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Abstract (English)

Genome-wide association studies (GWAS) aim to find statistical associations between
genetic variants and traits of interests. The genetic variants that explain a lot of varia-
tion in genome-wide gene expression may lead to confounding in expression quanti-
tative trait loci (eQTL) analyses. To account for these confounding factors, in Article I
we proposed LVREML, a method conceptually analogous to estimating fixed and ran-
dom effects in linear mixed models (LMM). We showed that the maximum-likelihood
latent variables can always be chosen orthogonal to the known factors (such genetic
variants). This indicates that the maximum-likelihood variables explain the sample
covariances that is not already explained by the genetic variants in the model.

For identifying which traits are effected by the identified genetic variants, we need
to reverse the functional relation between genotypes and traits. In this regard, multi-
trait approaches are more advantageous than studying the traits individually. The
multi-trait approaches benefit from increased power from considering cross-trait co-
variances and reduced multiple testing burden because a single test is needed to test
for associations to a set of traits. In Article II, we analyzed various machine learn-
ing methods (ridge regression, Naive Bayes/independent univariate correlation, ran-
dom forests and support vector machines) for reverse regression in multi-trait GWAS,
using genotypes, gene expression data and ground-truth transcriptional regulatory
networks from the DREAM5 SysGen Challenge and from a cross between two yeast
strains to evaluate methods.

In Article III, we extended the above approach to human dataset. An important dif-
ference between data from Article II and Article III is that we do not have ground-
truth data available for the latter. We used the genotype and brain-imaging features
extracted from the MRIs obtained from the ADNI database. The results from both Ar-
ticle II and Article III showed that the genotype prediction performance varied across
genetic variants. This helped in identifying genomic regions that are associated with
high number of traits in high-dimensional phenotypic data. We also observed that the
feature coefficients of fitted machine learning models correlated with the strength of
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association between variants and traits. Our results also showed that non-linear ma-
chine learning methods like random forests identified genetic variants distinct from
the linear methods. In particular, we observed in Article III that random forest was
able to identify single-nueclotide-polymorphisms (SNPs) that were distinct from the
ones identified by ridge and lasso regression. Further analysis showed that the iden-
tified SNPs belonged to genes previously associated with brain-related disorders.



Abstract (Norwegian)

Formålet med Genome-wide association studies (GWAS) er å finne statistiske sam-
menhenger mellom genetiske varianter og egenskaper av interesser. De genetiske
variantene som forklarer mye av variasjonene i genomfattende genekspresjoner
kan medføre konfunderende analyser av kvantitative egenskaper ved ekspresjon-
splasseringer (eQTL). For å betrakte konfunderende faktorene, presenterte vi LVREML-
metoden i artikkel I, en metode som er konseptuelt analogt med å estimere faste og
tilfeldige effekter i Lineære Blandede modeller (LMM). Vi viste at de latente variab-
lene med “Maximum likelihood” alltid kan velges ortogonalt til de kjente faktorene
(som genetiske variasjoner). Dette indikerer at “Maximum likelihood” variablene
forklarer utvalgsvariansene som ikke allerede er forklart av de genetiske variantene i
modellen.

For å kartlegge hvilke egenskaper som påvirkes av de identifiserte genetiske vari-
antene, må vi reversere den funksjonelle relasjonen mellom genotyper og egenskaper.
I denne sammenhengen er en “multi-trait” metode mer fordelaktige enn å studere
egenskapene individuelt. “Multi-trait”-metoden drar nytte av økt kapasitet som følge
av å vurdere kovarianser på tvers av egenskaper, og redusert multiple tester, fordi
det trengs en enkelt test for å teste for sammenhenger til et sett med egenskaper.
I artikkel II analyserte vi ulike maskinlæringsmetoder (Naive Bayes/independent
univariate correlation, random forests og support vector machines) for omvendt re-
gresjon i multi-trekk GWAS, ved bruk av genotyper, genuttrykksdata og “ground-
truth” transcriptional regulatory networks fra DREAM5 SysGen Challenge og fra en
krysning mellom to gjærstammer for å evaluere metoder.

I artikkel III utvidet vi metoden ovenfor til å behandle menneskelig data. En vik-
tig forskjell mellom data fra artikkel II og artikkel III er at vi ikke har “Ground-
truth” data tilgjengelig for sistnevnte. Vi brukte genotypen og Magnetresonansto-
mografi (MRI) data hentet fra ADNI-databasen. Resultatene fra både artikkel II og
artikkel III viste at resultat av genotypeprediksjon varierte på tvers av genetiske vari-
anter. Dette hjulpet med å identifisere genomiske regioner som er assosiert med stort



viii Abstract (Norwegian)

antall egenskaper i høydimensjonale fenotypiske data. Vi observerte også at koeff-
isientene til maskinlæringsmodeller korrelerte med styrken til assosiasjonene mel-
lom varianter og egenskaper. Resultatene våre viste også at ikke-lineære maskin-
læringsmetoder som “random forests” identifiserte genetiske varianter tydeligere enn
de lineære metodene. Spesielt observerte vi i artikkel III at “random forests” var
i stand til å identifisere enkeltnukleotidpolymorfismer (SNP-er) som var forskjellige
fra de som ble identifisert “ridge” og“lasso” regresjonsmetodene. Ytterligere anal-
yse viste at de identifiserte SNP-ene tilhørte gener som tidligere var assosiert med
hjernerelaterte lidelser.
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Chapter 1

Background

1.1 Genetic markers and single-nucleotide

polymorphisms

A genetic marker can be described as detectable variation in a deoxyribonucleic acid
(DNA) sequence with a known physical location on a chromosome. Genetic mark-
ers can be used to identify individuals or populations. Moreover, they can be helpful
in studying the relationship between a disease and a gene. Single-nucleotide poly-
morphisms (SNPs) are one of the well-known genetic markers. SNPs are the most
frequently occurring type of genetic variation in the human genome. Each SNP rep-
resents a variation in a single DNA building block, called a nucleotide. For example,
at a particular genomic location, most individuals might have sequence GCCTC, but
some individuals instead might have the sequence GCATT . So, it is possible to have
either nucleotide C or A at the third position. The third position, in this case, is con-
sidered a SNP. Each of two or more variants of a gene at a locus is called an allele.
The majority of SNPs in humans are biallelic [1] indicating that only two possibili-
ties of the nucleotide can occur. Therefore, C and A are the possible alleles for the
biallelic SNP in the example cited above. The less common allele is known as a minor
allele, and the frequency at which it occurs in a given population is called minor allele
frequency (MAF) [2]. SNPs are commonly used as genetic markers to unravel the ge-
netic basis of inherited diseases or traits. Although SNPs are the most common form
of variation, various other genetic variations are also present in the human genome,
such as structural variants, including copy-number variants, translocations, or inver-
sions of relatively large DNA segments [3]. All individuals inherit two copies of each
gene, one from the mother and one from the father. Therefore, for a SNP that has al-
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Figure 1.1: Illustration of a SNP. The two DNA molecules are different at a single
base-pair location, where the upper DNA molecule has a C nucleotide and the lower
has an A. SNP model by David Eccles (Gringer) [5]

leles C and A, three genotypes are possible; CC, CA, and AA. In the basic form of
genetic association analysis, the three genotypes can be used as exposure categories
to investigate the association between genes and inherited disease or a trait [4].

1.2 Genome-wide Association Studies (GWAS)

The completion of the human genome sequence, huge improvements in genotyping
technology and the initiation of International HapMap Project [6], have set the stage
for genome-wide association studies (GWAS). GWAS map the effect of genetic vari-
ants on disease risk or severity at single base-pair resolution across the entire human
genome [7]. GWAS generally focus on the association between single-nucleotide-
polymorphisms (SNPs) and traits, e.g. disease status or a quantitative phenotype
such as height, biomarker concentrations or even gene expression [3].

A variation at single-base pair between individuals (SNPs) may cause variation be-
tween individuals’ traits or phenotypes, for example, a disease risk or physical prop-
erties [8]. A GWA study tries to answer if the allele of a genetic variant is found more
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often than expected in individuals with the phenotype of interest (e.g. the disease
being studied).

Consider a GWA study with a case-control setup. Such a study aims to compare a
healthy control group versus a case group affected by a disease. For each of the com-
mon known SNPs, it is then investigated if the allele frequency is significantly differ-
ent between the case and the control group. In such a scenario, a common unit for
reporting effect sizes is the odds ratio. In the context of GWAS, the odds ratio is the
ratio of the percentage of cases among individuals with a specific allele versus indi-
viduals who do not have that same allele. The odds ratio is higher than 1 whenever
the allele frequency in the cases is higher than the controls. Finding odds ratios that
are significantly different from 1 is the objective of the GWA study as it indicates that
a SNP is associated with disease [9].

1.2.1 High-dimensional biology

The systematic study of an organism’s genome is known as genomics. The human
genome consists of 3.2 billion bases [10] and an estimated 20000 protein-coding genes.
Traditionally, the genes used to be analyzed individually. However, there has been
substantial advancement in microarray technology. DNA microarrays can be used to
measure the expression levels of a large number of genes simultaneously [11]. Gene
expression is usually measured by quantifying levels of the gene product (often a pro-
tein) [12]. Another recent technique to quantify RNA and changes in gene expression
is RNA-Seq [13]. RNA-Seq utilizes next-generation sequencing (NGS), which refers
to any of the several high-throughput approaches for DNA sequencing that uses the
concept of massive parallel processing. Hundreds of megabases of nucleotide se-
quence reads can be generated using NGS parallelization. This is important because
it results in a drastic increase in available sequence data and a significant decrease in
the cost of sequencing [14].

1.2.2 Multi-trait GWAS

Recent technological advances have made measuring a high number of traits (e.g.
gene expression levels.) in an individual feasible and cost-effective. Therefore, in
order to investigate the association between genetic variants and multiple traits si-
multaneously, multi-trait GWAS approaches are necessary. The traditional univariate
linear regression or analysis of variance (ANOVA) based approaches test for associ-
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Figure 1.2: Hypothetical results from a case-control GWAS investigating genetic vari-
ants associated with a disease. It demonstrates that more people with disease have
base “A” at this position compared to the control group.

ation between each trait and each genetic variant separately. However, this ignores
the cross-trait covariances, and it causes a massive multiple-testing problem. Mul-
tiple testing problem occurs when several hypotheses are tested simultaneously, re-
sulting in a large number of false alarms (i.e. most of the significant results are false).
Therefore, studies that consider each trait individually suffer from a significant loss of
statistical power. Multi-trait GWAS approaches, where multiple correlated traits are
studied simultaneously, aim to address both the problems posed by individual trait
studies [15, 16, 17].

1.3 Expression quantitative trait loci (eQTL) and GWAS

An expression quantitative trait loci (eQTL) is a genomic locus that explains the ge-
netic variance of a gene expression phenotype. A typical eQTL analysis is based on
testing the direct association between genetic variants and gene expression levels.
This association analysis can be performed proximally or distally to the gene. These
associations are helpful in revealing biochemical processes underlying living systems,
discovering the genetic factors causal to specific diseases and determining pathways
affected by them. A major advantage of eQTL mapping using the GWAS approach is
that it allows the identification of new functional loci without the need of any prior
knowledge about specific cis or trans regulatory regions [18]. Regulatory variants in
eQTL mapping literature are typically characterized as either cis or trans acting, de-
pending on the physical distance from the gene they regulate and reflecting the pre-
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dicted nature of the interaction. Cis-eQTLs commonly refer to genetic variations that
act on local genes, and trans-eQTLs are those that act on distant genes and genes re-
siding on different chromosomes. Trans-eQTLs usually have smaller effect sizes than
cis-eQTL. However, trans-eQTLs have been known to be relevant for complex traits as
compared to stronger cis-eQTL effects [19]. Increasing evidence suggests that single
nucleotide polymorphisms (SNPs) associated with complex traits are more likely to
be eQTLs than would be expected by chance alone [20]. Expression QTL analyses are
useful to identify hotspots (genomic regions affecting multiple transcripts), construct
causal networks and select genes and phenotypes for clinical trials [21].

Various approaches for eQTL analysis have been used in the literature. Typically
eQTL studies perform separate testing for each transcript-SNP pair [21]. Some of
the approaches used to identify the association between expression and genotype in-
clude linear regression, analysis of variance (ANOVA) models, generalized linear and
mixed models, Bayesian regression [22], and models considering pedigree [23] and la-
tent variables [24]. So far, various methods have been developed for finding the group
of SNPs associated with the expression of a single gene [25, 26, 27, 28].

Typically eQTL analyses are known to be computationally intensive as it involves test-
ing for the association of billions of transcript-SNP (single-nucleotide polymorphism)
pairs. This issue is further aggravated in modern eQTL datasets having genotype
measured over millions of SNPs and gene expression over tens of thousands of tran-
scripts. The separate tests for each transcript-SNP pair in such a dataset would result
in over ten billion tests [21]. Furthermore, it has been shown that non-linear meth-
ods can be exceptionally slow for large datasets [29, 30, 31]. Despite these limitations,
several approaches have been proposed recently for faster eQTL analysis on larger
datasets [21, 32, 33].

1.4 Confounding in GWAS

It is a well-known fact that ”correlation does not imply causation” [34]. Confounding
can be defined as a spurious association between an exposure and an outcome caused
by an independent factor associated with both exposure and outcome [35]. In a GWA
study, a trait and a genetic variant may be associated, but the association is not due
to a causal link between the trait and the variant. The correlation may be due to some
confounding factors (e.g. batch effects, genetic factors in population-based studies, or
cell-cycle stage in single-cell studies). To take a classic example, a GWAS for the skill
with chopsticks carried out in San Francisco might identify human leukocyte antigen
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Figure 1.3: Graphical representation of eQTLs. A. cis-eQTL, B. trans-eQTL.

A1 (HLA-A1) as an allele associated with chopstick skill simply because this allele
is more common in people of East Asian origin [36]. Population structure is one of
the causes of confounding in GWAS studies. Population structure is referred to as
relatedness among individuals [37]. Linear mixed models are widely used to mitigate
or correct the effect of these confounding factors [38, 39, 40, 41].

1.4.1 Linear mixed models

Linear mixed models (LMM) are a widely used technique for correcting confounding
due to population structure [42, 43, 40, 44, 38]. In a GWAS context, it is assumed
that an individual’s trait value is a linear function of fixed and random effects, where
the random effects are normally distributed with a covariance matrix determined by
the genetic similarities between individuals, hence accounting for confounding in the
trait data.

A linear mixed-effects models is of the form:

y = Xβ + Zµ + ϵ (1.1)

where y represents response variable, X represents explanatory variable, Z represents
design matrix for random effects. β stands for parameter vector for fixed effects, µ

stands for vector of random effects and ϵ stands for observation noise.

The random effect vector µ, and the noise vector ϵ, are assumed to have the following
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Figure 1.4: A confounder is a spurious factor falsely implying causation between ex-
posure and outcome variables.

independent prior distribution:

µ ∼ N (0, σ2D(θ))

ϵ ∼ N (0, σ2I)

where D is a symmetric and positive semidefinite matrix, parameterized by a variance
component vector θ, I represents an identity matrix, and σ2 is the error variance.

In this model, the parameters that need to be estimated are the fixed effect coefficient
β, and the variance components θ and σ2. Two popular approaches to estimate these
parameters are maximum likelihood and restricted maximum likelihood (REML) [45].

1.5 Approaches for multi-trait GWAS

Generally, in multi-trait GWAS methods, a single genetic variant (SNP) is consid-
ered at a time. Let us represent it by a random variable Y. Also consider p traits
represented by random variables X1, X2, . . . , Xp taking real values. We define a “for-
ward” multi-trait association model probabilistically through a conditional distribu-
tion p(X1, . . . , Xp | Y), which corresponds to the natural direction where variation in
Y causes variation in the Xi. Using Bayes’ formula, we can write the same model in
the reverse causal direction using Y as the dependent variable:
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P(Y | X1, . . . , Xp) = P(X1, . . . , Xp | Y)
P(Y)

P(X1, . . . , Xp)
(1.2)

where P(Y) and P(X1, . . . , Xp) are prior distributions. Conversely, a forward model
P(X1, . . . , Xp | Y) can be obtained from a reverse model P(Y | X1, . . . , Xp) using the
same formula.

We have data in the form of independent random samples from the joint distribution
P(Y, X1, . . . , Xp) in n individuals, represented by a genotype vector y ∈ Rn and trait
vectors x1, x2, . . . , xp ∈ Rn, which we gather in a matrix X = (x1, x2, . . . , xp) ∈ Rn×p.
The log-likelihood of observing the data is the log-probability density

L = log p(y, X) = log
n

∏
j=1

p(yj, xj1, . . . , xjp)

=
n

∑
j=1

log p(yj, xj1, . . . , xjp),

which can be expressed in terms of the forward or reverse conditional probabilities
depending on the type of model being fit. We now review how existing as well as
newly proposed, and low-dimensional as well as high-dimensional multi-trait GWAS
methods fit within this framework.

1.5.1 Univariate tests

The simplest method for multi-trait GWAS in the high-dimensional setting consists
of testing each trait for association with the genetic variant independently. In this
case we fit, by maximum-likelihood, a model p(xi | y) for each trait Xi independently
using a linear model

p(xi | y) = N (µy, σ2)

a normal distribution with mean µy dependent on the genotype value y. This corre-
sponds to the multi-trait model

p(x1, . . . , xp | y) =
p

∏
i=1

p(xi | y)
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Using Bayes’ rule eq. (1.2), we obtain

P(y | x1, . . . , xp) = p(x1, . . . , xp | y)
P(y)

p(x1, . . . , xp)

∝ P(y)
p

∏
i=1

p(xi | y)

where P(y) is the prior probability (background frequency) of observing genotype
class y. This is the formula for a Naive Bayes classifier of the genotype y given features
xi. Naive Bayes classifiers are family of ”probabilistic classifiers” based on Bayes’
theorem with the ”naive” assumption that every pair of features given the value of the
class variable is conditionally independent [46]. In the univariate approach, statistical
tests are carried out to determine whether a genotype-dependent model p(xi | y) is
more likely or not than a model where the trait is independent of the genotype. This
is equivalent to doing a feature selection to determine which traits to include in the
naive Bayes classifier.

