (our given model with the specific

parameters in question). If P (D|θ) is very low this will give a low probability for θ in the

posterior.

P (θ) is called the prior, and as the name states this is were we put our prior knowledge of the

parameters. If for some reason we know that value of a parameter is positive and lies in the

range 0 to 10, our prior could then be P (θj) = Uniform[0, 10]. Finally the denominator P (D)
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is the marginal likelihood, often referred to as the evidence, given by

P (D) =

∫
dθ P (D|θ)P (θ). (3.2)

It quantifies how well our model explains the data when averaged over all possibles values of

θ. When doing Bayesian inference this can be viewed as just an normalization constant to be

determined. The problem is that the evidence can actually be very hard to determine, because

the integral in Eq. (3.2) can be hard to evaluate (specially with a high dimensional θ).

Moving forward we will use a notation inspired by [27] to easier distinguish the different quan-

tities in Eq. (3.1).

• Posterior: P (θ|D) ≡ P(θ)

• Likelihood: P (D|θ) ≡ L(D|θ)

• Prior: P (θ) ≡ π(θ)

• Evidence: P (D) ≡ Z(D)

3.2 Posterior, whats the big deal?

We now have some understanding of Bayes rule and what the posterior density is. The question

now is how do we use it? Again here we follow closely the approach of [27]. The main points to

mention is: making educated guesses, quantifying uncertainty and predicting new data points.

Lets have closer look at each of them.

Making Educated Guesses

Often we are interested in making predictions about some other quantity f(θ) that depends

on the model parameters. We can do this by marginalizing f(θ) weighted by the posterior

distribution over θ.

E[f(θ)] =

∫
dθ f(θ)P(θ). (3.3)

An example could be that we want to make an educated guess of what the ”true” underlying

parameters θ′ could be. This can be done via a loss function L(θ|θ′) which tells us how far of θ

is from the true value. The problem is that that we don’t know the true value θ′ (if we did, this

hole endeavour would be pointless). We can instead take a weighted average over the posterior.

LP(θ) ≡ E
[
L(θ|θ′)

]
=

∫
dθ′ L(θ|θ′)P(θ′). (3.4)

We can then say that our point estimate θ̂ for θ′ is the value that minimizes LP(θ).

Quantifying Uncertainty

Once we have our point estimate θ̂, we are also interested in a region of θ were we believe

there is a X% chance that the true value θ′ is. One often chooses X to be 1-σ or 2-σ credible
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intervals. This region ΩX is defined by the following∫
θ∈ΩX

P(θ) dθ =
X

100
, (3.5)

where

ΩX ≡ {θ : P(θ) ≥ PX} (3.6)

In practice one often uses a definition for the 1-D marginalized posterior for each parameter θi.

For further details, the reader is referred to Section 3.2 in [27].

Making Predictions

Once we have used the data D to do inference on θ, it would be nice to predict likelihood

of seeing some hypothetical data D̃. This is what we call the posterior predictive, denoted

P (D̃|D), and its defined by the expectation of the likelihood

P (D̃|D) ≡ E
[
L(D̃|θ)

]
=

∫
dθL(D̃|θ)P(θ). (3.7)

We have now seen the importance of the posterior. As the examples above illustrate, we

are often more interested in quantities involving integration over the posterior density together

with some other function dependent upon the model parameters. The problem is that for most

realistic models these integrals are analytically impossible to do. This is actually also a prob-

lem when calculating the evidence
∫
dθL(D|θ)π(θ) which we need for the posterior. Well, no

problem you might think, lets just do some good old fashioned numerical integration. Realistic

models are often high-dimensional, θ ∈ Rd where d is large. Numerical integration can then

be very inefficient! Fortunately there exist a way to get around the problems of computing the

posterior and approximating integrals over it. This approach is called Markov Chain Monte

Carlo sampling, and is the subject of the next section.

3.3 Markov Chain Monte Carlo

MCMC methods tries to generate a Markov Chain (set of correlated samples) which is then

distributed according to the posterior 1

{θ1, . . . ,θn} ∼ P(θ). (3.8)

At this point a couple of questions needs to be answered. What is a Markov chain? How do we

generate it in such a way that the samples mimic the posterior distribution? Last but not least,

how do we use the chain to predict expectation values (integrals over the posterior). We can

answer the last question fairly easy, given a set of samples {θ1, . . . ,θn}, the expectation value

1 Strictly speaking the samples are distributed according to the posterior mass P(θ) dθ (dubbed ”typical set”
by [8]), but this distinction is only important for high dimensional models
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over some function of the parameters f(θ) can be approximated by the following [27]

E[f(θ)] =

∫
dθ f(θ)P(θ) ≈ 1

n

n∑
i=1

f(θi). (3.9)

The expectation value is just an average of f(θ) over all the samples.

We will now look at Markov Chains and their properties. When introducing Markov chains it

is easier to get an intuition by first considering a discrete space χ. Following [4], lets consider a

space with three states χ = x1, x2, x3. A Markov chain is then a stochastic process x1 → x2 →
· · · → xn, where the probability of xi is given by a transition matrix (in the example mentioned

above this will be a 3x3 matrix)

p(xi|xi−1, . . . , x1) = T (xi|xi−1). (3.10)

The chain is called ”homogeneous” if
∑

xi = T (xi|xi−1) = 1. Following again the example in

[4], consider the following transition matrix

T =

 0 1 0

0 0.1 0.9

0.6 0.4 0

. (3.11)

This the transition matrix in Eq. (3.11) can be visualized in a transition diagram

Figure 3.1: Transition graph of Eq. (3.11). The image is taken from [4].

If the current state xi−1 of the chain is x3, then probability of xi being x1 is 0.6 (and the

probability of it being x2 is 0.4). Lets say we start our chain in x3, the initial distribution of

the visited states is then

p0(x) = (0, 0, 1). (3.12)

Lets then apply the transition matrix on this initial distribution once, we then obtain

p0 · T = (0.6, 0.4, 0.0). (3.13)

As we expected there is then a 60% chance of moving to x1 (and 40% to x2). Now if we apply

the transition many times we will see that the distribution will converge to a stable one. This

means that after a while we get a distribution p(x) that satisfies

p · T = p. (3.14)
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We recognize p(x) as the left eigenvector of T with eigenvalue 1. p(x) is called the stationary

distribution of the Markov chain. The chain will always converge on the stationary distribution

(regardless of p0) if the following two conditions are satisfied [4]:

1. Irreducibility: For any state in χ, there is a non-zero probability of visiting all other states.

2. Aperiodicity: The chain does not get stuck in loops.

Both of theses conditions can be met in a concept called ”detailed balance”, which is says that

the transition probability is reversible with respect its initial distribution.

p(xi)T (xi−1|xi) = p(xi−1)T (xi|xi−1)∑
xi−1

p(xi)T (xi−1|xi) =
∑
xi−1

p(xi−1)T (xi|xi−1)

p(xi) =
∑
xi−1

p(xi−1)T (xi|xi−1).

