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Abstract

Data Visualization is a field that explores how to most efficiently convey information to

the user, most often via visual representations like plots, graphs or glyphs. While this

field of research has had great growth within the last couple of years, most of the work

has been focused on the visual part of the human visual and auditory system - much less

visualization work has been done in regards to the visually impaired.

In this thesis, we will look at some previous methods and techniques for visualizing

scalar fields via the sense of touch, and additionally provide two novel approaches to vi-

sualize a two-dimensional scalar field. Our first approach creates passive physicalizations

from a scalar field in a semi-automatic pipeline by encoding the scalar value and field

coordinates as positions in 3D space, which we use to construct a triangular mesh built

from hexagonal pillars that can be printed on a 3D printer. We further enhance our mesh

by encoding a directional attribute on the pillars, creating a visual encoding of the model

orientation and improving upon a readability issue by mirroring the mesh. Our second

approach uses a haptic force-feedback device to simulate the feeling of moving across a

surface based on the scalar field by replicating three physical forces: the normal force, the

friction force and the gravity force. We also further extend our approach by introducing

a local encoding of global information about the scalar field via a volume representation

build from the scalar field.
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Chapter 1

Introduction

Visualization is a field that handles how to efficiently convey data to humans. It is

defined by Munzner [1] as “Computer-based visualization systems provide visual repre-

sentations of datasets designed to help people carry out tasks more effectively”. While

other fields within informatics focus on efficient ways for the computer to solve a problem,

visualization attempts to instead augment humans’ capabilities of solving a problem.

Traditionally the field of visualization has relied on the visual system as it carries

the highest information bandwidth of the human-perceptive system. This means that

visualization is largely restricted to people with good eyesight. Unfortunately, according

to the World Health Organization, at least 2.2 billion of the world population were affected

by vision impairments in 2019 [2]. Due to the high demand for alternative methods of

information transfer, a recent focus in the field of visualization has been on multimodal

presentations of data to reach a wider audience.

One way for the visually impaired to perceive information is via other senses instead,

which is the idea of sensory substitution. Sensory substitution augments the lack of one

sense by substituting it with input from another one, for instance by converting written

text into speech via a text-to-speech system, or by giving the user audio descriptions of

traditional visualizations [3].

Another substitution for vision is through the tactile sense of touch. Kane and Bigham

[4] attempt to utilize this by supporting visually impaired and blind students through

3D-printed tangible maps. Holloway et al. [5] instead tried to replace tactile maps for

the blind with 3D printed models. In their study, they found that the 3D printed models

proved more intuitive compared to their tactile counterparts while remaining as effective
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in task completion [3]. Research on representing data via physical artifacts also suggests

that physical representations of data improve both memorability and information retrieval

compared to similar visualization techniques on the same data [6–8].

In this thesis, we explore previous techniques within physicalization, the physical

variant of visualization, and contribute by presenting two novel approaches to physicalize

2D scalar field data.

1.1 Scalar Field Visualization

A scalar field is data laid out in a grid of cells over one or more dimensions, where each

cell contains a single scalar value and each dimension represents a continuous space [1].

Since all dimensions in a scalar field are continuous, scalar field data is usually sampled

or generated from spatial or temporal domains. Some examples of scalar field data can

be luminosity of pixels in a 2D picture, air pressure in a 3D volume, fluid flow velocity in

a 3D volume over time (3 spatial + 1 temporal dimension) or heights in a 2D geographic

map.

When dealing with scalar field data the datasets can become quite big or complex,

especially in cases of sampled and simulated multi-dimensional scientific data. Data anal-

ysis of big data sets is a tedious task for humans to accomplish alone and computational

tools are often required to solve analytical tasks. For smaller datasets, data can be simpli-

fied or aggregated using classical statistical methods, but there are cases where statistical

data summaries may lose important information in the data presented. A popular exam-

ple of this is Anscombe’s quartet , shown in Figure 1.1. Anscombe’s quartet presents four

sets of data that under normal statistical analysis methods (mean, variance and linear

regression) looks to be identical sets of data. But just from plotting the data, as done in

Figure 1.1, a human can easily determine that they are, in fact, different sets of data.

Scalar field visualization is an attempt to help humans analyze scalar field data by

utilizing the human cognitive and perceptual system’s natural ability to process multiple

sources of data simultaneously, typically via visual cues to highlight patterns and trends,

or via aggregation or projection methods to simplify complex datasets.
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Figure 1.1: Anscombe’s quartet is a collection of four datasets that share the
same descriptive statistics, although the dataset visually varies greatly. For
all datasets: the mean of x is 9, the mean of y is 7.5, the variance of x is
11, the variance of y is 4.125 and the linear regression line (shown in teal) is
y = 3 + 0.5x

1.2 Physicalization

Physicalization is the act of encoding data through physical artifacts’ geometrical or

material properties [9] and is a subbranch of visualization. Multimodal visualizations

give information to the user via multiple sensory simultaneous channels. But multiple

separate channels of information carry with them the issue of connecting the information

channels, as incoherent multimodal visualizations only create more confusion. Compared

to multimodal visualizations approaches, physicalizations follow an intermodal approach

which ensures the multisensory experiences are cohesive, as multisensory outputs stem

from the artifact itself [9].

Physicalizations can be passive or active depending on to what degree of computa-

tional power they require after fabrication [8]. Passive physicalizations are completely
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disconnected from computational machines after fabrication. If the data or representa-

tion is changed, another physicalization typically has to be fabricated to reflect the data.

On the other hand, active physicalizations can dynamically change what data they rep-

resent but are usually still locked to one representation format and usually carry other

limitations.

Physicalizations bridge the gap between artistic and pragmatic visualization but has

been traditionally difficult to manufacture. Designing efficient physicalizations requires

expertise in both visualization and physical fabrication, which highlights the need for

tools to automate the process of creating data physicalizations [8, 10]. Swaminathan

et al. [10] presented MakerVis which is one of the first tools created to automate the

physicalization process. MakerVis greatly simplifies the process of manufacturing passive

physicalizations. However, MakerVis focuses on abstract data visualizations and manu-

facturing using cutting techniques like laser cutters or CNC machines. Munzner [1] argues

that visualizations should be designed in a task-oriented way. Physicalization solutions

should also be designed around the encoding medium [9, 11], meaning there is still plenty

of room for more passive physicalization pipelines.

1.3 3D Printing

MakerVis employed cutting techniques like laser cutting or CNC milling, which are clas-

sified as subtractive manufacturing. However, passive physicalizations are not limited to

subtractive manufacturing and physicalizations are also made using the opposite, Addi-

tive Manufacturing (AM). AM, commonly referred to as 3D printing, fabricates models

by adding material layer by layer, usually from the bottom up [10, 12]. Compared to

subtractive manufacturing, additive manufacturing machines have fewer material options

and are usually slower, but can create more advanced geometry and are generally cheaper.

The cheap price of today’s AM machines, combined with the innately tactile nature

of exploring a physical object, makes passive physicalization via 3D printers an accessible

way for the visually impaired to explore data. Due to this, we want to look into creating

an automated pipeline for creating passive physicalizations of scalar fields.
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1.4 Haptic Devices

Passive physicalizations are limited by their fabrication time and geometry requirements.

For instance, separated or flat geometry is difficult to represent as a physical artifact,

which puts restrictions on the possible encodings of a passive physicalization. Active

physicalizations attempt to work around some of these issues by dynamically changing

the representation based on the input data, filters and more. Active physicalization also

carries with it the advantages interactive visualizations have over static visualizations.

Specifically, it can utilize a constant feedback loop between the user and the output

device, which enables interactive visual analysis solutions via active physicalizations.

Active physicalizations based on tactile senses can be done with the help of haptic

devices. Haptic devices are machines that can give tactile feedback to a user via vibrations

or forces. Haptic force feedback devices, for instance, are devices that deliver feedback

to a user through the use of force applied through motors [13, ch. 5.7]. Haptic force

feedback devices have been commonly used in the training of medical personnel for needle

insertions [13–16], but haptic devices have historically been expensive or difficult to obtain

for the common consumer. This changed with 3D Systems developing their popular

Phantom haptic force-feedback lineup, attainable by consumers and research facilities.

Based on the success of the Phantom devices, Novint also released their own haptic force

feedback device called the Falcon aimed at being the first haptic device available to the

average consumer.

With the advantages active physicalizations have over passive physicalizations, we

also want to look into physicalizing scalar field data using a force-feedback haptic device.

In this thesis, we use the Falcon, but the technique is not limited to this device and

should work for any haptic force feedback device with 3 or more degrees of freedom.

1.5 Our Contribution

The main focus of this thesis is on the passive and active physicalization or scalar fields.

We first go into detail on current and related techniques in scalar fields visualization,

physicalization, additive manufacturing and haptics, after which we will present two

novel approaches to physicalize scalar fields.
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Our first approach attempts to create a passive physicalization or 2D scalar field

data using AM. In this approach, we take a scalar field as input and construct a mesh

representing the scalar field, which is then printable by a 3D printer. The geometry

for the mesh is constructed as a grid of hexagons representing the field values, which

are translated according to each data point’s value, after which we mirror the grid to

represent the bottom of the mesh and connect the mesh together.

Our second approach attempts to actively physicalize a 2D scalar field by representing

it using force on a haptic force feedback device. In this approach, we create surface forces

in real-time to mimic a believable surface represented by the scalar field.
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Chapter 2

Related Work

Both of our approaches mentioned in Section 1.5 physicalize scalar fields. So in this

chapter, we will start by covering some traditional approaches to visualizing scalar fields,

before continuing on to the field of physicalization and previous methods for physicalizing

data. Finally, we will cover the terminology and the technology of the visualization

medium for our two approaches: 3D Printing and Haptic force feedback.

2.1 Scalar Fields Visualization

2.1.1 One-Dimensional Scalar Fields

For simple one-dimensional data, the simplest visualization format is also just encoding

each field value along a common axis, which essentially means a point or line chart. In a

point or line chart, one axis represents the field keys, and the other axis represents the

values. One of the best-known examples of using line charts to represent scalar fields is

the trade-balance time-series chart by William Playfair, shown in Figure 2.1, in which he

visualizes exports and imports between Denmark and Norway, and England over time.

Another popular visualization is a bar chart, which shows each field attribute as a vertical

bar. Multiple datasets can also be compared in a line chart by using multiple lines or in a

scatter chart using different marks for data separation, but another popular representation

of multiple one-dimensional scalar fields is steamgraphs. Steamgraphs represent a scalar

value using area, and multiple datasets can be stacked on top of each other using different

color encodings along one common axis.
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Figure 2.1: William Playfair’s trade-balance time-series chart showing the
exports and imports between Denmark and Norway, and England over the
course of 80 years [17].

2.1.2 Two-Dimensional Scalar Fields

Grid-Based Techniques

For two dimensions, one approach to visualize scalar data is using a heatmap. In a

heatmap, data values are arranged in a 2D matrix, with each cell value represented with

a color. Heatmaps can also additionally encode links between cells in the data using

additional glyphs and drawing on the side of the matrix in something called a cluster

heatmap, which is useful to represent network data [1, ch. 7].

Heatmaps follow a regular grid with each orthogonal axis encoding a new key, but

other grid structures also exist. For instance, hexagonal grids have been extensively used

in hexplots or hexbin maps. Like a heatmap, hexbin maps encode a scalar value in a grid,

but a hexagonal one instead. An example of a hexbin map can be seen in Figure 2.2

where the number of tweets with ”#surf” and their geographic positions are visualized

as colored hexagons. The main usages for hexbin maps have been in visualizing binned

data. While one also could use square bins to visualize binned data, hexagonal bins are

favored for estimation purposes as they give a better estimation bias [18].

Hexbins were first introduced by Carr et al. [20], who additionally suggest that the

hexagons can be filled with glyphs to give further information, like how many data points

are binned within a hexagon tile. The idea of using a glyph for meta-data is further
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Figure 2.2: Hexbin map visualization showing geographic positions of tweets
with ”#surf”, ”#windsurf” and ”#kitesurf” [19].

extended by Cleveland and McGill [21], who proposed sunflower plots, which are binned

scatterplots where each bin is represented by a special glyph. The glyph in sunflower plots

displays the binned points as lines from the center of the glyph, somewhat similar to petals

on a sunflower. As noted by Carr et al. [20], sunflower plots placed in a hexagonal grid

are preferred because they de-emphasize horizontal and vertical patterns that appear in

sunflower plots with a square grid layout. Dupont and Plummer [22] later implemented

sunflower plots in a hexagonal grid for their Stata platform.

Trautner et al. [23] recently built upon the idea of using glyphs in a hexagonal grid by

encoding the distribution of points as a diamond cut glyph. Their approach first calculates

a regression plane from the point distribution within the bin, after which they construct

a hexagonal-pyramid structure that is cut by the regression plane. The cut pyramid is

then projected onto a flat surface, which results in the final glyphs represented on each

hexagon in their Honeycomb plot.

