
University of Bergen
Department of informatics

Selecting Maximally Informative

Frequency Subsets for Acoustic

Surveys

Author: Knut Thormod Aarnes Holager

Supervisors: Ketil Malde, Nils Olav Handegard

June, 2022

Abstract

In this thesis, we sought the most informative subset of frequencies to be utilized when

classifying sandeel in acoustic data. The intention was to help identify an optimal choice

of frequencies if the choice of transducers were restricted by, for example, price or carrying

capacity in autonomous vessels. To measure the information lost, we started by producing

pseudo labels with an existing automatic acoustic classifier trained to identify sandeel. Then

we trained new classifiers based on the same architecture on the same data, but varying

subsets of frequencies were used. We could then measure how well these new models could

reconstruct the pseudo labels. The F1-score of the highest performing subset, per subset

size, increased from a size of one frequency in use (0.34) to two (0.46), and then drastically

to three (0.65), after which only marginal improvements were seen. In particular, the subset

containing 18kHz, 38kHz, and 200kHz achieved close to the same performance as using the

complete set of six frequencies (0.67). Furthermore, the three frequencies mentioned exhibit

unique performance compared to the other subsets of equal size.

Acknowledgements

I would foremost like to express my gratitude towards my friends and fellow master’s stu-

dents. Hans Martin Johansen, Mathias Madslien, Halvor Barndon, Emir Zamwa, Johanna

Jøsang, John Isak Villanger, and Gunnar. Thanks to you all for the comradeship, both in

the reading room and outside the university. For making each day of this degree enjoyable

and supporting me throughout these two years. Particularly to my fellow sandwich makers,

whose ignorance of conventional mayonnaise limits, motivated me to continually hit the gym.

Thanks to my supervisor Ketil Malde and co-supervisor Nils Olav Handegard for helping

me formulate my thesis and providing invaluable feedback. Gratitude to all the people who

provided support from the University of Bergen and IMR, particularly Ibrahim Umar and

Tomasz Furmanek, for without your expert knowledge and willingness to help, this thesis

would not have been possible. Finally, a big thanks to my family and girlfriend for your

unfaltering support.

Knut Thormod Aarnes Holager

01 June, 2022

ii

Contents

1 Introduction 1

1.1 Marine Advisory Work . 1

1.2 Why the Lesser Sandeel? . 2

1.3 IMRs Acoustic Trawl Surveys . 3

1.4 Acoustic Classification of Sandeel . 3

1.5 Unmanned Vehicles in Marine Science . 4

1.6 Research Question . 5

1.7 Chapter Overview . 5

2 Background 7

2.1 Acoustics . 7

2.1.1 Acoustics and Fish . 9

2.1.2 The Volume Backscattering Coefficient 10

2.2 Machine Learning . 10

2.2.1 Algorithm Approaches . 11

2.2.2 Supervised Learning . 11

2.2.3 Unsupervised Learning . 11

2.2.4 Data and Features . 11

2.3 Artificial Neural Networks . 12

2.3.1 Perceptron . 12

2.3.2 Multi-Layered Perceptron . 12

2.3.3 Activation Functions . 14

2.3.4 Convolutional Neural Network . 16

2.4 Training Neural Networks . 23

2.4.1 Forward-Propagation and The Loss Function 23

2.4.2 Mini-batch Stochastic Gradient Descent 24

iii

2.4.3 Back-Propagation and Gradient-based Learning 25

2.5 Model Evaluation . 26

2.5.1 Performance Metrics . 27

2.5.2 Train-Validation-Test Split . 28

2.5.3 Overfitting Vs. Underfitting . 28

2.6 Regularization . 29

2.6.1 Batch-Norm . 29

2.6.2 Data-Augmentation . 31

2.7 U-Net . 32

2.8 Knowledge Distillation . 34

3 Basis and Related Work 35

3.1 Acoustic Classification in Multifrequency Echosounder Data using Deep Con-

volutional Neural Networks . 35

3.2 Related Work . 38

4 Material and Methods 39

4.1 The Data . 39

4.2 The CRIMAC-Pipeline Modules . 40

4.3 Pseudo Labels . 42

4.4 Data Preparation . 43

4.5 Experiment . 50

4.5.1 Experiment Settings . 50

4.5.2 Exhaustive Frequency Search . 52

4.6 Hardware . 54

5 Results 55

5.1 Experiment: Exhaustive Search . 55

5.1.1 Training . 55

5.1.2 Results: Exhaustive Search . 57

5.1.3 Individual Subsets . 61

5.1.4 Performance Trend per Frequency . 64

6 Discussion 67

7 Conclusion and Future Work 71

iv

List of Acronyms and Abbreviations 73

Bibliography 74

A Tools used 81

A.1 Windows Azure . 81

A.2 Docker . 81

A.3 Zarr . 82

A.4 Xarray . 82

A.5 Pickle . 82

B Supplementary Results 83

B.1 All subsets in increasing order of mean F1-score 83

B.2 Tests per subset size in increasing order of mean F1-score 85

B.3 Training examples . 87

B.3.1 Subset size 1 . 88

B.3.2 Subset size 2 . 91

B.3.3 Subset size 3 . 92

B.3.4 Subset size 4 . 93

B.3.5 Subset size 5 . 94

v

List of Figures

1.1 Sandeel . 2

2.1 Echosounder . 8

2.2 Echosounder . 9

2.3 The perceptron and multi-layer perceptron 13

2.4 ReLu and sigmoid . 15

2.5 Convolutional neural network example . 16

2.6 Horizontal edge detector example . 18

2.7 Receptive field . 19

2.8 Same convolution example . 20

2.9 The max pool operation . 20

2.10 1×1 convolution . 21

2.11 Transposed convolution . 22

2.12 Difference between semantic and instance segmentation 23

2.13 Learning rates . 26

2.14 Over/under-fit . 29

2.15 Two data augmentation examples . 31

2.16 U-Net architecture . 32

3.1 U-Net architecture . 36

4.1 Module overview . 41

4.2 Module outputs illustration . 42

4.3 Pseudo label . 43

4.4 Data preparation process . 44

4.5 Missing values and bottom . 45

4.6 Data, label and bottom crop extraction and interaction 46

4.7 Criteria and folder structure . 47

vi

5.1 Loss and F1 score during training . 56

5.2 Example output, threshold and label . 56

5.3 Best frequency combination - F1-score . 58

5.4 Best frequency combination - Precision . 59

5.5 Best frequency combination - Recall . 60

5.6 Error bars per combination . 62

5.7 With and without unique subset . 63

5.8 Performance trend per frequency . 65

vii

List of Tables

4.1 2018 data distribution . 48

4.2 2019 data distribution . 48

4.3 Data loading scheme . 50

4.4 Data augmentation summary . 51

4.5 Experiment hyperparameters . 51

5.1 Summary exhaustive search . 57

viii

Chapter 1

Introduction

This chapter will present the context of the research conducted in this thesis and the mo-

tivation and focus of the work. Finally, the research question will be stated, followed by a

short description of each chapter.

1.1 Marine Advisory Work

The International Council for the Exploration of the Sea (ICES) is an intergovernmental

science organization which is the primary provider of advice on marine ecosystems to the

governments and international bodies that manage the North Atlantic Ocean and adjacent

seas. It consists of over 6000 marine scientists, over 300 institutes, and 20 member coun-

tries, including Norway. Advice is formulated by expert groups who work towards a better

understanding of marine ecosystems and their sustainable use [17]. The Norwegian Institute

of Marine Research (IMR) is a significant contributor, and one of its activities is to give

input to these advices through research and monitoring. An important research area is the

monitoring of a species known as the lesser sandeel, which is the area to which this thesis

seeks to contribute [42].

1

1.2 Why the Lesser Sandeel?

The lesser sandeel (Ammodytes marinus), hereby just sandeel, is a small pelagic1 fish which

resides in sandy-bottomed coastal and shallow ocean waters and feeds mainly on plankton.

It plays a key role in the North Sea, as it has a critical function in the marine ecosystem

as forage fish2 and as the catch for fisheries. Due to the high level of predation, it lives

large parts of its life buried in a sandy seabed, but during the spring feeding season, adults

emerge each dawn to create large schools in the upper pelagic layer. Historical data show that

changes in their abundance cause bottom-up effects in the ecosystem, causing, for example,

breeding failure among several species of seabird [21].

The North Sea is under pressure from various factors, including fishing, coastal construc-

tion, maritime transport, oil and gas exploration and production, tourism and recreation,

navigation dredging, aggregate3 extraction, military activities, and wind farm construction

[18]. Because of the importance of sandeel, the Norwegian IMR has conducted annual acous-

tic trawl missions since 2005 in sandeel areas of the North Sea [21]. The goal is to monitor

the sandeel stock and create input and data to help the ICES make scientifically-backed

advice, one of which is recommendations for fishing quotas [20].

Figure 1.1: A sandeel buried in the sand.

Credit: Original image by Mandy Lindeberg [7]

1Pelagic fish inhabits the pelagic zone of ocean or lake waters – living neither close to the bottom nor
near the shore.

2Forage fish are small pelagic fish which are preyed on by larger predators.
3Raw materials such as gravel, crushed stone, or sand which are obtained from natural sources.

2

1.3 IMRs Acoustic Trawl Surveys

IMRs acoustic trawl surveys combine acoustic data from echo sounders, and biological data

from trawl catches. When fisheries conduct acoustic surveys of fish, they use echo sounders to

detect and observe targets in the water remotely. Echo sounders are a special variety of sonar,

where the acoustic beam produced by a transducer is directed vertically downwards from the

measuring platform at a set frequency [52]. The echo sounders in use by the IMR usually

capture acoustic data at multiple frequencies in parallel to maximize the information acquired

[25]. The scrutiny of the data is done through the use of a post-processing software called

Large Scale Survey System (LSSS), where acoustic target classification is done manually with

the biological samples as aid [24]. Afterward, the output LSSS-data and biological samples

are further processed to estimate the fish abundance and age distribution to support ICES

advice [22].

1.4 Acoustic Classification of Sandeel

Acoustic target classification is a significant challenge in most acoustic surveys, and the

sandeel is known to be difficult to classify [20, 21]. The earlier mentioned Norwegian sandeel

surveys use the 200kHz frequency to delineate schools, while the 18kHz and 38kHz are

the most important frequencies for classification when measurements were taken at 18kHz,

38kHz, 120kHz, and 200kHz [20]. Some earlier works have had trouble identifying sandeel at

38kHz and 120kHz [13, 30, 39], while some have had success using combinations of the four

frequencies 18kHz, 38kHz, 120kHz, and 200kHz to specifically separate sandeel from herring

and mackerel [38].

Brautaset et al. [3] successfully applied deep learning methods to automatically classify

sandeel in multi-frequency acoustic data from the Norwegian sandeel surveys. They extracted

and utilized the four frequencies 18kHz, 38kHz, 120kHz, and 200kHz from the original data,

but a problem within deep learning is that feature importance can be difficult to interpret.

Hence, it is hard to establish precisely what frequencies contributed the most to their results.

3

1.5 Unmanned Vehicles in Marine Science

In 2019 Verfuss et al. [55] reviewed the current status of unmanned vehicles suitable for

monitoring marine life. The different types of vehicles can operate stationary or moving,

on the ocean surface, as aerial or submerged. They can either be remotely controlled,

autonomous, or a combination of both. Unmanned vehicles can use a wide array of sensors,

but will often have restrictions on what sensors it can carry. For example, the number or

types of transducers installed on acoustic platforms can quickly become a structural problem

as the size and weight of a transducer drastically increases at lower frequencies4. Many of the

vessels reviewed are commercially available, which has led to a growth in number and use.

The increase in unmanned vehicles and the possibility of gathering more complex data will

lead to an exponential rise in the data collected in marine science [31]. This increases the need

to make automated programs, or better tools to aid in the current manual data processing,

which today is a major chokepoint. However, the nature of the data gathered may change,

possibly in decreasing quality, as humans will have fewer or no opportunities to actively

engage in the autonomous information gathering processes. This change in information

gathering raises the need to optimize the quality of the data gathered by the unmanned

vessels.

During the summer of 2020, an unmanned vessel was tested in Årdalsfjorden in Norway

which involved a kayak with an electric motor, and one 200kHz echosounder was installed

to measure sprat abundance. Earlier surveys had indicated that large numbers of sprat live

close to the surface, where the traditional research vessels have an acoustic blind zone5. The

kayak survey showed that the small unmanned vessel managed to measure high densities of

sprat in the blind zone. It was also less prone to scare away the fish as the kayak produced

significantly less noise, and its size allowed access to shallower waters. The result was

positive for the continued use of unmanned vessels, but the manned vessels are still needed

for biological samples [23].

4Two sample transducers sold by Kongsberg Maritime for fisheries at the frequencies 18kHz and 333kHz
weigh respectively 85kg and 2kg [32].

5Echosounder are usually mounted on the bottom of the vessel, creating a blind zone up to the surface.
Often on a retractable keel to get underneath a layer of bubbles that can be detrimental to the echosounders
performance [26].

4

1.6 Research Question

This thesis aims to create scientific advice concerning which echo sounders should be installed

on lightweight unmanned vessels, regarding classification of sandeel in acoustic data. The

unmanned vessels may have reduced carrying capacity or other limitations for echo sounders,

and the choice of which to install to maximize the information collected is essential. To

achieve this, we will expand upon the work of Brautaset et al. [3] and measure the information

stored in all possible subsets of the frequencies contained in the original data from the

Norwegian sandeel surveys in the year 2018 and 2019: 18kHz, 38kHz, 70kHz, 120kHz, 200kHz,

and 333kHz. The research question is stated as follows:

”As lightweight unmanned vessels may not have the capacity to carry

all the six echo sounders the IMR usually deploys on the Norwegian

sandeel surveys, which ones should be prioritized with the regard to

classifying sandeel in multi-frequency acoustic data?”

1.7 Chapter Overview

This section describes the outline of the thesis and, in short, the content of each chapter.

• Chapter 2 - Background: Describes the concepts used in this thesis. First marine

acoustics in section 2.1, then machine learning and artificial neural networks in the

following sections.

• Chapter 3 - Basis and related work: Describes the basis work for which this thesis

seeks to further expand upon in section 3.1, and details more recent related research

in section 3.2.

