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Abstract

Naming code can seem like a simple task, however finding a good name can be rather

challenging. Entity names should be consistent and brief yet comprehensive when rep-

resenting the information each entity hold. What is considered a good name can be

highly debatable, although it usually involves descriptive names that can contribute to

readability and comprehensibility of source code. Bad code names can cause uncertainty,

potential future bugs and be misleading. For this reason, the task of naming code is vital,

hence there is a need of a system to improve and maintain it. To develop such a system,

there are requirements required to be specified to define the expected implementation for

certain entity names. These requirements are encoded into software in a domain-specific

language, granting executable code to be generated from the expressed requirements.

As a result, this name analysis tool provides programmers to perform code analysis on

Java source code checking if the entities act in accordance with the requirements of their

names. Additionally, the result shows insights of how contributions from linguistics can

be valuable for software development and can be used to analyse software languages, such

as entity names.
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Chapter 1

Introduction

The former executive officer at Microsoft, Bob Muglia, once said at a Visual Studio event

in 2010 that “There is no question that the world runs on software. Just look around

you. Look at everything.” [59]. And indeed, software seems to be the underlying power

of every system and technology that we interact daily with in our lives today. The world

is steadily becoming more digitalised for every day that passes by [79].

Correspondingly, there is a growth of open-source software (OSS) [26]. Prominent

examples of open-source software are the Apache Software Foundation [29] and the Eclipse

Foundation [27]. In fact, Apache Software Foundation claim to be the biggest open-source

foundation with over 49 000 code contributors [29]. Open-source software stimulate the

development of open collaboration contributed by the volunteers, where contributors

benefit from and build on each others skills [51]. In addition, this can strengthen the

trust between the software and the users, due to the fact that the users can contribute

to changes and/or improvements. As a result, a good amount of proprietary software

depend on open-source software.

Software quality is a crucial substance for a successful software programme [42],

whether it is of a proprietary or open-source software. Code readability and comprehen-

sion are two of many factors assuring software quality [20, 21]. Lawrie et al. demonstrate

that names of entities—such as method and variable names—affect code comprehension,

due to such names being one of two main sources of information about a domain [49].

Therefore, programmers follow naming conventions to maintain code quality [16]. How-

ever, challenges of manually following coding conventions throughout the whole code base

may arise, especially in large sized code base. Likewise, although coding conventions are
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followed, there is no guarantee that programmers will choose names that correctly and/or

precisely represent the implementation of the entities.

These considerations illustrate an important aspect: the art of naming is vital in pro-

gramming and there is a need of a system to improve it. This allows us to formulate the

goal of this thesis, which can be represented by the following problem statement: To

explore how a domain-specific language (DSL) with approaches from linguistics can be

designed to allow programmers to express a system for analysing names in Java source

code. This problem statement encompasses the following research questions: Are ap-

proaches from linguistics useful for Java name analysis? And if so, how can approaches

from linguistics be used to analyse names in Java programs?

Thus far, this chapter introduces the motivation and research goal of the work de-

scribed in this thesis. The remaining structure is as follows:

Chapter 2 presents an overview of the background. This includes a brief description of

the programming language Java, an explanation of the roles that names in software

languages can have and an introduction of linguistic approaches. Additionally,

the last part of the background discusses the notion of domain-specific languages

(DSLs), the language workbench Eclipse Xtext and the JavaParser library.

Chapter 3 presents the name analysis tool. This includes an in-depth description of the

usage of the tool involving code examples.

Chapter 4 presents the implementation of the work in this thesis. It starts by explaining

the architecture of all the involved components. Then, describes how the technical

work is implemented in Java, Xtext and Xtend.

Chapter 5 presents an evaluation of the developed name analysis tool. The thesis con-

ducts a case study and implements the lexicon in the case study. A description of

a few implemented entries will be given.

Chapter 6 presents the work related to this thesis. This encompasses research around

the act of naming in software languages, as well as how linguistics have been used

to support software programs.

Chapter 7 presents a conclusion and suggestion of several potential directions for further

development of the work in this thesis.
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Chapter 2

Background

In this chapter, we present a brief overview of the background the thesis is based upon.

We start with some details of the chosen programming language, Java. Following this,

we continue with a discussion on the importance and significance of names in software

languages, and then present some approaches from linguistics that we employ in the

thesis. Additionally, we discuss the notion of a domain-specific language (DSL), and give

an overview of the language workbench Eclipse Xtext, used to implement DSLs. Finally,

we give a brief introduction to JavaParser, which is a Java open-source library for parsing

Java source code.

2.1 Java

The Java programming language is among one of the most popular programming lan-

guages still actively in use today. It is a high-level, object-oriented, concurrent, strongly-

typed and class based general-purpose programming language (GPL) developed by Sun

Microsystems that Oracle Corporation later acquired [66, 67]. GPLs are languages for

computer software, designed to build various of software and applications, without being

limited to a specific domain or set of tasks. Java is known for being designed so that

developers can write once, run anywhere (WORA).

According to the annual Developer Ecosystem Survey conducted by JetBrains1, Java

is the most used programming language in countries such as South Korea, China and

1https://www.jetbrains.com
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Germany in 2021 [41]. It is especially a popular choice in desktop computing, mobile

computing, numerical computing and games [34]. The following list shows a few usage

activities of Java during the last decade [68].

• In 2012–2014, up to 97% of enterprise desktops ran Java.

• In 2015, 13 billion devices ran Java.

• In 2017, there were 21 billion cloud-connected Java Virtual Machines (JVMs).

• In 2020, Java remain on the top as number one programming language for developers

The architecture of Java includes three components that are fundamental: Java SE

Runtime Environment (JRE), Java SE Development Kit (JDK) and Java Virtual Ma-

chines (JVM) [66]. The JRE is the environment needed to execute software written in

Java. It provides various JVM, libraries and other necessary components as part of the

JDK. The JDK is the development kit required to develop Java software. It includes

the JRE and several development tools like compilers and debuggers. The JVM is a

virtual machine that can be on several platforms making it possible to run Java software

anywhere. The virtual machine component is the reason Java is considered WORA.

2.2 Names in Software Languages

Through good software quality assurance methods, a programme is more likely to be

much more efficient and reliable. One of the dimensions that affect software quality is

naming. Naming code entities can be among one of the hardest, yet important and major

part of coding; thus, it is essential to invest in and focus on names in software languages.

Karlton is famous for demonstrating this with the following saying: “There are only two

hard things in Computer Science: cache invalidation and naming things.”2.

2.2.1 Importance of Names

Names of entities play a significant part in code quality [2]. A good name has the ability

to help programmers gain a deeper understanding of the code more efficiently. Being able

to analyse and modify code, one must first understand what information names of entities

hold, like for example, the underlying information of a variable. Thinking about the code

2https://martinfowler.com/bliki/TwoHardThings.html
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can be extremely challenging if it is not obvious what a certain variable represents. This

is the reason for why good entity names can be quite useful to help readers write and

comprehend code better.

There are several entities that programmers need to name. According to Hermans,

such entities can be referred to as identifiers [36]. Identifiers can be variables, methods,

functions, modules, libraries, namespaces or types like classes, interfaces, structs, dele-

gates3 or enums. Although, all of these entities are categorised as an identifier, they are

named differently. For example, class names are different from method names, method

names are different from variable names [18, 38]. Why names are so influential will be

discussed in the following paragraphs.

Generally, names occur quite frequently in code, which makes up a great deal of a

code base. Approximately more than 70% of all characters in the source code of Eclipse

are identifiers [21]. This essentially means that code names are something that most

programmers will be reading. Therefore, if the names are discursive, it will naturally be

problematic. Names need to be concise and consistent.

Furthermore, the amount of times a programmer refers to names when reviewing

code should be taken into account. Research indicate that programmers regularly talk

of and rely on names to comprehend the behaviour of a programme during code review

discussions or maintenance [87, 2]. Inspecting peers’ source code manually is a practice

that is still valuable for detecting software defects and adhere to team standards [1].

Allamanis et al. [2] examined in total 169 code reviews from randomly selected product

groups from Microsoft. Among these code reviews, 18% were coding convention feedback,

9% talked about identifier names and 2% suggested coding formatting changes. This

further shows that even after the code is completed, peers might not be satisfied with the

name and suggest for changes or discussions.

Another reason for why names matter is for the fact that they can serve as a form of

documentation [24]. According to Feitelson et al., not only are names implicitly docu-

mentations, but there are cases of names being the only documentation in the code [24].

In addition, names as documentation are accessible wherever they are written. As they

make up a big deal of the code base, they become the most read documentation alongside

with comments in the code [36].

3https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/
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Beacon

Names in software programs can be great beacons [12, 86]. A beacon is usually a piece of

code, name or feature that indicates what type of structure or operator is present in the

source code. This can ease code comprehension, due to the ability for programmers to

see if a programme contains any particular algorithm, data structure, operators or other

patterns more efficiently. To demonstrate the definition of a beacon, using an example

from Hermans [36], one can say that in a programme that has variable names called

tree and root, with the field names left and right, the peer reviewers can reason about

this programme having a data structure of a binary tree. Figure 2.1 is a post-order tree

traversal in Java that shows an example of this.

1 class Node {

2 int key;

3 Node left, right;

4 public Node(int item) {

5 key = item;

6 left = right = null;

7 }

8 }

9
10 class BinaryTree {

11 Node root;

12 BinaryTree() { root = null; }

13 void printPostOrder(Node node) {

14 if (node == null)

15 return;

16 printPostOrder(node.left);

17 printPostOrder(node.right);

18 }

19 }

Figure 2.1: Post-order tree traversal sample in Java.

As identifier names seem to be more important than just indicating the semantics of

the identifiers, they can be quite useful when used right. Names are in the majority of code

base, ergo they are crucial. When programmers choose poor names for their identifiers,

for example, creating names that involve unrelated words to the implementation of the

identifier or violate naming conventions, it can demolish all the features that a name

can have. Not only can poor names have less functions, but they can also increase

software defects with error insertions or be misleading [36]. Consequently, names are

extra important; good names increase comprehension, bad names increase software bugs.
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2.2.2 Difficulty in Naming

Naming identifiers is not as easy as it may seem to be [12]. Indeed, it is difficult to select

a name that accurately represents a piece of source code yet at the same time is clearly

understood and interpreted the same way by all readers. When reading a call to a method

with a vague name, one will need to spend some time looking at the implementation in

order to understand what the method does. There is currently no agreed standardised

format among programmers on how to name code; these tasks are usually subject to

each individual’s personal experience—thus, developers rely on their own creativity and

discretion. Moreover, names are oftentimes coined in a rush while solving an issue, hence

the brain is normally under pressure and will most likely not put too much effort when

choosing a name [36].

Several major companies try to impose a set of guidelines and standards on specific

software languages recommending how they should be written in various aspects; these are

called coding conventions [2]. The purpose of adapting and utilising coding conventions

is to improve readability, and consistency within the use of a software language to ease

software maintenance. While following coding conventions are recommended and have a

large impact on software quality and maintenance [15], compilers do not require them.

Naming conventions are among the many coding conventions. They make programs

easier to understand and facilitate comprehension by specifying identifiers for variables,

functions, constants, types, and other entities. For example, naming convention for

method names in Java established by Java community [69] will be expressed like this:

greet();

greetDog();

getDogName();

Here method names should include verbs, and every first letter of a word in the name

should be capitalised, except from the very first letter of the name. Additionally, all

spaces are removed4 [46]. Similarly, one of Python’s coding conventions is called Python

Enhancement Proposal 8, also known as PEP 8, written by Rossum et al. [81]. This is

one out of several PEPs that has been created. Below is an example of PEP 8’s naming

convention for method names.

4FORTRAN used to allow spaces in identifier names, saying ”consistently separating words by spaces
became a general custom about the tenth century A.D., and lasted until about 1957, [...] .” [40].
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greet()

greet_dog()

get_dog_name()

This convention is similar to Java’s convention. However, all letters are lowercase,

and words are separated by a single underscore [81]. There are multiple choices of coding

conventions available, making it hard for programmers to choose which convention is

more superior than others, as well as be on the same convention when coding with peers.

The Hungarian notation, developed by Simonyi, is another naming convention that

encodes the identifier’s type and intention or kind into the name itself [75]. Simonyi

described this as part of his doctoral dissertation [74], which later became the standard

convention inside Microsoft [75]. The following illustrates an example of this convention.

bIsDog

nDogs

strDogName

The first name bIsDog is a boolean variable the second nDogs denotes the dog count,

and the last strDogName is a string that represents the dog name. This convention was

designed to not depend on any programming languages, thus can be used and found in

various of languages. It is especially helpful for languages that do not explicitly declare

or have much data types, like Basic Combined Programming Language (BCPL)5 that is

no longer commonly used. Including the types into the names can save programmers a

lot of time when comprehending code, additionally can improve readability.

2.2.3 Name Quality

There are many different perspectives on what defines the quality of a name. Researchers

in the field who studied software names do not all share the same view on this matter.

Butler et al. [14] did an empirical study resulting in a collection with definitions of what

makes bad names. Table 2.1 is a sample of this collection.

5”The most significant simplification is that BCPL has only one data type—the binary bit pattern—
[...]” [71].
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Name Description Bad name example
Capitalisation
anomaly

Identifiers should be appropriately capi-
talised.

pAgECounTEr

Dictionary
words

Identifiers should be composed of words found
in the dictionary and abbreviations, and
acronyms that are more commonly used than
the unabbreviated forms

strlen

Excessive
words

Identifiers should not be composed of no more
than four words or abbreviations.

convert the page

to raw int bits

Short
identifier
name

Identifiers should not consist of fewer than
eight characters, with the exception of: c, d,
e, g, i, in, inOut, j, k, m, n, o, out, t, x,
y, z.

name

External
underscores

Identifiers should not have either leading or
trailing underscore.

count

Table 2.1: Sample of naming convention from Butler et al. [14].

The naming convention from Butler et al. go against the Hungarian notation from

Simonyi. The name bIsDog will be seen as a good name according to the Hungarian

notation, whereas according to Butler et al. this name is too short for an identifier name

containing less than eight characters, hence will be considered as a poor name. On the

other hand, Butler et al. and Allamanis et al. share some views when it comes to good

naming practices. Allamanis et al. value consistency within code base [2], which Butler

et al. seem to agree with based on the naming convention creation. Naming conventions

are essentially about keeping code names consistent throughout the whole code base.

