
Alessandro Budroni

Notes on Lattice-Based
Cryptography

2022

Thesis for the degree of Philosophiae Doctor (PhD)
University of Bergen, Norway

at the University of Bergen

Avhandling for graden philosophiae doctor (ph.d)

ved Universitetet i Bergen

.

2017

Dato for disputas: 1111

Alessandro Budroni

Notes on Lattice-Based
Cryptography

Thesis for the degree of Philosophiae Doctor (PhD)

Date of defense: 06.09.2022

The material in this publication is covered by the provisions of the Copyright Act.

Print:	 Skipnes Kommunikasjon / University of Bergen

© Copyright Alessandro Budroni

Name: Alessandro Budroni

Title: Notes on Lattice-Based Cryptography

Year: 2022

Acknowledgements

ii Acknowledgements

I take this opportunity to thank everyone who helped me in pursuing my Ph.D. and

writing this thesis.

First of all, my gratitude goes to my doctoral supervisor, professor Igor Semaev,

for his guidance and patience, for teaching me the right approach to scientific research,

and for the many helpful and illuminating discussions. I want to thank my two co-

supervisors, professor Chunlei Li, for his supportive advice, and professor Qian Guo, for

introducing me to the research topic of the BKW algorithm for LWE and for our many

research conversations.

I immensely enjoyed working with my coauthors and friends Andrea Tenti and Erik

Mårtesson, and I am grateful to have met them during this journey. My other coau-

thor, Federico Pintore, was among the first to encourage me to pursue a Ph.D., and I

am really grateful to him. Finally, I thank my other coauthors Benjamin Chetioui, Er-

mes Franch, Thomas Johansson, and Paul Stankowski, for the many discussions and the

fruitful scientific collaborations.

These four years would not have been the same without the conducive work en-

vironment of the Selmer Center. I express my gratitude to all members of the group

for the support and the nice time spent together. In particular, I want to thank Navid

Ghaedi for our sincere friendship built on three years of laughs and office sharing. I am

also very grateful for meeting many precious friends that supported me and allowed me

to have the best time in Bergen. I cannot list them all for a matter of space, but I am

extremely grateful to all my hiking, climbing, skiing, cooking, and juggling buddies.

I want to express my gratitude to my parents Giampiero and Stefania, for always

being an example to follow, to my brothers Dario and Stefano, my grandma, and all the

relatives who have supported me and encouraged me during these four years.

Last but not least, I thank my girlfriend and lifemate Malin for her love, support,

and patient during the most challenging moments. To my little friend Emmi goes my

gratitude for her unconditional love and for making me start every single day with a

good mood.

Abstract in English

iv Abstract in English

Public-key Cryptography relies on the assumption that some computational problems are

hard to solve. In 1994, Peter Shor showed that the two most used computational prob-

lems, namely the Discrete Logarithm Problem and the Integer Factoring Problem, are

not hard to solve anymore when using a quantum computer. Since then, researchers have

worked on finding new computational problems that are resistant to quantum attacks to

replace these two. Lattice-based Cryptography is the research field that employs cryp-

tographic primitives involving hard problems defined on lattices, such as the Shortest

Vector Problem and the Closest Vector Problem. The NTRU cryptosystem, published

in 1998, was one of the first to be introduced in this field. The Learning With Error

(LWE) problem was introduced in 2005 by Regev, and it is now considered one of the

most promising computational problems to be employed on a large scale in the near fu-

ture. Studying its hardness and finding new and faster algorithms that solve it became

a leading research topic in Cryptology. This thesis includes the following contributions

to the field:

• A non-trivial reduction of the Mersenne Low Hamming Combination Search Prob-

lem, the underlying problem of an NTRU-like cryptosystem, to Integer Linear

Programming (ILP). In particular, we find a family of weak keys.

• A concrete security analysis of the Integer-RLWE, a hard computational problem

variant of LWE introduced by Gu Chunsheng. We formalize a meet-in-the-middle

attack and a lattice-based attack for this case, and we exploit a weakness of the

parameters choice given by Gu to build an improved lattice-based attack.

• An improvement of the Blum-Kalai-Wasserman algorithm to solve LWE. In par-

ticular, we introduce a new reduction step and a new guessing procedure to the

algorithm. These allowed us to develop two implementations of the algorithm that

are able to solve relatively large LWE instances. While the first one efficiently uses

only RAM memory and is fully parallelizable, the second one exploits a combina-

tion of RAM and disk storage to overcome the memory limitations given by the

RAM.

