
UNIVERSITY OF BERGEN

MASTERS THESIS

MetZoom: A CNN/LSTM hybrid

based model for water reservoir

inflow prediction

Candidate:

Halvor H. BARNDON

Supervisor:

Dr. Troels Arnfred

BOJESEN

http://www.uib.no

ii

A thesis submitted in fulfillment of the requirements

for the degree of Masters of Science

in the

Machine Learning Group

Department of Informatics

https://www.uib.no/en/rg/ml/130730/machine-learning-group
https://www.uib.no/en/ii

i

UNIVERSITY OF BERGEN

Abstract
Faculty of Mathematics and Natural Sciences

Department of Informatics

Masters of Science

MetZoom: A CNN/LSTM hybrid based model for water reservoir inflow

prediction

by Halvor H. BARNDON

Hydropower reservoir volumes fluctuate as water levels increase or decrease

according to precipitation, valve output and inflow through water retained

in the surrounding area. Predicting these fluctuations with machine learn-

ing is possible through the use of an Artificial Neural Network (ANN) ar-

chitecture proposed in this thesis. The neural network model aims to fore-

cast the changes in relative water level for a reservoir managed by Saude-

faldene, a hydropower company in Rogaland, Norway. The predictions are

made through the use of radar images reflecting the precipitation rate, and a

dataset provided by Saudefaldene. The provided dataset contains the precip-

itation history, valve-opening records and relative water levels across 2014-

2021. Such a forecast can have various impacts on hydropower reservoir

management, which lay the foundation for the thesis.

The architecture proposed in this thesis, namely MetZoom, contains a

Convolutional Neural Network (CNN) architecture which predicts future

precipitation rates in the form of radar image replications and precipitation

HTTP://WWW.UIB.NO
https://www.uib.no/matnat
https://www.uib.no/en/ii
https://skl.as/kraftverk/saudefaldene/
https://skl.as/kraftverk/saudefaldene/
https://skl.as/kraftverk/saudefaldene/

ii

up to 12 hours ahead. The use of radar images is motivated by the intent

to forecast precipitation as a tool for predicting changes in the relative water

level. The predictions made by the CNN are forwarded to a Recurrent Neural

Network (RNN) in the form of a Long Short-Term Memory (LSTM) network

to learn the fluctuations of reservoir water levels. The architecture of Met-

Zoom is a result of several tested CNN and RNN models and a combination

of these.

iii

Acknowledgements
Throughout writing this thesis I have received support and guidance, and

for this I would like to thank the following.

Firstly I would like to thank my supervisor, Dr. Troels Arnfred Bojesen,

whose patience, guidance and availability has been outstanding. Not only by

formulating and concretizing the research questions, but also providing in-

sight and advice which made this thesis possible. I would specifically like to

thank Dr. Bojesen for his humour and spirit which has provided an ambiance

loaded with positivity that has helped immensely with motivation.

I would like to thank the staff at Saudefaldene, who welcomed us to

the hydropower facility and offered a guided tour. A special thanks to Ole

Håkon Hovland for his interest, availability and assistance. The idea behind

the thesis belongs to Ole Håkon, and I greatly appreciate the opportunity

given to me by his eagerness to explore the possibilities of machine learning.

I would like to acknowledge my fellow students who have taken part

in many thorough discussions and have provided technical assistance from

time to time. I would like to thank Hans Martin Theigler Johansen specifi-

cally for his open ear and extensive support, which has helped me overcome

many technical obstacles along the way. Also a special thanks to Knut Thor-

mod Aarnes Holager, Mathias Larsson Madslien and Emir Zamwa for many

great pieces of advice and joyful moments.

Finally, I want to give gratitude to my parents, Randi Barndon and Rolf

Helland, whose counsel and support has provided a great deal of sympathy

and motivation. None of the paths taken towards even starting this thesis

would have been possible without them, and for that I am thankful.

iv

Contents

1 Introduction and motivation 1

2 Time series, Forecasting and Weather 5

2.1 Forecasting using time series 5

2.1.1 Time series . 5

2.1.2 Time series forecasting 6

2.1.3 ARIMA models . 7

2.1.4 Use of neural networks in forecasting 8

2.2 The chaotic nature of weather data 9

3 Machine Learning 10

3.1 Artificial Neural Networks . 10

3.1.1 Artificial Neurons . 11

3.1.2 Activation Functions . 12

3.1.3 Layers . 19

3.2 Training ANNs . 20

3.2.1 Loss functions . 22

3.2.2 Gradient descent . 23

3.2.3 Samples and Batches . 25

3.2.4 Forward Propagation . 26

3.2.5 Backpropagation . 28

3.2.6 Training loop . 28

3.3 Convolutional Neural Networks 29

3.3.1 Convolutions . 30

v

3.3.2 Pooling layer . 38

3.3.3 Fully-Connected Layer 39

3.3.4 Transpose convolutions 40

3.4 Recurrent Neural Networks . 41

3.4.1 Long Short-Term Memory 42

4 Working with meteorological imagery and hydropower data 45

4.1 Radar images collected through THREDDS 45

4.2 Data provided by Saudefaldene 50

4.2.1 Water reservoir level . 50

4.2.2 Precipitation . 52

4.2.3 Valve opening . 53

4.3 Missing data . 54

4.3.1 Linear Interpolation . 54

4.3.2 Backwards Filling . 55

4.4 The final dataset structure . 56

5 Related Work 58

5.1 Skillful Twelve Hour Precipitation Forecasts using Large Con-

text Neural Networks . 58

5.2 RainNet v1.0: a convolutional neural network for radar-based

precipitation nowcasting . 60

5.3 Daily reservoir inflow forecasting using artificial neural net-

works with stopped training approach 61

5.4 Convcast: An embedded convolutional LSTM based architec-

ture for precipitation nowcasting using satellite data 63

6 Methodology 64

6.1 General remarks . 65

6.2 MetZoom: Convolutional Neural Network 66

vi

6.2.1 CNN Input: A Sequence of radar images 67

6.2.2 CNN Architecture: Stages and Catch-up blocks 68

6.2.3 CNN Output: Prediction of radar images and precipi-

tation . 72

6.2.4 CNN performance: Loss and convergence 74

6.3 MetZoom: Long Short-Term Memory RNN 75

6.3.1 LSTM Architecture: Using the ResNet-18 extracted fea-

tures of radar images . 76

6.3.2 LSTM input: 24h time series 78

6.3.3 LSTM output: Up to 12h water level prediction 79

6.3.4 LSTM performance: Loss and convergence 79

7 Results 81

7.1 Predicting Radar Images . 82

7.2 Predicting Precipitation Through Radar Images 83

7.3 Predicting Relative Water Level (Helgedalsvatnet) 86

7.4 Comparing predictions to other models 89

7.4.1 MetZoom VS. other models 90

7.4.2 MetZoom VS. Naive Baseline 92

7.4.3 MetZoom VS. ARIMA 94

7.4.4 MetZoom VS. LSTM . 96

8 Evaluation 98

8.1 Reviewing the data . 98

8.1.1 Error margin . 98

8.1.2 Sparse radar images . 99

8.1.3 Interpolation on missing timestamps 99

8.2 Objectives and achievements 100

8.2.1 Motivation and tasks . 100

8.2.2 Reviewing the comparison to other models 101

vii

8.3 Reviewing conceptual choices 102

8.3.1 Using 3D Convolutions 102

8.3.2 U-Net architecture . 103

8.3.3 The conception of MetZoom 106

9 Conclusion 108

9.1 Conclusive remarks . 108

9.2 What’s next? . 109

Bibliography 111

viii

List of Figures

1.1 Helgedalsvatnet . 2

3.1 Artificial Neuron . 11

3.2 Layer Activation . 12

3.3 Nonlinear Function . 14

3.4 Sigmoid Activation Function 15

3.5 Tanh Activation Function . 16

3.6 ReLU Activation Function . 17

3.7 Leaky ReLU Activation Function 18

3.8 Network Layers . 20

3.9 A sample with possible labels 21

3.10 Gradient Descent . 24

3.11 Sample, Batch and Dataset . 26

3.12 Forward Propagation . 27

3.13 Fitting Function . 29

3.14 Input Image . 30

3.15 Kernel . 32

3.16 Receptive Field . 33

3.17 Receptive Field 2D . 34

3.18 Stride . 35

3.19 Kernel Dilation . 36

3.20 Padded Image . 37

3.21 Output matrix . 38

ix

3.22 Pooling Operators . 39

3.23 Simple CNN . 40

3.24 RNN . 41

3.25 LSTM Cell . 42

3.26 LSTM Cell Chain . 44

4.1 Radar Sequence . 46

4.2 Area . 47

4.3 Target Area . 48

4.4 Sparse Radar Image . 49

4.5 Dense Radar Image . 50

4.6 Water Level in Helgedalsvatnet (test data) 52

6.1 MetZoom general architecture 65

6.2 MetZoom Concept . 66

6.3 Image feeding . 68

6.4 Stage . 69

6.5 Catch-up blocks . 70

6.6 Flow of weather . 71

6.7 MetZoom CNN . 73

6.8 MetZoom CNN Loss per epoch 75

6.9 Feature Extraction . 76

6.10 Extracted Features . 77

6.11 Extracted Features as input . 78

6.12 MetZoom LSTM Loss per epoch 80

7.1 MetZoom Radar image predictions 82

7.2 MetZoom precipitation predictions 84

7.3 MetZoom precipitation predictions 85

7.4 MetZoom Precipitation: Standard Error 86

x

7.5 Test set: Water Level in Helgedalsvatnet 87

7.6 MetZoom Water Level predictions 88

7.7 MetZoom VS other models: Water Level predictions 89

7.8 MetZoom VS other models: Metrics 91

7.9 MetZoom VS Naive Baseline 92

7.10 MetZoom VS ARIMA . 94

7.11 MetZoom VS LSTM . 96

8.1 3D net images . 103

8.2 U-Res net images . 105

xi

List of Tables

3.1 A sample of temperatures . 21

4.1 Water Levels . 51

4.2 Precipitation . 53

4.3 Valve Opening . 54

4.4 Backwards Filling . 56

4.5 Dataset . 56

7.1 MetZoom Predictions errors . 87

xii

List of Abbreviations

ANN Artificial Neural Network. 2, 10, 11, 13, 26, 29, 41, 42, 61, 64, 108, 109

ARIMA AutoRegressive Integrated Moving Average. 7, 8, 89, 90, 94, 95, 101,

109

BPTT backpropagation through time. 44

CNN Convolutional Neural Network. 3, 4, 29, 30, 36, 38, 39, 64, 65, 66, 67,

68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 83, 106

FFNN Feed-Forward Neural Network. 41, 61, 62

HREF High-Resolution Ensemble Forecast. 59

HRRR High-Resolution Rapid Refresh. 59

HRW Highest Regulated Water Level. 51

LSTM Long Short-Term Memory. 42, 43, 44, 63, 64, 65, 75, 76, 78, 79, 89, 90,

97, 101, 106, 109

MAE Mean Absolute Error. 87

MET The Norwegian Meteorological Institute. 45

MSE Mean Squared Error. 87

NetCDF Network Common Data Form. 45, 46

xiii

NNAR Neural Network Autoregression. 8

NWP Numerical Weather Prediction. 4, 9, 59, 60

RNN Recurrent Neural Network. 3, 4, 41, 42, 44, 60, 62, 64, 75, 99

SE Standard Error. 87

TDS THREDDS Data Service. 45

1

Chapter 1

Introduction and motivation

The hydropower company Saudefaldene, in Sauda, Rogaland, manages a

network of water reservoirs and water transportation tunnels. These reser-

voirs and tunnels, combined with measuring stations (which record a va-

riety of measurements at different locations), present the opportunity for a

machine learning model which can learn an embedded pattern in this data.

The aim is to predict changes in the relative water level for a water reservoir

through these patterns. The relative water level is the surface height relative

to a set zero value. The model should ideally consider recent precipitation,

water retention in the surrounding area, temperature causing evaporation

and the rate of snow melting – which all affect the relative water level. More

realistically, attempts will be made to focus on precipitation as a main source

of inflow, and consider as a future development the inclusion of the other

sources of inflow. Note that although these sources of water are omitted from

the dataset, a machine learning model can indirectly learn these sources. The

exact nature of the data is described in Chapter 4.

In this thesis only one reservoir is targeted by the proposed machine

learning model, whilst in theory, a more comprehensive model could provide

forecasts for any such reservoir, or a collection of reservoirs. The targeted

reservoir is called Helgedalsvatnet (Figure 1.1), which lies at the highest alti-

tude of all reservoirs managed by Saudefaldene. The main goal of the project

Chapter 1. Introduction and motivation 2

will be predicting hourly changes of the relative water level in Helgedalsvat-

net, relative to a set zero value. This predictor value is physically dependent

on precipitation, which can be represented with a set rate, bound by the geo-

graphical precipitation field as seen in Figure 1.1.

FIGURE 1.1: An image of Helgedalsvatnet with an outline of its
precipitation field. The image is provided by Saudefaldene.

The altitude of the reservoir excludes water inflow from other reservoirs,

as well as a low general runoff time. This simplifies the complexity of the

task, as fewer physical dependencies are accounted for by the proposed model.

This thesis is a pilot project suggested by Saudefaldene for reviewing whether

an Artificial Neural Network (ANN) can predict these changes. The project

also incorporates radar images which reflect precipitation. By using the ser-

vice provided by the Norwegian Meteorological Institute, Thredds, it is pos-

sible to obtain a time series of radar images reflecting precipitation rate across

the relevant area.

https://thredds.met.no/thredds/catalog.html

Chapter 1. Introduction and motivation 3

The radar images can be used as an asset along with a dataset provided by

Saudefaldene, as the radar images reflect precipitation coming into and trav-

eling across the relevant geographical area providing an amount of precipita-

tion. The dataset provided by Saudefaldene contains information from 2014

through 2021, including recorded precipitation and temperature in Sauda,

along with relative water levels and valve openings for Helgedalsvatnet.

Whilst working with data in a time series structure it is important to find

a solution for combining the data from several sources, and fitting them into

a dataset with temporal cohesion between the variables. There is also a set

of assumptions made in this thesis, as the main focal point is such a small

geographical area. It is assumed that the weather that affects the water lev-

els most is local weather, and therefore the radar images only cover a small

area as pictured in Chapter 4, Figure 4.2. Chapter 4 explains how the dataset

is stipulated to match in the desired time intervals, and these alterations in-

clude the assumption of a smoother relationship between weather and inflow

than what is expected of the chaotic nature of weather.

A machine learning model which predicts changes in relative water level

can prove to be beneficial for both management and scheduling for the hy-

dropower company. Said model could also be applicable in other scenarios,

including recognition of dam overflow or risk of dangerous flooding caused

by heavy precipitation. In this thesis the main focus is capturing changes of

water levels in the imminent future, within a few hours or a day.

The architecture proposed in this thesis employs two neural network model

types, which will be further discussed in Chapter 3. To achieve a forecast

using machine learning and the available data a combination of a Convo-

lutional Neural Network (CNN) and a Recurrent Neural Network (RNN) is

used. Both have proven to be efficient at the two tasks at hand, namely image

processing with a CNN and sequence prediction with a RNN.

Convolutional Neural Networks have proven to perform well on image

Chapter 1. Introduction and motivation 4

segmentation and classification problems, as well as value regression prob-

lems from images - such as counting the amount of trees in an image of a

forest, or the distance between cities on a map. As weather forecasting is

predicting spatiotemporal features, the product of said prediction must be

mapping these features to a observable meterological feature (e.g tempera-

ture, precipitation, humidity, wind, etc.). The main meteorological feature

in this thesis is precipitation, which is likely the easiest to observe and mea-

sure. Rather than combatting Numerical Weather Predictions (NWPs) and

proposing a neural network that learns patterns of precipitation, the study

proposes the learnability of how the precipitation rate in radar images affects

the change in relative water levels in reservoirs.

Recurrent Neural Networks are both fast and accurate for sequence pre-

diction and are recognized as proficient in token alignment problems, for

example learning the next letter in a word, or the next word in a sentence.

The model in this thesis is a combination of the two. It uses a RNN for the

time series data to understand the long term relationships in water inflow,

and a CNN for capturing expected imminent changes through the radar im-

ages. The thought process behind building the CNN is capturing the precip-

itation moving towards the water reservoir. The RNN can use this informa-

tion to reinforce the relationship between the captured precipitation reflected

by the radar images and the following change in relative water level.

The base motivation behind creating such a model, and hence the thesis

itself, is providing information on both the accuracy and potential of a ma-

chine learning model trained on radar images, meterological- and reservoir

data for prediction of water levels in hydropower reservoirs.

5

Chapter 2

Time series, Forecasting and

Weather

This chapter will explain the conceptual structure of time series, traditional

methods of forecasting, and review problems when forecasting and predict-

ing weather. Understanding forecasts provides a starting point for handling

the problem in this thesis. Throughout this chapter time series and forecast-

ing are largely explained on the basis of Forecasting: principles and practice

(Hyndman and Athanasopoulos, 2018).

2.1 Forecasting using time series

"Forecasting is about predicting the future as accurately as possible, given all

of the information available, including historical data and knowledge of any

future events that might impact the forecasts" (Hyndman and Athanasopou-

los, 2018, p. 14).

2.1.1 Time series

A time series is any form of information captured over a period of time,

preferably at regular intervals. Often the information captured in a time se-

ries displays a pattern which can be cyclic, seasonal, trending or a combination

Chapter 2. Time series, Forecasting and Weather 6

of these.

Cyclic information exhibits some increase and decrease without a fixed

frequency. Cyclic fluctuations can be seen in both long- and short time frames,

such as weekly or annually. Seasonal patterns occur when the information

exhibits changes based on periodic factors such as the time of the day, the

day of the week or the month of the year. As these intervals are fixed, the

frequency is known and can be accounted for. A trend describes a dominat-

ing increase or decrease in the information covered by the time series data.

A trend can also change, but remains a trend if it does not repeatably change

at recognizable intervals.

Notably, more often than not, time series present patterns that are a com-

bination of cyclic, seasonal or trending data.

2.1.2 Time series forecasting

The objective of time series forecasting is to exploit the patters present in the

time series to make predictions for the future. Quantitative forecasting meth-

ods are used when adequate data is available for representing a long enough

period of the past, and it is reasonable to assume that patterns apparent in

the numerical information of the past will continue for the period that is cov-

ered by the forecast. When deciding on a quantitative forecasting method

one must consider which properties of the data are important. The predictor

variable is often known prior to deciding on forecasting, while other vari-

ables that might affect the accuracy of the forecast are more obscure. By

considering variables that are more important for an accurate forecast, the

prediction interval (range of certainty) can be narrowed. Time series data is

used in most problems where quantitative forecasting methods are appropri-

ate (Hyndman and Athanasopoulos, 2018, p. 15-17).