1.5.2 Canonical correlation analysis

MV-PLINK [16] is a multivariate method based on Canonical Correlation Analysis
(CCA). Given two sets of random variables (X1, X2, . . . , Xp) and
(Y1, Y2, . . . , Yq), CCA finds linear coefficients a ∈ Rp and b ∈ Rq that maximize the
correlation

ρ(a, b) = corr

(
p

∑
i=1

aiXi,
q

∑
j=1

bjYj

)

It can be shown 1 that if q = 1, then the maximizing coefficients â are given by
â = (XTX)−1XTy, where X and y are the data sampled from the joint distribution
P(Y, X1, X2, . . . , Xp). These are the same coefficients that would be obtained from
a linear regression model where Y is modelled as a linear function of the predictors
(X1, X2, . . . , Xp), or from the maximum-likelihood solution of a reverse probabilistic
model

p(y | x1, . . . , xp) = N
(

p

∑
i=1

aixi, σ2

)
. (1.3)

1see supplementary information for Article II section S1 in Appendices
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1.5.3 Reverse logistic regression

MultiPhen [47] is a method that is described directly in terms of a model to predict
genotypes from multiple traits, using proportional odds logistic regression, that is, in-
stead of fitting the genotype class probabilities P(y = m | x1, . . . , xp), for m = 0, 1, 2
(for biallelic data), the method fits

P(y ≤ m | x1, . . . , xp) =
1

1 + e−αm−∑
p
i=1 βixi

Then a likelihood ratio test is used to determine if this model fits the data better than
a model where β1 = · · · = βp = 0, thus carrying out a single test for each genetic vari-
ant, testing whether the variant is associated with any of the traits using the logistic
regression model.

1.5.4 L2-Regularized reverse regression

Expressing CCA for multi-trait GWAS as a linear regression of the variant geno-
type on the trait values eq. (1.3) immediately leads to a generalization to the high-
dimensional setting in the form of regularizing the regression coefficients, that is,
augmenting eq. (1.3) with a prior distribution p(ai) = N (0, α), i = 1, . . . , p.

Finding the maximum-likelihood values of the regression coefficients is equivalent
to L2-regularized or ridge regression. This is the approach followed by [48], who
combined it with a likelihood ratio test to determine whether the fitted model is more
likely than a model where the genotype is independent of the traits (ai = 0 for all i)
and obtain a single association p-value for each variant.

1.5.5 Reverse genotype prediction using machine learning methods

From the above, we conclude that existing multi-trait GWAS methods can be
described as reverse genotype prediction methods. From this perspective, L2-
regularized linear regression is but one of many established machine learning meth-
ods that could be used to predict an outcome variable Y from a high number of pre-
dictors or features Xi, i = 1, . . . , p.
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Supervised learn-
ing

Unsupervised
learning

Reinforcement
learning

Definition Machine learns us-
ing labeled input
and output data.

Machine learns
without labeled
data.

A computer pro-
gram interacts with
its environment by
performing actions
& learning from
errors or rewards.

Goal Learn a general rule
to map the input to
output.

Discover hidden
patterns in data.

The program nav-
igates its problem
space and tries to
maximize the re-
wards based on the
feedback.

Problem type Regression & classi-
fication

Association & clus-
tering

Reward-based.

Table 1.1: Comparison of three main machine learning approaches

1.6 Machine learning

To easily understand the concept of machine learning (ML), conisder the following
formalism suggest by Tom Mitchell in his book Machine Learning [49]:

“A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P, if its performance at tasks in T, as measured by
P, improves with experience E.”

Therefore, machine learning is the study of computer programs/algorithms that can im-
prove automatically through experience by using the data. Machine learning algo-
rithms build a model based on some available data, known as training data, to make
predictions on unseen data, known as testing data.

Machine learning approaches can be divided into three main categories, depending
on the nature of the “signal” or “feedback” available to the learning system, namely
supervised learning, unsupervised learning, and reinforcement learning (Table 1.1).

Since, the scope of this thesis is limited to supervised learning, in the following subsec-
tion we give brief introduction of supervised learning algorithms used in our study.
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1.6.1 Linear Models

Given a vector of inputs XT = (X1, X2, ..., Xp), a linear model predicts the output Y
using:

Ŷ = β̂0 +
p

∑
j=1

Xj β̂ j (1.4)

The term β̂0 represents intercept and is also known as the bias in machine learning. If
constant variable 1 is added in input X, then we can include the β̂0 term in the vector
of coefficients β̂. If we denote X by N × (p + 1) matrix with each row an input vector
(with a 1 in first position), and similarly let y be the N-vector of outputs in the training
set then, the linear model can be written in vector form as inner product:

ŷ = XT β̂ (1.5)

If we are modeling K outputs then Ŷ can be K-vector. In that case β would be p × K
matrix of coefficients. In the (p + 1)-dimensional input-output space, (X, Ŷ) repre-
sents a hyperplane. Viewed as p-dimensional input space, f (X) = XTβ is linear, and
the gradient f ′(X) = β is a vector in linear in input space pointing in the steepest
uphill direction.

The most popular method to fit the linear model to set of training data is least squares,
in which we pick the coefficients β = (β0, β1, ..., βp)T to minimize the residual sum of
squares (RSS):

RSS(β) =
N

∑
i=1

(yi − f (xi))
2

=
N

∑
i=1

(yi − xT
i β)2

(1.6)

The eq. (1.6) can be written in matrix notation as:

RSS(β) = (y − Xβ)T(y − Xβ) (1.7)

Differentiating eq. (1.7) w.r.t β and setting it to 0, we get the estimates for β as:
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β̂ = (XTX)−1XTy (1.8)

Using the estimated β̂ the output ŷ at training inputs X and training outputs y can be
given as:

ŷ = XT β̂ = X(XTX)−1XTy (1.9)

Ridge regression

Ridge regression (also known as L2 regularization) shrinks the regression coefficients
(β) by imposing a penalty on their size. The ridge coefficients minimize a penalized
residual sum of squares:

β̂ridge = argmin
β

{
N

∑
i=1

(yi − β0 −
p

∑
j=1

xijβ j)
2 + λ

p

∑
j=1

β2
j

}
(1.10)

The amount of shrinkage is controlled by a complexity parameter λ ≥ 0. Larger
value of λ implies greater amount of shrinkage. The coefficients are shrunk toward
zero (and each other). In a standard linear regression with p variables, the degree-
of-freedom of the fit is p, i.e. free parameters. The intuition behind this is that even-
though all p coefficients in a ridge model will be non-zero, they are fit in a restricted
manner controlled via λ. Therefore the degree of freedom is p when λ = 0 (no regu-
larization, and it approaches ∞ when λ → ∞. The ridge solutions are not equivariant
under scaling of the input, so the input needs to be standardized before solving eq.
(1.10). By centering the input (i.e. subtract the mean from each input), the intercept
term β0 can be left out. Now the input matrix X has p (rather than p + 1) columns.
The eq. (1.10) can be written in matrix form as:

RSS(λ) = (y − Xβ)T((y − Xβ) + λ(βT)(β) (1.11)

Solving eq. 1.11 for β we get:

β̂ridge = (XTX + λI)−1XTy (1.12)
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where I is a p × p identity matrix.

1.6.2 Support vector machines (SVM)

Given a training set of N points of the form (x1, y1), ..., (xN, yN), where yi indicates the
class to which the point xi belongs (i.e.yi ∈ {−1, 1}) and each xi is p-dimensional real
vector. The aim of a linear SVM is to find the maximum-margin hyperplane dividing the
group of points of xi based on the class of yi. The maximum-margin can be defined as
the maximum distance between the hyperplane and the nearest point xi from either
classes. The hyperplane is defined by:

{x : f (x) = xTβ + β0} (1.13)

where β is a unit vector (i.e. ||β|| = 1). To find the hyperplane with maximum-margin
between the training points belonging to each class, we need to solve the following
optimization problem:

max
β,β0,||β||=1

M (1.14)

subject to yi(xT
i β + β0) ≥ 1

where M is distance from the decision boundary to the hyperplane for either class.

It is shown in [46] that above optimization problem can be rewritten more conve-
niently as:

min
β,β0

||β|| (1.15)

subject to yi(xT
i β + β0) ≥ 1

The detailed discussion of SVM is beyond the scope of this thesis therefore further
details about computing support vector classifier can be found in [46].

1.6.3 Random Forests

Random forest is a class of supervised machine learning algorithms widely used for
classification and regression problems. Random forest utilize the modified version of
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bagging technique for building many uncorrelated trees and averaging them. Bag-
ging refers to ensemble machine learning technique, where a set of weak learners is
combined for creating a strong learner that achieves better performance than a single
learner. Bagging reduces the variance (error resulting from sensitivity to small fluc-
tuations in the the training set) by averaging many noisy but nearly unbiased models
(i.e. models with lesser erroneous assumptions in the learning algorithms). Since
decision trees can capture complex structures in the data, it makes them perfect can-
didate for bagging. The averaging of trees helps mitigate the noisy nature of trees.
The idea in random forests is to improve the variance reduction of bagging by re-
ducing the correlation between the trees, without increasing the variance too much.
This is achieved in the tree-growing process through random selection of the input
variables [46]. The random forest regression algorithm can be defined as in Table 1.2.

Table 1.2: Algorithm for Random forest regression

1. For b = 1 to B:

(a) Draw a bootstrap sample Z⋆ of size N from the training data.
(b) Grow a random-forest tree Tb to the bootstrapped data,
by recursively repeating the following steps for each terminal node of
the tree, until the minimum node size nmin is reached.

i. Select m variables at random from the p variables.
ii. Pick the best variable/split-point among the m.
iii. Split the node into two daughter nodes.

2. Output the ensemble of trees {Tb}B
1 .

To make a prediction at a new point x:

Regression: f̂ rf
B (x) = 1

B ∑B
b=1 Tb(x)

Random forests are preferable choice for variety of problems because any transforma-
tion of a single variable is implicitly captured by a tree, therefore the random forests
do not need scaling of the variables. Moreover, as already mentioned above the ran-
dom forest uses bagging technique to prevent overfitting (i.e. prevents models to
perform extremely well on training data but poorly on unseen test data). Random
forests have also been known to deal with missing data [50]. Lastly, feature selection
in random forest is relatively straight forward.
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Feature importance

Prediction of a response variable from a set of predictor variables is an important task
in many scientific fields. However, in many cases, the aim is not only to make accu-
rate predictions but also to identify which predictor variables (explanatory features)
are most important in making these predictions. This helps us to understand the un-
derlying process. In case of random forests, the importance of a variable Xj to predict
Y is computed by adding up the weighted impurity decrease for all nodes t where Xj

is used, averaged over all trees ψm (for m = 1, ..., M) in the forest as follows:

Imp(Xj) =
1
M

M

∑
m=1

∑
tϵψm

1(jt = j)[p(t)∆(st, t)] (1.16)

where p(t) is the proportion Nt
N of samples reaching t and where jt represents the

identifier of the variable used for splitting node t. ∆(st, t) represents the impurity
decrease. When impurity function being used is Gini index, then this measure is
known as Gini importance. In case of classification Gini index is defined as follows:

Gini = 1 −
C

∑
i=1

(pi)
2 (1.17)

Where C represents number of classes and pi denothes the probability that the sample
belongs to ith class [51].

1.7 Neuroimaging genetics

Neuroimaging genetics, also known as imaging genomics or imaging genetics, is a
useful tool to investigate the associations between genetic variants and variation in
brain structure among individuals [52]. The discovery of biomarkers jointly from
imaging and genetic data helps us to better understand the underlying pathologi-
cal processes of neuropsychiatric and neurodegenerative diseases [53, 54]. Moreover,
neuroimaging may help us discover the genetic pathways through which genes af-
fect the above-mentioned diseases by identifying associations between causal genes
and variations in brain regions [55, 56]. And lastly, imaging genetics studies have
been shown to have increased statistical power when compared with conventional
case-control studies and therefore have decreased sample size requirement [57].

Recently a large number of neuroimaging studies have been conducted to explore the
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association between neurodegenerative disease and brain structure [58, 59, 52, 60, 61].
Some of these studies have focused on understanding the genetic causes of these dis-
eases (for example, Alzheimer’s disease), whereas the other genome-wide association
studies (GWAS) focus on identifying the genetic variations that influence brain struc-
ture and function. A common issue with most imaging genetics studies is the reduc-
tion in either imaging or genetic data (or sometimes both). For example, whole-brain
studies have mostly focused on a small number of genetic variants [62, 63, 64, 65],
whereas whole-genome studies have focused on a limited number of quantitative
imaging traits [66, 67]. This restriction in either genotype or phenotype data can
greatly hinder our ability to identify important associations.

1.8 Alzheimer’s disease

Alzheimer’s disease (AD) is a neurodegenerative disorder and one of the most com-
mon forms of dementia [68]. It has an adverse effect on an individual’s thinking,
behavior and memory [69]. Often, people aging 65 or above are more prone to
AD, and it is the fifth leading cause of death among such individuals in the United
States [70]. AD is characterized by pathological features such as synaptic loss, neuro-
inflammation, neuronal cell death, cortical atrophy, and the presence of neurofibril-
lary tangles and senile plaques. Unfortunately, no standard methods for the diagnosis
of AD exist and moreover, no cure or disease-modifying therapy has been developed
so far, which is an indication of AD being a major public global health problem. AD
starts with a synaptic loss followed by neuronal death and the formation of neurofib-
rillary tangles and senile plaques at the later stages of the disease. AD is developed
with multiple interacting causes over many years. The pathological and clinical com-
plexity and heterogeneity of the disease is the most challenging aspect of AD diag-
nostic research. Moreover, a clear diagnosis of AD is often difficult due to the si-
multaneous presence of other older-age neurodegenerative diseases such as vascular
dementia (VaD), Lewy body disease (LBD), Parkinson’s disease (PD), frontotemporal
dementia (FTD), amyotrophic lateral sclerosis (ALS), and tauopathy [71].

1.8.1 Neuroimaging Biomarkers

Neuroimaging biomarkers are among the most widely researched Alzheimer’s dis-
ease (AD) biomarkers. Various neuroimaging modalities have been applied for the
detection of AD biomarkers, such as single-photon emission computed tomography
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Figure 1.5: Diagram showing changes of the brain caused by Alzheimer’s disease [72]

(SPECT), positron emission tomography (PET), computed tomography (CT), mag-
netic resonance imaging (MRI), and magnetic resonance spectroscopy (MRS). Several
neuropathological abnormalities characteristic of AD can be identified using mod-
ern neuroimaging methods, including atrophy in specific brain regions or the whole
brain (shrinkage), brain Aβ accumulation (amyloid plaques), hyperphosphorylated
tau (p-tau) deposition, neuronal damage (loss of neurons), abnormal cerebral blood
flow, reduced levels of brain metabolites (indicating reduced activity of the brain),
abnormal neural activity, and regional inflammation of the brain. In recent years,
neuroimaging has been used for the detection of abnormal neuronal network connec-
tivity, which is believed as the cause of neurological dysfunction in various disorders.
Neuroimaging may help in the detection of biomarkers associated with preclinical
AD. This may help in identifying high-risk individuals who might benefit from early
therapeutic intervention before the widespread neuronal loss [71].

1.9 Performance evaluation

1.9.1 Reverse genotype prediction

For genotype prediction using machine learning models, the phenotype values (gene
expression or brain measurements in our case) were treated as explanatory variables,
whereas the genotype value of a variant was treated as a response variable. The
prediction performance was measured by computing the root mean squared error
(RMSE) between the predicted and the actual genotype value of variants.
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1.9.2 Trans-eQTL prediction

In cases where ground-truth data were available (Article II), trans-eQTL target predic-
tion was done using weights assigned to the features by the machine learning meth-
ods: feature importance in case of random forest regression (RFR) and coefficients
for support vector regression (SVR) and ridge regression (RR). We computed the area
under the receiver operating characteristic (AUROC) curve to measure prediction per-
formance by comparing the weights against the true targets in the ground truth for
each variant.

In cases where ground-truth was not available (Article III), we simply display the
feature weights of the trained machine learning method. We hypothesise that the
genetic variants with good prediction performance, the feature weights in the fitted
models measure the strength of biological association between a variant and a trait.

Figure 1.6: Figure summarizing the approach proposed in this thesis for reverse geno-
type and trans-eQTL prediction



20 Background



Chapter 2

Aim of the study

Random effects models are popular statistical models for detecting and correcting
spurious sample correlations due to hidden confounders in genome-wide gene ex-
pression data. In Article I, using the proposed random-effects models, we found out
that some genetic variants explain a high proportion of variation. In order to iden-
tify the actual traits affected by such variants, we need to consider multi-trait GWAS
approaches.

When multiple correlated traits are studied simultaneously, joint, multi-trait ap-
proaches can be more advantageous than studying the traits individually due to in-
creased power from taking into account cross-trait covariances and reduced multiple-
testing burden by performing a single test for the association to a set of traits
[15, 16, 17, 73].

The most commonly used multi-trait GWAS approaches are based on a multivariate
analysis of variance (MANOVA) or canonical correlation analysis (CCA) [16]. How-
ever, these are applicable only to studies where the number of traits is relatively small,
especially in comparison to the number of samples. When analyzing the effects of ge-
netic variants on molecular traits (gene or protein expression levels, metabolite con-
centrations) or imaging features, we have to deal with a large number, often an order
of magnitude or more greater than the sample size, of correlated traits simultaneously.
For such studies, the standard procedure is still to conduct univariate linear regres-
sion or ANOVA tests for each genetic variant against each trait separately. While effi-
cient algorithms exist to undertake this task [21, 74, 75], the massive multiple-testing
problem results in a significant loss of statistical power.

An alternative approach to multi-trait GWAS has been to reverse the functional rela-
tion between genotypes and traits, and fit a multivariate regression model that pre-
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Figure 2.1: The standard multi-trait association approach involves regressing traits
on genotypes. Whereas the alternative approach involves reversing this functional
relation.

dicts genotypes from multiple traits simultaneously, instead of the usual approach to
regress traits on genotypes. The first study to do this explicitly used logistic regression
and showed a significant increase in power compared to univariate methods, with-
out being dependent on assuming normally distributed genotypes like MANOVA or
CCA [47]. Although the method as presented in [47] is still only valid when the num-
ber of traits is small, extending multivariate regression methods to high-dimensional
settings is straightforward. Thus a recent study used L2-regularized linear regression
of single nucleotide polymorphisms (SNPs) on gene expression traits to identify trans-
acting expression quantitative trait loci (trans-eQTLs), and showed that this approach
aggregates evidence from many small trans-effects while being unaffected by strong
expression correlations [48]. In a very different application domain, regularized re-
gression of SNP genotypes on longitudinal image phenotypes was used to identify
time-dependent genetic associations with imaging phenotypes [59].