• We fill a gap in Pairing-based Cryptography by providing concrete formulas to

compute hash-maps to G2, the second group in the pairing domain, for the Barreto-

Lynn-Scott family of pairing-friendly elliptic curves.

Abstract in Norwegian

vi Abstract in Norwegian

Asymmetrisk kryptering er avhengig av antakelsen om at noen beregningsproblemer er

vanskelige å løse. I 1994 viste Peter Shor at de to mest brukte beregningsproblemene,

nemlig det diskrete logaritmeproblemet og primtallsfaktorisering, ikke lenger er vanske-

lige å løse n̊ar man bruker en kvantedatamaskin. Siden den gang har forskere jobbet

med å finne nye beregningsproblemer som er motstandsdyktige mot kvanteangrep for å

erstatte disse to. Gitterbasert kryptografi er forskningsfeltet som bruker kryptografiske

primitiver som involverer vanskelige problemer definert p̊a gitter, for eksempel det ko-

rteste vektorproblemet og det nærmeste vektorproblemet. NTRU-kryptosystemet, pub-

lisert i 1998, var et av de første som ble introdusert p̊a dette feltet. Problemet Learning

With Error (LWE) ble introdusert i 2005 av Regev, og det regnes n̊a som et av de mest

lovende beregningsproblemene som snart tas i bruk i stor skala. Å studere vanskelighets-

graden og å finne nye og raskere algoritmer som løser den, ble et ledende forskningstema

innen kryptografi. Denne oppgaven inkluderer følgende bidrag til feltet:

• En ikke-triviell reduksjon av Mersenne Low Hamming Combination Search Prob-

lem, det underliggende problemet med et NTRU-lignende kryptosystem, til Integer

Linear Programming (ILP). Særlig finner vi en familie av svake nøkler.

• En konkret sikkerhetsanalyse av Integer-RLWE, en vanskelig beregningsproblem-

variant av LWE, introdusert av Gu Chunsheng. Vi formaliserer et meet-in-the-

middle og et gitterbasert angrep for denne saken, og vi utnytter en svakhet ved

parametervalget gitt av Gu, for å bygge et forbedret gitterbasert angrep.

• En forbedring av Blum-Kalai-Wasserman-algoritmen for å løse LWE. Mer spesifikt,

introduserer vi et nytt reduksjonstrinn og en ny gjetteprosedyre til algoritmen.

Disse tillot oss å utvikle to implementeringer av algoritmen, som er i stand til å

løse relativt store LWE-forekomster. Mens den første effektivt bare bruker RAM-

minne og er fullt parallelliserbar, utnytter den andre en kombinasjon av RAM og

disklagring for å overvinne minnebegrensningene gitt av RAM.

• Vi fyller et tomrom i paringsbasert kryptografi. Dette ved å gi konkrete formler for

å beregne hash-funksjon til G2, den andre gruppen i paringsdomenet, for Barreto-

Lynn-Scott-familien av paringsvennlige elliptiske kurver.

List of Publications

viii List of Publications

In all the following papers, the authors are listed in alphabetical order.

I A. Budroni and A. Tenti, “The Mersenne Low Hamming Combination Search Prob-

lem Can Be Reduced to an ILP Problem,” Progress in Cryptology – AFRICACRYPT

2019. Vol. 11627 of LNCS, pp. 41–55, Springer, 2019, Rabat, Morocco.

II A. Budroni, B. Chetioui and E. Franch, “Attacks on Integer-RLWE,” Information

and Communications Security: 22nd International Conference (ICICS), Proceed-

ings. Vol. 12282 of LNCS, pp. 528–542, Springer, 2020, Copenhagen, Denmark.

III A. Budroni, Q. Guo, T. Johansson, E. Mårtensson and P. Stankovski Wagner,

“Improvements on Making BKW Practical for LWE”, Special Issue Public-Key

Cryptography in the Post-quantum Era of Cryptography, MDPI, Vol 5, 2021.

This paper is an extended and improved version of the manuscript titled “Making

the BKW Algorithm Practical for LWE”, A. Budroni, Q. Guo, T. Johansson, E.