Chapter 2. Time series, Forecasting and Weather 7

If one can accurately predict an outcome in the future based on time se-

ries data - the goal of time series forecasting is achieved. More complex time

series models capture more information than one-variable trends or patterns.

Some models used in this type of forecasting are; decomposition models ex-

ponential smoothing models and AutoRegressive Integrated Moving Aver-

age (ARIMA) models (Hyndman and Athanasopoulos, 2018). The latter will

be used as a comparison for measuring the performance of the Neural Net-

work proposed in this thesis (see Chapter 6).

2.1.3 ARIMA models

ARIMA models are a combination of an autoregressive and a moving aver-

age model. Autoregressive models provide an output from a linear regres-

sion on a set of previous values and a stochastic term. The following descrip-

tion is from Hyndman and Athanasopoulos, 2018, p. 221-270. ARIMA mod-

els are used for describing autocorrelations in data. The model is regressive

on the predictor variable itself. These models are flexible and can handle a

range of different time series. An autoregressive models predictions for time

t with order p can be written as:

yt = c + φ1yt−1 + φ2yt−2 + . . . + φpyt−p + εt (2.1)

where εt is a white noise term and φ1, . . . , φp are the parameters of the model.

A moving average model uses past forecast errors in a similar regression.

Here the value yt is the weighted moving average with order q, and θ1, . . . , θp

are the parameters of the model:

yt = c + εt + θ1εt−1 + θ2εt−2 + . . . + θqεt−q (2.2)

When combined with computation of differencing between consecutive

Chapter 2. Time series, Forecasting and Weather 8

observations the two form the ARIMA model. The integration is the reverse

of differencing. Such a model can be written as:

y′t = c + φ1y′t−1 + φ2y′t−2 + . . . + φpyt−p + θ1εt−1 + θ2εt−2 + . . . + θqεt−q + εt

(2.3)

Where y′t is the differenced series. According to Hyndman and Athana-

sopoulos, 2018, this is recognized as an ARIMA(p, d, q) model where p is the

order of the autoregression, d is the degree of differencing of the series and q

is the order of the moving average. The most fitting values for p, d and q are

selected either by inspecting the data for a problem and differencing until the

data becomes stationary, or using built-in automatic functions with ARIMA

libraries in programming.

2.1.4 Use of neural networks in forecasting

Neural networks (which are covered in depth in Chapter 3) are used in fore-

casting as models for representation of complex nonlinear relationships. With

the lagged values in time series data a neural network can be used to autore-

gressively forecast values, such as weather. These neural networks are of-

ten referred to as Neural Network Autoregression (NNAR) models, and are

nearly equivalent to ARIMA models. NNAR models, in contrast to ARIMA

models, are free of restrictions of parameters (Hyndman and Athanasopou-

los, 2018, p. 335-337).

Conventional forecasting models are applied in iterations. For every pre-

diction a step forward in time is taken, and all the historical information up

until this point is available. A prediction is calculated both with past infor-

mation and the outputs of the model. This operation is repeated until all

values of the forecast are predicted. This is an iterative forecasting method.

Neural networks rather use a direct forecasting method, and uses n-output

Chapter 2. Time series, Forecasting and Weather 9

nodes as a representation of n-steps prediction. This allows for neural net-

works to only rely on past information for predictions (Coulibaly, Anctil, and

Bobée, 2000).

2.2 The chaotic nature of weather data

Prior to consuming information on weather predictions and forecasts it is

important to understand the chaotic nature of the data behind these predic-

tions. Because of the physics and dynamics of the natural weather system

and its inherent unpredictability on a longer time scale, even tiny differences

in initial conditions, or the initial state of the atmosphere, can grow vastly dif-

ferent. This provides a set of challenges in prediction of weather. Even in

commonly used methods, such as NWP models, uncertainties can grow as

prior forecasts are not deterministic, and often sparse or low quality infor-

mation is shuffled between high quality and dense weather data (Buizza,

2002, p. 2-5).

In weather data the initial conditions are all approximately known as they

depend on instrumental accuracy (Buizza, 2002, p. 3). Errors made by instru-

ments that measure wind, precipitation or other meteorological data can pro-

vide small uncertainties. Two separate sets of initial states of the atmosphere

can diverge from each other quickly. Even with a set of perfect and replete

data, meaning it covers all time steps and have the correct information, one

cannot simulate all of the factors, or molecules at hand. As a result it is nearly

impossible to achieve perfect results in weather prediction for any space and

time scale.

Even the flow, movement and amount of weather is very unpredictable

and as such even state of the art forecasting models have not achieved near

perfect results.

10

Chapter 3

Machine Learning

Machine learning models analyze data through the use of pattern identifica-

tion and decision making. Machine learning models are taught to produce

representations in data autonomously through learning. The learning pro-

cess is based on building experience from and understanding the given data.

Arthur Samuel coined the term in 1959, proposing that machine learning al-

lows computers to complete tasks without being explicitly programmed to

do so (Samuel, 1959). Today machine learning has many applications, and

is considered a promising tool for the suggested problem of the thesis. To

better understand the machine learning tools used in this thesis, this chapter

will explain some of the basic functionalities in artificial neural networks, the

foundation for the neural network architecture used in this project. The fo-

cus is directed towards the operations of convolutional- and recurrent neural

networks, both of which are deemed efficient on their own tasks.

3.1 Artificial Neural Networks

ANNs are versatile tools and are often used for approximating nonlinear

functions in n-dimensional data. The architecture of a neural network de-

scribes how a networks components connect to each other. Throughout this

thesis the focus is supervised learning as opposed to other machine learning

Chapter 3. Machine Learning 11

approaches. Supervised learning is based on a set of inputs X, their corre-

sponding labels Y and the networks parameters weights W and bias B. Su-

pervised learning models learn a parameterized function f : X → Y which

given a sample xi provides an output f (xi) = ŷi, and is trained through al-

tering its weights according to the label yi. In this section the focus is the

components of an ANN and how a network can be trained to provide more

precise outputs in the form of predictions Ŷ.

3.1.1 Artificial Neurons

A neural network is a set of linked neurons. The primary objective for a neu-

ron is to pass an input signal to an output signal, as shown in Figure 3.1.

Neuron

x1

x2

x3

OutputInputs
Transfer
function

FIGURE 3.1: A neurons transfer function receives an input sig-
nal consisting of several features and produces an output. In
this example there are three inputs to the node, and the output

is the weighted sum of the neurons weights and the input.

Information is passed through the networks neurons. Every neuron has

an internal transfer function. The transfer functions for a set of neurons are not

necessarily equal, which allows for flexibility in computation. The transfer

function for a single neuron can be written as:

tn(X) = ∑
i

xiw
(n)
i (3.1)

Chapter 3. Machine Learning 12

The neuron ns input signals for the neuron x0, . . . , xi ∈ X are multiplied

with the networks weights for that neuron w(n) ∈ W, and the transfer func-

tion t sum up the different weighted values, as shown in Equation (3.1). The

weights aim to define which features of the input data are important for the

neurons. To achieve this, the weights increase the important features and

reduce the non important features, pushing the network towards a correct

prediction (Haykin and Network, 1999).

In many neural network applications, some bias is introduced. Bias is

similar to the intercept of a linear function, and helps to adjust the output

along with the weights. The bias can either be learned, or added as a constant

to best fit the data.

3.1.2 Activation Functions

The weighted sum of every neuron is passed through an activation function as

shown in the figure below (Figure 3.2) (Maass, 1997).

Layer activation

x1

x2

x3

Output
Transfer
function

x4

x5

x6

Output

Inputs

Transfer
function

Layer neurons

Output after activation

Output after activation

FIGURE 3.2: Output from two neurons in a layer is passed
through the activation function before being passed to the next

layer of the network

The activation function A (or set of such functions) in a neural network

transform an input signal to an output z. The input signal to an activation

function is the direct output of a neurons, or set of neurons (as shown in

Chapter 3. Machine Learning 13

Figure 3.2 and in Equation (3.2)). The neurons included in the equation are

all activated.

z = A(b + ∑
i

xiwi) (3.2)

This output signal is called the activation of a neuron, and is the weighted

sum of the neurons inputs and weights, along with the bias b (as seen in

Equation (3.2)).

A review of the nonlinearity of ANNs lies in the process of neurons de-

scribed by Krenker, Bešter, and Kos, 2011 in Equation (3.3):

y = A
(m

∑
i=0

wi · xi + b
)

(3.3)

Where xi is the input value where i goes from 0 to m, wi is the weight

value, b is bias, A is an activation function and y is the output value.

The following section is largely based on the work in “Activation func-

tions in neural networks” by Sharma, Sharma, and Athaiya, 2017.

The activation function affects the performance and accuracy of a neural

network. Most common are non-linear activation functions, as these are the

basis of nonlinearity in neural networks.

Chapter 3. Machine Learning 14

–30–30 –20–20 –10–10 1010 2020 3030 4040 5050 6060 7070 8080 9090 100100

–5–5

55

1010

1515

2020

2525

3030

3535

4040

4545

5050

5555

00

NonlinearNonlinear

LinearLinear

FIGURE 3.3: A linear function fits the data points poorly com-
pared to a nonlinear function, as the trend fluctuates more than

a linear function can represent.

Without nonlinear activation functions, a network resembles a linear re-

gressor which is unable to capture nonlinearity of its input data, as shown

in Figure 3.3. Similarly, using nonlinear activations for approximating a lin-

ear relationship is also sub-optimal, and for some problems a combination of

linear and nonlinear activations amidst layers are preferable.

Some of the more essential activation functions for this thesis are the Sig-

moid, Tanh, Rectified Linear Unit and Leaky Rectified Linear Unit functions.

For more activation functions prominent in artificial neural networks, see

“Activation functions in neural networks” by Sharma, Sharma, and Athaiya,

2017.

The Sigmoid activation function is used in many machine learning appli-

cations and can be defined as

Chapter 3. Machine Learning 15

A(x) =
ex

1 + ex (3.4)

–6–6 –5–5 –4–4 –3–3 –2–2 –1–1 11 22 33 44 55 66 77

–1–1

–0.8–0.8

–0.6–0.6

–0.4–0.4

–0.2–0.2

0.20.2

0.40.4

0.60.6

0.80.8

11

1.21.2

1.41.4

1.61.6

1.81.8

22

2.22.2

00

FIGURE 3.4: The Sigmoid Activation Function scales values to
fit between 0 and 1.

It is non-linear and transforms values to the range [0, 1]. It is continuously

differentiable and provides an s-shaped curve. Whilst the sigmoid function

is symmetric around (x, y) = (0, 0.5), it can be scaled and shifted such that it

is symmetric around other values, as to affect the output values. The sigmoid

function is often used in problems targeting probabilities, or representation

of a level of confidence, as the values are within [0, 1].

The Tanh activation function, or the Hyperbolic Tangent, resembles the sig-

moid activation. In opposition to the sigmoid activation, the tanh function is

symmetric around a predefined origin, normally zero. The tanh function is

defined as

Chapter 3. Machine Learning 16

A(x) =
sinh(x)
cosh(x)

. (3.5)

It retains the same s-shaped curve as the sigmoid function (as seen in

Figure 3.5), but has values in the range [−1, 1].

–6–6 –5–5 –4–4 –3–3 –2–2 –1–1 11 22 33 44 55 66 77

–1.4–1.4

–1.2–1.2

–1–1

–0.8–0.8

–0.6–0.6

–0.4–0.4

–0.2–0.2

0.20.2

0.40.4

0.60.6

0.80.8

11

1.21.2

1.41.4

1.61.6

1.81.8

00

FIGURE 3.5: The Tanh Activation Function scales values to fit
between -1 and 1.

The Rectified Linear Unit, or ReLU, activation function does not necessarily

activate all neurons simultaneously. It activates inputs above 0 and is defined

as

f (x) = max(0, x) (3.6)

and illustrated in Figure 3.6.

Chapter 3. Machine Learning 17

–6–6 –5–5 –4–4 –3–3 –2–2 –1–1 11 22 33 44 55 66 77

–3–3

–2–2

–1–1

11

22

33

44

55

66

77

88

00hh

FIGURE 3.6: The ReLU Activation Function linearly activates
non-zero values.

Several activation functions are closely related to ReLU, notably Leaky

ReLU, which will be used along-side traditional ReLU in this thesis. The

leaky version changes values of x that are below zero to a small component

of x, e.g. 0.1x (as illustrated in Figure 3.7).

f (x) = max(0.1x, x) (3.7)

Chapter 3. Machine Learning 18

–6–6 –5–5 –4–4 –3–3 –2–2 –1–1 11 22 33 44 55 66 77

–3–3

–2–2

–1–1

11

22

33

44

55

66

77

88

00

hh

FIGURE 3.7: The Leaky ReLU Activation Function allows for a
small component of negative values, in contrast to the standard

ReLU.

Leaky ReLu avoids mapping negative inputs directly to zero by also al-

lowing a nonzero gradient for negative inputs. The Leaky ReLU function

avoids slow training of neural networks due to constant zero gradients (Gu

et al., 2018, p. 358).

A technique known as batch normalization is widely appreciated as a profi-

cient tool in neural networks along with activation functions. Batch normal-

ization is a regularization strategy which counteracts saturated nonlinearity

in training data. Essentially the technique normalizes every training batch

separately, rather than normalization of the entire data set simultaneously

(Ioffe and Szegedy, 2015, p. 2-4). This happens after the activation function

in every layer, if applied. The details of the process are largely covered in

“Batch normalization: Accelerating deep network training by reducing in-

ternal covariate shift”, Ioffe and Szegedy, 2015.

Chapter 3. Machine Learning 19

3.1.3 Layers

The neurons in a neural network are interconnected and transfer informa-

tion in parallel, often in layered structures, as illustrated in Figure 3.8. The

neurons of a layer are connected to the neurons in both the consecutive and

previous layer. In a layer with four neurons and three inputs shared for all

neurons, the output (or activation units) of the layer can be described as:

t0(X) = A(x0w0,0 + x1w0,1 + x2w0,2)

t1(X) = A(x0w1,0 + x1w1,1 + x2w1,2)

t2(X) = A(x0w2,0 + x1w2,1 + x2w2,2)

t3(X) = A(x0w3,0 + x1w3,1 + x2w3,2)

(3.8)

or as a collective activation for the entire layer l with n nodes and i inputs:

l =


A(x0w0,0+ . . . +xiw1,i)

...

A(x0wn,0+ . . . +xiwn,i)

 (3.9)

Chapter 3. Machine Learning 20

Input Layer Hidden Layer Output Layer

Output

Input 2

Input 3

Input 4

Input 1

FIGURE 3.8: Several neurons structured in 3 layers, with one
hidden layer between the input and output layer. Figure af-

ter O’Shea and Nash, 2015, p. 2.

As information is passed through a layer the neurons are activated to dif-

ferent extents depending on the input, as the neurons detect features within

the input.

3.2 Training ANNs

Proper generalization in neural networks imply a networks ability to cor-

rectly classify or describe data which is unseen and similar to the data of

which the network has been trained on. Training neural networks is based

around improving the ability to generalize by training and testing the net-

work in iterations. This section will review the important parts of training

and testing, including a standard way of learning, correction techniques and

metrics for assessing a networks performance.

Chapter 3. Machine Learning 21

Sample Possible labels

{Toyota}

{Car}

{Toyota Corolla}

{Car, Toyota, Corolla}

FIGURE 3.9: A sample with an image of a car, with 4 possi-
ble label choices. A neural network can be trained to recognize
both general and specific information. Car from U.S. National
Highway Traffic Safety Administration, Public domain, via Wikime-

dia Commons (12.01.2022)

A neural networks weights are adapted during training such that ŷi re-

sembles yi as closely as possible for every input sample. In Figure 3.9 an

image of a car is a training sample with corresponding labels that a neural

network can learn. In this case, the neural network learns to classify the in-

put sample correctly, often these classifications are accompanied by a level of

certainty (e.g. the image is classified as a car with a 90 percent certainty).

Sample:

Month Average Temperature (Celcius)

January 3.4

February 4.2

March 5.7

April 8.2

May 12.5

June 18.3

Label: July→ 22.5

TABLE 3.1: A list of temperatures in the past months can be a
sample for a label containing the temperature in the following

month.

In Table 3.1 the average temperatures in the first six moths of the year are

Chapter 3. Machine Learning 22

listed as the sample, and the label is the temperature in July. In this problem

the neural network learns to regress towards the expected temperature.

Both of the cases are supervised learning problems. Supervised learning

can be applied to both structured and unstructured data. Structured data im-

plies that the data comes from a database where columns, rows and feature

names give a well defined meaning to the data points (such as temperatures

and months). In contrast, unstructured data (such as images) are not as cat-

egorized and leave more room for interpretation. In both cases, accurately

labeling inputs x with proper labels y is crucial for the accuracy of the net-

work.

3.2.1 Loss functions

Calculating the error between the predicted values ŷi and the ground truth

labels yi is done using a loss function. The loss function determines the aim for

the network in regards to what it is supposed to learn. When building neural

networks, different loss functions can introduce adaptability and flexibility

to a neural network architecture (Janocha and Czarnecki, 2017). This section

will explain the two loss functions directed at value regression used in this

thesis. Other loss functions often seen in deep neural networks are elabo-

rated on in “On loss functions for deep neural networks [..]” by Janocha and

Czarnecki, 2017.

The L1- or the Least Absolute Deviations loss function calculates the

mean normalized sum of all deviations between a set of predictions ŷ and

ground truths y in a sample (with length N) as:

L1 =
1
N

N

∑
i=1
|yi − ŷi| (3.10)

The L2- or the Mean Squared Error loss functions evaluates a set of pre-

dictions ŷ and ground truths y (with length N) element-wise, and calculates

Chapter 3. Machine Learning 23

the mean of the squared errors throughout the set:

MSE =
1
N

N

∑
i=1

(yi − ŷi)
2 (3.11)

The two loss functions are very similar, but might be useful for differ-

ent applications. The L1 loss is very robust to outliers, in contrast to the L2

loss. In cases where capturing the error of outliers is important the MSE loss

contributes to maximizing the value of these errors, hence adding focus to

outliers. Accordingly the L1 loss function allows for reducing attention to

outliers.

Loss functions are used in machine learning tasks where the goal is to

minimize errors made by the network through penalizing, and are a part of

a larger group of functions known as objective functions. The combination of

loss functions, recognized as a cost function - represents loss in the network

for different features. When referencing the objective function going forward

note that it includes the interpretation of loss functions above.

3.2.2 Gradient descent

As mentioned earlier, the networks weights are adapted during training.