(3.15)

Eq. (3.15) shows that detailed balance leads to a stationary distribution. Now if we go to a con-

tinues space, the transition matrix becomes a transition kernel and the stationary distribution

becomes the eigenfunction of the kernel. Eq. (3.15) then becomes

p(xi) =

∫
dxi−1 p(xi−1)T (xi|xi−1). (3.16)

By constructing a Markov process were the stationary distribution is the un-normalized posterior

p(θ) = L(D|θ)π(θ) we can generate samples as if they where sampled from the posterior

distribution. This looks promising, but it is still quite unclear how this should be done in

practice. Lets have a look at how this is done using the Metropolis-Hastings algorithm.

3.4 The Metropolis-Hastings Algorithm

Before moving on lets just take a minute to clearly state what our goal is. We want to draw n

samples θ1, . . . ,θn, such that, as n→∞ the distribution of samples converges on the posterior

distribution P(θ). Which is then our stationary target distribution for the Markov chain. We

do this by invoking the detailed balance condition

P (θi+1|θi)P(θi) = P (θi|θi+1)P(θi+1), (3.17)

where P (θi+1|θi) is the probability of moving from θi to θi+1, and P(θ) is the posterior. We

now introduce some proposal distribution Q(θi+1|θi) which is used to propose new values θi+1

given θi. We then combine this with the probability of accepting the proposal T (θi+1|θi) in

following way

P (θi+1|θi) ≡ Q(θi+1|θi)T (θi+1|θi). (3.18)

Putting this into Eq. (3.17) we get the following constraint on the acceptance probability

T (θi+1|θi)

T (θi|θi+1)
=
Q(θi|θi+1)P(θi+1)

Q(θi+1|θi)P(θi)
. (3.19)
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The following T (θi+1|θi) satisfies the constraint above

T (θi+1|θi) = min

[
1,
Q(θi|θi+1)P(θi+1)

Q(θi+1|θi)P(θi)

]
. (3.20)

We are now ready to see the Metropolis-Hastings algorithm [27] for generating new samples.

The Metropolis-Hastings algorithm

1. Propose a new sample θ′
i+1 by drawing a random sample from the proposal distri-

bution:

θ′
i+1 ∼ Q(θ′

i+1|θi)

2. With probability

T (θi+1|θi) = min

[
1,
Q(θi|θi+1)P(θi+1)

Q(θi+1|θi)P(θi)

]
set θ′

i+1 → θi+1. This is done by:

• Computing T (θ′
i+1|θi)

• Sample random number u ∼ Uniform[0, 1]

• If u ≤ T (θ′
i+1|θi): θi+1 = θ′

i+1

• Else: θi+1 = θi

3. Repeat for i from 1 to nsamples

Given some initialization θ0 the algorithm above is run from i = 1 up to i = n. At each

iteration i, a new sample θ′
i+1 is proposed, and then accepted or rejected according to the

acceptance probability T (θ′
i+1|θi). The nice thing about this algorithm is that we don’t have to

know the normalization of the target distribution because we take the ratio P(θi+1)/P(θi). In

Bayesian inference this translates to not needing the evidence Z(D), which is almost impossible

to calculate for realistic models.

Random Walk Metropolis

One of the most used MH sampler is the so called Random Walk Metropolis [8], where the

proposal distribution is Gaussian

Q(θi+1|θi) = N (θi+1|θi,Σ). (3.21)

Now since Q(θi+1|θi) = Q(θi|θi+1), the acceptance probability becomes simpler

T (θi+1|θi) = min

[
1,
P(θi+1)

P(θi)

]
. (3.22)

This makes the random walk Metropolis extremely easy to implement. Lets consider an

1D example (inspried by the example in [4]) where the target distribution is proportional

0.3e−0.2x2
+ 0.7e−0.2(x−6)2 and the proposal distribution is N (xi+1|µ = xi, σ = 5).
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Figure 3.2: Shows an example of running a Random Walk Metropolis algorithm with
N (xi+1|µ = xi, σ = 5) for 100 000 iterations with a target distribution proportional to
0.3e−0.2x2

+ 0.7e−0.2(x−6)2 . Upper left panel shows the sample distribution after 1000 sam-
ples, upper right shows the same for 10 000, bottom left for 50 000 samples and bottom right
for 100 000 samples. The target function is shown as the darkblue curve.

Fig 3.2 shows that after 50000 samples the RWM samples has converged pretty good to the

target distribution. The figure also shows the distribution after 1000, 10 000, 50 000 and 100

000 samples. It is also quite common to take a look at the traceplot of the chain (Fig 3.3). This

is a plot of all the sample values in the chain as function of the iteration. As a rule of thumb

this should look like a ”fuzzy” caterpillar. If your chain is biased (for example gets stuck in

some small region) this will show up pretty clearly in the trace plot.
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Figure 3.3: Traceplot of the samples in upper right panel in Fig 3.2

At this point a few remarks are in order. Most MCMC algorithms have some hyper-parameter(s)

which has to be chosen. For RWM this is the width σ (or the covariance matrix Σ if we are in

dimension higher than 1). If σ is too wide the acceptance rate is low and the correlations of the

samples are high. This gives a lower effective sample size. On the other hand if the width is too

narrow, we run the risk of not visiting all important parts of the target (i.e not all modes)[4].

Our goal is to have an high acceptance rate while also exploring all regions of interest. For

the example in Fig 3.2, we used a width of σ = 5. This seemed to work quite well, with an

acceptance rate of 0.5. This essentially means that half of our proposal was accepted.

The price we pay for the simplicity of the RWM becomes apparent when we go two higher

dimensions (more complex models). In these cases the RWM is very inefficient, the acceptance

rate becomes very low [8]. This means that we need to run the chain with large number of

iterations. Even if we choose the ”perfect” values for the covarance matrix we will have a

problem of inefficient exploration in high dimensions. The sampler will move very slowly and

there will be many directions we can randomly move in. The sampler will therefor use a very

long time to explore the space. Fortunately there exist more robust MCMC algorithms which

are much more clever when it comes to proposing new samples. The algorithm we are going to

diver bit deeper into is the Hamiltonian Monte Carlo (HMC)method.