Mårtensson and P. Stankovski Wagner, presented at the 21st International Confer-

ence on Cryptology in India (INDOCRYPT 2020), Bangalore, India, and published

in the proceedings.

IV A. Budroni and F. Pintore, “Efficient Hash Maps to G2 on BLS Curves”, Applicable

Algebra in Engineering, Communication and Computing (AAECC), Springer, 2020.

This thesis includes revised versions of paper I, II and IV.

The development of the content of paper IV started when the author of this thesis

was an employee at MIRACL Ltd. An early version of this work was presented as a

poster titled “Hashing to G2 on BLS pairing-friendly curves” at the International

Symposium on Symbolic and Algebraic Computation (ISSAC), 2018, New York,

U.S., and an abstract was published in the proceedings.

Contents

x CONTENTS

Acknowledgements i

Abstract in English iii

Abstract in Norwegian v

List of Publications vii

I Introduction 1

1 Introduction to Cryptology . 3

1.1 Symmetric Cryptography . 4

1.2 Asymmetric Cryptography . 5

1.3 Post-Quantum Cryptography . 8

1.4 Typical Attacks . 9

2 Preliminaries . 10

2.1 Complexity Estimation . 10

2.2 Lattices and Geometry of Numbers 11

2.3 Distributions . 16

3 Foundations in Lattice-Based Cryptography 19

3.1 NTRU . 19

3.2 Learning With Errors . 21

3.3 On Using the Ring of Integers Z 24

4 Attacks to LWE . 27

4.1 Algebraic Attacks . 27

CONTENTS xi

4.2 Combinatorial Attacks . 28

4.3 Lattice-based Attacks . 29

5 Pairing-based Cryptography . 31

5.1 The Group of Points of an Elliptic Curve 31

5.2 Pairings in Cryptography . 32

5.3 Hash-Maps to G1 and G2 . 34

6 Contributions . 35

II Included Papers 45

Paper 1: The Mersenne Low Hamming Combination Search Problem

can be reduced to an ILP Problem 48

1 Introduction . 49

1.1 Our Contribution/Outline . 50

2 Preliminaries . 51

2.1 Previous Attacks . 52

2.2 The Beunardeau et al. attack on MLHCombSP 53

2.3 Integer Linear Programming . 54

3 ILP Reduction . 55

3.1 Merging Bits . 57

4 A new family of weak keys . 60

5 Conclusions and Future Work . 63

Paper 2: Attacks on Integer-RLWE 68

1 Introduction . 69

xii CONTENTS

1.1 Contribution . 70

2 Preliminaries and Notation . 71

2.1 Discrete Gaussian Distributions 71

2.2 Lattices . 72

2.3 Integer Ring-Learning With Errors 73

3 Standard Attacks . 73

3.1 Meet-in-the-Middle attack . 73

3.2 Lattice-Based Attack . 77

4 Improved Lattice-Based Attack for Weak Choices of n 80

4.1 Analysis and Success Condition 82

5 Experiments . 84

6 Conclusion . 85

Paper 3: Improvements on Making BKW Practical for Solving LWE 90

1 Introduction . 91

1.1 Related Work . 92

1.2 Contributions . 93

1.3 Organization . 93

2 Background . 94

2.1 Notation . 94

2.2 The LWE and LPN Problems . 94

2.3 Discrete Gaussian Distributions 95

3 A Review of BKW-style Algorithms . 96

3.1 The LWE Problem Reformulated 96

CONTENTS xiii

3.2 Transforming the Secret Distribution 96

3.3 Sample Amplification . 97

3.4 Iterating and Guessing . 97

3.5 Plain BKW . 98

3.6 Coded-BKW and LMS . 98

3.7 LF1, LF2, Unnatural Selection . 98

3.8 Coded-BKW with Sieving . 99

4 BKW-style Reduction Using Smooth-LMS 99

4.1 A New BKW-style Step . 99

4.2 Smooth-Plain BKW . 102

4.3 How to Choose the Interval Sizes Ci 102

4.4 Unnatural Selection . 103

4.5 On Optimizing Cl Values . 103

4.6 An Illustration of Smooth Reduction Steps 103

5 A Binary Partial Guessing Approach . 104

5.1 From LWE to LPN . 104

5.2 Guessing s0 Using the FWHT . 106

5.3 Retrieving the Original Secret . 107

6 Analysis of the Algorithm and its Complexity 108

6.1 The Algorithm . 109

6.2 The Complexity of Each Step . 109

6.3 The Data Complexity . 111

6.4 In Summary . 113

6.5 Numerical Estimation . 113

xiv CONTENTS

7 Implementations . 113

7.1 RAM-based Implementation . 114

7.2 File-based Implementation . 115

7.3 A Novel Idea for Fast Storage Writing 117

7.4 Other Implementation Aspects 119

8 Experimental Results . 121

9 Conclusions and Future Work . 124