This is done through gradient descent. An objective function O can be visu-

alized as the height of a landscape with hills and slopes, and gradient de-

scent is a method for finding the lowest point of the plane (like the plane

in Figure 3.10) representing the point of where the network makes the least

amount of errors. The visualization accounts for two parameters. In reality

the problem is often more complex.

Gradient descent aims to find the direction of which the network should

shift it’s weights to further minimize errors along the steepest possible path

(as seen in Figure 3.10).

Chapter 3. Machine Learning 24

FIGURE 3.10: Gradient descent path towards a minimum. The
top of the plane illustrates the starting point of which the net-
work starts to learn, and as it gradually descends down the

slope, the amount of errors made by the network decrease.

The gradient descent method allows a neural network to alter its own

weights in an end-to-end differentiable system. The gradient of the objective

function O is denoted∇O(w) for the current set of weights w. Stochastic gra-

dient descent initiates a vector w0 which it updates for k = 0, . . . , N in steps

of length α and N samples which guide the objective function to a minimum:

wk+1 = wk − αk∇O(wk) (3.12)

Common modern optimizers also seek the most efficient optimization of

the loss function, and have hyperparameters which allow for fine-tuning of

the network. In this thesis, the two hyperparameters which have been ad-

justed is the learning rate and the weight decay. The learning rate determines

to what extent a gradient descent iteration updates the current values of the

weights. The weight decay also affects the updates of weights, by adding

a term which push the weights towards zero if no other update is made di-

rectly.

Chapter 3. Machine Learning 25

The optimizer used in this thesis is called Adam, which was introduced

in “Adam: A method for stochastic optimization”, Kingma and Ba, 2014.

Adam is reliable for problems with large amounts of data and parameters. It

is proficient when working with complicated stationary objectives, such as

the distribution of possible movements of precipitation in this thesis. Adam

can handle both noisy and sparse gradients (Kingma and Ba, 2014).

The optimizer has hyperparameters that can increase or decrease the am-

plitude of updates through backward passes. This allows the network to

converge more efficiently, given a sufficiently small learning rate. A network

converges towards a locally optimal objective function, and at this point the

gradient is zero, and updates in future iterations do not update the param-

eters a considerable amount on average. A network can also converge by

reaching a local minimum and hence stop learning too soon, or diverge due

to errors in the architecture or overfitting. Gradient descent is largely cov-

ered by Netrapalli, 2019 in “Stochastic gradient descent and its variants in

machine learning”.

3.2.3 Samples and Batches

A training sample is a single input data point x ∈ X where X is the entirety

of the input data of length N. A set of such samples is recognized as a batch

Bn = x0, . . . , xn ⊂ X where n < N, as illustrated in Figure 3.11.

Chapter 3. Machine Learning 26

Batch of samplesSample Dataset

n=1

n=60

n=276

FIGURE 3.11: An example of a sample and a batch drawn from
a larger dataset. The batch size is arbitrary for this illustration,

but can be important in implementation of ANNs.

Stochastic, as in the explanation above, refers to splitting the data of which

a neural network trains with into several smaller chunks, known as samples

and batches. Splitting data into samples and batches is important for train-

ing, as the network can calculate loss for either every sample, or a batch of

samples.

3.2.4 Forward Propagation

The samples are sent into a forward propagation either in batches or one at a

time, in succession. Forward propagation is the calculation of values of in-

termediate variables from the input to the output layer. For simplification

purposes, the processes of a forward propagation is described with one hid-

den layer (as pictured in Figure 3.8).

Chapter 3. Machine Learning 27

In forward propagation (Figure 3.12) the input x is multiplied with the

weights of the hidden layer w(1) and stored as an intermediate variable which

an activation function is applied to, as in Equation (3.2). This intermediate

variable is passed through the hidden layer and becomes a hidden variable

(which is also an intermediate variable), and is further multiplied with the

weights of the output layer w(2).

Input
x

Intermediate
variable

Hidden
variable

Label
y

L2 Loss
L

Activation
function

W(1) W(2)

Objective
function

Regularization
term

s

Loss
functionW(1)x W(2)x

L + s

Output

ŷ

FIGURE 3.12: The process of forward propagation. The input
x is along with the weights (the weighted sum / intermediate
variable) is activated and passed to a hidden layer. An output is
provided and a loss term calculated. This information is passed
alongside a regularization term to describe the objective func-

tion.

Further, the prediction ŷ is compared to the ground truth label y and a

loss function provides a loss term, which along with a regularization term

describes the objective function. The process of forward propagation through

layers l(1) and l(2) (recalling the activation function A, the bias b and weight

matrix W) can be described as:

l(1) = f̂ (1)(x) = A(b + W(1)x)

l(2) = f̂ (2)(l(1)) = A(b + W(2)l(1))
(3.13)

Chapter 3. Machine Learning 28

3.2.5 Backpropagation

In order to use gradient descent the gradient of the objective function must

be calculated with respect to its parameters. This is done efficiently through

backpropagation, which makes calculations through the elements of network

in reverse (i.e from output to input). In essence, this action describes the pro-

cess of assessing errors made in a forward pass (Werbos, 1990). Recalling the

network described in Figure 3.8 with one hidden layer, and the weight pa-

rameters w(1) and w(2) from forward propagation in Figure 3.12, backpropa-

gation aims to compute the gradients ∂O
∂w(1) and ∂O

∂w(2) , where O is the objective

function, using the chain rule from calculus (Zhang et al., 2021). Backpropa-

gation starts its calculations with the loss term, which is available as output

from forward propagation. The networks performance is dependent on both

propagations through the network.

3.2.6 Training loop

The forward- and backward propagations occur several times during train-

ing, once for each gradient descent iteration step. The number of propaga-

tions, more commonly referred to as passes through the network, are specified

through epochs. An epoch iterates through the entire training data by loading

subsets of training data in batches (as in Figure 3.11). The batches are passed

forward through the network with said subsets and the network produces

a prediction for every sample in the subset. Accordingly, a backward pass

updates the networks parameters based on the accuracy of said predictions.

The amount of training significantly affects how the network is fitted. If a

network is not trained enough, or the capacity of the network is too small, it

results in an underfit. An underfit describes a function which poorly repre-

sents the nonlinearity of the input data. In contrast, overfitting is training too

much, which results in a function that represents the data in the training set

Chapter 3. Machine Learning 29

too well, and unless the desired predictions perfectly match the training data

will result in poor predictions as well. These fits are illustrated in Figure 3.13

–1.5–1.5 –1–1 –0.5–0.5 0.50.5 11 1.51.5 22 2.52.5 33 3.53.5 44 4.54.5 55 5.55.5 66 6.56.5 77 7.57.5 88 8.58.5 99 9.59.5 1010 10.510.5 1111

–1–1

11

22

33

44

55

66

77

88

00

ff

–1.5–1.5 –1–1 –0.5–0.5 0.50.5 11 1.51.5 22 2.52.5 33 3.53.5 44 4.54.5 55 5.55.5 66 6.56.5 77 7.57.5 88 8.58.5 99 9.59.5 1010 10.510.5 1111

–1–1

11

22

33

44

55

66

77

88

00

gg

–1.5–1.5 –1–1 –0.5–0.5 0.50.5 11 1.51.5 22 2.52.5 33 3.53.5 44 4.54.5 55 5.55.5 66 6.56.5 77 7.57.5 88 8.58.5 99 9.59.5 1010 10.510.5 1111

–1–1

11

22

33

44

55

66

77

88

00

hh

FIGURE 3.13: Three functions fitted to a set of training data
points. The leftmost linear function is underfitted, and does not
properly represent the nonlinearity of the data. The rightmost
function fits the data too well to generalize from the training
data, and is an overfit. The middle function shows a function
which better represents the nonlinearity of the data, and as such

can generalize to non-training data.

3.3 Convolutional Neural Networks

This section will review a type of ANN known as CNNs which are often

used for processing data in a grid like structure. Examples of such grids are;

time-series (1D), images (2D) or video (3D). In this description of CNNs the

input is described as 2D. CNNs are used for both classification and regression

problems, for example identifying cats in an image, or the number of cars on

a road. CNNs do this through exploiting translational equivariance in the

data and sharing weights across the layers of the network.

Equivariance means that a CNN can detect similar features in several im-

ages without a fixed position of these features. As the weights are shared

for all inputs, they can be used for all outputs. This is used for detecting

edges, textures and shapes. It is assumed that the data fed to a CNN share

properties.

Any network that uses convolutions in one or more layers is a CNN

(O’Shea and Nash, 2015). In a typical CNN there are three different types

of layers; convolutional layers, pooling layers and fully connected layers.

Chapter 3. Machine Learning 30

Throughout this section, the inputs of the discussed network is to be re-

garded as an image, or a set of images.

3.3.1 Convolutions

The Input Matrix of a convolutional layer is an array. In the case of an image

every grid cell of the input array has some pixel color values (Red-Green-

Blue (RGB)) and/or pixel brightness value (gray-scale images in case of only

brightness). The pixel color or brightness values at spatial pixel indices of

the image form the depth dimension of the input array (e.g. an image of

size 5 × 5 pixels with RGB coloring forms an input array with shape 3 ×

5× 5) as shown in Figure 3.14. The amount of pixel values (such as RGB)

or amount of images in a series translates to the input channels of a CNN. A

convolutional layer either increase og decrease the amount of channels before

the next layer. The amount of channels defines the depth of the matrix in

the convolution operation. The values of the input are regionally computed

as the convolutional layer calculates the scalar products between the local

values of the input and the corresponding weights of the network (O’Shea

and Nash, 2015).

x.,. x.,.

x.,. x.,.

x.,. x.,.

x.,.

x.,.

x.,.

x.,. x.,.

x.,. x.,.

x.,. x.,.

x.,.

x.,.

x.,.

x.,. x.,.

x.,. x.,.

x.,. x.,.

x.,.

x.,.

x.,.

Input Image
values x(i,j)

x.,. x.,.

x.,. x.,.

x.,. x.,.

x.,.

x.,.

x.,.

j 0 1 2 3 4 5i

0

1

2

3

4

5

r.,. r.,.

r.,. r.,.

r.,. r.,.

r.,.

r.,.

r.,.

r.,. r.,.

r.,. r.,.

r.,. r.,.

r.,.

r.,.

r.,.

r.,. r.,.

r.,. r.,.

r.,. r.,.

r.,.

r.,.

r.,.

r.,. r.,.

r.,. r.,.

r.,. r.,.

r.,.

r.,.

r.,.

Input Image
values rgb(i,j)

represents color values
depth-wise

FIGURE 3.14: The values at every pixel in an input image are
often RGB representations. In this case, the depth of the input

array becomes 3, as every color adds depth.

Chapter 3. Machine Learning 31

The Kernel of a given convolutional layer is an array of learnable weights,

analogous to weights described in Section 3.2.6. The kernel is smaller than

the input, often 3× 3, 5× 5, or 7× 7, but can also be larger. In 2D convo-

lutions, the kernel spans along the entirety of the inputs depth dimension.

As the data passes through the layer, the kernel produces an activation map

which calculates each value seen by the kernel as in Figure 3.15. The kernel

activates when a recognizable feature is seen at the current spatial region in

the input array. A layer with several kernels have a differentiable output vol-

ume to its input, and the layer passes the activation maps of all kernels along

the depth dimension as the output of the layer. (O’Shea and Nash, 2015)

When the input is a two dimensional array I, the kernel K is also two

dimensional, with a size m× n. The kernel slides across the input array, and

for every position (i, j) the kernel covers a region of the input I[i − m, j −

n] and computes the scalar product (the weighted sum between the region

covered and the kernel). The path of the kernel is restricted to positions in

which the entirety of the scalar is within the input array (Bengio, Goodfellow,

and Courville, 2017a).

s[i, j] = (I ∗ K)[i, j] = ∑
m

∑
n

I[i−m, j− n]K[m, n] (3.14)

The kernel is considered as the defining component of a convolution. The

forward and backward passes of the convolutional layer are computed by

multiplying the weights of the network with the activation map "created" by

the kernel.

Chapter 3. Machine Learning 32

k0,0 k0,1

k1,0 k1,1

k2,0 k2,1

k0,2

k1,2

k2,2

x.,. x.,.

x.,. x.,.

x.,. x.,.

x.,.

x.,.

x.,.

x.,. x.,.

x.,. x.,.

x.,. x.,.

x.,.

x.,.

x.,.

x.,. x.,.

x.,. x.,.

x.,. x.,.

x.,.

x.,.

x.,.

x0,0 x0,1

x1,0 x1,1

x2,0 x2,1

x0,2

x1,2

x2,2

Scalar product

Activation map

a0,0 a.,.

a.,. a.,.

a.,. a.,.

a.,.

a.,.

a.,.

a.,.

a.,.

a.,.

a.,. a.,. a.,. a.,.

Input Array Kernel

FIGURE 3.15: The kernel produces a scalar product for every
region within the input array. This operation, convolutions
(Equation (3.14)), essentially downscales the input array, cre-
ating an activation map of the weighted sums for every region.

The Receptive field for every neuron translates to the input units that af-

fect the output of that neuron. The receptive field of a neuron is connected

to the receptive fields in previous layers with their corresponding connec-

tions, as shown in Figure 3.16. As a result the computed outputs are passed

through the layers.

Chapter 3. Machine Learning 33

Layer 1

Layer 2

Layer 3

FIGURE 3.16: The receptive field of a single neuron includes the
entirety of the receptive fields of connected neurons.

In convolutions the receptive field is directly connected to the kernel, and

hence the weights in the network. In opposition to one layer with a large

kernel, several layers with smaller kernels reduce the number of parame-

ters required to represent the entirety of the input array. This is because the

parameters are shared between layers, through the receptive fields. In Fig-

ure 3.17 every neuron of the first convolutional layer has a 3× 3 view of the

input vector and accordingly the neurons of the second and third layers have

a 5× 5 and 7× 7 view of of the input vector.

Chapter 3. Machine Learning 34

Layer 3Layer 2Layer 1

Layer 3 neuronsLayer 2 neuronsLayer 1 neurons

FIGURE 3.17: Receptive fields of a neurons at layers 1-3 in con-
volutions. Three stacked 3x3 convolutions have differing re-
ceptive fields, as the view of early layers is passed through the

network as outputs.

Both Stride and Dilation are tools for further placement and enhance-

ment of the receptive field whilst lowering the spatial dimension of the out-

puts in the convolutional layer. The stride of the kernel describes how many

cells of the input matrix to be skipped as the kernel glides across it. A smaller

stride causes overlapping of receptive fields, and a larger amount of activa-

tions, as shown in Figure 3.18. Thus, a larger stride can reduce this overlap-

ping and reduce dimensionality (O’Shea and Nash, 2015).

Chapter 3. Machine Learning 35

FIGURE 3.18: Path of a 3x3 kernel with strides 1-3 (first 3 steps).
A larger stride covers more of the input array faster, but may

miss out on some information.

Dilation refers to spacing between the cells of the kernel, as shown in

Figure 3.19. Dilation increases the receptive area of the kernel whilst main-

taining the amount of calculations.

Chapter 3. Machine Learning 36

FIGURE 3.19: A Kernel with dilation of two spreads out across
the input array, and processes the values highlighted in white.
As a dilated kernel slides across the input array more values are

processed.

Padding an input matrix along its border can control the spatial dimen-

sion of the output matrices of a convolutional layer. Padding allows for the

kernel to center around the borders of the input array. Padding contradicts

the restriction of the kernel staying within the borders of the input array. A

correct amount of padding kan ensure alignment of receptive fields across

neurons of the network, as the kernel is re-aligned with the padded-input.

Several types of padding are common in modern CNNs, but in the simplest

form Zero-padding fills a border predefined size around the input with zeros

(pictured in Figure 3.20) (O’Shea and Nash, 2015).

Chapter 3. Machine Learning 37

FIGURE 3.20: A Zero-Padded input image with only one pad.
The zeros that create a border around the image allow the ker-

nel to center on the edges of the original input array.

The Output Matrix contains features for every region which the kernel

has visited whilst sliding across the input matrix (as shown in Figure 3.21).

The features of the output matrix are the weighted sums of these regions

in the order of when they were visited. The output of a convolution is a

linear transformation of the input along it’s height and width across its entire

depth. The output can be deeper, equal to or shallower than the input along

the depth axis. This is determined by the desired output channels of the

convolution (O’Shea and Nash, 2015).

Chapter 3. Machine Learning 38

FIGURE 3.21: A 3 × 3 kernel (with stride 1) passes over an
4× 4 input array, and generate an output for all 4 regions com-
bined. The convolution operation in essence downscales the

input, whilst retaining information from every region.

3.3.2 Pooling layer

The pooling layer of a CNN performs a down-sampling of the input along the

spatial dimension. The operation of pooling reduces the number of param-

eters of the model, whilst also reducing computational cost and complexity.

Pooling layers function by sliding (often) small filters along the spatial di-

mensions of the input. The amount of calculated regions within an input is

decided by the size of the filter, namely the pooling operator. Pooling lay-

ers maintain the depth of the input, as it uses some function (operator) for

down-scaling the spatial dimension. Most common are the MAX or AVER-

AGE functions, which do the following:

Chapter 3. Machine Learning 39

FIGURE 3.22: Pooling Operators AVERAGE and MAX are both
commonly used in CNNs. The figure illustrates that the pooling
filter can be either of the two. This is defined during implemen-

tation.

The Average Pooling operator evaluates a region within the input and

returns the average value for that region.

The Max-pooling operator evaluates a region within the input and re-

turns the maximum value for that region. There are many variations of pool-

ing layers which are fully explained in “Pooling methods in deep neural net-

works, a review” by Gholamalinezhad and Khosravi, 2020.

3.3.3 Fully-Connected Layer

In CNNs a fully-connected layer is commonly used to directly connect neu-

rons of convolutional- or pooling layers to the output layer (O’Shea and

Nash, 2015). These layers are often tools for transferring information from

the weight matrices processed through the network and to some posterior

meaning or interpretation of the input (e.g. the likelihood of an image con-

taining a cup rather than a dog), or a measurement in the form of a regression

(e.g. the age of a tree based on an image of the stud).

Chapter 3. Machine Learning 40

FIGURE 3.23: A simple regression CNN for precipitation in a
region from radar image. The final layer before the output is a

fully-connected layer which can translate images to values.

3.3.4 Transpose convolutions

Transpose convolutions, also recognized as fractionally strided convolutions or

deconvolutions, are generally desired for transforming information in the op-

posite direction to that of regular convolutions. In essence, the process of

transpose convolutions up-scale some input while maintaining connectivity,

rather than down-scaling it. The input fed to transpose convolutions is of-

ten the output of regular convolutions. Operations like these are often seen

in segmentation problems, where some amount of down-scaling is beneficial

as an encoding tool, and up-scaling of the down-scaled output acts as a de-

coder. Often seen in segmentation and classification problems, this process is

efficient, as it can project dense information to a higher-dimensional space af-

ter having reduced that information to an abstract representation (Dumoulin

and Visin, 2016).