Glyph-Based Methods

Encoding the values of two-dimensional scalar fields along a third axis makes it easier

to read off values, but then requires three dimensions of representation space which is

typically not available on paper or a computer screen. One approach to solving this is by

10



Figure 2.3: In addition to using contour lines, Gronemann and Jünger [24]
uses a colormap to encode the scalar value directly, which makes the two-
dimensional scalar field look like a topographic map. The right image shows
a close-up of the map.

using contour lines, commonly also referred to as isolines. Contour lines are polygonal

line-glyphs that, per line, pass through all points within a field where a specific value

occurs. If the contour lines are uniformly spaced in the value axis, contour lines will show

areas of fast change by being close together and areas of slow change by being far apart.

Contour lines are commonly used in topographic terrain maps where the contour lines

represent the height of the terrain [1, ch. 8].

Topographic maps are commonly drawn with colors indicating different labeled areas

of interest, like vegetation, but Gronemann and Jünger [24] instead used a colormap to

encode the scalar value, seen in Figure 2.3. An advantage of doing this is that global

structures can be encoded via the colormap while local information like steepness at a

particular point can be encoded using isoline glyphs [25].

2.1.3 Three-Dimensional Scalar Fields

To represent three dimensions of data on a two-dimensional display, visualization tech-

niques use visual cues like depth, colors and shapes. Most of the three-dimensional scalar

field visualizations fall under the two categories: geometry extraction, which are tech-

niques focused on generating and extracting geometric structures representing parts of

the data; and direct volume rendering, which instead tries to display the dataset as a

whole using computer graphics rendering techniques.
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Geometry Extraction

Isosurfaces or contour surfaces are natural extensions of contour lines to higher dimen-

sions. Like a line intersecting through every point with a certain value, an isosurface is a

surface intersecting through every point with a certain value.

The first popular approach to visualizing an isosurface was through the cuberille

technique introduced by Herman and Liu [26]. Inspired by ”quadrille” markups on paper,

which are obtained using orthogonal sets of equally spaced parallel lines. Herman and

Liu [26]’ cuberille discretizes 3D into equally sized cubes containing each scalar value in

the field, called voxels. For a threshold defined as the surface, if a voxel’s scalar value is

greater or equal to the threshold, the voxel is rendered and otherwise skipped [27, 28].

Because the cuberille renders in cubes, the final render becomes quite blocky, and if

the resolution of the cuberille is too low, smaller values may be aggregated together with

neighboring values. To improve upon the surface shape, Lorensen and Cline [29] developed

the well-known marching cubes algorithm. The marching cubes algorithm makes a finer

surface by chaining together sets of polygons created from neighboring voxels. It works

by defining cubes where each corner is defined as 8 neighboring voxels and then placing a

polygon inside each cube that best distinguishes voxels above and below a threshold [27,

29]. Since each voxel within a cube can either be above or below the threshold, Lorensen

and Cline [29] explain that there are 28 = 256 different configurations each cube can

have, but also make the observations that all 256 configurations translate to 15 different

cases of cubes. It was later observed (first by Dürst [30]) that a few of the proposed 15

cases suffer from contour ambiguitiy, which is when multiple polygon setups fit the same

configuration of voxels. There are a few solutions that attempt to address this. One

of the most widely known attempts at fixing this is the asymptotic decider by Nielson

and Hamann [27, 31]. However, Newman and Yi [32] write that most of the issues with

contour ambiguity can be avoided by extending the lookup table of polygon cases to 22,

which they additionally supply a few examples of.

Rendering a high-resolution marching cubes triangulation can be very costly, so work

was further put into making screen-effective algorithms. An early solution was dividing

cubes which subdivides the voxel space into a grid. The grid size is chosen such that each

screen pixel renders exactly one cell in the grid, thus minimizing work put into rendering

invisible geometry [33, 34]. Another similar approach was made by Sobierajski et al. [35]

called trimmed voxel lists, which uses a point within each visible cube and its normal and
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projects it onto up to three pixels in the image plane in order to ensure that every visible

cube is part of the rendered image [34].

Frequently changing the threshold for the surface is expensive, as the surface has to

be recalculated. However, only the cubes which contain a voxel above and below the

threshold will be part of the generated surface, which allows for acceleration structures.

An example of this is the approach by Livnat et al. [36], which uses a kd-tree to quickly

determine which cells can potentially be part of the surface [34].

Direct Volume Rendering

Arguably the most popular visualization method for volume data is Direct Volume Ren-

dering (DVR) which directly renders a volume with specific optical properties without

extracting any geometric surfaces first [37–39]. During rendering, optical properties are

accumulated along a viewing ray to form the final image of the data [39]. Volume ren-

dering is either implemented in an object order approach, which means the volume is

sampled in slices which are then blended together, or in an image order approach, which

means the volume is directly sampled from screen-space viewing rays using raymarching.

The DVR process is divided into three parts: reconstruction, classification, and shading.

The first part, reconstruction, has to happen when the data is sampled at a lower rate

than the resolution used to render the data. The domain of the data might be continuous,

but sampling a continuous field turns it into discrete measurements, and thus having to

reconstruct the in-between values might be necessary.

The classification part controls how the sampled values should be interpreted and

what they should identify. For example: in a scalar field representing the densities in a

volume, a low-density value likely refers to air and should not be part of the rendered

result. Similarly, in a volume of temperature readings, areas with a high value could be

rendered with a different color than areas with low values to easily separate them. What

value should be treated as what is typically controlled by the transfer function. Transfer

functions can be a one- or more- dimensional mapping from one scalar value to a color

mapping [27]. Kindlmann and Durkin [40] shows how two- or more-dimensional transfer

functions using meta-information like gradient magnitude and second derivatives allow

for finer tuned classification of elements [39].

The last part is shading, which determines the colors of the classified elements and

how they should be blended into the screen. Common lighting models, like Blinn-Phong,
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are often used to help with the perception of depth and to improve the appearance of

objects. Most lighting models use a surface’s normal vector to determine how to shade

the surface. However, most volumes do not have a defined surface, and the normal is

instead approximated using the gradient. In homogenous regions of the volume, the

gradient approximation to a normal tends to be inaccurate, so the gradient magnitude is

commonly used to determine whether to apply lightning or not [39].

Composition along a viewing ray happens in a front-to-back order using the over

operator or a back-to-front order using the under operator. In front-to-back compositing,

sampling happens in the direction of the viewing ray, starting with the closest sample

and progressing away from the viewing origin, while back-to-front composition instead

starts with the sample furthest away, moving towards the viewing origin [37, 39, 41].

Modern hardware allows for efficient implementation of image order volume rendering

approaches, in which case the front-to-back composition is favored as it allows for early

ray termination as an optimization [41].

The appearance of the volume rendering can be improved by implementing shadows.

A novel approach to implement volumetric shadows can be performed by accumulating

light occlusion from the light source within the volume using raymarching and then using

the accumulated light to determine the light transmittance at the sample point. The

problem with this novel approach is that it requires O(ns · nl) operations for ns samples

and nl light samples, which is quite slow. A better approach is to precalculate a shadow

volume whenever possible, which can then be sampled to determine light transmittance.

While requiring fewer computations while rendering, this approach instead carries a big

memory cost. For image order rendering, Kniss et al. [42, 43] introduced half-angle

slicing, which enables transmittance calculation simultaneous to rendering. Half-angle

slicing works by accumulating light transmittance in slices angled at the halfway vector

between the light and the view origin [39].

The Phong-Blinn lighting model implements local illumination, but more realistic

results can be achieved by implementing global illumination approximation techniques

through light translucence. Light passing through a volume increases and decreases based

on energy absorption, emission from other particles in the volume, and light scattering

inside the volume. This complicated physical behavior described by the volume rendering

integral can be approximated using a phase function, which approximates light transmit-

tance through anisotropic or isotropic media [44, 45]. The most widely known phase

function was introduced by Henyey and Greenstein [46], which describes a simple ap-

proximation for anisotropic scattering through a volume. Other popular phase functions

are further described by Pharr et al. [44] and Pharr and Humphreys [45].
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2.1.4 Scalar Fields in Higher Dimensions

Recent methods have utilized the field of topology to extract geometric features and de-

scriptors to either amplify visualizations or visualize the features and descriptors directly.

A lot of recent methods both in extracting topological descriptors and visualizing them

are explored by Heine et al. [47] and more recently Yan et al. [48].

Carr et al. [49] introduced a method to efficiently compute the top-level merge tree

and contour tree of a scalar field for any dimensions, where the contour tree is built from

the top-level merge tree in linear time. Weber et al. [50] creates a method that takes

a contour tree and generates a 2D scalar field from it that describes the surface. They

further render the field as a terrain which they call a topological landscape. Oesterling

et al. [51] build upon this by using the same approach to calculate a 2D scalar field but

visualizes it as a color map instead [47].

Fujishiro et al. [52] suggest the use of critical values to guide transfer function designs

for 3D scalar field volume renderings. Takahashi et al. [53] further build upon this idea by

calculating a contour topology tree which they use to automatically generate a transfer

function. Weber et al. [54] use a similar approach in which they calculate the contour tree

and use tree branches to define different regions of a 3D scalar field. The regions can then

be manually picked by the user to specify a transfer function [47]. Further helping the

identification of features, Thomas and Natarajan [55] identify symmetrical substructures

within a scalar field by comparing substructures in the contour tree [48].

2.2 Physicalization

Making physical representations of data is not a new approach, but only somewhat re-

cently has work been developed to manifest it as its own research area, known as Data

Physicalization. Physicalizations are physical artifacts that encode data via its geomet-

rical or material properties [8, 9]. Physicalizations of data have been shown to improve

both memorability and information retrieval compared to similar visualization techniques

on the same data [6–8]. Compared to multimodal visualizations approaches, physical-

izations follow an intermodal approach which ensures the multisensory experiences are

cohesive, as multisensory outputs stem from the artifact itself [9].

Augmented physicalizations are passive physicalizations augmented using projections

or augmented reality overlays. An example of this was made by Hemment [58] in which
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Figure 2.4: The Tangible Landscape [56] displays a topographical visualiza-
tions projected onto a mallable landscape, reacting to changes in the landscape
in real-time. MistForm by Tokuda et al. [57] projects visualizations onto a
wall of fog that can change its shape.

Figure 2.5: From the left to right: Two forms of shape-changing displays using
actuated pins; inFORM by Follmer et al. [59] and EMERGE by Taher et al.
[60], and one using rotations; a wooden mechanical mirror by Rozin [61]

they physicalized a height field of Twitter sentiments about the 2012 Olympic Games,

which they additionally projected a color map onto to highlight individual stories. An-

other more interactive example is Tangible Landscape by Millar et al. [56], shown in

Figure 2.4, which is an educational tool for teaching terrain analysis. Tangible Land-

scape features a malleable landscape that gets continuously scanned and the topological

properties of the scanned surface are projected back onto the landscape [8].

Active physicalizations can update their physical representation based on changes in

the data or different encodings. Some examples of active physicalizations are shape-

changing displays using arrays of actuated rods or bars, shown in the first two images

in Figure 2.5, which can render scalar field data points in a 2.5D fashion by displacing

physical rods [9, 59, 60, 62–64]. Shape-changing displays can change their representation

in real-time but are limited in their resolution of pins and also cannot render overhangs [8,

65] making it difficult to represent 3D fields. Recently, Nakagaki et al. [66] made an active

physicalization via a pin-based shape-changing display where each pin individually can

apply force and react to force from the user. Other shape-changing displays able to
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Figure 2.6: From the left to right: A physical elevation model showing average
price for building lots in Germany [73] and an art installation in Cathedral of
Schwäbisch Gmünd in Germany displaying COVID-19 deaths as nails ham-
mered into wooden cubes [74].

represent scalar 2D field data through texture [67] also exists, for instance using surface

displacements [68, 69] or rotations [61, 70], like the one shown in the rightmost image in

Figure 2.5.

A few physicalization approaches have explored the idea of using elements suspended

by strings or magnetism. For instance, a kinetic sculpture from BMW [71] uses spheres

suspended on strings to visualize 2D scalar field data. Omirou et al. [72] visualize similar

data by instead using acoustic levitation to suspend elements in the air. Both of these

techniques have advantages over shape-changing displays in that they do not occlude as

much information caused by pins blocking the view [7], but are still limited to representing

one scalar value in their vertical axis. Somewhat in-between an active and an augmented

physicalization is MistForm by Tokuda et al. [57], shown in Figure 2.4, which projects

geometry onto a wall of fog that changes its shape via motors.

Passive physicalizations have been commonly used throughout history, with the ear-

liest known example dating back to 5500 BC in the form of Mesopotamian clay tokens,

thought to be used to externalize information [10, 74]. Recent years have shown an

increase in data sculptures: artistic physical artifacts which also encode data [8, 10].

For instance, in light of recent events, an art installation at the Cathedral of Schwäbisch

Gmünd in Germany, shown in Figure 2.6, displayed COVID-19 deaths as nails hammered

into wooden cubes. Nemzer [75] 3D prints a spectrogram of public data on gravitational

waves, shown in Figure 2.7, by encoding the spectrogram color as height instead. In

comparison to the technique by Nemzer [75], which is also a physicalization of a two-

dimensional scalar field, we present a semi-automated pipeline to construct the physi-

calization whereas Nemzer [75] does not enclose any details on how the physicalization
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Figure 2.7: Nemzer [75] 3D printed a spectrogram of gravity waves collected
from the Laser Interferometer Gravitational Wave Observatory (LIGO).