Feitelson et al., who did research on how to select better names, express that naming

is problematic partly because names stem from natural languages that can be ambigu-

ous [24]. According to the experiment in the study, when programmers chose a specific

name for a variable—even though they all chose different names—the majority of their

peer programmers would still understand the newly chosen name. Feitelson et al. called

the occurrence, where most names have the same pattern with only a small change, for

name molds. An example of a name mold is shown in Table 2.2. The word “treat” in

Table 2.2 can additionally appear in both singular or plural form. There exist many types

of name molds, however, involving less molds has higher chance for readability and code

comprehension. Feitelson et al. developed a model involving a three-step process of how

to name better [24]. Following the model can result in names with more use of concepts,

that are longer and with higher quality. The three-step process model is as follows:

• Select the concepts to include in the name.

9



Mold
treat

max treat

max treat per month

treat per month

max monthly treat

max month treat

max treat num

treat max num

max number of treat

max num of treat

max treat amount

max acc treat

max allowed treat

monthly treat limit

Table 2.2: Name mold example [24].

• Choose the words to represent each concept.

• Construct a name using these words.

Gresta et al. carried out an empirical study of naming practices in Java projects,

where eight identifier categories were found from 40 open-source projects [35]. The study

indicate that most identifier names are based on the context, hence are context-specific.

Binkley et al. suggest that a good name is a name that has a limited length, as well as

limited vocabulary [11]. One of the reasons for this is due to longer names taking a toll

on the programmer’s memory. Meanwhile, Hofmeister et al. express that abbreviations

and names consisting of a single letter, such as Hungarian notation, are poor naming

choices and will hinder code comprehension [37].

2.3 Approaches From Linguistics

The study of language scientifically is called linguistics. It is the formal studies of the

structure, use, and meaning of language [85]. Linguists analyse all aspects of language,

including cognitive and social aspects, as well as the history of, connection between and

changes within language families [64]. Linguistics is a multidisciplinary field which liaises

closely with other disciplines and fields in natural sciences, social sciences and formal

sciences.
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There are bridges between linguistics and neuroscience—the study of the nervous

system and human brain—especially studies of brain structure and brain function [77].

It is also a multidisciplinary field that draws with other disciplines such as linguistics,

computer science, psychology, sociology and more. Hence, neuroscience is relevant for

linguistics when studying how languages are used, impact and stored to the human brain.

Having clear and consistent names that follow a systematically formatting rule of how

to name identifiers has a higher chance of helping the brain to cognitively process the

code [36]. Butler et al. explored the influence names have to the cognitive processes

when comprehending programs [16]. Naming conventions show to require less cognitive

processing, according to the study from Butler et al., thus aid in code readability and

comprehension. Identifier names such as prntmn is more challenging to understand than

names like printMethodNames where it is clearer with all the words spelled out, thus

creates less mental effort despite being much longer. According to the study by Allamanis

et al., accurate and descriptive names are vital for readability of code, especially from

a cognitive perspective [3]. Poor naming choices and linguistic antipatterns, such as

misleading names, have higher chance leading to defects in the software. Arnaoudova et al.

describe linguistic antipatterns as recurring poor practices in the naming, documentation,

and choice of identifiers in the implementation of an entity, where 17 types of linguistic

antipatterns are related to inconsistency [5].

2.3.1 Natural Language Processing

Natural language processing (NLP) is a field in computer science that also connects

with linguistics [60]. Both computer science and linguistics study languages, such as

syntaxes, semantics and pragmatics. Not to mention, both fields are also used by humans.

NLP brings the two together by studying how languages are processed by computers.

Linguists use computers to comprehend and analyse languages, meanwhile programmers

use linguistics to improve their programming [10, 19].

There are a lot of use cases for NLP in artificial intelligence, machine learning and

deep learning [19]. Many programming languages provide a great variety of tools and

libraries for solving NLP tasks, such as programming language Java and Python. NLP

supports the development in intelligent virtual assistants like Apple’s Siri, Amazon’s

Alexa, Samsung’s Bixby and Google Assistant [6, 44, 45]. Virtual agents use speech

recognition to recognise and process human speech commands into written text when

humans talk to them, and then generate an appropriate natural language response back.

Another software programme NLP works behind is the sentiment analysis of social media.

11



NLP can reveal the emotions that lay in the language used in posts, reviews, reactions and

messages by consumers of social media. These emotions are insights of veiled data that

can be used for business purposes such as advertisement campaign, product feedback,

audience targeting and more. There are also NLP solutions in search engines to, for

instance, collect the synonyms of the words users search to provide the best solution

back as possible.

To solve complex NLP tasks, the tasks are usually broken down to more specific tech-

niques, where each technique works on its own way of processing the software language.

Examples of such techniques will be discussed in the following.

Part of Speech Tagging

Part of speech tagging refers to classifying each word of a sentence into categories with

similar grammatical properties, based on the context and role of the word explaining its

usage [58]. These part of speech categories have many names, including the term word

class, where the English language has 36 word classes according to the Penn Treebank

Project [54]. Some examples of these are: conjunction, cardinal number, determiner,

foreign word, preposition, adjective, noun, pronoun, adverb, interjection, and verb. part

of speech analysis must be done separately for each individual language, as most languages

contain different amounts and types of classes. Most languages have classes noun and

verbs, however, some languages have several variations of the same class6

A single word can have several different meanings depending on the sentence it is

in, ergo can serve as multiple classes. To demonstrate this the word “watch” can be a

noun meaning a timepiece usually worn on the wrist in a sentence like “she was gifted a

watch”, or it could be a verb implying someone to look out, be alert, look at or observe

something like for instance “can you watch my dog? He is dangerous, so watch out”.

The word “well” can be classified up to at least five classes; verb, adverb, noun, adjective

and interjection. The classes are shown as tags when analysing words, which means the

sentence “print the bad method names” can result in the part of speech tags “VB DT

JJ NN NNS”, where VB stands for verb, DT for determiner, JJ for adjective, NN for

singular or mass noun and NNS for plural noun.

6An example of this is the Japanese language with at least two categories of the adjective class [63].
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Red

Burgundy Auburn

Yellow

Figure 2.2: Hyponyms and hypernyms example.

Synonyms, Hyponyms, and Hypernyms

Most words have synonyms—semantically equivalent word or expression—which are syn-

tactically different from the original word. In most cases, replacing a word in a sentence

with its synonym will not significantly—if at all—affect the meaning and essence of the

original sentence. However, not all words that are synonyms will make sense in all types

of sentences, hence it is not a bulletproof check. Some synonyms of “create” are “gen-

erate”, “build” and “design”, and the sentences “create new language”, “generate new

language”, “build new language”, and “design new language” all yield either the same

meaning (for a non-computer scientist), or four different meanings (for example, for a

software language engineer).

Furthermore, synonyms can be hyponyms or hypernyms. Hypernyms are words that

are general categories for specific words. Those specific words in a hypernym category

are called hyponyms. Figure 2.2 shows an example of hyponyms and hypernyms. From

the example, the word “Colour” is a hypernym, and two of its hyponyms are “Red” and

“Yellow”. These two hyponyms are considered co-hyponyms, since they belong in the

same hierarchy level and share the same hypernym. Hyponyms can be hypernyms too for

the hyponyms categorised below them in the hierarchy. This means that if the hyponym

word “Red” has “Burgundy” and “Auburn” as hyponyms, then “Red” is also a hypernym

for the two co-hyponyms below it.

Sentiment Analysis

Sentiment analysis can unveil subjective information, such as the attitude and emotions,

of sentences [25]. It is often used to analyse digital reviews or feedback and categorise

them, as well as for easier recognition of what public opinions says from social media.

There are usually three common accepted sentiments: positive, neutral and negative.
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Some words and sentences can have opposite or several sentiments depending on how it

is expressed and worded. A word such as “print” is neutral, but can result in a different

sentiment that is either negative or positive when combined with other words. For ex-

ample, “print error” typically gives off a negative sentiment, whereas “pretty print” will

result in a positive sentiment. Just as how hard it is for humans to detect the right emo-

tions behind natural speeches and texts, it can also be as challenging to programmatically

draw out the right sentiments from natural languages.

Linguistics involve many more subfields and areas. These can be categorised into

two fields: theoretical linguistics and applied linguistics [52, 72]. Theoretical linguis-

tics is mainly about constructing linguistic theories. Meanwhile, applied linguistics is

more practical compared to theoretical linguistics. This field utilises the knowledge of

languages, such as how languages are learned and used, for solving language related prob-

lems in the real world. Language related problems are issues that can arise when, for

example, studying how computers process and analyse natural languages. This involves

NLP that is mentioned above with a few NLP techniques explained.

2.4 Domain-Specific Languages

Domain-specific languages (DSLs) are programming languages, or specification languages,

that specialise in specific domains with fixed set of conditions [31]. The domain of a DSL

can be expressed as the set of problems it can model and solve. It is not possible to use it

like a programming language such as Java, Haskell or C, due to DSLs’ focus on a specific

domain. Examples of some known DSLs are HTML (for web pages), SQL (for querying

relational databases), CSS (for style sheets) and LaTeX (for writing documents).

Languages like JavaScript, C++ and Python are considered as GPLs. There are ad-

vantages and disadvantages with both DSLs and GPLs. Compared to a GPL, a DSL

favors its intended domain more by being exceptionally specific and sacrificing gener-

ality and flexibility. Additional benefits of using DSL is making code easier to read,

hence, mistakes and errors are more easily preventable [84]. Domain-specific concepts

can enable abstractions and model assumptions, improving analysing and designing DSL

applications. It is important being able to define the scope of the DSL, to not create an

unnecessary big and complex language. This requires knowing what to add and what

to keep out of the DSL. The DSLs’ limited scope makes it easier for users to learn the

language, in contrast to a GPL. However, committing to building or using a DSL can
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involve adversity, especially when one is not comfortable using DSL or know its concepts

and principles. In many cases, DSLs are used by domain experts within a non-software

field, where the users do not need to have any other technical knowledge outside of the

domain considering it is domain focused.

The execution engine of a DSL can either be an interpreter or a compiler, also known

as code generator [84]. DSL with an interpreter reads in the DSL script and executes it at

run time. In contrast, a compilation generates the DSL programme often first into a high

level language source code like Java, and then runs it directly on the targeted platform.

DSLs are mainly divided into two groups: internal and external DSLs. Some DSLs

are embedded into GPLs, these are classified as the internal DSLs that work within an-

other programming language. Naturally, internal DSLs are limited to the compiler or

interpreter, syntax, model and concepts of the host language [80]. This can be seen as

an advantage as it can reduce the cost of building. Internal DSLs act quite similar to

application programming interfaces (APIs), and at times it can be difficult to distinguish

the two, thus it is also referred as fluent interfaces [84, 31]. GPLs that tend to use

internal DSLs are for example Lisp, Ruby, Haskell, Groovy and Python. On the other

hand, external DSLs are mainly built from scratch. This way, the external DSLs parses

independently and is not tied to any host GPL. Everything can be customised from the

parsing to the execution of a programme. As beneficial as it sounds, it also increases the

cost of building the DSL. A lot of time is needed to create a well-designed language that

is so fully customised from scratch. However, fortunately external DSL have tools that

diminish the time invested into building it. Such tools can be helpful integrated develop-

ment environments (IDEs) that are supportive and aware of the language’s needs. Many

programmers today use Eclipse as their preferred IDE [9]. Using IDEs can enhance user

experience and increases the chances of the DSLs to be embraced and successful. IDEs

can support features like syntax highlighters, auto-code-completion, immediate feedback,

hyperlinks, debugger, visualisations and more. These features have the potentials of

making it easier for new programmers to learn, use, develop and maintain DSLs.

One of the important elements of DSLs—also found in other software languages—is

the concrete syntax. Textual DSL, graphical DSL, symbolic DSL, tabular DSL or a mix

of these are the main classes for DSL’s concrete syntax, denoting the notation that users

can express programs [84]. The most common type is the textual DSLs [31], which uses

textual notations or syntax. A Graphical DSL requires help from a tool such as language

workbenches. Language workbenches are tools that work well as meta-languages in their

normally own powerful IDEs to ease the cost of creating DSLs, as well as can efficiently be
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integrated [23]. A few examples of language workbenches are: Eclipse Xtext7, JetBrains

MPS8, Spoofax (SDF/Stratego)9 and Eclipse Sirius10. Eclipse Xtext and Spoofax are

textual DSLs [22, 43], meanwhile JetBrains MPS is projectional DSL [83] and Eclipse

Sirius is graphical DSML11 [82]. JetBrains MPS supports a mixture of multiple types

of notations (textual, symbolic, graphical and tabular), hence, it is called a projectional

DSL. All these mentioned language workbenches are compatible with Java as the target

programming language for model transformation and code generator.

2.5 Eclipse Xtext

Eclipse is an integrated development environment (IDE), widely chosen as the Java IDE

of choice [33]. Meanwhile, Xtext is an open-source Eclipse Framework that can be utilised

for implementing DSLs, editor plugins and text editors for web browsers with the Eclipse

IDE integration and IntelliJ IDEA [9]. Xtext makes it possible to design languages with a

full infrastructure as a complete programming language and an IDE with features. Every

single aspect of the implementation can be customised by the programmer, although

Xtext also includes default implementations for aspects not needed to be customised.

The grammar language of Xtext is what defines Xtext as a textual language [8]. A

grammar is a set of rules specifying the correct structures of language elements, like

for example how they should be formed and expressed in a language [9]. It can also

be considered as a description of the concrete syntax of a software language. Xtext

automatically handles most of the building and creation of the abstract syntaxt tree

(AST), hence only the grammar specifications is needed to start implementing the DSL.

The grammar can be simple, and as long as there is a grammar, Xtext will generate and

arrange the rest of the concepts. It also supports reuse of grammars that have already

been specified before [8]. This means that when another grammar is included into a

language, it will be possible to refer to the rules of that grammar, as well as overwrite its

rules. In other words, the terminal rules that are declared holds higher priority than the

terminal rules that are imported. When the grammar is specified, the code for the lexer

and parser get automatically generated, and the DSL is ready for use.

7https://www.eclipse.org/Xtext/
8https://www.jetbrains.com/mps/
9https://www.metaborg.org/en/latest/

10https://www.eclipse.org/sirius/
11https://ieeexplore.ieee.org/servlet/opac?bknumber=7043955
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Java is compatible with Xtext and can be used for customising the implementation of

DSLs, although, Xtext promotes the use of Xtend [9]. Xtend is a programming language

that resembles Java, a dialect of Java, that can optimise code generation. It is allegedly

easier to use than the standard Java, due to its greater flexibility and improvement on

many aspects, yet in the end translates to Java source code. Xtend is fully inter-operable

with Java, considering it is similar and supports every aspect of Java, especially the

type system. This statically typed language also ensures much more clearer and cleaner

programs.

When creating an Xtext project, the Xtext wizard will generate a few additional

projects including the one initially created. For example, the following is the specifications

of the project creation:

• Project name: org.example.entities

• Name: org.example.entities.Entities

• Extension: entities

Then, the following Xtext projects will be created:

• org.example.entities: The main project (including the grammar specifications

and components that are independent from the UI).