As discussed in the previous section on Convolutional Neural Networks,

the kernel is the defining component of a regular convolution operation,

which is also the case for transpose convolutions. The difference between

the two methods lies most prominently in the forward and backward passes

of the network (Dumoulin and Visin, 2016). Transpose convolutions are cov-

ered in “A guide to convolution arithmetic for deep learning” by Dumoulin

and Visin, 2016.

Chapter 3. Machine Learning 41

3.4 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are applied step-wise and repeatedly to

sequential data. In addition to the functionalities of a Feed-Forward Neu-

ral Network (FFNN), for every step taken some information is retained and

passed back to the network in the next step. This information is kept in a

state vector in a hidden unit (Bengio, Goodfellow, and Courville, 2017b, p. 333-

336). This vector contains information about the history of the sequence the

network has already processed, and is passed through the steps as shown in

Figure 3.24.

Output

Input

State

o ot-1 ot ot+1

xt-1 xt xt+1x

st-1 st st+1s w w w w

v

u

v

u

v

u

v

u

unfold

FIGURE 3.24: The RNN has a loop which returns the state in
the hidden layer. The input x is passed through this layer and
forms an output o. When unfolded this structure is a sequence
of this operation where the hidden unit in the state vector is
passed to the consecutive step at time t. w is the weight matrix
for the hidden-hidden connection. u and v are the correspond-
ing weigh matrices for the input-hidden and hidden-output,
respectively. Figure after Bengio, Goodfellow, and Courville,

2017b, p. 333.

The outputs of hidden units (as shown in Figure 3.24) at different discrete

time steps can also be considered analogous to the outputs of neurons in a

multi-layered ANN as described in Section 3.1.1.

Training RNNs have been considered problematic, as gradients in back-

propagation for RNNs either grow larger or shrink at every time-step (Ben-

gio, Goodfellow, and Courville, 2017b, p. 334-338).

Chapter 3. Machine Learning 42

3.4.1 Long Short-Term Memory

The Long Short-Term Memory (LSTM) is an RNN architecture that was in-

troduced by Hochreiter and Schmidhuber as early as 1997. LSTMs are spe-

cial sequential ANN that can learn long-term dependencies through keeping

long- and short-term memories. This section is largely based on the expla-

nations in Hochreiter and Schmidhuber, 1997 and Bengio, Goodfellow, and

Courville, 2017b, p. 360-361.

Figure 3.25 shows an LSTM (memory) cell. A cell has three gates, the input,

forget and output gates. The gates have explicit tasks. The input gate tries to

learn new information from the input xt at time t. The forget gate evaluates

the short-term memory in the hidden state ht−1, and the long-term memory

of the cell state ct−1 of the previous time step t − 1. Finally the output gate

passes updated information of the short- and long-term memories ht and ct,

and passes ht as its output (Hochreiter and Schmidhuber, 1997).

xt

ct-1

ht

ht-1

ct

ht

σ

σ tanh σ

tanh+×

× ×

Input gate Forget gate Output gate

FIGURE 3.25: An LSTM Cell processes data sequentially whilst
keeping its hidden state. Each line carries a vector: the long-
term memory ct−1, short-term memory ht−1 or the input xt at
for time t. The circular markers are point-wise operations (mul-
tiplication or sum), whilst the elongated markers are activations

(sigmoid or tanh).

The bottom left line in Figure 3.25 shows operations made on the input

Chapter 3. Machine Learning 43

xt and the hidden state of the previous step ht−1. This information is passed

upwards to top right line which shows the operations on the cell state (long-

term memory). As it passes upwards it goes through the input gate Gi. It

uses sigmoid activation on the networks weights for the input gate (a con-

catenation of the weights for the previous hidden state and the current input)

Wi[ht−1, xt] and bias at time t.

Gi = σ(Wi[ht−1, xt] + bi) (3.15)

This input gate decides which values to update. Along with this informa-

tion comes the forget gate G f , which is the point wise multiplication of the

same activation of the input gate Gi and a tanh (hyperbolic tangent) activation

of the same values.

G f = σ(W f [ht−1, xt] + b f)× tanh(W f [ht−1, xt] + b f) (3.16)

The previous cell state ct−1 is point-wise multiplied with the result of the

input gate and then the weighted sum of the forget gate.

ct = ct−1×σ(Wi[ht−1, xt]+ bi)+σ(W f [ht−1, xt]+ b f)× tanh(W f [ht−1, xt]+ b f)

(3.17)

Finally the output gate Go uses a sigmoid activation similar to the input

gate and a tanh on the cell state prior to a point-wise multiplication of the

two, resulting in the new hidden state.

Go = σ(Wo[ht−1, xt] + bo)

ht = G f + tanh(ct)

(3.18)

An unrolled LSTM layer (as shown in Figure 3.26) has one or more of

these cells in parallel.

Chapter 3. Machine Learning 44

xt-1

ct-2

ht-1

ht-2

σ

σ tanh σ

tanh+

xt

ct-1

ht

ht-1

ct

ht

σ

σ tanh σ

tanh+×

× ×

xt+1

ht+1

ct+1

ht+1

σ

σ tanh σ

tanh+×

× ×

FIGURE 3.26: A chain of three LSTM Cells that passes memo-
ries sequentially.

The LSTM archetype has since then proven useful for learning patterns

within distributed, real-valued and noisy data (Hochreiter and Schmidhu-

ber, 1997). An LSTM learns through backpropagation through time (BPTT),

which is the backpropagation discussed in Section 3.2.2 on the unfolded RNN

in Section 3.4, Figure 3.24. The errors recognized through BPTT arrive at

memory cell net inputs and are scaled by the output gates activations before

being propagated back through previous internal states (points of memory).

45

Chapter 4

Working with meteorological

imagery and hydropower data

The two main sources of data used in this thesis are The Norwegian Mete-

orological Institute and Saudefaldene. The data collected from The Norwe-

gian Meteorological Institute are radar images, which are used for predicting

precipitation. The predicted precipitation is important for predicting the in-

flow to Helgedalsvatnet, which Saudefaldene provides data about. The data

consists of several separate time series, including the water level, recorded

precipitation and the valve opening. Other data may be important and avail-

able, but to limit the complexity of the study only the above mentioned data

is included.

4.1 Radar images collected through THREDDS

The THREDDS Data Service (TDS) is a web server access point for scientific

data. It is used by several institutions, including The Norwegian Meteoro-

logical Institute (MET). The service provided by MET, MET Norway Thredds

Service, allows users to access scientific datasets through several remote ac-

cess protocols.

The data obtainable from MET Norway Thredds Service can be down-

loaded with a Network Common Data Form (NetCDF). These data forms are

https://www.met.no
https://www.met.no
http://www.trackmyelectricity.com/plants/sonna-hydro/?fbclid=IwAR21Ek7K4NF4Wy4sGgRDFgUD6-WSYuI9m4J3UP3iYFKtpsPNHiQ5aK4Htr8
https://www.unidata.ucar.edu/software/tds/current/
https://www.met.no
https://www.met.no
https://thredds.met.no/thredds/catalog.html
https://thredds.met.no/thredds/catalog.html
https://thredds.met.no/thredds/catalog.html

Chapter 4. Working with meteorological imagery and hydropower data 46

self-describing, portable, scalable, appendable, sharable and archivable. A

tool in the MET Norway Thredds Service allows for geographical grid sub-

setting through a NetCDF. This is important for the thesis, as the main in-

terest is the western part of Norway, more specifically Sauda, and the area

around Helgedalsvatnet. In this thesis, the data collected by this service is

a set of radar images. A sequence of these radar images contain the precip-

itation rate of liquid water equivalents per hour. Figure 4.1 shows 8 images

from the dataset that are ordered in a sequential and ordinal manner.

FIGURE 4.1: A sequence of 8 radar images one hour apart with
varying rates of precipitation covering the area in Figure 4.2. A
brighter color means more precipitation reflectivity in the im-

age.

In order to capture where the precipitation originates from and its cur-

rent course, a large enough area is needed to capture any precipitation that

might pass over Helgedalsvatnet some hours prior to downfall (as depicted

in Figure 4.2). The water level is affected by the downfall in Helgedalsvatnets

precipitation field adjusted with the delay from downfall to inflow.

https://thredds.met.no/thredds/catalog.html

Chapter 4. Working with meteorological imagery and hydropower data 47

Nordsjøen

362

500

520

541

545

549

561

57648

49
7

9

13

13

13

E16

E39

E39

E39

E39

E134
E134

1604

1861

1630

1721

1690

1602

1538

vidda

Hardanger-

Haugalandet

Sunnhordland

Hardanger
Midhordland

Vossavangen

Osøyro

Arna

Haugesund

Odda

Bergen

450

450

547

9

13
1521

1059

1421

Blåsjø

Ryfylke

Heiane

Hommersåk

Ålgård

Tananger

Boknafjorden

Bryne

Sandnes

Jørpeland
Stavanger

KopervikÅkrehamn

Rogaland

37

40

50
7

E134 E134

904

1883

1933

1485

HallingdalselveLågen

Tinnsjå
Møsvatn

Totak

Hallingdal

Numedal

Hokksund

Viken

Telemark

Vestfoldog

355

356
358

360

38

38

36

E18

E134

NorsjøNisser

Notodden

Skien
Porsgrunn

Area

14.4.2022
0 20 4010 mi

0 30 6015 km

1:1 280 000

FIGURE 4.2: The entire area covered by the radar images is
illustrated with the large blue bounding box, which stretches
from Bergen in the north to Stavanger in the south. Map cre-

ated with https://nedlasting.nve.no/gis/.

The coordinates fed to the MET Norway Thredds Service provide cover-

age of the geographical area in Figure 4.2, which has a center adjacent to the

target area in Figure 4.3. The center of the images is 59◦41
′
17.1

′′
N, 6◦25

′
35.6

′′
E,

which is close to Helgedalsvatnet. The area received is also predefined by

reach, i.e how much area around the center is desired. The subset (hereby

radar dataset) consists of 200 by 200 (x, y) coordinates, where the images have

a 1km resolution per pixel.

https://thredds.met.no/thredds/catalog.html

Chapter 4. Working with meteorological imagery and hydropower data 48

668

4722

4724

4730

5024

520

E134

51

566

626

1025

788

928

974

1135

807

881

1020

1125

1218

545

949

1299

908

ndheim

Stordals-

vatnet

Bordheia

dland

Skautanuten

Saudasjøen

Amdal

Storavassbu

Svandal

Blomstølen

Frette

Gunnegjerd

Håland

hytta

Kyrping

Løkjelsvatn-

Sauda-

Åkrafjorden

1187

Hustveitsåta

fjorden

1296
Røldals fjellet

520

520

13

1030

475

590

619

743

828

1527

925

1287

1034

1365

1435

1087

1313

1237

1257

1538

1602

966

1344

1291

1068

1284

907

1219

809

1564

1241

1353

nutane

Svinstøl-

Kyrkje-

nuten
nuten

Skaulen

Helgedals-

Søre

Suldalsheiane

Tinden

Breiborg

Nip

Sandvatnbrakka

hytta

Sandvass-

Sauda

1155
827886

1178

1426

Røldal

4720

13

13

13

E134

380

1492

1608

1422

1399

1006
1064

1478

Røldalsvatnet

Håra

Target Area

14.4.2022
0 2,5 51,25 mi

0 4 82 km

1:160 000

FIGURE 4.3: The target area close to center of the area (in Fig-
ure 4.2) covered by the radar images is shown with the blue
bounding box, covering Helgedalsvatnet. This box covers some
of the precipitation field for Helgedalsvatnet, but is only an il-
lustration. Map created with https://nedlasting.nve.no/gis/.

The area which is most important for predicting precipitation is the pre-

cipitation field of Helgedalsvatnet, illustrated in Figure 4.3.

Every radar image has a timestamp for when the image was captured.

The radar images contain captured liquid water or equivalent precipitation

per (x, y) pair of coordinates at the given time. The radar images are struc-

tured at one hour intervals covering the time frame 01/01/2014 - 25/08/2021,

for a total of 67,015 images. The hourly captured images are long enough

apart, time-wise, to capture the movement of recorded precipitation (weather)

whilst not loosing too much information between hours. Using radar images

captured at longer intervals might have prompted difficulties in future pre-

diction as not enough information is available to capture the natural move-

ment of clouds containing precipitation.

Chapter 4. Working with meteorological imagery and hydropower data 49

As rain clouds are not uniformly distributed information per image may

be sparse, and many of the images do not contain any detected precipitation.

The amount of detected precipitation can also vary, which introduces some

uncertainty. A radar image which is considered sparse contains little to no

precipitation (i.e. values ranging 0.0-1.0 or smaller) or have some small areas

with dense information (as in Figure 4.4).

0 50 100 150 200
200

150

100

50

0

0

0.5

1

1.5

2

Precipitation (mm)

Sparse radar image

Longitude (km)

L
at

it
ud

e
(k

m
)

FIGURE 4.4: A sparse radar image of detected precipitation
covering the area in Figure 4.2

A radar image which is considered dense has a lot of recorded precipita-

tion. In a dense image precipitation can either cover the image rather evenly

or have parts of the image with dense precipitation (as in Figure 4.5).

Chapter 4. Working with meteorological imagery and hydropower data 50

0 50 100 150 200
200

150

100

50

0

0

0.5

1

1.5

2

2.5

3

3.5

4

Precipitation (mm)

Dense radar image

Longitude (km)

L
at

it
ud

e
(k

m
)

FIGURE 4.5: A dense radar image of detected precipitation cov-
ering the area in Figure 4.2

4.2 Data provided by Saudefaldene

4.2.1 Water reservoir level

Helgedalsvatnet is located at an higher altitude than the other reservoirs of

Saudefaldene. Helgedalsvatnet is therefore not affected by the other reser-

voirs, and primarily affected by precipitation, temperature, water retention

in the local area and outflow from the reservoir. The outflow is a controllable

variable by the hydropower operators. This simplifies the task of predicting

Chapter 4. Working with meteorological imagery and hydropower data 51

a change in relative water level. The measurements are made on a daily ba-

sis, covering the time frame 01/01/2014 - 25/08/2021, and describe the change

in relative water level from some standard level. This standard water level

is the Highest Regulated Water Level (HRW), and can be directly translated

to the volume in the reservoir in million m3. When the value is at it’s lowest,

the water level is at the Lowest Regulated Water Level, and ascends with an

increase in water level.

The water level of this reservoir is the target value for the model presented

in this thesis

Date of measurement Change in relative water level (HRW-m)

04/08/2021 -4.74

05/08/2021 -4.94

06/08/2021 -5.14

07/08/2021 -5.34

TABLE 4.1: Examples of change in relative water level to a pre-
defined zero (Helgedalsvatnet 04/08/2021 - 07/08/2021)

A snippet of the time series in Table 4.1 shows typical data entries. Note

that not all data entries in the series are measured, as some entries are stipu-

lated values (by Saudefaldene). The daily intervals of these data entries are

transformed to hourly intervals to match the time series of the radar images

from Section 4.1. This is done through linear interpolation of the measure-

ments.

Chapter 4. Working with meteorological imagery and hydropower data 52

2019-06-02 20:00:00

2019-08-27 04:00:00

2019-11-22 21:00:00

2020-02-17 05:00:00

2020-05-14 20:00:00

2020-08-11 16:00:00

 2020-11-07 19:00:00

 2021-02-02 09:00:00

2021-04-28 23:00:00

−14

−12

−10

−8

−6

−4

−2

0 Label

Relative water level in Helgedalsvatnet

Date and Time

R
el

at
iv

e
w

at
er

 le
ve

l

FIGURE 4.6: The relative water level in the test set of the data.

4.2.2 Precipitation

The precipitation time series delivered by Saudefaldene contains data cover-

ing the time frame 01/01/2014 - 26/08/2021. The data entries are at 07h and

19h, with 12 hour intervals. The data in this time series are slightly different

but consistent with the measurements that can be gathered from SeNorge.no,

which is a reliable online tool for themed maps of Norway’s meteorological

and climactic data. The discrepancy between the datasets of precipitation is

likely due to the location of the weather station, the measurement method-

ology and local variations in geographical topology. These minor differences

are accepted as all data except the radar images discussed in Section 4.1 are

sourced from Saudefaldene. The main issue with the precipitation data is the

recording intervals. Similar to the water level data discussed in Section 4.2.1,

the missing data points per hour has to be addressed, which will be explained

in Section 4.3.

http://www.senorge.no

Chapter 4. Working with meteorological imagery and hydropower data 53

Date and time of measurement Precipitation (SAUDA) (mm)

26/07/2021 07:00 0.0

26/07/2021 19:00 0.1

27/07/2021 07:00 4.5

27/07/2021 19:00 5.9

28/07/2021 07:00 7.4

28/07/2021 19:00 8.8

29/07/2021 07:00 2.6

29/07/2021 19:00 0.1

TABLE 4.2: Examples of measured precipitation at 12h intervals
(SAUDA 26/07/2021 - 29/07/2021)

4.2.3 Valve opening

The data points describe the opening of the valve connected to Helgedalsvat-

net. These datapoints show the valve opening in centimeters for a period of

time. The values are sectioned into separate date ranges, which provides a

valve opening which lasts through the entirety of the respective period.

The valve opening describes the amount of water being drawn out of the

reservoir. Although the valve opening is not corresponding directly to the

exact amount of outgoing water, the indication of small or large change is

apparent in the data. It is reasonable to expect that the outflow changes when

the valve opening changes, and therefore the assumption is made that there is

a strong and consistent relationship between the valve opening and a change

in the water level.

Chapter 4. Working with meteorological imagery and hydropower data 54

Start Date End Date Valve Opening (cm)

15/06/2021 10/07/2021 15

10/07/2021 02/08/2021 0

02/08/2021 04/08/2021 5

04/08/2021 01/01/2030 10

TABLE 4.3: Examples of valve opening Helgedalsvatnet
(15/06/2021 - 04/08/2021)

4.3 Missing data

As the data described in Section 4.2 are structured at varying time intervals

it is imperative to reorganize the separate data into a cohesive and properly

structured time series. The time series is defined in one hour intervals due to

the structure of the radar images. This section reviews and explains the use

of two methods for handling missing data, namely linear interpolation and

backwards filling. In the linear interpolation method there are some assump-

tions made about the natural world which can be considered reasonable as

the changes in water level change smoothly and continuously, and sudden

bursts of precipitation still have an accumulative delay over the geographi-

cal area which can be fit linearly within hourly ranges. Remember that these

assumptions would not have been required if the data was complete with

actual and cohesively recorded data.