Figure 2.8: GitHub Skyline is an online tool where one can create 3D printable
physicalizations of a users commit timeline [76].

was fabricated. GitHub recently made GitHub Skyline[76], shown in Figure 2.8, which

is an automated pipeline and browser-based tool that creates a printable passive physi-

calization of a user’s GitHub commit frequency by encoding the number of commits per

day as heights of pillars in a regular grid. Creating physicalizations with Skyline is a

fully automated process requiring only a GitHub username, but the tool is specifically

made to represent commit frequency throughout a year, which is a one-dimensional scalar

field input but made two-dimensional by letting the second domain represent the week.

Skyline’s physical representation suffers when tall pillars (created from high field values)

are enclosing short pillars and the enclosed pillars’ value gets difficult to read, which is

an issue we address in our approach (Section 3.4).

2.3 3D Printing

Fabrication of digital models is primarily divided into subtractive and additive techniques

which, respectively, fabricate models by removing or adding material [10, 12]. Subtractive
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Figure 2.9: MakerVis being used to physicalize a bar chart. The design of
the physicalization is chosen in the program, before exporting schematics that
can be cut by a laser cutter and finally assembling the layers to form the
physicalization. [10]

techniques can either operate in 2D, layer by layer, or in 3D like with CNC milling.

Some literature further categorizes subtractive layer-based methods as cutting techniques.

Examples of cutting fabrication techniques include laser cutting, water jets and plasma

cutting [8].

Swaminathan et al. [10]’ MakerVis, shown in Figure 2.9, is an automated process that

uses subtractive manufacturing to physicalize data. Given an encoding format chosen

in the program, MakerVis translates the data to be physicalized into layers that can

be fabricated using cutting techniques and then manually assembled to complete the

physicalization. Umapathi et al. [77] present a possible method to skip the assembling

step by utilizing laser cutters both to cut the pieces and weld them together simultanously.

AM is done layer-by-layer, usually from the bottom up. Despite most AM techniques

generally being slower and having fewer material options compared to their subtractive

counterparts [8], the demand for AM technology has been increasing since the 1990s [78].

AM machines tend to be cheaper, the material cost of AM techniques is usually lower

and AM can create complex shapes that are hard to manufacture with subtractive man-

ufacturing, making AM very popular among rapid prototyping [12, 78]. The technology

used in AM is divided by the International Organization of Standardization (ISO) into

seven categories describing the major technology used: Binder jetting, directed energy

deposition, material extrusion, material jetting, powder bed fusion, sheet lamination and

vat photopolymerization. An overview of the different technologies and their usages is

given by Tofail et al. [12] in their paper on AM.

Today’s AM market is predominantly based on material extrusion machines utilizing

Fused Filament Fabrication (FFF), which is the popularized name of the trademarked

technology Fused Deposition Modeling (FDM) [78]. FDM is a material extrusion pro-

cess where thermoplastic polymer filament is extruded from a nozzle in horizontal cross-

sections, layer by layer. Progressing vertically, the layers are stacked together to fabricate
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a model [78]. Tofail et al. [12] hint toward the development of FFF being a major con-

tributor towards the inexpensiveness of AM machines.

While a lot of cheap material extrusion AM machines exist, Gardan [78] notes that

AM machines using stereolithography are also getting progressively cheaper and easier

to obtain. For instance in the form of Selective Laser Melting (SLM) or Selective Laser

Sintering (SLS) which are powder bed infusion techniques that use a laser to fuse powder

material to solid material on a layer-by-layer basis. Or Stereo Lithography (SLA) which

is a related vat photopolymerization technique that builds models layer-by-layer using a

photosensitive resin liquid that is selectively solidified using light [78].

2.3.1 Materials

While AM has been immensely popular for rapid prototyping, one drawback of the most

common AM technique, FFF, has been that fabrication happens layer by layer, typically

in a polymer-based material. Layer-based fabrication means that if an artifact is to use

different material types, different colors or different textures, parts of the artifact typically

have to be printed separately before being manually assembled. However, because of the

popularity of AM, multiple recent techniques have tried to address these issues. A lot of

these techniques are covered in detail by Garćıa-Collado et al. [79] in their recent report.

Techniques for multiple materials in AM have been created for vat photopolymeriza-

tion techniques like SLA, which involves switching out the photopolymer liquid through-

out printing [79, 80]. Similarly, material extrusion systems like FFF have employed setups

with multiple extrusion nozzles, each with its own pushing motors [81]. Khondoker et al.

[82] instead developed a technique combining multiple filaments in the same mixing cham-

ber, which enables linear combinations of materials as gradients, so-called functionally

graded materials (FGM). Ren et al. [83] constructed a 3D printer that could construct

non-linear FGM’s using polyurethane material diluted with Al2O2. In their technique, an

active mixing chamber would automatically calculate the required material combination

required to display a certain color [79, 84].

More recently, work has been devoted to enabling colors and multiple materials in

material jetting techniques [85, 86]. Further work has also looked into methods to print

transparent models [87, 88]. Bader et al. [89] recently used material jetting to print

3D scalar fields by discretizing the field into a voxel grid with alpha values determining

physicalization representation. Further, they split the composition into separate material
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layers which could then be sent to the printer and dithered together to blend the color

and transparency. A recent technique by Skylar-Scott et al. [90] called multimaterial

multinozzle 3D printing (MM3D) uses Direct Ink Writing (DIW), which is a material

extrusion technique based on ink rheology as opposed to thermoplastic polymers, to

simultaneously print multiple materials [91].

Some attempts have been made toward adding texture to finished 3D printed models.

Mahdavi-Amiri et al. [92] made Cover-it which takes 3D geometry from an input model

and translates it into multiple patches that can be printed on a normal 2D printer. Finally,

the individual patches can be manually attached to the printed model. While requiring

more manual work compared to multiple material additive manufacturing techniques,

Cover-it allows for the use of any texture to cover the model. As a slightly more automated

process, Zhang et al. [93] developed a technique to use hydrographic painting, popularly

used to texture car parts, to add colors and textures to a printed model. Their approach

unwraps the texture onto the 3D model such that the printed texture will then later

wrap around the model without distortion. In another approach, Schüller et al. [94]

similarly unwrap a texture but prints it onto a plastic sheet which is thermoformed onto

a gypsum mold. Thermoforming puts large stress on a model, something that could

typically destroy a 3D printed model, which is why they propose printing a negative

mold using AM which can then be used to create the gypsum mold [8].

2.3.2 STL File Format

The STL file was created in 1987 by 3D Systems Inc. for their stereolithography solution.

The STL acronym originally stand for stereolithography but has gained the backronym

Standard Tesselation Language [95]. The STL format describes surface geometry using

triangle primitives and surface normals, via triplets of vertices. From its original introduc-

tion, it has remained the industry standard format in AM [95, 96]. While the STL format

is simple, it lacks specifications about textures and materials, does not specify units, and

also does not enforce surface continuity. Due to this, several proposals to change the

standard file format have been made [95–97]. An updated specification of STL using an

XML format called STL 2.0 addressed most of the issues with the first format [97]. The

more recent version of this file format is known under the name Additive Manufacturing

File Format (.AMF). Another popular open standard1 is the 3D Manufacturing Format

(3MF), made as a cooperation between some of the most contributing companies for AM

1Found by comparing the supported file formats for 3 of the most popular open-source slicer software,
as of 14/06/2022 [98–100]
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Figure 2.10: From the left: Needle insertion simulation for training personel
in applying regional anaesthesia using a Phantom Omni haptic force-feedback
device [102], Wolverine: a haptic device attached to the hand that simulates
the physical restriction of grabbing objects in VR [105].

technology [101]. 3MF can specify material properties for multi-material additive manu-

facturing but, as Urban et al. [87] point out and propose a solution for, currently lacks

specification for translucent materials.

2.4 Haptics Devices

Haptic devices have been most often used in medicine to train personnel [13–16], in which

case the device is most often modified with an instrument replica like a needle or a syringe

to replicate a surgical environment [13, ch. 5.7]. An example of this can be viewed in the

first image in Figure 2.10, where Ullrich et al. [102] use a Phantom Omni to train medical

personnel in applying regional anesthesia to patients.

The advances in Virtual Reality (VR) technology also push the focus on haptic re-

search to further improve the experience of VR. Consumer haptic devices designed for

VR are gaining popularity, which can be seen from the TactGlove being worked on by

bHaptics which uses linear resonant actuators to give feedback to the user [103]. Cur-

rently, most haptics hardware uses linear resonant or voice-coiled actuators which only

provide vibration, as they are inexpensive to produce. An exception to that rule is the

Reactive Grip by Provancher [104], which is a VR controller that uses actuated sliding

plates to mimic force. Choi et al. [105] also explored the use of a hand-attached device

that uses brakes on cylinders between the fingers and the thumb to replicate grabbing in

VR, which can be seen in Figure 2.10.

Tsai et al. [106] experiments with using rubber balls connected to rubber bands to

simulate impact forces on the chest. Chang et al. [107] used belt-tightening motors
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attached to a VR headset to simulate pressure on a user’s face. In a very recent study,

Shen et al. [108] developed a technique to haptically render on a user’s mouth using

ultrasound phased arrays. Ultrasound phased arrays have been increasingly popular for

use in mid-air haptics and are even commercially available, e.g. by Ultraleap [109, 110].

Weiss et al. [111] tries to use electromagnets to guide the user over a surface using a

magnet attached to the user’s finger, and Adel et al. [112] tries to utilize the same idea

to haptically render 3D geometry in mid-air [110].

Yoshida et al. [113] combined the idea of active physicalizations with wearable haptics

and created a handheld pin-based shape display. Koo et al. [114] also tried using dielectric

elastomer actuators on a flexible surface that can be wrapped around fingers. However,

as Ujitoko et al. [115] writes, both of these methods have limited results in terms of object

recognition, which they argue is likely due to the arrangement of pins or actuators not

being dense enough. Further, they attempt to address this issue by designing a pin-based

shape display for the finger with 128 pins.

Basdogan et al. [116] explore haptic rendering of triangular meshes on a 6DOF haptic

force-feedback device with a pen as the end-effector, meaning the physical part the user

interacts with on a haptic force-feedback device. In their technique, they utilize the

cylinder-like shape of the end-effector to perform collision detection as line and triangle

intersections. Fritz and Barner [117] also explore haptic rendering of triangular meshes

but using a spherical end-effector instead. In their technique, they check for collision by

creating a line between the last and the current position and perform line and triangle

intersections. The technique presented in this paper differs in that it haptically renders

a scene directly from a two-dimensional scalar field instead of using a triangular mesh

intermediate representation.

In their paper, Basdogan et al. [116] also creates textures that can haptically be

explored from grayscale images using the computer graphics bump-mapping technique

to create the surface normal. To better describe microsurfaces, Choi and Tan [118]

attempts to use sinusoidal waveforms and analytically determine the normal. Romano

and Kuchenbecker [119] builds upon this by also haptically rendering waveforms, but

by using vibration through voice-coiled actuators attached to the cursor device, seen in

Figure 2.11. They also made more accurate representations of the surface textures by

recording the surfaces with an accelerometer and converting them to frequencies over

the Discrete Fourier Transform. The use of vibration makes their technique renderable

on modern VR hardware, like the ones by bHaptics, due to the common use of linear

resonant actuators.
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Figure 2.11: Romano and Kuchenbecker [119] simulates textures via vibration
on two motors connected to a stylus. The stylus has an accelerometer attached
to it such that it can record textures and replicate them using the vibration
motors.

2.5 Evaluation Strategies

We will use Kindlmann and Scheidegger [120]’ algebraic process to evaluate flaws in the

encoding techniques. The process presented by Kindlmann and Scheidegger [120] is a

mathematical model to represent common visualization encoding errors, and while both

our techniques are physicalizations, Jansen et al. [9] argues that a lot of visualization

evaluation and design techniques also apply to physicalizations.

As physicalization is a fairly new research area, not a lot of design guidelines exist.

However, Sosa et al. [11] presented physicalization design principles based on the field of

industrial design.
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Chapter 3

Passive Physicalization

In Section 1.2 we highlighted that while physicalization of data carries with it some posi-

tive aspects, a big drawback of physicalizations is the time and skill required to manufac-

ture them. Therefore, a current need in the field of physicalization is the creation of more

automated processes for manufacturing physicalizations. In this chapter, we attempt to

fill this gap by introducing an approach for manufacturing passive physicalizations from

two-dimensional scalar fields in a semi-automated pipeline that outputs geometry that

can be fabricated using any AM printer.

3.1 Encoding Format

Similar to a hexplot, we represent our two-dimensional scalar field in a hexagonal grid. As

mentioned in Section 2.1.2, hexagonal grids are especially space-efficient when it comes

to estimation bias. For 3D printing, hexagonal grids also serve a practical purpose in that

they are simple. 3D printing complex structures carries with it the problem of how to

balance precision and speed costs. Higher precision printing often requires exponentially

more time to perform, which also carries more risks of mechanical or software issues

occuring. Using a simple geometry shape for the regular grid means that the whole

stucture can be printed with less precision without losing information, which increases

speed and printing success rate.