• Chapter 4 - Material and Methods: Describes the approach to answering the

research question. First, our data and the tools utilized, then how the labels were

produced combined with data generation, and finally, our experiment.

• Chapter 5 - Results: Describes the results from the experiment, which starts with

an evaluation of the training process. Then the results are summarized, followed by

different findings in the results for our analysis.

5

• Chapter 6 - Discussion: Analyses the results and discusses their implication.

• Chapter 7 - Conclusion and Future Work: Describes the answer to the research

question, summarizes key findings, and states recommendations for future work.

6

Chapter 2

Background

This chapter introduces the concepts used during the experiments, within both acoustics

and machine learning.

2.1 Acoustics

The echo sounder consists of a transmitter that produces a burst of electrical energy at some

set frequency. Then a transducer receives the output from the transmitter and converts

it to an acoustic signal that is propagated through the water, which is also called a ping.

This forms a directional beam akin to the light from a handheld flashlight. Targets in the

water backscatter/reflect parts of the energy back towards the transducer. The transducer

detects the backscattered sound or echo, and the sound is converted back to electric energy

as the received signal and is further amplified. The time elapsed when the signal is received

determines the range to the target [52].

Pings are usually represented as columns in a 2-dimensional image, also called an

echogram, with range along the y-axis and time of ping along the x-axis. The columns

represent how the acoustic reflections vary for each ping. Any targets detected in the ping

will be visualized as a mark in the echogram, usually with different colors depending on

the echo strength. In multi-frequency sonars, individual echograms are produced in parallel

for each frequency in use, and this is visualized in figure 2.2. Because the echograms are

7

constructed as time×range, the vertical magnitude of a mark indicates the height of the tar-

get. At the same time, the horizontal position illustrates changes in time if the echosounder

is stationary or in space if moving. When moving, the echogram thus represents a verti-

cal cross-section of the water column as the transducer is in motion through the water at

constant speed in one direction [52].

Receiver/Amplifier

School

Ping

Seabed

Transducer

Transmitter

Timer

Display

Seabed

School

R
ange ->

Time ->

Figure 2.1: Concept of an echosounder: Pings generate echoes from a school of fish and
the seabed, and the echoes are displayed in an echogram.

8

R
an

ge

Ping
Figure 2.2: Example echograms from multiple frequencies.

2.1.1 Acoustics and Fish

To measure the force of backscattered sound received from a target, the backscattered cross-

section σbs or the target strength (TS) is used. They are defined as:

σbs = r2
Ib
Ii
, (2.1)

9

TS = 10 log10(σbs), (2.2)

where Ib is sound intensity backscattered from the target, Ii is the intensity of the ping at

some arbitrary distance (usually 1m), and r is the distance away from the transducer(σbs in

units m2). σbs can vary greatly depending on the frequency used, the composition, angle and

shape of the target, absorption through sound being converted to heat, and several other

factors as described in Simmonds and MacLennan [52].

2.1.2 The Volume Backscattering Coefficient

Individual targets in some sampled volume may be small and plentiful, resulting in their

echoes combining and forming a continuous backscattered signal with varying amplitude.

Single targets are no longer possible to distinguish, but the signal itself is a measure of the

biomass in the water column. This is measured using the volume backscattering coefficient

(sv), defined as:

sv =
∑

σbs/V0, (2.3)

where a sum over all discrete targets returning echoes in the sampled volume (V0) is

taken. There is a linear relationship between the abundance of fish and sv as long as the

species or group of species is known. For more details on sv, see Simmonds and MacLennan

[52]

Furthermore, it is important to exclude the bottom echo when fish are being surveyed.

As some fish like the sandeel may be found in schools close to the bottom, and if the

discrimination of the bottom is poor, there will be large errors in the estimated fish density.

For more details on bottom detection and implications, see Simmonds and MacLennan [52].

2.2 Machine Learning

Machine learning can be split into four parts; the algorithm, empirical data, a task, and a

performance measure. A machine learning algorithm is designed to increase performance

10

on a task, given data. During this process, also called training, the algorithm is said to be

learning by fitting a model to the data. The two machine learning approaches used in this

thesis are supervised learning and unsupervised [12].

2.2.1 Algorithm Approaches

2.2.2 Supervised Learning

Supervised learning algorithms are defined by the data consisting of an input and the desired

output [12]. The algorithm will have to learn a function, mapping from input to correct

output. In classification problems, the output would be a class label, for example, classifying

pictures of cats from other animals. While in regression problems, the output is a value within

a numerical range. For example, predicting the height of a person.

2.2.3 Unsupervised Learning

Unlike supervised learning, unsupervised learning algorithms only receive the input and learn

properties contained in the data [12]. A practical example is clustering, where the samples

in a dataset are divided into clusters of similar properties.

2.2.4 Data and Features

The quality of the input data to a machine learning algorithm will likely affect its performance

[40]. Data must be gathered, integrated, cleaned of errors, preprocessed, and features often

extracted before being used in learning. Hence, time allocated to prepare and increase the

data quality can exceed the time spent learning. The process of extracting features is often

referred to as feature engineering. It constructs a representation of the data with the most

important factors to solve the task. This is often domain specialized and usually requires

human involvement. In the next section, artificial neural networks (ANN) are introduced,

which is one avenue within machine learning that can automate the extraction of complicated

feature representations during learning.

11

2.3 Artificial Neural Networks

This section introduces the basic components of an ANN and how these are combined to

create a deep learning network/ model.

2.3.1 Perceptron

The ANNs fundamental building block is called an artificial neuron or perceptron. It consists

of a linear regression with the tunable parameters w and b inside a non-linear activation

function, explained later in section 2.3.3. The perceptron is formulated in the following way

[47]:

y = g(
D∑
i=1

wixi + b) (2.4)

where D is the number dimension of the input space, x is the input vector, w is a set of

weights of the same size as x, b is the bias, and g is the activation function. The single output

value y, also called the neurons’ activation, is a weighted sum of the input and weights plus

the bias, transformed by the activation function. The perceptron is illustrated in figure 2.3.

2.3.2 Multi-Layered Perceptron

The neurons presented in section 2.3.1 are organized together in layers to form an ANN,

which in turn forms what is called a multi-layer perceptron (MLP) [47]. If all neurons in

each layer are connected to every neuron in the next layer, they form a type of ANN called

fully connected networks. An MLP is depicted in figure 2.3.

12

(a) Perceptron/neuron.

h(1)

h(2)

ŷx

(b) An MLP with four inputs in the input layer(arrows
to the left), two hidden layers(h), and three outputs in
the output layer(ŷ).

Figure 2.3: Illustration of a single neuron and a fully connected deep learning network of
neurons.

Credit: Razavi [47]

The architecture of any ANN consists of an input layer, a user-defined number of hidden

layers, and finally, an output layer [47]. More hidden layers form a deeper network, hence

13

the name deep learning. An MLP is a type of network called a feed-forward ANN because

the data flow from the input to the output layer, and each layer is a function of the previous

layer. During training, the weights between every neuron and the bias are optimized in a

process that is further explained in section 2.4. In the MLP depicted in figure 2.3, different

neurons will activate with varying strengths depending on the input, resulting in different

outputs. The architecture of the MLP in figure 2.3 can be expressed as [12]:

h(1) = g(1)(W(1)Tx + b(1)) (2.5)

h(2) = g(2)(W(2)Th(1) + b(2)) (2.6)

ŷ = g(3)(W(3)Th(2) + b(3)) (2.7)

where for each layer h is a vector of activations, W is a matrix of weights, b is a vector

of biases, g is an activation function applied element-wise, and ŷ is a vector of outputs.

2.3.3 Activation Functions

The activation function enables ANNs to learn non-linear features [47]. It is needed because

a network consisting of only linear layers will be the same as a single linear layer. Hence, it

won’t be able to capture non-linearities in the data, and therefore an activation function is

required in the hidden layers. Some activation functions can also be applied to the network’s

output to solve the task the network is set to perform and must be suited for the task at hand

[12]. The activation function commonly used in the hidden layers is ReLU, which stands for

rectified linear unit [51]. ReLU takes a real number as input and outputs this number if it

is above zero, otherwise, it will output zero. Letting g denote the activation function, and x

the input, the ReLU activation function can be formulated as follows:

g(x) = max(0, x) (2.8)

ReLU is also visualized in figure 2.4. ReLU activate some neurons to propagate their input

while preventing others from doing so. This can result in greater efficiency and faster training,

as not all neurons are active, further detailed in Sharma [51].

Another activation function is the logistic sigmoid that transforms all input values to

values in the range [0. . . 1] [51]. It could be applied to the output layer to solve binary

14

classification problems, as the values can be treated as probabilities. The formula for logistic

sigmoid is:

g(x) =
1

1 + e−x
(2.9)

Figure 2.4: A ReLU function (blue) and a sigmoid function (red)
.

The Softmax Function

The softmax can be viewed as a multivariate version of the logistic sigmoid activation func-

tion, which allows the softmax to be applied to problems containing multiple classes [51].

For all data points, it calculates the probability of every class and can be expressed as:

g(x)j =
exj∑K
k=1 e

xk

for j = 1,...,K. (2.10)

where K is the number of classes, and the output summarizes to 1 over all classes.

For a network solving multiclass classification, the output layer will have size equal to K.

This corresponds to 3 classes in figure 2.3. The softmax would then be used as the last

transformation (g(3) in equation 2.5) and output the probability of an input belonging to

each of the three classes.

15

2.3.4 Convolutional Neural Network

The convolutional neural network (CNN) is a type of ANNs primarily used in machine

learning tasks concerning images [43]. One of the reasons why the CNN emerged was because

images input to a regular ANN produces a large number of learnable parameters. For

example, a low-resolution image with 512× 512 pixels passed to an hidden layer containing

only one neuron would have 1× 512× 512 = 262144 weights alone. To solve this issue and

have fewer learnable parameters, the modern CNN is built around three main components;

a convolutional layer, a pooling layer, and a fully-connected layer. An example CNN is

illustrated in figure 2.5, and each main component will be explained later in this section.

…… …
Classes

Input Convolutional layer
+ ReLu

Pooling layer Flatten Fully
connected

layer

Softmax

Kerne
l

Stri
de

Activation maps from different kernels

Figure 2.5: Illustrations of the main components in a CNN.

Convolutional Layer

O’Shea and Nash [43] describe the convolutional layer as consisting of many learnable mul-

tidimensional weight matrices that slide over the input. We will refer to such a matrix as

a kernel. The kernel’s height and width are parameters defined by the user, but the depth

will always be equal to the number of channels in the input. This results in kernels being

described only by height × width. The kernel slides over the input, and is applied to dif-

ferent locations of the input, also called the current receptive field. A single scalar value is

16

computed when applied, which is the weighted sum of the kernel’s weights and the corre-

sponding values in the receptive field. If we have a 2-dimensional image I(i, j) as input, a

convolutional operation is expressed as [12]:

(I ∗K)(i, j) =
∑
height

∑
width

I(i− height, j − width)K(height, width) (2.11)

where ∗ is the convolutional operation, I(i,j) is the image pixel at (i,j), and K is the

kernel.

The output scalar value from the convolutional operation is usually fed through non-

linear activation functions like ReLU and then called the activation. The sliding operation is

based on a value called stride, which is the number of horizontal positions to move the kernel

in the input between each calculation. Suppose we started from the left, and it is impossible

to move horizontally to the right and still fit the kernel inside the input. In this case, the

kernel will, if possible, move rows down vertically equal to the stride and then continue

horizontally, starting afresh from the left. After sliding over the entire input, a complete

2-dimensional activation map, also called a feature map, has been created, one such map

for each kernel applied. The idea is that each applied kernel will learn to identify different

features in the input. An example of a horizontal edge detector can be seen in figure 2.6

[43].

17

0 0

0 0

0 0

0 0

0 0

10 10

0 0

10 10

-1 -1

0 0

-1

0

11 1

-1 -1

0 0

-1

0

11 1

0

0

0

10

10 1010 10 10

-1 -1

0 0

-1

0

11 1

30 30

0 0

30

30

0

3030

- -

- -

-

-

-

-0

- -

- -

-

-

-

3030

…

…

1010 1010 10

0

0

0

10

10

10

0 0

0 0

0 0

0 0

10 10

10 10

0 10

10 10

0

0

0

10

10 1010 10 10

1010 1010 10

0

0

0

10

10

10

0 0

0 0

0 0

0 0

0 0

10 10

0 0

10 10

0

0

0

10

10 1010 10 10

1010 1010 10

0

0

0

10

10

10

0

0

0 0

0 0

0 00

--

-

-

-

-- - - -

30 30

- -

0

-

-

00

--

0

-

-

-- - - -

30 30

30 30

0

30

30

00

--

0

30

30

-0 0 0 0

…

… …

…

Input

Kernel

Output

Figure 2.6: Illustration of a valid (detailed later in this section) convolutional operation.
The kernel is applied repeatedly across the input. The input size is 6×6, kernel size is 3×3,
and stride 1, resulting in overlapping operations and output size being 4×4. The figures to
the right show the input, kernel, and output(activation) as color gradings, where the color
gets darker if the values are low. This example is a horizontal edge detector, and the result
is large values in the activation map along the border between the values of 0 and 10 in the
input, which could have been colors in a picture.

The receptive field will start as small regions, but as we apply additional convolutional

layers, it will have access to increasing context in regard to the input [12]. This is illustrated in

figure 2.7, and kernels in early layers learn to identify simple features while later combining

these to identify complex features. The kernels utilizes parameter sharing, as the same

weights are repeatedly used across the input. Furthermore, the kernels are often smaller

than the input, resulting in sparse connections as opposed to fully connected networks. The

parameter sharing results in the CNN having another useful attribute called equivariance,

which means that if the input changes, the output changes in the same way.

18

Input Conv 1 Conv 2
Figure 2.7: The activation maps from two convolutional layers with 3×3 kernels and stride
1. The first convolution’s receptive field is marked as red. On its activation map, a new
convolutional layer is applied. Its first receptive field is outlined in green, which translates to
a larger area in the input.

Credit: Original image by Nick Hobgood [6], used as input picture above (Edited with colored grid).