Despite these advances, several limitations and open questions remain unanswered
in high-dimensional GWAS. Firstly, linear models search for the linear combination
of traits that is most strongly associated to the genetic variant, but there is no a pri-
ori biological reason why only linear combinations should be considered. Secondly,
while L2-regularization allows to deal with high-dimensional traits, it does not ad-
dress the problem of variable selection. For instance, in the case of gene expression,
we expect that trans-eQTLs are potentially associated with many, but not all genes. In-
deed, in [48] a secondary set of univariate tests is carried out to select genes associated
to trans-eQTLs identified by the initial multi-variate regression. Thirdly, a systematic
biological validation and comparison of the available methods is lacking.

Moreover, the approach to extend the GWAS for mapping the effect of genetic vari-
ants on molecular phenotypes are often not feasible. This is because molecular mea-
surements are invasive, requiring tissue biopsies, and therefore cannot be obtained
for most tissue types during the lifetime of an individual. This is a particular hin-
drance to the study of complex brain-related disorders. To gain insight in the ge-
netic factors causing these disorders and the pathways through which they might act,
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multi-modal imaging of brain structure and function has emerged as a rich source of
information. However, analyzing image data using conventional genetic association
study approaches requires either to predefine a set of image features that are thought
to be of relevance to the disorder being studied, or to test all possible genetic vari-
ants against all possible image regions in 3-dimensional grid (volume elements, or
“voxels”). Both have obvious drawbacks. Predefining features limits the analysis to
features that are already known to be important, and prevents the discovery of genetic
associations with unexpected or unknown features. Scanning associations voxel-wise
leads to a massive multiple-testing problem, such that only the most extreme associ-
ations will survive multiple-testing correction. Furthermore, voxels are defined by a
regularly-spaced image grid, and hence voxel-wise analyses are inherently inefficient,
and potentially insensitive, to detect associations with unknown features manifested
on significantly larger or smaller scales than the predefined grid scale.

Therefore in order to address the above mentioned issues, we considered wider range
of machine learning methods including random forest regression, support vector re-
gression, univariate and L2-regularized linear regression, for reverse genotype pre-
diction in multi-trait GWAS in Article II. Encouraged by our results we proceeded
with brain imaging data where no ground truth data was available (Article III) to
identify significant SNPs as well as significant imaging phenotypes related to brain
function.

2.1 Main hypothesis

In this thesis, we study the effects of genetic variants on high-dimensional phenotype
data such as gene expression and imaging data using machine learning approaches.

Our overall hypothesis is that genetic variants whose genotypes can be predicted with
higher accuracy are more likely to affect some or all of the traits under consideration
than variants whose genotypes cannot be predicted well and that feature weights in
the fitted models measure the strength of biological association between a variant and
a trait.
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Chapter 3

Summary of the articles

3.1 Article I

Restricted maximum-likelihood method for learning latent variance components in gene ex-
pression data with known and unknown confounders

Random effects models are popular statistical models for detecting and correcting
spurious sample correlations due to hidden confounders in genome-wide gene ex-
pression data. In standard eQTL analyses, the genetic variants that affect a lot of
genes result in confounding. In the presence of some genetic variants as known con-
founding factors, simultaneous estimation of contributions from known and latent
variance components in random effect models is challenging. The current solutions
rely on numerical gradient-based optimizers for maximizing the likelihood function.
This is unsatisfactory because the resulting solution is poorly characterized, the re-
lation between the known and latent factors is obscured, and the efficiency of the
method may be suboptimal.

In this study, we proved analytically; that by including additional parameters in the
proposed model to account for nonzero covariances among the effects of known co-
variates and latent factors, the latent factors can always be chosen orthogonal to the
known confounding factors. In other words, the maximum-likelihood latent vari-
ables explain sample covariances not already explained by known factors. This helps
in inferring latent factors that are used to correct for correlation structure in the data.
Moreover, the latent factors are also used as new data-derived “endophenotypes”,
that is, determinants of gene expression whose own genetic associations are biologi-
cally informative.
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The proposed method, called latent variable restricted maximum-likelihood (LVREML),
relies on analytic restricted maximum-likelihood (REML) solution. LVREML esti-
mates the latent variables by maximizing the likelihood on the restricted subspace
orthogonal to the known factors, and we show that this reduces to probabilistic PCA
on that subspace. It then estimates the variance–covariance parameters by maximiz-
ing the remaining terms in the likelihood function given the latent variables, using
a newly derived analytic solution for this problem. When compared with gradient-
based optimizers, our method attains greater or equal likelihood values and can be
computed using standard matrix operations. The proposed method results in latent
factors that do not overlap with any known factors, and has a runtime reduced by sev-
eral orders of magnitude. In summary, the proposed LVREML method facilitates the
application of random effects modeling strategies for learning latent variance compo-
nents to much larger gene expression datasets than possible with current methods.

3.2 Article II

High-dimensional multi-trait GWAS by reverse prediction of genotypes

Multi-trait genome-wide association studies (GWAS) use multi-variate statistical
methods to identify associations between genetic variants and multiple correlated
traits simultaneously, and have higher statistical power than independent univariate
analysis of traits. The conventional multi-trait GWAS approaches rely on regressing
multiple traits on genotypes simultaneously.

However, an emerging alternative approach to multi-trait GWAS is to reverse the
functional relation between genotypes and traits. This reverse regression is a promis-
ing approach, especially in high-dimensional settings where the number of traits ex-
ceeds the number of samples. Present studies focus only on linear models, which
essentially search for the linear combination of traits that are most strongly associ-
ated to the genetic variant. But there is no a priori biological reason to consider only
linear combinations. Moreover, while L2-regularization allows dealing with high-
dimensional traits, it does not address the problem of variable selection. Lastly, a
systematic biological validation and comparison of the available methods is lacking.

In this paper, we extended this approach and analyzed different machine learning
methods (ridge regression, random forests and support vector machines)for reverse
regression in multi-trait GWAS, using genotypes, gene expression data and ground-
truth transcriptional regulatory networks from the DREAM5 SysGen Challenge and
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from a cross between two yeast strains [76] to evaluate methods.

Our results show that genotype prediction performance, in terms of root mean
squared error (RMSE), allowed us to distinguish between genomic regions with high
and low transcriptional activity. Moreover, model feature coefficients correlated with
the strength of association between variants and individual traits; and were predic-
tive of true trans-eQTL target genes, with complementary findings across methods.

3.3 Article III

rfPhen2Gen: A machine learning based association study of brain imaging phenotypes to
genotypes

Imaging genetic studies aim to find associations between genetic variants and imag-
ing quantitative traits. Traditional genome-wide association studies (GWAS) are
based on univariate statistical tests, but when multiple traits are analyzed together,
they suffer from a multiple-testing problem and from not taking into account correla-
tions among the traits.

As discussed in Article II, an alternative approach to multi-trait GWAS is to reverse
the functional relation between genotypes and traits by fitting a multi-variate regres-
sion model to predict genotypes from multiple traits simultaneously. And the current
reverse genotype prediction approaches are mostly based on linear models.

Moreover, to the best of our knowledge, a genome-wide analysis of machine learn-
ing methods for reverse genotype prediction in human GWAS has not yet been con-
ducted. In this paper, we evaluated random forest regression (RFR) as a method to
predict SNPs from imaging QTs and identify biologically relevant associations. We
learned machine learning models to predict all 518485 SNPs across the whole genome
(selected after the quality control procedure) from the 56 brain imaging quantitative
traits using data from the ADNI database.

Our results showed that genotype regression error is a better indicator of permutation
p-value significance than genotype classification accuracy. Moreover, SNPs within
the known Alzheimer’s disease (AD) risk gene APOE had the lowest RMSE for lasso
and random forest, but not ridge regression. Moreover, when compared across the
whole genome, random forests produced a distinct list of selected SNPs, based on
RMSE prediction performance, than the linear methods (ridge and lasso regression),
which were highly similar to each other. This indicates that using non-linear multi-
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variate GWAS methods may help in identification of genetic variants distinct from
those selected by conventional linear methods. Feature selection in random forests
identified well-known brain regions associated with AD, like the hippocampus and
amygdala, as important predictors of the most significant SNPs. Lastly, extending the
analysis to the top 1,000 SNPs predicted by random forests, we observed clustering of
image features, showing that groups of variants, not colocated on the genome, tend
to associate with similar brain regions or features.
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Data and Software

4.1 Yeast data

The yeast data used in Article I and Article II was obtained from [76]. The expres-
sion data contains expression values for 5,720 genes in 1,012 segregants. The geno-
type data consists of binary genotype values for 42,052 genetic markers in the same
1,012 segregants. Following [76], we removed batch and optical density effects from
the expression data using categorical regression. This was achieved using statsmod-
els python package. The expression data was then normalized to have zero mean and
unit standard deviation.

In Article II, to match variants to genes, we considered the list of genome-wide signif-
icant eQTLs provided by [76] whose confidence interval (of variable size) overlapped
with an interval covering a gene plus 1000 bp upstream and 200 bp downstream of
the gene position. This resulted in a list of 2884 genes and for each of these genes we
defined its matching variant as the most strongly associated variant from the list.

We obtained networks of known transciptional regulatory interactions in yeast (S.
cerevisiae) from the YEASTRACT ((Yeast Search for Transcriptional Regulators And
Consensus Tracking) [77]. Regulation matrices were obtained from http://www.

yeasttract.com/formregmatrix.php. We retrieved the ground-truth matrix contain-
ing all reported interactions of the type DNA binding and expression evidence. Self
regulation was removed from the ground-truths. The Ensembl database (release 83,
December 2015) [78] was used to map gene names to their identifiers. After overlay-
ing the ground-truth with the set of genes with matching cis-eQTL, a ground-truth
network of 80 transcription factors (TFs) with matching cis-eQTL and 3394 target
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genes was obtained.

The expression dataset was then filtered to contain only the genes present in the
ground truth network, and ground-truth trans-eQTL sets for the 80 TF-associated cis-
eQTL genetic variants were defined as direct targets of the corresponding TFs in the
ground-truth network.

4.2 Simulated data

In Article II, we also used simulated data obtained from DREAM5 Systems Genetic
Challenge A ((https://www.synapse.org/#!Synapse:syn2820440/wiki/), generated
by the SysGenSIM software [79]. The DREAM data consists of simulated genotype
and transcriptome data of synthetic gene regulatory networks. The dataset consists
of 15 sub-datasets, where 5 different networks are provided and for each network 100,
300 and 999 samples are simulated. Every sub-dataset contains 1000 genes. We used
the networks with 999 samples only.

Each genetic variant in DREAM data, is associated to a unique causal gene that medi-
ates its effect. Therefore, we defined ground-truth trans-eQTL targets for each variant
as the causal gene’s direct targets in the ground-truth network.

In the DREAM data 25% of the variants acted in cis, meaning they affected expression
of their causal gene directly. The remaining 75% of the variants acted in trans. Since
the identities of the cis and trans eQTLs are unknown, we computed the P-values
of genotype-gene expression associations between matching variantgene pairs using
Pearson correlation and selected all genes with P-values less than 1/750 to identify
cisacting eQTLs.

4.3 Brain-imaging data

Brain-imaging and genotype data for Article III used in this study was obtained from
the ADNI (Alzheimer’s Disease Neuroimaging Initiative) database (adni.loni.ucla.
edu). The ADNI was launched in 2003 as a public-private partnership, led by Prin-
cipal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to
test whether serial magnetic resonance imaging (MRI), positron emission tomogra-
phy (PET), other biological markers, and clinical and neuropsychological assessment
can be combined to measure the progression of mild cognitive impairment (MCI) and
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early Alzheimer’s disease (AD). The baseline T1-weighted MRI images from the four
phases of the ADNI study, the Illumina SNP genotyping data, demographic infor-
mation, APOE genotype, and baseline diagnosis was downloaded from the ADNI
database. The demographic information of the samples used in the study can be
found in Table 1. Details about the standardized imaging protocols used in ADNI
can be found in https://adni.loni.usc.edu/methods/documents/mri-protocols/.

Table 4.1: Demographic information of the samples used in the study. CN: Controls,
MCI: Mild Cognitive Impairment, AD: Alzheimer’s Disease

CN MCI AD
No. of subjects 211 359 178
Gender(M/F) 112/99 234/125 94/84

Baseline age(years:mean ± SD) 75.7±4.9 74.7±7.3 75.4±7.3
Education(years:mean ± SD) 16.0±2.8 15.7±3.0 14.6±3.2

Race (Caucasian/Non-Caucasian) 191/20 325/34 161/17

4.3.1 MRI data and imaging phenotype extraction

We extracted subcortical segmentation and cortical parcellation from the T1-weighted
images using FreeSurfer v6.0 [80] to obtain imaging phenotypes. Following [52] we
defined 56 volumetric and cortical thickness values mentioned in(Table 4.2).

4.3.2 SNP genotypes

The SNP data from ADNI database were genotyped using the Human 610-Quad
BeadChip (Illumina, Inc., San Diego, CA, USA). The genotype data consists of 620,901
SNPs. The SNP data was screened using the following quality control (QC) steps: (1)
call rate check per subject (≥ 90%) and per SNP marker (≥ 90%), (2) gender check (3)
marker removal according to the minor allele frequency (MAF) ≥ 5% and (4) Hardy-
Weingberg equilibrium (HWE) test of p ≤ 10−6. The remaining missing genotype
values were imputed as the modal values. After the QC procedure, 749 subjects and
518,484 SNPs remained in the data. The APOE gene is one of the important causal
genes for AD, but the previously identified APOE SNPs (rs429358/rs7412) were not
available on the Illumina array. Therefore, the APOE genotype was coded from the
ADNIMERGE.csv file prepared by the ADNI study by using the number of APOE-ε4
risk alleles.
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4.4 Software

The code for the work in this thesis was written in Python []. Some of the python
libraries we utilized in our work include, NumPy [81], Matplotlib [82], Pandas [83],
seaborn [84], statsmodels [85] and scikit-learn [86]. The T1-weighted MRI images
were processed using FreeSurfer [80]. Whereas, the genotype data from ADNI was

Table 4.2: List of FreeSurfer phenotypes defined as volume or cortical thickness of
various region of interests (ROI)a

Phenotype description (Phenotype ID)
Volume of amygdala (AmygVol) Volume of cerebral cortex (CerebCtx)
Volume of cerebral white matter
(CerebWM)

Volume of hippocampus (HippVol)

Volume of inferior lateral ventricle (In-
fLatVent)

Volume of lateral ventricle (LatVent)

Thickness of entorhinal cotrex (EntCtx) Thickness of fusiform gyrus (Fusiform)
Thickness of inferior parietal gyrus (Inf-
Parietal)

Thickness of inferior temporal gyrus (In-
fTemporal)

Thickness of middle temporal gyrus
(MidTemporal)

Thickness of parahippocampal gyrus
(Parahipp)

Thickness of posterior cingulate (PostCing) Thickness of postcentral gyrus (Postcen-
tral)

Thickness of precentral gyurs (Precentral) Thickness of precuneus (Precuneus)
Thickness of superior frontal gyrus
(SupFrontal)

Thickness of superior parietal gyurs (Sup-
Parietal)

Thickness of superior temporal gyrus
(SupTemporal)

Thickness of supramarginal gyrus (Supra-
marg)

Thickness of temporal pole (TemporalPole)
Mean thickness of caudal anterior cingulate, isthmus cingulate, posterior cingulate,
and rostral anterior cingulate (MeanCing)
Mean thickness of caudal midfrontal, rostral midfrontal, superior frontal, lateral or-
bitofrontal, and medial orbitofrontal gyri and frontal pole (MeanFront)
Mean thickness of inferior temporal, middle temporal, and superior temporal gyri
(MeanLatTemp)
Mean thickness of fusiform, parahippocampal, and lingual gyri, temporal pole and
transverse temporal pole (MeanMedTemp)
Mean thickness of inferior and superior parietal gyri, supramarginal gyrus, and pre-
cuneus (MeanPar)
Mean thickness of precentral and postcentral gyri (MeanSensMotor)
Mean thickness of inferior temporal, middle temporal, superior temporal, fusiform,
parahippocampal , and lingual gyri, temporal pole and transverse temporal pole
(MeanTemp)
aEach of the 28 phenotypes mentioned corresponds to two phenotypes, one for the left
side and the other for the right side.
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processed using PLINK [87].

The LVREML software and all data processing and analysis scripts for Article I are
available at https://github.com/michoel-lab/lvreml. LVREML is also available as
a Python PyPi package and can be installed using the command pip install LVREML.

The code to reproduce the analysis for Article II are available at https://github.
com/michoel-lab/Reverse-Pred-GWAS.

The scripts for reproducing the results in Article III are available at https://github.
com/michoel-lab/rfPhen2Gen.
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Chapter 5

Discussion

Combined analysis of genetic and clinical data helps us in discovering the genetic fac-
tors that contribute to phenotypic traits (e.g. molecular phenotypes, gene-expression
levels, protein expression levels etc.) or common diseases in humans. Analysis of
the traits individually ignores the correlations among them. Therefore multi-trait ap-
proaches are more advantageous in cases where multiple correlated traits are to be
studied simultaneously. Multi-trait approaches also help in reducing the multiple-
testing burden because only a single test needs to be performed for association to a
set of traits.

In Article I, we presented a random-effects model for estimating the contribution
of known and latent variance components in gene expression data simultaneously.
The known confounders in our study are represented by the genetic variants (SNPs),
whereas the latent confounders are hidden factors that need to be inferred by the
model. Our results show that eQTL analyses are confounded due to a subset of SNPs
that explain a lot of variation in genome-wide gene expression. We propose LVREML,
a method that is conceptually analogous to estimating fixed and random effects in
linear mixed models, to correct for the confounding factors.

However, in order to figure out which traits are affected by these SNPs, we need
to reverse the functional relation between genotypes and traits. We fit a multivari-
ate regression model that predicts genotypes from multiple traits simultaneously in-
stead of the usual approach to regress traits on genotypes. The current approaches
that make use of this alternative approach suffer from a few limitations. Firstly, the
present approaches use linear models that search for the linear combination of traits
that is most strongly associated to the genetic variant, but there is no a priori bio-
logical reason why only linear combinations should be considered. Secondly, while
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L2-regularization allows dealing with high-dimensional traits, it does not address the
problem of variable selection. For instance, in the case of gene expression, we expect
that trans-eQTLs are potentially associated with many but not all genes. Thirdly, a
systematic biological validation and comparison of the available methods was lack-
ing.