• org.example.entities.ide: The IDE (Include components related to the UI and

independent from Eclipse).

• org.example.entities.tests: The tests (including JUnit tests that do not de-

pend on the UI).

• org.example.entities.ui.tests: The UI Tests (including JUnit tests that de-

pend on the Eclipse UI).

• org.example.entities.ui: The UI (including components related to the Eclipse

UI).

Xtext generates an editor that is by default an Eclipse plugin. This editor can be cus-

tomised, in addition to having the possibility of creating a rich client platform (RCP). In

short, RCP application uses the Eclipse framework to create a simpler version of Eclipse

itself, but independently supporting the implemented language and does not include un-

necessary features originally from Eclipse [55]. The Xtext editor can generate editors

for IntelliJ IDEA and also includes a web editor support. Integrating text editors in
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web application was offered since version 2.9 [32]. According to Eclipse Xtext documen-

tations [28], JavaScript has been used to implement the text editors, and services like

code completion is handled through HTTP requests to a component on the server-side.

Xtext’s supported clients are three JavaScript text editor libraries: Orion12, Ace13 and

CodeMirror14.

2.6 JavaParser

JavaParser15 is an open-source library that allows interactions with Java source code

through a Java abstract syntax tree (AST) [62]. The library helps parsing source code

and provides aid to navigate around the AST, giving programmers the ability to traverse

the code without having to write the tree traversal code from scratch. JavaParser can

also unparse—that is, pretty print—an AST back to Java source code. The fundamental

feature of the library is to provide programmers the capability of building their own code

by manipulating the structure of the source code. The library is a strong tool to analyse,

transform and generate code base up to Java 12.

To understand how JavaParser works, one must understand the notion of an abstract

syntax tree first. Simply explained, AST in Java can be seen as abstract objects repre-

senting the source code in an environment in Java. Figure 2.3 illustrates a general AST

example. The object representations are represented as a tree, starting with a single

point that is considered as the root of the tree. From this root and downwards, there

are branches forming out independently representing a code statement. At the end-tip

of every branch of the AST there are leaves. A leaf is the last object with no following

objects forming out of it, representing the last code statement in this route. Similarly to

a real tree, there are many branches forming out independently from the main source,

the roots. From there, more branches can grow out from a branch, but once there is a

leaf, that is the last terminal element of a tree.

Variable references and method calls tend to come from various parts of the source

code. Figure 2.3 shows an example where there is a method call aMethodACall coming

12https://projects.eclipse.org/projects/ecd.orion
13http://ace.c9.io/
14http://codemirror.net/
15https://javaparser.org/
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CompilationUnit

aPackage anImport aClassDefinition

aField aMethodA

aVariable

aMethodB

aMethodACall

Figure 2.3: JavaParser library AST example.

from branch aMethodB; however, is related to another branch aMethodA. These connec-

tions are not picked up by the syntax trees built with JavaParser. To detect related ele-

ments and create relationships across branches, a symbol solver is needed. The JavaSym-

bolSolver16 is integrated in JavaParser for adding connections between objects relating

to each other.

There are many ways of creating an AST from the source code. One way of gener-

ating an AST, is to parse the source code and output it as a YAML17 file in the com-

mand line. Figure 2.4 demonstrates an example of how this can be implemented. The

compilationUnit is the root of an AST, and to produce an AST, the StaticJavaParser

will parse through a file with the help of a FileReader. Then, the YamlPrinter class

from JavaParser is utilised to print out the AST of the source code.

1 public class printAST {

2 public final static String FILE_PATH = "GoodNumber.java";

3 public static void main(String[] args) throws IOException {

4 CompilationUnit compilationUnit = StaticJavaParser.parse(new

↪→ FileReader(FILE_PATH));

5
6 YamlPrinter printer = new YamlPrinter(true);

7 System.out.println(printer.output(compilationUnit));

8 }

9 }

Figure 2.4: JavaParser YAML printer implementation in the printAST Java class.

The AST is being generated based on the Java file called GoodNumber. Figure 2.5

shows the content of this file. It is kept short with one method for the simplicity of the

16https://github.com/javaparser/javasymbolsolver
17https://yaml.org/spec/history/2001-08-01.html
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1 public class GoodNumber {

2 public int getNumber() {

3 return 8;

4 }

5 }

Figure 2.5: An example Java source code file called GoodNumber.

AST that will be generated, as ASTs easily grow bigger the more code that is involved.

As a result, Figure 2.6 shows the output from parsing and printing the GoodNumber source

code to a YAML file.

The YAML output is normally a sufficient representation of the AST, as it shows

everything similarly according to the hierarchy system. However, it can also be further

developed to an actual tree representation as Figure 2.7 shows, resembling the previous

AST mention from Figure 2.3.

Analysing Java source code becomes low-effort with this library. Figure 2.8 demon-

strates an example of an analysis of the Example Java file. This demonstration shows

how method names can be printed with the help of the library. Similarly to Fig-

ure 2.5, the implementation starts with the compilationUnit that parses through the

Java source code. Additionally, the class MethodNamePrinter extends the abstract class

VoidVisitorAdapter<Void>. Here the implementation of the visit is overriden with the

MethodDeclaration class, which is the preferred class when analysing methods. Even-

tually, super is called to make sure the respective child nodes are visited and to prevent

any unwanted performances. Then, the method names are retrieved with the getName

method from MethodDeclaration. And at last, the result will print all the method names

in the Example Java file. For more details, the JavaDoc18 has further information of the

packages and use cases from the library.

18https://www.javadoc.io/doc/com.github.javaparser/javaparser-core/latest/index.html
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---

root(Type=CompilationUnit):

types:

- type(Type=ClassOrInterfaceDeclaration):

isInterface: "false"

name(Type=SimpleName):

identifier: "GoodNumber"

members:

- member(Type=MethodDeclaration):

body(Type=BlockStmt):

statements:

- statement(Type=ReturnStmt):

expression(Type=IntegerLiteralExpr):

value: "8"

type(Type=PrimitiveType):

type: "INT"

name(Type=SimpleName):

identifier: "getNumber"

modifiers:

- modifier(Type=Modifier):

keyword: "PUBLIC"

modifiers:

- modifier(Type=Modifier):

keyword: "PUBLIC"

...

Figure 2.6: JavaParser YAML output of the GoodNumber Java class.



22

Type=CompilationUnit

types

Type=ClassOrInterfaceDeclaration

isInterface:"false" Type=SimpleName

identifier:"GoodNumber"

members

Type=MethodDeclaration

Type=BlockStmt

statements

Type=ReturnStmt

Type=IntegerLiteralExpr

value="8"

Type=PrimitiveType

type:"INT"

Type=SimpleName

identifier:"getNumber"

modifiers

Type=Modifier

keyword:"PUBLIC"

modifiers

Type=Modifier

keyword:"PUBLIC"

Figure 2.7: JavaParser AST representation of the GoodNumber Java class.
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1 public class MethodVisitor {

2 public final static String FILE_PATH = "Example.java";

3
4 public static void main(String[] args) throws IOException {

5
6 CompilationUnit compilationUnit = StaticJavaParser.parse(new

↪→ FileReader(FILE_PATH));

7
8 VoidVisitor<Void> methodNameVisitor = new MethodNamePrinter();

9 methodNameVisitor.visit(compilationUnit, null);

10 }

11 }

12
13 class MethodNamePrinter extends VoidVisitorAdapter<Void>{

14 @Override

15 public void visit(MethodDeclaration method, Void arg) {

16 super.visit(method, arg);

17 System.out.println("Method Name: " + method.getName());

18 }

19 }

Figure 2.8: JavaParser library code example of printing all method names.



Chapter 3

Tool for Analysing Names

In this chapter, the developed tool for analysing names will be presented, as well as the

usage of the tool. To start with, the idea of the name analysis tool will be described.

Then, several detailed examples on how to use the tool from the user’s perspective will

follow.

3.1 The Analysis Tool

The idea of the analysis tool is to analyse names of various identifiers, including variables,

methods and classes, by checking whether the identifiers’ implementation satisfy certain

requirements according to their names. For instance, there is a requirement for all method

names that has the word find to include local variables and contain loops. Now, the tool

will be given a file with Java source code, and check if there are method names with the

word find. When the right method names have been found, the method’s body will be

checked for local variables and loops. In the end, a report of the findings, whether the

identifiers satisfy the requirement or not, will be presented to the user after the analysis

is completed.

3.1.1 Requirements

The user can specify the requirements using a DSL that has been designed and imple-

mented. Figure 3.1 illustrates how these requirements can be specified and written using

the DSL implementation. There are three sections of the specification that are important:

the declarations, the rules and the cases.
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1 declarations

2 // custom declarations

3 Parameter <-> "com.github.javaparser.ast.body.Parameter"

4 WhileStmt <-> "com.github.javaparser.ast.stmt.WhileStmt"

5 // pre-defined declarations

6 method <-> "com.github.javaparser.ast.body.MethodDeclaration"

7 variable <-> "com.github.javaparser.ast.body.VariableDeclarator"

8
9 rules

10 // pre-defined rule

11 def declare callsMethodWithSameName

12 // custom rule

13 def hasNoParameter for method {

14 filter Parameter

15 such that size < 1

16 }

17
18 cases

19 // requirement for method with an example condition

20 case for method "hello"[neutral].NN {

21 always

22 hasNoParameter

23 often

24 callsMethodWithSameName

25 }

Figure 3.1: Requirement specifications example.



Declarations

To start with, the user needs to define declarations for identifier types. This is due to the

fact that this tool uses JavaParser to traverse the Java source code. Therefore, all classes

that are relevant and will be used need to be declared with a JavaParser class path. The

declarations can be of two kinds: pre-defined and custom. Below are the examples of the

pre-defined declarations.

declarations

package <-> "com.github.javaparser.ast.PackageDeclaration"

class <->

↪→ "com.github.javaparser.ast.body.ClassOrInterfaceDeclaration"

interface <->

↪→ "com.github.javaparser.ast.body.ClassOrInterfaceDeclaration"

method <-> "com.github.javaparser.ast.body.MethodDeclaration"

variable <-> "com.github.javaparser.ast.body.VariableDeclarator"

This is the declarations specifically for the types of the identifiers, such as packages,

classes, interfaces, methods and variables. The syntax for the other declaration type is

as follows1.

declarations

<Class Name> <-> "<Class Path>"

This declaration type is custom, and can be used for any other types. The <Class

Name> must be a unique name, and the <Class Path> is the path to a class that is

from the JavaParser library. An example of the class path to the parameter class is

"com.github.javaparser.ast.body.Parameter", which represents the parameters of a

method or lambda. It is possible to declare any class type as long as it is visitable and

there exist a class path for it in the JavaParser library2.

Rules

To check the identifiers’ bodies, the rules of requirements need to be defined. As an

example, when there is a requirement that the method name has no parameters, a formal

1A formal grammar for the DSL is given in Appendix C
2An exhaustive list of possible types is available at https://www.javadoc.io/doc/

com.github.javaparser/javaparser-core/latest/index.html.
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definition of having no parameters needs to be given. The rules specify what classes to fil-

ter out and look for in the body of an identifier, and then conclude if the classes are present

in the body or not. This tool has one rule that is already defined and can not be modified,

and that is the rule name callsMethodWithSameName. The callsMethodWithSameName

checks if any method calls in a method has the same name as the method itself. To enable

the usage of this rule, the following declaration is used:

rules

def declare callsMethodWithSameName

The syntax of rule declarations is as follows.

rules

def <Rule Name> for <Identifier Name> {

filter <Class Name> (| <Class Name>)*

such that size <Comparison Operator> <Number>

}

Every rule has a unique <Rule Name>, identifying which rule it is. The rule should state

what identifier it applies for at the <Identifier Name>. This <Identifier Name> should

be one of the already declared identifier types from the declarations. Following this,

the rule will consist of what <Class Name> it should filter, which should also be among

the same class types declared from declarations; here it is possible to filter either one

or several classes. As an example, to filter three classes, the following expression is used:

filter WhileStmt || ForEachStmt || ForStmt || DoStmt. Finally, the size of the

filtered list will be compared according to what the specified <Comparison Operator>

and <Number> are. The following Table 3.1 shows the valid comparison operators, and

<Number> can be any chosen number.

Comparison
Operator

Meaning

> Greater than.
< Less than.
== Equal to.
<= Less than or equal to.
>= Greater than or equal to.
!= Not equal to.

Table 3.1: Valid comparison operators.

Below are three examples of rules for the identifier method showcased:
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• Number of parameters: Method having a certain number of parameters.

def hasThreeParameters for method {

filter Parameter

such that size == 3

}

• Return type: Method returning a certain type, e.g. returning a void.

def returnsVoid for method {

filter VoidType

such that size > 0

}

• Containing statement: Method’s body containing a certain type of statement,

e.g. loop statements.

def containsLoop for method {

filter WhileStmt || ForEachStmt || ForStmt || DoStmt

such that size > 0

}

Cases

When the declarations and rules have been defined, various cases can then be specified

with conditions and requirements. The cases filter identifier names with a certain condi-

tion, and then checks if the identifier’s body satisfy a chosen frequency of a rule. In other

words, this is where users can specify requirements when analysing the source code. The

syntax of cases specifications is as follows.

cases

case for <Identifier Name> <Condition> {

<Frequency>

<Rule Name>

}

Similarly to rules, the cases use the <Identifier Name> from declarations to specify

what identifier each case is relevant for. Then, there is a <Condition> that filters the

names of the relevant identifiers. The condition is a sequence of queries for constituents
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of names. To begin with, an example is that the tool should analyse methods with the

name "print". The condition will look like this:

case for method "print" {

...

}

This name is a string, hence it can be identified through matching strings. When pro-

cessing texts, it is very common to match texts with each other. Regular expressions [78]

provide a way for analysing, matching and manipulating strings. This usually contains

a set of characters that forms a pattern, which will then be used to effectively find any

matching strings to the pattern. Being able to match and detect strings is useful for

extracting out the relevant strings that are important for further use.

However, not all programmers choose their method names similarly using the exact

same words even though the method bodies have the same concept and structure. Ad-

ditionally, there exist several common words used for the same concept, like for instance

when obtaining the length or size, the word “size” and “length” are often times used

interchangeably. To solve the issue, where the user does not want to settle for a specific

word, synonyms can be used. Including the synonyms of a specific string can be ex-

pressed by preprending the string with a hash sign. Continuing the example from above,

the following shows the condition including the hash sign representing the synonym of

the string:

case for method #"print" {

...

}

This condition allows synonyms of “print”, which includes the words “engrave”, “inscribe”

and “dump”.

A word may also be a certain part of speech. As explained in Section 2.3.1, POS

tagging is the role of a word in a sentence. This is useful when there is no specific words

to specify, but the user still wants to have a type of word in a specific place in the name.