3.5 Hamiltonian Monte Carlo

HMC is a method to propose new samples for the Metropolis Hastings algorithm. It uses

the well known dynamics of Hamilton’s equation from classical dynamics to simulate trajec-

tories in parameter-space. As we shall see, the potential energy used in the Hamiltonian dy-

namics is related to the target distribution, which in our case the un-normalized posterior

P(θ) = L(D|θ)π(θ). Before we discuss the HMC method, lets first quickly review Hamil-

tonian dynamics and its important properties for MCMC. This small overview of HMC and

Hamiltonian dynamics is due to [19] and [8].

3.5.1 Hamiltonian Dynamics

In Hamiltonian dynamics, physical systems are described by the well know function H(q, p),

the so called Hamiltonian. q is a D-dimensional position vector and p is the corresponding

conjugate momentum vector (also D-dimensional of course). The system evolves according to
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Hamilton’s equations of motion,

dqi
dt

=
∂H

∂pi
,

dpi
dt

= −∂H
∂qi

.

(3.23)

where i ∈ (1, . . . , d) is the ith element of q and p. The Hamilton’s equation defines a mapping

Ts from t to t + s for q and p. The Hamiltonian is often written in terms of kinetic K and

potential energy U .

H(q, p) = K(p) + U(q). (3.24)

It is very common to assume that the potential energy depends only on q, and that the kinetic

energy only depends on p and is defined as

K(p) ≡ 1

2
pTM−1p, (3.25)

where M is a d × d ”mass matrix” which is symmetric and positive-definite, and often also

diagonal. Hamiltonian dynamics has some interesting properties which is important for MCMC.

The first one being reversibility. The mapping Ts of q(t), p(t) to q(t + s), p(t + s) is unique

(one-to-one). This means that there exists an inverse map T−s, which corresponds to running

the dynamics backwards in time. This property is important because for MCMC because it

ensures detailed balance for the Markov Chain, (see section 3.2 in [19] for a formal proof).

Another important property is that the time evolution conserves the Hamiltonian (energy).

This can be seen fairly easy from Eq. (3.23)

dH

dt
=

d∑
i=1

[
∂H

∂qi

dqi
dt

+
∂H

∂pi

dpi
dt

]
=

d∑
i=1

[
∂H

∂qi

∂H

∂pi
− ∂H

∂pi

∂H

∂qi

]
= 0. (3.26)

Once we state the HMC algorithm it will be apparent that conservation of the Hamiltonian

will lead to an acceptance probability of 1. This means that all of our HMC proposals will be

accepted. However since Eq. (3.23) rarely can be solved analytically, we have to use numerical

solutions. In that case the energy will only be approximately conserved.

The last property we will look at is volume preservation. Take a region region R in (q, p) space

with some volume V . Then the map Ts(R) of R will also have volume V . This result is known

as Louisville’s theorem, see section 2.2 in [19] for proof.

As mentioned, Eq. (3.23) has to be solved numerically in most cases. There are several ap-

proaches for doing this, but the one used in HMC is the leapfrog method. Given a small

time-step ε, the leapfrog method for the map (q(t), p(t)) to (q(t+ ε), p(t+ ε)) is

pi(t+ ε/2) = pi(t)−
ε

2

∂U

∂qi
(q(t)),

qi(t+ ε) = qi(t) + ε
∂K

∂pi
(pi(t+ ε/2)),

p(t+ ε) = pi(t+ ε/2)− ε

2

∂U

∂qi
(q(t+ ε)).

(3.27)
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The leapfrog method preserves the phase-space volume. This is fairly easy to show, all we have

to do is show that the determinant of the Jacobian is one. So lets consider the first two steps

in the transformation given in Eq. (3.27). The Jacobian of the transformation q(t) → q(t + ε)

and p(t)→ p(t+ ε/2) is given by

J =

[
∂q(t+ε)
∂q(t)

∂q(t+ε)
∂p(t)

∂p(t+ε/2)
∂q(t)

∂p(t+ε/2)
∂p(t)

]
=

[
1 0

f(q(t)) 1

]
, (3.28)

where f(q(t)) = − ε
2
∂2U
∂q2

(q). Clearly det(J) = 1 for this transformation. To include the last step

we just do the same thing once more, and end up with something similar. Since the determinant

of the transformation is 1, the volume is preserved. Trajectories from the leapfrog integrator

is also reversible due to the symmetry of the equations. To get the inverse map we just set

p→ −p, apply the leapfrog integration with the same amount of steps and same ε, then at the

end negate p again. Fig 3.4 shows the effectiveness of the leapfrog method compared to other

methods such as the Euler method.

Figure 3.4: Comparison of different numerical methods for a Hamiltonian with K(p) = p2/2
and U(q) = q2/2, with starting point q = 0 and p = 1. Figure taken from [19]

We see that for even a relatively big leapfrog stepsize, ε = 1.2, the trajectory is stable with

some errors of course. If we keep increasing the stepsize more and more the trajectory will

diverge away from true path. The stability of the leapfrog method together with its properties

of reversibility and volume preservation, makes it ideal for HMC.
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3.5.2 The HMC Algorithm

In Bayesian inference with HMC the parameters θ will play the role of the position vector q. We

then introduce corresponding conjugate momenta p. We then go from a D-dimensional space

(θ space) to a 2D-dimensional space, dubbed phase-space from physics. Recall that our target

distribution is the un-normalized posterior P(θ). To introduce P(θ) into the phase space we

define the so called canonical distribution which is joint distribution of θ and p.

P(θ,p) = P(p|θ)P(θ). (3.29)

This means that if we marginalize out the momentum, we get the target distribution∫
dpP(θ,p) = P(θ)

∫
dpP(p|θ) = P(θ). (3.30)

In a physical system the phase-space distribution P(θ,p) is related to the energy of the system

(the Hamiltonian) by the following relation

P(θ,p) = 1

Z
exp

[
−H(θ,p)

T

]
, (3.31)

where Z is just an arbitrary normalization constant, which we won’t be needing, and T is the

temperature of the system, which we will just set to 1. The Hamiltonian can then be written

as

H(θ,p) = − lnP(p|θ)− lnP(θ) ≡ K(p,θ) + U(θ). (3.32)

where the potential is U(θ) = − ln [L(D|θ)π(θ)], but we are free to choose the kinetic energy

by choosing the distribution P(p|θ). In HMC the usual choice is a multivariate Gaussian with

zero mean and a covariance matrix (mass matrix) M ,

P(p|θ) = N (p|0,M). (3.33)

This gives the kinetic energy

K(p) =
1

2
pTM−1p+ C, (3.34)

where C is just a constant, which also will cancel out later. The matrix M is often also just set

to the identity matrix I.