In Article II, we addressed these questions by considering a wider range of machine
learning methods (in particular, random forests (RF) and support vector machines
(SVM)) for reverse genotype prediction from gene expression traits. The basic hypoth-
esis of our study was that true trans-eQTL associations are mediated by transcription
regulatory networks. However, our results support the basic hypotheses only par-
tially. We observed that the genotype prediction performance varied across genetic
variants. But there was no relation between genotype prediction performance and
the number of gene expression traits affected by a variant, nor with the accuracy of
predicting individual trans-eQTL target genes from model feature importances or co-
efficients. The significance of this is that it shows that in the absence of ground-truth
information, low RMSE does not always predict variants for which model features
will overlap best with true trans-associated genes. This was further illustrated by the
fact that random forest regression performed best at the genotype prediction task but
performed worst on the trans-eQTL prediction task. The only systematic relation we
observed, both in the simulated and the yeast data, was a negative correlation be-
tween genotype prediction performance and the number of model features. This sug-
gests that variants with good prediction performance can achieve this performance
with a relatively small number of traits.

Although RMSE cannot necessarily be used for the selection of variants with good
trans-eQTL prediction performance, our results showed that model feature impor-
tances or coefficients were generally predictive of how likely a given gene is a true
trans-eQTL target of a given variant. We observed strong predictive performance in
simulated data, with more than 75% of variants obtaining an AUROC greater than
80%. But also in yeast data, 15-20% of variants obtained an AUROC greater than 70%.

One of the important goals of multi-trait GWAS is distinguishing between variants
associated with a high or low number of traits. Interestingly, we found that only ran-
dom forest, but not SVR or ridge regression, resulted in models with a wide variation
in the number of selected features across variants.

In summary, we showed in Article II that traditional multi-trait GWAS methods such
as CCA can be described as reverse genotype prediction methods and that machine
learning based genotype prediction models are a promising alternative to existing
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linear methods. Moreover, feature coefficients of machine learning models correlated
with the strength of association between variants and individual traits and were pre-
dictive of true trans-eQTL target genes.

However, one aspect of multi-trait GWAS that was not considered in the study was
the statistical inference. This is straightforward for the linear methods, where the null
distribution of the model fit score under the assumption of no association can be ap-
proximated analytically to obtain a p-value for the significance of any observed score.
However, obtaining a p-value for the significance of any observed score for non-linear
methods such as random forest requires a large number of permutation tests for each
variant separately. This is computationally infeasible when a large number of vari-
ants need to be studied. Therefore, a possible solution can be to use the approximate
methods such as [88]. However, we did not observe a relationship between model
fit and strength or extent of true biological relations. Therefore, the relevance of per-
forming statistical inference on this test statistic, at least for trans-eQTL identification,
remains to be clarified.

Based on the results in Article II, we decided to explore the use of random forest re-
gression for the prediction of genotypes from another type of high-dimensional phe-
notypes, namely brain imaging features. Moreover, to the best of our knowledge, a
genome-wide analysis of machine learning methods for reverse genotype prediction
in human GWAS has not yet been conducted. Therefore, in this study, we predicted
genotypes of 518,485 SNPs spanning the whole human genome (selected after the
quality control procedure) from 56 brain imaging quantitative traits using data from
the ADNI database.

We observed that lasso and random forest regression, but not ridge regression, iden-
tified a SNP in the APOE gene as the best performing variant. APOE genotype is the
most well known genetic risk factor for Alzheimer disease. Moreover, when com-
pared across the whole genome, random forests produced a distinct list of selected
SNPs, based on RMSE prediction performance, than the linear methods (ridge and
lasso regression), which were highly similar to each other. Further literature search
and existing GWAS data showed that the top SNPs identified by random forests are all
located in or near genes that have been previously associated with brain-related dis-
orders. This supports our argument of using non-linear multi-variate GWAS methods
for the identification of genetic variants distinct from those selected by conventional
linear methods. Extending the analysis to the top 1000 SNPs predicted by random
forests, our results showed clustering of image features. This shows that a group of
variants not colocated in the genome tend to associate with similar brain regions or
features. A more limited analysis on 876 SNPs showed that permutation p-values
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and random forest regression RMSE values, but not classification accuracies, showed
a high degree of correlation. This is important because the null distribution of the test
statistic (RMSE) is unknown, and the only way to quantify statistical significance is by
computing permutation p-values. However, this is computationally infeasible across
the whole genome. Therefore, a possible solution could be to learn a model to pre-
dict p-values from RMSE values from a suitable set of training SNPs; and use these to
obtain approximate permutation p-values genome-wide.

A major challenge in this study was the lack of ground truth data. Our results showed
that groups of variants not colocated on the genome tend to associate with sim-
ilar brain regions or features. However, even-though reverse genotype prediction
correctly picks up these correlations between the phenotypic traits, the correspond-
ing correlations and shared effects between SNPs are currently ignored since reverse
genotype prediction approaches tend to learn prediction models for each SNP indi-
vidually. Thus, a logical extension of our approach would be to use multi-task regres-
sion, i.e. to predict multiple SNPs simultaneously. However, this raises important
computational challenges, and it may be infeasible to predict SNPs simultaneously
on a genome-wide scale. We also observed that permutation p-values and random
forest regression RMSE values showed a high degree of correlation. A possible solu-
tion could therefore be to learn a model to predict p-values from RMSE values from a
suitable set of training SNPs to be used to obtain approximate permutation p-values
genome-wide. Another limitation of the current study is that in the presence of highly
correlated traits, the feature weights obtained by different methods are not necessar-
ily robust. It would be interesting to investigate other measures of feature importance
for random forest models, beyond the default ones based on Gini importances, such
as model-agnostic methods like permutation importance [89].
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Conclusion and future prospects

In this thesis, we observed that some genetic variants explain a high proportion of
variation in genome-wide gene expression. To identify which traits are affected by
these variants, we explored machine learning approaches for the genetic analysis of
high-dimensional phenotypic data. Our findings showed that genotype prediction
performance using different machine learning methods varied across genetic vari-
ants. This helps in identifying genomic variants that have an effect on a large number
of high-dimensional phenotypic traits, such as gene expression and brain-imaging
features. Random forests, in particular, performed better as a generic method that
requires very little parameter tuning. Most of the present GWAS approaches in the
reverse genotype prediction setting rely on linear methods. However, as discussed
earlier, there is no a-priori biological reason behind this choice.

In this thesis, we showed that non-linear methods could also be used for the purpose
of reverse genotype prediction. Furthermore, our results showed that the genetic
variants identified by non-linear machine learning methods like random forest were
distinct from the variants identified by linear methods. We also observed that fea-
ture weights (feature importances in case of the random forest) in machine learning
models can be used to identify biologically relevant variant-trait associations.

However, comparing the relative importance of variants in these models in a GWAS-
like manner using a single test statistic is still an open challenge. Moreover, in the
presence of highly correlated traits, the feature weights are not necessarily robust.
Therefore, an interesting future research area can be to consider other measures of
feature importance for random forest models beyond the default ones based on Gini
importance, such as model-agnostic methods like permutation importance [89].

Another challenge the current study poses is the computation of p-values for the sig-
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nificance of each genetic variant because computing a large number of permutation
tests for a large number of variants is not feasible. Therefore, another interesting fu-
ture prospect is to consider approximate methods [88] to overcome this hurdle.

Finally, an important promising future prospect of our study is to explore additional
non-linear machine learning methods such as neural networks, including deep neural
networks for predicting genotypes using MRI recordings of the brain directly instead
of using a priori extracted features [90].
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[90] Alexander Selvikvåg Lundervold and Arvid Lundervold. An overview of deep
learning in medical imaging focusing on MRI. Zeitschrift für Medizinische Physik,
29(2):102–127, 2019.



50 BIBLIOGRAPHY



Chapter 7

Scientific results



52 Scientific results



Article I





Restricted maximum-likelihood method for learning latent
variance components in gene expression data with known
and unknown confounders

Muhammad Ammar Malik and Tom Michoel *

Computational Biology Unit, Department of Informatics, University of Bergen, Bergen 5020, Norway

*Corresponding author: tom.michoel@uib.no

Abstract

Random effects models are popular statistical models for detecting and correcting spurious sample correlations due to hidden confounders
in genome-wide gene expression data. In applications where some confounding factors are known, estimating simultaneously the contribu-
tion of known and latent variance components in random effects models is a challenge that has so far relied on numerical gradient-based
optimizers to maximize the likelihood function. This is unsatisfactory because the resulting solution is poorly characterized and the effi-
ciency of the method may be suboptimal. Here, we prove analytically that maximum-likelihood latent variables can always be chosen or-
thogonal to the known confounding factors, in other words, that maximum-likelihood latent variables explain sample covariances not al-
ready explained by known factors. Based on this result, we propose a restricted maximum-likelihood (REML) method that estimates the
latent variables by maximizing the likelihood on the restricted subspace orthogonal to the known confounding factors and show that this
reduces to probabilistic principal component analysis on that subspace. The method then estimates the variance–covariance parameters
by maximizing the remaining terms in the likelihood function given the latent variables, using a newly derived analytic solution for this prob-
lem. Compared to gradient-based optimizers, our method attains greater or equal likelihood values, can be computed using standard ma-
trix operations, results in latent factors that do not overlap with any known factors, and has a runtime reduced by several orders of magni-
tude. Hence, the REML method facilitates the application of random effects modeling strategies for learning latent variance components
to much larger gene expression datasets than possible with current methods.

Keywords: gene expression; random effects model; latent factors; eQTLs

Introduction
Following the success of genome-wide association studies
(GWAS) in mapping the genetic architecture of complex traits
and diseases in human and model organisms (Mackay et al. 2009;
Hindorff et al. 2009; Manolio 2013), there is now a great interest in
complementing these studies with molecular data to understand
how genetic variation affects epigenetic and gene expression
states (Albert and Kruglyak 2015; Franzén et al. 2016; GTEx
Consortium 2017). In GWAS, it is well-known that population
structure or cryptic relatedness among individuals may lead to
confounding that can alter significantly the outcome of the study
(Astle and Balding 2009). When dealing with molecular data, this
is further exacerbated by the often unknown technical or envi-
ronmental influences on the data generating process. This prob-
lem is not confined to population-based studies—in single-cell
analyses of gene expression, hidden subpopulations of cells and
an even greater technical variability cause significant expression
heterogeneity that needs to be accounted for (Buettner et al.
2015).

In GWAS, linear mixed models have been hugely successful in
dealing with confounding due to population structure (Yu et al.

2006; Astle and Balding 2009; Kang et al. 2010; Lippert et al. 2011;
Zhou and Stephens 2012). In these models, it is assumed that an
individual’s trait value is a linear function of fixed and random
effects, where the random effects are normally distributed with a
covariance matrix determined by the genetic similarities between
individuals, hence accounting for confounding in the trait data.
Random effect models have also become popular in the correc-
tion for hidden confounders in gene expression data (Kang et al.
2008; Listgarten et al. 2010; Fusi et al. 2012), generally outperform-
ing approaches based on principal component analysis (PCA), the
singular value decomposition (SVD), or other hidden factor mod-
els (Leek and Storey 2007; Stegle et al. 2010, 2012). In this context,
estimating the latent factors and the sample-to-sample correla-
tions they induce on the observed high-dimensional data is the
critical problem to solve.

If it is assumed that the observed correlations between sam-
ples are entirely due to latent factors, it can be shown that the
resulting random effects model is equivalent to probabilistic PCA,
which can be solved analytically in terms of the dominant eigen-
vectors of the sample covariance matrix (Tipping and Bishop
1999; Lawrence 2005). However, in most applications, some
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confounding factors are known in advance (e.g., batch effects, ge-
netic factors in population-based studies, or cell-cycle stage in
single-cell studies), and the challenge is to estimate simulta-
neously the contribution of the known as well as the latent factors.
This has so far relied on the use of numerical gradient-based
quasi-Newton optimizers to maximize the likelihood function (Fusi
et al. 2012; Buettner et al. 2015). This is unsatisfactory because the
resulting solution is poorly characterized, the relation between the
known and latent factors is obscured, and due to the high-
dimensionality of the problem, “limited memory” optimizers have
to be employed whose theoretical convergence guarantees are
somewhat weak (Liu and Nocedal 1989; Lin et al. 2017).

Intuitively, latent variables should explain sample covariances
not already explained by known confounding factors. Here, we
demonstrate analytically that this intuition is correct: latent varia-
bles can always be chosen orthogonal to the known factors with-
out reducing the likelihood or variance explained by the model.
Based on this result, we propose a method that is conceptually
analogous to estimating fixed and random effects in linear mixed
models using the restricted maximum-likelihood (REML) method,
where the variance parameters of the random effects are esti-
mated on the restricted subspace orthogonal to the maximum-
likelihood estimates of the fixed effects (Gumedze and Dunne
2011). Our method, called LVREML, similarly estimates the latent var-
iables by maximizing the likelihood on the restricted subspace or-
thogonal to the known factors, and we show that this reduces to
probabilistic PCA on that subspace. It then estimates the variance–
covariance parameters by maximizing the remaining terms in the
likelihood function given the latent variables, using a newly de-
rived analytic solution for this problem. Similarly to the REML
method for conventional linear mixed models, the LVREML solution
is not guaranteed to maximize the total likelihood function.
However, we prove analytically that for any given number p of la-
tent variables, the LVREML solution attains minimal unexplained
variance among all possible choices of p latent variables, arguably
a more intuitive and easier to understand criterion.

The inference of latent variables that explain observed sample
covariances in gene expression data is usually pursued for two rea-
sons. First, the latent variables, together with the known confound-
ers, are used to construct a sample-to-sample covariance matrix
that is used for the downstream estimation of variance parameters
for individual genes and improved identification of trans-eQTL
associations (Fusi et al. 2012; Stegle et al. 2012). Second, the latent
variables are used directly as “endophenotypes” that are given a bi-
ological interpretation and whose genetic architecture is of stand-
alone interest (Parts et al. 2011; Stegle et al. 2012). This study con-
tributes to both objectives. First, we show that the covariance ma-
trix inferred by LVREML is identical to the one inferred by gradient-
based optimizers, while computational runtime is reduced by
orders of magnitude (e.g., a 104-fold speed-up on gene expression
data from 600 samples). Second, latent variables inferred by LVREML

by design do not overlap with already known covariates and thus
represent new aggregate expression phenotypes of potential inter-
est. In contrast, we show that existing methods infer latent varia-
bles that overlap significantly with the known covariates (cosine
similarities of up to 30%) and thus represent partially redundant
expression phenotypes.

Materials andmethods
Mathematical methods
All model equations, mathematical results, and detailed proofs
are described in a separate Supplementary material document.

Data
We used publicly available genotype and RNA sequencing data
from 1012 segregants from a cross between two yeast strains
(Albert et al. 2018), consisting of gene expression levels for 5720
genes and (binary) genotype values for 42,052 SNPs. Following
Albert et al. (2018), we removed batch and optical density effects
from the expression data using categorical regression. The ex-
pression residuals were centered such that each sample had
mean zero to form the input matrix Y to the model (cf.
Supplementary Section S2). L2-normalized genotype PCs were
computed using the SVD of the genotype data matrix with cen-
tered (mean zero) samples and used to form input matrices Z to
the model (cf. Supplementary Section S2). Data preprocessing
scripts are available at https://github.com/michoel-lab/lvreml.

LVREMl analyses
The LVREML software, as well as a script that details the LVREML

analyses of the yeast data, is available at https://github.com/
michoel-lab/lvreml.

PANAMA analyses
We obtained the PANAMA software from the LIMIX package available
at https://github.com/limix/limix-legacy.

The following settings were used to ensure that exactly the
same normalized data were used by both methods: (1) For param-
eter Y, the same gene expression matrix, with each sample nor-
malized to have zero mean, was used as input for LVREML, setting
the standardize parameter to false. (2) The parameter Ks requires
a list of covariance matrices for each known factor. Therefore, for
each column zi of the matrix Z used by LVREML, we generated a co-
variance matrices Ksi ¼ zizTi . The use Kpop parameter, which is
used to supply a population structure covariance matrix to
PANAMA in addition to the known covariates, was set to false.

To be able to calculate the log-likelihoods and extract other
relevant information from the PANAMA results, we made the fol-
lowing modifications to the PANAMA code: (1) The covariance ma-
trices returned by PANAMA are by default normalized by dividing
the elements of the matrix by the mean of its diagonal elements.
To make these covariance matrices comparable to LVREML, this
normalization was omitted by commenting out the lines in the
original PANAMA code where this normalization was being per-
formed. (2) PANAMA does not return the variance explained by the
known confounders unless the use Kpop parameter is set to true.
Therefore, the code was modified so that it would still return the
variance explained by the known confounders. (3) The K matrix
returned by PANAMA does not include the effect of the noise pa-
rameter r2. Therefore, the code was modified to return the r21
matrix, which was then added to the returned K, i.e.,
Knew ¼ Kþ r21, to be able to use eq. (2) to compute the log-
likelihood. The modified code is available as a fork of the LIMIX

package at https://github.com/michoel-lab/limix-legacy

Results
REML solution for a random effects model with
known and latent variance components
Our model to infer latent variance components in a gene expres-
sion data matrix is the same model that was popularized in the
PANAMA software (Fusi et al. 2012) and scLVM software (Buettner
et al. 2015), where a linear relationship is assumed between ex-
pression levels and the known and latent factors, with random
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noise added (Supplementary Section S2). In matrix notation, the
model can be written as

Y ¼ ZVþ XWþ e; (1)

where Y 2 Rn�m is a matrix of gene expression data for m genes
in n samples, and Z 2 Rn�d X 2 Rn�p are matrices of values for d
known and p latent confounders in the same n samples. The col-
umns vi and wi of the random matrices V 2 Rd�m and W 2 Rp�m

are the effects of the known and latent confounders, respectively,
on the expression level of gene i and are assumed to be jointly
normally distributed:

pð½ vi
wi

�Þ ¼ N ð0; ½ B D
DT A

�Þ

where B 2 Rd�d; A 2 Rp�p, and D 2 Rd�p are the covariances of
the known–known, latent–latent, and known–latent confounder
effects, respectively. Lastly, e 2 Rn�m is a matrix of independent
samples of a Gaussian distribution with mean zero and variance
r2, independent of the confounding effects.