For example, wanting to include a cardinal number, an adjective and a noun after the

word “print”, but not needing to specify what specific cardinal number, adjective or noun

to involve. The Penn Treebank Project presents 36 part of speech tags and describes what

each tag stands for [54]. For instance, the part of speech tag for a cardinal number is CD,

for a singular noun is NN and for an adjective it is JJ according to Figure 3.2. Continuing
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Tag Description
CC Coordinating Conjunction
CD Cardinal number
DT Determiner
EX Existential there
FW Foreign word
IN Preposition or subordinating conjunction
JJ Adjective
JJR Adjective, comparative
JJS Adjective, superlative
LS List item marker
MD Modal
NN Noun, singular or mass
NNS Noun, plural
NNP Proper noun, singular
NNPS Proper noun, plural
PDT Predeterminer
POS Possessive ending
PRP Personal pronoun
PRP$ Possessive pronoun
RB Adverb
RBR Adverb, comparative
RBS Adverb, superlative
RP Particle
SYM Symbol
TO particle “to”
UH Interjection
VB Verb, base form
VBD Verb, past tense
VBG Verb, gerund or present participle
VBN Verb, past participle
VBP Verb, non-3rd person singular present
VBZ Verb, 3rd person singular present
WDT Wh-determiner
WP Wh-pronoun
WP$ Possessive wh-pronoun
WRB Wh-adverb

Table 3.2: Part of speech tags used in the Penn Treebank Project [54].



the example from above, the following shows the condition including the three mentioned

part of speech tags:

case for method #"print".CD.JJ.NN {

...

}

In between every word in the condition, there is a period (“.”) in the middle separating

each word in a method name.

It is not always clear solely from the name of an identifier what sentiments or emotions

are behind the chosen words. Especially with the possibility of part of speech tagging, it

can be convenient knowing, for example, if the JJ (adjective) should have a negative or a

positive sentiment. The desired sentiment can be specified with square brackets around

the word or part of speech tagging that wants to have a sentiment involved. Continuing

the example from above, the following shows the condition including a sentiment analysis:

case for method #"print".CD.JJ[negative].NN {

...

}

To make the condition more flexible and feasible, it is possible to add cardinality

modifiers to the strings, synonyms and part of speech tags. The accepted cardinality

modifiers are the following:

• *: has the cardinality of zero or more elements

• +: has the cardinality of one or more elements

• ?: has the cardinality of zero or one element

Additionally, a part of the name can consist of several choices and not be bound to a

single type of string, synonym or part of speech. This can be expressed by putting the

alternatives together in parentheses with a pipe symbol separating them. An example

to illustrate this is: "(NN|VB|JJ|NNS|UH)". Continuing the example from above, the

following shows the condition including cardinality modifiers and the pipe symbol.

case for method #"print".(DT|CD)?.JJ*[negative].(NN|VB|JJ|NNS|UH)* {

...

}

31



The condition can be represented as a regular expression. This one particular example

above will match all names that starts with the word “print” or a synonym of “print”,

followed by an optional determiner or a cardinal number, and then include an optional

negative single or multiple adjectives, ending with none or several noun, verb, adjective or

interjection. An example of a name that will match this pattern of regular expression is

"printTheBadMethodNames", which will satisfy the "print", DT, JJ[negative], NN and

NNS. Table 3.3 demonstrates samples of conditions and corresponding samples of names

that satisfy the conditions.

Condition Name
"print" print

#"print" print; dump; engrave
"print".DT.JJ.NN printTheGoodDocument

"print".DT.JJ[negative].NN printTheBadDocument

"print".(DT|CD)?.JJ*[positive].(NN|VB|NNS|UH)+ printFiveGoodMethodNames

(NN|NNS)*.#"create".(DT|CD)?.JJ*[neutral].NN generateAnAlgorithm

(NN|NNS)*.VB.CD?.JJ*[neutral].(NN|NNS|UH)* botPrintsTwoShortLists

(NN|NNS)*.VB.(DT|CD)?.(NN|VB|UH)* botsGreetHelloWorld

NN[positive]?.VB.(DT|CD)?.JJ*.(NN|VB|UH)* size

NN*.VB+.JJ+.(NN|VB|UH)+ findPreciseVariableName

"create"."new"?.(NN[positive]|NNS[negative]) createNewDream

VB+.(DT|PDT)?.(NN|NNS)+.TO.(NN|NNS)+ checkAllNamesToRequirements

VB.(NN|NNS).IN? getSentimentOf

VB.(NN|NNS)."of"? getSynonymsOf

(NNS|NN[neutral])+."checker" ruleChecker

Table 3.3: Name condition and corresponding name examples.

After specifying the condition, the <Rule Name> are the requirements to be checked for

the names that match the condition, whereas the <Frequency> implies on how often the

<Rule Name> is expected to occur. The various frequency values are an inspiration from

the study The Programmer’s Lexicon, Volume I: The Verbs by Høst and Østvold [39].

This is terminology from the lexicon that describes the quantile of the attributes. An

overview of all the phrases is shown in Table 3.4.

3.1.2 Interactive Command Line

There is an interactive command line that handles the interaction between the user and

the tool. Moreover, this is where the user can create the connection between the specified

requirements and the raw Java source file from GitHub. When running the analysis tool,
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Phrase Meaning
Always The attribute value is always 1.
Very often The name is in the high extreme quantile.
Often The name is in the high quantile.
Rarely The name is in the low quantile.
Very Seldom The name is in the low extreme quantile.
Never The attribute value is always 0.

Table 3.4: Lexicon Terminology [39].

a list with instructions will appear in the command line as shown in Figure 3.2. Three

choices of actions are presented in the instruction list; the action P, the action I and the

action Q.

To choose the first action, the letter P needs to be entered as an input. Figure 3.3

shows what happens in the command line when choosing P. It requires a file path to an

XML file that consists of the requirements defined by the user. This XML file is generated

by the implemented DSL when the users specify the requirements. Enter the file path,

and the first action is completed, as well as the P action will be removed as it is fulfilled.

Now, assuming the first action is achieved, start on the second action by entering the

letter I as input. Figure 3.4 shows what happens in the command line when choosing I.

It requires a raw GitHub link to the Java source code file. This is the file that will be

analysed, and that will be given a report and feedback on after the analysis is finished.

Enter the required path file, and the tool will start analysing immediately, considering

both top actions are fulfilled.

Lastly, the last choice of actions is Q, and choosing this will terminate the currently

running interaction in the command line. There is no strict order of which action should

be completed first. The user can choose to start with importing the raw Java source file

link, and then finish off with passing the XML file with requirements. As long as both

top actions are done, the progress of analysing will start, and shortly after a report of

the analysis will be presented.
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Figure 3.2: Interactive command line.

Figure 3.3: Interactive command line—choice: P.

Figure 3.4: Interactive command line—choice: I.
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Chapter 4

Implementation

In this chapter, the implementation details of the analysing tool will be presented. The

overall software architecture will be described. Then, a technical descriptions of the

grammar and code will be explained and code samples shown.

4.1 Architecture

The architecture of the work in this thesis is illustrated in Figure 4.1. There are several

components involved, where six of them are grey and one has double borders. The grey

with dashed border components represent tools and languages that can be changed out

and replaced or extended. Alternating them out with corresponding tools shall not change

the underlying main structure of the work. The double border component on the other

hand is the most important component where the components meet, are connected and

where the analysis is executed.

It first starts with the DSL that has been developed, where anything can be specified

as requirements by the user using the implemented DSL. In this case, the lexicon from

the Programmer’s lexicon [39] is used as an inspiration for requirements to implement.

The requirements are implemented in the Eclipse Xtext-based IDE. Moreover, when the

requirements have been implemented in the IDE, relevant conditions will be checked for

synonyms with the help of the synonym analysis library, leading to the generation of

an extensible markup language (XML) file. This XML file is required to be generated

for the requirements to be transferred over to Java. In the main component called Name

Analyser, there are five components connected to it:
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1. JavaParser library to parse through Java source code.

2. Java source code given by the user.

3. Sentiment analysis library that aids in detecting sentiments of words.

4. Part of speech (POS) analysis library that categorises each word to a class.

5. XML file with all the requirements.

The Name Analyser analyses names by utilising all five components. The JavaParser

assist in parsing the Java source code, where the identifiers will be checked with the

requirements in XML. Then, identifier names are processed with the help from sentiment

and part of speech analysis libraries.

4.2 DSL and Java

There are two repositories hosting the work described in thesis. One is hosting the Xtext

project with the implementation of the DSL1, and the other is hosting the Java project

that executes the analysis tool2.

The linguistic approaches were performed by using three Java libraries: Extended

Java WordNet Library (extJWNL), Stanford CoreNLP and Apache OpenNLP. To start

with, the extJWNL is an open-source library that create, read and update dictionaries in

the format of WordNet [7]. WordNet is an online lexical database registered trademark

of Princeton University [57]. One of the linguistic approaches that extJWNL library

supports is the analysis of synonyms, which is what this thesis uses the library for.

Stanford CoreNLP is an NLP library [53], that supports this thesis with the sentiment

analysis system [76]. At last, the Apache OpenNLP is another NLP library that assist

the part of speech tagging in this thesis [30].

1https://git.app.uib.no/Emily.Nguyen/nameanalyser
2https://git.app.uib.no/Emily.Nguyen/methodnameanalyser
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Lexicon DSL code

Xtext-based IDESynonym analysis library

XML

Name AnalyserJavaParser library Source code Java

POS analysis librarySentiment analysis library

Figure 4.1: Overview of architecture.



4.2.1 Grammar

As explained in Section 2.5, a grammar is a specification of the concrete syntax of a soft-

ware language. The grammar language of the built DSL is implemented in Xtext, using

ANother Tool for Language Recognitiont (ANTLR)3 to specify the grammar. Figure 4.2

shows a sample of this implemented grammar. Here, the syntax for the declarations,

rules and cases explained in Section 3.1.1 are showcased. The full implementation can be

found in Appendix C.

4.2.2 Code Generation

After the grammar is completely implemented, the code is then being generated with

Xtend. Figure 4.3 shows a sample of how the code generator has been implemented. This

implementation generates an XML file called generatedRequirements.xml with all the

requirements transformed from the DSL to XML. As an XML file, the requirements are

easier accessible and flexible to be used with Java. In the Java project, the XML file will

be parsed and used to analyse the given Java source code. The full implementation of

the code generator can be found in Appendix D.

4.2.3 Name Analyser

One of the most fundamental methods in the Java project of this work is the ruleChecker.

Figure 4.4 shows the full ruleCheckermethod in Java. This method has four parameters:

caseTypeInput, listOfInstances, comparisonOperator and comparisonValue. First

of all, the caseTypeInput is a specific identifier implementation as a Node, for example

the body of a method. Furthermore, the listOfInstances is a list of all the relevant

instances of JavaParser class paths that have been included to this specific requirement.

Lastly, the comparisonOperator and comparisonValue are as the names indicate, the

comparison operator and the comparison value respectively specified from the require-

ment. This method loops through all the relevant JavaParser class paths, and attempts

to check if there are any instances from the identifier implementation that will match

the instances from the requirement. If there is a match, it will get accumulated into a

collection that becomes a list of Nodes in the end of the iteration called foundInstances.

3https://www.antlr.org
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1 ...

2 Model:

3 "declarations"

4 declarations+=Declaration*

5 fixedDeclarations+=FixedDeclaration+

6 "rules"

7 rules+=Rule*

8 "cases"

9 elements+=Case*

10 ;

11
12 Declaration:

13 name=ID "<->" path=STRING

14 ;

15
16 FixedDeclaration:

17 kind=Kind "<->" path=STRING

18 ;

19
20 ...

21
22 Rule:

23 "def" name=ID "for" kind=Kind "{"

24 "filter" decls+=[Declaration] ("||" decls+=[Declaration])*

25 "such" "that" "size" compOp=(">"|"<"|"=="|"<="|">=") compValue=INT

26 "}" |

27 "def" "declare" name=ID

28 ;

29
30 Case:

31 "case" "for" kind=Kind condition=Expr "{"

32 properties+=Property*

33 "}"

34 ;

35 ...

Figure 4.2: Sample of DSL grammar in Xtext. Full grammar can be found in Appendix C.



401 ...

2 override void doGenerate(Resource resource, IFileSystemAccess2 fsa,

↪→ IGeneratorContext context) {

3 for (e:resource.allContents.toIterable.filter(Model)) {

4 fsa.generateFile("generatedRequirements.xml",

5 e.compile

6 )

7 }

8 }

9
10 def CharSequence compile(Model m)

11 ’’’

12 <model>

13 ≪FOR r:m.rules≫

14 ≪r.compile≫

15 ≪ENDFOR≫

16 ≪FOR c:m.elements≫

17 ≪c.compile≫

18 ≪ENDFOR≫

19 </model>

20 ’’’

21
22 def CharSequence compile(Rule r)

23 ’’’

24 ≪IF r.namet!="callMethodWithSameName"≫

25 <declare rule="≪r.name≫" for="≪getPath(r.kind)≫"

↪→ op="≪opToString(r.compOp)≫" size="≪r.compValue≫">

26 ≪FOR d:r.decls≫

27 <filter instance="≪d.path≫"/>

28 ≪ENDFOR≫

29 </declare>

30 ≪ENDIF≫

31 ’’’

32
33 def CharSequence compile(Case c)

34 ’’’

35 <case ≪c.kind≫="≪c.condition.compile≫">

36 ≪FOR p:c.properties≫

37 ≪p.compile≫

38 ≪ENDFOR≫

39 </case>

40 ’’’

41 ...

Figure 4.3: Sample of the code generator in Xtend. Full code generator can be found in
Appendix D.



After completing the examination of the identifier implementation, the amount of found

instances will be compared with the comparisonValue using the comparisonOperator.

This leads to a boolean result, deciding whether the identifier with such implementation

comply with this requirement or not. The full implementation of the rest of the analysis

code can be found in the repository for the Java project4.