We are now ready to state the HMC algorithm. Given ε (stepsize) and L (number of leapfrog

steps), and an initial sample θ0, samples are generated by the algorithm below.
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The Hamiltonian Monte Carlo Algorithm

for i = 1 to nsamples do

Sample: p′ ∼ N (0, I)

Set: θ ← θi−1, p← p′

for j=1 to L do

p← p− ε
2∇θU

θ ← θ + εp

p← p− ε
2∇θU

end for

Set: p← −p (need not be done in practice)

With probability T = min
[
1, exp[H(θ,p)]

exp[H(θi−1,p′)]

]
set θi ← θ by:

Sampling: u ∼ Uniform[0, 1]

if u ≤ T then

θi ← θ

else

θi ← θi−1

end if

end for

First we (re)sample the momentum variables p′ from multivariate normal distribution (or just

normal, if we are in 1D) with zero mean and the identity matrix as a covariance matrix. Then

we simulate Hamiltonian dynamics starting from our current position in phase-space (θi−1, p
′)

using the Leapfrog integrator with stepsize ε and L steps. Then we set p → −p to make the

chain reversible. In practice this can be ignored, since we are only interested in Markov chain

for θ. After simulating the Hamiltonian dynamics for a time εL, we now have proposal θ, which

we then accept with probability T as shown in the algorithm above.

Fig 3.5 shows the same example as in Fig 3.2, but with the HMC algorithm instead. The number

of drawn samples goes up to 20 000 (instead of 100 000, as in the example of RWM). Comparing

the two examples, it seems that the HMC converges quicker that the RWM. However, to see

the true strength of HMC to RWM, we would have to go to higher dimensions. What we can

see from this example is that acceptance rate of our proposed samples in HMC is 0.99, which

is much higher then the example with RWM.

The HMC methods performance on a given problem depends strongly on the choice of ε and

L [18], for the example in Fig 3.5 the values were ε = 0.6 and L = 15. If ε is too small then

we waste a lot of computational power. If ε is too large, the leapfrog integrator will be to

inaccurate, and lead to lower acceptance rates. If L is too small, samples will lie close to each

other and the sampler will exhibit random walk behavior (which is the very thing we try to

eliminate). If L is too large the Hamiltonian trajectory will loop back towards the start. All in

all this means that for a given problem, the two hyper-parameters ε and L must tuned. Tuning

of HMC is beyond the scope of this thesis, but some details can be found in [19]. [18] presents

the No-U-Turn Sampler (NUTS) which is an extension to the HMC sampler, which eliminates

the need for setting L.

Another problem that can arise when using HMC is that if the true trajectory in the phase-space
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exhibits a region with strong curvature. The discretization of time in the leapfrog integrator

might not be able to resolve this, and the trajectory will diverge from the true one [8]. In this

case the step size ε should be set to a very small value so that the curvature can be resolved.

Figure 3.5: Shows an example of the sample distribution using HMC with the same target as
in Fig 3.2. ε = 0.6 and L = 15 was used in the leapfrog integrator.
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Chapter 4

Jet Quenching Using Bayesian

Inference

In the Chapter 2 we saw how to apply the formalism of energy-loss of a single hard parton

transversing a uniform brick of QGP. We saw that even in this case, to get ”realistic” results

we had to resort to numerical calculations. Now we would like to extend this to a QCD jet,

but we will take a different approach. We take a different approach because it would be even

harder to the calculation we did in Chapter 2 for a big shower of particles (a jet). Instead we

take a more data driven approach. In practice this means that we will put a parametrization

on the energy-loss distribution D(ε) ≡ D(ε, θ). Then use Bayesian inference to constrain the

parameters θ. For reasons explained in Chapter 3, this has to be done using MCMC.

Using Bayesian inference to extract the energy-loss distribution D(ε) of a jet is has already

been done by Xin-Nian Wang, Long-Gang Pang and Yayun He in [17]. We first take a look

at their implementation, and try to replicate it using Hamiltonian Monte Carlo. Next we will

build a model for jet quenching based on quark/gluon jets with the goal of generalizability and

consistency of the factorization

dσAA

dpT
(pT ) =

∫ ∞

0
dε

∑
i∈(q,g)

Di(ε)
dσvaci

dpT
(4.1)

between different data-set. In Eq. (4.1) Di(ε) is the energy-loss distribution for a jet fragmented

from a parton of type i.
dσvac

i
dpT

is the jet cross section for jets of type i. Quark/gluon tagging of

jets is a very active field. Quite often it involves various Machine Learning algorithms. However,

in this thesis we take a rather simple approach. We will generate jets in Pythia, and try to match

them to the hard partons outgoing from the proton-proton collision. How these quark/gluon

jets will be defined and generated in Pythia will be discussed.
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4.1 Re-deriving Earlier Results Using HMC

Before we move on lets just quickly recall the definition if the nuclear modification factor. It is

a ratio of the jet cross section in a AA collision to that of jet cross section in pp collisions.

RAA =
dσAA

dpT
/
dσpp

dpT

=
1

dσpp

dpT

∫
dεD(ε, θ)

dσpp

dpT
(ε+ pT )

(4.2)

Because we model the AA cross section by a convolution with the pp cross section there is no

Ncoll, however it is still present in the experimental data we will use. In [17] the energy-loss

distribution is set to be a gamma distribution of x ≡ ε
⟨ε⟩

D(x, α) =
ααxα−1e−αx

Γ(α)
(4.3)

where Γ is the normalization factor, given by the gamma function. The mean energy-loss ⟨ε⟩ is
a function of pT

⟨ε⟩ = βpγT log pT (4.4)

In this model α can be interpreted as the number of jet-medium scatterings. The task is

then reduced to constrain the parameters θ = [α, β, γ] using the data in Fig 2.4 via Bayesian

inference. We will reproduce the results for the centrality class 0 − 10%. The prior ranges for

the parameters was chosen in [17] as

α ∼ Uniform[0, 10]

β ∼ Uniform[0, 10]

γ ∼ Uniform[0, 1].

(4.5)

As explained in the last chapter, the Bayesian analysis has to be done using MCMC sampling.

In [17] this is done using the Random Walk Metropolis method with 8 · 106 drawn samples.

In our implimentation we will use the Hamoltion Monte Carlo method with 50 000 drawn

samples, and 5000 samples for tuning. This is actually a great example showing how much more

sample efficient HMC is compared to RWM. To reduce the risk of divergences in the leapfrog

integrator, we set the target acceptance rate for the HMC sampler to be 0.97. This means that

we tell the sampler to simulate the Hamiltonian dynamics extremely precise (small time steps).

The Bayesian analysis and MCMC sampling is done in the probabilistic programming package

pymc3 in Python [21].