Paper 4: Efficient Hash Maps to G2 on BLS curves 130

1 Introduction . 131

1.1 Pairings in Cryptography . 131

1.2 Families of pairing-friendly elliptic curves 132

1.3 Hashing to G2 . 133

1.4 Related Work . 134

1.5 Contributions and Outline . 134

2 Known methods for efficiently mapping into G2 135

2.1 Scott et al. method . 135

2.2 Fuentes et al. method . 136

2.3 BLS curves . 139

3 Scott et al. method on BLS curves . 140

3.1 BLS-12 . 140

3.2 BLS-24 . 141

3.3 BLS-30 . 141

3.4 BLS-42 . 142

CONTENTS xv

3.5 BLS-48 . 142

4 Fuentes et al. method on BLS curves with k = 12, 24, 30 143

4.1 BLS-12 . 143

4.2 BLS-24 . 144

4.3 BLS-30 . 144

5 Faster hash maps for BLS curves with k = 42, 48 145

5.1 BLS-48 . 145

5.2 BLS-42 . 147

6 Comparisons and conclusions . 148

xvi CONTENTS

Part I

Introduction

1 Introduction to Cryptology 3

1 Introduction to Cryptology

The difference between a key and an

encryption key is that if you break

the former, you cannot open the

door, but if you break the latter, you

open the door.

A. B.

Cryptology is the science concerning secure communications between parties against

adversaries. It encompasses both Cryptography and Cryptanalysis.

Cryptography, from Ancient Greek kryptós (“hidden”) and gráphein (“to write”),

includes the tools and techniques for transforming information by means of a secret key

into a form that is either impossible or infeasible to reverse for an adversary.

Cryptanalysis, from Ancient Greek kryptós and analýein (“to untie”), includes the meth-

ods for recovering or forging secured information without the knowledge of the key.

Nowadays, the term “Cryptography” is often used in the place of “Cryptology”.

In the past, the security of a message often relied on the secrecy of the algorithm

used in encryption. However, this approach of providing “security through obscurity”

turned out to be unreliable when using the same system for a long time. The second of six

principles introduced by Auguste Kerckhoffs in 1998, states that a cryptosystem should

be secure even if the adversary knows everything about it, except the key [1]. Claude

Shannon later reformulated this concept as “assume the enemy knows your system” [2],

and most cryptographers nowadays accept it.

General Framework

Here, we introduce the framework that we will use to describe different scenarios in

Cryptography. Two entities or individuals, generally known in the literature as Alice

and Bob, communicate through encryption: Alice encrypts a message and sends it over

a public channel, Bob receives the encrypted message and decrypts it to read its content.

An adversary, generally called Eve, has access to the public channel and, therefore, to

the encrypted message. The goal of Eve is to recover or forge the original content of the

message.

More formally, the encryption can be seen as a function E that takes as input a

4

Alice Bob

E(m, k) = c D(c, k′) = m′

Eve

c

Figure 1: General framework in Cryptography.

Alice Bob

E(m, k) = c D(c, k) = m

E(m′, k) = c′D(c′, k) = m′

c

c′

Figure 2: Symmetric encryption.

plaintext message m and an encryption key k. The output of this function is known as

the ciphertext c = E(m, k). Similarly, the decryption process can be seen as a function

D that takes as input the ciphertext c and a decryption key k′. The output is the

message m′ = D(c, k′). We say that the communication was successful when m = m′.

The diagram in Figure 1 describes this general framework.

It is common to name research subfields of Cryptography according to their scope

and the leading technologies used in their building blocks. For example, one can find

Asymmetric and Symmetric Cryptography, Classical and Post-Quantum Cryptography,

Elliptic-Curve Cryptography, Lattice-Based Cryptography, etc. In the following subsec-

tions, we introduce some of them to facilitate the understanding of this thesis. For a

more detailed introduction to Cryptography and its history, we refer the reader to [3]

and [4].