4.3.1 Linear Interpolation

When employing linear interpolation methods the assumption is made that

the variations in the quantities of the variables included are smooth and con-

tinuous. As the linear interpolations fill short time periods, such as a day or

some hours, the implication that the quantities vary slowly and at the time

Chapter 4. Working with meteorological imagery and hydropower data 55

scale of the date entries is introduced. For example, the idea of precipita-

tion linearly decreasing or increasing might be ambitious. Still, the amount

of precipitation measured at the start of a 12 hour interval being larger than

what is measured at the end of the interval describes a decline in precipi-

tation which can be linearly represented. This representation, although not

exact, describes a trend which can correlate to the target value, which is the

water level of a reservoir. This target value is also linearly interpolated with

similar assumptions. The water level of a given reservoir is, as discussed in

Section 4.2.1, dependant on the outgoing amount of water and water inflow

through water retention in the surrounding area, precipitation and possibly

temperature. In regards to both precipitation and the changes of water level

between two data-points with respective timestamps, the linear interpola-

tion provides an evenly spread distribution of relative values between the

data-points at hourly intervals rather than (sub-)daily.

4.3.2 Backwards Filling

The valve opening time series is adjusted backwards to align the data with

the hourly structure of the radar images. It is a simple process which records

gaps in the dataset, and recursively fills data within the gaps with the el-

ement recorded at the end of the gap, as shown in Table 4.4. The gaps in

the dataset are due to the recording method which Saudefaldene has chosen.

Since the valve openings are kept through longer periods of time it does not

impose any assumptions, and only require the structural change.

Chapter 4. Working with meteorological imagery and hydropower data 56

Date Valve Opening (cm) Valve Opening (cm, backwards filling)

04/08/2021 04:00 - 5

04/08/2021 05:00 - 5

04/08/2021 06:00 - 5

04/08/2021 07:00 5 5

04/08/2021 08:00 - 10

04/08/2021 09:00 - 10

...

26/08/2021 07:00 10 10

TABLE 4.4: Example of valve opening time series before and af-
ter backwards filling. The values prior to 26/08/2021 07:00 are
filled with the end value (10) until the next value (5) is reached.
The values prior to 04/08/2021 07:00 then are filled with the

end value (5) until a new value is met, etc.

4.4 The final dataset structure

The final structure of the dataset includes the timestamp, measured precipita-

tion, valve opening, recorded water level and the corresponding radar image

for that timestamp.

Timestamp Precipitation Valve Opening Water Level Radar Image

(Date and time) (mm) (cm) (HRW-m) (depth, x, y)

28/07/2021 13:00 8.10 0 -4.8250 (1, 200, 200)

28/07/2021 14:00 8.21 0 -4.8175 (1, 200, 200)

28/07/2021 15:00 8.33 0 -4.8100 (1, 200, 200)

...

07/08/2021 20:00 0.04 10 -5.4429 (1, 200, 200)

07/08/2021 21:00 0.08 10 -5.4508 (1, 200, 200)

TABLE 4.5: A small section of the dataset shows the arrange-
ment of the values.

Chapter 4. Working with meteorological imagery and hydropower data 57

The dataset does not necessarily directly represent the true dynamics of

the natural inflow of water to the hydropower reservoir, as linear interpola-

tion and backwards filling is used for missing data. Still, the dataset includes

the information required to prove the concept of predicting the water level in

a reservoir. Chapter 9 discusses how future work can address of this problem

and provide better opportunities for accurate representation of these dynam-

ics.

Errors in the data are likely, along with stipulations made by Saudefaldene.

Whilst not creating issues for predictions, the errors are mentioned as not all

measurements are perfect, and differences between manual and automatic

measurements are common. The assumption that the relationships between

the values that are included is stronger than the relevance of such minor er-

rors is made, and consequently that the required data correctly represents

the actual inflow and outflow as closely to the true data as possible, given a

perfect dataset with the correct structure and no missing values.

58

Chapter 5

Related Work

This chapter will review some related works that use similar methods to

the proposed method in this thesis. The terms Forecasting and Nowcasting

are used in neural networks aimed at weather, and several efficient meth-

ods have been proposed. This thesis relates to methods that use satellite or

radar images for precipitation prediction. There are few models that use such

precipitation forecasts for predicting hydropower reservoir levels, which is

an added problem specific to this thesis (in contrast to some of the related

works). Forecasting weather, specifically precipitation, is a mature field in

modern data science, statistics and meteorology. The research field contains

more related works than what is included in this chapter. The chosen works

are very relevant to this thesis. Note that if all the models presented in these

works were targeting water reservoir levels, a fair comparison could be made

to the model presented in this thesis. The models are reviewed, but the re-

sults are not used for comparison.

5.1 Skillful Twelve Hour Precipitation Forecasts us-

ing Large Context Neural Networks

"For neural models [...] each additional hour of lead time poses

a substantial challenge as it requires capturing ever larger spatial

Chapter 5. Related Work 59

contexts and increases the uncertainty of the prediction." (Espe-

holt et al., 2021, p. 1)

In August of 2021, a coalition of Google Research teams consisting of the

Brain-, AI for Weather- and Kernel teams presented a neural network model

capable of forecasting precipitation on a large scale with greater accuracy

than that of top of the line physics-based models, up to 12 hours ahead. It

was proposed that neural networks for weather prediction can combat the

computational bottleneck of physics-based models such as NWP models and

the more encompassing ensemble NWP models (Espeholt et al., 2021).

Based on this proposition the team presented MetNet-2, a successor to

the proposed neural network in “MetNet: A Neural Weather Model for Pre-

cipitation Forecasting” by the same research team. MetNet-2 is trained to

forecast precipitation across the Continental United States, an area of around

7000km× 2500km, with a resolution of 1km× 1km. The proposed model out-

performed the currently used NWP models High-Resolution Rapid Refresh

(HRRR) and High-Resolution Ensemble Forecast (HREF) models, which are

covered in “A North American hourly assimilation and model forecast cycle:

The Rapid Refresh” and “The High Resolution Ensemble Forecast (HREF)

system: [..]” respectively. The performance measures are across a wide range

of precipitation rates, and reveals that a neural network as such can exploit

and learn advanced physical principles for weather forecasting.

Both MetNet-2 and NWP models gather empirical information about the

state of the atmosphere for forecasting. The sources of this information vary.

Most importantly for MetNet-2 are radar images that capture an instanta-

neous reflectivity of the amount of precipitation in the air, along with hourly

measurements of accumulated precipitation. The radar images are also the

ground truth training labels for the model, as these images represent the pre-

cipitation. A sequence of these images represents an estimate of accumulated

precipitation over time.

Chapter 5. Related Work 60

The input imagery with added weather context capture an area of 2048km×

2048km per input feature, and is downsampled to a target patch of 512km×

512km through a factor of four in the spatial dimensions. Such inputs are

concatenated across depth, representing a temporal dimension, and are fed

to a Convolutional RNN. The model uses dilated convolutions, as discussed

in Chapter 3, Section 3.3.1. The dilated convolutions are extracted in resid-

ual connections in the network, which passes information from all of the

512 × 512 positions in the target patch (Espeholt et al., 2021). This target

patch is in the very center of the area, which largely resembles the idea of

capturing the center of an area in the network presented in this thesis.

5.2 RainNet v1.0: a convolutional neural network

for radar-based precipitation nowcasting

"While expectations in the atmospheric sciences are high, the

investigation of deep learning in radar-based precipitation now-

casting is still in its infancy, and universal solutions are not yet

available." (Ayzel, Scheffer, and Heistermann, 2020, p. 2)

A study by the University of Potsdam proposed RainNet, "a deep con-

volutional neural network for radar-based precipitation nowcasting". The

study group, consisting of members from the Institute for Environmental

Sciences and Geography and Department of Computer Science, proposed

a network inspired by the U-net and SegNet families of neural networks.

Ayzel, Scheffer, and Heistermann trained RainNet to predict precipitation in-

tensities on a continuous basis at 5-minute lead times. The model uses radar

images which covers Germany at 900km× 900km in the spatial dimension.

The model outperforms NWP models for this area and competes with other

proposed neural network models (Ayzel, Scheffer, and Heistermann, 2020).

Chapter 5. Related Work 61

The model follows an encoder-decoder architecture that downscales the

samples in the spatial dimension prior to upscaling any learned patterns.

Skip connections in the network allow for retaining volumes and learned pat-

terns through semantic connectivity between layers. To fit the prerequisites

of a U-Net architecture, input in the spatial dimension must be a multiple of

2n+1 as described in “U-net: Convolutional networks for biomedical image

segmentation”. Hence the input radar images are mirror padded, reflecting

the borders of the image for a result of 928× 928 cells. The inputs are also

concatenated in the temporal dimension with four images of radar precipi-

tation reflectivity at 15, 10, 5 and 0 minutes prior to prediction for an output

5 minutes ahead (Ayzel, Scheffer, and Heistermann, 2020). RainNet uses a

fully convolutional architecture for predictions, in contrast to both MetNet-2

(as proposed by Espeholt et al., 2021) and the model presented in this thesis.

5.3 Daily reservoir inflow forecasting using artifi-

cial neural networks with stopped training ap-

proach

"In the hydrological forecasting context, recent experiments

have reported that ANNs may offer a promising alternative for

rainfall–runoff modeling." (Coulibaly, Anctil, and Bobée, 2000,

p. 2)

Coulibaly, Anctil, and Bobée proposed one of the earliest ANNs for water

reservoir inflow prediction. The ANN in the paper is a multi-layered FFNN

which uses a multivariate hydrological time series. The group concluded

that such a neural network could offer an alternative to statistical models

in dynamic and adaptive forecasting (Coulibaly, Anctil, and Bobée, 2000).

Chapter 5. Related Work 62

The network proposed in the paper uses a technique known as early stopping,

which stops the training process prior to convergence to avoid overfitting.

The network is designed to receive as input 14 variables including tem-

poral differences and developments to separate input nodes. These vari-

ables include the predictor value yt−1 water inflow at the previous time step,

along with max, min and mean temperatures, precipitation pt, . . . , pt−4 and

snowmelt st, . . . , st−4. The values are relayed to the hidden layer and the net-

work provides a prediction at yt. The proposed network uses an iterative

forecasting method, which uses one output node for multi-step forecasting,

in opposition to a direct method (such as in this thesis), which predicts n-

nodes for n-step prediction. The direct method relies on past information

and predictions to perform a single-step forecast in iterations to complete the

same n-step prediction.

The data for the experiment is from the Chute-du-Diable watershed in

northern Quebec, Canada. It contains a large water reservoir with 32 years of

data of daily natural inflow through precipitation, estimated values of melted

snow, and daily measured temperatures. The model is trained and validated

with 29 years of data and tested using the last two years. The group focuses

on the spring period. The findings show that the neural network models

tested (with and without early stopping) predict worse forecasts in one day

lead time than conventional forecasting methods. The neural networks out-

perform the conventional forecasting methods at 2-7 day lead times. The

group also found that the neural network with early stopping outperforms

the other models with longer than one day lead times. The group conclu-

sively states that a FFNN is a promising tool for inflow prediction and sug-

gests the use of a RNN in future work (Coulibaly, Anctil, and Bobée, 2000).

Chapter 5. Related Work 63

5.4 Convcast: An embedded convolutional LSTM

based architecture for precipitation nowcasting

using satellite data

"Recently, convolutional LSTM has been shown to be success-

ful in solving various complex spatiotemporal based problems."

(Kumar et al., 2020, p. 1)

Kumar et al., 2020, suggests a convolutional LSTM coined Convcast for

precipitation nowcasting through satellite images. The network is trained on

sampled of 10 of NASA’s IMERG data, with 30 minute intervals, and predicts

the following precipitation data. This data is used iteratively for a forecast of

up to 150 minutes lead time. The study shows that nowcasting precipitation

with satellite data is a viable option.

The IMERG algorithm unifies multi-satellite precipitation data. This data

describes the Global Precipitation Measurement constellation. As the group

seeks to predict a short-term forecast, the resolution is only 30 minute inter-

vals of precipitation in mm/h since March of 2014. The networks predictions

are the 11th sequence of ten such intervals. As such ŷ = X11 predicted from

X0, X1, . . . , X10. For every sequence Xn the consecutive sequence is the la-

bel yn = Xn+1. The network is built with multiple ConvLSTM layers, each

containing cells for spatial and temporal learning. The final layer is a 3D

convolutional layer, which outputs the predicted precipitation.

The group compares a simple LSTM model to Convcast and finds that

the spatial capabilities in convolutions greatly affect the quality of predic-

tions. Convcast outperforms a simple LSTM and other baseline methods.

Conclusively it is stated that Convcast is not accurate enough for nowcasting

high precipitation due to few dense samples, containing high precipitation

(Kumar et al., 2020).

64

Chapter 6

Methodology

This chapter explain the structure and architecture of the ANN which has

been designed to predict changes in water levels in Helgedalsvatnet. The

ANN learns through the time series containing radar images of precipita-

tion rate, recorded precipitation, water level and valve opening described in

Chapter 4.

The neural network architecture is coined MetZoom as the conceptual

structure zooms in towards an area for every time step of meterological data

being processed.

MetZoom is a deep, sequential and robust CNN/LSTM hybrid with vari-

able input and output lengths. The idea behind MetZoom was sparked by

the proposed MetNet-2 by Google discussed in Chapter 5, Section 5.1. The

process of developing MetZoom was inspired by the idea of viewing a larger

area than required for prediction of local precipitation, and using separate

modules for learning the temporal importance of precipitation and the move-

ment of clouds. The initial design of a pure CNN architecture with separate

modules readily connects to a LSTM of the CNNs output. The LSTM - RNN

is essentially an outer layer of processing which for every batch uses the out-

put of the CNN. The combined hybrid network efficiently copes with the

task of not only producing radar and precipitation predictions, but also the

inflow to Helgedalsvatnet.

Chapter 6. Methodology 65

6.1 General remarks

This section will specify the desired output of the proposed neural network

and offer a brief overview of the general architecture and components of the

network. The proposed architecture processes a sequence of meterological

data and output a relative water level up to 12 hours later.

Fully-connected
Combines up to 36 input
features
(3 sequences á 12h)

Input images
A sequence of up
to 24
radar images

Input Data
A 24 hour sequence of
• Precipitation
• Water level
• Valve opening

Resnet-18
Extracts features from
both input images
and
predicted images

LSTM cell
Predicts up to 12h ahead
of time:
water level

Output
Up to 12h of predicted
water levels relative to a
set zero value

CNN
Predicts up to 12h ahead
of time:
radar images
and precipitation

Input imagefeatures Predicted image features

Input images Predicted images

Stack sequence
Stacks predicted water
level, image features and
precipitation

Predicted precipitation

Predicted water level

FIGURE 6.1: The general architecture of MetZoom: Separate
input data is sent to an LSTM cell and a CNN, and the com-
bined sequence of predictions are sent to a fully-connected

layer which produces the expected output.

MetZoom receives, for every sample, an input sequence covering 24 hours

of radar images, precipitation, valve opening and relative water levels. A

predefined sequence of the samples radar images are processed by a CNN

which predicts the future movement and amount of precipitation. The future

movement of precipitation is represented by a prediction of radar images of

a desired output length. The future precipitation are predicted end-to-end

through the radar images. These two predictions are passed along the net-

work as future variables. A LSTM processes the rest of the data to predict

12 hours of changes in the relative water level. This sequence is stacked with

the output sequences of the CNN, and passed through a fully-connected part

of the network to alter the prediction of the LSTM through the predictions

of the CNN. The aim is to either increase or decrease the predicted relative

Chapter 6. Methodology 66

water levels with the radar and precipitation predictions. Information from

both the images in the entirety of the input sequence and the predicted radar

images is gathered efficiently through feature extraction by ResNet-18.

6.2 MetZoom: Convolutional Neural Network

The conceptual idea of the MetZoom CNN is depicted in Figure 6.2. The

CNN receives a new input image for every hour that passes. The first radar

image of the input sequence of the CNN is fed to the first stage. The in-

troduction of every new image is passed through a catch-up block. Both of

these components are explained in further detail in Section 6.2.2. MetZoom

is structured as to gain confidence of the movement of liquid water equiv-

alent reflected by radar as more of the input sequence is processed. This

is done through recognizing and learning typical recurring patterns for the

weather in the region.

Stage 0 Catch up 0 Catch up 1 Catch up 2 Catch up 3

View of geographical area

Corresponding radar image

T-5 T-4 T-3 T-2 T-1

FIGURE 6.2: The first stage (0) of MetZooms CNN part views
the entire area. For every catch-up block a new image at time T-
n hours prior to prediction is introduced, and the CNN further
zooms closer to the target area prior to predictions at T . . . T +

12.

Chapter 6. Methodology 67

The CNN is initialized with an amount of layers equivalent to the length

of the desired input sequence. The number of parameters thus grows with

the length of the input sequence. The initialization allows for separate blocks

(or modules) to be created per image of the input sequence length. All of

these blocks have learnable parameters that are passed through the network.

MetZooms CNN therefore learns to evaluate the importance of every image

at different time-steps separately.

6.2.1 CNN Input: A Sequence of radar images

The input data of the CNN is a time series of radar images R of liquid wa-

ter equivalent measuring the rate of precipitation per hour in millimeters.

These radar images are ordered by one hour intervals with a total predefined

length Nr drawn from every sample of 24 radar images which the network

processes. The images are always a set of the last images in a sample. Every

sample has 24 images, but the sequence R has the images from the sample at

indices 23− Nr, . . . , 23.

Every cell of the input images contain a floating point number represent-

ing the precipitation rate at hour h for that area. The total hourly precipitation

rate for the area covered by the (whole) image at hour h is denoted by pmm/h

or simplified as ph.

The sequence of images is fed to the network at separate layers of the

network, sequentially and ordinally, as illustrated in Figure 6.3.

Chapter 6. Methodology 68

T-5

T-4

T-3

T-2

T-1

Layer 1

Stage 0

Layer 2

Stage 1

Catch-up 0

Layer 3

Stage 2

Catch-up 1

Layer 4

Stage 3

Catch-up 2

Layer 5

Stage 4

Catch-up 3

FIGURE 6.3: The first stage (0) of MetZooms CNN receives the
first image of the sequence. For every catch-up block a new
image is introduced and the information is combined with pre-

vious information of the stack.