4https://git.app.uib.no/Emily.Nguyen/methodnameanalyser
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1 public static boolean ruleChecker(Node caseTypeInput, String[]

↪→ listOfInstances, String comparisonOperator, int comparisonValue) {

2 List<Object> listOfFoundInstances = new ArrayList<Object>();

3 for (String instanceString : listOfInstances) {

4 List<Node> foundInstances = caseTypeInput.stream().filter(m

↪→ -> {

5 try {

6 return Class.forName(instanceString).isInstance(m);

7 } catch (ClassNotFoundException e) {

8 e.printStackTrace();

9 return false;

10 }

11 } )

12 .collect(Collectors.toList());

13
14 if (foundInstances.size() > 0) {

15 listOfFoundInstances.add(foundInstances);

16 }

17 }

18
19 boolean ruleResult = false;

20 if (comparisonOperator.equals("LT")) {

21 ruleResult = listOfFoundInstances.size() < comparisonValue;

22 } else if (comparisonOperator.equals("GT")) {

23 ruleResult = listOfFoundInstances.size() > comparisonValue;

24 } else if (comparisonOperator.equals("EQ")) {

25 ruleResult = listOfFoundInstances.size() == comparisonValue;

26 } else if (comparisonOperator.equals("NE")) {

27 ruleResult = listOfFoundInstances.size() != comparisonValue;

28 } else if (comparisonOperator.equals("GE")) {

29 ruleResult = listOfFoundInstances.size() >= comparisonValue;

30 } else if (comparisonOperator.equals("LE")) {

31 ruleResult = listOfFoundInstances.size() <= comparisonValue;

32 }

33 return ruleResult;

34 }

Figure 4.4: The Java method ruleChecker. Full implementation of analysis can be found
in the repository for Java project.



Chapter 5

Evaluation: The Programmer’s

Lexicon

In this chapter, an evaluation of the analysing tool is presented with a case study, which is

a lexicon of verbs outlined by Høst and Østvold [39] We will describe the implementation

of a few entries of the lexicon; a complete implementation of the lexicon using our tool

is presented in Appendix B.

5.1 Case Study

In this thesis, we consider the case study by Høst and Østvold, called The Programmer’s

Lexicon, Volume I: The Verbs [39]. It gives a list of the most commonly used method

names, abstracted as verbs, by Java programmers. As we have already mentioned earlier,

being able to create a name that can express the semantics of an implementation is crucial.

Naming is abstract and the wrong name will lead to the wrong abstraction. Therefore, the

mentioned case study [39] concludes that the problem of naming is significant for the task

of programming, and formulates the research question: “Can we create a semantics which

captures our common interpretation of method names?”. Only the names of methods in

Java are being investigated. The authors’ approach is to encode the implementation of

a method by its semantic properties, whether those properties are present or not. An

example is to check if an implementation of a method performs any type checks, uses any

local variables, throws exceptions, or so on.
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In the study, the verbs in method names were analysed based on their actual us-

age [39]. Various verbs were determined by examining method implementations taken

from a corpus of Java applications. Additionally, not all method names consist of a single

verb, therefore most names needed to be abstracted to one verb only. For example, the

method name “checkAllSynonyms” will be narrowed down to the verb “check”, consid-

ering the verb is the action-oriented part of the full name. As a result, a domain-neutral

lexicon is automatically generated involving only verbs, and represents the common prac-

tices among programmers.

5.2 The Lexicon

The Programmer’s Lexicon is a collection of the most common names among Java pro-

grammers. It consist of two parts: a list of the verbs and a description to each verb,

specifying the usage of the verb with how it is most commonly implemented. The follow-

ing list is a sample of four of the entries from the lexicon [39]:

create Among the most common method names. Methods named create very often

create objects. Furthermore, they rarely call methods of the same name, read state

or contain loops.

equals Methods named equals never return void, throw exceptions, create objects, ma-

nipulate state or have no parameters. Furthermore, they very often call methods of

the same name and perform type-checking. Finally, they often use local variables

and read state. The name equals has a precise use.

get The most common method name. Methods named get often read state and have

no parameters, and rarely return void, call methods of the same name, manipulate

state, use local variables or contain loops. A similar name is has. Specialisations

of get are is and size. A somewhat related name is hash.

is The third most common method name. Methods named is often have no param-

eters, and rarely return void, throw exceptions, call methods of the same name,

create objects, manipulate state, use local variables, perform type-checking or con-

tain loops. The name is has a precise use. Generalisations of is are has and get.

Somewhat related names are accept, visit, hash and size.

Phrases such as always, very often, often, rarely, very seldom, never are frequently

used in the lexicon. As mentioned in Section 3.1.1, this is terminology defined in the case
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study differentiating the quantile of the attributes. Table 3.4 gives the full list of all the

phrases.

The lexicon can be converted to a list of rules on how method names with certain verbs

should behave, considering this is how majority of Java programmers code. The authors

of the case study analysed Java implementations, and created a lexicon of common usages.

In our thesis, we define a list of requirements for all the verbs in the lexicon, where

these requirements can be used to analyse any Java source code, checking if it follows the

common usages according to the lexicon. Chapter 3 explains how the requirements can be

implemented, as well as how to analyse names from the source code. The implementation

of the verb create is shown in Figure 5.1, and is specified with requirements according

to the definition of create above.

1 case for method "create" {

2 often

3 createsObject

4 rarely

5 callsMethodWithSameName

6 rarely

7 readsState

8 rarely

9 containsLoop

10 }

Figure 5.1: Implementation of create in our DSL according to definition in lexicon.

Another example is the verb is, whose implementation is shown in Figure 5.2. This is

a slightly longer case with over half of the requirements involving behaviours that rarely

are present for a method named is.

The several rules, such as createsObject, callsMethodWithSameName and

performsTypeCheck, are specified in Appendix A. The Appendix A also includes speci-

fications of the needed declarations. Meanwhile, the implementation for rest of the verbs

in the lexicon can be found in Appendix B.

To evaluate if the requirements have been implemented correctly and will behave as

expected, a source code example will be utilised. Figure 5.3 is an example of a Java

source code with four simple methods. Moreover, Figure 5.2 and Figure 5.1 is now

modified to look like Figure 5.5 and Figure 5.4. Only the first line of each implemented

45



46
1 case for method "is" {

2 rarely

3 performsTypeCheck

4 rarely

5 throwsException

6 rarely

7 callsMethodWithSameName

8 rarely

9 usesLocalVariable

10 rarely

11 containsLoop

12 rarely

13 returnsVoid

14 rarely

15 throwsException

16 rarely

17 createsObject

18 rarely

19 manipulatesState

20 often

21 hasNoParameter

22 }

Figure 5.2: Implementation of is in our DSL according to definition in lexicon.

1 package com.github.example.name;

2 import java.util.ArrayList;

3 import java.util.Random;

4
5 public class ExampleClass implements IExample{

6 public static void createLuckyNumber() {

7 Random random = new Random();

8 System.out.println("Lucky number: " + random.nextInt(100));

9 }

10
11 public static String greetWorld() {

12 return "Hello World";

13 }

14
15 public static boolean isEven(int number) {

16 return (number % 2 == 0);

17 }

18
19 public static ArrayList<String> makeList() {

20 ArrayList<String> myList = new ArrayList<String>();

21 return myList;

22 }

23 }

Figure 5.3: Java source code example.
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1 case for method #"create".JJ*.NN+ {

2 often

3 createsObject

4 rarely

5 callsMethodWithSameName

6 rarely

7 readsState

8 rarely

9 containsLoop

10 }

Figure 5.4: Modified implementation of create in our DSL.

1 case for method "is".("even"|"odd") {

2 rarely

3 performsTypeCheck

4 rarely

5 throwsException

6 rarely

7 callsMethodWithSameName

8 rarely

9 usesLocalVariable

10 rarely

11 containsLoop

12 rarely

13 returnsVoid

14 rarely

15 throwsException

16 rarely

17 createsObject

18 rarely

19 manipulatesState

20 often

21 hasNoParameter

22 }

Figure 5.5: Modified implementation of is in our DSL.



requirement has been changed to match the method names from the Java source code

better, considering realistically not many method names consist of only a single verb.

Finally, following the explanation in Chapter 3.1.2 an analysis of Figure 5.3 will be

executed with the implemented requirements. This will result in the following report as

seen in Figure 5.6. The analysis report is printed out to the interactive command line.

Figure 5.6: Interactive command line—analysis report.

First, it presents all the requirements as a case with its name condition. Then, all the

identifier names that match any of the name conditions get listed under the case they

match. After that, the body of each matched identifier name gets analysed with the

requirements, and the results of what satisfy and what do not are listed underneath each

method. The terms PASS and FAIL imply if the implementation of the method comply

with the specific rule or not according to the frequency phrases they are supposed to

follow such as often, rarely and always.
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5.3 Retrospective

The lexicon from the case study The Programmer’s Lexicon, Volume I: The Verbs [39]

has been implemented, and the complete list can be found in Appendix B. The descrip-

tion of each verb has been encoded as the requirements when analysing the Java source

code. Moreover, the resulting report of the analysis showcase not only that the system

for analysing names works, but also shows several different approaches of linguistics inte-

grated into the tool, which allows programmers to express a customised analysing system.

This section has demonstrated that achieving the goal of this thesis, as defined in Section

1, is viable.
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Chapter 6

Related Work

In this chapter, we present and discuss various of works related to the topic of this thesis.

There will be two main focuses: naming in software languages and linguistics in software

languages.

6.1 Naming in Software Languages

Several studies focus on names in software languages, be it research on how names and

their implementation connects, or how to improve the art of naming code. Schäfer et

al. presented the tool J L that performs code refactoring on Java programs [73]. The

implementation aims to enhance the naming and accessibility issues that are omnipresent

in refactoring. To do this, Java gets translated to J L with the help of accessibility

constraints and reference constructions, allowing the refactoring to happen at the J L

level, and then it gets converted back to Java. Laitinen, on the other hand, researched

on how to code better with names, and proposed methods and tools to assist natural

naming usages in software programs [48]. Natural naming is building names that do not

consist of abbreviations, and are believed to increase readability and comprehensibility

of source code. Lawrie et al. partly agree with the approach from Laitinen, explaining

that abbreviations do not carry a lot of information, thus is not as useful [50]. The

paper presents a system of methods for translating and expanding abbreviated words

into fuller names. However, not all abbreviations are less understandable than longer

names [49]. Similarly, Deißenböck and Pizka studied the relations between names and

concepts, leading to the support of concise names that reflect the implementation [21].

50



The authors claim that many programming languages accept arbitrary names, which can

result in misleading names.

The work in this thesis focuses on the connection between names and concepts, like

most of the mentioned works. Although it also analyses identifier names and the com-

pliance of the corresponding implementation, its versatility for programmers to express

a customised system for analysing names is different. The tool J L performs code refac-

toring, aiming more towards the implementation of names in the code, and not on the

semantics of names similarly to this work. When it comes to naming identifiers, one of

the most studied topics is the use of abbreviations. In this work, programmers can decide

for themselves to include or exclude abbreviations in names as preferred. Programmers

also have the flexibility of specifying what types of names or sequences of words, should

include or exclude what type of implementations. This work facilitates name consistency

and accuracy.

6.2 Linguistics in Software Languages

Linguistics approaches have long been of interest for analysing software languages. The

Java Programmer’s Phrase Book 1 is compiled by Høst and Østvold, and captures the

most commonly used grammatical structure and meaning of method names [38]. This

book is automatically generated from studying a corpus of 100 open-source applications

and libraries from different domains, containing at least one million methods. The work

is built on the case study [39]—which we mentioned in details in Chapter 5—where it

involves more than just the verbs from the case study. Additionally, several words can be

combined to create phrases and result in new semantics of the methods. To do this, Høst

and Østvold use NLP techniques such as part of speech tagging to unveil the structure of

the method names. However, this is not the only work they have worked together using

linguistics approaches [4].

The work in this thesis also involves a variety of word classes from part of speech

tagging, such as nouns, verbs and adjectives. It is possible for programmers to combine

and create customised conditions for names, and whether the semantics of the combined

words will be the same or not as the semantics of the original words is up to each

individual programmer, considering they can specify it as preferred. This work can cover

the implementation for the Java Programmer’s Phrase Book and more.

1http://phrasebook.nr.no/phrasebook/index.html#
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Part of speech tagging seems to be one of the more used techniques in software lan-

guage engineering. Kulkarni and Finlayson built jMWE which is a Java library involv-

ing part of speech tagging for testing and building detectors for multi-word expression

(MWE) tokens [47]. Similarly, Butler et al. present the tool NOMINAL that utilise part

of speech tagging as one of its inputs [13, 17]. NOMINAL is a library that checks naming

conventions in Java, and allows specification of conventions. The study outcome was

used to investigate the Java reference adherence to naming conventions. With all of so

many studies involving part of speech, Olney et al. decided to investigate how accurate

part of speech tagging is, and did tests on over 200 method names from open-source Java

programs [65]. The outcome showed that customised project-designed part of speech

taggers were significantly the most accurate taggers above others. Allamanis et al. also

did research in how to suggest better names for programmers, where there were several

NLP techniques utilised, especially language models (ML) and speech recognition, to

support the analysis [4]. Several approaches from linguistics can be found the work of

NATURALIZE framework as well [2] .

In the same way, the work in this thesis has implementations of linguistic approaches

too. However, there are a few more approaches involved. As mentioned in Section 2.3.1,

this work takes advantage of synonyms, part of speech tagging and sentiment analy-

sis. NOMINAL resembles this work in how it allows specifications of conventions and

integrates linguistics, but NOMINAL focuses the investigation on Java references, mean-

while this work analyses Java identifier names. Several studies and research implement

approaches from linguistics to aid their work, likewise to this work, many aim to improve

the usage software language such as identifier names.
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Chapter 7

Conclusion and Future Work

Poor naming choices lead to a higher chance of poor code comprehension, however, choos-

ing a concise and consistent name is challenging. This thesis has gathered and presented

insight of how one can develop a system for analysing names in Java source code, help-

ing programmers to choose and maintain better names. A DSL has been designed and

implemented for programmers to easily specify requirements when analysing names. Pro-

grammers can define the declarations, rules and cases of the requirements, without having

to worry about the underlying structure or details of the work. In addition, several ap-

proaches from linguistics have been implemented to improve the system for analysing

names. Especially techniques from the subfield NLP of linguistics—such as synonyms,

part of speech tagging and sentiment analysis—considering this work is a software analy-

sis of natural languages. Linguistics supports and proves itself to be useful for analysing

names in Java, as without linguistics the identifier names would not have been possible

to be broken down and examined in the same way as they can now. Moreover, techniques

from linguistics have made it possible for users to define requirements with customised

names. Finally, an implementation of the lexicon from the case study The Program-

mer’s Lexicon, Volume I: The Verbs has been implemented as a proof-of-concept [39].

This shows that the development of the system for analysing names behaves as intended.

It is the same concept for other identifiers, such as classes and variables, although the

implementation of the lexicon showcases only methods.

We have identified several interesting directions for further research, which are pre-

sented below.
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Include more programming languages. The current system for analysing identifier

names is only compatible for Java source code. This work uses the JavaParser library to

parse through Java code, hence another parser is needed to include other programming

languages. Examples of programming languages that can be implemented are: C#,

COBOL and Python. Involving enough parsers can make this tool language-agnostic.

This means programmers can specify requirements in the implemented DSL and analyse

any source code regardless of programming language.