1.1 Symmetric Cryptography

Symmetric cryptosystems are characterized by having one single private key (a.k.a.

symmetric-key or secret-key), generally known only by the two communicants Alice and

Bob, used both in encryption and decryption. In other words, the encryption key k and

the decryption key k′ are the same (k = k′). Since both Alice to Bob are able to en-

crypt and decrypt, they have the same role in their bidirectional communication. This

framework can be visualized in Figure 2.

1 Introduction to Cryptology 5

Hash functions

A hash function is a function H that deterministically maps an array of data of any length

m to an array of a fixed length h = H(m), also known as the digest. The properties that

a hash function must satisfy to be considered cryptographically secure are the following:

1. Pre-image resistance: given h = H(m), it is difficult to invert H and obtain m.

2. Second pre-image resistance: given m, it is difficult to find m′ 6= m such that

H(m′) = H(m).

3. Collision resistance: it is difficult to find two different m and m′ such that

H(m′) = H(m).

In particular, collision resistance implies pre-image and second pre-image resistance.

Cryptographically secure hash functions are called cryptographic hash functions and are

required to be efficient (fast) to compute.

1.2 Asymmetric Cryptography

A problem that arises when using symmetric cryptosystems is the exchange/agreement

of the private key. Alice and Bob cannot securely communicate if they have not ex-

changed/agreed on a key before. Sending the key as cleartext is unsafe as a third party,

Eve, can intercept it and use it to decrypt the following encrypted messages. This prob-

lem may be solved using asymmetric (or public-key) cryptosystems. This framework,

employs two different keys: a public key used only in encryption (encryption key) and

a private key used only in decryption (decryption key). Typically, even if they are re-

lated to each other, it is computationally infeasible to retrieve the private key from the

public key. Anyone can encrypt messages using the public key, but only the possessor of

the private key is able to decrypt them and read their content. The research field that

studies asymmetric encryption is also known as Public-key Cryptography.

Over the past centuries, symmetric cryptosystems were the only ones known and

used. In 1970, the British cryptographer James H. Ellis introduced the concept of public-

key encryption [5]. However, he did not provide an instantiation of it. A few years later,

in 1976, Whitfield Diffie and Martin Hellman published a work that introduced the key-

agreement algorithm, nowadays known as the Diffie-Hellman key exchange (DH) [6]. In

particular, it allows two parties to securely establish a shared encryption key by sharing

random data and making some local computation. Even though DH does not allow to

perform public-key encryption, it is generally considered a public-key cryptosystem.

6

In 1978, another public-key cryptosystem, generally known as RSA, was published

by Ron Rivest, Adi Shamir, and Leonard Adleman [7]. Unlike DH, this allows to make

public-key encryption, and it is based on the hard mathematical problem of factorizing

large integers. Since then, many other public-key cryptosystems have been proposed.

More formally, a public-key cryptosystem works as follows. Alice generates a public

key kpb and a private key kpr. Then, she sends the public key over the public channel.

Bob uses it to encrypt its message c = E(m, kpb) and sends it to Alice, who decrypts

it using her private key m = D(c, kpr). See Figure 3 to visualize this framework in a

diagram.

Alice Bob

E(m, kpb) = cD(c, kpr) = m

kpb

c

Figure 3: Asymmetric encryption.

In practice, asymmetric cryptosystems are usually used to exchange or agree on a se-

cret that is then used as a seed (also known as master secret) from which a symmetric-key

is generated. Then, a symmetric cryptosystem is employed to communicate efficiently.

One of the most famous and used protocols that follows this approach is the Transport

Layer Security (TLS) protocols [8].

The RSA cryptosystem

To give the reader an example of public-key encryption, we give here a basic explanation

of the RSA cryptosystem.

Let p and q be two large prime numbers and let n = pq. Let λ(n) be an integer

defined as lcm(p− 1, q− 1)1, and let e < λ(n) be a positive integer coprime to λ(n). Let

d be the multiplicative inverse modulo λ(n), i.e.

d = e−1 mod λ(n).