6.2.2 CNN Architecture: Stages and Catch-up blocks

The layers of MetZoom are built sequentially based on the length Nr of the in-

put radar image sequence covering a time-frame T−Nr, T− (n− 1), . . . , T−

1 where T − i specifies the hours prior to prediction. The network bases its

predictions of future radar images and expected precipitation solely on these

images with their corresponding labels that are the true radar images and

Chapter 6. Methodology 69

the recorded precipitation in Sauda, as discussed in Chapter 4. The layers

(hereby L0, L1, . . . , LNr) of MetZoom contain two different, albeit related, op-

erations; stages and catch-up blocks.

Stages are analogous to regular convolution layers in traditional CNNs.

The stages of the network always process the output from the previous layer.

The stages S0, S1, . . . , S(Nr−1) are all structurally identical; These stages, with

decreasing kernel sizes and increasing number of channels (until Sb(Nr
2 +1)c)

employ a 2D convolution, a Leaky ReLU activation function and a 2D Batch

Normalization. SNr , at the next-to-last convolutional layer, changes from a

Leaky ReLU to a regular ReLU activation to avoid negative values in the out-

put, as precipitation cannot be negative. Throughout the stages, there is no

padding in the convolutions, which encompasses the zooming effect shown

in Figure 6.2.

Stage 0

2D Convolution

Leaky ReLU

2D Batch Normalizaiton

Stage 0 input

(1, 201, 201)

Input channels 1
Output channels 32
Kernel size 7 x 7

Stage 0 output

(32, 195, 195)

. .
. .

.

FIGURE 6.4: The first stage (0) of MetZooms CNN part. It re-
ceives as input the first radar image of the input sequence.

Catch-up blocks provide MetZoom with uniqueness, as every such block

has a separate set of learnable parameters, and are situated in layers L1...LNr .

This provides the network with the possibility of learning the importance

of the movement of precipitation within different sets of radar images. A

catch-up block at Lk (k being an arbitrary number between 1, . . . , Nr) contains

a sequential module which copies stages S0, S1, . . . , Sk and finishes with a

Sigmoid activation as seen in Figure 6.5. The Sigmoid activation provides

an output representing the networks confidence in the precipitations future

movement.

Chapter 6. Methodology 70

Stage 0

2D Convolution

Leaky ReLU

2D Batch Normalizaiton

Input channels 1
Output channels 32
Kernel size 7 x 7

Stage 1

2D Convolution

Leaky ReLU

2D Batch Normalizaiton

Sigmoid

Input channels 32
Output channels 64
Kernel size 7 x 7

Stage 0

2D Convolution

Leaky ReLU

2D Batch Normalizaiton

Input channels 1
Output channels 32
Kernel size 7 x 7

Stage 1

2D Convolution

Leaky ReLU

2D Batch Normalizaiton

Input channels 32
Output channels 64
Kernel size 7 x 7

Stage 2

2D Convolution

Leaky ReLU

2D Batch Normalizaiton

Sigmoid

Input channels 64
Output channels 128
Kernel size 5 x 5

Stage 0

2D Convolution

Leaky ReLU

2D Batch Normalizaiton

Input channels 1
Output channels 32
Kernel size 7 x 7

Stage 1

2D Convolution

Leaky ReLU

2D Batch Normalizaiton

Input channels 32
Output channels 64
Kernel size 7 x 7

Stage 2

2D Convolution

Leaky ReLU

2D Batch Normalizaiton

Input channels 64
Output channels 128
Kernel size 5 x 5

Stage 3

2D Convolution

Leaky ReLU

2D Batch Normalizaiton

Sigmoid

Input channels 128
Output channels 64
Kernel size 5 x 5

Catch-up block 0 Catch-up block 1 Catch-up block 2

FIGURE 6.5: Thee catch-up blocks at layers 2, 3 and 4 following
the first layer containing only stage 0. For every layer there is
a new stage, and a catch-up block that includes that stage and
all prior stages. E.g. the catch-up block at layer 2 has all stages
0, 1 and 2, where stage 2 is introduced at the same layer as the

catch-up block.

As the catch-up blocks process the images R1, . . . , RNr , and being their

own network modules apart from the stages, the network can learn which

images in the sequence are most important for a future prediction – rather

than assuming that the images are linearly connected and equally important.

The two most important effects of a catch-up block is processing the next

radar image of the input sequence and providing a confidence of the pre-

cipitations aerial movement since the last time-step. As the catch-up block

Chapter 6. Methodology 71

finishes with a Sigmoid activation function, it essentially produces an esti-

mation of the likelihood of rain either moving, decreasing or neither in the

next time-step. This estimation is element-wise multiplied with the outputs

of the corresponding stage across its entire depth. The product is passed to

the next stage in the consecutive layer and the corresponding catch-up block

processes the next image in the sequence.

Catch up 0 Catch up 1 Catch up 2 Catch up 3Stage 0

FIGURE 6.6: The image introduced at stage 0 is processed along
with the output of the catch-up block in the next layer, which
shows the confidence (in orange) of where the precipitation
will move in the next hour. This process continues through the

catch-up blocks of each layer.

Through the catch-up blocks MetZooms CNN aims to learn not only the

movement of precipitation captured by radar images, but also the impact

some of this movement has on regions of the next time-step with dense local

information. Figure 6.6 shows the information that the catch-up blocks in-

tend to capture, which is essentially the movement of precipitation. The im-

plementation of adding input images to corresponding layers when zooming

into the area covered geographically leads to a continuous flow of informa-

tion reminiscent of residual connections. The catch-up blocks remind the net-

work of the task at hand, predicting where the precipitation will accumulate

and how certain that precipitation is.

Chapter 6. Methodology 72

6.2.3 CNN Output: Prediction of radar images and precipita-

tion

MetZooms CNN outputs a sequence of future radar images R̂ of length Nr̂

along with corresponding amounts of expected precipitation P̂ of length Np̂ =

Nr̂. Although the images are collected prior to the fully connected layers of

the network, both predicted sequences are measured using loss functions and

included in the backward pass and optimization step. The sequences of both

R̂ and P̂ cover the time-frame T, . . . , T + Nr̂ following the input sequence or-

dinally (Nr̂ representing the length of the output sequence). Figure 6.7 is an

illustration of the entire architecture of the CNN in MetZoom (in the case of

Nr = 5 input images and Nr̂ = 3 output images). The final layers output

channels correspond with the desired output sequence length Nr̂.

Chapter 6. Methodology 73

FIGURE 6.7: The architecture of MetZooms CNN with Nr = 5
input images and Nr̂ = 3 output images. The images are se-
quentially ordered, every image one hour apart from the previ-

ous image.

Chapter 6. Methodology 74

6.2.4 CNN performance: Loss and convergence

The loss between sequences R and R̂ are calculated separately from that of

P and P̂, however, they are included in the same step. Rather than focusing

only on the expected precipitation, precise prediction of radar images can

provide information in other areas than that specific to the measuring sta-

tion for precipitation which provides P. The advantage of this separation is

the improvement of radar image prediction for use in the next step of the

network - the feature extraction from the images. Although the precipita-

tion may be the more important value, the focus on predicting more accurate

radar images allows for purposeful feature extraction of future radar images

along with the images in the sample.

The loss on the radar image prediction is calculated through MSE loss,

as explained in Chapter 3, Section 3.2.1. This is largely due to a desire to

amplify the importance of both heavy precipitation in dense radar images,

as well as the existing precipitation in sparse images. The MSE loss allows

for capturing both of these instances, because of the detection of outliers.

The loss on the precipitation is calculated using L1 loss, as explained in

Chapter 3, Section 3.2.1. The precipitation is linearly interpolated, as de-

scribed in Chapter 4, Section 4.3.1, and hence L1 loss is more fitting as when

linearly interpolating there are likely no outliers, and a smooth increase or

decrease. The reasoning behind this choice is capturing the increasing or de-

creasing precipitation rate in the predictions, and furthermore capturing the

same trend in the water level predictions.

The losses are then combined into a total loss which can be reviewed to

inspect whether the CNN improves on both tasks.

Chapter 6. Methodology 75

0 2 4 6 8 10 12 14

0

10k

20k

30k

40k

50k

60k

Loss

Loss per epoch (CNN training)

Epoch

L
os

s

FIGURE 6.8: The loss of MetZooms CNN converges around 12
epochs when predicting 12 hours ahead of time. The loss of pre-
cipitation is almost lost in the large image loss in early epochs.

Figure 6.8 visualizes the loss function of the CNN in MetZoom. The loss

on the y-axis is high due to the the pixel-wise loss on radar images.

6.3 MetZoom: Long Short-Term Memory RNN

The RNN which uses the outputs of the CNN in MetZoom is an LSTM. As

MetZoom processes sequences in every sample - every sequence is recog-

nized as both impactful in the short-term aspect of predicting immediate in-

flow, and included in the long-term aspect, as the data covers such a long

time period. The LSTM learns the long-term dependencies of the past inputs

and their consequences, and the short-term impacts of the immediate inputs

(as explained in Section 3.4.1).

Chapter 6. Methodology 76

6.3.1 LSTM Architecture: Using the ResNet-18 extracted fea-

tures of radar images

In this section a brief explanation is offered on the use of ResNet (as intro-

duced by He et al., 2016) in this architecture, and how it is used as a tool for

feature extraction from images, as shown in Figure 6.9. The specific choice

is an instance of ResNet recognized as ResNet-18, where 18 describes the

number of layers in the model. The ResNet used in the architecture is nei-

ther pre-trained nor directly trained through the network architecture. The

training related to the inclusion of ResNet is only that of extracting the cor-

rect features from the provided sequence of radar images. The instance of

ResNet is used as a component in the LSTM.

0
1
1

0 1 1 1

1 0
0 1
1 1

1
1
0

Input

0 2

2 1
0 2

0

2
0

Kernel Output

5 7
7 8

CNN
Fully-

connected

Extraction∑

FIGURE 6.9: A simplified illustration of how ResNet 18 is used
in the RNN. An extracted feature is typically drawn from a
CNN and passed through a Fully-connected feed-forward neu-
ral network. The end result can be considered a feature repre-

senting some value of the input image.

As explained in Section 6.2.1 a sequence of radar images R are fed to the

CNN layer of the network. Through ResNet-18 these images are transformed

to a sequence of features alongside the prediction of future radar images

made by the CNN, R̂. These features are an abstract representation of precip-

itation in the target area shown in Figure 4.3 in Chapter 4.

The features extracted are those of ResNet-18s representation of the pro-

vided images at its penultimate layer (18). This layer is altered slightly such

that ResNet-18 provides a vector containing one floating point number for

Chapter 6. Methodology 77

each image provided. These floating point numbers abstractly represent the

general amount of precipitation in the region that the CNN zooms in to for

every time step both prior to prediction and in the future.

These values are used for multilinear subspace learning, a form of dimen-

sionality reduction which can be used on data that has been vectorized. Es-

sentially, this process is a mapping from a higher dimensional space to a

lower dimensional vector with retention of organizational structure. The

24 + Nr̂ radar images are reduced to two one-dimensional vectors V and V̂

by ResNet-18, as illustrated in Figure 6.10.

R

R
⋏

ResNet-18. . .
. . .

. . .
. . .

V

V
⋏

FIGURE 6.10: A simplified illustration of how ResNet 18 trans-
forms images to floating point numbers.

In a case where the network receives Nr radar images and predicts Nr̂

future radar images, these sequences are processed simultaneously as a com-

bined sequence V of features V0, V1, . . . , VNr̂ in ResNet-18. The features in the

sequence representing the input sequence R and the images prior to them in

Chapter 6. Methodology 78

the sample. The features in the sequence representing the output sequence

R̂, VNr+1, VNr+2, . . . , VNr̂ , are stored in a sequence V̂ which is passed to the

output layer along with P̂.

. . .
. . .

V

V
⋏

LSTM Cell Fully-ConnectedStack

CNN
R

⋏
P

⋏

W
⋏

Temporary

W
⋏

FIGURE 6.11: A simplified illustration of how the extracted fea-
tures are used as input in the LSTM and fully-connected layers.
The output of the CNN R̂ is transformed to V̂. Ŵ is predicted
by the LSTM, and then altered in the fully connected layers by

V̂ and P̂.

As radar images cannot be fed directly to an LSTM without it being a

direct CNN-LSTM (meaning it reads images and not multi-type data), the

feature extraction allows the representations V and V̂ to be fed alongside

the other data (as depicted in Figure 6.11). The design of MetZoom uses a

separate (but connected) CNN to predict future images, which a CNN-LSTM

would not do, and therefore the separation of the input data is needed.

6.3.2 LSTM input: 24h time series

The LSTM receives as inputs a sequence of 24 hours, including all of the

data of the final dataset as shown in Table 4.5. This sequence includes the

precipitation P, valve opening O, water level W and radar images R. Prior

to processing the sequence in LSTM cells, the network feeds a subset of the

sequence R of Nr radar images to the CNN, and receives an output of R̂ radar

Chapter 6. Methodology 79

images along with predicted precipitation P̂. The images in R and R̂ are

transformed to features V and V̂. The features in V replace the images R in

the original input sequence and are passed through the LSTM layer. Hence

the input of the LSTM layer is exactly a sequence of 24 hours prior to the

point of prediction, including the extracted features from the radar images.

6.3.3 LSTM output: Up to 12h water level prediction

The LSTM outputs a sequence of Nŵ hours of predicted relative water levels

Ŵ ahead of the "current" time, up to 12 hours. This time-frame corresponds

to the time-frame covered by the predicted radar sequence R̂.

The sequence Ŵ is then stacked with V̂ and P̂ (as seen in Figure 6.11),

recognized as the future sequence, all of length N = Nŵ = Nr̂. This stacked

three-dimensional vector is passed through two fully connected layers, such

that the predicted radar images R̂ (through their extracted features V̂) and

the predicted precipitation P̂ are allowed to affect the LSTM predicted water

level Ŵ. This results in an adjusted prediction which is considered the final

output of MetZoom.

6.3.4 LSTM performance: Loss and convergence

The loss in predicted water level Ŵ is calculated with L1 loss, as explained

in Chapter 3, Section 3.2.1. The reasoning is similar to that of the predicted

precipitation loss. The loss is represented as the difference between the pre-

dicted actual change in water level relative to the predefined zero value.

Chapter 6. Methodology 80

0 5 10 15 20 25

0

1

2

3

4

5

6

Loss

Loss per epoch (LSTM training)

Epoch

L
os

s

FIGURE 6.12: The loss of MetZooms LSTM converges around
25 epochs when predicting 12 hours ahead of time.

Figure 6.12 shows that the network gradually learns to predict the change

in water level within a few centimeters.

81

Chapter 7

Results

This chapter will review the results that have been achieved, and compare

these results to some other forecasting models. In accordance with the ar-

chitecture of MetZoom and the nature of the sequential prediction system of

images, precipitation and relative water level, the results will be reviewed

in this order. The quality of the predicted radar images, and accordingly

the accuracy of precipitation predictions will be discussed. Finally the most

important (i.e the real goal) prediction, the change in relative water level in

Helgedalsvatnet will be reviewed.

The assumptions made about the data in Chapter 4 and the complexity of

the problem mentioned in the introduction of the same chapter is considered.

In Chapter 9 this complexity as well as increasing complexity in possible fu-

ture works will be reflected on.

The predictions made by MetZoom and other models in Section 7.4 are in

the time period 2019-06-02 20:00:00 to 2021-08-26 11:00:00. This is the entirety

of the test data. As this is a very long sequence, it is very difficult to see how

accurately the model predicts the changes in relative water level. Therefore

a snippet of this sequence with sufficient variation is chosen to illustrate the

predictions. The snippet is the time period 2020-06-18 04:00:00 to 2020-07-23

11:00:00, approximately at the center part of the full time frame.

Chapter 7. Results 82

7.1 Predicting Radar Images

0 50 100 150
0

20

40

60

80

100

120

140

160

0 50 100 150
0

20

40

60

80

100

120

140

160

0 50 100 150
0

20

40

60

80

100

120

140

160

0 50 100 150
0

20

40

60

80

100

120

140

160

0 50 100 150
0

20

40

60

80

100

120

140

160

0 50 100 150
0

20

40

60

80

100

120

140

160

0 50 100 150
0

20

40

60

80

100

120

140

160

0 50 100 150
0

20

40

60

80

100

120

140

160

0 50 100 150
0

20

40

60

80

100

120

140

160

0 50 100 150
0

20

40

60

80

100

120

140

160

0 50 100 150
0

20

40

60

80

100

120

140

160

0 50 100 150
0

20

40

60

80

100

120

140

160

0 50 100 150
0

20

40

60

80

100

120

140

160

0 50 100 150
0

20

40

60

80

100

120

140

160

0 50 100 150
0

20

40

60

80

100

120

140

160

0 50 100 150
0

20

40

60

80

100

120

140

160

0 50 100 150
0

20

40

60

80

100

120

140

160

0 50 100 150
0

20

40

60

80

100

120

140

160

0 50 100 150
0

20

40

60

80

100

120

140

160

0 50 100 150
0

20

40

60

80

100

120

140

160

0 50 100 150
0

20

40

60

80

100

120

140

160

0 50 100 150
0

20

40

60

80

100

120

140

160

0 50 100 150
0

20

40

60

80

100

120

140

160

0 50 100 150
0

20

40

60

80

100

120

140

160

0

2

4

6

8

10

12

14

12h Predictions and labels - Radar Images (mm/h)

Longitude (km) Longitude (km) Longitude (km) Longitude (km)

Longitude (km) Longitude (km) Longitude (km) Longitude (km)

Longitude (km) Longitude (km) Longitude (km) Longitude (km)

Longitude (km) Longitude (km) Longitude (km) Longitude (km)

Longitude (km) Longitude (km) Longitude (km) Longitude (km)

Longitude (km) Longitude (km) Longitude (km) Longitude (km)

L
at

it
ud

e
(k

m
)

L
at

it
ud

e
(k

m
)

L
at

it
ud

e
(k

m
)

L
at

it
ud

e
(k

m
)

L
at

it
ud

e
(k

m
)

L
at

it
ud

e
(k

m
)

L
at

it
ud

e
(k

m
)

L
at

it
ud

e
(k

m
)

L
at

it
ud

e
(k

m
)

L
at

it
ud

e
(k

m
)

L
at

it
ud

e
(k

m
)

L
at

it
ud

e
(k

m
)

L
at

it
ud

e
(k

m
)

L
at

it
ud

e
(k

m
)

L
at

it
ud

e
(k

m
)

L
at

it
ud

e
(k

m
)

L
at

it
ud

e
(k

m
)

L
at

it
ud

e
(k

m
)

L
at

it
ud

e
(k

m
)

L
at

it
ud

e
(k

m
)

L
at

it
ud

e
(k

m
)

L
at

it
ud

e
(k

m
)

L
at

it
ud

e
(k

m
)

L
at

it
ud

e
(k

m
)

Prediction T Label T Prediction T+1 Label T+1

Prediction T+2 Label T+2 Prediction T+3 Label T+3

Prediction T+4 Label T+4 Prediction T+5 Label T+5

Prediction T+6 Label T+6 Prediction T+7 Label T+7

Prediction T+8 Label T+8 Prediction T+9 Label T+9

Prediction T+10 Label T+10 Prediction T+11 Label T+11

FIGURE 7.1: An example of a 12h prediction of radar images
along with corresponding label images. Every row has 4 im-
ages, where the 1st and 3rd images are predictions, and the 2nd

and 4th are their respective labels.