Each AM printer highly varies in terms of printing technique, printing dimensions

and other hardware setups. Essentially, to print geometry, each printer requires some
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middle-ware to convert geometry to instructions for the 3D printer. Traditionally, this is

the job of a slicer software. The slicer converts 3D geometry to tool paths for a particular

printer, by dividing the volume into slices that can be printed in a layer-by-layer fashion.

Slicer software accepts geometry from different file formats, but the most common one

is the STL format. This means if we can encode a 3D model in an STL file, most 3D

printers, independent of printing technique, should be able to print the 3D model via the

help of a slicer.

A study by Fernandez-Vicente et al. [121] also showed that in terms of printing infill

patterns, which are structural patterns generated on the inside of a printed model by

the slicer software, hexagon grids with smaller densities have more structural integrity

compared to square grids (rectilinear) with smaller densities. However, as infill density

increases, square grids quickly surpass hexagon grids as rectilinear grids can be more

efficiently packed to fill the entire volume. As we are more concerned about the structural

integrity of the outside grid, hexagon grids could be a more structurally stable layout

compared to rectilinear squares.

As discussed in Section 2.3.1, AM is usually constrained to one uniform color for the

whole print. While some multi-material AM approaches exist, current multi-material

printers are not as common as their single-material counterparts. Unless using multi-

material printing, the printed models might lack the color spectrum options to encode

enough distinguished values, making the color channel less optimal at encoding the pri-

mary attribute of the data in a physicalization. Instead, we can utilize the fact that we

are transforming a two-dimensional visualization into three dimensions and encode values

along a third axis. Using the position channel makes data visible through haptic sensing,

but is also favored for vision because the position channel ranks higher than the color

channel in terms of the effectiveness of information transfer [1, ch. 5].

While less useful to users who are fully blind, the choice of colors and materials can still

improve readability for users with limited vision. For instance, choosing a glossy material

could help the user distinguish or identify the orientation of the surface as rotating and

moving the physicalization would reflect light differently based on the surface orientation.

3.2 Geometry Construction

To generate the geometry to print, we first start by constructing a 2D grid of hexagon

primitives with each hexagon representing a value in the field, displayed in the first part
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Figure 3.1: The main geometry is created by first a constructing a hexagon
grid. Then, each individual hexagon is translated based on its scalar value.
Finally, each hexagon is connected to its neighbour via rectangles.

of Figure 3.1. Afterwards, we translate each hexagon primitive along the third axis

orthogonal to the 2D grid, with an amount equal to its field value multiplied by a user-

defined scaling parameter, seen in the second part of Figure 3.1. The scaling parameter

can be adjusted by the end-user to change the resulting printed model’s height. This

leaves us with a lot of floating unconnected hexagons at various elevations. The STL

format requires geometry as a closed surface to be printable, so the next step is to

connect them to a connected surface.

In a grid of hexagons, the only thing separating neighboring tiles in the 2D case are

edges. In the last step, when the tiles are translated from the ground plane, they are not

necessarily translated the same amount, which means the edge separating two hexagons

might not be aligned anymore. But as all the tiles are translated along the same axis, the

edges between neighboring hexagons remain parallel. All we then have to do to bridge

the gap between two edges is to add a simple vertical rectangle between them, which

is displayed in the last part of Figure 3.1. Of course, we only have to bridge the gap

between edges that are not aligned anymore. So for neighboring hexagons with equal or

near equal values, we can simply skip adding a rectangle altogether.

By constructing and extruding a tile for every field value, we include every value in the

physicalization, even if the value is zero. While zero values are good for providing a frame

of reference, 3D printing zero values wastes precious materials and time where we could

have simply excluded the tile instead and used the ”ground surface” as the zero value.

However, the problem with excluding all zero-valued tiles is that the sets of tiles might

be divided into multiple unconnected components, so-called islands of geometry, which is

illustrated in Figure 3.2. Most 3D printers are fine with printing islands, but the problem

with having multiple islands is that the physicalization itself is not consistent within

itself. As the horizontal and vertical position between islands is not strictly enforced by

being physically connected to the other islands, moving the islands around changes the
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Figure 3.2: Islands problem: Removing all zero-valued tiles creates separate
islands which the final 3D print have no way of enforcing relative positions of.

→ →

Figure 3.3: The cull is calculated as a convex hull, shown in red, around the
non-zero tiles. After the cull has been calculated, hexagons outside the hull
are discarded. Hexagons are considered to be inside the hull if their center
position is inside the hull, which is why the dark hexagon on the lower right
is not discarded.

relative position of islands to one another, indicated by the question mark in Figure 3.2.

This means that by interacting with the physicalization, the physicalization now gives

the impression that the data it represents has changed. According to Kindlmann and

Scheidegger [120], this would be a breach of their principle of representation invariance

which states that a visualization should be invariant to the choice of representation.

Nothing in the data has changed, but just via interaction it suddenly seems like the

physicalization corresponds to a different data set.

To ensure that the geometry is connected while still attempting to save on resources,

we calculate a convex hull around all non-zero valued tiles using the well-known Graham

scan algorithm [122]. Graham scan builds a convex hull around a 2D point cloud by

”scanning” through the points in quasilinear time, including points that would make a

right turn with the rest of the hull. Any tiles outside the convex hull, which is defined

by whether the position of the hexagon is outside the convex hull, get discarded and a

single connected island of tiles remains, which can be seen in Figure 3.3.

Calculating a convex hull around the tiles ensures a solid connected surface while

decreasing the number of zero-valued tiles we need to include. Compared to including

all zero-valued tiles, only including the tiles within the convex hull reduces the required

material, thereby reducing manufacturing resource costs and printing time.

Thus far, we have only added geometry between tiles. However, our geometry is not

yet printable as the tiles depicting our surface do not specify a thickness and are therefore
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Figure 3.4: After discarding outside hexagons, hexagons inside the hull are
extruded down to form the base

completely flat. Furthermore, the far edges of our surface are currently not connected

to anything, but the slicer requires a closed surface for the geometry to be printable.

Fortunately, since we already calculated a boundary hull around the model, we can use

the same boundary hull to create a base for the model which will ensure that our model

has a non-zero thickness. To create the base, we start by finding all edges along the

convex hull. For each edge, we then duplicate the edge and translate the edge along the

opposite axis that was used to translate the tiles before finally bridging the edges together

with a rectangle, which can be seen in Figure 3.4.

Constructing a wall around the model has now left us with a single polygonal hole

around the boundary at the bottom of the model. Both Guo et al. [123] and Pérez et

al. [124] cover a lot of algorithms that can patch missing holes in 3D geometry in their

surveys from the same year. However, as pointed out by Guo et al. [123], hole-patching in

two dimensions is much easier than doing it in three dimensions and can simply be done

using a triangulation algorithm instead. If we then construct the hole by positioning all

vertices of the boundary on the same plane, our hole can then be fixed by triangulating

the boundary, which most slicer software today also can do for us.

3.3 Directional Attributes

Currently, the top of the pillars (referring to how the top and the bottom tile somewhat

resemble a pillar) making up our physicalizations remain untouched, but there is potential

to utilize these flat surfaces to encode more data. One such attribute of the pillar is the
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rotation or tilt of the top of the pillar, which can encode additional directional data.

For instance, for a two-dimensional tensor field of three-dimensional values, the tilt of

the pillar could represent the direction of the tensor while the height of the pillar could

represent the magnitude. As hexplots are often used to visualize aggregated data, we

decided to utilize the tilt of the pillars to physicalize the aggregated data’s distribution.

Specifically, we physicalize the alignment of the point distribution.

In a paper by Trautner et al. [23] they create a visual encoding called a diamond cut

which they use to display the distribution of points within a hexplot bin. To create their

visual encoding they construct a hexagonal pyramid, which is cut in two by a regression

plane constructed over the points within a hexagonal bin. The cut pyramid, equalling

to the boolean intersection (Constructive Solid Geometry (CSG)) between the regression

plane and the pyramid, is then shaded using Blinn-Phong or a similar lightning model

and finally projected down onto the tile. Our physicalization, being in three dimensions,

allows us to instead directly encode the distribution of points by directly aligning each

tile with its regression plane.

Unfortunately, simply rotating the tile to match the regression plane normal, shown in

Figure 3.5, would invalidate one of our previous requirements, which is that all the tiles in

the grid need to be extruded along the same axis. The edges of the rotated tiles have now

shifted horizontally and its corresponding rectangle to its neighbor has to be rotated as

well. As seen in Figure 3.5, this can lead to triangular holes in the surface geometry due

to how our approach connects hexagons together with rectangles. Instead, we translate

every point within a tile along the common translation axis with an amount given by

projecting the position onto the regression plane normal. The translation amount is

given by Equation 3.1; where h is the translation amount, p is the local position within

a tile, n̂ is the regression planes normal and s is a steepness scaling parameter.

h =


−px

−py

0

 · n̂

 n̂z · s (3.1)

As seen in Figure 3.6, this gives us a surface geometry without triangular holes.

3.4 Surface Cavities

If a tile created from a low field value has opposing neighboring tiles created from higher

field values, the overall surface will make a small ”dip” at the low tile. This structure will
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→ →

Figure 3.5: Simply rotating the hexagon distorts our rectangles connecting to
other hexagons, potentially leaving holes in our geometry which can be seen
from the top-down view to the far right.

→ →

Figure 3.6: Instead of simply rotating the hexagon (Figure 3.5), we translate
the vertices of the hexagon along the same axis which keeps the top-down
view, to the far right, correct and ensures no holes are created.

henceforth be referred to as a surface cavity. If a user tries to sense the surface and the

diameter of the surface cavity is less than the diameter of the user’s finger, the user will

be able to detect the cavity but is likely unable to reach the tile. This issue is visualized

in Figure 3.7 with crosses marking spots where a user can not reach. As the user is not

able to verify the value of the tile, multiple cavities can be perceived as similar although

their actual values might differ drastically.

One possible solution to fix this issue is to increase the diameter of each tile to a

reasonably large size such that a user would always be able to reach the surface. Similarly,

one would also have to scale the height of the surface such that the steepest surface cavity

is reachable with the length of a finger. Each 3D printer has a limit on its printing area,

which limits the maximum size of a printed model. Increasing the diameter per tile,

therefore limits the maximum resolution of the tile grid one could print, further limiting

the number of data points that can be physicalized simultaneously.

Instead, we can utilize the fact that surface cavities are created by low values between

high values. If we create another physicalization from the same data but inverted, the

previous surface cavities have now become local peaks, which are much easier to reach.

Utilizing this, we propose to solve the issue with surface cavities by using the previously

31



→ →

Figure 3.7: Aproach 1: Overcoming surface cavities by making a cut through
a surface cavity and extruding the geometry towards the cut from both sides.
The red distance is a ”safety bias” to ensure the printed model has no thin
areas that would break. The rightmost image shows that only some cavities
will be mirrored while some remain inaccessible.

→ →

Figure 3.8: Approach 2: Overcoming surface cavities by copying and translat-
ing the surface with the smallest amount that does not create a self-intersecting
surface (cyan) and a small safety bias (red). The right image demonstrates
how using this approach over the previous approach makes all surface caveties
accessible from the other side of the physicalization.

unused bottom part of our surface to show a physicalization of the inverted data. When-

ever the user identifies a surface cavity, they can read the value simply by sensing the

same spot on the opposite side of the model.

Initially, the way we proposed to do this was to make a cut through a cavity and

extrude the geometry in both directions from the cut, as shown in Figure 3.7. Unfor-

tunately, this not only just solves the issue for one particular surface cavity (illustrated

by the checkmark in the figure), but also changes the height of the zero-value tiles on

both sides of the cut. By changing the visual representation, the physicalization now

gives a different interpretation, as if the underlying data changed. This is a violation of

Kindlmann and Scheidegger [120]’s principle of Representation Invariance.
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Our second approach instead mirrors and translates the top surface to become the

bottom surface, as shown in Figure 3.8. In this approach, whenever a user has difficulties

reaching a spot (marked using x marks in the figure), the same spot should be reachable

from the other side of the model (marked using checkmarks in the figure). While this

approach does not change the representation, maintaining the principle of representation

invariance [120], this approach runs the risk of having self-intersecting geometry instead.

Self-intersecting geometry occurs when a local maximum from the bottom surface passes

through a local minimum from the top surface. So to prevent this, we find the largest

height difference between two neighboring tiles and separate the top and bottom surfaces

with the difference. This ensures that no geometry passes through its mirrored side, but

the top and the bottom surfaces can still touch in some corners, like the one at the tile

with the biggest difference. So we separate the surface by an additional small safety bias

(shown in red) to ensure that the geometry is hollow.

3.5 Orientation

Without mirroring the surface on the bottom of the model, the height of the tiles can

easily be understood as the value of the data points. Bigger pillars mean data points with

larger values. With the bottom part mirrored, identifying the positive axis is a bit less

trivial as every pillar is now always the same size. Fortunately, the top and the bottom

tiles are translated in the same direction, so the positive axis can be identified as the

common translation axis.

Unfortunately, identifying the horizontal axes and the horizontal orientation of the

physicalization is not a trivial task. Unlike a visualization on a screen or paper, there

is no ”up” or ”north” direction for our physicalization. So to help the user identify the

coordinate system, we propose encoding a small orientation mark.