The application of CNNs on acoustic data can be motivated by the echograms being

similar to regular images, but the RGB color channels being replaced with the different

frequency channels measured. However, the same object will be represented differently in

echograms at varying ranges from the transducer, possibly similar to objects of another class

[52]. This likely increases the complexity of target classification in acoustic data, as benefits

of equivariance is not as applicable.

Reductions in the spatial size will normally occur with the convolutional operation de-

scribed in this section, and such operations are called valid convolutions [43]. By applying

padding with zeros around the input, we can retain the dimensions of the input. The effect

is that more convolutional operations fit in the new padded input, hence an equal output

size. This is called the same convolution, illustrated in figure 2.8.

19

303030

0

0

000 0

0

0

0

0

-0

-- -0 0 0 0 0

0 1

0 1

0

0

00 1

Input Kernel Output

30

0

30

30

0

30

3

2

2

3

2

2 2

3

2

30

0

30

0

1

1

1

1

--

1

1

-1 1 1

Figure 2.8: Illustration of the same convolutional operation. The input size is 3×3, but
after padding with zeros, the size is 5×5, kernel size is 3×3, and stride is 1. This results in
an activation map size of 3×3, conserving the input size.

The Max Pool Layer

1 4

2 1

5 2

1 7

2 8

5 1

2 9

1 2

4 7

89

Figure 2.9: Illustrates the max pool operation with size 2×2 and stride 2.

The max pool layer reduces the height and width of its input [43]. Like a convolutional

operation, the max pool looks at an input region but instead applies a max operation. The

pooling kernel size is given in height× width and is applied individually to each channel of

20

the input. This reduces the height and width but preserves the number of channels. The

most common max pool layer is a 2×2 with a stride 2. Alone, the max pool has no learnable

parameters and is applied to decrease the computational complexity of the CNN.

Fully Connected Layer

0 0

0 0

0

0

00 0

10 10

0 0

0 0

0

0

00 0

0 0

0 0

0

0

00 0

*

Input (3x3x3) Kernel (1x1x3) Output (3x3)

Figure 2.10: Illustration of the 1×1 convolution with stride 1. Yellow cells demonstrate
the application of a 1×1 kernel along all channels of the input, producing one activation in
the output.

Lin et al. [29] proposed the convolutional layer with kernel size 1×1 and stride 1, followed by

an activation function. The 1×1 layer will take the weighted sum along a 1×1 slice through

all channels of the input, as illustrated in figure 2.10. This is equivalent to applying a fully

connected layer to the same values. As this preserves the resolution, it can be used to alter

the depth of the output feature maps by specifying the desired number of kernels, while also

introducing non-linearity. In figure 2.10, we have only one kernel, but if two were applied

instead, the output feature map would have a depth of two. In this work, it is used mainly

to map high dimensional feature maps to the desired number of classes.

21

Transposed Convolutions

1
4

5

1

1

1 0

10

4

0

0

4

5

0 0

1

1 10

1 0

1

5

50

0

0 1

=

+

+

+

Transpose
convolution

Input OutputKernel

4

5

0

0

1

Figure 2.11: Illustration of the transposed convolution operation with kernel size 2×2 and
stride 1. The green color shows one of the intermediate computations. The center value of
each crop is outlined to illustrate the summation step as these overlap.

A transposed convolution is an operation taking an input, and with a kernel similar to that

described in 2.3.4, but now instead map the input to a higher resolution [9]. In example figure

2.11, a 2-dimensional 2×2 input is fed to a transposed convolutional layer with kernel size

2×2. The whole kernel is multiplied element-wise with the input and proceeds to produce

values in a temporary matrix initialized with zeros, denoted by empty cells in the figure.

We do not use the temporary values in practice, but they are used here to illustrate the

intermediate computations. The calculated values in the temporary matrix are situated

correctly relative to the input. These temporary matrices are then summed over, producing

the output. This operation is repeated for all channels, retaining the depth of the input.

22

Segmentation

Input picture Red = clown fish class,
Blue = background class

Red = clown fish instance 1,
Yellow = clown fish instance 2

Semantic segmentation Instance segmentation

Figure 2.12: Illustration of the difference between semantic and instance segmentation.

Credit: Original image (Input picture above) by Nick Hobgood[6]

Segmentation is a task where the objective is to assign one or several classification masks to

the input, usually a picture [14]. This is further split into two different categories: semantic

and instance segmentation. In semantic segmentation, we assign each pixel in the input

to predefined classes. The output would have the same resolution as the input but with

channels equal to the number of classes. A softmax would then be calculated for each pixel

across the depth, and the pixel would be assigned to the class with the highest probability.

Hence, producing a mask for each class. In instance segmentation, we increase the complexity

by applying semantic segmentation while simultaneously assigning a bounding box to each

object, as visualized in figure 2.12.

2.4 Training Neural Networks

This section will describe the main concepts behind how neural networks are trained to

perform on various tasks.

2.4.1 Forward-Propagation and The Loss Function

The objective of an ANN is to approximate some optimal function f, and in this thesis, we

focus on classifiers, y = f(x), which maps an input x to an output category y. The ANN

23

approximates this function by defining a mapping, ŷ = f̂(x, θ), and learns the values of the

parameters θ (weights and biases) through training using examples. In supervised tasks,

the labels instruct the output layer exactly how to perform given the input data. However,

the data does not inform the individual hidden layers how to behave to produce this desired

output. When the data flow through the network using the parameters θ, it produces outputs

ŷ, called the forward-propagation step. How the parameters are initialized can heavily affect

the training process, and different strategies are further described in Goodfellow et al. [12].

Using a loss function to compare the true y values to the estimated values ŷ, we measure

the network’s error, also called loss. The network uses this loss to then alter θ to best

approximate f, which will be explained later in section 2.4.3. In classification tasks, the

network is trained to output the probability of each class given an input [15]. We can use

a loss function called weighted cross entropy to train such a model. This function outputs

a loss based on the probabilities, weights classification of certain classes differently, and is

often used when dealing with data containing class imbalance as more weight can be applied

to the minority class. Expressed as:

loss(x, y) = −
K∑
k=1

wkyk log(ŷ), ŷ = f̂(x, θ) (2.12)

where K is the number of classes, wk is weight for class k, and yk is the target label.

More examples of loss functions can be viewed in Mishra and Gupta [37].

2.4.2 Mini-batch Stochastic Gradient Descent

”A recurring problem in machine learning is that large training sets are necessary

for good generalization, but large training sets are also more computationally

expensive.” - (Goodfellow et al. [12] 2016, page 147)

Calculating the total loss of the whole dataset is often unfeasible, and depending on the

hardware, this could lead to a crash or slow learning due to heavy memory demands. A

solution is to sample a set of examples, called a mini-batch, from the entire dataset, with

the intent to approximately estimate the true loss using this smaller fraction of the dataset.

24

Then we update the parameters of our network based on this and repeat on a new mini-

batch. This is called mini-batch stochastic gradient descent (SGD), a common optimization

algorithm. The size of this mini-batch can vary from one example to hundreds. When we

have run this process on all the data, we say that an epoch has passed [12].

2.4.3 Back-Propagation and Gradient-based Learning

To update the network parameters, we use the loss from a mini-batch and iteratively step

back through the layers in a process called back-propagation [49]. In each step, we calculate

the gradient of the loss functions with respect to the parameters of the current layer by

using the chain rule. This is to determine how changes to each parameter will affect the

loss. Using the gradient, SGD performs gradient descent [12] by updating all parameters in

the opposite direction of the gradient to reduce the loss. In what magnitude a parameter

is adjusted by the optimizing algorithm is determined by the learning rate, usually a value

between 0 and 1. The parameter update is expressed as [19]:

θ(j) ← θ(j) − η 1

m

m∑
i=1

∂loss(xi, yi)

∂θ(j)
(2.13)

where θ is the parameters of the network, m is the mini-batch size, η is the learning rate,

and j is the layer. In figure 2.13 an example loss function is illustrated with one global loss

minima and different learning rates applied with SGD. Low learning rate values usually have

a long training time and may cause the SGD to converge to a local minima instead of the

global [10]. However, too high values can overshoot the global minima and diverge. Both can

be prevented by applying a method to adapt the learning rate to the topography of the loss

function. This thesis applied momentum, which only acts as a velocity to the update step.

The velocity is based on past steps, and the update will step in the velocities’ direction, not

the current gradient. More detail on momentum can be found in Sutskever et al. [53].

25

Start Start Start

b c

Figure 2.13: Three different applications of SGD on a loss function. Each arrow is an
imagined learning step taken by the algorithm for; (a) low learning rate, (b) high learning
rate, and (c) momentum.

In summary, the entire training process using SGD can be described as the following

algorithm [10]:

Mini-batch SGD one epoch

Loop:

1. Sample a mini-batch of data.

2. Forward propagate the mini-batch through the network and compute the loss.

3. Back propagate to calculate the gradients.

4. Update the parameters based on the gradients.

2.5 Model Evaluation

To evaluate a machine learning algorithm, we need a performance measure. First, the per-

formance metric itself will be described, followed by a technique applied to make unbiased

measures of the model by leaving out parts of the data. Finally, two central challenges that

appear in machine learning.

26

2.5.1 Performance Metrics

This section describes the performance metrics used in this thesis. Consider a binary classi-

fication system that classifies samples into either the positive or negative class. Predictions

by the classifier can thus be sorted into the following four categories [45]:

• True positive (TP): A correct classification of a positive example.

• True negative (TN): A correct classification of a negative example.

• False positive (FP): A negative example incorrectly classified as positive

• False negative (FN): A positive example incorrectly classified as negative.

We can now calculate the performance of the classifier from these values, and the simplest

is accuracy [45]:

accuracy =
correct predictions

total number of predictions
=

TP + TN

TP + TN + FP + FN
(2.14)

This metric does not handle class imbalance well, as it is equivalent to calculating the

percentage of correct predictions [45]. An example is that if 95% of the data belongs to one

class, then always predicting this class will give us an accuracy of 95%.

We calculate two new metrics to better deal with class imbalance: precision and recall

[45]. Precision is the percentage of positive predictions made by the model that are correct.

Recall is the percentage of all positive samples the model managed to classify correctly.

precision =
TP

TP + FP
(2.15)

recall =
TP

TP + FN
(2.16)

Then, by using precision and recall, we calculate the F1-score [45]. It combines these

metrics and is designed to work well on imbalanced data. The F1-score formula:

F1-score = 2 · precision · recall

precision + recall
(2.17)

27

2.5.2 Train-Validation-Test Split

When a machine learning model is learning, the goal is to achieve the lowest generalization

error. This means to not only perform well on data seen during training, but also on new

unseen data. To measure this error, it is normal to split our data into three parts: the

training, validation, and test datasets, and we measure some error or metric on each. As

the name suggests, the training data is used during the training process of the model. The

validation dataset is extracted from the training dataset and gives an unbiased estimate of

the models’ performance and can be used to guide the training process. The last mentioned

could be to select the best model from a selection of many. Finally, the test dataset is used

to get an unbiased estimate of the final model’s generalization error [12].

2.5.3 Overfitting Vs. Underfitting

A model’s performance depends on the difference between its training and test error. Under-

fitting happens when a model fails to achieve a low training error, while overfitting happens

when the training error is significantly lower than the test error. To manipulate this behavior,

we adjust the model’s capacity. Capacity represents the variety of functions the model can

learn, and by adjusting it, one can increase and decrease the likelihood of underfitting and

overfitting. The capacity can be controlled by, for example, changing the number of layers

in a neural network, and further details can be seen in Goodfellow et al. [12]. Low capacity

means that the model may fail to capture patterns in the data. High capacity translates to

adjusting to the training data to such an extent that the model performance may be worse

when given unseen test data. The optimal solution, depicted in the center plot of figure 2.14,

is to have a model with a balanced capacity that is as close to the true function as possible

[12].

28

x

y

Underfit

x
y

Just right

x

y

Overfit

Trained model

True function

Training data

Trained model

True function

Training data

Trained model

True function

Training data

Figure 2.14: Training data is generated with random noise around a sinus wave (True
function). Model capacity increases from left to right. The center plot illustrates a model
that has learned an almost perfect fit to the true function.

2.6 Regularization

Regularization, as described by Kukačka et al. [28], is any supplemental technique with the

goal of increasing the model’s generalization performance. Two techniques used in this thesis

will be described here; batch normalization and data-augmentation.

2.6.1 Batch-Norm

Batch normalization is a technique applied to reduce what is called internal covariate shift

[19]. This is defined as the change in the distribution of activations in hidden layers caused

by the change in the network’s parameters when training. During backpropagation, the

hidden layers depend on the activations of all layers before them. As each layer changes

its output distribution, the other layers must adapt to this change. Research has shown

that this slows down and destabilizes the training process, and a solution to this problem

is the implementation of batch normalization. Using the activations from all the neurons

in a hidden layer, a mean and variance are calculated per mini-batch. These values are

29

then used to normalize the activations of the hidden layer. Each hidden layer is given

two additional learnable parameters γ and β, that perform a linear transformation of the

normalized activations, defined as such:

Ẑ(i) = γZ(i)
norm + β (2.18)

where Ẑ(i) is the batch normalized activations, Z
(i)
norm is the normalized activations for

the ith hidden layer. The learnable parameters make the ANN able to adjust and shift the

distribution through the training process. The result may lead to a faster and more stable

training process.

Recently, the poor understanding of batch normalization has come into question, and

Santurkar et al. [50] have stressed that more investigation should be put into understanding

its effectiveness. Their findings show that it might not stem from internal covariate shift but

likely other factors.

30

2.6.2 Data-Augmentation

Data-augmentation is a regularization method directly applied to the training dataset by

applying some transformation [28]. Several methods are available, but the two used in this

work are: adding noise and flipping. One example of applying noise is to add Gaussian values

with a mean of 0 and some user-defined variance to each pixel. This adds more randomness to

the data, making the model learn more general features instead of specific. The network is less

prone to overfit on certain samples, which in turn might increase generalization performance.

Other methods of applying noise are described in Kukačka et al. [28]. Flipping is a simple

transformation where we flip the input and label along a particular axis. Thus, mapping the

data to a new representation. An example of each method mentioned can be seen in figure

2.15:

Add noise
per pixel

(a) Gaussian noise is added to each pixel.

Vertical
flip

(b) Vertical flipping.

Figure 2.15: Two augmentation methods applied to the same image.