Supporting other natural languages. This involves extending the part of speech

tagging for other languages, except English that is already implemented. Analysed names

are separated into words and classified for what part of speech word class it is defined

as. As mentioned in Section 2.3.1, each language is built differently, hence the analysis is

done separately. To include more natural languages, the part of speech tagging for those

languages need to be integrated to the system.

Extending the lexicon. The lexicon compiled by Høst and Østvold only involves

verbs [39]s. There is a potential for extending the lexicon to involve more classes such as

nouns, adjectives and adverbs. Differentiating sentiment loaded classes is also a possible

addition to the lexicon. For example, negative adjectives could have other definitions than

positive adjectives. Extending the lexicon this way can make it easier for programmers

to create more precise and meaningful requirements.

Generating requirements from existing source code. Another possible direction

is to design and build the tool to automatically generate requirements directly from an

existing source code from the code base. Then, when the code base is extended with new

source code, this new code can be checked against the extracted requirements.

Integrating with IDEs and code repositories. Integrating the name analysis tool

with existing IDEs (for instance, by implementing the tools as plugins for Eclipse-, Visual

Studio-, or IntelliJ-based IDEs) will improve accessibility and user-friendliness Bringing

this idea further, one can imagine integrating name analysis tools with cloud-based code

repositories hosting systems, such as GitHub1 or GitLab2. Such integration would enable

the name analysis feature in the IDE or code repository, making it more accessible and

easier to utilise, due to not needing several systems running to perform the name analysis.

1https://github.com
2https://gitlab.com
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Supporting more linguistics-based approaches. There is potential for including

more linguistic approaches to the tool. Examples of other linguistic techniques are se-

mantic role labelling (SRL) [70], hyponyms and hypernyms, named entity recognition

(NER) [56] and word-sense disambiguation (WSD) [61]. Most of these approaches stem

from NLP, which are relevant for further development of this tool. SRL can identify

sentences, breaking it down to smaller elements to classify and label the elements for

which semantic role it holds. Hyponyms and hypernyms have been explained in Section

2.3.1. NER can determine proper names and categorise names accordingly, whether it

is a name for people, location or brand etc. WSD filters and selects the meaning that

makes the most sense for a word, considering most words have several meanings, thus

causes ambiguity.
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57

https://doi.org/10.1145/2635868.2635883
http://extjwnl.sourceforge.net
http://extjwnl.sourceforge.net


z WWW: http://www. eclipse. org/Xtext/documentation/1 0 1/xtext. html, page 7,

2008.

[9] Lorenzo Bettini. Implementing domain-specific languages with Xtext and Xtend.

Packt Publishing Ltd, 2016.

[10] Douglas Biber, Susan Conrad, and Randi Reppen. Corpus linguistics: Investigating

language structure and use. Cambridge University Press, 1998.

[11] Dave Binkley, Dawn Lawrie, Steve Maex, and Christopher Morrell. Identifier length

and limited programmer memory. Science of Computer Programming, 74(7):430–445,

2009.

[12] Ruven Brooks. Towards a theory of the comprehension of computer programs. In-

ternational Journal of Man-Machine Studies, 18(6):543–554, 1983. ISSN 0020-7373.

doi: https://doi.org/10.1016/S0020-7373(83)80031-5.

URL: https://www.sciencedirect.com/science/article/pii/S0020737383800315.

[13] Simon Butler. Analysing Java Identifier Names. Open University (United Kingdom),

2016.

[14] Simon Butler, Michel Wermelinger, Yijun Yu, and Helen Sharp. Relating identifier

naming flaws and code quality: An empirical study. In 2009 16th Working Confer-

ence on Reverse Engineering, pages 31–35, 2009. doi: 10.1109/WCRE.2009.50.

[15] Simon Butler, Michel Wermelinger, Yijun Yu, and Helen Sharp. Exploring the

influence of identifier names on code quality: An empirical study. In 2010 14th

European Conference on Software Maintenance and Reengineering, pages 156–165.

IEEE, 2010.

[16] Simon Butler, Michel Wermelinger, and Yijun Yu. Investigating naming convention

adherence in java references. In 2015 IEEE International Conference on Software

Maintenance and Evolution (ICSME), pages 41–50. IEEE, 2015.

[17] Simon Butler, Michel Wermelinger, and Yijun Yu. Investigating naming convention

adherence in java references. In 2015 IEEE International Conference on Software

Maintenance and Evolution (ICSME), pages 41–50. IEEE, 2015.

[18] Simon Butler, Michel Wermelinger, and Yijun Yu. A survey of the forms of java

reference names. In 2015 IEEE 23rd International Conference on Program Compre-

hension, pages 196–206. IEEE, 2015.

58

https://www.sciencedirect.com/science/article/pii/S0020737383800315


[19] KR1442 Chowdhary. Natural language processing. Fundamentals of artificial intel-

ligence, pages 603–649, 2020.

[20] Emilio Collar Jr and Ricardo Valerdi. Role of software readability on software de-

velopment cost. Technical report, 2006.

[21] Florian Deissenboeck and Markus Pizka. Concise and consistent naming. Software

Quality Journal, 14(3):261–282, 2006.

[22] Sven Efftinge and Markus Völter. oaw xtext: A framework for textual dsls. In

Workshop on Modeling Symposium at Eclipse Summit, volume 32, 2006.

[23] Sebastian Erdweg, Tijs van der Storm, Markus Völter, Meinte Boersma, Remi

Bosman, William R Cook, Albert Gerritsen, Angelo Hulshout, Steven Kelly, Alex

Loh, et al. The state of the art in language workbenches. In International Conference

on Software Language Engineering, pages 197–217. Springer, 2013.

[24] Dror G. Feitelson, Ayelet Mizrahi, Nofar Noy, Aviad Ben Shabat, Or Eliyahu, and

Roy Sheffer. How developers choose names. IEEE Transactions on Software Engi-

neering, 48(1):37–52, 2022. doi: 10.1109/TSE.2020.2976920.

[25] Ronen Feldman. Techniques and applications for sentiment analysis. Communica-

tions of the ACM, 56(4):82–89, 2013.

[26] Brian Fitzgerald. The transformation of open source software. MIS quarterly, pages

587–598, 2006.

[27] Eclipse Foundation. About the eclipse foundation. https://www.eclipse.org/org/,

last viewed 30.05.2022, .

[28] Eclipse Foundation. Xtext - web editor support. https://www.eclipse.org/Xtext/

documentation/330 web support.html, last viewed 27.05.2022, .

[29] The Apache Software Foundation. The apache software foundation. https:

//www.apache.org, last viewed 30.05.2022, .

[30] The Apache Software Foundation. Apache opennlp. https://opennlp.apache.org,

last viewed 30.05.2022, .

[31] Martin Fowler. Domain-specific languages. Pearson Education, 2010.

[32] Angelo Gargantini and Marco Radavelli. Migrating combinatorial interaction test

modeling and generation to the web. In 2018 IEEE International Conference on

59

https://www.eclipse.org/org/
https://www.eclipse.org/Xtext/documentation/330_web_support.html
https://www.eclipse.org/Xtext/documentation/330_web_support.html
https://www.apache.org
https://www.apache.org
https://opennlp.apache.org


Software Testing, Verification and Validation Workshops (ICSTW), pages 308–317.

IEEE, 2018.

[33] David Geer. Eclipse becomes the dominant java ide. Computer, 38(7):16–18, 2005.

[34] Diana Gray. Why does java remain so popular? https://blogs.oracle.com/

oracleuniversity/post/why-does-java-remain-so-popular, last viewed

30.02.2022.

[35] Remo Gresta, Vinicius Durelli, and Elder Cirilo. Naming practices in java projects:

An empirical study. In XX Brazilian Symposium on Software Quality, pages 1–10,

2021.

[36] Felienne Hermans. The Programmer’s Brain: What every programmer needs to know

about cognition. Simon and Schuster, 2021.

[37] Johannes Hofmeister, Janet Siegmund, and Daniel V Holt. Shorter identifier names

take longer to comprehend. In 2017 IEEE 24th International conference on software

analysis, evolution and reengineering (SANER), pages 217–227. IEEE, 2017.

[38] Einar W Høst and Bjarte M Østvold. The java programmer’s phrase book. In In-

ternational Conference on Software Language Engineering, pages 322–341. Springer,

2008.

[39] Einar W Høst and Bjarte M Østvold. The programmer’s lexicon, volume i: The

verbs. In Seventh IEEE International Working Conference on Source Code Analysis

and Manipulation (SCAM 2007), pages 193–202. IEEE, 2007.

[40] Sun Microsystems Inc. Fortran 77 4.0 reference manual. https://

wwwcdf.pd.infn.it/localdoc/f77 sun.pdf, last viewed 27.05.2022.

[41] JetBrains. Java - programming. the state of developer ecosystem in 2021 info-

graphic. https://www.jetbrains.com/lp/devecosystem-2021/java/, last viewed

27.05.2022.

[42] Stephen H Kan. Metrics and models in software quality engineering. Addison-Wesley

Professional, 2003.

[43] Lennart CL Kats and Eelco Visser. The spoofax language workbench: rules for

declarative specification of languages and ides. In Proceedings of the ACM inter-

national conference on Object oriented programming systems languages and applica-

tions, pages 444–463, 2010.

60

https://blogs.oracle.com/oracleuniversity/post/why-does-java-remain-so-popular
https://blogs.oracle.com/oracleuniversity/post/why-does-java-remain-so-popular
https://wwwcdf.pd.infn.it/localdoc/f77_sun.pdf
https://wwwcdf.pd.infn.it/localdoc/f77_sun.pdf
https://www.jetbrains.com/lp/devecosystem-2021/java/


[44] Veton Kepuska and Gamal Bohouta. Next-generation of virtual personal assistants

(microsoft cortana, apple siri, amazon alexa and google home). In 2018 IEEE 8th

annual computing and communication workshop and conference (CCWC), pages 99–

103. IEEE, 2018.

[45] Chanwoo Kim, Sungsoo Kim, Kwangyoun Kim, Mehul Kumar, Jiyeon Kim, Kyung-

min Lee, Changwoo Han, Abhinav Garg, Eunhyang Kim, Minkyoo Shin, et al. End-

to-end training of a large vocabulary end-to-end speech recognition system. In 2019

IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), pages

562–569. IEEE, 2019.

[46] Peter King, Patrick Naughton, Mike DeMoney, Jonni Kanerva, Kathy Walrath, and

Scott Hommel. Code conventions for the java programming language. Sun Microsys-

tems, 1999.

[47] Nidhi Kulkarni and Mark Finlayson. jmwe: A java toolkit for detecting multi-word

expressions. In Proceedings of the Workshop on Multiword Expressions: from Parsing

and Generation to the Real World, pages 122–124, 2011.

[48] Kari Laitinen. Natural naming in software development and maintenance. Citeseer,

1995.

[49] Dawn Lawrie, Christopher Morrell, Henry Feild, and David Binkley. What’s in a

name? a study of identifiers. In 14th IEEE International Conference on Program

Comprehension (ICPC’06), pages 3–12. IEEE, 2006.

[50] Dawn Lawrie, Henry Feild, and David Binkley. Extracting meaning from abbre-

viated identifiers. In Seventh IEEE International Working Conference on Source

Code Analysis and Manipulation (SCAM 2007), pages 213–222, 2007. doi: 10.1109/

SCAM.2007.17.

[51] Sheen S Levine and Michael J Prietula. Open collaboration for innovation: Principles

and performance. Organization Science, 25(5):1414–1433, 2014.

[52] John Lyons. Introduction to theoretical linguistics, volume 510. Cambridge university

press, 1968.

[53] Christopher D Manning, Mihai Surdeanu, John Bauer, Jenny Rose Finkel, Steven

Bethard, and David McClosky. The stanford corenlp natural language processing

toolkit. In Proceedings of 52nd annual meeting of the association for computational

linguistics: system demonstrations, pages 55–60, 2014.

61



[54] Mary Ann Marcinkiewicz. Building a large annotated corpus of english: The penn

treebank. Using Large Corpora, page 273, 1994.

[55] Jeff McAffer, Jean-Michel Lemieux, and Chris Aniszczyk. Eclipse rich client plat-

form. Addison-Wesley Professional, 2010.

[56] Andrei Mikheev, Marc Moens, and Claire Grover. Named entity recognition without

gazetteers. In Ninth Conference of the European Chapter of the Association for

Computational Linguistics, pages 1–8, 1999.

[57] George A Miller. Wordnet: a lexical database for english. Communications of the

ACM, 38(11):39–41, 1995.

[58] Ruslan Mitkov. The Oxford handbook of computational linguistics. Oxford University

Press, 2004.

[59] Bob Muglia. Bob muglia: Visual studio 2010 global launch keynote.

https://news.microsoft.com/2010/04/12/bob-muglia-visual-studio-2010-

global-launch-keynote/, last viewed 30.02.2022.

[60] Prakash M Nadkarni, Lucila Ohno-Machado, and Wendy W Chapman. Natural

language processing: an introduction. Journal of the American Medical Informatics

Association, 18(5):544–551, 2011.

[61] Roberto Navigli. Word sense disambiguation: A survey. ACM computing surveys

(CSUR), 41(2):1–69, 2009.

[62] Iulian Neamtiu, Jeffrey S Foster, and Michael Hicks. Understanding source code evo-

lution using abstract syntax tree matching. In Proceedings of the 2005 international

workshop on Mining software repositories, pages 1–5, 2005.

[63] Kunio Nishiyama. Adjectives and the copulas in japanese. Journal of East Asian

Linguistics, 8(3):183–222, 1999.

[64] Linguistic Society of America. The science of linguistics. https:

//www.linguisticsociety.org/resource/science-linguistics, last viewed

30.05.2022.

[65] Wyatt Olney, Emily Hill, Chris Thurber, and Bezalem Lemma. Part of speech

tagging java method names. In 2016 IEEE International Conference on Software

Maintenance and Evolution (ICSME), pages 483–487. IEEE, 2016.

62

https://news.microsoft.com/2010/04/12/bob-muglia-visual-studio-2010-global-launch-keynote/
https://news.microsoft.com/2010/04/12/bob-muglia-visual-studio-2010-global-launch-keynote/
https://www.linguisticsociety.org/resource/science-linguistics
https://www.linguisticsociety.org/resource/science-linguistics


[66] Oracle. Developing java applications. https://docs.oracle.com/javase/7/docs/

technotes/guides/, last viewed 27.05.2022, .

[67] Oracle. Sun java enterprise system user management guide. https://

www.oracle.com/corporate/pressrelease/oracle-buys-sun-042009.html, last

viewed 30.05.2022, .

[68] Oracle. Timeline of key java milestones. https://www.oracle.com/java/moved-by-

java/timeline/, last viewed 30.05.2022, .