If there exists a sizeable area of zero-valued tiles in the physicalization, a small ori-

entation mark depicting the encoded axes can be etched into the flat area. The mark

itself can be as simple as a right-angled triangle where the two catheti correspond to

the x- and y axes. By sensing the mark, a user can identify whether they are reading

the physicalization correctly or adjust the orientation accordingly. A visualization of this

mark is given to the left in Figure 3.9.

If no areas large enough to place the mark can be found, a small notch in the corner of

the 3D model can also suffice to tell the user the orientation. A visualized of this is given
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Figure 3.9: To the left: the orientation right-angled triangle indicating the
direction of the x- and y axes via its cathethi. To the right: the orientation
notch indicating the origin of the coordinate system.

to the right in Figure 3.9. The notch can be understood as the origin of the coordinate

system. However, unlike the right-angled triangle glyph, the notch does not encode

information about whether to treat the coordinate system as left- or right-handed. It is

therefore important to be consistent in choosing coordinate systems or add a secondary

glyph describing the coordinate system used, like a letter.

3.6 Summary

To construct the geometry for our physicalization our approach starts with constructing

a hexagonal 2D grid from two-dimensional scalar field input data, either directly or by

aggregating tabular data into a scalar field similar to a hexplot, further explained in

Section 3.1. Each hexagon in our grid, each representing one value in the field, is then

translated along a third axis according to its value, further described in Section 3.2. Next,

each hexagon connects to its neighbor by adding a rectangle between them. After this,

we calculate the convex hull around the zero-valued hexagons, cull the hexagons on the

outside of the hull and then extrude the sides of our resulting surface down to form the

base of the model.

If the scalar field was created from aggregating tabular points, we can give some

context to the underlying points by aligning the top surface of the hexagons with the

regression plane of the aggregated points, further described in Section 3.3. In Section 3.4

we highlighted how tall hexagonal pillars surrounding small pillars can lead to difficulties
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Figure 3.10: An overview of the entire geometry pipeline: (1) A grid of
hexagons representing the field is created, (2) The hexagons are translated
according to the their corresponding field values, (3) Hexagons are connected
with rectangles between them, (4) A convex hull is calculated around the non-
zero values and the hull is used to cull hexagons on the outside and extrude
down a base of the model, (5) The tiles are aligned with a regression plane of
the aggregated points in the underlying hexagonal bin, (6) A mirrored version
of the model is attached to its bottom and an orientation notch is indented in
its side.

in reading the values. To resolve this issue, we attach a mirrored version of the top surface

to the bottom of the model, utilizing how values that are difficult to read due to being

obscured by high values are more easily read when the values are flipped.

Finally, in Section 3.5, we improve upon the ambiguity of orienting the model by

encoding a notch into the side of the model representing the origin of the coordinate

system. The whole pipeline is also summarized in Figure 3.10.
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Chapter 4

Haptic Rendering

Our second approach presented in this chapter uses a haptic force feedback device to

actively physicalize a two-dimensional scalar field, by mimicking a surface using real-life

forces like the normal force, the friction force and the gravity force.

While passive physicalizations have some advantages over classic visualizations, for

instance in terms of memorability or information retrieval (see Section 2.2), fabricating a

physicalization through AM has some drawbacks, with the biggest one being the time it

takes to fabricate the passive physicalization artifact. If the visual encoding is changed or

the physicalization should represent some other data, the whole process has to start over.

Another drawback could be the geometrical limitations. In our previous approach, we

had to encode empty values between non-empty values to ensure that the model remained

consistent when interacting with it, and we had to add a vertical displacement to ensure

the model was printable.

Active physicalization avoids a lot of these limitations. The physicalization can in-

stantly reflect changes in the dataset or the data representation. The constant feedback

loop between a user and the physicalization enables the use of visual analytics solutions

which are very popular for explorative analysis of data: “Visual analytics combines auto-

mated analysis techniques with interactive visualizations for an effective understanding,

reasoning and decision making on the basis of very large and complex data sets.” [125]
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4.1 Encoding Format

Usually, the hardest part about designing an active physicalization revolves around the

encoding medium. For this purpose, we decided to encode our physicalization via a

force-feedback haptic device. Specifically, we designed our physicalization around the

Falcon by Novint [103]. Among force-feedback haptic devices, the Falcon is one of the

few commercially available at a reasonable price, which is the primary reason we chose

this force-feedback device over other ones.

As force-feedback haptic devices can give user feedback in the form of physical forces,

more information can be delivered compared to similar wearable haptics techniques dis-

cussed in Section 2.4 that usually offer haptic feedback via vibration. However, as ex-

plained by Fritz and Barner [117], the tactile sense has a much lower bandwidth compared

to the sense of vision, meaning that the amount of information that can be simultaneously

processed is lower for tactile displays.

Most current force-feedback haptic devices can only convey one simultaneous posi-

tional force, with some solutions also being able to display simultaneous torque or grip

forces. In practice, people use multiple touch-points simultaneously to sense surfaces,

which is a current limitation of most force-feedback devices. Fortunately, the tactile

sense is kinetic, meaning that people can collect information about a surface by moving

across it. And while we cannot supply multiple touchpoints with a force-feedback device,

we can supply highly accurate force that changes as you move through the physicalization.

Tactile response is also normally two-directional, meaning the way you interact with

something will typically change the information you receive. If you press your finger onto

a hard and a soft surface, you can typically differentiate between them just by how much

resistance the surface gives back. Therefore, we can represent different surfaces by the

amount of force we apply to a specific movement using a force-feedback haptic device.

Exploring a virtual environment using an active physicalization also enables us to

visualize impossible or non-constructible geometry. For instance, a Klein bottle is possible

to represent using a haptic simulation but impossible to construct in real life (without

intersections). Unlike our previous approach, we do not need to add geometry to ensure

the physicalization can be constructed.

In Section 2.1.2 it is mentioned that encoding a 2D scalar field by encoding the

value along the third axis makes the reading the value easier but is usually difficult to
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represent on a computer screen or paper. Plotting software usually does this by creating

an isosurface rendered from a viewing angle and using shading to help distinguish the

surface, typically via a lightning model like Phong or by encoding the surface normal as

the color. Unfortunately, projecting the 3D surface to a 2D image often obscures parts of

the surface and depth can be hard to distinguish. However, rendering to a haptic device

is usually much less involved as a haptic device already offers 3-dimensions of force as

the output, thus eliminating the need to rasterize or project to a lower dimensionality.

Still, keeping with the idea of representing the scalar field as an isosurface allows us to

haptically render it through surface forces instead.

4.2 Normal Force

The main force we need to replicate to create something that will feel like a surface is the

normal force. Newton’s third law of motion states that if two bodies exact force upon

each other, the forces have the same magnitude but opposite directions. If an object is

placed upon a table, the force of gravity will push it down into the table; However, the

object will remain stationary on the table as an equally great opposing force keeps it

stationary. In classic mechanics, this force keeping the object on the table is called the

normal force. The normal force only appears when an object exalts force upon a surface,

is perpendicular to a surface, and has the magnitude of the sum of forces from the object

in the direction toward the surface. An illustration of how the normal force interacts with

objects is shown in Figure 4.1, where Fn is the normal force, Fg is the gravity force and

F ′ is the component of Fg exalted upon the surface. As we are trying to replicate the

feeling of a surface in a virtual environment, the normal force will be the most important

force we can give the user.

The force of an object is given by F⃗ = ma⃗ where m is the mass of the object and

a⃗ is the acceleration currently being applied. If an object is stationary on a surface, its

acceleration must necessarily be 0, which means the force F⃗ = m0 = 0 is being applied

to the object. In this case, the normal force is negating all the other forces being applied

to the object, meaning
∑

i F⃗i + N⃗ = 0, and thus giving the normal as N⃗ = −
∑

i F⃗i.

One additional problem we have not accounted for is the velocity after the impact. If

moving towards a surface with a constant speed, the normal force would be 0, meaning

only applying the normal force would not change the velocity. Newton’s first law of

motion states that a body that is stationary or is moving with a constant speed does not
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Figure 4.1: In this example, the force of gravity Fg works upon the sphere,
which makes the sphere exalt force upon the surface in the direction of the
surface, labeled F ′. Newton’s third law then states that the surface exalts
an opposing force back upon the sphere with the same magnitude but in the
opposite direction. F ′ is perpendicular to the surface tangent at the collision
point, which gives a normal force of the same magnitude but in the opposite
direction F⃗n = −F⃗ ′.

have a force acting upon it. This means, at the point of impact, a normal force would be

applied to the object that would give a negative acceleration canceling out the velocity. If

the impact happens over the time of ∆ seconds, the normal force acting upon the object

in those ∆ seconds would then be given as

N⃗ = −
∑
i

F⃗i −
v⃗

∆m
(4.1)

where v⃗ is the velocity of the object and m is the mass.

Due to this, finding the normal force is trivial if the haptic device can detect the force

applied by the user. However, most haptic devices, like the 3DOF one we are working

with, are limited to positional and rotational sensors. Acceleration can be estimated

using position queries, but calculating the force also requires us to know the weight

of the haptic device’s end-effector (end-effector here refers to the physical part the user

interacts with on a haptic force-feedback device). Additionally, we would have to account

for outside factors like air resistance or friction in the physical hardware of the device.

Fortunately for us, we only have to apply the normal force while the user is pushing

against the surface, which we can approximate as when the user is inside of the surface,

as moving from a position outside the surface towards a position inside the surface must

have involved applying some force to the device.
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Now we need to find the magnitude of the force that should be applied. Initially, we

can define the force by a user-controlled parameter which we will call sf . If the user-

controlled parameter is much greater than the magnitude of the normal force required to

stop the velocity, the result is that the user will be pushed back away from the surface

instead of stopping on the surface; the higher the parameter the faster the speed at which

the user gets pushed back. A quick workaround to this issue is to simply scale the normal

force with the distance from the surface.

Looking at Equation 4.1 we can see that the elapsed time of the impact directly affects

how much normal force is applied. If we are already scaling the normal force with the

distance into the surface, simply extending the period where we apply the normal would

then increase the time of impact. Softer surfaces can therefore be simulated by increasing

the distance of which we apply a fraction of the normal.

4.3 Surface Height and Normal Replication

Whenever the haptic device’s probe, meaning the virtual representation of the haptic

device’s end-effector, finds itself beneath the surface in the virtual environment, we want

to apply a normal force back to the end-effector, pushing the end-effector in the opposite

direction and out of the surface. We want our surface to vary with the scalar field and,

therefore, define our surface as a plane where the scalar field determines the relative

height offset above the plane.

uv(p) =


p · t̂
2wl

p · b̂
2hl

 (4.2)

We need to determine the relative position of the probe to the surface. To do this,

we first project the position down onto the plane of the surface, shown in Equation 4.2

where p is the position, t̂ and b̂ are the plane’s tangent and bitangent unit vectors, and wl

and hl are the width and height of our simulation bounds. Projecting the position gives

us the position in the plane’s basis, which we can treat as texture coordinates within the

plane. Then, doing a texture lookup using the texture coordinates on the scalar field

gives us the bilinearly interpolated scalar field value, which we use as an offset from the
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Figure 4.2: Our surface in our virtual environment is defined as a plane, offset
by a heightmap. To determine the probe’s relative height to the surface, we
first find the distance from the probe to the plane dp, which according to
Equation 4.3 can be found as dp = (p−pl) · n̂l where p is the probe position, pl
is a point the plane passes through and n̂l is the plane normal. After finding
the distance to the plane, we subtract with the sampled value t at the probe’s
texture coordinates, found using Equation 4.2. The final relative distance h
is then given as h = dp − t.

probe’s distance to the plane. The final relative height of the probe above the surface

is then calculated in Equation 4.3 where p is the probe’s position, pl is a point passing

through the plane, n̂l is the plane’s normal, t is the texture sampling function and s is a

user-defined surface scaling parameter. An illustration is given in Figure 4.2 where dp is

the distance to the plane (p− pl) · n̂l, t is the sampled scalar field value t(uv(p)) and h is

the resulting height above the surface.

h(p) = (p− pl) · n̂l − t(uv(p)) · s (4.3)

When the relative height above the surface is negative (h < 0), it means the probe is

situated beneath the surface. This is when we want to apply a normal force to the haptic

device. As the normal force is collinear with the surface, we set the normal force from

the surface’s normal multiplied by the previously mentioned user-controlled parameter

sf . To calculate the surface’s normal we first have to find the surface’s gradient. The

gradient is calculated using the partial derivatives of the height sampling function, which

again is approximated using finite differences, demonstrated in Equation 4.4 where p is

the probe’s position.

∇(p) =


∂h

∂x
(p)

∂h

∂y
(p)

 (4.4)

As the field is a 2D scalar field, its gradient is also limited to two dimensions. The surface

normal vector is therefore created from the cross product of two unit vectors lying in the

plane formed by the partial derivatives, as shown in Equation 4.5 with ∇x and ∇y being
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the gradient in the x and y direction and p being the position.

n̂(p) =

∥∥∥∥∥∥∥
1

0

∇x(p)

∥∥∥∥∥∥∥×

∥∥∥∥∥∥∥
0

1

∇y(p)

∥∥∥∥∥∥∥ (4.5)

Finally, the normal force from the surface, illustrated in Figure 4.6 as F⃗n, is calculated as

F⃗n(p) = n̂(p) · sf (4.6)

where sf is the user-controlled force parameter.