The pair (n, e) constitutes the public key, and d is the private key. Let 0 ≤ m < n be

the plaintext, then Bob performs encryption and computes the ciphertext c as follows

c = me mod n.
1least common multiple: the smallest positive integer that is divisible by both p− 1 and q − 1.

1 Introduction to Cryptology 7

Using the private key, Alice is able to decrypt the ciphertext and retrieve the message

m as follows

cd = (me)d = med = m mod n.

It is important to keep the parameters λ(n), p and q must be kept secret2; otherwise,

the cryptosystem is insecure. Knowing λ(n) allows, indeed, to efficiently compute d and,

therefore, decrypt any message encrypted with the public key (n, e).

The so-called man-in-the-middle attack is one of the basic approaches for attack-

ing a public-key cryptosystem. An adversary, Eve, substitutes in the communication

channel the public key of Alice kpb with another public key k′pb, for which she owns the

corresponding private key k′pr. Then, Eve intercepts the encrypted message from Bob

c′ = E(m, k′pb) and, therefore, is able to retrieve m = D(c′, k′pr). A countermeasure to

this attack consists of signing the private key so that Bob can verify that kpb is actually

the private key of Alice3. In the following section, we introduce a kind of cryptographic

scheme that allows performing such a signature.

Digital signature

A digital signature is a cryptographic scheme used to validate the authenticity and the

integrity of messages sent over a channel. Usually, the sender “signs” the content of the

message (e.g., email, money transaction, documents, etc.), allowing the receiver to verify

its origin, state, and identity of the sender.

Let us consider the scenario of Alice sending a message m to Bob. Assume Bob

already posses Alice’s public key kpb. To sign the message, Alice applies as hash function

on the message h = H(m), and encrypts the digest using her private key, i.e. sm =

E(h, kpr). Then, Bob decrypts it using Alice’s public key h′ = D(sm, kpb) (see Figure 4).

By doing that, Bob can check whether h is equal to h′. One distinguishes two scenarios:

– If h = h′, then Bob can conclude that m was sent by Alice since, as the only

possessor of the private key kpr, she was the only one able to sign the document.

– If h 6= h′, then Bob cannot be sure whether the message received m was actually

sent by Alice or was not modified/substituted by a third party.

A few public-key cryptosystems provide both public-key encryption and digital sig-

nature. It is the case of the RSA cryptosystem. In this case, Alice signs the hash of her

2Knowing p or q allows to retrieve λ(n).
3In practice, a third-party called Certificate Authority is involved in this process.

8

Alice Bob

h = H(m)

E(h, kpr) = sm

D(sm, kpb) = h′

H(m) = h
?
= h′

m, sm

Figure 4: Digital signature.

message h = H(m) with the private key d as follows

sm = hd mod n.

Using the public key (n, e), Bob is able to retrieve the hash of the message as follows

sem = (hd)e = hde = h mod n.

1.3 Post-Quantum Cryptography

Public-key cryptosystems base their security on hard mathematical problems. Namely,

certain cryptographic schemes are proved to be secure as long as the complexity of

the underlying mathematical problem is exponential (in some cases, sub-exponential).

At the moment, the majority of public-key cryptographic schemes employed in real-life

applications are based on either of the following two assumptions.

– The Integer Factoring Assumption: it is hard to find two big primes p and q

given their product N = pq.

– The Discrete Logarithm Assumption: let g be a generator for a cyclic group

G. It is hard to find x, for a given element h = gx ∈ G.

These are well-known and deeply-studied problems, and the best-known classical

attacks to these have either exponential or sub-exponential complexity. In 1994, Peter

Shor introduced a quantum algorithm that solves the Factoring Problem and the Dis-

crete Logarithm Problem (DLP) in polynomial time [9]. Since then, the attention of

the research community has moved to find new hard mathematical problems that resist

quantum attacks too. In the last decade, due to the progress in constructing real quan-

tum computers [10, 11], the research community received an additional boost to build

quantum-resistant cryptographic schemes.

1 Introduction to Cryptology 9

Most of the (believed to be) quantum-resistant cryptosystems proposed so far can

be grouped into the following categories.

• Lattice-based Cryptography: the cryptographic primitives are based on the

security of hard problems in high-dimensional lattices such as the Shortest Vector

Problem or the Closest Vector Problem.

• Code-based Cryptography: the cryptographic primitives are based on the se-

curity of hard problems related to error correcting codes such as the Syndrome

Decoding Problem.