[69] Oracle. Coding conventions for the java programming language: 9. naming conven-

tion. https://www.oracle.com/java/technologies/javase/codeconventions-

namingconventions.html, last viewed 31.05.2022, .

[70] Martha Palmer, Daniel Gildea, and Nianwen Xue. Semantic role labeling. Synthesis

Lectures on Human Language Technologies, 3(1):1–103, 2010.

[71] Martin Richards. Bcpl: A tool for compiler writing and system programming. In

Proceedings of the May 14-16, 1969, spring joint computer conference, pages 557–

566, 1969.

[72] Norbert Schmitt. An introduction to applied linguistics. Routledge, 2013.
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Appendix A

Declarations and Rules Implementation

Here is the implementation of the sections declarations and rules in our DSL. There

are a few custom specifications and pre-defined types included. More details about the

specification can be found in subsection 3.1.1. Appendix B has the implementation based

on the declarations and rules specified here.

Type Section Implementation in our DSL

Parameter Declaration

Parameter <-> "com.github.javaparser.ast.body

.Parameter"

Variable

declarator

Declaration

VariableDeclarator <-> "com.github.javaparser.

ast.body.VariableDeclarator"

Object

creation

expression

Declaration

ObjectCreationExpr <-> "com.github.javaparser

.ast.expr.ObjectCreationExpr"

Instance of

expression

Declaration

InstanceOfExpr <-> "com.github.javaparser.ast

.expr.InstanceOfExpr"
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Cast

expression

Declaration

CastExpr <-> "com.github.javaparser.ast.expr

.CastExpr"

Field

access

expression

Declaration

FieldAccessExpr <->"com.github.javaparser.ast

.expr.FieldAccessExpr"

Assign

expression

Declaration

AssignExpr <-> "com.github.javaparser.ast.expr

.AssignExpr"

Variable

declaration

expression

Declaration

VariableDeclarationExpr <-> "com.github

.javaparser.ast.expr.VariableDeclarationExpr"

Void type Declaration

VoidType <-> "com.github.javaparser.ast.type

.VoidType"

While

statement

Declaration

WhileStmt <-> "com.github.javaparser.ast.stmt

.WhileStmt"

For each

statement

Declaration

ForEachStmt <-> "com.github.javaparser.ast.stmt

.ForEachStmt"
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For

statement

Declaration

ForStmt <-> "com.github.javaparser.ast.stmt

.ForStmt"

Do statement Declaration

DoStmt <-> "com.github.javaparser.ast.stmt

.DoStmt"

Throw

statement

Declaration

ThrowStmt <-> "com.github.javaparser.ast.stmt

.ThrowStmt"

Package Declaration

pre-defined
package <-> "com.github.javaparser.ast

.PackageDeclaration"

Class Declaration

pre-defined
class <-> "com.github.javaparser.ast.body

.ClassOrInterfaceDeclaration"

Interface Declaration

pre-defined
interface <-> "com.github.javaparser.ast.body

.ClassOrInterfaceDeclaration"

Variable Declaration

pre-defined
variable <-> "com.github.javaparser.ast.body

.VariableDeclarator"
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Method Declaration

pre-defined
variable <-> "com.github.javaparser.ast.body

.MethodDeclaration"

Method has

no parameter

Rule

def hasNoParameter for method {

filter Parameter

such that size < 1

}

Method

returns void

Rule

def returnsVoid for method {

filter VoidType

such that size == 1

}

Method

throws

Exception

Rule

def throwsException for method {

filter ThrowStmt

such that size > 0

}

Method uses

local variable

Rule

def usesLocalVariable for method {

filter VariableDeclarator

such that size > 0

}
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Method

contains loop

Rule

def containsLoop for method {

filter WhileStmt || ForEachStmt || ForStmt

|| DoStmt

such that size > 0

}

Method

creates object

Rule

def createsObject for method {

filter ObjectCreationExpr

such that size > 0

}

Method

performs type

check

Rule

def performsTypeCheck for method {

filter InstanceOfExpr || CastExpr

such that size > 0

}

Method reads

state

Rule

def readsState for method {

filter FieldAccessExpr

such that size > 0

}

Method

manipulates

state

Rule

def manipulatesState for method {

filter AssignExpr || VariableDeclarationExpr

such that size > 0

}
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Method calls

method with

same name

Rule

pre-defined
def declare callsMethodWithSameName

70



Appendix B

Lexicon With Implementation

Here is the implementation of each verb from The Lexicon [39] in our DSL. The implemen-

tation is based on the description of the verb. Furthermore, this implementation is also

considered the last section of the requirement specifications, where declarations and rules

from the first two sections showed in Appendix A can be found in this implementation.

More details about the specification can be found in subsection 3.1.1.
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Verb Description from lexicon [39] Implementation in our DSL

accept Methods named “accept” very sel-

dom read state. Furthermore, they

rarely throw exceptions, call meth-

ods of the same name, create objects,

manipulate state, use local variables,

have no parameters, perform type-

checking or contain loops. The name

“accept” has a precise use. A similar

name is “visit”. Generalisations of

“accept” are handle and “initialize”.

Somewhat related names are “set”,

“end”, “is” and “insert”.

case for method "accept" {

very-seldom

readsState

rarely

throwsException

rarely

callsMethodWithSameName

rarely

createsObject

rarely

manipulatesState

rarely

usesLocalVariable

rarely

hasNoParameter

rarely

performsTypeCheck

rarely

containsLoop

}
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action Methods named “action” never call

methods of the same name. Fur-

thermore, they very often read state.

Finally, they often return void, and

rarely throw exceptions, have no pa-

rameters or contain loops. The name

“action” has a precise use. Similar

names are “remove” and “add”.

case for method "action" {

very-often

readsState

rarely

throwsException

never

callsMethodWithSameName

rarely

hasNoParameter

rarely

containsLoop

}

add Among the most common method

names. Methods named “add” often

read state. Similar names are “re-

move” and “action”.

case for method "add" {

often

readsState

}

check Methods named “check” very of-

ten throw exceptions. Furthermore,

they often create objects and contain

loops, and rarely call methods of the

same name. Unfortunately, “check”

is an imprecise name for a method.

case for method "check" {

very-often

throwsException

rarely

callsMethodWithSameName

often

createsObject

often

containsLoop

}
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clear Methods named “clear” very often

have no parameters. Furthermore,

they often return void, call meth-

ods of the same name and manipu-

late state, and rarely create objects,

use local variables or perform type-

checking. A generalisation of “clear”

is “reset”. A somewhat related name

is “close”.

case for method "clear" {

often

callsMethodWithSameName

rarely

createsObject

often

manipulatesState

rarely

usesLocalVariable

very-often

hasNoParameter

rarely

performsTypeCheck

often

returnsVoid

}
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close Methods named “close” often return

void, call methods of the same name,

manipulate state, read state and have

no parameters, and rarely create ob-

jects or perform type-checking. A

generalisation of “close” is “vali-

date”. A somewhat related name is

“clear”.

case for method "close" {

often

returnsVoid

often

callsMethodWithSameName

often

manipulatesState

often

readsState

often

hasNoParameter

rarely

createsObject

rarely

performsTypeCheck

}

create Among the most common method

names. Methods named “create”

very often create objects. Further-

more, they rarely call methods of the

same name, read state or contain

loops.

case for method "create" {

often

createsObject

rarely

callsMethodWithSameName

rarely

readsState

rarely

containsLoop

}
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do Methods named “do” often throw ex-

ceptions and perform type-checking,

and rarely call methods of the same

name. Unfortunately, “do” is an im-

precise name for a method.

case for method "do" {

often

throwsException

often

performsTypeCheck

rarely

callsMethodWithSameName

}

dump Methods named “dump” never throw

exceptions. Furthermore, they very

often create objects and use lo-

cal variables, and very seldom read

state. Finally, they often call meth-

ods of the same name and contain

loops, and rarely manipulate state.

The name “dump” has a precise use.

case for method "dump" {

very-often

createsObject

very-often

usesLocalVariable

often

callsMethodWithSameName

often

containsLoop

never

throwsException

very-seldom

readsState

rarely

manipulatesState

}
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end Methods named “end” often return

void, and rarely create objects, use

local variables, read state or con-

tain loops. Generalisations of “end”

are “handle” and “initialize”. A

specialisation of “end” is “insert”.

Somewhat related names are “ac-

cept”, “set”, “visit” and “write”.

case for method "end" {

often

returnsVoid

rarely

createsObject

rarely

usesLocalVariable

rarely

readsState

rarely

containsLoop

}
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equals Methods named “equals” never re-

turn void, throw exceptions, create

objects, manipulate state or have no

parameters. Furthermore, they very

often call methods of the same name

and perform type-checking. Finally,

they often use local variables and

read state. The name “equals” has

a precise use.

case for method "equals" {

very-often

performsTypeCheck

very-often

callsMethodWithSameName

often

usesLocalVariable

often

readsState

never

returnsVoid

never

throwsException

never

createsObject

never

manipulatesState

never

hasNoParameter

}

find Methods named “find” very of-

ten use local variables and contain

loops. Furthermore, they often per-

form type-checking, and rarely return

void.

case for method "find" {

very-often

usesLocalVariable

very-often

containsLoop

often

performsTypeCheck

rarely

returnsVoid

}
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generate Methods named “generate” often cre-

ate objects, use local variables and

contain loops, and rarely call meth-

ods of the same name. Unfortu-

nately, “generate” is an imprecise

name for a method.

case for method "generate" {

often

createsObject

often

usesLocalVariable

often

containsLoop

rarely

callsMethodWithSameName

}

get The most common method name.

Methods named “get” often read

state and have no parameters, and

rarely return void, call methods of

the same name, manipulate state,

use local variables or contain loops.

A similar name is “has”. Specialisa-

tions of “get” are “is” and “size”. A

somewhat related name is “hash”.

case for method "get" {

often

readsState

often

hasNoParameter

rarely

returnsVoid

rarely

callsMethodWithSameName

rarely

manipulatesState

rarely

usesLocalVariable

rarely

containsLoop

}
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handle Methods named “handle” often read

state, and rarely call methods of the

same name. A similar name is “ini-

tialize”. Specialisations of “handle”

are “accept”, “set”, “visit”, “end”

and “insert”.

case for method "handle" {

often

readsState

rarely

callsMethodWithSameName

}

has Methods named “has” often have no

parameters, and rarely return void,

throw exceptions, create objects, ma-

nipulate state, use local variables or

perform type-checking. The name

“has” has a precise use. A similar

name is “get”. “Specialisations” of

“has” are “is” and “size”. A some-

what related name is “hash”.

case for method "has" {

often

hasNoParameter

rarely

returnsVoid

rarely

throwsException

rarely

createsObject

rarely

manipulatesState

rarely

usesLocalVariable

rarely

performsTypeCheck

}
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hash Methods named “hash” always have

no parameters, and never return

void, throw exceptions, create objects

or perform type-checking. Further-

more, they very often call methods

of the same name. Finally, they

often read state, and rarely manip-

ulate state or use local variables.

The name “hash” has a precise use.

Somewhat related names are “has”,

“is”, “get” and “size”.

case for method "hash" {

always

hasNoParameter

often

readsState

never

returnsVoid

never

throwsException

never

createsObject

never

performsTypeCheck

rarely

callsMethodWithSameName

rarely

usesLocalVariable

}

init Methods named “init” very often

manipulate state. Furthermore, they

often return void, create objects and

have no parameters, and rarely call

methods of the same name.

case for method "init" {

very-often

manipulatesState

often

returnsVoid

often

createsObject

often

hasNoParameter

rarely

callsMethodWithSameName

}
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initialize Methods named “initialize” often re-

turn void and manipulate state, and

rarely call methods of the same name

or read state. A similar name is

“handle”. Specialisations of “ini-

tialize” are “accept”, “set”, “visit”,

“end” and “insert”.

case for method "initialize" {

often

returnsVoid

often

manipulatesState

rarely

callsMethodWithSameName

rarely

readsState

}

insert Methods named “insert” often throw

exceptions, and rarely create ob-

jects, read state, have no parame-

ters or contain loops. Generalisa-

tions of “insert” are “handle”, “end”

and “initialize”. Somewhat related

names are “accept”, “set”, “visit”

and “write”.

case for method "insert" {

often

throwsException

rarely

createsObject

rarely

readsState

rarely

hasNoParameter

rarely

containsLoop

}
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is The third most common method

name. Methods named “is” of-

ten have no parameters, and rarely

return void, throw exceptions, call

methods of the same name, create

objects, manipulate state, use local

variables, perform type- checking or

contain loops. The name “is” has

a precise use. Generalisations of

“is” are “has” and “get”. Somewhat

related names are “accept”, “visit”,

“hash” and “size”.

case for method "is" {

rarely

performsTypeCheck

rarely

throwsException

rarely

callsMethodWithSameName

rarely

usesLocalVariable

rarely

containsLoop

rarely

returnsVoid

rarely

throwsException

rarely

createsObject

rarely

manipulatesState

often

hasNoParameter

}
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load Methods named “load” very often

use local variables. Furthermore,

they often throw exceptions, create

objects, manipulate state, perform

type-checking and contain loops. Un-

fortunately, “load” is an imprecise

name for a method.

case for method "load" {

very-often

usesLocalVariable

often

throwsException

often

createsObject

often

manipulatesState

often

performsTypeCheck

often

containsLoop

}

make Methods named “make” very often

create objects. Furthermore, they

rarely return void, throw exceptions,

call methods of the same name or

contain loops.

case for method "make" {

very-often

createsObject

rarely

returnsVoid

rarely

throwsException

rarely

callsMethodWithSameName

rarely

containsLoop

}
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new Methods named “new” never con-

tain loops. Furthermore, they very

seldom use local variables. Finally,

they often call methods of the same

name and create objects, and rarely

return void, manipulate state or read

state.

case for method "new" {

often

callsMethodWithSameName

very-seldom

usesLocalVariable

rarely

readsState

rarely

returnsVoid

often

createsObject

rarely

manipulatesState

never

containsLoop

}

next Methods named “next” very often

manipulate state and read state.

Furthermore, they often throw excep-

tions and have no parameters, and

rarely return void.

case for method "next" {

very-often

manipulatesState

very-often

readsState

often

throwsException

often

hasNoParameter

rarely

returnsVoid

}
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parse Among the most common method

names. Methods named “parse”

very often call methods of the same

name, read state and perform type-

checking. Furthermore, they rarely

use local variables. The name

“parse” has a precise use.

case for method "parse" {

very-often

performsTypeCheck

very-often

callsMethodWithSameName

very-often

readsState

rarely

usesLocalVariable

}

print Methods named print often call

methods of the same name and con-

tain loops, and rarely throw excep-

tions or manipulate state.

case for method "print" {

very-often

callsMethodWithSameName

often

containsLoop

rarely

throwsException

rarely

manipulatesState

}
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process Methods named ”process“ very often

use local variables and contain loops.