Credit: Original image (Both left pictures above) by Nick Hobgood [6]

31

2.7 U-Net

In this section, we introduce the architecture of the model that is the backbone of the work

in this thesis. U-Net is a fully convolutional, state-of-the-art [46] semantic segmentation

CNN initially developed for biomedical image analysis by Ronneberger et al. [48].

Channels: 1 64 64

128 128

256 256

512 512

1024

1024 512

512 256

256 128

128 64 64 2 (classes)

57
22

57
02

56
82

28
42

28
22

28
02

14
02

13
82

13
62

68
2

66
2 64
2

32
2

30
2

28
2

54
2

52
2

10
42

10
22

10
02

20
02

19
82

19
62

39
22

39
02

38
82

38
82

Input image
(572x572)

Output
segmentation
map

Contracting Ex
pa
nd
in
g

conv 3x3, ReLU

conv 1x1

max pool 2x2

transpose conv 2x2

Crop, copy and concatenate

56
2

Figure 2.16: The U-Net architecture, the downwards facing arrow illustrates the contracting
path and the one facing upwards is the expanding path. For each block, the vertical number is
the resolution, while the horizontal is the number of feature channels. The color gets darker
as the channels increase.

Credit: Ronneberger et al. [48]

U-Net utilized what Ronneberger et al. [48] called a contracting path to identify what was

in a picture, while an expanding path localized where it was. These two branches were more

or less symmetrical, and together they formed a U-shape, giving the network its name. The

contracting path can be looked at as five different stages of processing, from top to bottom, in

figure 2.16. Each stage consisted of two 3×3 valid convolutions with their individual ReLU

activation functions. Initially, the feature channels are increased to 64, and the channels

32

were doubled for each contracting stage. The convolutions were followed by a 2×2 max

pooling operation with stride 2 to further decrease the resolution of the output from the

convolutional operations and then output a feature map to the next stage. After the bottom

stage, the max pool operation is replaced with transpose convolutions to now increase the

resolution. At each subsequent stage traveling back up the expanding path, the number of

feature channels is halved by the convolutional steps down to 64.

In the expanding path, the previous stage’s output was concatenated with a crop from

the output feature map of a stage from the contracting path with the same channel size,

the cropping is due to different resolutions. This step allows the following expanding path

convolutional operation to access both the high-resolution feature map from the contracting

path and the upsampled feature map, which in combination helps with the localization of

features [48].

At the final layer in the expanding path, a 1×1 convolution maps the 64 feature channels

to the user defined number of classes, which is two classes in figure 2.16. Finally, the softmax

was then calculated between these classes, giving each pixel a probability distribution over

the classes, with one channel for each class. Hence, giving us a segmentation map [48].

When released, U-Net outperformed other networks in multiple biomedical challenges

[48]. Its performance inspired new models that use the U-Net architecture as their backbone,

as seen in NAS-Unet [56] in 2019, and Unet++ [58] in 2018. U-Net has also been applied

successfully to other fields such as road extraction in satellite images by Zhang et al. [57] in

2018, and on acoustic classification by Brautaset et al. [3] in 2020, which will be explained

in the following chapter.

33

2.8 Knowledge Distillation

Knowledge distillation (KD) is a method within deep learning which focuses on transferring

the knowledge from one teacher network with strong capability to a student network. One

example of KD is using a pretrained teacher network with high performance to label the

data, and then we train the student using these labels1. Alternatives have been to extract

knowledge from the layers of the teacher and use this during training of the student with or

without teacher labels. Generally, the methods are applied in three principal situations [1]:

• Create a new, less complex model for platforms with computation power limitations.

• Enhance the accuracy of an existing model.

• Train a model with limited or constrained data.

In some instances, KD has been applied to train student models even more complex

than the teacher network, with some methods using an ensemble of teacher models [1].

The research field of KD has attracted much attention in recent years but is still under

development. This causes applications of KD not to follow a strict set of rules but is a creative

process adapted to each domain applied. However, recent studies have shown promising

results for KD, as detailed in Alkhulaifi et al. [2].

1The teachers labels can either be binary classes values called hard labels or the class probability distri-
bution from the softmax function called soft labels [11].

34

Chapter 3

Basis and Related Work

In this section, we introduce applications of deep learning on acoustic data. First, the work

this thesis uses as a basis, then we describe some recent developments.

3.1 Acoustic Classification in Multifrequency Echosounder

Data using Deep Convolutional Neural Networks

Brautaset et al. [3] had as objective to propose a deep learning method to classify and seg-

ment multi-frequency acoustic data gathered during acoustic trawl surveys, without using

predefined features. Their work is the basis for the work contained in this thesis. Their archi-

tecture is visualized in figure 3.1, and the difference from the original U-Net implementation

is the use of the same convolutions, reduction in input resolution to 256× 256, and the use

of batch normalization. Furthermore, as the resolution of the layers in the contracting and

expanding path has the same size, hence when concatenating, cropping is no longer needed.

The Data

The data used originated from the ongoing Norwegian acoustic trawl surveys, where they

used the data spanning 2007-2018. 2011-2016 was set as training and validation data, and

35

36

Channels: 4 64 64

128 128

256 256

512 512

1024

3 (sandeel, other
and backgrund)

25
62

25
62

25
62

12
82

12
82

12
82

64
2

64
2

64
2

32
2

32
2 32
2

16
2

16
2

16
2

Input image
(256x256)

Output
segmentation
map

Contracting Ex
pa
nd
in
g

conv 3x3, batch norm, ReLU

conv 1x1

max pool 2x2

transpose conv 2x2

copy and concatenate

softmax

64

25
62

25
62

512

256

512 256

32
2

32
2

32
2

64
2

64
2

64
2

12
82

12
82

12
82

25
62

64

128

128

1024

3

25
62

25
62

Figure 3.1: Modified version of the original U-Net architecture (illustrated in figure 2.16)
made by Brautaset et al. [3].

Credit: Brautaset et al. [3]

2007-2010 combined with 2017-2018 as test data. For all years, the LSSS system was used

to annotate the data. The frequency channels extracted from each year were sv echograms

at 18kHz, 38kHz, 70kHz, and 200kHz. Operator annotations initially contained the classes

sandeel, other, 0-group sandeel, and possible sandeel, and were annotated by the same op-

erator. 0-group sandeel and possible sandeel were added to a new class ignore, which were

ignored during training. Both of them were edge cases originating from an extraordinary

event seen during a trawl or operator uncertainty. The annotations were converted to a pixel

map of the same size as the sv data, and all pixels not allocated to a class were set as the

background class. Annotations were originally designed to summarize the sv values over an

area to estimate quantity. Hence, they were usually square and larger than the actual school

of fish. This is not suitable as labels for a CNN as pixels around the edges in the annotations

sometimes belonged to the wrong class. As a result, the annotations were approximately

reshaped to be more similar to real schools of fish. The training methods applied is described

in the methodology chapter (chapter 4), as it is heavily based on this work. In short, they

trained the model on extracted crops from the echograms, with a focus on class balance

regarding the information contained in the annotations of the crops [3].

Performance

They measured performance using two different methods [3]. The first method was to mea-

sure the performance over entire echograms and all its pixels. While the second method

extracted predictions in small regions around and including existing annotations, and was

applied due to the observations of many schools missing their annotations. The small regions

would likely result in the decrease of many false positives being produced by the model, and

would likely better reflect its actual performance. To have a benchmark to compare to, they

used the traditional pipeline developed by Korneliussen et al. [27], which uses an acoustic

feature library to identify species, that does not use machine learning methods. The met-

ric used was F1-score, where sandeel was the positive while other and background was the

negative [3].

Small regions resulted in an overall F1-score of 0.87 for their model on all the test data

after a threshold of 0.8 was applied to the probabilities, while the benchmark achieved a

F1-score of 0.77. When applying the model to entire echograms, the performance for 2017

and 2018 was deemed as satisfactory (F1-score 0.61 and 0.78 respectively), but worse on

37

the earliest years ranging from 2007-2010 (F1-score 0.11,0.51, 0.78, and 0.68 respectively).

The benchmark method also mirrored this, which achieved 0.03-0.62 over the same years.

The decrease in performance over entire echograms was attributed to missing annotations

and many unidentified features in the data being allocated to the background class. Data

quality varied between different years due to changing weather conditions, fish populations,

and software development stages used during annotations. The model was concluded as able

to classify sandeel in acoustic multifrequency measurements reliably [3].

3.2 Related Work

In 2018 Korneliussen [25] reported the most recent methods used for acoustic target clas-

sification. The mentioned methods applying ANNs were most frequently applied to data

containing a single frequency channel. Due to these being used in a supervised setting, they

stressed the importance of high-quality annotations. Similar to the work detailed earlier in

Brautaset et al. [3], we will describe some newer research applying deep learning to acoustic

data.

Marques et al. [34] compared different machine learning methods for automatically in-

terpreting multi-frequency echograms and proposed that a deep learning based end-to-end

framework was best suited for the task. Their experiments handled the generation of square

bounding boxes around schools of fish, and their results were comparable to or better than

those produced by human operators. The work was later extended with instance segmenta-

tion capabilities in 2021 [33]. This produced more accurate predictions with pixel precision,

and they described this as more befitting biological analysis.

In 2021 Choi et al. [5] proposed a semi-supervised1 deep learning network to solve the

reliance supervised ANNs have on the correct manual annotation of the acoustic data. Using

the same data as Brautaset et al. [3], they utilized two loss functions which optimize the

same CNN in alternating order. The first loss function seeks to cluster the data by finding

intrinsic characteristics, and the second loss function uses classification based on the existing

annotated data. Their model could outperform other traditional machine learning algo-

rithms, both with or without missing annotations. Showing that we can efficiently process

acoustic data with only a few annotated samples.
1A machine learning approach where you utilize both labeled and unlabeled data [12].

38

Chapter 4

Material and Methods

This chapter describes the steps taken in this thesis to answer the research question:

”As lightweight unmanned vessels may not have the capacity to carry

all the six echo sounders the IMR usually deploys on the Norwegian

sandeel surveys, which ones should be prioritized with the regard to

classifying sandeel in multi-frequency acoustic data?”

The thesis follows the work of Brautaset et al. [3], which was outlined in section 3.1 and

will be referenced throughout this chapter. In summary, this chapter will first look at the data

itself and the tools and methods applied to prepare it for the training of machine learning

models, followed by a description of the experiment. The experiment focuses on training

individual models with different subsets of frequencies and measuring the performance of

each.

4.1 The Data

The data used in this thesis stem from the annual Norwegian acoustic trawl surveys from

2018 and 2019 using the Simrad EK60 echosounder, where 2018 was the same year used by

Brautaset et al. [3]. The data from each year consisted of a collection of .raw files. The .raw

39

files are the uncompressed raw output from the echo sounder, and stored the backscatter as

sv values in echograms for six frequencies 18kHz, 38kHz, 70kHz, 120kHz, 200kHz, and 333kHz.

Two frequencies (70kHz and 333kHz) more than used by Brautaset et al. [3] . The settings

on the echosounder resulted in the size of each pixel representing 1 second horizontally and

19.2 centimeters vertically [4] (Visualized in figure 4.2). The height and width of the echo

sounder data were dependent on the depth measured and the total navigation time of the

survey, and the two years used as data in this thesis contained 688 hours of data from 2018

and 1107 hours from 2019.

4.2 The CRIMAC-Pipeline Modules

Based on the work performed by Brautaset et al. [3], a pipeline for classifying the acoustic

backscatter was created under IMRs project Center for Research Based Innovation in Ma-

rine Acoustic Abundance Estimation and Backscatter Classification (CRIMAC) and could

process the .raw data into a format able to be used by Python [41]. The pipeline could be

run as one whole module to get the predictions from the .raw data directly, or submodules

of the pipeline (illustrated in figure 4.1) could be accessed and run separately. Most of the

outputs from modules in the pipeline are of the .zarr format. This format stems from the

Python Zarr package, which facilitates NumPy array loading and operations through xarray

on data that is too large to be loaded completely in computer memory (All tools used are

described in appendix A). This section will describe the function of each submodule, hereby

called module, used in this thesis:

40

Pixel based
probabilities per

class (.zarr)

Bottom mask
(.zarr)

Pretrained
CRIMAC/

U-Net

CRIMAC /
preprocessor

CRIMAC/bottom
detection

Sv dataset
(.zarr)

Acoustic dataset
(.raw)

Sv dataset
(.zarr)

Figure 4.1: Module overview and output flowchart. Black represents modules, and other
colors represents input/output. The modules’ and input/outputs’ colors will stay the same
for later illustrations.

• CRIMAC/Preprocessor: Used to process the .raw files to the .zarr format, and re-

grids all frequency channels to a common range if not equal. The output is a sv dataset

represented as a single multidimensional array of size frequency× ping× range (One

echogram per frequency). The output sv file is illustrated in figure 4.2.

• Pretrained CRIMAC/U-Net: Using a pretrained U-Net model, it produces a segmen-

tation map of pixel-based probabilities with spatial size class× ping× range. Output

classes were sandeel, other, and background. The output predictions is illustrated in

figure 4.2.

• CRIMAC/Bottom detection: Identifies the bottom and generates a binary pixel-based

map stored as .zarr. This is a 2-dimensional array of size ping× range. The output is

shown in figure 4.2.

41

Pixel based
probabilities per

class (.zarr)

Bottom mask
(.zarr)

Sv dataset
(.zarr)

200kHz

R
an

ge
 (

19
.2

cm
/p

ix
el

)

Ping

Sandeel

Ping

Bottom

R
an

ge

Ping

R
an

ge
 (

19
.2

cm
/p

ix
el

)

R
an

ge
 (

19
.2

cm
/p

ix
el

)

Figure 4.2: Illustrations of the output from the different modules with one enlarged example
from each output. This example is a 500 × 500 crop, while the real data contained millions
of pings. The 200kHz has been transformed to the decibel scale to make the data observable.
The color scale is set to be purple at 0 and yellow at 1. White denotes missing values.

4.3 Pseudo Labels

The operator annotations were unavailable during this work, and so the pretrained

CRIMAC/U-Net model was treated as a teacher model, from now called baseline model,

and it’s output as annotations. A hard threshold of 0.8 was applied to the baseline model’s

output predictions, and all values below were set to 0, and above to 1, resulting in a hard

mask for each class, hereby called the pseudo labels (visualized in figure 4.3). This threshold

was applied to only include the most certain predictions of the pretrained CRIMAC/U-Net.