Previously, this model was considered with independent ran-
dom effects (B and A diagonal and D ¼ 0; Fusi et al. 2012;
Buettner et al. 2015). As presented here, the model is more gen-
eral and accounts for possible lack of independence between
the effects of the known covariates. Furthermore, allowing the
effects of the known and latent factors to be dependent (D 6¼ 0)
is precisely what will allow the latent variables to be orthogonal
to the known confounders (Supplementary Section S6). An
equivalent model with D ¼ 0 can be considered but requires
nonorthogonal latent variables to explain part of the sample co-
variance matrix, resulting in a mathematically less tractable
framework. Finally, it remains the case that we can always
choose A to be diagonal, because the latent factors have an in-
herent rotational symmetry that allows any non-diagonal
model to be converted to an equivalent diagonal model
(Supplementary Section S5). By definition, the known covariates
correspond to measured or “natural” variables, and hence, they
have no such rotational symmetry.

Using standard mixed-model calculations to integrate out the
random effects (Supplementary Section S2), the log-likelihood of
the unknown model parameters given the observed data can be
written as

LðX;A;B;r2jY;ZÞ ¼ �log detðKÞ � trðK�1CÞ; (2)

where

K ¼ ZBZT þ ZDXT þ XDTZT þ XAXT þ r21 (3)

and C ¼ ðYYTÞ=m is the sample covariance matrix. Maximizing
the log-likelihood (2) over positive definite matrices K without
any further constraints would result in the estimate K̂ ¼ C (note
that C is invertible because we assume that the number of genes
m is greater than the number of samples n; Anderson and Olkin
1985).

If K is constrained to be of the form K ¼ XAXT þ r21 for a given
number of latent factors p< n, then the model is known as proba-
bilistic PCA and the likelihood is maximized by identifying the la-
tent factors with the eigenvectors of C corresponding to the p
largest eigenvalues (Tipping and Bishop 1999; Lawrence 2005). In
matrix form, the probabilistic PCA solution can be written as

K̂ ¼ P1CP1 þ r̂2P2; (4)

where P1 and P2 are mutually orthogonal projection matrices on
the space spanned by the first p and last n�p eigenvectors of C,
respectively, and the maximum-likelihood estimate r̂2 is the av-
erage variance explained by the n�p excluded dimensions
(Supplementary Section S5).

If K is constrained to be of the form K ¼ ZBZT þ r21, the model
is a standard random effects model with the same design matrix
Z for the random effects vi for each gene i. In general, there exists
no analytic solution for the maximum-likelihood estimates of the
(co)variance parameter matrix B in a random effects model
(Gumedze and Dunne 2011). However, in the present context, it is
assumed that the data for each gene are an independent sample
of the same random effects model. Again using the fact that C ¼
ðYYTÞ=m is invertible due to the number of genes being greater
than the number of samples, the maximum-likelihood solution
for B, and hence K, can be found analytically in terms of C and
the SVD of Z. It turns out to be of the same form (4), except that
P1 now projects onto the subspace spanned by the known covari-
ates (the columns of Z; Supplementary Section S4).

In the most general case where K takes the form (3), we show
first that every model of the form (1) can be rewritten as a model
of the same form where the hidden factors are orthogonal to the
known covariates, XTZ ¼ 0. The reason is that any overlap be-
tween the hidden and known covariates can be absorbed in the
random effects vi by a linear transformation and, therefore, sim-
ply consists of a reparameterization of the covariance matrices B
and D (Supplementary Section S6). Once this orthogonality is
taken into account, the log-likelihood (2) decomposes as a sum
L ¼ L1 þ L2, where q2 is identical to the log-likelihood of proba-
bilistic PCA on the reduced space that is the orthogonal comple-
ment to the subspace spanned by the known covariates (columns
of Z). Analogous to the REML method for ordinary linear mixed
models, where variance parameters of the random effects are es-
timated in the subspace orthogonal to the maximum-likelihood
estimates of the fixed effects (Patterson and Thompson 1971;
Gumedze and Dunne 2011), we estimate the latent variables X by
maximizing only the likelihood term q2 corresponding to the sub-
space where these X live (Supplementary Section S6). Once the
REML estimates X̂ are determined, they become “known” covari-
ates, allowing the covariance parameter matrices to be deter-
mined by maximizing the remaining terms q1 in the likelihood
function using the analytic solution for a model with known
covariates ðZ; X̂Þ (Supplementary Section S6).

By analogy with the REML method, we call our method the
REML method for solving the latent variable model (1), abbrevi-
ated “LVREML”. While the LVREML solution is not guaranteed to be the
absolute maximizer of the total likelihood function, it is guaran-
teed analytically that for any given number p of latent variables,
the LVREML solution attains minimal unexplained variance among
all possible choices of p latent variables (Supplementary Section
S6).

LVREML, a flexible software package for learning
latent variance components in gene expression
data
We implemented the REML method for solving model (1) in a
software package LVREML, available with Matlab and Python inter-
faces at https://github.com/michoel-lab/lvreml. LVREML takes as
input a gene expression matrix Y, a covariate matrix Z, and a pa-
rameter q, with 0 < q < 1. This parameter is the desired
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proportion of variation in Y that should be explained by the com-
bined known and latent variance components. Given q, the num-
ber of latent factors p is determined automatically (Supplementary
Section S7). LVREML centers the data Y such that each sample has
mean value zero, to ensure that no fixed effects on the mean need
to be included in the model (Supplementary Section S3).

When the number of known covariates (or more precisely the
rank of Z) exceeds the number of samples, as happens in eQTL
studies where a large number of SNPs can act as covariates (Fusi
et al. 2012), a subset of n linearly independent covariates will al-
ways explain all of the variation in Y. In Fusi et al. (2012), a heuris-
tic approach was used to select covariates during the likelihood
optimization, making it difficult to understand a priori which
covariates will be included in the model and why. In contrast,
LVREML includes a function to perform initial screening of the

covariates, solving for each one the model (1) with a single known
covariate to compute the variance b̂

2
explained by that covariate

alone (Supplementary Section S4). This estimate is then used to
include in the final model only those covariates for which
b̂

2 � htrðCÞ, where h > 0 is the second free parameter of the
method, namely the minimum amount of variation a known co-
variate needs to explain on its own to be included in the model
(Supplementary Section S7). In the case of genetic covariates, we
further propose to apply this selection criterion not to individual
SNPs, but to principal components (PCs) of the genotype data ma-
trix. Since PCA is a linear transformation of the genotype data, it
does not alter model (1). Moreover, selecting PCs as covariates
ensures that the selected covariates are linearly independent and
are consistent with the fact that genotype PCs are known to re-
veal population structure in expression data (Brown et al. 2018).
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Figure 1 (A) Gene expression variance explained by individual genotype PCs in univariate models vs their genotype variance explained. (B) Heatmap of
the estimated covariance matrix B [cf. (3)] among the effects on gene expression of the top 20 genotype PCs (by gene expression variance explained in
univariate models, cf. A, y-axis); the row labels indicate the genotype PC index, ranked by genotype variance explained (cf. A, x-axis). (C) Number of
hidden covariates inferred by LVREML as a function of the parameter q (the targeted total amount of variance explained by the known and hidden
covariates), with h (the minimum variance explained by a known covariate) set to retain 0, 5, 10, or 20 known covariates (genotype PCs) in the model.
For visualization purposes only the range of q upto q ¼ 0:6 is shown, for the full range, see Supplementary Figure S1.
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To test LVREML and illustrate the effect of its parameters, we
used genotype data for 42,052 genetic markers and RNA sequenc-
ing expression data for 5720 genes in 1012 segregants from a
cross between two strains of budding yeast (Albert et al. 2018),
one of the largest (in terms of sample size), openly available eQTL
studies in any organism (see Materials and methods). We first per-
formed PCA on the genotype data. The dominant genotype PCs
individually explained 2–3% of variation in the genotype data,
and 1–2% of variation in the expression data, according to
the single-covariate model [Supplementary Section S4,
Supplementary Equation (S16), and Figure 1A]. Although
genotype PCs are orthogonal by definition, their effects on gene
expression are not independent, as shown by the non-zero off-di-
agonal entries in the maximum-likelihood estimate of the covari-
ance matrix B [cf. (3); Figure 1B]. To illustrate how the number of
inferred hidden covariates varies as a function of the input pa-
rameter q, we determined values of the parameter h to include
between 0 and 20 genotype PCs as covariates in the model. As
expected, for a fixed number of known covariates, the number of
hidden covariates increases with q, as more covariates are
needed to explain more of the variation in Y, and decreases with
the number of known covariates, as fewer hidden covariates are
needed when the known covariates already explain more of the
variation in Y (Figure 1C).

When setting the parameter h, or equivalently, deciding the
number of known covariates to include in the model, care must
be taken due to a mathematical property of the model: the

maximizing solution exists only if the minimum amount of varia-
tion in Y explained by a known covariate (or more precisely, by a
principal axis in the space spanned by the known covariates) is
greater than the maximum-likelihood estimate of the residual
variance r̂2 (see Theorems 1 and 4 in Supplementary Sections S4
and S6). If noninformative variables are included among the
known covariates, or known covariates are strongly correlated,
then the minimum variation explained by them becomes small,
and potentially smaller than the residual variance, whose initial
“target” value is 1 � q. Because LVREML considers the known covari-
ates as fixed, it lowers the value of r̂2 by including more hidden
covariates in the model, until the existence condition is satisfied.
In such cases, the total variance explained by the known and hid-
den covariates will be greater than the target value of the input
parameter q. Visually, the presence of noninformative dimen-
sions in the linear subspace spanned by the known covariates
(due to noninformative or redundant variables) is shown by a sat-
uration of the number of inferred hidden covariates with decreas-
ing q (Supplementary Figure S1B), providing a clear cue that the
relevance or possible redundancy of (some of) the known covari-
ates for explaining variation in the expression data needs to be
reconsidered.

LVREML attains likelihood values higher than or
equal to PANAMA

To compare the analytic solution of LVREML against the original model
with gradient-based optimization algorithm, as implemented in the

A B

C D

Figure 2 Log-likelihood values for LVREML (A, C) and PANAMA (B, D) using 0, 5, 10, and 20 PCs of the expression data (A, B) or genotype data (C, D) as known
covariates. The results shown are for 600 randomly subsampled segregants; corresponding results for 200, 400, and in the case of LVREML 1012
segregants are shown in Supplementary Figure S2.
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PANAMA software (Fusi et al. 2012), we performed a controlled compari-
son where 0, 5, 10, and 20 dominant PCs of the expression data Y
were used as artificial known covariates. Because of the mathemati-
cal properties of the model and the LVREML solution, if the first d ex-
pression PCs are included as known covariates, LVREML will return the
next p expression PCs as hidden factors. Hence, the log-likelihood of
the LVREML solution with d expression PCs as known covariates and p
hidden factors will coincide with the log-likelihood of the solution
with zero known covariates and dþ p hidden factors (that is, proba-
bilistic PCA with dþ p hidden factors). Figure 2A shows that this is
the case indeed: the log-likelihood curves for 0, 5, 10, and 20 PCs as
known covariates are shifted horizontally by a difference of exactly
5 (from 0, to 5, to 10) or 10 (from 10 to 20) hidden factors.

In contrast, PANAMA did not find the optimal shifted probabilis-
tic PCA solution, and its likelihood values largely coincided with
the solution with zero known covariates, irrespective of the num-
ber of known covariates provided (Figure 2B). In other words,
PANAMA did not use the knowledge of the known covariates to ex-
plore the orthogonal space of axes of variation not yet explained
by the known covariates, instead arriving at a solution where p
hidden factors appear to explain no more of the variation than
p�d PCs orthogonal to the d known PCs. To verify this, we com-
pared the PANAMA hidden factors to PCs given as known covariates,
and found that in all cases where the curves in Figure 2B align,
the first d hidden factors coincided indeed with the d known
covariates (data not shown).

When genotype PCs were used as known confounders (using
the procedure explained above), the shift in log-likelihood values
was less pronounced, consistent with the notion that the geno-
type PCs explain less of the expression variation than the expres-
sion PCs. In this case, the likelihood values of LVREML and PANAMA

coincided (Figure 2, C and D), indicating that both methods found
the same optimal covariance matrix.

The explanation for the difference between Figure 2, A and C
is as follows. In Figure 2A, LVREML uses p hidden covariates to ex-
plain the same amount of variation as dþ p expression PCs. The
dominant expression PCs are partially explained by population
structure (genotype data). Hence, when d genotype PCs are given
as known covariates, LVREML infers p orthogonal latent variables
that explain the “missing” portions of the expression PCs not
explained by genotype data. This results in a model that explains

more expression variation than the p dominant expression PCs,
but less than pþ d expression PCs, hence the reduced shift in
Figure 2C.

It is unclear why PANAMA did not find the correct solution when
expression PCs were used as known covariates (Figure 2B), but
this behavior was consistent across multiple subsampled data-
sets of varying sizes (Supplementary Figure S2) as well as in other
datasets (data not shown).

PANAMA and PEER infer hidden factors that are
partially redundant with the known covariates
Although PANAMA inferred models with the same covariance ma-
trix estimate K̂ and hence the same likelihood values as LVREML

when genotype PCs where given as known covariates, the in-
ferred hidden covariates differed between the methods.

As explained, hidden covariates inferred by LVREML are auto-
matically orthogonal to the known covariates and represent line-
arly independent axes of variation. In contrast, the latent
variables inferred by PANAMA overlapped with the known genotype
covariates supplied to the model, with cosine similarities of up to
30% (Figure 3A). In PANAMA, covariances among the effects of the
known confounders are assumed to be zero. When the optimal
model (i.e., maximum-likelihood K̂) in fact has effects with non-
zero covariance (as in Figure 1B), the optimization algorithm in
PANAMA will automatically select hidden confounders that overlap
with the known confounders to account for these non-zero cova-
riances (Supplementary Section S6), thus resulting in the ob-
served overlap. Hence, the common interpretation of PANAMA

factors as new determinants of gene expression distinct from
known genetic factors is problematic.

To test whether the overlap between inferred and already
known covariates also occurs in other methods or is specific to
PANAMA, we ran the PEER software (Stegle et al. 2012) on a reduced
dataset of 200 randomly selected samples from the yeast data
(PEER runtimes made it infeasible to run on larger sample sizes).
PEER is a popular software that uses a more elaborate hierarchical
model to infer latent variance components (Stegle et al. 2010). PEER

hidden factors again showed cosine similarities of up to 30%
(Figure 3B), suggesting that its hidden factors also cannot be
interpreted as completely new determinants of gene expression.
We also tested the hidden factors returned by PEER when no

A B C

Figure 3 Cosine similarity between known covariates (five genotype PCs) given to the model and hidden factors inferred by PANAMA (A) and PEER (B), and
cosine similarity between gene expression PCs and hidden factors inferred by PEER (C) when no known covariates are given to the model. Results are for
randomly subsampled data of 200 segregants.

6 | G3, 2022, Vol. 12, No. 2

D
ow

nloaded from
 https://academ

ic.oup.com
/g3journal/article/12/2/jkab410/6447512 by U

niversitetsbiblioteket i Bergen user on 16 February 2022



known covariates are added to the model. In this case, model (1)
reduces to probabilistic PCA and both LVREML and PANAMA correctly
identify the dominant expression PCs as hidden factors (Figure 2,
A and B). Despite its more complex model, which does not permit
an analytic solution even in the absence of known covariates, PEER

hidden factors in fact do overlap strongly with the same domi-
nant expression PCs (cosine similarities between 60% and 80%),
indicating that the added value of the more complicated model
structure may be limited, at least in this case.

LVREML is orders of magnitude faster than PANAMA

An analytic solution does not only provide additional insight into
the mathematical properties of a model but can also provide sig-
nificant gains in computational efficiency. The LVREML solution can
be computed using standard matrix operations from linear alge-
bra, for which highly optimized implementations exist in all pro-
gramming languages. Comparison of the runtime of the Python
implementations of LVREML and PANAMA on the yeast data at multiple
sample sizes showed around 10 thousand-fold speed-up factors,
from several minutes for a single PANAMA run to a few tens of milli-
seconds for LVREML (Figure 4). Interestingly, the computational cost
of LVREML did not increase much when known covariates were in-
cluded in the model, compared to the model without known cova-
riates that is solved by PCA (Figure 4A). In contrast, runtime of
PANAMA blows up massively as soon as covariates are included
(Figure 4B). Nevertheless, even in the case of no covariates, PANAMA

is around 600 times slower than the direct, eigenvector decomposi-
tion-based solution implemented in LVREML. Finally, the runtime of
LVREML does not depend on the number of known or inferred latent
factors, whereas increasing either parameter in PANAMA leads to an
increase in runtime (Supplementary Figure S3).

Discussion
We presented a random effects model to estimate simulta-
neously the contribution of known and latent variance compo-
nents in gene expression data, which is closely related to models
that have been used previously in this context (Lawrence 2005;
Stegle et al. 2010, 2012; Fusi et al. 2012; Buettner et al. 2015). By in-
cluding additional parameters in our model to account for non-
zero covariances among the effects of known covariates and
latent factors, we were able to show that latent factors can

always be taken orthogonal to, and therefore linearly indepen-
dent of, the known covariates supplied to the model. This is im-
portant, because inferred latent factors are not only used to
correct for correlation structure in the data but also as new, data-
derived “endophenotypes”, that is, determinants of gene expres-
sion whose own genetic associations are biologically informative
(Parts et al. 2011; Stegle et al. 2012). As shown in this paper, the
existing models and their numerical optimization result in hid-
den factors that in fact overlap significantly with the known
covariates, and hence their value in uncovering “new” determi-
nants of gene expression must be questioned.

To solve our model, we did not rely on numerical, gradient-
based optimizers, but rather on an analytic REML solution. This
solution relies on a decomposition of the log-likelihood function
that allows us to identify hidden factors as PCs of the expression
data matrix reduced to the orthogonal complement of the sub-
space spanned by the known covariates. This solution is guaran-
teed to minimize the amount of unexplained variation in the
expression data for a given number of latent factors and is analo-
gous to the widely used REML solution for conventional linear
mixed models, where variance parameters of random effects are
estimated in the subspace orthogonal to the maximum-
likelihood estimates of the fixed effects.