4.4 Friction and Gravity

Fritz and Barner [117] emphasize that friction is an important part of what makes a real

surface feel like a surface. The virtual friction force mimics what in classic mechanics is

known as dry friction. Dry friction is a force that opposes the lateral movement of two

surfaces. Dry friction is colinear to the surface, pointing in the opposite direction of the

velocity with a magnitude dependent on the velocity magnitude and is typically a fraction

of the normal force magnitude. An illustration is given in Figure 4.3. Dry friction is

further divided into static and kinetic friction. With increased lateral movement between

the surfaces, the friction between them transitions from static to kinetic friction, with

the magnitude of static friction being higher than that of kinetic friction.

Our friction force simulation is based on the approach described by Fritz and Barner

[117] in their paper, with only some minor adjustments. In the approach proposed by

Fritz and Barner [117], when the probe first enters the surface, a sticktion point ps is

placed on the surface position of the probe. In the next simulation steps, if the current

probe’s position is within a radius of the sticktion point, with the radius being equal to a

constant set by the implementation, they apply static friction. Static friction is calculated

as a vector from the probe position to the sticktion point multiplied by the magnitude of

the normal force |F⃗n| and a static friction coefficient µs also set by the implementation.

The static friction parameter µs can be anything that fulfills 0 ≤ µs ≤ 1. This means

static friction always pulls the probe towards the point it first entered the surface, which

is visualized in Figure 4.4. If instead, the probe position is outside the radius of the

sticktion point, they apply kinetic friction which is calculated similarly but multiplied by
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Figure 4.3: Dry friction (F) is a force orthogonal to the surface normal force
(N), with a fractional magnitude of the velocity (V) and aligned in the opposite
direction of velocity.

a kinetic friction coefficient µk instead of the static one. As kinetic friction is lower than

static friction, µk has to satisfy µk < µs.

Our approach is mostly similar, but instead of using the distance to the sticktion

point, we opted to use the magnitude of the velocity v⃗ instead, as real-life dry friction is

only dependent on velocity and not position. Velocity can be calculated as the change in

position since the last simulation step, normalized over time, illustrated by the blue vector

in Figure 4.5. The proposed radius then becomes a threshold in our approach instead,

which we set equal to |F⃗n|·µs to simplify the equation. If we never move the sticktion point

our kinetic friction will scale with the distance to the point where we first intersected with

the surface, but real friction is not dependent on how long you have been moving across

a surface. If we add the requirement that µs should be non-zero (0 < µs ≤ 1), we can

utilize the fact that when we apply kinetic friction the velocity necessarily also have to be

non-zero, as kinetic friction is only applied when |F⃗n|·µs < |v⃗|, 0 < µs ≤ 1. We can then

find the direction of our velocity ∥v⃗∥, which gives us the direction we are moving. And

we can ”drag” the sticktion point behind us by setting it to our current probe’s position

displaced by the negative direction of the velocity, which is visualized to the right in

Figure 4.5. The new position of the sticktion point is calculated as po − ∥v⃗∥ · |F⃗n| · µs

where po is the probe’s current position projected to the surface. Finally, the dry friction

force, illustrated as F⃗fr in Figure 4.6, can be calculated using Equation 4.7:
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Figure 4.4: For static friction, the friction F⃗fr is collinear with the vector
from the current probe’s (shown as a blue circle) surface-projected position
po, towards the sticktion point ps.

Figure 4.5: Kinetic friction is calculated similar to static friction, as shown in
Figure 4.4, but afterwards ”drags” the sticktion point ps behind the surface
position po using an offset in the direction of the negative velocity. Marked in
gray are the positions from the last simulation step.

F⃗fr =

(ps − po) · |F⃗n| · µk, |F⃗n| · µs < |v⃗|

(ps − po) · |F⃗n| · µs, otherwise
, 0 ≤ µk < µs ≤ 1 (4.7)

Depending on the haptic device and the API used in the implementation, the end-

effector may or may not apply a stationary force keeping the end-effector in place by

default, which is the case for the Novint Falcon we are using. If the end-effector is

stationary when no forces are applied, adding a constant artificial gravity force could

help with the illusion of a real surface. Simulating a gravity force can be done simply

by adding a constant force on the down-axis of the haptic device at every step of the

simulation, for instance as

F⃗g =

 0

0

−9.81

 (4.8)

, which is illustrated as F⃗g in Figure 4.6.

4.5 Local Encoding of High-Level Properties

Because our haptic device has a singular position input and a singular force output for

each frame, our probe is essentially a single point in the virtual environment. People
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Figure 4.6: This figure shows an overview of the forces we apply where F⃗n

is the normal force, F⃗fr is the friction force and F⃗g is the gravity force. The
blue sphere indicates the probe and the strippled line is its surface projected
position.

sense physical objects by moving multiple local sensing points across a surface, collecting

simultaneous local information about the surface and using this to build a global image

of the object. As our probe is a singular point, we are more limited in the amount of

simultaneous information about the surface we can supply. However, we can still make

use of how people dynamically collect information about a surface by moving across it,

which we have done by encoding global information locally as a 3D volume situated above

the surface. The idea which is visualized in Figure 4.7 is that as the user moves through

the volume, from the top of the volume towards the surface, the user should detect a

surface that interpolates between a smoothed overview surface and a higher detailed one.

This gives the user an understanding of the overall structure of the surface by moving

through the volume in a higher region, and more local and detailed values by moving

through a lower region. We placed the most smoothed representation in the top region

of the volume and the most detailed representation in the bottom region, which means

the bottom region could be as detailed as our previous surface representation. We then

place our previous surface representation directly beneath the volume such that a user

can smoothly move from a course overview toward the actual surface with gradually

increasing accuracy.

To smoothly transition from the volume to the surface, we keep the notion of a

surface normal in the volume as well. In Section 4.2 we highlighted how simply scaling

the normal force can make the surface feel softer, thus by setting the normal in the volume

to a fraction of the normal on the surface the user should still be able to differentiate

them as different objects.
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Figure 4.7: The volume consist of progressively smoothed surfaces stacked on
top of each other

By taking progressively smoothed levels of the surface and stacking them on top of

each other, we can treat the surface stack as a volume. These smoothed levels can for

instance be iteratively acquired from the previous level by applying a Gaussian smooth-

ing filter or, using scale-space theory, can be defined as the scale-space representation

L(x, y, t) = g(x, y, t) ∗ f(x, y) with increasing scale parameters t (t = 0, t = 4, t = 16, ...)

where L(x, y, t) is the convolution of the image representation f(x, y) and the Gaussian

kernel g(x, y, t) =
1

2πt
e−(x2+y2)/2t. We then define the density for the volume as the

linearly interpolated height between the different levels, shown in Equation 4.9 as di(p)

with hi(p) being the height-sampling function for the level i and t is the interpolation

parameter between the levels.

di(p) = (1− t) · hi(p) + t · hi+1(p) (4.9)

The interpolation parameter t can be calculated by taking the difference in the height

between the underlying planes for the height-sampling function, shown in Equation 4.10

where h′(p) is a simplified version of Equation 4.3 taking only the underlying plane into

account and discarding the sampled height.

t(p) =
h′
0(p)− h′

i(p)

h′
i+1(p)− h′

i(p)
, h′(p) = (p− pl) · n̂l (4.10)

We then use di(p) to calculate the gradient ∇(p) in the volume similarly to how it was

done in Section 4.3, only this time using the finite differences of the interpolated height

instead of the height directly, as shown in Equation 4.11.

∇(p) =


∂di
∂x

(p)

∂di
∂y

(p)

 (4.11)
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Treating the normalized gradient as the volume normal then gives us a normal vector

at any point within the volume. As the volume density is sampled from a 2D scalar

field, the gradient calculated from it does not change over the third up-axis. To account

for this, we simply replace the up-axis in the normal with the height from the bottom

surface within the volume. This gives us the final equation for our volume normal force,

shown in Equation 4.12, where sf is the user-controlled force parameter and k is a scaling

parameter set on the implementation side to an amount sufficiently smaller than 1 such

that the surface and the volume can be differentiated (e.g. k = 1
2
).

F⃗v(p) =

∥∥∥∥∥∥∥
∇x(p)

∇y(p)

h0(p)

∥∥∥∥∥∥∥ · sf · k, 0 ≤ k ≤ 1 (4.12)

4.6 Summary

To create a surface representation of the two-dimensional scalar field that can be ren-

dered on a haptic force-feedback device, we rely on replicating three forces from classical

mechanics: the normal force, the friction force and optionally the gravity force, which

is illustrated in Figure 4.6. The normal force further explained in Section 4.2 is the

most important force to replicate, as this is the force that prevents objects from passing

through one another. When the user moves the probe in the virtual environment be-

neath the surface made from elevating a plane using the scalar field as a heightmap, we

apply a normal force to push the probe back out. As detailed in Section 4.3, our surface

normal force is calculated by taking the cross product of two unit vectors lying in the

tangent plane, where the tangent plane is defined by the gradient calculated using central

differences.

Next, detailed in Section 4.4, we simulate dry friction over the surface. We do this

by creating a sticktion point at the location the probe first entered the surface, which we

gravitate the probe towards. To simulate kinetic friction, which is dry friction in motion,

we move the sticktion point behind the probe as it traverses the surface such that the

friction amount is independent of the distance traveled across the surface. Our third and

final force, the force of gravity, is afterward optionally applied as a constant down-pulling

force.

The haptic device can convey one force at a time, which makes our haptic rendering

give a local view of the surface. In Section 4.5, we improve upon this by encoding
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global information about the surface on a local level using a volume built from layering

increasingly smoothed versions of the surface on top of each other. Moving through the

smoother part of the volume reflects large global structures and clusterings in the scalar

field while moving through the more detailed part reflects the smaller and more local

details.
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Chapter 5

Implementation

This chapter covers our implementation of the methods specified in Chapters 3 and 4.

Both the physicalization and the haptic rendering parts are implemented as an extension

of the project used for the implementation of HoneyComb plots by Trautner et al. [23].

The source code for the project can be found at github.com/andesyv/tangible-scalar-fields.

5.1 Physicalization

Most of the implementation for the physicalization was done using C++ and OpenGL in a

General-Purpose computing on Graphics Processing Units (GPGPU) approach, meaning

parts of the tasks are offloaded to the GPU.

The STL format stores surface geometry in triangle primitives using triangle vertices

and vertex normals (see Section 2.3.2). This is the same way OpenGL handles geometry,

meaning if it can be rendered in OpenGL, it can be stored in an STL file.

5.1.1 Geometry

Following how it was described in Chapter 3, our pipeline starts with a scalar field which

is created by aggregating tabular data in a hexagonal grid similar to a normal hexplot

implementation. We then generate a grid of hexagons which we translate according to

each hexagon’s corresponding scalar field value and connect all the hexagons together with
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Figure 5.1: The blue shaded triangles represent the work group for the middle
hexagon.

rectangles made from two triangles. The geometry generation process is highly individual

per hexagon, so we perform this main grid generation on the GPU via OpenGL Compute

Shaders. A compute shader is a custom shader program running entirely on the GPU

that is specialized to perform general-purpose computing instead of rendering. A compute

shader is invoked with a set amount of work groups in which the tasks are divided among

work groups and run in parallel. Each work group is further divided into a set amount

of local invocations which are also run in parallel.

As the number of work groups to invoke is given as a three-dimensional integer vector

in the OpenGL implementation, we set each work group to correspond to one hexagon

in the grid and set the invocation space to ⌈n 1
3 ⌉3 where n is the count of hexagons in

the grid, to ensure that at least one work group is invoked per hexagon. Between two

hexagons, only one rectangle needs to be placed, meaning each workgroup can create half

of the triangles in the rectangle connecting to the neighboring hexagon. As each hexagon

consists of six edges, this gives a total of twelve triangles and twelve local invocations,

with half of them creating the geometry for the inside of the hexagons and half of them

creating the geometry connecting to the neighboring hexagons. The layout of the triangles

within a workgroup is displayed in Figure 5.1.

After the main geometry is generated, we calculate the convex hull around the

hexagons with non-zero scalar values, which are afterward used to cull the hexagons

outside of the convex hull. The convex hull is calculated using Graham scan [122] on the

CPU, while hexagon culling happens on the GPU. After calculating the convex hull, a

compute shader is run that simply discards a hexagon if it is outside the hull.
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Figure 5.2: An overview of the whole physicalization workflow and how work
is divided between the GPU and CPU.

After culling outside hexagons, vertices along the convex hull are extruded down to

form the base of the model using a compute shader. At this point, we are left with a

single hole in the shape of a polygon. If we are not encoding a mirrored bottom surface

(see Section 3.4), this is the point where we fill the hole geometry ourselves or leave it

to the slicer. Guo et al. [123] notes that flat polygonal holes can often be filled using

simple triangulation algorithms, which we can utilize by extruding our base down to the

same plane. Since our hull extrusion happens on the GPU, it makes sense to leverage

the GPU for the triangulation as well, such that no CPU-GPU transfers are required.