As this threshold was applied to all classes, there were instances where a pixel was not

assigned to a class.

42

Sandeel Other Background
R

an
ge

 (
19

.2
cm

/p
ix

el
)

Ping Ping Ping

Figure 4.3: An example pseudo label displaying the hard mask of all three classes present
in a 256×256 crop: Sandeel, Other, and Background.

4.4 Data Preparation

This section explains the process of preparing the dataset, which was built to enable a

sampling scheme during training equal to the one developed by Brautaset et al. [3]. The data

preparation consists of creating samples with corresponding pseudo labels from the input sv

data and storing the samples in a folder structure dependent on the sample’s features.

The entire process is illustrated in figure 4.4 and starts with utilizing the CRIMAC

preprocessor module as described in 4.2. This takes in the entire .raw dataset and outputs

the sv data in the .zarr format. The sv dataset was then sent to both the pretrained U-Net

and bottom detection modules from the CRIMAC pipeline. The pretrained U-Net outputs

pseudo labels, and the bottom detection outputs a mask of the seafloor as arrays equal in

spatial size to the sv data array.

43

Extract crop
from Sv dataset

If:
- Containing

missing values
Or:

- Only bottom

Extract Sv-
corresponding

crop from mask

Extract Sv-
corresponding

crop from labels

Threshold
probabilities:

p(class) < 0.8 =
0 else 1

Delete class
predictions below

seafloor

Sample Label

Store to folder

Sv dataset
Pretrained
CRIMAC/

U-Net

CRIMAC /
preprocessor

Pseudo labels

CRIMAC /
bottomdetection

Seafloor mask

Acoustic dataset

True False

Next
crop

Figure 4.4: An overview of the data preparation process. CRIMAC pipeline modules (black),
data.raw (blue), sv data.zarr (green), pseudo labels.zarr (yellow), bottom.zarr (red), the fin-
ished file containing two tensors (gray), storing the file with Python pickle (white).

44

The generated sv dataset was then split into non-overlapping crops of size 256x256,

ignoring crops of mismatching size at the edges of the array. Each crop was checked for any

missing values or the crop being located entirely below the seafloor and then ignored if any

of them were true. As visualized in figure 4.5 there were instances of discontinuity in both

the time series of pings and range. This caused portions of the sv dataset to be filled with

missing values, hence motivating the previous check as sampling crops at complete random

could cause errors.

R
an

ge
 (

19
.2

cm
/p

ix
el

)

Ping

Figure 4.5: Example crop from the 18kHz sv data (decibel scale). It illustrates two clear
sections of data where the depth (range) is changed, and the gap is filled with missing values
(white). The bottom can be observed by the strong line of sv values, and there are multiple
bottom echoes in certain parts of the crop.

Using the vertical and horizontal coordinates for all the sv data crops, a corresponding

crop from both the seafloor mask and the pseudo labels was extracted. The two new crops

were then used together to remove predictions that appeared under the bottom, thus cleaning

and preprocessing the pseudo labels. The steps explained in this paragraph are also visualized

in figure 4.6.

45

Remove
predictions

under
seafloor

Extract
crop

(256 x 256) (256 x 256) (256 x 256)

(256 x 256)

Data
Pseudo
Label Seafloor

Figure 4.6: Example of how the data, pseudo labels, and bottom crops look during data
generation. For the pseudo label, purple is values of 0 and yellow values of 1. In the pseudo
labels, we can see that some predictions under the seafloor are removed. Size is shown in the
lower-left corner to clarify that it is a crop of the same size and from the same location but
from different arrays.

.

After the crop containing the sv data and cleaned pseudo labels were generated, they

were both converted to tensors and stored as a single file using Python pickle. The storage

folder of the file depend on a set of criteria, which are illustrated in figure 4.7. The criteria

were checked from top to bottom, and the first triggered set the destination folder, creating

a folder structure visualized in figure 4.7. This also blocked the same crop from appearing

in several folders, potentially causing data leakage between datasets.

46

Criteria:
1. 100+ pixels == sandeel class, no bottom
2. 100+ pixels == sandeel class+ bottom
3. 100+ pixels == other class, no bottom
4. 100+ pixels == other class + bottom
5. Contains background class and bottom
6. Contains background, no bottom

(a) The list of criteria.

Other

Dataset Bottom

No bottom

Sandeel

Background

Sandeel

Other

Background

(b) The folder structure.

Figure 4.7: An overview of the criteria and folder structure. The structure consists of two
main branches, one with the bottom present and one without the bottom present.

The folder structure and criteria were based on the data classes made by Brautaset et al.

[3]. One significant difference was that they used the actual operator annotations to detect

instances of classes in a crop, while we only have the pseudo labels. Since these pseudo

labels could contain misclassifications made by the pretrained model, a class abundance

measurement was performed. When evaluating the crops against the criteria, if 100 or more

pixels in a crop contained either sandeel or other, the class was set to be present in the

crop. This removed crops with low class abundance and where the pretrained model had

47

potentially misclassified single or few pixels. If there were not enough pixels of either class,

the crop was set to contain background only. The crop from the sv data was checked against

its corresponding crop from the bottom detector output, splitting the data into folders with

or without the bottom present.

The years 2018 and 2019 were processed in the way mentioned above individually, and

the final data distribution can be seen in respectively table 4.1 and 4.2.

Table 4.1: Data distribution for the 2018 dataset.

2018 dataset Occurrences % of dataset

Sandeel 1410 7.3%

No bottom Other 184 0.95%

Background 6519 33.75%

Sandeel 1297 6.71%

Bottom Other 840 4.35%

Background 9067 46.94%

Total: 19317 100%

Table 4.2: Data distribution for the 2019 dataset.

2019 dataset Occurrences % of dataset

Sandeel 1308 4.38%

No bottom Other 1074 3.60%

Background 10291 34.45%

Sandeel 1652 5.53%

Bottom Other 2815 9.42%

Background 12733 42.62%

Total: 29873 100%

48

From the tables above, we observe that, as in Brautaset et al. [3], most of the data will

contain no fish, here represented as background.

49

4.5 Experiment

This section describes how the experiments were performed and how performance was mea-

sured, first by describing the settings, then the experiment itself in detail.

4.5.1 Experiment Settings

The experiment uses the same U-Net architecture as described in section 3.1 with the alter-

ation developed by Brautaset et al. [3]. The change to the architecture in this work was to

adjust the number of frequency channels in the input layer. This ranged from one to six,

depending on the number of frequencies in a subset. All machine learning was implemented

using the Python library PyTorch [44].

Data loaded to the model started with first selecting a folder from the folder structure,

with a set probability for each. Then a sample and a label was extracted at random from this

folder, with all samples in each folder being allocated to either training, validation, or test

datasets. This imitates the sampling strategy from Brautaset et al. [3], and the probabilities

originate from this work.

Table 4.3: The sample classes correspond to the folder structure described in figure 4.7.
Each is given a probability of being the target folder for sample extraction.

Sample class Probability Details

Sandeel 5/26 Random crop containing the sandeel class

Other 5/26 Random crop containing the other class

Background 1/26 Random crop containing no fish

Sandeel + bottom 5/26
Random crop containing the sandeel class

and bottom

Other + bottom 5/26
Random crop containing the other class

and bottom

Background + bottom 5/26
Random crop containing no fish

and bottom

50

The data-augmentations performed were flipping along the vertical axis, and a multipli-

cation applied to values in 5% of pixels in an input sv crop to act as noise. An echogram’s

orientation of the surface and bottom can never individually be changed during training, so

only vertical flipping is justified in acoustic data. The intention behind the multiplication

was to simulate noise and consisted of multiplying the values with a random number in either

the range [0,1] or [1, 10], with a 50% chance of each. As samples from the training data

were provided to the model, each data augmentation method had a 50% chance of occurring.

Then the sv crop was transformed to the decibel scale by applying 10 log (pixel) to all pixels

for all frequencies in the sv crop, with cutoff values at minimum -75dB and maximum 0dB.

All augmentations and transformations were based on Brautaset et al. [3].

Table 4.4: Description of each data augmentation performed.

Data augmentation Details

Add noise to 5% of pixels. 50% of occurring upon loading sample

Flip along the vertical axis 50% of occurring upon loading sample

The hyperparameters used during training are summarized in table 4.5 and equal those

used by Brautaset et al.[3].

Table 4.5: Settings for all hyperparameters used during the training.

Hyperparameters Value/ Category Details

Loss function: Weighted Cross-entropy

Background = 1,

Other = 25,

Sandeel = 30

Optimizer: Stochastic gradient descent

Learning rate: 0.01
Halved every

1000th batch

Momentum: 0.95

Mini-Batch size: 16

Crop size: 256×256
Include all

available frequency channels

51

To evaluate the performance of the models, we utilized the F1 score mentioned in section

2.5.1. We also included the precision and recall, as these provide greater insight into the

model’s performance.

4.5.2 Exhaustive Frequency Search

Description

This experiment would see all combinations (subsets) of all frequencies being evaluated.

Each subset of frequencies would instantiate a new U-Net model based on the architecture

described in section 4.5.1, with input channels equal to the number of frequencies in the

subset. The experiment is similar to and inspired by KD methods and train student models

(the model instantiated by a subset) on the data labeled by the teacher (baseline model).

The performance of each subset will be estimated by how well it reconstructs the test data

labeled by the teacher. The experiment was run ten times to get enough results to estimate

the mean, reduce variance, and display statistical data for each subset of frequencies. With

six frequencies in total, the number of possible frequency subsets for each experiment is 631.

During training, only the frequency channels present in the subset would be extracted from

the training data and provided to the model. The ten experiments had different random

state seeds set to enable different data splits and variable model initialization. The explicit

random state also accommodates reproducibility.

The dataset for the year 2019 in table 4.2 contained the most data and was chosen for

training. 30% of the training dataset was assigned as the validation dataset. Meanwhile, the

2018 dataset was selected as the test dataset. The total amount of data given to a model

during training was 5,000 batches. With a mini-batch size of 16, this corresponds to 80,000

samples, which matches the amount of data given to the model by Brautaset et al. [3].

1Calculated as combinations without repetitions and without order, using formula n!
k!(n−k)! , where n is

elements to chose from and k is how many to choose, both values as integers. Summarize for k in range 1..6.

52

Monitoring Training

Logging of metrics occured at different stages during the training process;

• Every mini-batch: Calculate the exponential moving average of the training loss.

• Every mini-batch: Log the exponential moving average of the training and validation

loss.

• Every 250 mini-batch: Run model on 100 mini-batches from the validation data, plot

one sample output and its label, and calculate exponential moving average loss on each

validation minibatch. Furthermore, calculate F1-score on both training and validation

data for where the sandeel class is positive, and the other classes are the negative.

The training process was split into 50 epochs to accommodate this logging scheme, with

100 mini-batches in each. This epoch is only related to the logging scheme, not the data

itself. Hence, each epoch is not the entire dataset but a part of a sequence of data. This

is mentioned to not confuse a reader observing the results. The metrics loss and F1-score

indicate convergence, over-/under-fitting problems, and performance. A sanity check was

also performed by observing and judging a prediction of the sandeel class against its label.

Generalization Performance per Subset

After the training of a frequency subset, the subset’s model was evaluated on 500 batches from

the test dataset but without any noise added through augmentation. From these predictions,

the F1-score, precision, and recall were calculated for where sandeel was the positive class

and the two other classes were negative, giving an estimate of its generalization performance.

Then the next frequency subset started the entire process afresh with training.

With the results from the ten separate experiments, each on all 63 possible combinations,

each frequency subset’s mean test performance (generalization performance) values were

estimated. This was then used to show these properties:

• A summary of the performance achieved by each subset size.

• Finding the best performing frequency combinations per subsets size. One max search

based on each metric; F1-score, precision, and recall.

53

• To observe the uniqueness of each subset, a plot to illustrate the statistical properties

of each will be presented. This will be shown as error bars, the top of the bars is the

max F1-score achieved, and the bottoms is the minimum.

• The performance trend of each frequency. This meant, for all frequencies, filtering out

those subsets it was a part of and sorting these in increasing order. Producing a line

plot illustrating what performance scores each particular frequency contributes to and

its overall trend.

4.6 Hardware

Two remote servers named Janus and Birget were provided by the University of Bergen.

Janus was used for data preparation and Birget for conducting the experiments. Hardware

spesifications:

• Birget

– CPU: AMD EPYC 7742 64-Core Processor

– GPU: 8 x A100-SXM-80GB (One available for this thesis)

• Janus

– CPU: Intel(R) Core(TM) i9-7900X CPU @ 3.30GHz

– GPU: 2 x GeForce RTX 2080 Ti (One partially available for this thesis)

54

Chapter 5

Results

This chapter will first describe the monitoring and evaluation of the training process. Then

a summary of the exhaustive search, followed by the subsets responsible for the highest mean

performance per subset size. All individual subsets’ performances are visualized to find the

unique subsets. Finally, the performance trend for each frequency is shown.

5.1 Experiment: Exhaustive Search

5.1.1 Training

Figure 5.1 illustrates the metrics measured during the training of a model using a subset

consisting of all six frequencies. It shows that both the validation and training loss follow the

same trend, showing convergence and no issues regarding over-/under-fitting. This is roughly

mirrored by the F1-score, as the validation and training F1-scores follows approximately the

same values. Finally, the visual inspection suggests satisfactory performance of the classifier

on the sandeel class, as illustrated in figure 5.2.

Some combinations with one or two frequencies likely needed more training to converge

by viewing the complete logs from training. More examples can be found in appendixes B.3.

55

56

Epochs (logging iterations)

Lo
ss

(a) The logged loss.

Logging per 5th epoch

F1
-s

co
re

(b) The logged F1-score.

Figure 5.1: The F1-score and loss for both training and validation. The validation loss was
calculated less often and instanciated as 0, resulting in more significant jumps in value and
its low initial value. The training and validation F1-score on the final validation data were
respectively 0.63 and 0.64.