We also need to define a likelihood function. In all of our inferences in this project we will use

a Gaussian likelihood, this is also used by [17]. This means that if we have a measurement of

RAA(pT ) with uncertainty σRAA
, the likelihood of RAA(pT ) given θ is

L
(
RAA(pT )

∣∣∣θ) = N
(
RAA(pT )

∣∣∣µ = Rmodel
AA (θ, pT ), σ = σRAA

)
, (4.6)

where Rmodel
AA (θ, pT ) is the prediction of the model with parameters θ, given by Eq. (4.2). To

compute Rmodel
AA (θ, pT ) we need to be able to evaluate dσpp

dpT
at specific values, especially since

the convolution integral in the expression has to be done numerically, info on how this is done
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numerically can be found in Sec A.1. We therefore have to be able to interpolate what the

values of the cross section is between the data points. Inspired by the parametrization of the

cross section given in [28], the cross section will be given by

dσpp

dpT
(pT ) = a

(
p0T
pT

)n(pT )

, n(pT ) ≡ n− b · log
p0T
pT
− c · log2

p0T
pT
− d · log3

p0T
pT
, (4.7)

where a, n, b, c and d are parameters which can be fitted to the pp data from ATLAS in

[1] using the method of least squares. p0T is the pT where the parameter a is the pp cross

section. Fig 4.1 shows how well this parameterization fits to the data. The blue curve shows

the parametric representation of the jet cross section after fitting it to the data (which are

shown with uncertainties in the plot). The parameters of the fit (blue curve) is

p0T = 45 GeV, a = 133.168342 nb/GeV, n = 4.62170656,

b = 0.848548201, c = 0.348064297, d = 0.0907623371.

It is also worth mentioning that that [17] uses an interpolation algorithm instead of a parametric

fit. Ultimately this will not lead to anything different, this is just different ”design” choices.

Figure 4.1: Shows the measured jet cross section for proton-proton collisions used for the RAA

data in Fig 2.4. The blue curve shows the parametric fit to the data using Eq. (4.7) with the
method of least squares.

We are now ready to look at the results of the Bayesian inference. We start by looking at the

posterior distributions of the parameters α, β, γ. This is often done using a so called corner plot

(Fig 4.2). The upper panels of each column shows the posterior distributions of the individual

parameters. While the rest shows the pairwise posterior densities (density is indicated by color).
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Figure 4.2: Corner plot of the posterior of [α, β, γ]. The upper panels shows the posterior
distribution of the individual parameters. The rest of the panels shows the correlations between
the parameters.

As they point out, the parameters in Fig 4.2 exhibits clear correlation. Lets compare the

parameters of our implementation to that of [17]. The upper row in the table below shoes the

mean and 1 std of the posterior of the parameters in our implementation. While the bottom

rows shows the result from [17].

α β γ

4.40 ± 2.90 2.43 ± 1.34 0.19 ± 0.07

4.41 ± 2.86 1.06 ± 0.97 0.26 ± 0.06

Table 4.1: Shows the mean and standard deviation of the different parameters. The upper
values are for our implementation, and the lower values are [17] results.

The parameters values of our implementation, shown in the table above, agree quite well with

[17] results, except for the β. This is probably due to the long tail of the β distribution shown

in Fig 4.2. Fig 4.3 shows the Bayesian fit to the data for the nuclear modification factor. As
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we can see the model fits quite well to the data. However as [17] points out, the experimental

data have large uncertainties (especially in the high pT range). This is most likely the reason

for the large uncertainties in the parameters in Table 1.1.

Figure 4.3: Comparison of the fitted model to the RAA data. Here we have sampled 10000
samples from the posterior. The dark-blue curve shows the posterior expectation given by
Eq. (3.9), and the light-blue curves show the predictions for the different sampled values for
θ = [α, β, γ].

Figure 4.4: Left panel shows the energy-loss distribution D(x), and the right panel shows the
mean energy-loss as a function of pT . Just as [17], we have only used parameter values within
1σ of the mean.

Fig 4.4 shows the energy-loss distribution D(x, α) (left panel) and mean energy-loss ⟨ε⟩ as a

function of pT (right panel). The energy-loss distribution has a tail towards larger values of

x. In conclusion we see that we can reproduce the results of [17] well using the HMC method

(rather than RWM) with less samples.

48



4.2 Quenching of Parton-tagged Jets

In the previous section we re-derived the results of [17] using Hamiltonian Monte Carlo. Now

we want to take such an analysis to the next step. This would be to distinguish between quark

jets and gluon jets. The jet cross section in heavy ion collisions will be modelled by

dσAA

dpT
(pT ) =

∫ ∞

0
dε

∑
i∈(q,g)

Di(ε)
dσvaci

dpT
, (4.8)

where
dσvac

i
dpT

is the cross section for producing jet of type i. We define the jet type by the

initiator of the jet. This means that if a recorded jet is initiated by a hard (outgoing) quark, it

is classified as a quark jet, and vice verse for gluons. Each jet type will have its own energy-loss

distribution Di(ε). The motivation for this is that we known that quarks and gluons interact

a bit different with the medium (different color factor), as we saw in Fig 2.8. However, the

spectra in Eq. (4.8) are for jets (not partons). If the spectra was for partons, the interpretation

of Eq. (4.8) would be straight forward. We produce a parton, and then it losses energy to the

medium (and we sum over the contribution of both quarks and gluons). The difference for jets

are that they are not produced, and then quenched. The quenching happens simultaneously

as the jet fragments. This makes the factorization in Eq. (4.8) a bit less accurate, but we still

expect it to be powerful.

The task will then reduce to putting parametrizations on the distributions Di(ε) = Di(ε, θi),

and then use Bayesian inference to constrain the parameters. Even though we call the jets

either a quark or a gluon jet, it is important to remember that the jets will contain both type

of particles. Both quarks and gluons will radiate gluons, a gluon will on average emit CA/CF

more gluons then a quark. A gluon can also split up to a quark and anti-quark pair. All in all

this means that we don’t expect the energy-loss distributions to be very similar to those we got

in Sec 2.4. Before we move on to the Bayesian analysis, we need to generate the parton tagged

jets spectra. This will be done in the event generator called Pythia.

4.2.1 Classifying Jets in Pythia

The first step will be to generate the spectra for the quark and gluon jets in Pythia (version 8)

[9]. Pythia is an Monte Carlo event generator where we for instance can simulate proton-proton

collisions. The nice thing about Pythia is that once a pp-collisions is simulated, we have access

to the whole history of the event. We can trace every single final state particles history.

We set Pythia to simulate proton-proton collisions at center of mass energy
√
s = 5.02 TeV.

To save time, we turn off hadronization. To reduce noise we also turn of initial state radiation

(ISR), multi-parton interactions (MPI) and soft QCD. Using these settings we get a very clean

event. We can then start generating the jet spectra using the anti-kt algorithm described in

Sec 1.5. The jet cone parameter R is set to 0.4 and we only record jets within the rapidity range

|y| < 2.8, this is the same as the data used from ATLAS.