For instance, using the triangulation approach by Qi et al. [126]. However, most current

slicer software can also fill the hole automatically.

The mirrored bottom surface (Section 3.4) is constructed similarly to the top surface,

except that the geometry is flipped. Therefore, we construct the bottom surface geometry

in the same pass as the top surface by invoking twice the amount of compute shaders and

flipping the triangle winding order for the bottom surface. Extrusion of the boundaries

also happens for each surface, but the bottom boundary is instead extruded up. After

constructing both surfaces and extruding their boundaries, both surfaces overlap as they

were constructed in the same coordinate space. But, they also share a similarly shaped

hole, only flipped. Therefore, in an additional last step, we connect the top and the
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bottom surfaces by translating both surfaces away from each other until the boundary of

their holes overlaps.

5.1.2 Orientation Notch

Section 3.5 mentions two approaches to encode orientation. The first approach places a

right-angled triangle on a sufficiently large flat surface to indicate the direction of two

axes. The second approach simply makes a notch in the side of the model to indicate the

origin of the reference system.

We ended up opting for the second approach because the way we handle the mirrored

bottom surface makes it easier to implement. After the top and the bottom surfaces end

up with overlapping holes, both surfaces end up sharing a common set of vertices aligned

on a plane through the middle of the model. Simply moving the boundary vertices on the

top and bottom surface introduces holes in the side of the model. By filling the created

holes with geometry from an inverted shape, we can encode shapes on the side of the

model in a fashion similar to a difference operation in CSG. In our case, this would be the

difference operation between our model and a ”wedge”-like model. A ”wedge”-like model

can be represented with two intersecting planes, and since our surfaces are mirrored, we

can construct the ”wedge”-like hole from both sides by taking the difference operation of

our surface and a plane.

5.2 Haptic Rendering

Our implementation was made for the Novint Falcon [103], but due to their similarities

should work with any 3DOF force-feedback haptic device.

There exist some software available for interacting with haptic force feedback devices.

Among the most popular ones are the OpenHaptics toolkit by 3D Systems [127] and the

CHAI3D open-source framework by Conti et al. [128]. OpenHaptics, despite its name, is

a closed source software made by the same developers of the Phantom devices, designed

to work with their devices. CHAI3D is instead a lightweight open-source framework with

support for more haptic devices, including the Phantom devices. CHAI3D ’s support

for the Phantom based devices comes from the Haptic SDK by Force Dimension [129].

CHAI3D includes some higher-level abstractions for common usages of a haptic device,
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but since we are interested in implementing the whole pipeline ourselves we opted for

using the lower-level SDK by Force Dimension [129] instead.

To get a seamless experience using a haptic force feedback device, instructions need

to be sent to the device at a high rate, typically around 1000 instructions per second due

to the tactile sense having a high temporal resolution [13, ch. 5.7]. To prevent other tasks

in the application from slowing down the interaction rate, we dedicate a single thread to

interact with the haptic device. At each simulation step, the thread: starts by fetching

the current position of the haptic input device’s probe, converts the position from the

device’s space to local space, calculates the force that should be applied to the haptic

device at its current position, and finally converts the force back to its local space and

applies it to the device.

When the relative sampled height from the surface is positive, according to the ap-

proach in Section 4.3, the position is in the air, and no forces other than gravity should

affect the probe. Otherwise, when the height is negative and the probe is beneath the

surface, the surface normal is sampled from the surface using the normalized gradient,

which is approximated using central differences. The normal force from the surface is

then set as the surface normal multiplied by the force amount specified via a user param-

eter. To prevent big jumps in the force felt on the user end-effector caused by entering

and exiting the surface, we multiply the force with an additional scalar that smoothly

interpolates from 0 to 1 over a small distance into the surface.

The sampled height and the resulting approximated gradient are calculated from the

surface data, which is stored as discretized height values in a 2D grid. However, height

sampling needs to be continuous, and the height thus gets bilinearly interpolated between

neighboring height values within the discretized field. This is shown in Equation 5.1 as

hn(u, v) with u and v being the texture coordinates and Tn being the texture samples for

a level of detail n.

hn(u, v) =


(1− u)(1− v)

u(1− v)

(1− u)v

uv




Tn(u, v)

Tn(u+ 1, v)

Tn(u, v + 1)

Tn(v + 1, u+ 1)

 (5.1)

As mentioned in Section 4.5 we construct our volume by stacking progressively

smoothed levels of the surface. Since the surface can be stored as a heightmap, one

could construct these levels by iteratively applying a smoothing filter to the texture, e.g.
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Figure 5.3: The figure shows how the different texture sizes are represented in
a pyramid where the sampled texture is trilinearly interpolated between the
two closest textures [130].

by convolution with a Gaussian kernel. However, as convolutions are computationally

expensive, we instead opted for using the less accurate but more effective method of using

mipmaps. Mipmaps, visualized in Figure 5.3, are sets of images as levels where each level

represents a lower resolution version from the previous level. Each pixel in the higher

level mipmap represents the average of 4 pixels in the previous mipmap, as shown in

Equation 5.2. Since our height gets bilinearly interpolated between the pixels, the result

of sampling the height from a higher level mipmap gives the same result as applying an

iterative linear smoothing kernel.

Tn(i, j) =
1

4


Tn−1(2i, 2j)+

Tn−1(2i+ 1, 2j)+

Tn−1(2i, 2j + 1)+

Tn−1(2i+ 1, 2j + 1)

 (5.2)
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Chapter 6

Results

6.1 Physicalization Artifacts

To test the physicalization pipeline we decided to physicalize airports across Europe. The

physicalization was printed on a Prusa i3 MK3S+ 3D Printer using PLA filament. The

dataset we used was The Global Airport Dataset [131], which is a free dataset of tabular

data consisting of longitude and latitude coordinates of airports across the globe. We

further scoped the data down by limiting it to countries within Europe and removed

outliers such that the shape of the remaining points should be easily recognizable as

Europe. We then converted the points to a scalar field and a corresponding hexplot,

which is displayed in Figure 6.1.

Figure 6.1: The input data of airports across europe [131] and the correspond-
ing hexplot generated from the implementation by Trautner et al. [23]. In the
hexplot, longtitude and latitude are used as x and y coordinates.
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Figure 6.2: The generated geometry from our approach. The model on the
left has a flat bottom surface and the one on the right has a mirrored bottom
surface.

Figure 6.3: The generated machine tool path created with PrusaSlicer [98]

Using the same scalar field and grid layout as in Figure 6.1, we then used our technique

to generate 3D models and exported them as STL files which were then printed. Figure

6.2 shows the 3D models of the two different models we generated. The one to the left

is one created with a flat surface, and the one to the right is the same as the one to the

left but with the bottom surface mirrored using the technique described in Section 3.4.

Next, the STL file was imported into the PrusaSlicer [98] slicer software and a toolpath

for the printer was generated, which is displayed in Figure 6.3. Finally, the toolpath was

exported and printed on a Prusa i3 MK3S+ 3D Printer using PLA filament in different

colors.

Two of the final printed artifacts with flat bases can be seen in Figure 6.4, which were
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Figure 6.4: The printed result of the model with a flat bottom surface, printed
in two separate types of transparent PLA filament

Figure 6.5: The printed result of the model with a mirrored bottom surface

both printed with clear PLA filament but from different manufacturers. The artifact to

the right also includes an orientation notch in its top-right corner (obscured by camera

angle), per the technique described in Section 3.5. Figure 6.5 shows two angles of the

same artifact which were made using the mirrored model. The bottom of the artifact

displays the same information as the top but reversed such that surfaces that are hard to

reach on the top surface are easier accessible on the bottom and vice versa. This artifact

also includes an orientation notch on its side (also obscured by camera angle).

Figure 6.6 shows an early printed artifact that was printed using some test data,

which was created using random Gaussian sampling. However, this artifact failed mid-

print as can be seen from the sudden cutoff. From the slight tilt near the top before

the cutoff, we are led to believe that the individual pillars lacked enough support and

started tilting to a point where the proposed toolpath differed too much from the current
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Figure 6.6: Model that failed during printing, likely due to lack of infill support

printed path and the print had to be canceled. In this print, we experimented with using

a hexagonal infill pattern aligned with the hexagonal grid in the model, which, although

it may look more artistically pleasing when the print gets cut off, usually is occluded by

the model itself. Increasing the density of the infill pattern would increase the structural

integrity of the artifact during the printing, ensuring higher success. And, since the infill

pattern is invisible after the model is printed, would not have many drawbacks except for

a slightly longer printing time, the resulting artifact being slightly heavier and slightly

more material being consumed in the printing process.

The two artifacts in Figure 6.4 were printed using clear PLA filaments to experiment

with transparency in the print. However, as can be seen from the images, the models

themselves are not very transparent. It can also be observed that the artifacts are more

transparent in the thinner parts of the model. In lightning theory used in optics and

computer graphics, microfacet models are usually used to describe how light scatters when

colliding with objects [44, 45]. Microfaset models describe how light statistically interacts

with surfaces on a micro-level to explain how a surface visually looks. Matte surfaces

have frequent variations on a micro-level which leads to little light being scattered in the

same direction. Similarly, shiny surfaces have few variations on a micro-level, leading

to more light being uniformly scattered. By the same logic, in our printed artifacts,

we can imagine that a lot of light gets scattered due to uneven surfaces and the more

material light passes through, the more opaque it looks. Printing the model with a thinner
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Figure 6.7: Model that failed due to early design flaws. The bottom part is an
exact mirror of the top part, encoding the same data twice. Data will therefore
be read wrong on the bottom part as the x and y axes will be inverted, which
is misleading [120]. However, the regression plane encodings are not mirrored,
making the bottom encode the exact opposite of its regression plane which
is also misleading. The right images show a closeup of a regression plane
encoding from each side.

material extrusion could also help make it look more transparent, and giving it less infill

could also help in this regard. Using an infill pattern that would be aligned with the

grid could possibly help with transparency from certain angles. Additionally, using 100%

infill instead could also help with transparency as there is less room for scattering within

the artifact. There are also techniques for further smoothing the outside of the model,

for instance using an acetone treatment.

Figure 6.7 also displays a failed printed artifact using the airport dataset. However,

unlike the artifact that failed due to printing, this artifact features a flawed design. In an

early experiment to fix the surface cavities described in Section 3.4 we experimented with

directly mirroring the top surface to the bottom. As the bottom surface is a direct mirror

of the top this does not fix the issue with the surface cavities, it just reflects the same

problem on the bottom surface as well. However, the real issue with the encoding was

that the surfaces that were tilted to be aligned with the regression plane of the underlying

data points, as described in Section 3.3, are not mirrored on the bottom surface and are
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instead tilted in the same direction. The bottom surface is a mirrored representation of

the dataset, but the tilted surfaces also encode the opposite of the regression plane, giving

two different encodings of the same data. How the encodings differ is displayed in the

images to the right in Figure 6.7. From the images, it can be noted how the plane tilts

toward its neighbor in the top image, but away from the same neighbor in the bottom

image.

The implementation described in Chapter 5 was run on a laptop using an Intel i7-7700

CPU and a GTX 1070. For the scalar field that was generated and used in the above

results, it took around 2 or 3 frames (30-50ms) from tweaking a parameter until the

resulting geometry finished generating and a visual representation was displayed, while

the program ran at a constant 60 frames per second.

6.2 Haptic Rendering User Study

To evaluate the effectiveness of the haptic rendering technique we employed a user study

with 7 participants. None of the participants were classified as visually impaired and

usually rely on vision as their primary sense for perception. Because of our participant’s

capabilities, the primary objective of the user study was to evaluate how well the par-

ticipants could perform tasks without using their vision. If the participants who usually

rely on vision for sensing environments can perform user tasks without much difficulty,

a user more heavily relying on the sense of touch should have an easier time performing

the same task as they are usually less dependent on vision.

In the user study, each participant was first introduced to the hardware, the virtual

environment and a small selection of tools and their usages. Participants could move

the device around the virtual environment and collide with surfaces to feel the forces

pushing back; Additionally, the buttons on the haptic device enabled participants to

switch between different levels of detail and toggle between the volume and the normal

representation of the surface.

After participants had tested out the device and gotten used to the controls, the

participants explored 4 constructed datasets, which are displayed in Figure 6.9, using the

device. For each dataset, the participants were tasked with determining the highest and

the lowest point, as well as describing how the surface was perceived. The participant

would first explore the surface and complete the tasks with their eyes closed. But, after

feeling satisfied with their answers to tasks, could open their eyes and compare their

perceived surface with a visual representation of the surface.
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Figure 6.8: The setup for our user study.

6.2.1 Observations

P1 and P3 both expressed they had difficulties forming a mental image of the surface.

A lot of the time was spent moving through the air instead of touching the surface and

the highest and lowest points chosen were inaccurate. In both cases, we suspect the

participants to not have received enough time to get used to the device before performing

the task, which was also mentioned by P1. P1’s results got more accurate throughout the

study, further emphasizing this, even ending up describing the last surface as ”bumpy”.

P3 had a harder time describing the surfaces but suggested this was caused by them

usually having a hard time constructing mental images; even so, P3 managed to describe

the last surface as being ”wavy”.