Ping Ping Ping

Output sandeel <- Threshold adjusted Pseudo label

R
an

ge
 (

19
.2

cm
/p

ix
el

)

Figure 5.2: From left to right; Network output for the sandeel class, same output threshold
adjusted with 0.8, and finally, the label for the current sample.

5.1.2 Results: Exhaustive Search

This section starts with a summary of the subsets’ mean F1-score from the ten experiments.

They were summarized per subset size and show minimum F1-score, maximum F1-score,

and median F1-score in table 5.1. The minimum and median scores increase with the subset

size, but the max performance stagnates after a subset size of three is reached. The mean

F1-score of all individual subsets can be viewed in appendix B.1.

Table 5.1: This table summarizes the mean performances for each size of subsets over the
ten tests.

Subset size: 1 2 3 4 5 6

F1-score (min): 0.25 0.28 0.34 0.42 0.50 0.66

F1-score (median) 0.28 0.37 0.45 0.54 0.62 0.66

F1-score (max): 0.34 0.46 0.65 0.67 0.67 0.66

Figure 5.3 illustrate the exact frequencies contributing to the max mean F1-score for each

subset size. A clear jump in performance can be seen when the subset size increase from one

to two, but most significantly when the subsets 18kHz, 38kHz, and 200kHz are used.

57

1 2 3 4 5 6

Subset size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
1-

sc
o
re

18kHz
18kHz

18kHz
18kHz

38kHz

38kHz

38kHz

38kHz

70kHz

70kHz

70kHz

120kHz

120kHz

120kHz

200kHz

200kHz

200kHz

200kHz
200kHz

200kHz

333kHz

0.
34

0.
46

0.
65 0.

67
0.
67

0.
66

Max F1-score Subsets

F1 score

Figure 5.3: The red line shows the max F-score achieved for each subset size. The blocks
indicate only which frequency was present in the subset achieving this F1-score, and does not
indicate in what magnitude the frequencies contributed to the score.

The exact frequencies contributing to the max performing subsets are visualized for

precision in figure 5.4. It follows the same trend as seen in figure 5.3 for F1-score but with

lower scores.

58

1 2 3 4 5 6

Subset size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
re

ci
si

on

18kHz
18kHz

18kHz
18kHz

38kHz

38kHz

38kHz

38kHz

70kHz

70kHz

120kHz

120kHz

120kHz

200kHz

200kHz

200kHz

200kHz

200kHz

200kHz

333kHz
333kHz

0.
28

0.
36

0.
5

0.
53

0.
53

0.
53

Max Precision Subsets

Precision

Figure 5.4: The blue line shows the max precision achieved for each subset size. The blocks
indicate only which frequency was present in the subset achieving this precision, and does
not indicate in what magnitude the frequencies contributed to the score.

The exact frequencies contributing to the max performing subsets are visualized for recall

in figure 5.5. It reaches high values of recall at a subsets size of two. Recall is also always

higher than precision for all subsets sizes, showing that recall plays the most significant role

in the F1-score.

59

1 2 3 4 5 6

Subset size

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l

18kHz

18kHz
18kHz

18kHz
18kHz

38kHz

38kHz

38kHz

38kHz
70kHz

70kHz

70kHz

120kHz

120kHz

120kHz

120kHz

200kHz

200kHz
200kHz

200kHz

333kHz

0.
51

0.
84

0.
93 0.

94
0.
94

0.
89

Max Recall Subsets

Recall

Figure 5.5: The green line shows the max recall achieved for each subset size. The blocks
indicate only which frequency was present in the subset achieving this recall, and does not
indicate in what magnitude the frequencies contributed to the score.

60

5.1.3 Individual Subsets

Figure 5.6 illustrates a complete plot of all error bars, with sections for each subset size. A

red circle encompassing the error bar related to the subset containing only 18kHz, 38kHz

and 200kHz. This combination outclasses all other subsets in the same and previous subset

sizes and competes with all the results later achieved by larger subsets. In all other sections,

no subset stands out regarding F1-score.

61

1 2 3 4 5 6

Subset size

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F
1-

sc
o
re

Figure 5.6: Each error bar represents a frequency subset. The error bar’s highest y-value is
the max value achieved for this subset during all ten tests, and the bottom is the lowest. Blue
vertical lines group the error bars by the size of the subset and the black dots are the mean
performance of the subset. A red ring encompasses the subsets 18kHz, 38kHz, and 200kHz.

To further analyze the performance of the unique subset 18kHz, 38kHz, and 200kHz, two

new subsets based on the results were created. The first with subsets that, at a minimum,

contained the aforementioned frequencies (eight in total). These subsets were then removed

62

from the initial results, and then the eight best performing from this set were extracted.

Both of these subsets are visualized in figure 5.7 and show that all the highest performing

subsets include the frequencies 18kHz, 38kHz, and 200kHz.

0 1 2 3 4 5 6 7

Subset number

0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675

0.700

F
1-

sc
o
re

Subsets containing 18kHz, 38kHz, and 200kHz.

8 highest subsets from set without 18kHz, 38kHz, and 200kHz .

Figure 5.7: In this figure, the mean F1-score of all subsets containing 18kHz, 38kHz, and
200kHz is plotted as a blue line (Eight in total). The orange line is the eight highest per-
forming subsets from a set where the subset 18kHz, 38kHz, and 200kHz is not included in
any subset.

63

5.1.4 Performance Trend per Frequency

In this section, the performance trend for each frequency is visualized. For each frequency,

all subsets it was part of were extracted and then sorted in increasing order of mean F1-score.

Each frequency trend is visualized in figure 5.8. From right to left, the plot shows that 18kHz,

38kHz, and 200kHz all are part of many combinations with high F1-scores. The remaining

frequencies quickly fall in performance. Furthermore, of all frequencies, the line associated

with 18kHz have the highest overall trend regarding F1-score. Which is the opposite for

120kHz which have the worst performance trend, followed closely by 70kHz.

64

0 5 10 15 20 25 30

Subsets

0.3

0.4

0.5

0.6

F
1-

sc
o
re

38kHz

18kHz

70kHz

120kHz

200kHz

333kHz

Figure 5.8: This figure illustrates the performance trend of each frequency. For each fre-
quency (color above), all subsets that contain that frequency were extracted from the results
and sorted in increasing order of mean F1-score, then visualized. A total of 32 subsets for
each frequency. When lines merge they achieved the same F1-score, but may not represent
the same subset.

65

66

Chapter 6

Discussion

In this thesis, an approach to find the subset of frequencies most applicable to classify

sandeel in acoustic data has been implemented to advise how to equip smaller unmanned

vessels. The results in figure 5.3 illustrate the best performing combination of frequencies per

subset size and would act as advice for vessels that are to be equipped with a subset of echo

sounders using the frequencies tested. After the subset size of three, the performance does

not increase significantly for larger subsets in F1-score. The recall is the most significant

part of the F1-score, which implies that finding instances of possible sandeel in the data

requires fewer frequencies than accurately classifying it, which is to be expected as the latter

is likely a more complex task requiring additional information.

The unique performance of the subset containing 18kHz, 38kHz, and 200kHz, depicted in

figures 5.3 and 5.6, supports the current methods applied by the IMR described in section

1.4, where the same frequencies are important for the classifications (18kHz and 38kHz) and

delineation (200kHz) of sandeel schools. However, our results cannot tell how and in what

magnitude each of the frequencies contributes to the classification process for this subset,

a clear possibility for future work. The 200kHz channel is present in all subsets in figure

5.3, and for the subsets size of two, the 70kHz is chosen over both 18kHz and 38kHz 1. This

suggests a significant positive synergy between the two latter frequencies and 200kHz as they

outperform all other subsets at size three. Furthermore, figure 5.7 shows that the unique

subset of three (18kHz, 38kHz, and 200kHz) is part of all the highest performing subsets, and

1Although with a small margin to the other subsets at subset size two as described in appendix B.2.

67

a sharp drop in performance can be seen if they are not all present in a subset. This leads

to the proposition that vessels equipped with three or more echo sounders should include

18kHz, 38kHz, and 200kHz as a minimum.

The generalizability of this work was likely reduced by the amount of data used during

the exhaustive search and was restricted because of little computational power. In the works

of Brautaset et al., they utilized a total of 12 years, while this work only used data from two

years (2018 and 2019). On entire echograms, their highest F1-score was 0.78 in 2018 (our

test dataset), while the best subsets in this thesis resulted in a mean performance of 0.67.

The performance achieved by the models in this work showed that some could generalize

from 2019 to 2018 on a much smaller training dataset than used in Brautaset et al. [3].

The results from Brautaset et al. may indicate that the quality of the data itself increased

in the more recent years. As the data quality is crucial for the model, this may indicate

that acoustic classifiers can be successfully trained using far fewer quantities of high-quality

data. This assumes that the data contained in the 2019 dataset is high-quality, which is

hard for us to evaluate. Meanwhile, more data will likely make the classifier more robust

to noise. Future work should retrain and test our model on the same years and amounts of

data described in Brautaset et al. to establish a more comprehensive comparison.

The original annotations belonging to the acoustic data were unavailable during this

thesis; thus the solution became KD applied through pseudo labels. This was considered

befitting, as the objective of this task was not to train a better model but assess which

frequencies explain the performance achieved by the state-of-the-art baseline model created

by Brautaset et al. [3]. The teacher-student approach was justified by the solid performance

shown by the baseline model, especially on the year 2018. Thus, the pseudo label would likely

sufficiently capture the baseline model’s use of the frequencies, and new models trained using

the pseudo labels would provide information regarding the performance of the subsets relative

to the other subsets. Meanwhile, this would mean that the models trained in this thesis would

likely never surpass, just approach the baseline models performance. As models produced

in this work have shown performance close to Brautaset et al., the results were judged to be

adequate to formulate advice for the maximally informative subset of frequencies. Future

work should investigate alternative KD approaches, such as changing the threshold of 0.8

applied to create the hard mask for the pseudo labels or use soft labels instead. An ensemble

of teachers models could also been used during training, for example using the baseline model,

the traditional benchmark method applied in Brautaset et al. created by Korneliussen et al.

68

[27], and the two newer methods proposed by Marques et al. [33] and Choi et al. [4] described

in section 3.2. Additionally, changes should be made to allocate all pixels to the background

class, which was not assigned to the sandeel or other classes after the threshold. The latter

would likely not significantly affect the results, as most pixels were allocated to a class.

There is likely some bias toward the frequencies used in the basis work. The features the

additional two frequencies (70kHz and 333kHz) used in this work may have contained were

not included when training the basis model: thus, they played no part in forming the pseudo

labels. However, by viewing figure 5.8, 120kHz can be interpreted as a frequency present

in a high number of low-performing subsets. The performance trend was similar to 70kHz

but worse than 333kHz. This suggests that the information found in 120kHz may also be

found in 70kHz and 333kHz. The 18kHz had the highest trend in the same figure, but it was

not present in a subset before a subset size of three in figure 5.3, measuring max F1-score.

This suggests that 18kHz has a positive synergy with many other frequencies but performs

poorly in small subsets. Further work could look into removing the 120kHz frequency, rerun

the experiments of Brautaset et al. [3], and observe the change in performance. Possibly

discovering that their performance was reliant on the same unique subset (18kHz, 38kHz,

and 200kHz) found in this thesis. Additionally, the importance of the 18kHz frequency should

be further investigated as this is a heavy transducer, which means that the unmanned vessels

need to have the structural capacity to carry it.

Additionally, information about the range from the transducer in the crops evaluated

by the model would likely increase performance. As acoustic backscattering from the same

object can change with range, providing the model with additional context regarding the

crop’s range would likely provide a better foundation for handling this complexity. Range

should be evaluated as a feature to include in future work when applying CNNs to acoustic

data crops.

69

70

Chapter 7

Conclusion and Future Work

In this thesis, acoustic classifiers were successfully trained on pseudo labels with varying

subsets of frequencies. The performance of each subset was measured to advise on how

to equip lightweight unmanned vessels with echo sounders to monitor sandeel. Based on

our results, one can conclude that the information gained when selecting the maximally

informative frequency subsets increase from a size of one up to two, and drastically to three.

However, from a size of three and afterward the subsets depend on the frequencies 18kHz,

38kHz, and 200kHz to maximize information. Considering the size of transducers operating

at these frequencies, the unmanned kayak introduced in section 1.5 is likely too small to carry

this subset and larger unmanned vessels should be considered when classifying sandeel.

In future research, we propose that the experiment created in this thesis should be tested

and trained on additional data and with new features. Only the data from 2018 was used

as test data during this work, and our results should be verified across years. Especially

those years used in the basis work of Brautaset et al., focusing on verifying the performance

of subset: 18kHz, 38kHz, and 200kHz. In addition, the importance of the 18kHz should

be further investigated as this is a large transducer. The method implemented to create

the pseudo labels can be further optimized and new avenues within KD should be tested.

Additionally, we propose the implementation of a ”range” feature in our model to provide

the CNN with additional context for each crop.

71

72

List of Acronyms and Abbreviations

ANN artificial neural networks.

CNN convolutional neural network.

CRIMAC Center for Research Based Innovation in Marine Acoustic Abundance Estimation and

Backscatter Classification.

ICES International Council for the Exploration of the Sea.

IMR Norwegian Institute of Marine Research.

KD Knowledge distillation.

LSSS Large Scale Survey System.

MLP multi-layer perceptron.

sv volume backscattering coefficient.

SGD stochastic gradient descent.

TS target strength.

73

Bibliography

[1] Sajjad Abbasi, Mohsen Hajabdollahi, Nader Karimi, and Shadrokh Samavi. Modeling

teacher-student techniques in deep neural networks for knowledge distillation. In 2020

International Conference on Machine Vision and Image Processing (MVIP), pages 1–6.

IEEE, 2020.

[2] Abdolmaged Alkhulaifi, Fahad Alsahli, and Irfan Ahmad. Knowledge distillation in

deep learning and its applications. PeerJ Computer Science, 7, 2021.

[3] Olav Brautaset, Anders Ueland Waldeland, Espen Johnsen, Ketil Malde, Line Eikvil,

Arnt-Børre Salberg, and Nils Olav Handegard. Acoustic classification in multifrequency

echosounder data using deep convolutional neural networks. ICES Journal of Marine

Science, 77(4):1391–1400, 2020.