Having an analytic solution is not only important for under-
standing the mathematical properties of a statistical model, but
can also lead to significant reduction of the computational cost
for estimating parameter values. Here, we obtained a 10,000-fold
speed-up compared to an existing software that uses gradient-
based optimization. On a yeast dataset with 1012 samples, our
method could solve the covariance structure and infer latent fac-
tors in less than half a second, whereas it was not feasible to run
an existing implementation of gradient-based optimization on
more than 600 samples.

The experiments on the yeast data showed that in real-world
scenarios, LVREML and the gradient-based optimizer implemented in
the PANAMA software resulted in the same estimates for the sample
covariance matrix. Although the latent variables inferred by both
methods are different (orthogonal vs partially overlapping with the
population structure covariates), we anticipate that downstream
linear association analyses will nevertheless give similar results as
well. For instance, established protocols (Stegle et al. 2012) recom-
mend to use known and latent factors as covariates to increase the

A B

Figure 4 Runtime comparison between LVREML (A) and PANAMA (B), with parameters set to infer 85 hidden covariates with either 0 known covariates or
including 10 genotype PCs as known covariates, at multiple sample sizes. Running PANAMA on the full dataset of 1012 segregants was infeasible. For
runtime comparisons at other parameter settings, see Supplementary Figure S3.
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power to detect expression QTLs. Since orthogonal and overlapping
latent factors can be transformed into each other through a linear
combination with the known confounders, linear association mod-
els that use both known and latent factors as covariates will also
be equivalent (Supplementary Section S8).

While we have demonstrated that the use of latent variance
components that are orthogonal to known confounders leads to
significant analytical and numerical advantages, we acknowl-
edge that it follows from a mathematical symmetry of the under-
lying statistical model that allows us to transform a model with
overlapping latent factors to an equivalent model with orthogo-
nal factors. Whether the true but unknown underlying variance
components are orthogonal or not, nor their true overlap value
with the known confounders, can be established by the models
studied in this paper precisely due to this mathematical symme-
try. Such limitations are inherent to all latent variable methods.

To conclude, we have derived an analytic REML solution for a
widely used class of random effects models for learning latent vari-
ance components in gene expression data with known and un-
known confounders. Our solution can be computed in a highly
efficient manner, identifies hidden factors that are orthogonal to the
already known variance components, and results in the estimation
of a sample covariance matrix that can be used for the downstream
estimation of variance parameters for individual genes. The REML
method facilitates the application of random effects modeling strat-
egies for learning latent variance components to much larger gene
expression datasets than currently possible.

Data availability
The LVREML software and all data processing and analysis scripts
underlying this article are available at https://github.com/
michoel-lab/lvreml.

The modified code for running the PANAMA analyses is available
as a fork of the LIMIX package at https://github.com/michoel-lab/
limix-legacy.

No new data were generated in support of this research.
Expression levels in units of log2(TPM) for all yeast genes and

segregants were obtained from https://doi.org/10.7554/eLife.
35471.021.

Information on experimental batch and growth covariates for
all yeast segregants was obtained from https://doi.org/10.7554/
eLife.35471.022.

Genotypes at 42,052 markers for all yeast segregants were
obtained from https://doi.org/10.7554/eLife.35471.023.

Supplementary material is available at G3 online.
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Figure S1: A.Number of hidden covariates inferred by LVREML as a function of the parame-
ter ρ (the targeted total amount of variance explained by the known and hidden covariates),
with θ (the minimum variance explained by a known covariate) set to retain 0, 5, 10, or 20
known covariates (genotype PCs) in the model. B. Same as panel A, with θ set to retain
50, 100, 150, or 200 genotype PCs in the model. The saturation of the number of hidden
covariates with decreasing ρ for models with 100, 150, and 200 known covariates is a visual
indicator that some of the dimensions in the linear subspace spanned by the known covari-
ates do not explain sufficient variation in the expression data, and the relevance or possible
redundancy of (some of) the known covariates for explaining variation in the expression
data needs to be reconsidered.
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Figure S2: Log-likelihood values for LVREML (A,C) and PANAMA (B,D) using 0, 5, 10, and
20 PCs of the expression data (A,B) or genotype data (C,D) as known covariates, at sample
sizes of 200, 400, and in the case of LVREML 1,012 segregants (top to bottom).

2



A B

Figure S3: Runtime comparison on between LVREML (A) and PANAMA (B), with parameters
set to infer 85 hidden covariates with 0, 5, 10, or 20 genotype PCs included as known covari-
ates, at sample sizes of 200, 400, and in the case of LVREML 1,012 segregants (top to bottom).
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Supplementary Methods

S1 Preliminary results

In the sections below, we will repeatedly use the following results. The first result concerns
linear transformations of normally distributed variables and can be found in most textbooks
on statistics or probability theory:

Lemma 1. Let x ∈ Rn be a random, normally distributed vector,

p(x) = N (µ,Ψ),

with µ ∈ Rn, and Ψ ∈ Rn×n a positive definite covariance matrix. For any linear transformation
y = Mx with M ∈ Rm×n, we have

p(y) = N (Mµ,MΨMT).

If the linear transformation y = Mx in this Lemma is overdetermined, that is, if m > n,
then the transformed covariance matrix Ψ′ = MΨMT will have a lower rank n than its
dimension m, that is, Ψ′ ∈ Rm×m is a positive semi-definite matrix (i.e., has one or more
zero eigenvalues). Thus we can extend the definition of normal distributions to include
degenerate distributions with positive semi-definite covariance matrix, by interpreting them
as the distributions of overdetermined linear combinations of normally distributed vectors.
A degenerate one-dimensional normal distribution is simply defined as a δ-distribution, that
is, for x ∈ R

p(x) = N (µ, 0) = δ(x− µ),

which can be derived as a limit σ2 → 0 of normal distribution density functions N (µ, σ2).

The second result is one that is attributed to von Neumann [1]:

Lemma 2. Let P,Q ∈ Rn×n be two positive definite matrices. Then

tr(P−1Q) ≥
n

∑
i=1

π−1
i χi, (S1)

where π1 ≥ · · · ≥ πn and χ1 ≥ · · · ≥ χn are the ordered eigenvalues of P and Q, respectively, and
equality in eq. (S1) is achieved if and only if the eigenvector of P corresponding to πi is equal to the
eigenvector of Q corresponding to χn−i+1, i = 1, . . . , n.
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S2 The model

We will use the following notation:

• Y ∈ Rn×m is a matrix of gene expression data form genes in n samples. The ith column
of Y is denoted yi ∈ Rn and corresponds to the vector of expression values for gene i.
We assume that the data in each sample are centred, ∑m

i=1 yi = 0 ∈ Rn.

• Z ∈ Rn×d is a matrix of values for d known confounders in the same n samples. The
kth column of Z is denoted zk ∈ Rn and corresponds to the data for confounding factor
k.

• X ∈ Rn×p is a matrix of values for p latent variables to be determined in the same n
samples. The jth column of X is denoted xj ∈ Rn.

To identify the hidden correlation structure of the expression data, we assume a linear rela-
tionship between expression levels and the known and latent variables, with random noise
added:

yi = Zvi + Xwi + ϵi, (S2)

where vi ∈ Rd and wi ∈ Rp are jointly normally distributed random vectors,

p
([

vi
wi

])
= N

(
0,
[
B D
DT A

])
(S3)

with B ∈ Rd×d, D ∈ Rd×p and A = diag(α2
1, . . . , α

2
p), such that

Ψ =

[
B D
DT A

]

is a positive semi-definite matrix; the errors ϵi ∈ Rn are assumed to be independent and
normally distributed,

p(ϵi) = N (0, σ21).

Note that our aim is to identify variance components shared across genes, and hence σ2 is
assumed to be the same for all i. By assumption, the errors are also independent of the effect
sizes, and hence we can write

p





vi
wi
ϵi




 = N


0,




B D 0
DT A 0
0 0 σ21




 . (S4)

By Lemma 1, yi is normally distributed with distribution

p(yi) = N (0,K) =
1

(2π)
n
2
√

det(K)
exp

(
−1
2
⟨yi,K−1yi⟩

)
, (S5)

where

K =
[
Z X 1

]



B D 0
DT A 0
0 0 σ21





ZT

XT

1


 = ZBZT + ZDXT + XDTZ+ XAXT + σ21,
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and we used the notation ⟨u, v⟩ = uTv to denote the inner product between two vectors in
Rn.

Defining matrices V ∈ Rd×m and W ∈ Rp×m, whose columns are the random effect vectors
vi and wi, respectively, eq. (S2) can be written in matrix notation as

Y = ZV+ XW+ ϵ

Under the assumption that the columns yi of Y are independent samples of the distribution
(S5), the likelihood of observing Y given covariate data Z, (unknown) latent variable data X
and values for the hyper-parameters Θ = {σ2,A,B,D}, is given by

p(Y | Z,X,Θ) =
m

∏
i=1

p(yi | 0,K).

Note that in standard mixed-model calculations, the distribution (S5) is often arrived at by
integrating out the random effects. This is equivalent to application of Lemma 1.

To conclude, the log-likelihood is, upto an additive constant, and divided by half the number
of genes:

L = − 2
m

[m
2
logdet(K) +

1
2

m

∑
i=1

⟨yi,K−1yi⟩
]
= − log det(K)− tr

(
K−1C),

where

C =
YYT

m

is the empirical covariance matrix.

S3 Systematic effects on the mean

Eq. (S2) only considers random effects, which leads to amodel for studying systematic effects
on the covariance between samples. We could also include fixed effects to model systematic
effects onmean expression level. However, by centering the data, ∑m

i=1 yi = 0, themaximum-
likelihood estimate of such fixed effects is always zero. To see this, let T ∈ Rn×c be a matrix
of c covariates with fixed effects β ∈ Rc shared across genes (we are only interested in
discovering systematic biases in the data). Then the minus log-likelihood (2) becomes

L = log det(K) +
1
m

m

∑
i=1

⟨yi − Tβ,K−1(yi − Tβ)⟩

Optimizing with respect to β leads to the equation

β̂ = (TTK−1T)−1TT ȳ

where

ȳ =
1
m

m

∑
i=1

yi = 0.
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S4 Solution of the model without latent variables

We start by considering the problem of finding the maximum-likelihood solution in the ab-
sence of any latent variables, i.e. minimizing eq. (2) with

K = ZBZT + σ21 (S6)

with respect to B and σ2.

Note first of all that we may assume the set of confounding factors {z1, . . . , zd} to be linearly
independent, because if not, the expression in eq. (S2) can be rearranged in terms of a lin-
early independent subset of factors whose coefficients are still normally distributed due to
elementary properties of the multivariate normal distribution, see for instance the proof of
Lemma 5 below. Linear independence of {z1, . . . , zd} implies that we must have d ≤ n and
rank(Z) = d.

The singular value decomposition allows to decompose Z as Z = UΓVT, where U ∈ Rn×n,
UTU = UUT = 1, Γ ∈ Rn×d diagonal with γ2

k ≡ Γkk > 0 for k ∈ {1, . . . , d} [this uses
rank(Z) = d], and V ∈ Rd×d, VTV = VVT = 1. There is also a ‘thin’ SVD, Z = U1Γ1VT,
where U1 ∈ Rn×d, UT

1U1 = 1, Γ1 ∈ Rd×d diagonal with diagonal elements γ2
k . In block

matrix notation, U = (U1,U2) and

Z =
(
U1 U2

) (Γ1
0

)
V (S7)

Note that unitarity of U implies UT
1U2 = 0.

Denote byHZ the space spanned by the columns (i.e. covariate vectors) of Z. The projection
matrix PZ onto HZ is given by

PZ = Z(ZTZ)−1ZT = U1Γ1VT(VΓ−2
1 VT)VΓ1UT

1 = U1UT
1 .

Using the basis of column vectors of U, we can write any matrix M ∈ Rn×n as a partitioned
matrix

UTMU =

(
M11 M12
M21 M22

)
(S8)

where

Mij = UT
i MUj. (S9)

The following results for partitioned matrices are derived easily or can be found in [2]:

tr(M) = tr(M11) + tr(M22) (S10)

det(M) = det
(
M11 −M12M−1

22 M21
)
det(M22) (S11)

Using this notation, the following result solves the model without latent variables:
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Theorem 1. Let C ∈ Rn×n be a positive definite matrix such that

λmin(C11) >
tr(C22)

n− d
, (S12)

where λmin(·) denotes the smallest eigenvalue of a matrix. Then the maximum-likelihood solution

K̂ = argmin
{K : K=ZBZT+σ21}

log detK+ tr
(
K−1C

)
, (S13)

subject to B being positive semi-definite and σ2 ≥ 0, is given by

B̂ = VΓ−1
1 (C11 − σ̂21)Γ−1

1 VT (S14)

σ̂2 =
tr(C22)

n− d
(S15)

Proof. Using eq. (S7), we can write

K = ZBZT + σ21 = U1Γ1VTBVΓ1UT
1 + σ2(U1UT

1 +U2UT
2 )

= U1Γ1VT(B+ σ2VΓ−2
1 VT)VΓ1UT

1 + σ2U2UT
2 .

Hence, in the block matrix notation (S8), we have

K11 = Γ1VT(B+ σ2VΓ−2
1 VT)VΓ1

K22 = σ21

K12 = K21 = 0.

It follows that

K−1 =

(
K−1

11 0
0 K−1

22

)

and, using eqs. (S10) and (S11),

log det(K) = log det(K11) + log det(K22) = log det(K11) + (n− d) log(σ2)

tr(K−1C) = tr(K−1
11 C11) + tr(K−1

22 C22) = tr(K−1
11 C11) +

tr(C22)

σ2 .

Let C11 have eigenvalues λ1 ≥ · · · ≥ λd with corresponding eigenvectors u1, . . . , ud ∈ Rd.
Applying Lemma 2 to the term tr(K−1

11 C11), it follows that for the minimizer K̂, K̂11 must
have eigenvalues κ1 ≥ · · · ≥ κd with the same eigevectors u1, . . . , ud as C11. Expressing the
minus log-likelihood in terms of these eigenvalues results in

L(K̂) =
d

∑
i=1

log(κi) +
d

∑
i=1

κ−1
i λi + (n− d) log(σ2) +

tr(C22)

σ2 .

Minimizing with respect to the parameters κi and σ2 (i.e., setting their derivatives to zero)
results in the solution κ̂i = λi for all i and σ̂2 = tr(C22)

n−d . In other words, K̂11 has the same
eigenvalues and eigenvectors as C11, that is,

K̂11 = C11.
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This equation is satisfied if

B̂+ σ̂2VΓ−2
1 VT = VΓ−1

1 C11Γ−1
1 VT

or

B̂ = VΓ−1
1 (C11 − σ̂21)Γ−1

1 VT

B̂ is positive semi-definite if and only if for all v ∈ Rd

0 < ⟨v, B̂v⟩ = ⟨w, (C11 − σ̂21)w⟩,

where w = Γ1Vv. Because V is unitary and Γ1 diagonal with strictly positive elements,
⟨v, B̂v⟩ > 0 for all v ∈ Rd if and only if ⟨w, (C11 − σ̂21)w⟩ > 0 for all w ∈ Rd, or

0 < min
w∈Rd

⟨w,C11w⟩
⟨w,w⟩ − σ̂2 = λmin(C11)− σ̂2.

Eq. (S12) is a condition on the amount of variation in Y explained by the confounders Z,
with λmin(C11) being (proportional to) the minimum amount of variation explained by any
of the dimensions spanned by the columns of Z, and 1

n−d tr(C22) being the average amount
of variation explained by the dimensions orthogonal to the columns of Z. Failure of this
condition simply means that there must be other, latent variables that explain more variation
than the known ones, which is precisely what we are seeking to detect.

A useful special case of Theorem 1 occurs when the number of confounders equals one. In
this case, we are seeking maximum-likelihood solutions for K of the form

K = β2zzT + σ21,

where z ∈ Rn is the confounding data vector. Let γ2 = ∥z∥2 and u = 1
γz. Then Pz = uuT is

the projection matrix onto z, C11 = ⟨u,Cu⟩, and tr(C22) = tr((1− Pz)C) = tr(C)− ⟨u,Cu⟩.
By Theorem 1, we have

β̂2 =
1

γ2

{
⟨u,Cu⟩ − tr

(
[1− Pz]C

)

n− 1

}

=
1

γ2

{
n

n− 1
⟨u,Cu⟩ − tr(C)

n− 1

}
(S16)

σ̂2 =
tr
(
[1− Pz]C

)

n− 1
=

tr(C)− ⟨u,Cu⟩
n− 1

,

provided

⟨u,Cu⟩ > tr(C)
n

.
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S5 Solution of the model without known covariates

Next, consider a model without known covariates, i.e. with posterior sample covariance
matrix K = KX({αj, xj}) + σ21, where

KX
(
{αj, xj}

)
=

p

∑
j=1

α2
j xjx

T
j .

Thismodel is equivalent to probabilistic principal component analysis [3,4], and itsmaximum-
likelihood solution is given by the first p eigenvectors or principal components with largest
eigenvalues of C. Here we present a more direct proof of this fact than what can be found in
the literature.

Lemma 3. Without loss of generality, we may assume that the latent variables have unit norm, are
linearly independent, and are mutually orthogonal.

Proof. If the latent variables do not have unit norm, define cj = ∥xj∥−1, α′
j = αj/cj and

x′j = cjxj for all j. It follows immediately that ∥x′j∥ = 1 and

KX
(
{αj, xj}

)
= KX

(
{α′

j, x
′
j}
)
.

Next assume that the latent variables are not linearly independent, i.e. that rank(KX) = r <
p. Because KX is a symmetric matrix, we must have KX = ∑r

l=1 tlt
T
l for some set of linearly

independent vectors tl ∈ Rn. Define α′
l = ∥tl∥ and x′l = tl/∥tl∥. Then x′l has unit norm and

KX
(
{α′

l , x
′
l}
)
= KX

(
{αj, xj}

)
.

Finally, recall that

KX({αj, xj}) = XAXT = (XA
1
2 )(XA

1
2 )T,

where A = diag(α2
1, . . . , α

2
p). Because we may now assume that rank(X) = p, and because

αj > 0 for all j, the matrix XA
1
2 has singular value decomposition

XA
1
2 = UΞVT

with U ∈ Rn×p, UTU = 1, Ξ ∈ Rp×p diagonal with diagonal elements Ξjj = ξ j > 0, and
V ∈ Rp×p, VTV = VVT = 1. Hence

KX
(
{αj, xj}) = UΞ2UT =

p

∑
j=1

ξ2j ujuT
j = KX

(
{ξ j, uj}),

with uj the orthonormal columns of U, ⟨uj, u′j⟩ = (UTU)jj′ = δj,j′ .