Furthermore, they often throw excep-

tions, create objects, read state and

perform type-checking, and rarely

call methods of the same name. Un-

fortunately, “process” is an impre-

cise name for a method.

case for method "process" {

often

performsTypeCheck

rarely

callsMethodWithSameName

often

usesLocalVariable

very-often

containsLoop

often

throwsException

often

createsObject

often

readsState

often

performsTypeCheck

}
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read Methods named “read” often throw

exceptions, call methods of the same

name, create objects, manipulate

state, use local variables and contain

loops. Unfortunately, “read” is an

imprecise name for a method.

case for method "read" {

often

throwsException

often

callsMethodWithSameName

often

createsObject

often

manipulatesState

often

usesLocalVariable

often

containsLoop

}

remove Among the most common method

names. Methods named “remove”

often throw exceptions. Similar

names are “add” and “action”.

case for method "remove" {

often

throwsException

}
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reset Methods named “reset” very often

manipulate state. Furthermore, they

often return void and have no pa-

rameters, and rarely create objects,

use local variables or perform type-

checking. A specialisation of “reset”

is “clear”.

case for method "reset" {

very-often

manipulatesState

often

returnsVoid

often

hasNoParameter

rarely

createsObject

rarely

usesLocalVariable

rarely

performsTypeCheck

}

run Among the most common method

names. Methods named “run” very

often read state. Furthermore, they

often have no parameters, and rarely

call methods of the same name.

case for method "run" {

very-often

readsState

often

hasNoParameter

rarely

callsMethodWithSameName

}
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set The second most common method

name. Methods named “set” very of-

ten manipulate state, and very sel-

dom use local variables or read state.

Furthermore, they often return void,

and rarely call methods of the same

name, create objects, have no pa-

rameters, perform type-checking or

contain loops. The name “set” has

a precise use. Generalisations of

“set” are “handle” and “initialize”.

Somewhat related names are “ac-

cept”, “visit”, “end” and “insert”.

case for method "set" {

very-often

manipulatesState

often

returnsVoid

very-seldom

usesLocalVariable

very-seldom

readsState

rarely

callsMethodWithSameName

rarely

createsObject

rarely

hasNoParameter

rarely

performsTypeCheck

rarely

containsLoop

}

90



size Methods named “size” always have

no parameters, and never return

void, create objects, manipulate

state, perform type-checking or con-

tain loops. Furthermore, they very

seldom use local variables. Finally,

they rarely read state. The name

“size” has a precise use. Gener-

alisations of “size” are “has” and

“get”. Somewhat related names are

“is” and “hash”.

case for method "size" {

always

hasNoParameter

never

returnsVoid

never

createsObject

never

manipulatesState

never

performsTypeCheck

never

containsLoop

very-seldom

usesLocalVariable

rarely

readsState

}

start Methods named “start” often re-

turn void, manipulate state and read

state.
case for method "start" {

often

returnsVoid

often

manipulatesState

often

readsState

}
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to Among the most common method

names. Methods named “to” very of-

ten call methods of the same name

and create objects. Furthermore,

they often have no parameters, and

rarely return void, throw exceptions,

manipulate state or perform type-

checking.

case for method "to" {

very-often

callsMethodWithSameName

rarely

returnsVoid

very-often

createsObject

rarely

throwsException

often

hasNoParameter

rarely

manipulatesState

rarely

performsTypeCheck

}

update Methods named “update” often re-

turn void and read state.
case for method "update" {

often

returnsVoid

often

readsState

}
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validate Methods named “validate” very of-

ten throw exceptions. Furthermore,

they often create objects and have

no parameters, and rarely manipu-

late state. A specialisation of “val-

idate” is “close”.

case for method "validate" {

very-often

throwsException

often

createsObject

often

hasNoParameter

rarely

manipulatesState

}

visit Methods named “visit” rarely throw

exceptions, use local variables, read

state or have no parameters. A

similar name is “accept”. Gen-

eralisations of “visit” are “handle”

and “initialize”. Somewhat related

names are “set”, “end”, “is” and

“insert”.

case for method "visit" {

rarely

throwsException

rarely

usesLocalVariable

rarely

readsState

rarely

hasNoParameter

}

write Among the most common method

names. Methods named “write” of-

ten return void and call methods

of the same name, and rarely have

no parameters. Somewhat related

names are “end” and “insert”.

case for method "write" {

often

returnsVoid

often

callsMethodWithSameName

rarely

hasNoParameter

}
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Appendix C

Grammar for the Implemented DSL

This is the grammar in Xtext for the implemented DSL, and can be found in the repository

that hosts the Xtext project1 in the file MethodName.xtext2.

1 grammar org.xtext.example.methodname.MethodName with
↪→ org.eclipse.xtext.common.Terminals

2
3 generate methodName "http://www.xtext.org/example/methodname/MethodName"
4
5 Model:
6 "declarations"
7 declarations+=Declaration*
8 fixedDeclarations+=FixedDeclaration+
9 "rules"
10 rules+=Rule*
11 "cases"
12 elements+=Case*
13 ;
14
15 Declaration:
16 name=ID "<->" path=STRING
17 ;
18
19 FixedDeclaration:
20 kind=Kind "<->" path=STRING
21 ;
22
23 enum Kind:
24 KIND_INTERFACE="interface"|
25 KIND_PACKAGE="package" |
26 KIND_CLASS="class" |
27 KIND_METHOD="method" |
28 KIND_VAR="variable"
29 ;
30
31 Rule:
32 "def" name=ID "for" kind=Kind "{"
33 "filter" decls+=[Declaration] ("||" decls+=[Declaration])*
34 "such" "that" "size" compOp=(">"|"<"|"=="|"<="|">=") compValue=INT
35 "}" |
36 "def" "declare" name=ID
37 ;

1https://git.app.uib.no/Emily.Nguyen/nameanalyser
2https://git.app.uib.no/Emily.Nguyen/nameanalyser/-/blob/master/

org.xtext.example.methodname/src/org/xtext/example/methodname/MethodName.xtext
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38
39 Case:
40 "case" "for" kind=Kind condition=Expr "{"
41 properties+=Property*
42 "}"
43 ;
44
45 Expr: Or;
46
47 Or returns Expr:
48 And ({Or.left=current} "|" right=And)*;
49
50 And returns Expr:
51 Primary ({And.left=current} concatKind=("."|"...") right=Primary)*;
52
53 Primary returns Expr:
54 GroupExpr |
55 Atomic
56 ;
57
58 GroupExpr:
59 hasNot?="!"? "(" expr=Expr ")" card=CardinalityModifier?
60 ;
61
62 Atomic returns Expr:
63 {StringConst}
64 hasNot?="!"? value=STRING card=CardinalityModifier? ("[" sentiment=Sentiment

↪→ "]")? |
65 {POSValue}
66 hasNot?="!"? pos=POS card=CardinalityModifier? ("[" sentiment=Sentiment "]")? |
67 {SynonymConst}
68 hasNot?="!"? "#" value=STRING card=CardinalityModifier? ("["

↪→ sentiment=Sentiment "]")?
69 ;
70
71 enum Sentiment:
72 SENT_UNSPECIFIED |
73 SENT_NEUTRAL="neutral" |
74 SENT_POSITIVE="positive" |
75 SENT_NEGATIVE="negative"
76 ;
77
78 enum POS:
79 POS_CC="CC" |
80 POS_CD="CD" |
81 POS_DT="DT" |
82 POS_EX="EX" |
83 POS_FW="FW" |
84 POS_IN="IN" |
85 POS_JJ="JJ" |
86 POS_JJR="JJR" |
87 POS_JJS="JJS" |
88 POS_LS="LS" |
89 POS_MD="MD" |
90 POS_NN="NN" |
91 POS_NNS="NNS" |
92 POS_NNP="NNP" |
93 POS_NNPS="NNPS" |
94 POS_PDT="PDT" |
95 POS_POS="POS" |
96 POS_PRP="PRP" |
97 POS_RB="RB" |
98 POS_RBR="RBR" |
99 POS_RBS="RBS" |
100 POS_RP="RP" |
101 POS_SYM="SYM" |
102 POS_TO="TO" |
103 POS_UH="UH" |
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104 POS_VB="VB" |
105 POS_VBD="VBD" |
106 POS_VBG="VBG" |
107 POS_VBN="VBN" |
108 POS_VBP="VBP" |
109 POS_VBZ="VBZ" |
110 POS_WDT="WDT" |
111 POS_WP="WP" |
112 POS_WRB="WRB"
113 ;
114
115 enum CardinalityModifier:
116 CARD_1 |
117 CARD_0_N="*" |
118 CARD_1_N="+" |
119 CARD_0_1="?"
120 ;
121
122 Property:
123 frequency=Frequency? criterion=[Rule];
124
125 enum Frequency:
126 ALWAYS="always" |
127 VERYOFTEN="very-often" |
128 OFTE="often" |
129 RARELY="rarely" |
130 VERYSELDOM="very-seldom" |
131 NEVER="never"
132 ;
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Appendix D

Code Generator for the Implemented DSL

This is the code generator in Xtend for the implemented DSL, and can be found in the

repository that hosts the Xtext project1 in the file MethodNameGenerator.xtend2.

1 package org.xtext.example.methodname.generator
2
3 import org.eclipse.emf.ecore.resource.Resource
4 import org.eclipse.xtext.generator.AbstractGenerator
5 import org.eclipse.xtext.generator.IFileSystemAccess2
6 import org.eclipse.xtext.generator.IGeneratorContext
7
8 import org.xtext.example.methodname.methodName.Model
9 import org.xtext.example.methodname.methodName.Case
10 import org.xtext.example.methodname.methodName.Expr
11 import org.xtext.example.methodname.methodName.Property
12 import org.xtext.example.methodname.methodName.And
13 import org.xtext.example.methodname.methodName.Or
14 import org.xtext.example.methodname.methodName.StringConst
15 import org.xtext.example.methodname.methodName.POSValue
16 import org.xtext.example.methodname.methodName.GroupExpr
17 import org.xtext.example.methodname.methodName.SynonymConst
18 import org.xtext.example.methodname.methodName.Rule
19 import org.xtext.example.methodname.methodName.Kind
20
21 class MethodNameGenerator extends AbstractGenerator {
22
23 def getPath(Kind pathKind) {
24 return pathKind
25 }
26
27 def operatorToString(String operator) {
28 switch operator {
29 case ">":"GT"
30 case "<":"LT"
31 case "==":"EQ"
32 case "<=":"LE"
33 case ">=":"GE"
34 case "!=":"NE"
35 }
36 }
37

1https://git.app.uib.no/Emily.Nguyen/nameanalyser
2https://git.app.uib.no/Emily.Nguyen/nameanalyser/-/blob/master/

org.xtext.example.methodname/src/org/xtext/example/methodname/generator/
MethodNameGenerator.xtend
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38 override void doGenerate(Resource resource, IFileSystemAccess2 fsa,
↪→ IGeneratorContext context) {

39 for (e:resource.allContents.toIterable.filter(Model)) {
40 fsa.generateFile("generatedRequirements.xml",
41 e.compile
42 )
43 }
44 }
45
46 def CharSequence compile(Model m)
47 ’’’
48 <model>
49 ≪FOR r:m.rules≫

50 ≪r.compile≫

51 ≪ENDFOR≫

52 ≪FOR c:m.elements≫

53 ≪c.compile≫

54 ≪ENDFOR≫

55 </model>
56 ’’’
57
58 def CharSequence compile(Rule r)
59 ’’’
60 ≪IF r.name!="callMethodWithSameName"≫

61 <declare rule="≪r.name≫" for="≪getPath(r.kind)≫"
↪→ op="≪operatorToString(r.compOp)≫" size="≪r.compValue≫">

62 ≪FOR d:r.decls≫

63 <filter instance="≪d.path≫"/>
64 ≪ENDFOR≫

65 </declare>
66 ≪ENDIF≫

67 ’’’
68
69 def CharSequence compile(Case c)
70 ’’’
71 <case ≪c.kind≫="≪c.condition.compile≫">
72 ≪FOR p:c.properties≫

73 ≪p.compile≫

74 ≪ENDFOR≫

75 </case>
76 ’’’
77
78 def dispatch CharSequence compile(Expr e) {
79 switch e {
80 Or: {’’’(≪e.left.compile≫|≪e.right.compile≫)’’’}
81 And: {’’’(≪e.left.compile≫.≪e.right.compile≫)’’’}
82 GroupExpr: {’’’(≪e.expr.compile≫≪IF

↪→ e.card!=e.card.CARD_1≫≪e.card≫≪ENDIF≫)’’’}
83 StringConst: {’’’(≪e.value≫≪IF

↪→ e.sentiment==e.sentiment.SENT_UNSPECIFIED≫@positive | ≪

↪→ e.value≫@negative | ≪

↪→ e.value≫@neutral≪ELSE≫@≪e.sentiment≫≪ENDIF≫)≪IF
↪→ e.card!=e.card.CARD_1≫≪e.card≫≪ENDIF≫’’’}

84 POSValue: {’’’(≪e.pos≫≪IF
↪→ e.sentiment==e.sentiment.SENT_UNSPECIFIED≫@positive | ≪

↪→ e.pos≫@negative | ≪e.pos≫@neutral≪ELSE≫@≪e.sentiment≫≪ENDIF≫)≪IF
↪→ e.card!=e.card.CARD_1≫≪e.card≫≪ENDIF≫’’’}

85 SynonymConst: {’’’≪IF e.sentiment==
↪→ e.sentiment.SENT_UNSPECIFIED≫(≪Synonym.generateAllSynonyms(e.value,
↪→ "unspecified")≫≪ELSEIF e.sentiment==
↪→ e.sentiment.SENT_NEUTRAL≫(≪Synonym.generateAllSynonyms(e.value,
↪→ e.sentiment.SENT_NEUTRAL.toString)≫≪ELSEIF e.sentiment==
↪→ e.sentiment.SENT_POSITIVE≫(≪Synonym.generateAllSynonyms(e.value,
↪→ e.sentiment.SENT_POSITIVE.toString)≫≪ELSEIF e.sentiment==
↪→ e.sentiment.SENT_NEGATIVE≫(≪Synonym.generateAllSynonyms(e.value,
↪→ e.sentiment.SENT_NEGATIVE.toString)≫≪ENDIF≫)≪IF
↪→ e.card!=e.card.CARD_1≫≪e.card≫≪ENDIF≫’’’}

86 }

98



87 }
88
89 def CharSequence compile(Property p)
90 ’’’
91 <≪p.frequency≫><≪p.criterion.name≫/></≪p.frequency≫>
92 ’’’
93 }

99
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