[4] Changkyu Choi, Michael Kampffmeyer, Nils Olav Handegard, Arnt-Børre Salberg, Olav

Brautaset, Line Eikvil, and Robert Jenssen. Semi-supervised target classification in

multi-frequency echosounder data. ICES Journal of Marine Science, 78(7):2615–2627,

2021.

[5] Changkyu Choi, Michael Kampffmeyer, Nils Olav Handegard, Arnt-Børre Salberg, Olav

Brautaset, Line Eikvil, and Robert Jenssen. Semi-supervised target classification in

multi-frequency echosounder data. ICES Journal of Marine Science, 78(7):2615–2627,

08 2021. ISSN 1054-3139. doi: 10.1093/icesjms/fsab140.

URL: https://doi.org/10.1093/icesjms/fsab140.

[6] Wikimedia Commons. File:amphiprion ocellaris (clown anemonefish) by nick hob-

good.jpg — wikimedia commons, the free media repository, 2020.

URL: https://commons.wikimedia.org/w/index.php?title=File:

Amphiprion ocellaris (Clown anemonefish) by Nick Hobgood.jpg&oldid=446928047. [On-

line; accessed 21-April-2022].

74

https://doi.org/10.1093/icesjms/fsab140
https://commons.wikimedia.org/w/index.php?title=File:Amphiprion_ocellaris_(Clown_anemonefish)_by_Nick_Hobgood.jpg&oldid=446928047
https://commons.wikimedia.org/w/index.php?title=File:Amphiprion_ocellaris_(Clown_anemonefish)_by_Nick_Hobgood.jpg&oldid=446928047

[7] Wikimedia Commons. File:ammodytes hexapterus.jpg — wikimedia commons, the free

media repository, 2020.

URL: https://commons.wikimedia.org/w/index.php?title=File:

Ammodytes hexapterus.jpg&oldid=477294458. [Online; accessed 21-April-2022].

[8] Marshall Copeland, Julian Soh, Anthony Puca, Mike Manning, and David Gollob. Mi-

crosoft Azure: Planning, Deploying, and Managing Your Data Center in the Cloud.

Apress, USA, 1st edition, 2015. ISBN 1484210441.

[9] Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for deep

learning. arXiv preprint arXiv:1603.07285, 2016.

[10] Wissal Farsal, Samir Anter, and Mohammed Ramdani. Deep learning: An overview. In

Proceedings of the 12th International Conference on Intelligent Systems: Theories and

Applications, pages 1–6, 2018.

[11] Aram Galstyan and Paul R Cohen. Empirical comparison of “hard” and “soft” label

propagation for relational classification. In International Conference on Inductive Logic

Programming, pages 98–111. Springer, 2007.

[12] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

http://www.deeplearningbook.org.

[13] Arne Hassel, Tor Knutsen, John Dalen, Kristian Skaar, Svein Løkkeborg, Ole Arve

Misund, Øivind Østensen, Merete Fonn, and Eli Kyrkjebø Haugland. Influence of seismic

shooting on the lesser sandeel (ammodytes marinus). ICES Journal of Marine Science,

61(7):1165–1173, 2004.

[14] Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. Mask r-cnn. In Pro-

ceedings of the IEEE International Conference on Computer Vision (ICCV), Oct 2017.

[15] Yaoshiang Ho and Samuel Wookey. The real-world-weight cross-entropy loss function:

Modeling the costs of mislabeling. IEEE Access, 8:4806–4813, 2019.

[16] S. Hoyer and J. Hamman. xarray: N-D labeled arrays and datasets in Python. Journal

of Open Research Software, 5(1), 2017. doi: 10.5334/jors.148.

URL: https://doi.org/10.5334/jors.148.

75

https://commons.wikimedia.org/w/index.php?title=File:Ammodytes_hexapterus.jpg&oldid=477294458
https://commons.wikimedia.org/w/index.php?title=File:Ammodytes_hexapterus.jpg&oldid=477294458
http://www.deeplearningbook.org
https://doi.org/10.5334/jors.148

[17] ICES. Guide to ICES advisory framework and principles. 12 2020. doi: 10.17895/

ices.advice.7648.

URL: https://bit.ly/3rPqs38.

[18] ICES. Greater North Sea Ecoregion – Ecosystem overview. 12 2021. doi: 10.17895/

ices.advice.9434.

URL: https://bit.ly/3kbZJJK.

[19] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network

training by reducing internal covariate shift. In Francis Bach and David Blei, editors,

Proceedings of the 32nd International Conference on Machine Learning, volume 37 of

Proceedings of Machine Learning Research, pages 448–456, Lille, France, 07–09 Jul 2015.

PMLR.

URL: https://proceedings.mlr.press/v37/ioffe15.html.

[20] Espen Johnsen, Ronald Pedersen, and Egil Ona. Size-dependent frequency response

of sandeel schools. ICES Journal of Marine Science, 66(6):1100–1105, 04 2009. ISSN

1054-3139. doi: 10.1093/icesjms/fsp091.

URL: https://doi.org/10.1093/icesjms/fsp091.

[21] Espen Johnsen, Guillaume Rieucau, Egil Ona, and Georg Skaret. Collective structures

anchor massive schools of lesser sandeel to the seabed, increasing vulnerability to fishery.

Marine Ecology Progress Series, 573:229–236, 2017.

[22] Espen Johnsen, Atle Totland, Åsmund Sk̊alevik, Arne Johannes Holmin, Gjert Endre

Dingsør, Edvin Fuglebakk, and Nils Olav Handegard. Stox: An open source software

for marine survey analyses. Methods in Ecology and Evolution, 10(9):1523–1528, 2019.

[23] Espen Johnsen, Atle Totland, and Cecilie Kvamme. Measuring distribution and density

of sprat in årdalsfjorden with a kayak drone-15-16 august 2020. Rapport fra havforsknin-

gen, 2020.

[24] RJ Korneliussen, E Ona, I Eliassen, Y Heggelund, R Patel, OR Godø, C Giertsen,

D Patel, E Nornes, T Bekkvik, et al. The large scale survey system-lsss. In Proceedings

of the 29th Scandinavian Symposium on Physical Acoustics, Ustaoset, volume 29, 2006.

[25] Rolf J Korneliussen. Acoustic target classification. 2018.

76

https://bit.ly/3rPqs38
https://bit.ly/3kbZJJK
https://proceedings.mlr.press/v37/ioffe15.html
https://doi.org/10.1093/icesjms/fsp091

[26] Rolf J Korneliussen, Noel Diner, Egil Ona, Laurent Berger, and Paul G Fernandes.

Proposals for the collection of multifrequency acoustic data. ICES Journal of Marine

Science, 65(6):982–994, 2008.

[27] Rolf J Korneliussen, Yngve Heggelund, Gavin J Macaulay, Daniel Patel, Espen Johnsen,

and Inge K Eliassen. Acoustic identification of marine species using a feature library.

Methods in Oceanography, 17:187–205, 2016.

[28] Jan Kukačka, Vladimir Golkov, and Daniel Cremers. Regularization for deep learning:

A taxonomy. arXiv preprint arXiv:1710.10686, 2017.

[29] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv preprint

arXiv:1312.4400, 2013.

[30] S Mackinson, K Turner, D Righton, and JD Metcalfe. Using acoustics to investigate

changes in efficiency of a sandeel dredge. Fisheries Research, 71(3):357–363, 2005.

[31] Ketil Malde, Nils Olav Handegard, Line Eikvil, and Arnt-Børre Salberg. Machine intel-

ligence and the data-driven future of marine science. ICES Journal of Marine Science,

77(4):1274–1285, 2020.

[32] Kongsberg Maritime. Trans, 2022 (accessed May 9, 2022).

URL: https://www.kongsberg.com/maritime/products/commercial-fisheries/td/.

[33] Tunai Porto Marques, Melissa Cote, Alireza Rezvanifar, Alexandra Branzan Albu, Kaan

Ersahin, Todd Mudge, and Stéphane Gauthier. Instance segmentation-based identifica-

tion of pelagic species in acoustic backscatter data. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pages 4378–4387, 2021.

[34] Tunai Porto Marques, Alireza Rezvanifar, Melissa Cote, Alexandra Branzan Albu, Kaan

Ersahin, Todd Mudge, and Stéphane Gauthier. Detecting marine species in echograms

via traditional, hybrid, and deep learning frameworks. In 2020 25th International Con-

ference on Pattern Recognition (ICPR), pages 5928–5935. IEEE, 2021.

[35] Dirk Merkel. Docker: lightweight linux containers for consistent development and de-

ployment. Linux journal, 2014(239):2, 2014.

[36] Alistair Miles. zarr-developers/zarr-python, April 2022.

URL: https://github.com/zarr-developers/zarr-python.

77

https://www.kongsberg.com/maritime/products/commercial-fisheries/td/
https://github.com/zarr-developers/zarr-python

[37] Chandrahas Mishra and DL Gupta. Deep machine learning and neural networks: An

overview. IAES International Journal of Artificial Intelligence, 6(2):66, 2017.

[38] Z Mohammed. Acoustic identification of sandeel (Ammodytes marinus) using multi-

frequency methods. PhD thesis, MSc thesis, Department of Biology, University of Bergen,

2006.

[39] Alicia Mosteiro, Paul G Fernandes, F Armstrong, and SPR Greenstreet. A dual fre-

quency algorithm for the identification of sandeel school echotraces. ICES Document

CM, 12:1–13, 2004.

[40] Maryam M Najafabadi, Flavio Villanustre, Taghi M Khoshgoftaar, Naeem Seliya, Ran-

dall Wald, and Edin Muharemagic. Deep learning applications and challenges in big

data analytics. Journal of big data, 2(1):1–21, 2015.

[41] Alba Ordonez Nils Olav Handegaard, Ibrahim Umar and Ingrid Utseth. Crimac pipeline

- github, 2021 (accessed November 29, 2021).

URL: https://github.com/CRIMAC-WP4-Machine-learning/CRIMAC-classifiers-unet.

[42] Institute of Marine Research. Quota advice, 2021 (accessed September 23, 2021).

URL: https://www.hi.no/en/hi/radgivning/quota-advice-1.

[43] Keiron O’Shea and Ryan Nash. An introduction to convolutional neural networks. arXiv

preprint arXiv:1511.08458, 2015.

[44] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmai-

son, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani,

Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala.

Pytorch: An imperative style, high-performance deep learning library. In Advances in

Neural Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc.,

2019.

URL: http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-

performance-deep-learning-library.pdf.

[45] David MW Powers. Evaluation: from precision, recall and f-measure to roc, informed-

ness, markedness and correlation. arXiv preprint arXiv:2010.16061, 2020.

78

https://github.com/CRIMAC-WP4-Machine-learning/CRIMAC-classifiers-unet
https://www.hi.no/en/hi/radgivning/quota-advice-1
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

[46] Rishav Kumar Rajak and Ashar Beg Mirza. Segmentation of polyp instruments using

unet based deep learning model. 2021.

[47] Saman Razavi. Deep learning, explained: Fundamentals, explainability, and bridge-

ability to process-based modelling. Environmental Modelling & Software, 144:105159,

2021.

[48] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks

for biomedical image segmentation. In International Conference on Medical image com-

puting and computer-assisted intervention, pages 234–241. Springer, 2015.

[49] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representa-

tions by back-propagating errors. nature, 323(6088):533–536, 1986.

[50] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does

batch normalization help optimization? In S. Bengio, H. Wallach, H. Larochelle,

K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information

Processing Systems, volume 31. Curran Associates, Inc., 2018.

URL: https://proceedings.neurips.cc/paper/2018/file/905056c1ac1dad141560467e0a99e1cf-

Paper.pdf.

[51] Ochin Sharma. A new activation function for deep neural network. In 2019 international

conference on machine learning, big data, cloud and parallel computing (COMITCon),

pages 84–86. IEEE, 2019.

[52] John Simmonds and David N MacLennan. Fisheries acoustics: theory and practice.

John Wiley & Sons, 2008.

[53] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the impor-

tance of initialization and momentum in deep learning. In Sanjoy Dasgupta and David

McAllester, editors, Proceedings of the 30th International Conference on Machine Learn-

ing, volume 28 of Proceedings of Machine Learning Research, pages 1139–1147, Atlanta,

Georgia, USA, 17–19 Jun 2013. PMLR.

URL: https://proceedings.mlr.press/v28/sutskever13.html.

[54] Guido Van Rossum. The Python Library Reference, release 3.8.2. Python Software

Foundation, 2020.

79

https://proceedings.neurips.cc/paper/2018/file/905056c1ac1dad141560467e0a99e1cf-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/905056c1ac1dad141560467e0a99e1cf-Paper.pdf
https://proceedings.mlr.press/v28/sutskever13.html

[55] Ursula K. Verfuss, Ana Sofia Aniceto, Danielle V. Harris, Douglas Gillespie, Sophie

Fielding, Guillermo Jiménez, Phil Johnston, Rachael R. Sinclair, Agnar Sivertsen,

Stian A. Solbø, Rune Storvold, Martin Biuw, and Roy Wyatt. A review of unmanned ve-

hicles for the detection and monitoring of marine fauna. Marine Pollution Bulletin, 140:

17–29, 2019. ISSN 0025-326X. doi: https://doi.org/10.1016/j.marpolbul.2019.01.009.

URL: https://www.sciencedirect.com/science/article/pii/S0025326X19300098.

[56] Yu Weng, Tianbao Zhou, Yujie Li, and Xiaoyu Qiu. Nas-unet: Neural architecture

search for medical image segmentation. IEEE Access, 7:44247–44257, 2019.

[57] Zhengxin Zhang, Qingjie Liu, and Yunhong Wang. Road extraction by deep residual

u-net. IEEE Geoscience and Remote Sensing Letters, 15(5):749–753, 2018.

[58] Zongwei Zhou, Md Mahfuzur Rahman Siddiquee, Nima Tajbakhsh, and Jianming Liang.

Unet++: A nested u-net architecture for medical image segmentation. In Deep learning

in medical image analysis and multimodal learning for clinical decision support, pages

3–11. Springer, 2018.

80

https://www.sciencedirect.com/science/article/pii/S0025326X19300098

Appendix A

Tools used

A.1 Windows Azure

Windows Azure [8] is a platform owned by Microsoft that provides cloud solutions for several

services. It was used to access the remote storage provided by the IMR and mount this to a

local computer. Thus enabling the downloading of the data for this thesis from IMRs server.