Chapter 7. Results 83

The CNN in MetZoom predicts radar images up to 12h ahead of time. There

is a general lag in predictions, which might have some impact on the predic-

tion of water level.

Figure 7.1 shows a prediction of 12h of radar images along with their cor-

responding labels, where the mentioned lag is slightly apparent in the west

to east direction. The images are a bi-product of the predictions of MetZoom.

The aim behind these predictions is learning where the precipitation will pass,

and extract information on what precipitation will fall in to Helgedalsvatnets

precipitation field. This is done through the feature extraction described in

Chapter 6, Section 6.3.1.

The quality of the radar image predictions shows that MetZoom does not

fully capture the precipitation reflected by the radar images, and provide a

smoother distribution than the actual labels. This results in MetZoom not

capturing heavy local precipitation, but does capture the general movements

and amounts of precipitation.

7.2 Predicting Precipitation Through Radar Images

The CNN in MetZoom predicts precipitation up to 12h ahead of time through

fully-connected layers, directly from the corresponding predicted radar im-

ages. The labels of the precipitation data are the actual recorded precipita-

tion rates from the dataset described in Chapter 4. MetZoom fails to cap-

ture heavy precipitation in the predicted radar images. The full timeline of

precipitation predictions in Figure 7.2 show that the general precipitation

predictions are lower than the label precipitation rates. This is due to the

smoothness of the predicted radar images from Section 7.1.

Chapter 7. Results 84

2019-06-02 20:00:00

2019-08-27 04:00:00

2019-11-22 21:00:00

2020-02-17 05:00:00

2020-05-14 20:00:00

2020-08-11 16:00:00

 2020-11-07 19:00:00

 2021-02-02 09:00:00

2021-04-28 23:00:00

0

10

20

30

40

50 Label

MetZoom

MetZoom predicted precipitation 12h lead time

Date and Time

P
re

ci
pi

ta
ti

on
 (

m
m

)

FIGURE 7.2: The result of precipitation predictions when Met-
Zoom predicts 12 hours ahead of time. The label precipitation
is often higher, meaning that MetZoom doesn’t capture heavy

precipitation.

A better review of the accuracy of precipitation predictions is shown in

Figure 7.3. It is clear that the predictions are more noisy than the label data,

and generally inaccurate with either heavy or zero precipitation.

Chapter 7. Results 85

 2020-06-18 04:00:00

2020-06-22 08:00:00

2020-06-26 12:00:00

2020-07-01 16:00:00

 2020-07-05 20:00:00

2020-07-10 01:00:00

2020-07-14 05:00:00

2020-07-18 09:00:00

0

5

10

15

20

25
Label

MetZoom

MetZoom predicted precipitation 12h lead time

Date and Time

P
re

ci
pi

ta
ti

on
 (

m
m

)

 2020-06-18 04:00:00

2020-06-22 08:00:00

2020-06-26 12:00:00

2020-07-01 16:00:00

 2020-07-05 20:00:00

2020-07-10 01:00:00

2020-07-14 05:00:00

2020-07-18 09:00:00

−15

−10

−5

0

5

10

15

20

25 MetZoom

MetZoom precipitation prediction error 12h lead time

Date and Time

D
is

ta
nc

e
fr

om
 tr

ue
 v

al
ue

FIGURE 7.3: The result of precipitation predictions. The time
series and predictions cover the central snippet of the test data.
The errors show the distance between the predicted precipita-

tion and the actual precipitation.

To measure the accuracy of precipitation predictions at different lead times,

Chapter 7. Results 86

Figure 7.4 shows the Standard Error per lead hour. The results show that

the predictions have an error range between 4 and 6 millimeters for all lead

times. MetZoom performs only slightly better at predicting precipitation at

shorter lead times than at longer lead times.

4.944

5.047

5.185

5.233

5.333

5.421

5.483

5.559

5.654 5.653
5.693

5.742

1 2 3 4 5 6 7 8 9 10 11 12
4.9

5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

MetZoom

MetZoom Precipitation: Standard Error per lead hour

Lead hour

E
rr

or

FIGURE 7.4: The Standard Error in millimeters of precipitation
predictions per lead hour. The errors at different lead times is

quite similar.

7.3 Predicting Relative Water Level (Helgedalsvat-

net)

MetZoom predicts the relative water level of Helgedalsvatnet with up to 12

hour lead time. The labels of every time-step of relative water level in the

test set is shown in Figure 7.5. This is the main focus of the thesis, and the

results of predicted radar images and precipitation in Sections 7.1 and 7.2 are

provided to demonstrate the quality of the inner functionality of the model.

Chapter 7. Results 87

2019-06-02 20:00:00

2019-08-27 04:00:00

2019-11-22 21:00:00

2020-02-17 05:00:00

2020-05-14 20:00:00

2020-08-11 16:00:00

 2020-11-07 19:00:00

 2021-02-02 09:00:00

2021-04-28 23:00:00

−14

−12

−10

−8

−6

−4

−2

0 Label

Relative water level in Helgedalsvatnet

Date and Time

R
el

at
iv

e
w

at
er

 le
ve

l

FIGURE 7.5: The relative water level in meters in the test set of
the data.

The predictions are measured with three different metrics, as shown in

Table 7.1. The predictions are measured in step-wise sequences of 100 hours.

This provides a better estimation of how good the predictions are in different

situations, such as rapid increase, slow decrease or no change in water level.

The three metrics used is the Mean Squared Error (MSE), Mean Absolute

Error (MAE) and Standard Error (SE) for every lead hour.

Lead hour 1 2 3 4 5 6 7 8 9 10 11 12

MSE 0.0005 0.0010 0.0009 0.0010 0.0016 0.0021 0.0023 0.0029 0.0036 0.0044 0.0053 0.0065

MAE 0.0134 0.0263 0.0227 0.0179 0.0278 0.0321 0.0261 0.0298 0.0358 0.0396 0.0435 0.0516

SE 0.0179 0.0221 0.0237 0.0284 0.0355 0.0406 0.0433 0.0490 0.0548 0.0611 0.0673 0.0744

TABLE 7.1: MetZoom error metrics in meters per lead hour.

Figure 7.6 shows the predicted relative water level at 12 hour lead time

in the shortened snippet of the test data. The results show that MetZoom

predicts an added level of noise and some over-estimates in change at the

Chapter 7. Results 88

peaks. The top image shows the prediction and label, whilst the bottom im-

age shows the error (y− ŷ) for the same time frame.

 2020-06-18 04:00:00

2020-06-22 08:00:00

2020-06-26 12:00:00

2020-07-01 16:00:00

 2020-07-05 20:00:00

2020-07-10 01:00:00

2020-07-14 05:00:00

2020-07-18 09:00:00

−6.5

−6

−5.5

−5

−4.5

−4

−3.5

−3
Label

MetZoom

MetZoom predicted relative water levels 12h lead time

Date and Time

R
el

at
iv

e
w

at
er

 le
ve

l

 2020-06-18 04:00:00

2020-06-22 08:00:00

2020-06-26 12:00:00

2020-07-01 16:00:00

 2020-07-05 20:00:00

2020-07-10 01:00:00

2020-07-14 05:00:00

2020-07-18 09:00:00

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3
MetZoom

MetZoom prediction error 12h lead time

Date and Time

D
is

ta
nc

e
fr

om
 tr

ue
 v

al
ue

FIGURE 7.6: The result of water level predictions in meters
when MetZoom predicts 12 hours ahead of time. The label wa-

ter level is smoother than the predictions.

Chapter 7. Results 89

7.4 Comparing predictions to other models

The same input data and metrics are used to review the performance of Met-

Zoom compared with other models. The models chosen for comparison is

a naive baseline model, an ARIMA model and a more simple LSTM which

excludes the radar images.

2019-06-02 20:00:00

2019-08-27 04:00:00

2019-11-22 21:00:00

2020-02-17 05:00:00

2020-05-14 20:00:00

2020-08-11 16:00:00

 2020-11-07 19:00:00

 2021-02-02 09:00:00

2021-04-28 23:00:00

−14

−12

−10

−8

−6

−4

−2

0 Label

MetZoom

ARIMA

LSTM

Baseline

MetZoom VS other models: Predicted relative water levels

Date and Time

R
el

at
iv

e
w

at
er

 le
ve

l

 2020-06-18 04:00:00

2020-06-22 08:00:00

2020-06-26 12:00:00

2020-07-01 16:00:00

 2020-07-05 20:00:00

2020-07-10 01:00:00

2020-07-14 05:00:00

2020-07-18 09:00:00

−6.5

−6

−5.5

−5

−4.5

−4

−3.5

−3
Label

MetZoom

ARIMA

LSTM

Baseline

MetZoom VS other models: Predicted relative water levels

Date and Time

R
el

at
iv

e
w

at
er

 le
ve

l

FIGURE 7.7: The different models predictions of relative water
levels in meters for both the entirety of the test data and the

center snippet.

Chapter 7. Results 90

The first section compares all the tested models with the previously men-

tioned metrics. The following sections discuss direct comparisons of Met-

Zoom to the respective models.

The models are compared based on the full test set. Only the center snip-

pet is used to illustrate the performances, as seen in Figure 7.7.

7.4.1 MetZoom VS. other models

All of the models closely follow the label line in Figure 7.7. It is important to

note that the water level is measured in meters. Therefore small deviations

in predictions becomes significant with regards to performance. The same

metrics are used for all the models, with the same sequences of 100 hours.

The results in Figure 7.8 show that all models are accurate in the shorter

lead times. The naive baseline model outperforms the other models with a

lead time within 2 hours. This is likely due to the linear interpolation of the

data along with many periods with no change. The ARIMA model outper-

forms all of the other models with lead time shorter than 7 hours. At lead

times greater than 7 hours MetZoom outperforms the other models with a

slight margin. The LSTM model competes with the other models, but does

not dominate within a specific range of lead times.

Chapter 7. Results 91

1 2 3 4 5 6 7 8 9 10 11 12

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

MetZoom

LSTM

ARIMA

Baseline

MetZoom VS. other models: MSE per lead hour

Lead hour

E
rr

or

1 2 3 4 5 6 7 8 9 10 11 12

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

MetZoom

LSTM

ARIMA

Baseline

MetZoom VS. other models: MAE per lead hour

Lead hour

E
rr

or

1 2 3 4 5 6 7 8 9 10 11 12

0

0.02

0.04

0.06

0.08

0.1

0.12
MetZoom

LSTM

ARIMA

Baseline

MetZoom VS. other models: SE per lead hour

Lead hour

E
rr

or

FIGURE 7.8: The different models are compared with MSE,
MAE and SE in meters on the entire test set at different lead

times.

Chapter 7. Results 92

7.4.2 MetZoom VS. Naive Baseline

 2020-06-18 04:00:00

2020-06-22 08:00:00

2020-06-26 12:00:00

2020-07-01 16:00:00

 2020-07-05 20:00:00

2020-07-10 01:00:00

2020-07-14 05:00:00

2020-07-18 09:00:00

−6.5

−6

−5.5

−5

−4.5

−4

−3.5

−3
Label

MetZoom

Baseline

MetZoom VS Baseline: predicted relative water levels 12h lead time

Date and Time

R
el

at
iv

e
w

at
er

 le
ve

l

 2020-06-18 04:00:00

2020-06-22 08:00:00

2020-06-26 12:00:00

2020-07-01 16:00:00

 2020-07-05 20:00:00

2020-07-10 01:00:00

2020-07-14 05:00:00

2020-07-18 09:00:00

−0.4

−0.2

0

0.2

0.4

MetZoom

Baseline

MetZoom VS Baseline: prediction error 12h lead time

Date and Time

D
is

ta
nc

e
fr

om
 tr

ue
 v

al
ue

FIGURE 7.9: The top graph shows the predictions by MetZoom
and the naive baseline model. The bottom graph shows the

errors in the same time frame.

Chapter 7. Results 93

The naive baseline model predicts the water level to remain constant for the

period of the forecast. For example, when the naive baseline model predicts

changes in relative water levels 12 hours ahead, it simply reproduces the

value at the current time 12 times. As changes in water level are quite slow,

this model is accurate at short time frames (1-3 hours), but is quite inaccurate

with longer lead times.

The naive baseline model outperforms MetZoom when forecasting in the

near future (1-3 hours ahead), but from this point on performs worse than

MetZoom. Figure 7.9 shows the predictions and errors of both models with

12h lead time for the center snippet.

The results show that the naive baseline models predictions are more sim-

ilar to the smooth label in shape and form, but has a constant delay at 12h

lead time.

Chapter 7. Results 94

7.4.3 MetZoom VS. ARIMA

 2020-06-18 04:00:00

2020-06-22 08:00:00

2020-06-26 12:00:00

2020-07-01 16:00:00

 2020-07-05 20:00:00

2020-07-10 01:00:00

2020-07-14 05:00:00

2020-07-18 09:00:00

−6.5

−6

−5.5

−5

−4.5

−4

−3.5

−3
Label

MetZoom

ARIMA

MetZoom VS ARIMA: predicted relative water levels 12h lead time

Date and Time

R
el

at
iv

e
w

at
er

 le
ve

l

 2020-06-18 04:00:00

2020-06-22 08:00:00

2020-06-26 12:00:00

2020-07-01 16:00:00

 2020-07-05 20:00:00

2020-07-10 01:00:00

2020-07-14 05:00:00

2020-07-18 09:00:00

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
MetZoom

ARIMA

MetZoom VS ARIMA: prediction error 12h lead time

Date and Time

D
is

ta
nc

e
fr

om
 tr

ue
 v

al
ue

FIGURE 7.10: The top graph shows the predictions by Met-
Zoom and the ARIMA model. The bottom graph shows the

errors in the same time frame.

Chapter 7. Results 95

The ARIMA model, as explained in Chapter 2, Section 2.1.2, predicts a much

smoother change in water level than MetZoom. It is more accurate than Met-

Zoom with lead times shorter than 7 hours. When forecasting 12 hours ahead

the implementation of the ARIMA model generally predicts smaller changes

than MetZoom.

The shortcomings of the implementation of the ARIMA model is dis-

cussed in Chapter 8. It is believed that with more time and hyperparameter

tuning, a better ARIMA model could have been implemented.

Chapter 7. Results 96

7.4.4 MetZoom VS. LSTM

 2020-06-18 04:00:00

2020-06-22 08:00:00

2020-06-26 12:00:00

2020-07-01 16:00:00

 2020-07-05 20:00:00

2020-07-10 01:00:00

2020-07-14 05:00:00

2020-07-18 09:00:00

−6.5

−6

−5.5

−5

−4.5

−4

−3.5

−3
Label

MetZoom

LSTM

MetZoom VS LSTM: predicted relative water levels 12h lead time

Date and Time

R
el

at
iv

e
w

at
er

 le
ve

l

 2020-06-18 04:00:00

2020-06-22 08:00:00

2020-06-26 12:00:00

2020-07-01 16:00:00

 2020-07-05 20:00:00

2020-07-10 01:00:00

2020-07-14 05:00:00

2020-07-18 09:00:00

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
MetZoom

LSTM

MetZoom VS LSTM: prediction error 12h lead time

Date and Time

D
is

ta
nc

e
fr

om
 tr

ue
 v

al
ue

FIGURE 7.11: The top graph shows the predictions by Met-
Zoom and the LSTM model. The bottom graph shows the er-

rors in the same time frame.

Chapter 7. Results 97

The LSTM model used for comparison, as explained in Chapter 3, Section 3.4.1,

is a more simple LSTM than the one used in MetZoom. This network omits

the radar images, and hence features extracted from these, from both input

and predictions. Hence this comparison creates an idea of the efficiency and

added value of the radar images.

The results in Figure 7.11 show the predictions and errors of both models

in in the first center snippet, when forecasting 12 hours ahead of time. Gener-

ally the LSTM seems to over-predict the changes in turning points and there-

fore does not follow the actual water level as closely as MetZoom. The results

here, and in the metrics in Figure 7.8 show that in comparison to a LSTM the

radar images provide added information that helps the model slightly.

98

Chapter 8

Evaluation

Some of the setbacks experienced while working on the thesis came from the

most promising ideas, and were essential for learning what was required to

achieve acceptable results. This chapter will reflect on some of the challenges,

thoughts and ideas that were central through this process.

The final architecture and model, although inspired by others, is created

from scratch with the purpose of the thesis.

8.1 Reviewing the data

8.1.1 Error margin

When predicting changes in water level only through added precipitation as

a measure of inflow and valve opening as a measure of outflow many natu-

ral causes are omitted. For added accuracy on the outflow one could account

for natural evaporation through temperatures, and for inflow include snow

melting and inflow from water retention in the surrounding area. The water

retention in the surrounding area is partially learned though the data that

is included. With respect to inflow, these added variables are learned inher-

ently from the dataset as freezing and melting conditions happen on a yearly

basis. As the network is trained on the entirety of the time series, includ-

ing seasonal changes, but without exact information on snow melting and

Chapter 8. Evaluation 99

temperatures it introduces an error margin the network most likely cannot

surpass. One of the largest errors is possibly due to over-focusing on pre-

cipitation and not focusing more on snow melting, as even days and weeks

without any precipitation can have massive inflow. The RNN has to adapt

for these unforeseen changes, and assume that melting will continue at a set

rate, which is rarely the case in nature. In retrospect it would have been a

good idea to focus the network on seasons where the snow melting is not a

high factor, such as the late summer to early fall. In this case MetZoom could

have performed better, and possibly improve its competitiveness in compar-

ison to the other models.

8.1.2 Sparse radar images

One of the major disadvantages when predicting precipitation levels with

neural networks is the natural absence of it. Throughout the time series,

there are more hours (i.e radar images) with little-to-no recognizable pre-

cipitation. When batch-training this leads to the network predicting lower

levels of precipitation due to loss becoming small when simply predicting no

precipitation at all. To overcome this challenge a large portion of time was

spent on different loss functions, methods for thresholding input and out-

put images to focus on high precipitation and masking or normalizing the

radar images. Eventually the idea of element-wise multiplying the amounts

of precipitation with a confidence level of the precipitations movement led

to focusing more on where the precipitation will fall after some time, rather

than the amount of precipitation.