We will also need the following simple result:

Lemma 4. Let λ1 ≥ λ2 ≥ · · · ≥ λn > 0 be a decreasing sequence of positive numbers, and let
1 ≤ p < n. If there exists j > p such that λp > λj, then

λp >
1

n− p

n

∑
j=p+1

λj. (S17)
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Proof. Eq. (S17) follows from

λp −
1

n− p

n

∑
j=p+1

λj =
1

n− p

n

∑
j=p+1

(λp − λj) > 0,

because each term on the r.h.s. is non-negative, and at least one is strictly positive.

Theorem 2. Let C ∈ Rn×n be a positive definite matrix with eigenvalues λ1 ≥ · · · ≥ λn and
corresponding eigenvectors u1, . . . , un, and let either p = n or 1 ≤ p < n such that there exists
j > p with λp > λj. Then the maximum-likelihood solution

K̂ = argmin
{K : K=XAXT+σ21}

log detK+ tr
(
K−1C

)
,

is given by

x̂j = uj

α̂2
j = λj − σ̂2

σ̂2 =
1

n− p

n

∑
j=p+1

λj.

Proof. By Lemma 3, we can assume that X has orthonormal columns, and hence there exist
V ∈ Rn×(n−p) such that Q = (X,V) ∈ Rn×n is unitary, QTQ = QQT = 1. Hence K =
XAXT + σ21 has the spectral decomposition

K =
(
X V

) (A2 + σ21 0
0 σ21

)(
XT

VT

)
,

and hence

K−1 =
p

∑
j=1

1
α2
j + σ2

xjxTj +
1
σ2

n−p

∑
l=1

vlvTl ,

where vl ∈ Rn are the columns of V.

Assume that the α2
j are ordered, α2

1 ≥ · · · ≥ α2
p. Applying von Neumann’s Lemma 2 gives

L = log det(K) + tr
(
K−1C

)

≥
p

∑
j=1

log(α2
j + σ2) + (n− p) log(σ2) +

p

∑
j=1

λj

α2
j + σ2

+
n

∑
j=p+1

λj

σ2 , (S18)

with equality if and only if

xj = uj for j = 1, . . . , p

vl = up+l for l = 1, . . . , n− p

Hence, independent of the values for αj, the maximum-likelihood latent variables are the
eigenvectors of C corresponding to the p largest eigenvalues. Minimizing eq, (S18) w.r.t. α2

j
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and σ2 then gives

α2
j = λj − σ2

σ2 =
1

n− p

N

∑
j=p+1

λj.

By Lemma 4, α2
j > 0 for all j.

Note that plugging the maximum-likelihood values in the likelihood function gives

Lmin =
p

∑
j=1

log(λj) + (n− p) log
( 1
n− p

n

∑
j=p+1

λj

)
+ n (S19)

Either p can be set a priori small enough such that condition (S17) is satisfied, or else the
value of p with smallest Lmin satisfying this condition can be found easily from eq. (S19).

Note also that in the models of [3, 4], uniform prior variances are assumed (α2
1 = · · · = α2

p =

1), such that X is defined upto an arbitrary rotation, because XXT = (XR)(XR)T for any
rotation matrix R. In our model, there is no such rotational freedom (if A is assumed to be
diagonal), except if C has eigenvalues with multiplicities greater than one, when there is
some freedom to choose the corresponding eigenvectors.

S6 Solution of the full model

S6.1 Orthogonality of known and hidden confounders

Lemma 5. Without loss of generality, we may assume that the latent variables are orthogonal to the
known confounders:

XTZ = ZXT = 0. (S20)

Proof. As in Section S4, let PZ again be the projection matrix on the space spanned by the
known covariates zk (i.e. the columns of Z). For any choice of latent variables xj, we have

xj = PZxj + (1− PZ)xj =
d

∑
k=1

mkjzk + x̃j,

for some matrix of linear coefficients M = (mkq) ∈ Rd×p, and with ⟨sk, x̃j⟩ = 0 for all k. Or,
in matrix notation

X = ZM+ X̃, with X̃TZ = ZTX̃ = 0

Plugging this in eq. (S2), results in

yi = Zṽi + X̃wi + ϵi (S21)
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where ṽi = vi +Mwi. Hence


ṽi
wi
ϵi


 =




1 M 0
0 1 0
0 0 1





vi
wi
ϵi




and hence, using Lemma 1, it follows that

p





ṽi
wi
ϵi




 = N


0,



B+MDT +DMT +MAMT D+AMT 0

DT +MA A 0
0 0 σ21




 .

This is still of exactly the same form as eq. (S4). Hence model (S21) is identical to model (S2),
but has hidden covariates orthogonal to the known covariates.

Note that we can parameterize the model with hidden variables orthogonal to the known
confounders, ZTX = 0, but only if we allow the covariances of their effects on gene expres-
sion, Cov(vi,wi) = D, to be non-zero. Equivalently, we can parameterize the model such
that the random effects of hidden variables are statistically independent of the effects of the
known confounders, Cov(vi,wi) = 0, but only if we allow the hidden variables to overlap
with the known confounders, ZTX ̸= 0. Mathematically, the choice of orthogonal hidden
factors will be much more convenient.

Note also that a transformation to orthogonal hidden factors always induces non-zero co-
variances among the known confounders via the term MAMT. Hence an important diffi-
culty with the model where B is assumed to be diagonal, as used in [5], comes from the fact
that non-orthogonal hidden variables are needed tomodel off-diagonal covariances between
the known confounders. It is much more intuitive to model these directly by assuming a
general covariance matrix.

S6.2 Restricted maximum-likelihood solution for the latent variables

Lemma 6. Without loss of generality, we may assume that the latent variables have unit norm, are
linearly independent, and are mutually orthogonal.

Proof. The proof is identical to the proof of Lemma 3 – it is straightforward to verify that
the transformation to orthonormal variables also do not change the form of the off-diagonal
term ZDXT in the covariance matrixK, but merely lead to a reparameterization of the matrix
D.

To solve the full model, we follow an approach similar to the standard restricted maximum-
lilelihood method for linear mixed models [6, 7]: we write the negative log-likelihood func-
tion L = log det(K) + tr(K−1C) as a sum

L = L1 + L2, (S22)

where L2 will be the log-likelihood restricted to the subspace orthogonal to the known con-
founders Z. We will estimate the latent variables X and their effect covariances A by max-
imizing L2, and estimate the effect covariances B and D involving the known confounders
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by maximizing L1. Solving for the latent variables on a restricted subspace is motivated by
the observation that if y ∈ Rn is a sample from the model (S2), that is, p(y) = N (0,K), then

U2UT
2 y = U2UT

2Zv+U2UT
2Xw+U2UT

2 ϵ = Xw+ ϵ′.

In other words, restricted to the subspace orthogonal to Z, the general model becomes a
probablistic PCA model where all variation in the data is explained by the latent variables.

To obtain the decomposition (S22), we partition y ∈ Rn as y = (y1, y2)T, where y1 = UT
1 y ∈

Rd and y2 = UT
2 y ∈ Rn−d, and write

p(y) = p(y1, y2) = p(y1 | y2)p(y2),

or

log p(y) = log p(y1, y2) = log p(y1 | y2) + log p(y2).

Hence

L = − 2
m

m

∑
i=1

log p(yi) = − 2
m

m

∑
i=1

log p(yi1 | yi2)
︸ ︷︷ ︸

L1

− 2
m

m

∑
i=1

log p(yi2)

︸ ︷︷ ︸
L2

Using standard results for the marginal and conditional distributions of a multivariate Gaus-
sian, we have

p(y2) = N (0,K22)

p(y1 | y2) = N
(
K12K−1

22 y2, (K11 −K12K−1
22 K21)

)
,

where we used the partitioned matrix notation of eq. (S8). In particular,

L2 = log det(K22) +
1
m

m

∑
i=1

⟨UT
2 yi,K

−1
22 U

T
2 yi⟩

= log det(K22) +
1
m

m

∑
i=1

tr
(
K−1

22 U
T
2 yiy

T
i U2

)

= log det(K22) + tr
(
K−1

22 C22
)
.

Note that K22 = UT
2XAXTUT

2 + σ21, and hence L2 depends only on X, A and σ2. The re-
stricted maximum likelihood solution for the latent variables follows immediately:

Theorem 3. Let X̂ ∈ Rn×p, Â ∈ Rd×d, and σ̂2 be the solution of

{X̂, Â, σ̂2} = argmin
X,A,σ2

L2(X,A, σ2),

where the minimum is taken over all X with XTZ = 0, and all positive semi-definite diagonal matrices
Â. If there exists j > p such that λp > λj, then

X̂ = U2Wp (S23)

Â = diag(λ1 − σ̂2, . . . ,λp − σ̂2) (S24)

σ̂2 =
1

n− d− p

n−d

∑
j=p+1

λj (S25)
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where λ1 ≥ λ2 ≥ · · · ≥ λn−d are the sorted eigenvalues of C22 with corresponding eigenvectors
w1, . . . ,wn−d ∈ Rn−d, and Wp = (w1, . . . ,wp) ∈ R(n−d)×p is the matrix with the first p eigenvec-
tors of C22 as columns.

Proof. Defining X̃ = UT
2X ∈ R(n−d)×p, we have K22 = X̃AX̃T + σ21, and L2 becomes pre-

cisely the minus log-likelihood of the model without known covariates (Section S5), as a
function of the latent variables X̃ on the reduced (n− d)-dimensional space orthogonal to the
known confounders Z. Hence by Theorem 2,

ˆ̃X = Wp

Â = diag(λ1 − σ2, . . . ,λp − σ2),

where λ1 ≥ λ2 ≥ · · · ≥ λn−d are the sorted eigenvalues of C22 and Wp ∈ R(n−d)×p is the
matrix having the corresponding first p eigenvectors as columns. Note that Â is positive
semi-definite by Lemma 4 and the assumption that there exists j > p such that λp > λj. It
remains to ‘pull-back’ X̃ to the original n-dimensional space, using the orthogonality condi-
tion (S20):

X̂ = (U1UT
1 +U2UT

2 )X̂ = U2UT
2 X̂ = U2

ˆ̃X = U2Wp.

This proves eqs. (S23) and (S24).

S6.3 Solution for the variance parameters given the latent variables

With X̂, Â and σ̂2 determined by the minimization of L2 in Theorem 3, L2(X̂, Â, σ̂2) is con-
stant in terms of the parameters B and D that remain to be optimized. Hence optimizing L1
with respect to these parameters is the same as optimizing the total negative log-likelihood
L(X̂, Â,B,D, σ̂2) w.r.t. B and D. We have:

Theorem 4. Let B̂ ∈ Rd×d and D̂ ∈ Rd×(n−d) be the solution of

{B̂, D̂} = argmin
B,D

L1(X̂, Â,B,D, σ̂2) = argmin
B,D

L(X̂, Â,B,D, σ̂2),

subject to the constraint that B and B−DÂ−1DT are positive semi-definite. If

λmin(C11) > σ̂2, (S26)

then

B̂ = VΓ−1
1 (C11 − σ̂21)Γ−1

1 VT (S27)

D̂ = VΓ−1
1 C12Wp (S28)

where as before

Z =
(
U1 U2

) (Γ1
0

)
VT

is the singular value decomposition of Z, and Wp = (w1, . . . ,wp) ∈ R(n−d)×p is the matrix with
the first p eigenvectors of C22 as columns.
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Proof. Note that the conditions B and B−DÂ−1DT positive semi-definite are to ensure that

thematrix
(

B D
DT Â

)
is positive semi-definite. Next note that with X̂T known, the covariance

matrix K can be written as

K =
(
Z X̂

) ( B D
DT Â

)(
ZT

X̂T

)
+ σ̂21

Hence the total log-likelihood is identical to the model with known covariates Z̃ =
(
Z X̂

)

and no latent variables (Section S4). The unconstrained maximizing solution (that is, where
A and σ2 are also optimized) for the model with known covariates Z̃ is given by Theorem 1.

Due to X̂TZ = 0 and the definition of X̂, the singular value decomposition of Z̃ is given by

Z̃ =
(
U1 X̂ U3

)



Γ1 0
0 1

0 0




(
VT 0
0 1

)
,

where the columns of U3 ∈ Rn×(n−d−p) span the space orthogonal to the columns of Z̃.
Hence the unconstrained solution, can be written as (cf. eqs. (S14)–(S15))

(
B̂ D̂
D̂T Â′

)
=

(
V 0
0 1

)(
Γ−1
1 0
0 1

)(
UT

1
X̂T

)
(C− σ̂′21)

(
U1 X̂

) (Γ−1
1 0
0 1

)(
VT 0
0 1

)

σ̂′2 =
tr(UT

3CU3)

n− d− p

First note that σ̂′2 = σ̂2, because we can write U3 = U2W∼p, where W∼p ∈ R(n−d)×(n−d−p) is
the matrix with the n− d− p last eigenvectors of C22.

Working out the block matrix product results in:

B̂ = VΓ−1
1 UT

1 (C− σ̂21)U1Γ−1
1 VT = VΓ−1

1 (C11 − σ̂21)Γ−1
1 VT

D̂ = VΓ−1
1 UT

1CX̂ = VΓ−1
1 UT

1CU2Wp = VΓ−1
1 C12Wp

Â′ = X̂T(C− σ̂21)X̂ = WT
pU

T
2 (C− σ̂21)U2Wp = WT

p (C22 − σ̂21)Wp

= diag(λ1 − σ̂2, . . . ,λp − σ̂2)

Hence, also the estimate Â′ = Â. Because the unconstrained optimization of L given X̂
results in the same estimate for A and σ2 as the intial constrained optimization where these
parameters were given, it follows that also the estimates of B and D must be the same:

{B̂, D̂} = argmin
B,D

L(B,D | X̂, Â, σ̂2) = argmin
B,D

min
A,σ2

L(A,B,D, σ2 | X̂).

S6.4 LVREML maximizes the variance explained

It is tempting to ask whether the combined solution from Theorems 3 and 4 optimizes the
total likelihood among all possible p-dimensional sets of latent variables. To address this
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problem, let X ∈ Rn×p be an arbitrary matrix of latent variables whose columns are nor-
malized, mutually orthogonal and orthogonal to the columns of Z, XTX = 1 and XTZ = 0.
Because U2 is only defined upto a rotation, we can always choose

U2 =
(
X Q

)

with Q ∈ Rn×(n−d−p) satisfying QTQ = 1, QTX = 0 and QTZ = 0. From the proof of
Theorem 4 we immediately obtain:

Proposition 1. Let A(X) ∈ Rp×p, B(X) ∈ Rd×d, D(X) ∈ Rd×(n−d) and σ2(X) > 0 be the
solution of

{A(X),B(X),D(X), σ2(X)} = argmin
A,B,D,σ2

L(A,B,D, σ2 | X).

Then

B(X) = VΓ−1
1 (C11 − σ̂21)Γ−1

1 VT

D(X) = VΓ−1
1 UT

1CX

A(X) = XT(C− σ̂21)X

σ2(X) =
tr(QTCQ)

n− d− p

Plugging these values into the negative log-likelihood function results in a function that
depends only on X:

Proposition 2. Let X ∈ Rn×p be an arbitrary choice of latent variables with associated maximum-
likelihood estimates for the covariance parameters given by Proposition 1. Then, upto an additive
constant

LX = log det
(
XT[C− CU1(UT

1CU1)UT
1C

]
X
)
+ (n− d− p) log

(
σ̂2(X)

)
(S29)

Proof. Recall from Theorem 2 that the maximum-likelihood estimate for K given X and its
associated maximum-likelihood parameters estimates is given by

K̂(X) =



UT

1CU1 UT
1CX 0

XTCU1 XTCX 0
0 0 σ̂21




while the covariance matrix C can be written as

C =



UT

1CU1 UT
1CX UT

1CQ
XTCU1 XTCX XTCQ
QCU1 QCX QTCQ
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Hence

LX = L
(
K̂(X)

)
= log det

(
K̂(X)

)
+ tr

(
K̂(X)−1C

)

= log det
(
UT

1CU1 UT
1CX

XTCU1 XTCX

)
+ (n− d− p) log(σ̂2) + (d+ p) +

tr(QTCQ)

σ̂2

= log det
(
UT

1CU1 UT
1CX

XTCU1 XTCX

)
+ (n− d− p) log(σ̂2) + (d+ p) + (n− d− p)

Using equation (S11) for the determinant of a partitioned matrix, we have

logdet
(
UT

1CU1 UT
1CX

XTCU1 XTCX

)
= log det(UT

1CU1) + log det
(
XTCX− XTCU1(UT

1CU1)
−1U1CX

)

= log det(UT
1CU1) + log det

(
XT[C− CU1(UT

1CU1)
−1UT

1C
]
X
)
.

Ignoring the constants logdet(UT
1CU1) and nwhich do not depend on X, we obtain eq. (S29).

Due to the determinant term in eq. (S29), it is not clear whether the restricted maximum-
likelihood solution X̂ of Theorem 3 (with its associated maximum-likelihood covariance pa-
rameters of Theorem 4) is the absolute minimizer of LX,

X̂ = argmin
X∈Rn×p,XTX=1,XTZ=0

LX ?

However, we do have the following result:

Theorem 5. The restricted maximum-likelihood solution X̂ of Theorem 3 is the set of p latent vari-
ables that minimizes the residual variance among all choices of p latent variables,

X̂ = argmin
X∈Rn×p,XTX=1,XTZ=0

σ2(X)

Proof. By Proposition 1 and the arguments leading up to it, we can write

tr(C22) = tr(XTCX) + tr(QTCQT) = tr
(
(UT

2X)
TC22(UT

2X)
)
+ tr

(
(UT

2Q)TC22(UT
2Q)

)
,

where as before C22 = UT
2CU2 is the restriction of C to the (n − d)-dimensional subspace

orthogonal to the d known covariates, and the columns of UT
2X and UT

2Q span mutually
orthogonal subspaces within this (n − d)-dimensional space. Hence (n − d − p)σ2(X) =
tr(QTCQT) is the trace of C22 over the residual (n − d − p)-dimensional space orthogonal
to the latent variables, within the subspace orthogonal to the d known covariates. By the
Courant-Fisher min-max theorem for eigenvalues [2], the (n− d− p)-dimensional subspace
of Rn−d with smallest trace is the subspace spanned by the eigenvectors of C22 corresponding
to its (n− d− p) smallest eigenvalues. By Theorem 3, this is exactly the subspace obtained
by choosing X equal to the restricted maximum-likelihood solution X̂.
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S7 Selecting covariates and the latent dimension

Two practical problems remain: how to choose the latent variable dimension parameter p
and which known covariates to include?