How do we classify a jet as a quark jet or a gluon jet? The approach taken in the thesis is to try

matching the jets momentum direction with that of an outgoing hard parton. If the jet and the

partons momentum direction match each other within a certain range, the jet will be classified

as the same type as the parton. The matching is done in the following way. Once the jet finder

49



has analyzed the event, and has found n number of jets. We then find the angle θij between

the momentum of jet i and hard parton j. If this angle is less than the cone parameter R, the

jet is classified as initiated by the hard parton.

The upper panel of Fig 4.5 shows the resulting jet spectra after simulating 10 million events

in Pythia. As before, the solid lines shows a fit to the generated data with Eq. (4.7). The

lower panel shows the fraction of quark and gluon jets dN i

dpT
/dN

tot

dpT
for i ∈ (q, g). We see that

for pT < 200 GeV, the spectrum is dominated by gluon jets. While for pT > 200 GeV, it is

dominated by quark jets. We can understand this by looking at the relation of the momentum

fractions xi of the two interacting partons in the colliding protons to the transverse momentum

pT of the two outgoing partons, xi ∝ pT (Eq. (7.23) in [14]). For high xi (high pT ), the PDFs

of the valence quark dominate [12]. This means that most of the collisions will have quarks as

the initial particles in the hard scattering vertex, which again will give a dominance of quarks

as the outgoing particles.

The sum of the two contributions should sum up to the total jet spectrum. However, we see (in

the lower panel) that there is slight deviation in the low pT range. This has a simple explanation.

The total spectrum will contain small jets that are results of radiation, and will not be matched

to the outgoing partons. They will naturally have a small pT , and its the reason why we see a

slight deviation in the lower parts of the spectrum. However this is very small effect.

Figure 4.5: Shows the the differnet pT jet spectra generated Pythia with centre of mass energy√
s = 5.02 TeV. (upper panel) Red points are the gluon jets. Blue points are the quark jets,

and the grey point are the total jet spectrum. The red, blue and grey lines are the fit to the
respective data with Eq. (4.7). (lower panel) Shows the fractional contributions. Red line is the
gluon spectrum divided by the total, and the blue line show the same for the quark jets. Gray
line shows the sum of the quark jets and the gluon jets over the total spectrum.
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As a sanity check, Fig 4.6 shows that the jet spectrum generated in Pythia fits pretty well to

the measured cross section for proton-proton collisions.

Figure 4.6: Shows how well the Pythia jet spectrum fits (up to constant) with the measured
jets cross section.

4.2.2 Nuclear PDFs

An extra piece of physics we want to introduce into our quenching model are nuclear parton

density functions (nPDFs). This is the PDF of a bound nucleon in a nucleus. It is defined as

[15]

fAi
(
x,Q2

)
= RA

i

(
x,Q2

)
fi
(
x,Q2

)
, (4.9)

where fi
(
x,Q2

)
is the free nucleon PDF (those used in Eq. (1.49)), and i indicates the particle

flavour. The quantity RA
i

(
x,Q2

)
is the nuclear modification to fi

(
x,Q2

)
. The left panel of

Fig 4.7 shows a typical parametric fit of RA
i

(
x,Q2

)
.

Figure 4.7: Left panel shows a typical parametric fit for the nuclear modification RA
i in

Eq. (4.9), plot taken from [15]. The right panel shows the effect of including nPDFs to the jet
spectra in Pythia. The y-axis shows the ratio of the jet spectrum with nPDF over the spectrum
with just the regular PDF. It also shows the relative quark and gluon contribution.
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Nuclear parton densities can also be included in the Pythia simulation. The right panel of

Fig 4.7 shows the effect of including nPDFs. We see that including nPDFs into our model for

the meduim spectrum will help us with some suppression in the high pT domain. While the

opposite is the case for the low pT range. This can also be understood by the the relation

x ∝ pT . For high values of x, we see a dip in RA
i , giving the suppression shown in the right

panel in Eq. (4.9). While for x values around 10−1, we have the opposite effect.

4.2.3 Log-normal Energy-loss Distributions

Inspired the result in from Sec 2.4, we will now use log-normal energy-loss distributions for the

quark and gluon jets. The log-normal distribution reads:

Di(ε|µi, σi) =
1√

2πσiε
exp

[
−(log ε− µi)2

2σ2i

]
. (4.10)

In Sec 2.4 the energy-loss distribution was written as ωcD(x) = LogN(x|µ, σ) where x = ε/ωc.

We therefore rewrite it as D(ε) = LogN(ε|µ, σ) were µ = µ′ + logωc. We then recognize that

the parameter µi in Eq. (4.10) will be µ′i + logωc with the medium parameter ωc, defined in

Eq. (2.14). This means that we know the ωc dependence of our parameter µ.

We now have a model for RAA(pT |θ) with parameters θ = [µ1, µ2, σ1, σ2], where 1 is the quark

index and 2 is the gluon index. To give the model some extra constraining power (if there

is room for it), we introduce an extra parameter δ to scale the σRAA
parameter in the in the

likelihood, which again will be chosen to be a Gaussian

L
(
Rdata

AA (pT )
∣∣∣θ, δ) = N

(
Rdata

AA (pT )
∣∣∣µ = Rmodel

AA (θ, pT ), σ = δ · σRAA

)
. (4.11)

Info on how the integral for computing RAA is done numerically can be found in Sec A.2. The

priors for θ will be very ignorant. We choose the prior for all the parameters to be uniform,

from 0 to 5. While the prior for the δ parameter will be uniform from 0 to 1.

µi ∼ Uniform[0, 5],

σi ∼ Uniform[0, 5],

δ ∼ Uniform[0, 1].

(4.12)

Fig 4.9 shows the individual posterior distributions (left panels) and the traceplots (right panels).

The results are from running the HMC sampling for 20 000 samples (with 10 000 samples for

tuning). As we can see, the data struggles to constrain some of the parameters. Specially the

parameters µ1 and σ1 in the energy-loss distribution D1(ε) the quark jets. This might not be so

surprising, because we know from Fig 4.5 that for pT above 200 GeV the quark jet spectrum is

the dominant one. However, at this pT range the RAA measurements are very uncertain. The

parameter δ helps us to constrain the model also, without it the uncertainty in the parameters

would be even worse.
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Figure 4.8: Shows the Bayesian fit for the model defined above, together with the RAA data
from ATLAS.

Figure 4.9: The left panels shows the marginalized posterior distributions of the different
parameters in the model. The right panels shows the traceplots for the different

Fig 4.8 show the model prediction together with the data used to do the Bayesian fit. We

see that the model fits pretty well with the data, even though it struggles to constrain the
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parameters. We can therefore conclude that the model contains to many parameters for the

available data.