8.1.3 Interpolation on missing timestamps

Due to the different time series discussed in Chapter 4, some interpolation

was necessary. When interpolating such an amount of data, it is important to

Chapter 8. Evaluation 100

recognize the loss of true information representation as discussed in Chap-

ter 2. Although in some cases interpolation can resemble the true flow of

natural data, actual weather data is less smooth than interpolated data. The

chaotic nature of weather becomes smoothed and interferes with the preci-

sion of the predictions according to the actual true values in a complete and

saturated dataset.

8.2 Objectives and achievements

8.2.1 Motivation and tasks

The goal for the thesis was to investigate whether a neural network could

accurately predict the relative water level in Helgedalsvatnet using a time

series of relevant information. The time series includes previous water lev-

els, valve opening, precipitation and radar images. The radar images, which

cover an area with several precipitation measurement stations, reflect the rate

of precipitation. These values are quite transferrable to precipitation volume,

and so this became a preliminary for the greater goal of predicting the water

level. Getting great results of precipitation predictions from the radar images

was difficult, as the predictions of radar images were smoothed out and did

not capture heavy precipitation. A goal was set to get predictions that were

followed the trend of the true data, such that this trend could transfer to the

relative water level predictions.

When this was achieved the work was focused on predicting the changes

in relative water level. After deciding the final architecture, and getting some

results it became apparent that it is difficult to measure the exact performance

of a model when the data is linearly interpolated and the natural differences

and occurrences are skewed towards a more linear level. Still, it is reasonable

to expect that the constant and linear contributions will dominate on this time

Chapter 8. Evaluation 101

scale, regardless of how accurate and frequent measurements are available.

As the data was structured in hourly intervals the changes are very slow

and hence a naive baseline model which simply predicts no change is quite

accurate. Therefore only a small improvement on such predictions was ac-

cepted. Predicting the slope (i.e the time-derivative) of the changes in water

level is not a trivial task, and there is room for more work in this area. Fur-

ther improvement on the performance could have been possible with a better

understanding of which natural mechanisms and sources of error dominate

the data. Technical improvements could have been made either by more de-

velopment and training or a more extensive hyperparameter search with the

existing model, but was stagnated by the necessity to compare the existing

results to other models, as done in Chapter 7.

One of the main goals was reviewing whether the inclusion of radar im-

ages could benefit in predicting changes in water levels, and at this point it

is difficult to conclude on the actual benefit of the radar image addition.

8.2.2 Reviewing the comparison to other models

There were many difficulties when implementing the ARIMA model. Un-

derstanding the nature of the model took a lot of time, and the initial results

were very poor. Significant time was spent on improving the ARIMA model,

and without any prior knowledge or experience with such models there is

definitely room for improvements.

The LSTM that was created for comparison excludes the radar images

from the data it uses, and is a measure of how much the radar images add

to the performance. The LSTM went through several stages of optimization

and is as thoroughly trained as MetZoom, although a much simpler network.

Although the data is easily regressed due to the linear interpolation, and

that is likely the cause of the baseline models accuracy, it would have been an

Chapter 8. Evaluation 102

achievement if the results of MetZoom was far better than that of the baseline

model and others in comparison to it. To achieve such results, some future

work is needed.

8.3 Reviewing conceptual choices

8.3.1 Using 3D Convolutions

One of the primary ideas revolved around 3D convolutions as explained in 3.

In the case of sequence prediction through 3d convolutions, passing a block

of images (as opposed to one image with several input channels) opens the

possibility for improvement in the networks geo-spatial awareness through

time. 3D Convolutions have been acknowledged as powerful tools for learn-

ing volumetric data. The idea of applying such operations to a sequence of

input images seemed promising, as the aim is to capture the movement of

precipitation over time. An example is seen in Figure 8.1

Chapter 8. Evaluation 103

FIGURE 8.1: The actual label and the predicted image one hour
into the future by the 3D convolution architecture. The units

are similar to the radar images in Chapter 4

8.3.2 U-Net architecture

U-Net, introduced by Ronneberger, Fischer, and Brox 2015, has proven effi-

cient on image segmentation with high localization accuracy, and was there-

fore promising in regards to capturing local precipitation in the radar images.

While evaluating U-Net for the task of precipitation forecasting the radar im-

ages were the only relevant source of information, and the initial idea was to

Chapter 8. Evaluation 104

use such an architecture to predict one future block of radar images via 3D

convolution up- and down-scaling with residual connections.

In the simplest form, the testing revolved around an input block contain-

ing a sequence of radar images, and outputting a single radar image cor-

responding to the radar image following the sequence (i.e. 1 label image).

Although a simple idea and somewhat ambitious, it seemed feasible to trans-

form U-Net from a segmentation network to a many-to-one 3D residual U-

Net.

The network, shaped like U-Net, down-scaled a batch of images (as a

3D block) while sending residual connections to the up-scaling part of the

network. The final layer of the network was a transpose convolution (as

described Section 3.3.4) which for for testing purposes only had 1 output

channel depth-wise, representing 1 output image.

Through extensive over-fitting the network managed to replicate the where-

abouts of precipitation, but still did not quite capture the amount.

Chapter 8. Evaluation 105

FIGURE 8.2: The actual label, the predicted image, and the pre-
dicted confidence by the U-net architecture.

A final addition was made to the architecture, which was a second output

channel passed through a sigmoid activation function, which represented

the confidence of the whereabouts of precipitation - allowing the original

channel to solely represent amounts. The "confidence image" (i.e. probability

of precipitation) could then be used as a mask, allowing the network only

to calculate errors where the confidence was above some set threshold, the

result is seen in Figure 8.2.

The combination of confidence prediction and value regression was promis-

ing. This realization lead to creating a new architecture which potentially

could manage both tasks.

Chapter 8. Evaluation 106

8.3.3 The conception of MetZoom

The mentioned combination of a confidence in the movement and amounts

of precipitation led to the conception of MetZoom, the name of the final ar-

chitecture in the thesis. When removing the 3D convolutions a new method

of representing the temporal difference between the input radar images was

required. The solution became adding images at every layer, at predefined

blocks. These blocks were meant to represent the movement of the precipi-

tation, whilst including some information on amounts. The amounts of pre-

cipitation are carried through every layer.

Throughout testing this theory, and getting better results on predicting

future radar images and precipitation rates, the idea of zooming into an im-

portant area was also sparked. This idea, although implicit through convolu-

tional operations, was inspired by Google’s MetNet-2 (Espeholt et al., 2021).

MetZooms CNNs efficiency and accuracy within shorter time periods

was deemed good enough to be used as a tool and its output accurate enough

for combination with a potential LSTM architecture. MetZoom is robust and

adaptable. It’s variability in input and output sequence length provided pos-

sibility for testing different output lengths and an LSTMs accuracy on pre-

dicted relative water level for Helgedalsvatnet.

Originally the implementation used the output of MetZoom as input for

the LSTMs block, but this caused some questions as predictions and true

data was intertwined for a second future prediction. As such the LSTMs was

altered such that the input of the entirety of the network was a sequence of

length 24 including all of the data. The radar images of the input sequence

are processed through the CNN which predicts a future set of images.

To properly draw information from the images a method for feature ex-

traction was required, and hence ResNet-18 (He et al., 2016) was introduced.

Chapter 8. Evaluation 107

All of the images are processed alongside each other, which results in a cohe-

sive sequence which is then split in sections.

The resulting method uses the input images as a means of predicting the

relative water level in Helgedalsvatnet, and the future (predicted) images

as a mean to adjust this water level in two fully-connected layers. At this

point the study revolved mainly around training and testing the network

with different sequence lengths and kernel sizes.

108

Chapter 9

Conclusion

This chapter will draw a conclusion on the study, and the achieved results,

as well as suggestions for future work.

9.1 Conclusive remarks

The work done in this thesis was aimed at answering whether a neural net-

work could be used for predicting inflow to a hydropower reservoir, and

if the inclusion of precipitation reflecting radar images could benefit such a

network. The results show that the answer to both of these research ques-

tions is yes. To what extent is another question. A neural network such as

MetZoom can predict the changes in relative water levels, representing the

inflow/outflow relationship, but at a level of accuracy that is not ground-

breaking in comparison to other more naive and simple models. If a more

complete and saturated dataset was available, with actual measured data for

every timestamp, this comparison could be different in the favour of Met-

Zoom, as it is more precise on changes in water levels at longer lead times

than the compared models. With an ANN with an architecture similar to

MetZoom one has the possibility to extend the model to include even more

observable variables, such as temperature, snow cover and even the topology

of the geographical area. These extensions could further skew the advantage

towards ANNs.

Chapter 9. Conclusion 109

Although the current architecture of MetZoom may not be the perfect

approach, it shows that ANNs can be used to incorporate many different

sources of data, extending a models capabilities.

9.2 What’s next?

There are many interesting factors in prediction of inflow. One of the main in-

terests and ideas which was reviewed for inclusion early on was factoring in

the geographical topology of the surrounding area, to further capture snow

melting and water retention in the surrounding area. Including a 3D model

or added information on the topology could provide better predictions at

longer lead times, as this information adds to the long term changes of water

levels. A variable which was available in the data provided but omitted was

the temperature. Adding this variable to the equation could further enhance

the prediction of snow melting and water retention in the surrounding area.

Note that for this to work long term data on the snow cover for the area is

needed, as well as a possibly very long memory model.

In this thesis, only one reservoir was used for prediction. Inclusion of

other reservoirs and learning the relationship between the connections of

these reservoirs could be a possible research direction. With interconnected

tunnels and natural waterways between reservoirs it could be interesting to

learn how the inflow/outflow relationship of one reservoir affects other con-

nected reservoirs, whilst still predicting the changes in water levels for the

included reservoirs.

The results show that there is more smoothness in the traditional ARIMA

model, and a regular LSTM performs only slightly worse than MetZoom.

Further studying the accuracy of precipitation downfall captured through

radar could improve a model which incorporates radar images. The naive

baseline model also performed fairly well, and as mentioned is likely due to

Chapter 9. Conclusion 110

how the data was structured and interpolated. A future work could research

how to structure a time series without smoothing the data as much.

Furthermore there are not many works on prediction of inflow through

radar images. Through the results of this work it is apparent that these im-

ages can benefit a network, and there are most likely better ways to employ

these images in a network than what has been done in this thesis. The results

of radar image predictions also show a smoothed version of the correspond-

ing labels. This is likely due to loss of information concerning the amount of

precipitation when the images are fed sequentially and masked with a sig-

moid activation to capture the confidence of movement. A research direction

relevant to the work in this thesis could involve efficiently capturing both

the amount and the movement of precipitation at a more precise level. As

the results of precipitation predictions show, the smoothed predicted radar

images impact the extracted precipitation, which confirms the models inac-

curacy with heavy precipitation.

A thorough research on how to extract correct and better information

from radar images could be very interesting, as they have proven to be a

possible tool for predicting water inflow.

111

Bibliography

Ayzel, Georgy, Tobias Scheffer, and Maik Heistermann (2020). “RainNet v1.

0: a convolutional neural network for radar-based precipitation nowcast-

ing”. In: Geoscientific Model Development 13.6, pp. 2631–2644.

Bengio, Yoshua, Ian Goodfellow, and Aaron Courville (2017a). Deep learning.

Vol. 1. MIT press Cambridge, MA, USA.

— (2017b). Deep learning. Vol. 1. MIT press Cambridge, MA, USA.

Benjamin, Stanley G et al. (2016). “A North American hourly assimilation

and model forecast cycle: The Rapid Refresh”. In: Monthly Weather Review

144.4, pp. 1669–1694.

Buizza, Roberto (2002). “Chaos and weather prediction January 2000”. In:

European Centre for Medium-Range Weather Meteorological Training Course

Lecture Series ECMWF.

Coulibaly, Paulin, François Anctil, and Bernard Bobée (2000). “Daily reser-

voir inflow forecasting using artificial neural networks with stopped train-

ing approach”. In: Journal of Hydrology 230.3-4, pp. 244–257.

Dumoulin, Vincent and Francesco Visin (2016). “A guide to convolution arith-

metic for deep learning”. In: arXiv preprint arXiv:1603.07285.

Espeholt, Lasse et al. (2021). “Skillful Twelve Hour Precipitation Forecasts us-

ing Large Context Neural Networks”. In: arXiv preprint arXiv:2111.07470.

Gholamalinezhad, Hossein and Hossein Khosravi (2020). “Pooling methods

in deep neural networks, a review”. In: arXiv preprint arXiv:2009.07485.

Gu, Jiuxiang et al. (2018). “Recent advances in convolutional neural networks”.

In: Pattern Recognition 77, pp. 354–377.

Bibliography 112

Haykin, Simon and N Network (1999). “A comprehensive foundation”. In:

Neural networks 2.1999, pp. 41–44.

He, Kaiming et al. (2016). “Deep residual learning for image recognition”. In:

Proceedings of the IEEE conference on computer vision and pattern recognition,

pp. 770–778.

Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long short-term mem-

ory”. In: Neural computation 9.8, pp. 1735–1780.

Hyndman, Rob J and George Athanasopoulos (2018). Forecasting: principles

and practice. OTexts.

Ioffe, Sergey and Christian Szegedy (2015). “Batch normalization: Accelerat-

ing deep network training by reducing internal covariate shift”. In: Inter-

national conference on machine learning. PMLR, pp. 448–456.

Janocha, Katarzyna and Wojciech Marian Czarnecki (2017). “On loss func-

tions for deep neural networks [..]” In: arXiv preprint arXiv:1702.05659.

Kingma, Diederik P and Jimmy Ba (2014). “Adam: A method for stochastic

optimization”. In: arXiv preprint arXiv:1412.6980.

Krenker, Andrej, Janez Bešter, and Andrej Kos (2011). “Introduction to the ar-

tificial neural networks”. In: Artificial Neural Networks: Methodological Ad-

vances and Biomedical Applications. InTech, pp. 1–18.

Kumar, Ashutosh et al. (2020). “Convcast: An embedded convolutional LSTM

based architecture for precipitation nowcasting using satellite data”. In:

Plos one 15.3, e0230114.

Maass, Wolfgang (1997). “Networks of spiking neurons: The third generation

of neural network models”. In: Neural Networks 10.9, pp. 1659–1671. ISSN:

0893-6080. DOI: https://doi.org/10.1016/S0893- 6080(97)00011-

7. URL: https : / / www . sciencedirect . com / science / article / pii /

S0893608097000117.

https://doi.org/https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/https://doi.org/10.1016/S0893-6080(97)00011-7
https://www.sciencedirect.com/science/article/pii/S0893608097000117
https://www.sciencedirect.com/science/article/pii/S0893608097000117

Bibliography 113

Netrapalli, Praneeth (2019). “Stochastic gradient descent and its variants in

machine learning”. In: Journal of the Indian Institute of Science 99.2, pp. 201–

213.

O’Shea, Keiron and Ryan Nash (2015). “An introduction to convolutional

neural networks”. In: arXiv preprint arXiv:1511.08458.

Roberts, Brett et al. (2019). “The High Resolution Ensemble Forecast (HREF)

system: [..]” In.

Ronneberger, Olaf, Philipp Fischer, and Thomas Brox (2015). “U-net: Convo-

lutional networks for biomedical image segmentation”. In: International

Conference on Medical image computing and computer-assisted intervention.

Springer, pp. 234–241.

Samuel, A. L. (1959). “Some studies in machine learning using the game of

checkers”. In: IBM Journal of Research and Development 44.1.2, pp. 206–226.

DOI: 10.1147/rd.441.0206.

Sharma, Sagar, Simone Sharma, and Anidhya Athaiya (2017). “Activation

functions in neural networks”. In: towards data science 6.12, pp. 310–316.

Sønderby, Casper Kaae et al. (2020). “MetNet: A Neural Weather Model for

Precipitation Forecasting”. In: Submission to journal. URL: https://arxiv.

org/abs/2003.12140.

Werbos, P.J. (1990). “Backpropagation through time: what it does and how to

do it”. In: Proceedings of the IEEE 78.10, pp. 1550–1560. DOI: 10.1109/5.

58337.

Zhang, Aston et al. (2021). “Dive into deep learning”. In: arXiv preprint arXiv:2106.11342.

https://doi.org/10.1147/rd.441.0206
https://arxiv.org/abs/2003.12140
https://arxiv.org/abs/2003.12140
https://doi.org/10.1109/5.58337
https://doi.org/10.1109/5.58337

	Introduction and motivation
	Time series, Forecasting and Weather
	Forecasting using time series
	Time series
	Time series forecasting
	ARIMA models
	Use of neural networks in forecasting

	The chaotic nature of weather data

	Machine Learning
	Artificial Neural Networks
	Artificial Neurons
	Activation Functions
	Layers

	Training ANNs
	Loss functions
	Gradient descent
	Samples and Batches
	Forward Propagation
	Backpropagation
	Training loop

	Convolutional Neural Networks
	Convolutions
	Pooling layer
	Fully-Connected Layer
	Transpose convolutions

	Recurrent Neural Networks
	Long Short-Term Memory

	Working with meteorological imagery and hydropower data
	Radar images collected through THREDDS
	Data provided by Saudefaldene
	Water reservoir level
	Precipitation
	Valve opening

	Missing data
	Linear Interpolation
	Backwards Filling

	The final dataset structure

	Related Work
	Skillful Twelve Hour Precipitation Forecasts using Large Context Neural Networks
	RainNet v1.0: a convolutional neural network for radar-based precipitation nowcasting
	Daily reservoir inflow forecasting using artificial neural networks with stopped training approach
	Convcast: An embedded convolutional LSTM based architecture for precipitation nowcasting using satellite data

	Methodology
	General remarks
	MetZoom: Convolutional Neural Network
	CNN Input: A Sequence of radar images
	CNN Architecture: Stages and Catch-up blocks
	CNN Output: Prediction of radar images and precipitation
	CNN performance: Loss and convergence

	MetZoom: Long Short-Term Memory RNN
	LSTM Architecture: Using the ResNet-18 extracted features of radar images
	LSTM input: 24h time series
	LSTM output: Up to 12h water level prediction
	LSTM performance: Loss and convergence

	Results
	Predicting Radar Images
	Predicting Precipitation Through Radar Images
	Predicting Relative Water Level (Helgedalsvatnet)
	Comparing predictions to other models
	MetZoom VS. other models
	MetZoom VS. Naive Baseline
	MetZoom VS. ARIMA
	MetZoom VS. LSTM

	Evaluation
	Reviewing the data
	Error margin
	Sparse radar images
	Interpolation on missing timestamps

	Objectives and achievements
	Motivation and tasks
	Reviewing the comparison to other models

	Reviewing conceptual choices
	Using 3D Convolutions
	U-Net architecture
	The conception of MetZoom

	Conclusion
	Conclusive remarks
	What's next?

	Bibliography