P5 also had difficulties getting an overview of the surface, but contrary to P1 and

P3 had more time to get used to the device. Interestingly, P5 explored the surface a

lot by repeatedly moving up in the air and down onto the surface, essentially ”probing”

the surface. Consequently, P5 results were more accurate as the surface was hit more

often. While P5’s highest and lowest points were not too accurate, P5’s description of

the surfaces was more correct compared to P1 and P3.

P1, P3 and P5 chose many of their highest points in the air, which we believe might

have been caused by the participants perceiving the physical motor constraints of the

device as part of the surface.

P2’s, P4’s and P7’s results were the most accurate to the constructed data. Compared

to the other participants, all of these participants explored the surface with much larger

motions of the haptic device, rapidly moving back and forth. P7 moved slowly in the

beginning but expressed the peaks were easier to detect with faster movements. P4’s
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movement was mostly restricted to vertical movements in front of the device, while P2

moved more towards and away from the device. P7 also expressed they felt the spheres

in the first dataset felt longer in the inwards direction of the device. We believe that this

might have been caused by the device itself giving more resistance to inwards pushes due

to its motor placements, making the spheres feel elliptical.

P2 and P4 identified and described more features of the surface compared to the

other participants. On the third dataset, P2 successfully managed to identify a valley

and distinguish the steepness of two slopes. P4 found the second dataset to be pretty

much how they expected after having it revealed. P2 and P7 described the fourth surface

as ”wavy”. P2 described it as consisting of around 10 slopes uniformly aligned in a grid,

while P7 felt the surface mimicked ripples in water. Interestingly, P4 found the fourth

dataset to be the most confusing which was contrary to the other participants.

P4 and P7 expressed that the bounds of the haptic device felt limiting in that some

bumps did not even out before reaching the end of the bounds, which sometimes made

them feel confused about whether the slope would continue beyond their limited view of

the virtual environment. This suggests that the dataset used in the study should have

been properly scaled down to fit within the bounds of the haptic device.

The accuracy of P6’s results was somewhere in the middle of the other participants.

Similar to P2, P4 and P7, P6 was moving a lot across the surface but had difficulties

orienting themselves and the relative locations of structures in the virtual environment.

P7 expressed this could be caused by their limited ability to create mental images.

Common for all participants is that they only took a moment to get an overview of

the surface as soon as they opened their eyes, and the surface felt easier to navigate while

looking at a visual representation of their position in space.
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Chapter 7

Discussion

7.1 Physicalization

7.1.1 Reducing the Lie Factor

Currently, each data point from the scalar field represented by a tile is translated ac-

cording to its value relative to the height of the model. This means the tile with the

highest value in the scalar field is translated to be the same physical height as the model,

while a tile with a zero value is translated to be leveled with other zero-valued tiles.

While comparing data values with other data values to determine which one is higher

and lower is easy, determining how much they differ, or fetching the value for a tile is

much more difficult. To improve upon this we could encode each axis in a real-world mea-

surement like centi- or milli-meters and encode a legend mark onto the model displaying

the relationship between physically measured units and the value of the underlying data.

However, this requires that we know the final dimensions the printed model will end up

with. Unfortunately, this is not possible using the STL format as the format does not

encode any units (see Section 2.3.2). Fortunately, the better specified 3MF format (ver-

sion 1.2.3) does encode units into the file format meaning one can accurately control the

printed model’s dimensions.

This would solve the issue of reading relative values and differences, but because the

base of our model is extruded an additional arbitrary amount to prevent zero-volume

surfaces, values directly measured and read would have to subtract away the height of

the base of the model to get the correct reading. As the extruded amount is chosen by

our approach, a quick improvement would be to encode this value as a mark onto the

model which users would then have to subtract from readings.
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7.1.2 Improving Manufacturing Speed by Changing the Hull

In Section 3.2 we talked about how we utilized a convex hull to reduce the number of

tiles that had to be included in our physicalization. However, in the proposed approach,

every zero-valued tile inside the convex hull is still included in the 3D model. Not all

zero-valued tiles contribute to keeping the surface connected, which means the extra tiles

still cost a lot of unnecessary resources. More surface area printed both leads to more

printing material used but also to a longer manufacturing process. To improve upon the

resource cost it could be possible to instead limit the tiles included in the physicalization

using a bounding concave hull, which is similar to a convex hull but encompasses its

content by a tight-fitting boundary. One example of an algorithm that could solve this

is the k-nearest neighbors algorithm presented by Moreira and Santos [132].

However, utilizing a tightly bounding concave hull creates a different issue. When

the physicalization features plenty of zero-valued tiles, the similarity between them can

help the user understand that they indicate a zero value and are not part of the encoded

data. But if the bounding hull is as tight as possible, a few zero-valued tiles will con-

nect separated islands instead, which may make it look like they represent data in the

physicalization. This is especially true in cases where islands are separated by one or two

tiles. The encoded non-existing data in the physicalization becomes whats referred to

by Kindlmann and Scheidegger [120] as a hallucinator, meaning some part of the visu-

alization does not represent data, instead it was ”hallucinated” out of nothing but thin

air. The problem of distinguishing which tiles are part of the physicalization and which

are only there for structural purposes could be fixed by encoding the zero values with

a different texture or shape, indicating that these tiles should not be grouped together

with other data tiles.

7.1.3 Vertical Displacement From Surface Mirroring

Using the surface mirroring approach described in Section 3.4 works, but when phys-

icalizing using input data with big changes in neighboring values, large displacements

between the top and the bottom surfaces will be created. The large discontinuities in

geometry might seem like it is a part of the visualization to a user, which, according to

Kindlmann and Scheidegger [120], would be misleading as the big change in the physi-

calization represents an unimportant change in the data. One way of fixing this could

be to use patterns or textures to indicate that they are part of the zero value, similar to

how zero values were handled in Section 7.1.2.

65



However, it can be argued that the vertical displacement between the top and the

bottom surface is not only there for structural purposes. Since the surface displacement

is linearly dependent on the differences in scalar field values, the displacement encodes the

magnitude of the biggest difference between neighboring scalar values, plus an additional

small bias to ensure the mesh is hollow.

7.1.4 Orientation Triangle

We would additionally like to discuss one possible way to implement the alternative

orientation mark described in Section 3.5. This mark is a right-angled triangle with its

catheti aligned with the two axes of the hexagon grid. The problem with this mark, also

mentioned in Section 3.5, is that to encode this mark we need to find a flat area large

enough to fit it. As all of our hexagons are created in parallell, adding a mark on a single

hexagon is trivial but adding a mark over multiple hexagons is not.

If the grid of hexagons is thought of as a graph with each tile as vertices and edges

connecting all neighboring tiles on the same height, the connected component of a tile

can be thought of as the set of all neighboring tiles on the same height. The largest

connected component describes the largest set of connected tiles, but we need to find

the connected component which can contain the largest 2D area within it to place our

glyph. Additionally, since we want our glyph to represent the axes, our triangle has to

be axis-aligned. However, we can easily fit a triangle in any direction inside a circle.

Thus, finding the largest circle inside the connected component instead transforms our

problem into the Maximum Inscribed Circle (MIC) problem, also known as the poles of

inaccessibility problem.

Some solutions to the MIC problem has been written for MATLAB [133, 134] and

a popular implementation for JavaScript exist [135] based on previous work by Garcia-

Castellanos and Lombardo [136]. Beyhan et al. [137] also recently made a generalized

approach based on the MATLAB extension by Birdal [133].

Our use case can be even further simplified because we only need to find one connected

component which fits a circle large enough to fit our glyph. So if the size of the glyph

is specified, our approach would be to greedily choose any connected component whose

MIC is large enough to fit our glyph and then place our glyph in the center of the MIC.
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7.2 Haptic Rendering

7.2.1 Reducing Confusion From Empty Space

The participants that spent a lot of time in the air in the user study had a hard time

orienting themselves until they were allowed to open their eyes to see a visual representa-

tion of their position. We believe this to be caused by the lack of any forces being applied

while moving through the air, possibly giving them too little information to create a

mental image. Similarly, most participants found the last dataset to be the easiest to

navigate around, possibly because of the high frequency of elevation changes. Fritz and

Barner [117] argue that haptic sensing is very much a kinetic sense, and the lack of feed-

back while navigating through empty parts of the virtual environment therefore might

have disrupted the creation of a mental image. A possible solution to this could have

been to add a force that would pull you towards the center of the virtual environment, or

use vibration to indicate the distance to the surface. It is worth noting that our volume

technique described in Section 4.5, while toggleable, was disabled by default in the study.

Performing a similar study but with the volume mode as the default could yield very

different results.
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Chapter 8

Conclusion

Most current visualization techniques are aimed at information transfer via the visual

sense. But with more hardware support for alternative modalities and ways to perceive

information, more work needs to explore how to efficiently convey data through our other

senses. For instance, more work on how to best utilize our tactile sensory system will

hugely benefit the visually impaired community, but can also help in the creation of better

multimodal experiences.

Advances in AM lower the bar for rapid prototyping, further lowering the difficulty of

creating passive physicalizations. In Section 1.2 it was highlighted how physicalization is

a complicated process requiring expertise in both visualization and fabrication, and the

need for more tools and pipelines to simplify the process is required.

In this thesis, we presented one such pipeline for manufacturing a passive physical-

ization of two-dimensional scalar field data. The presented approach builds an artifact

that features a landscape of hexagonal pillars representing values as the pillar height.

We explored some usability issues regarding the encoding format and proposed some im-

provements. One of the issues was the reachability of occluded tiles, which we improved

by encoding the bottom of the artifact with the negated dataset. We had some ambiguity

around representation orientation, which we improved by employing an orientation glyph

and an orientation anchor encoding.

We presented one solution to encoding the surface of the pillars using tilt, but this

encoding was limited to displaying a directional attribute, which we specifically used to

display the point alignment within the aggregated scalar field used to create our artifact.
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More work can be done on different usages of this encoding and other ways to encode

additional attributes.

While we worked around our occlusion issue by adding an additional bottom encoding,

future solutions could instead change the encoding to better work around the issue in the

first place. For instance by changing the primitive type used for the grid or changing the

projection of the physicalization layout, e.g. spherical, elliptical or perspective.

More work is put into haptic technology due to its promising possibilities in enhancing

VR experiences, making haptic technology more attainable, more advanced and cheaper.

Current work in active physicalization largely revolves around exploring new mediums

of physicalizing data, but more work can be put into developing data physicalization

techniques for existing technology. With the increasing availability of haptic technology,

more active physicalization techniques need to utilize this technology. Little research has

also been done on force-feedback haptic devices and their usages.

We have presented one approach to haptically render a two-dimensional scalar field

using a force-feedback device. In our approach, we build a virtual environment and

attempt to replicate the feeling of what moving across a similar environment in real

life would feel like, by replicating normal, friction and gravity forces. As our approach

simulates forces in real-time, the encoding and the data itself can be changed and the

corresponding changes to the environment can be felt in real-time. We also explored

an alternative method of navigating the same environment by constructing a volume

of gradually smoothed surfaces and ”guiding” the user through the volume using the

gradient.

From our user study in Section 6.2, it was revealed that users were able to determine

the shape of the surface, but to a varying degree. In Section 7.2.1 it was discussed how the

lack of forces in midair could be one of the main reasons for our varying results. Future

solutions should take this into account when developing a haptic virtual environment.

Due to the way we calculated our surface forces, some geometry was not possible

to display. For instance, surface forces were limited to always point slightly upwards.

Experimenting with different ways to project or bend the surface could possibly enable

any direction of surface forces to work and possibly help reduce the surface slipperiness

felt when moving across tops.

While both of our physicalizations were designed with the visually impaired as a target

audience, we were unable to verify how well they worked with our target audience. It is
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possible that, as people that rely less on vision develop stronger perceptions of the other

senses, our physicalizations are more efficient for our target audience.

Both our physicalizations increased dimensionality by visualizing 2D scalar data in 3

dimensions. The first one is by constructing geometry representable in 3 dimensions, and

the second one by utilizing a three-dimensional display. Likewise, other popular visual-

ization techniques that utilize dimensionality reduction to properly represent the data on

a 2D computer screen or paper, can be visualized without reduction via physicalization

in three dimensions.
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Glossary

end-effector The physical part the user interacts with on a haptic force-feedback input

device.

probe In the context of haptic simulation: The representation of the physical end-

effector for the haptic device in the virtual environment.

slicer Software typically specific to a 3D printer that generates toolpath coordinates for

the printer. The slicer software is responsible for slicing the geometry into layers

that can be printed with AM.
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List of Acronyms and Abbreviations

AM Additive Manufacturing.

CSG Constructive Solid Geometry.

DVR Direct Volume Rendering.

FDM Fused Deposition Modeling.

FFF Fused Filament Fabrication.

GPGPU General-Purpose computing on Graphics Processing Units.

MIC Maximum Inscribed Circle.

VR Virtual Reality.
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Appendix A

User Study Results

The results from the user study were manually recorded, which are displayed on the

following pages, one page per participant. Blue marks the participant’s maximum point,

red marks the participant’s lowest point or area and white or gray marks identified peaks

or other areas of interest.
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