• Isogeny-based Cryptography: the cryptographic primitives are based on the

security of hard problems defined over supersingular elliptic curves and supersin-

gular isogeny graphs.

• Hash-based Cryptography: the cryptographic primitives are based on the se-

curity of hash functions.

• Multivariate Cryptography: the cryptographic primitives are based on the

hardness of solving systems of multivariate equations.

In 2017, the National Institute of Standards and Technology (NIST) launched a com-

petition for standardizing new quantum-resistant public-key cryptosystems [12]. Initially,

there were 82 submissions. At the moment of writing, 15 cryptosystems made it through

three rounds of selection, and are divided into 7 finalists, considered the most promising

ones, and 8 alternates. In particular, 5 out of 7 finalists and 2 out of 8 alternates are

lattice-based cryptosystems.

1.4 Typical Attacks

There exist many cryptographic attacks to symmetric and asymmetric cryptosystems,

and these can be categorized in different ways. Considering the goal of the adversary,

we distinguish three cases:

• Key-recovery attack: the adversary’s aim is to recover the private key.

• Message-recovery attack: the adversary’s aim is to recover the encrypted mes-

sage.

• Distinguishing attack: the adversary’s aim is to distinguish encrypted messages

from random data.

10

Another classification considers the information in hands of the adversary when

performing the attack. The following are the main different scenarios that are usually

taken into consideration:

• Ciphertext-only attack (COA): the adversary has access only to the ciphertext,

and no information about the corresponding plaintext is known.

• Known-plaintext attack (KPA): the adversary has access to plaintext-ciphertext

pairs.

• Chosen-plaintext attack (CPA): the adversary has the possibility to choose

some specific plaintext and obtain the corresponding ciphertext.

• Chosen-ciphertext attack (CCA): the adversary has the possibility to choose

some specific ciphertext and obtain the corresponding plaintext.

2 Preliminaries

Throughout this chapter, we use the following notation. Let N,Z and R be the set of

natural, integer, and real numbers respectively. Given a positive integer p, we write

Zp = Z/pZ. Vectors are denoted with bold lower case letters, matrices with bold upper

case letters. For a given vector v, we denote it’s i-th component as vi. We denote with

‖ v ‖ the Euclidean norm of v, with entries vi ∈ R. For a good introduction to algebraic

structures, we refer the reader to [13].

2.1 Complexity Estimation

It is fundamental to estimate the computational and memory resources necessary for

solving a given algorithmic task in Cryptology.

One concrete approach consists of computing the number of unit operations that

an algorithm needs to perform to complete a specific task. A unit operation can be an

addition or a multiplication in a specific field, or even a bit-wise operation. Similarly, one

can decide for a memory unit such as a bit, a byte, or an n-bits integer and compute the

number of memory units required to execute the algorithm. However, it is sometimes

difficult to predict the behavior of certain algorithms and, therefore, the number of

operations.

2 Preliminaries 11

Another approach is to use asymptotic analysis theory to study the behavior of an

algorithm when the size of the problem goes to infinity. The so-called Big O notation is a

set of notations commonly used in the literature, and it is briefly summarized in Table 2.1.

It allows us to describe an algorithm with a bound on its asymptotic complexity. This

strategy is particularly useful to classify algorithms and make comparisons. However,

as we study the behavior at infinity of the algorithm, it may happen that the speed

hierarchy is not respected for small problems. In other words, it may happen that, even

if algorithm A has lower asymptotic complexity than algorithm B, A is slower than B

for problems of (smaller) size used in real-world.

Notation Definition

f(n) = O(g(n)) lim supn→∞
|f(n)|
g(n)

<∞

f(n) = Ω(g(n)) lim infn→∞
f(n)
g(n)

> 0

f(n) = Θ(g(n)) f(n) = O(g(n)) and f(n) = Ω(g(n))

f(n) = o(g(n)) limn→∞
|f(n)|
g(n)

= 0

f(n) = ω(g(n)) limn→∞
|f(n)|
g(n)

=∞

f(n) = Õ(g(n)) ∃k > 0 : f(n) = O(g(n) logk g(n))

Table 2.1: The Big O notation

One last approach is to run an implementation of the algorithm and measure the

performance. This strategy allows us to have an exact measure of the time and memory

needed to run the algorithm for a specific problem’s size. The drawback is that the

measurement would highly depend on the implementation and the machine. Also, it

is often not straightforward to reach conclusions on the algorithm’s behavior on large

problem instances based on its performance with smaller ones.