We therefore try to build a model containing more physics. Recall the BDMS estimate of the

mean energy-loss of a parton with Casimir CR traveling trough a static QGP.

⟨ε⟩ = αsCR

2
ωc. (4.13)

Now we impose that the mean energy-loss of the quark/gluon jets follow the same structure.

The mean energy-loss will be proportional to CR. We then write

exp

[
µi +

1

2
σ2i

]
= CRω −→ µi = log[CRω]−

1

2
σ2i , (4.14)

where CR = CF for quark jets (index i = 1), and CR = CA for gluon jets (index i = 2). This

means that we can reduce the number of parameters to 4, including the δ parameter. ω will be

a parameter that is shared between the two energy-loss distributions. Because of the expression

in Eq. (4.13), it is fair to assume that ω is proportional to the medium parameter ωc (defined in

Eq. (2.14)). Now we have the following parameters to constrain: θ = [ω, σ1, σ2, δ]. The priors

for the parameters will be

ω ∼ Uniform[0, 100],

σi ∼ Uniform[0, 5],

δ ∼ Uniform[0, 1].

(4.15)

We start by looking at the posterior density with the corner plot shown in Fig 4.10. For this

MCMC run we used HMC with 80 000 samples and 5000 samples for tuning. The mean and

standard deviation of the parameters in the posterior is

ω σ1 σ2 δ

57.75 ± 21.38 1.58 ± 0.51 2.04 ± 0.09 0.41 ± 0.09

We see that the δ parameter exhibit little to none correlation with the other parameters. Which

is a good thing, because it is in the model only to give it more constraining power. The

parameters σ1 and σ2 exhibits some correlation, but not very much. The pairs that show

significant correlations are σ1 and ω, and σ and ω. The mean value of ω is a bit misleading,

because the posterior for this parameter has a very long tail. This is an artifact of a very wide

prior range. The important thing to notice is that ω values below 20 is completely ruled out by

the data, and it has its peak round 30. Lets look at how well this explains the data. By looking

at the δ parameter, we can already anticipate that it will be a good fit. The reason for this is

that its peak value is well below 1, which means that it managed to ”shrink” the errorbars from

the experimental data.
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Figure 4.10: Corner plot of the posterior of θ = [ω, σ1, σ2, δ]. The upper panels shows the
posterior distribution of the individual parameters. The rest of the panels shows the correlations
between the parameters

55



Figure 4.11: Show the Bayesian fit vs the ATLAS data. Dark-blue dotted curve shows the
posterior expectation value

Figure 4.12: Shows the energy-loss distributions Di(ε). Blue curve(s) (left panel) is for the
quark jets, and red curve(s) (right panel) for the gluon jets. Figure shows all the models withing
one standard deviation of the parameter means.

Fig 4.11 shows that the model fits very well to the experimental data. However, the energy-loss

distributions shown in Fig 4.12 exhibits some unexpected features. Dg(ε) (dark-red) has a peak

that is located below 1 GeV, and even more surprising is that it is lower than the peak for

Dq(ε) (dark-blue). This is the opposite of the result in Sec 2.4. This might be an artifact of the

parameter constraint given in Eq. (4.14). Another thing worth mentioning is that the spread

(uncertainty) of the quark distributions is much bigger than the gluons. This is again because

the uncertainty in the data where the quark spectrum is dominant (pT > 200 GeV).

4.2.4 Model Validation

To truly validate the model, we should see if it can predict a different data set. Lets try to predict

the measurements of RAA at the same centrality class 0 − 10% from ATLAS at
√
sNN = 2.67

TeV [2]. First we must generate new spectra for the quark and gluon jets at the correct centre

of mass energy and and correct rapidity range |y| < 2.1. This is done the same way as described
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before. Fig 4.13 shows the resulting jet spectra at
√
s = 2.67 TeV. The jet spectra are quite

similar, but the quark and gluon fractions are a bit different.

Figure 4.13: Same as Fig 4.5, but with with center of mass energy
√
s = 2.67 TeV and rapidity

range |y| < 2.1.

We then use the model fitted in Fig 4.11 to predict the new data set. The left panel of Fig 4.14

show the model predictions against the data. The pT dependence of the model seems to be

pretty good. However, it looks like the model overestimates the amount of quenching.

Figure 4.14: (left panel) Shows model prediction vs RAA measurements from ATLAS at√
sNN = 2.67 TeV with jets with R = 0.4 and |y| < 2.1. (right panel) Shows the same as the

left panel, but with the ω parameter reduced by 30%.

It seems that the model has ”overfitted” a bit to the data at
√
sNN = 5.02 TeV. It might be
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that at
√
sNN = 2.67 TeV a medium with a different ωc (which consequently gives a different

ω) is produced. To demonstrate that this might be the case, lets do the exact same prediction

as in Fig 4.14, but with the parameter ω reduced with 30%. The result for this is given in the

right panel of Fig 4.14, the model can now explain the data very well.

We can get a very rough estimate of the difference in temperature by the fact that q̂ ∝ T 3 [13].

Assuming that ω is proportional to ωc which again is ∝ q̂,

0.7 =
ω2.76GeV

ω5.02GeV
=
ω2.76GeV
c

ω5.02GeV
c

=
q̂2.76GeV

q̂5.02GeV
=

(
T 2.76GeV

)3
(T 5.02GeV)3

−→ T 2.76GeV

T 5.02GeV
= 0.71/3 ≈ 0.89

(4.16)

This means that if the difference of the two centre of mass energies is the QGP (different ωc)

that is produced. The difference in temperature will be about 10%. This might be at the upper

end of what one might expect the temperature difference to be. However it is not that big of

a difference. It might be that some of the difference in the parameter ω comes from a poor

parametrization of the energy-loss distributions.

It is worth mentioning that if we try to predict the RAA data at
√
sNN = 2.67 TeV using the

model from [17] in Fig 4.3 we also get a similar overestimation of the amount of jet suppression

as shown in Fig 4.15. This may hint that a slightly different meduim is produced at
√
s = 2.76

TeV.

Figure 4.15: Shows the prediction of the model from [17] at
√
s = 2.76 TeV.
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Summary and Outlook

In this thesis I have represented a first attempt at extracting the the energy-loss distributions for

quark and gluon jets in heavy-ion collisions using Bayesisan inference. The motivation behind

this is that quarks and gluons are fundamental particles appearing the standard model of particle

physics. While quarks and gluons are not observable by their own, they are effective probes

of the QGP. By connecting the observed jets to the fundamental particles in the underlying

theory, one has the potential to learn a great deal about the plasma.