A.2 Docker

Docker [35] is an open-source platform that provides what they call containerization and is

owned by the company under the same name, Docker, Inc. Docker is based on the Linux

kernel, and enables you to create a container, which is an independent process that uses

resources from the main instance, like virtual machine on a server but here applications.

For each container, you can manage its own dependencies like programming languages and

libraries. These containers can then be shared with others as images files, and as they can be

run without the receiver having to manage the aforementioned dependencies as this is built

into the image. Thus, you can make an application or code easily accessible for other people,

as long as they have installed Docker. Docker was used to access and run the CRIMAC

pipeline [41].

81

A.3 Zarr

By using the .zarr [36] format, you gain access to store chunked compressed multidimensional

arrays. There are several highlights from this library, but was used primarily to access the

arrays on disk. This means we did not need to load the entire array into memory and could

work with the array and access parts of it without hardware limitations.

A.4 Xarray

Xarray[16] is a Python package that is made for working with multidimensional arrays. It

is based on NumPy and adds labels in the form of attributes and coordinates on top of the

NumPy-arrays. This was the library used for accessing and working more efficiently with

the .zarr arrays, as this library has more functionality.

A.5 Pickle

To pickle[54] a file, means to use the built-in Python package pickle, which serializes Python

object structures into byte streams. These can then be unpickled which means to deserialize,

which is the opposite operation. As an example, this can be used to store and load Python

arrays or machine learning models to and from disk.

82

Appendix B

Supplementary Results

B.1 All subsets in increasing order of mean F1-score

Frequencies in test Num Precision Recall F1 Score

0 test 38kHz 18kHz 120kHz 200kHz 4 0.53 0.94 0.67

1 test 38kHz 18kHz 70kHz 120kHz 200kHz 5 0.52 0.94 0.67

2 test 38kHz 18kHz 120kHz 200kHz 333kHz 5 0.53 0.89 0.67

3 test 38kHz 18kHz 70kHz 120kHz 200kHz 333kHz 6 0.53 0.89 0.66

4 test 38kHz 18kHz 70kHz 200kHz 333kHz 5 0.53 0.89 0.66

5 test 38kHz 18kHz 70kHz 200kHz 4 0.51 0.93 0.66

6 test 38kHz 18kHz 200kHz 3 0.5 0.93 0.65

7 test 38kHz 18kHz 200kHz 333kHz 4 0.51 0.89 0.65

8 test 38kHz 18kHz 70kHz 120kHz 333kHz 5 0.44 0.86 0.58

9 test 38kHz 18kHz 120kHz 333kHz 4 0.44 0.86 0.58

10 test 18kHz 70kHz 120kHz 200kHz 333kHz 5 0.43 0.89 0.58

11 test 18kHz 70kHz 200kHz 333kHz 4 0.42 0.88 0.57

12 test 38kHz 18kHz 70kHz 333kHz 4 0.42 0.83 0.56

13 test 38kHz 18kHz 333kHz 3 0.43 0.82 0.56

14 test 18kHz 70kHz 200kHz 3 0.39 0.92 0.55

15 test 18kHz 120kHz 200kHz 333kHz 4 0.4 0.87 0.54

16 test 18kHz 70kHz 120kHz 200kHz 4 0.38 0.93 0.54

17 test 18kHz 200kHz 333kHz 3 0.4 0.84 0.53

18 test 18kHz 120kHz 333kHz 3 0.37 0.84 0.51

83

19 test 18kHz 120kHz 200kHz 3 0.36 0.9 0.51

20 test 18kHz 70kHz 333kHz 3 0.36 0.82 0.5

21 test 38kHz 70kHz 120kHz 200kHz 333kHz 5 0.38 0.7 0.5

22 test 18kHz 70kHz 120kHz 333kHz 4 0.35 0.86 0.49

23 test 70kHz 120kHz 200kHz 333kHz 4 0.39 0.66 0.49

24 test 38kHz 120kHz 200kHz 333kHz 4 0.37 0.68 0.48

25 test 70kHz 200kHz 333kHz 3 0.38 0.64 0.47

26 test 38kHz 200kHz 333kHz 3 0.37 0.65 0.47

27 test 38kHz 70kHz 200kHz 333kHz 4 0.36 0.68 0.47

28 test 38kHz 70kHz 120kHz 200kHz 4 0.35 0.68 0.46

29 test 70kHz 200kHz 2 0.36 0.64 0.46

30 test 18kHz 333kHz 2 0.34 0.73 0.46

31 test 70kHz 120kHz 200kHz 3 0.35 0.64 0.45

32 test 38kHz 70kHz 200kHz 3 0.34 0.68 0.45

33 test 18kHz 200kHz 2 0.3 0.84 0.45

34 test 38kHz 120kHz 200kHz 3 0.33 0.68 0.44

35 test 38kHz 18kHz 70kHz 120kHz 4 0.3 0.88 0.44

36 test 38kHz 200kHz 2 0.32 0.67 0.44

37 test 38kHz 333kHz 2 0.35 0.54 0.43

38 test 18kHz 70kHz 120kHz 3 0.28 0.86 0.42

39 test 38kHz 70kHz 120kHz 333kHz 4 0.31 0.63 0.42

40 test 120kHz 200kHz 333kHz 3 0.34 0.53 0.41

41 test 38kHz 70kHz 333kHz 3 0.31 0.62 0.41

42 test 38kHz 18kHz 120kHz 3 0.27 0.88 0.41

43 test 70kHz 120kHz 333kHz 3 0.32 0.56 0.4

44 test 70kHz 120kHz 2 0.3 0.62 0.4

45 test 38kHz 120kHz 333kHz 3 0.3 0.57 0.39

46 test 70kHz 333kHz 2 0.32 0.48 0.38

47 test 200kHz 333kHz 2 0.31 0.48 0.37

48 test 18kHz 120kHz 2 0.23 0.84 0.37

49 test 120kHz 200kHz 2 0.28 0.51 0.36

50 test 38kHz 70kHz 120kHz 3 0.25 0.64 0.36

51 test 120kHz 333kHz 2 0.29 0.44 0.35

52 test 18kHz 70kHz 2 0.23 0.78 0.35

84

53 test 200kHz 1 0.28 0.47 0.34

54 test 38kHz 18kHz 70kHz 3 0.22 0.81 0.34

55 test 38kHz 18kHz 2 0.22 0.76 0.34

56 test 38kHz 120kHz 2 0.23 0.64 0.34

57 test 70kHz 1 0.22 0.51 0.3

58 test 120kHz 1 0.21 0.48 0.29

59 test 38kHz 70kHz 2 0.19 0.57 0.28

60 test 18kHz 1 0.19 0.49 0.27

61 test 38kHz 1 0.18 0.5 0.26

62 test 333kHz 1 0.22 0.34 0.25

B.2 Tests per subset size in increasing order of mean

F1-score

Frequencies in test (1) Precision Recall F1 Score

0 test 200kHz 0.28 0.47 0.34

1 test 70kHz 0.22 0.51 0.3

2 test 120kHz 0.21 0.48 0.29

3 test 18kHz 0.19 0.49 0.27

4 test 38kHz 0.18 0.5 0.26

5 test 333kHz 0.22 0.34 0.25

Frequencies in test (2) Precision Recall F1 Score

0 test 70kHz 200kHz 0.36 0.64 0.46

1 test 18kHz 333kHz 0.34 0.73 0.46

2 test 18kHz 200kHz 0.3 0.84 0.45

3 test 38kHz 200kHz 0.32 0.67 0.44

4 test 38kHz 333kHz 0.35 0.54 0.43

5 test 70kHz 120kHz 0.3 0.62 0.4

6 test 70kHz 333kHz 0.32 0.48 0.38

7 test 200kHz 333kHz 0.31 0.48 0.37

85

8 test 18kHz 120kHz 0.23 0.84 0.37

9 test 120kHz 200kHz 0.28 0.51 0.36

10 test 120kHz 333kHz 0.29 0.44 0.35

11 test 18kHz 70kHz 0.23 0.78 0.35

12 test 38kHz 18kHz 0.22 0.76 0.34

13 test 38kHz 120kHz 0.23 0.64 0.34

14 test 38kHz 70kHz 0.19 0.57 0.28

Frequencies in test (3) Precision Recall F1 Score

0 test 38kHz 18kHz 200kHz 0.5 0.93 0.65

1 test 38kHz 18kHz 333kHz 0.43 0.82 0.56

2 test 18kHz 70kHz 200kHz 0.39 0.92 0.55

3 test 18kHz 200kHz 333kHz 0.4 0.84 0.53

4 test 18kHz 120kHz 333kHz 0.37 0.84 0.51

5 test 18kHz 120kHz 200kHz 0.36 0.9 0.51

6 test 18kHz 70kHz 333kHz 0.36 0.82 0.5

7 test 70kHz 200kHz 333kHz 0.38 0.64 0.47

8 test 38kHz 200kHz 333kHz 0.37 0.65 0.47

9 test 70kHz 120kHz 200kHz 0.35 0.64 0.45

10 test 38kHz 70kHz 200kHz 0.34 0.68 0.45

11 test 38kHz 120kHz 200kHz 0.33 0.68 0.44

12 test 18kHz 70kHz 120kHz 0.28 0.86 0.42

13 test 120kHz 200kHz 333kHz 0.34 0.53 0.41

14 test 38kHz 70kHz 333kHz 0.31 0.62 0.41

15 test 38kHz 18kHz 120kHz 0.27 0.88 0.41

16 test 70kHz 120kHz 333kHz 0.32 0.56 0.4

17 test 38kHz 120kHz 333kHz 0.3 0.57 0.39

18 test 38kHz 70kHz 120kHz 0.25 0.64 0.36

19 test 38kHz 18kHz 70kHz 0.22 0.81 0.34

Frequencies in test (4) Precision Recall F1 Score

0 test 38kHz 18kHz 120kHz 200kHz 0.53 0.94 0.67

1 test 38kHz 18kHz 70kHz 200kHz 0.51 0.93 0.66

86

2 test 38kHz 18kHz 200kHz 333kHz 0.51 0.89 0.65

3 test 38kHz 18kHz 120kHz 333kHz 0.44 0.86 0.58

4 test 18kHz 70kHz 200kHz 333kHz 0.42 0.88 0.57

5 test 38kHz 18kHz 70kHz 333kHz 0.42 0.83 0.56

6 test 18kHz 120kHz 200kHz 333kHz 0.4 0.87 0.54

7 test 18kHz 70kHz 120kHz 200kHz 0.38 0.93 0.54

8 test 18kHz 70kHz 120kHz 333kHz 0.35 0.86 0.49

9 test 70kHz 120kHz 200kHz 333kHz 0.39 0.66 0.49

10 test 38kHz 120kHz 200kHz 333kHz 0.37 0.68 0.48

11 test 38kHz 70kHz 200kHz 333kHz 0.36 0.68 0.47

12 test 38kHz 70kHz 120kHz 200kHz 0.35 0.68 0.46

13 test 38kHz 18kHz 70kHz 120kHz 0.3 0.88 0.44

14 test 38kHz 70kHz 120kHz 333kHz 0.31 0.63 0.42

Frequencies in test (5) Precision Recall F1 Score

0 test 38kHz 18kHz 70kHz 120kHz 200kHz 0.52 0.94 0.67

1 test 38kHz 18kHz 120kHz 200kHz 333kHz 0.53 0.89 0.67

2 test 38kHz 18kHz 70kHz 200kHz 333kHz 0.53 0.89 0.66

3 test 38kHz 18kHz 70kHz 120kHz 333kHz 0.44 0.86 0.58

4 test 18kHz 70kHz 120kHz 200kHz 333kHz 0.43 0.89 0.58

5 test 38kHz 70kHz 120kHz 200kHz 333kHz 0.38 0.7 0.5

Frequencies in test (6) Precision Recall F1 Score

0 test 38kHz 18kHz 70kHz 120kHz 200kHz 333kHz 0.53 0.89 0.66

B.3 Training examples

This section includes more visualizations from the monitoring during training. At a subset

size of one, we provide three illustrations from different tests, while only one plot from a

common test is shown for increasing subsets up to, and including, five frequencies.

87

B.3.1 Subset size 1

88

89

90

B.3.2 Subset size 2

91

B.3.3 Subset size 3

92

B.3.4 Subset size 4

93

B.3.5 Subset size 5

94

	Introduction
	Marine Advisory Work
	Why the Lesser Sandeel?
	IMRs Acoustic Trawl Surveys
	Acoustic Classification of Sandeel
	Unmanned Vehicles in Marine Science
	Research Question
	Chapter Overview

	Background
	Acoustics
	Acoustics and Fish
	The Volume Backscattering Coefficient

	Machine Learning
	Algorithm Approaches
	Supervised Learning
	Unsupervised Learning
	Data and Features

	Artificial Neural Networks
	Perceptron
	Multi-Layered Perceptron
	Activation Functions
	Convolutional Neural Network

	Training Neural Networks
	Forward-Propagation and The Loss Function
	Mini-batch Stochastic Gradient Descent
	Back-Propagation and Gradient-based Learning

	Model Evaluation
	Performance Metrics
	Train-Validation-Test Split
	Overfitting Vs. Underfitting

	Regularization
	Batch-Norm
	Data-Augmentation

	U-Net
	Knowledge Distillation

	Basis and Related Work
	Acoustic Classification in Multifrequency Echosounder Data using Deep Convolutional Neural Networks
	Related Work

	Material and Methods
	The Data
	The CRIMAC-Pipeline Modules
	Pseudo Labels
	Data Preparation
	Experiment
	Experiment Settings
	Exhaustive Frequency Search

	Hardware

	Results
	Experiment: Exhaustive Search
	Training
	Results: Exhaustive Search
	Individual Subsets
	Performance Trend per Frequency

	Discussion
	Conclusion and Future Work
	List of Acronyms and Abbreviations
	Bibliography
	Tools used
	Windows Azure
	Docker
	Zarr
	Xarray
	Pickle

	Supplementary Results
	All subsets in increasing order of mean F1-score
	Tests per subset size in increasing order of mean F1-score
	Training examples
	Subset size 1
	Subset size 2
	Subset size 3
	Subset size 4
	Subset size 5