To choose p, we will use the following result:

Lemma 7.

tr(C) = tr(K̂) = tr(ZB̂ZT) + tr(X̂ÂX̂T) + nσ̂2

Proof. Use Theorem 4 to compute

tr(ZB̂Z) = tr
(
U1Γ1VT[VΓ−1

1 (C11 − σ̂21)Γ−1
1 VT]VΓ1UT

1

)

= tr
(
U1C11UT

1
)
− σ̂2 tr

(
U1UT

1
)

= tr(C11)− dσ̂2,

where the last step uses the cyclical property of the trace and the fact that UT
1U1 = 1d.

Likewise, we have

tr
(
X̂ÂX̂

)
= tr

(
U2Wp diag(λ1, . . . ,λp)WT

pU
T
2

)
− σ̂2 tr

(
U2WpWT

pU
T
2
)

=
p

∑
j=1

λj − pσ̂2

=
n−d

∑
j=1

λj − (n− d)σ̂2

= tr(C22)− (n− d)σ̂2.

Hence

tr(K̂) = tr(ZB̂Z) + tr(X̂ÂX̂) + nσ̂2 = tr(C11) + tr(C22) = tr(C)

Because C = (YYT)/m, the eigenvalues of C are (proportional to) the squared singular
values of the expression data Y. Hence tr(ZB̂Z)/ tr(C) is the proportion of variation in Y
explained by the known covariates, tr(X̂ÂX̂)/ tr(C) the proportion of variation explained
by the latent variables, and nσ̂2/ tr(C) is the residual variance.

Our method for determining the number of latent variables lets the user decide a priori the
minimum amount of variation ρ in the data that should be explained by the known and
latent confounders. It follows that given ρ, a “target” value for σ2 is

σ2(ρ) = min
{ (1− ρ) tr(C)

n
,λmin(C11)

}
,
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where the minimum with λmin(C11) is taken to ensure that of condition (S26) remains valid.
Because the eigenvalues λ1, . . . ,λn−d are sorted, the function

f (p) =
1

n− d− p

n−d

∑
j=p+1

λj

increases with decreasing p. Hence given ρ, we define p̂ as

p̂ = min
{
p : 0 ≤ p < n− d,λp > λn−d, f (p) < σ2(ρ)

}
,

that is, we choose p̂ to be the smallest number of latent variables that explain at least a propori-
tion of variation ρ of Y, while guaranteeing that the conditions for all mathematical results
derived in this document are valid.

Note that unless all eigenvalues of C22 are identical, p̂ always exists. Once the desired num-
ber of latent variables p̂ is defined, the latent factors X̂, the variance parameters Â, and the
residual variance estimate σ̂2 (which will be the largest possible value less than or equal
to the target value σ2(ρ)) are determined by Theorem 3. Once those are determined, the
remaining covariance parameters B̂ and D̂ are determined by Theorem 4.

A second practical problem occurs when the rank of Z exceeds the number of samples, such
that any subset of n linearly independent covariates explains all of the variation in Y. To
select a more relevant subset of covariates, we rapidly screen all candidate covariates using
the model with a single known covariate (Section S4) to compute the variance β̂2 explained
by that covariate alone (eq. (S16)). We then keep only those covariates for which β̂2 ≥ θ tr(C),
where θ > 0 is the second free parameter of the method, namely the minimum amount of
variation explained by a known covariate on its own. The selected covariates are ranked
according to their value of β̂2, and a linearly independent subset is generated, starting from
the covariates with highest β̂2.

S8 Downstream analyses

The inferred maximum-likelihood hidden factors X̂ and sample covariance matrix K̂ are
typically used to create a dataset of residuals corrected for spurious sample correlations, to
increase the power for detecting eQTLs, or as data-derived endophenotypes [5,8]. We briefly
review these tasks and how they compare between LVREML and PANAMA hidden factors.

S8.1 Correcting data for spurious sample correlations

To remove spurious correlations due to the known and latent variance components from the
expression data Y ∈ Rn×m (see Section S2), the residuals ŷi ∈ Rn for gene i with original
data yi (a column of Y) are contructed as

ŷi = K̂
(
σ2
c,iK̂+ σ2

e,i1
)−1

ŷi

where the variance parameters σ2
c,i and σ2

e,i are fit separately for each gene i [5]. Hence two
solutions for the latent factors that give rise to the same K̂ (as observed in Section 2.3 for
LVREML and PANAMA) will result in the same residuals.
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S8.2 Adjusting for known and latent covariates in eQTL association analyses

Two approaches for mapping eQTLs are commonly used in this context. The first approach
tests for an association between SNP sj and gene yi using a mixed model, where the SNP is
treated as a fixed effect, constructing likelihood ratio statistics as

LODi,j = log
N (yi | θsj, σ2

c,iK̂+ σ2
e,i1)

N (yi | 0, σ2
c,iK̂+ σ2

e,i1)
,

where the variance parameters σ2
c,i and σ2

e,i are fit separately for each gene i [5]. Hence for
latent factor solutions that give rise to the same K̂ the association analyses will again be
identical.

The second approach performs a linear regression of a gene’s expression data, typically using
the corrected data ŷi, on the SNP genotypes sj, using the known and inferred factors as
covariates [8], that is, a linear model is fit where

ŷi = βi,jsj + Zai + X̂bi + ϵi (S30)

where Z and X̂ are the matrices of known and estimated latent factors, respectively, and
ai ∈ Rd and bi ∈ Rp are their respective regression coefficients.

Since maximum-likelihood solutions for the hidden factors by LVREML and PANAMA dif-
fer by a linear combination with the known factors Z that transforms models with hidden
factors orthogonal to Z to equivalent models with hidden factors overlapping with Z, and
vice versa (see Section S6.1), it is clear that the same linear transformation will also result
in equivalent linear association models in eq. (S30). Hence this type of analysis will also be
equivalent between the hidden factors inferred by both approaches.

S8.3 Mapping the genetic architecture of latent variables

Inferred latent variables are sometimes treated as endophenotypes whose genetic architec-
ture is of interest. In this case SNPs are identified that are strongly associated with the latent
variables. Different solutions for the latent variables will then clearly result in different sets
of significantly associated SNPs.

Using themaximum-likelihood LVREML inferred latent variables that are orthogonal to known
confounders is advantageous in this context, because

• The LVREML latent variables are uniquely defined. All other solutions that give rise to
the same covariance matrix estimate K̂ can be written as a linear combination of the
known covariates and the LVREML covariates (see Section S6.1).

• When interpreting associated SNPs, there is no risk of attributing biological meaning
to a latent variable that is due to the signal coming from the overlapping known co-
variates.

To remove the dependence of genetic association analyses on the choice of equivalent sets
of latent variables, we recommend performing a multi-trait GWAS on the joint set of known
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and latent confounders. If the standard multivariate association test based on canonical
correlation analysis [9] is used, results will again be identical between equivalent choices of
latent variables, because together with the known confounders they all span the same linear
subspace.
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Supplementary Methods

S1 Canonical Correlation Analysis

Given two sets of random variables (X1,X2, . . . ,Xp) and (Y1,Y2, . . . ,Yq), CCA finds
linear coefficients a ∈ Rp and b ∈ Rq that maximize the correlation

ρ(a, b) = corr

(
p

∑
i=1

aiXi,
q

∑
j=1

bjYj

)

It can be shown 1 that the optimal vector a is an eigenvector of thematrix Σ−1
XXΣXYΣ−1

YYΣYX,
where ΣXX, ΣXY and ΣYY are the covariance matrices among the X and Y variables. In
the special case where q = 1 (one SNP), ΣYY is a number and ΣXY a column vector, and
this matrix takes the form Σ−1

XXvv
T, where v = Σ−1/2

YY ΣXY. The (only) eigenvector of
such a matrix is a = Σ−1

XXv.

To estimate the coefficients a from data, assume that we have standardized data X ∈
Rn×p and y ∈ Rn, such that

n

∑
k=1

xik =
n

∑
k=1

yk = 0
1

n− 1

n

∑
k=1

x2ik =
1

n− 1

n

∑
k=1

y2k = 1.

Then the estimates for the covariances are

Σ̂XX =
XTX
n− 1

Σ̂XY =
XTy
n− 1

Σ̂YY = 1,

and hence

â = (XTX)−1XTy.

1See for instance
Hardoon DR, Szedmak S and Shawe-Taylor J. Canonical correlation analysis: An overview with applica-
tion to learning methods Neural computation 16:2639–2664 (2003).

1



Supplementary Figures

2



A B

Figure S1: RMSE values for genotype prediction on DREAM5 simulated data. A. Box-
plots show the distribution of the RMSE values for all variants (blue) and for trans-
acting-only variants (red) for random forest regression (RFR), support vector regression
(SVR), ridge regression (RR), and naive Bayes (NB). B. Scatter plots show RMSE values
of RFR, SVR, and NB vs RR for all variants. The data shown are for DREAM Network
2.

A B

Figure S2: RMSE values for genotype prediction on DREAM5 simulated data. A. Box-
plots show the distribution of the RMSE values for all variants (blue) and for trans-
acting-only variants (red) for random forest regression (RFR), support vector regression
(SVR), ridge regression (RR), and naive Bayes (NB). B. Scatter plots show RMSE values
of RFR, SVR, and NB vs RR for all variants. The data shown are for DREAM Network
3.
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A B

Figure S3: RMSE values for genotype prediction on DREAM5 simulated data. A. Box-
plots show the distribution of the RMSE values for all variants (blue) and for trans-
acting-only variants (red) for random forest regression (RFR), support vector regression
(SVR), ridge regression (RR), and naive Bayes (NB). B. Scatter plots show RMSE values
of RFR, SVR, and NB vs RR for all variants. The data shown are for DREAM Network
4.

A B

Figure S4: RMSE values for genotype prediction on DREAM5 simulated data. A. Box-
plots show the distribution of the RMSE values for all variants (blue) and for trans-
acting-only variants (red) for random forest regression (RFR), support vector regression
(SVR), ridge regression (RR), and naive Bayes (NB). B. Scatter plots show RMSE values
of RFR, SVR, and NB vs RR for all variants. The data shown are for DREAM Network
5.
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A B

C

Figure S5: Scatter plots of genotype RMSE values on DREAM5 simulated data against
the number of selected model features (A), the number of true trans-eQTL targets in
the ground-truth network (B), and the genotype class balance (frequency of the zero
class) (C), for random forest regression (RFR), support vector regression (SVR), ridge
regression (RR), and naive Bayes (NB). The data shown are forDREAMNetwork 2.
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A B

C

Figure S6: Scatter plots of genotype RMSE values on DREAM5 simulated data against
the number of selected model features (A), the number of true trans-eQTL targets in
the ground-truth network (B), and the genotype class balance (frequency of the zero
class) (C), for random forest regression (RFR), support vector regression (SVR), ridge
regression (RR), and naive Bayes (NB). The data shown are forDREAMNetwork 3.
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A B

C

Figure S7: Scatter plots of genotype RMSE values on DREAM5 simulated data against
the number of selected model features (A), the number of true trans-eQTL targets in
the ground-truth network (B), and the genotype class balance (frequency of the zero
class) (C), for random forest regression (RFR), support vector regression (SVR), ridge
regression (RR), and naive Bayes (NB). The data shown are forDREAMNetwork 4.
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A B

C

Figure S8: Scatter plots of genotype RMSE values on DREAM5 simulated data against
the number of selected model features (A), the number of true trans-eQTL targets in
the ground-truth network (B), and the genotype class balance (frequency of the zero
class) (C), for random forest regression (RFR), support vector regression (SVR), ridge
regression (RR), and naive Bayes (NB). The data shown are forDREAMNetwork 5.
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A B

C D

Figure S9: Bar plots show the proportion of variants with trans-eQTL target prediction
AUROC> 0.7 (blue) and> 0.8 (red) for random forest regression (RFR), support vector
regression (SVR), ridge regression (RR), and univariate correlation (Corr). (A) DREAM
Network 2, (B) DREAM Network 3, (C) DREAM Network 4, (D) DREAM Network 5.

(A) (B)

Figure S10: Trans-eQTL target prediction performance onDREAM5 simulated data. (A)
Boxplots show the distribution of AUROC values for all variants (blue) and for trans-
acting-only variants (red) for random forest regression (RFR), support vector regression
(SVR), ridge regression (RR), and univariate correlation (Corr). (B) Scatter plots show
AUROC values of classificationmethods RFR, SVR, and Corr vs RR for all variants. The
data shown are for DREAM Network 2.
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(A) (B)

Figure S11: Trans-eQTL target prediction performance onDREAM5 simulated data. (A)
Boxplots show the distribution of AUROC values for all variants (blue) and for trans-
acting-only variants (red) for random forest regression (RFR), support vector regression
(SVR), ridge regression (RR), and univariate correlation (Corr). (B) Scatter plots show
AUROC values of classificationmethods RFR, SVR, and Corr vs RR for all variants. The
data shown are for DREAM Network 3.

(A) (B)

Figure S12: Trans-eQTL target prediction performance onDREAM5 simulated data. (A)
Boxplots show the distribution of AUROC values for all variants (blue) and for trans-
acting-only variants (red) for random forest regression (RFR), support vector regression
(SVR), ridge regression (RR), and univariate correlation (Corr). (B) Scatter plots show
AUROC values of classificationmethods RFR, SVR, and Corr vs RR for all variants. The
data shown are for DREAM Network 4.
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(A) (B)

Figure S13: Trans-eQTL target prediction performance onDREAM5 simulated data. (A)
Boxplots show the distribution of AUROC values for all variants (blue) and for trans-
acting-only variants (red) for random forest regression (RFR), support vector regression
(SVR), ridge regression (RR), and univariate correlation (Corr). (B) Scatter plots show
AUROC values of classificationmethods RFR, SVR, and Corr vs RR for all variants. The
data shown are for DREAM Network 5.
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C

Figure S14: Scatter plots of trans-eQTL target prediction performance (AUROC) on
DREAM5 simulated data against the number of selected model features (A), the num-
ber of true trans-eQTL targets in the ground-truth network (B), and the genotype class
balance (frequency of the zero class) (C), for random forest regression (RFR), support
vector regression (SVR), ridge regression (RR), and univariate correlation/naive Bayes
(NB). The data shown are forDREAMNetwork 2.
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A B

C

Figure S15: Scatter plots of trans-eQTL target prediction performance (AUROC) on
DREAM5 simulated data against the number of selected model features (A), the num-
ber of true trans-eQTL targets in the ground-truth network (B), and the genotype class
balance (frequency of the zero class) (C), for random forest regression (RFR), support
vector regression (SVR), ridge regression (RR), and univariate correlation/naive Bayes
(NB). The data shown are forDREAMNetwork 3.
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C

Figure S16: Scatter plots of trans-eQTL target prediction performance (AUROC) on
DREAM5 simulated data against the number of selected model features (A), the num-
ber of true trans-eQTL targets in the ground-truth network (B), and the genotype class
balance (frequency of the zero class) (C), for random forest regression (RFR), support
vector regression (SVR), ridge regression (RR), and univariate correlation/naive Bayes
(NB). The data shown are forDREAMNetwork 4.
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Figure S17: Scatter plots of trans-eQTL target prediction performance (AUROC) on
DREAM5 simulated data against the number of selected model features (A), the num-
ber of true trans-eQTL targets in the ground-truth network (B), and the genotype class
balance (frequency of the zero class) (C), for random forest regression (RFR), support
vector regression (SVR), ridge regression (RR), and univariate correlation/naive Bayes
(NB). The data shown are forDREAMNetwork 5.
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Figure S18: Scatter plots show trans-eQTL target prediction performance (AUROC) vs
genotype prediction performance (RMSE) on DREAM5 simulated data for all genetic
variants for random forest regression (RFR), support vector regression (SVR), ridge re-
gression (RR), and univariate correlation/naive Bayes (NB/Corr). The data shown are
for DREAM Network 2.
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Figure S19: Scatter plots show trans-eQTL target prediction performance (AUROC) vs
genotype prediction performance (RMSE) on DREAM5 simulated data for all genetic
variants for random forest regression (RFR), support vector regression (SVR), ridge re-
gression (RR), and univariate correlation/naive Bayes (NB/Corr). The data shown are
for DREAM Network 3.
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Figure S20: Scatter plots show trans-eQTL target prediction performance (AUROC) vs
genotype prediction performance (RMSE) on DREAM5 simulated data for all genetic
variants for random forest regression (RFR), support vector regression (SVR), ridge re-
gression (RR), and univariate correlation/naive Bayes (NB/Corr). The data shown are
for DREAM Network 4.
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Figure S21: Scatter plots show trans-eQTL target prediction performance (AUROC) vs
genotype prediction performance (RMSE) on DREAM5 simulated data for all genetic
variants for random forest regression (RFR), support vector regression (SVR), ridge re-
gression (RR), and univariate correlation/naive Bayes (NB/Corr). The data shown are
for DREAM Network 5.
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Figure S22: Expression hotspot maps showing the negative log transformed RMSE val-
ues vs genome position for 2884 SNPs in the yeast genome, for random forest (RF, top),
ridge regression (Ridge, middle), and support vector regression (SVR, bottom). Genes
on the same chromosome were excluded as predictors for each SNP. Secondary axis on
right shows number of non-zero effects of trans-regulatory hotspot variants from Al-
bert et al. (2018)2.

2Albert, F. W. et al. (2018). Genetics of trans-regulatory variation in gene expression. Elife, 7, e35471
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Supplementary Figures
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Figure S1: Class distribution for the top 10 SNPs identified by Random Forest, Lasso
and Ridge regression.
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Figure S2: Spearman correlation coefficients for RMSE values across the methods
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Figure S3: Pairplot showing the RMSE distribution and scatter plots between the meth-
ods, Random Forest Regression (RFR), Ridge Regression (RR), Lasso Regression (LR)
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Figure S4: Boxplots showing RMSE distribution across all SNPs for Random Forest
Regression (RFR), Lasso Regression and Ridge Regression, for all samples vs only Cau-
casian samples
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