First we took a look at the BDMPS induced gluon spectrum for a hard parton traveling though a

uniform brick of QGP. We looked at its behavior in the low and high energy regime. Through the

Poisson approximation of the energy-loss distribution we could connect the BDMPS spectrum

to the total energy-loss ε. We then saw that the energy-loss distribution D(ε) for a single parton

traveling through the uniform brick exhibits a heavy tail towards higher ε. This means that

the mean energy-loss will be much higher than the peak (most probable value). We also saw

that the energy-loss distribution of the BDMPS spectrum mimics almost perfect a Log-normal

distribution. This gave the motivation for using the same parametrization for the energy-loss

distributions for quark and gluon jets.

Since Bayesian inference is the tool we used to constrain the parameters of the energy-loss

distributions, we spent a whole chapter discussing the basics of it. The focus of this chapter

was to show how this is done in practice using the Markov Chain Monte Carlo methods with

the Metropolis-Hastings (MH) algorithm. We looked at two specific step methods for the MH

algorithm. First the well known Random Walk Metropolis (RWM), and then the Hamiltonian

Monte Carlo (HMC) method. We then argued for why we should use the (HMC) method

whenever our models are high-dimensional. The reason for this is that HMC is much more

samples efficient than RWM.

As a warm up, we re-derived the results of [17] for the RAA data at
√
s = 5.20 TeV using HMC

rather than RWM (which they used). Then we spent some time defining what a quark/gluon

jet is, and how they were generated in Pythia. We then went on to define two models, both with

log-normal energy-loss distributions for the quark and gluon jets. For the first and most naive

model, we saw that the data struggled to constrain the parameters for the quark energy-loss

distribution, and argued that this might be because of the high uncertainty in the data where

the quark-jet cross section is dominant. We therefor concluded that this model has to many

parameters.

We therefore tried to introduce more physics (based on the BDMS estimate) into the second

model. This effectively reduced the number of parameters, which gave better constraint on the
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model parameters. This model fitted extremely well to the data. However, the resulting energy-

loss distributions looked a bit surprising. One would expect the peak of the gluon distribution

to be at a higher energy-loss than the quark distribution, just like the BDMS estimate gives,

but this was not the case.

The next thing we did was to try and validate the model on a different data set at a lower centre

of mass energy
√
s = 2.76 TeV. We saw that the model predicts the pT dependence of RAA

pretty well. However, it overshoots the amount of quenching by a bit. We also saw that this

was the case for the model defined by [17]. This might be an indication of over-fitting to the

meduim produced at an specific centre of mass energy. It is also possible that the both of the

models are bad, and don’t generalize well. A way to test this would be to evaluate the model

on a different observable at the same centre of mass energy.

The ultimate goal would be to get energy-loss distributions Di(ε) that would be consistent with

all the data sets, at least for the same type of medium (same centrality and centre of mass of the

collisions). That is, we want to be able to constrain the parameters on one set, and then be able

to predict the rest. This would then show the consistency of the factorization given in Eq. (4.8).

Another observable that could be used for either validation or parameter constraining, is the

nuclear modification factor for γ-triggered jets. This is when a jet and high energetic photon

is created back to back. As described in Chapter 2, since the photon is colorless it will not be

affected by the medium 1. Data for γ-triggered jets for PbPb collisions at
√
sNN = 5.02 TeV

from CMS can be found in [24]. To do this analysis one would then have to generate quark

and gluon spectra for this process in Pythia, as the jet spectra are treated as an input to the

model. Once this is done, we could do an ultimate check of consistency of the given model, and

hopefully extract some new information about the QGP.

1 It might interact with the electrical charge of the medium, but this effect will be much weaker than the QCD
interaction
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Appendix A

Numerical Integration of the

Convolution-integral

To do the Baysesian analysis we need to evaluate the convolution

dσAA

dpT
=

∫
dεD(ε)

dσpp

dpT
(ε+ pT ), (A.1)

which has to be done numerically. We use the package pymc3 to do the Bayesain inference. This

package require us to give an algebraic expression for RAA to do the sampling. We therefore

use Gaussian quadrature to approximate the integral in Eq. (A.1).

A.1 Gamma Distribution

To reproduce the results of [17], we have the integral

dσAA

dpT
=

∫ ∞

0
dx

ααxα−1e−αx

Γ(α)

dσpp

dpT
(⟨ε⟩ · x+ pT ), (A.2)

where x = ε/ ⟨ε⟩, and ⟨ε⟩ = βpγT ln(pT ). Introducing the variable change x′ = αx → dx = dx′

α

gives

dσAA

dpT
=

∫ ∞

0

dx′

α

αα(x′/α)α−1e−x′

Γ(α)

dσpp

dpT

(
⟨ε⟩
α
x′ + pT

)
=

∫ ∞

0
dx′

x′α−1

Γ(α)

dσpp

dpT

(
⟨ε⟩
α
x′ + pT

)
e−x′

.

(A.3)

This integral can now be approximated using Gauss–Laguerre quadrature, which can approxi-

mate integrals on the form (Chapter 25 in [?]):∫ ∞

0
dx f(x)e−x ≈

n∑
i=1

wif(xi) (A.4)

In our analysis we use the same number off integration points as [17] uses, n = 30.
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A.2 Log-normal Distribution

Lets look at the case inspired by [5], where the energy-loss distributions is given by a log-normal

distribution.

D(ε) =
1√
2πσε

exp

[
−(ln ε− µ)2

2σ2

]
. (A.5)

The convolution we have to compute is then:

dσAA

dpT
=

∫ ∞

0
dε

1√
2πσε

exp

[
−(ln ε− µ)2

2σ2

]
dσpp

dpT
(ε+ pT ). (A.6)

This can be well approximated using Gauss–Hermite quadrature where one can approximate

integrals in the form (chapter 25 in [3])∫ ∞

−∞
dx f(x)e−x2 ≈

n∑
i=1

wif(xi). (A.7)

It is quite easy to rewrite eq(A.7) to this form. First lets introduce the variable change y =

ln(ε)→ ε dy = dε. This gives

dσAA

dpT
=

∫ ∞

−∞
dy

1√
2πσ

exp

[
−(y − µ)2

2σ

]
dσpp

dpT
(ey + pT ) (A.8)

Notice that we had to change the lower integration limit. Now we can use the variable change

x = (y−µ)2√
2σ
→ dy =

√
2σ dx. The convolution then becomes

dσAA

dpT
=

∫ ∞

−∞
dx

e−x2

√
π

dσpp

dpT

(
e
√
2σx+µ + pT

)
≈ 1√

π

n∑
i=1

wi
dσpp

dpT

(
e
√
2σxi+µ + pT

)
. (A.9)
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