2.2 Lattices and Geometry of Numbers

We recall here some basic definitions and notions useful to address the following sections

on Lattice-Based Cryptography. For a more detailed introduction to the topic, we refer

the reader to [14], [15] and [16].

Definition 1. (Lattice) Let k ≤ n be two positive integers, and let B = {b1, b2, . . . , bk} ⊂
Rn a set of k linearly independent vectors. The lattice Λ of rank k generated by B is the

set defined as follows:

Λ = Λ(B) = {α1b1 + α2b2 + ...+ αkbk, αi ∈ Z} .

12

The set B, or any other set of k linearly independent vectors that generates Λ as a

Z-module, is said to be a basis of Λ.

More generally, a lattice is an additive sub-group of Rn. Unless differently specified,

from now on we will treat full-rank lattices, that is the case when k = n.

Definition 2. (Fundamental Domain) Let B = {b1, ..., bn} ⊂ Rn be a basis of an n-

dimensional lattice Λ. The fundamental domain of Λ corresponding to B is defined as

the set

F(B) = {l1b1 + l2b2 + ...+ lnbn : 0 ≤ li < 1}.

Definition 3. (Volume of a Lattice) Let Λ be a lattice and let F be a fundamental

domain of Λ. The volume (or determinant) of Λ is defined as the volume of F and it is

denoted by Vol(Λ) (or det(Λ)).

In particular, it can be shown that the volume of a lattice is invariant from the

choice of the basis.

Proposition 1. Let B be the n× n matrix whose rows are the vectors of a basis B of a

lattice Λ. Then

Vol(Λ) = Vol(F) = | det(B)|.

We denote with λ1(Λ) the length of the shortest non-zero vector in the lattice λ,

i.e.,

λ1(Λ) = min
v∈Λ\{0}

‖ v ‖ .

This parameter plays a fundamental role in Lattice-based Cryptography as it is the

subject of several computational problems defined over lattices. More in general, let

Bn(r) be the closed ball of radius r in Rn. Then, for i = 1, ..., n, define the ith minima

of the lattice Λ as

λi(Λ) = min{r ∈ R+ : Λ ∩ Bn(r) contains i linearly independent vectors}.

Hermite’s Theorem and Gaussian Heuristic

In Cryptography, it is often required to estimate the length of a shortest non-zero vector

λ1(Λ) of a given lattice. In this section we report some well-known results on this topic.

For a more detailed explanation, we refer the reader to [17].

Definition 4. (Hermite’s Constant) The supremum of λ1(Λ)2/Vol(Λ)2/k, over all lat-

tices Λ ⊂ Rn of rank k, is called Hermite’s constant and it is denoted by γk.

2 Preliminaries 13

In other words, for a full-ranked lattice Λ, one can write

λ1(Λ)2 ≤ γn Vol(Λ)2/n. (2.1)

The exact value of γn is known only for a few small values of n, in particular γ2 =
√

4/3.

The following theorem gives us a bound for γn.

Theorem 1. (Hermite’s Theorem)[18] For all n ≥ 2, one has that γn ≤ γn−1
2 .

Using Theorem 1 and relation (2.1), one gets the following bound on the length of

the shortest vector of a lattice

λ1(Λ) ≤ γ
(n−1)/2
2 Vol(Λ)1/n = (4/3)(n−1)/4 Vol(Λ)1/n.

Tighter bounds for γn are given in [19, Chap. 9] and [20, Chap. 2], resulting in the

following
n

2πe
+

log(πn)

2πe
+ o(1) ≤ γn ≤

1.744n

2πe
(1 + o(1)).

However, it is often more convenient to use heuristic estimates on random lattices to

estimate the value of λ(Λ). We report below an estimate based on the so-called Gaussian

Heuristic.

Heuristic 1. (Gaussian Heuristic) Let Λ be a full-rank lattice and let S ⊂ Rn be a

measurable set. Then, the number of points of Λ ∩ S is approximately Vol(S)/Vol(Λ).

Choose the set S to be the n-dimensional ball Bn(r), where the radius r is such

that Vol(Bn(r)) = Vol(Λ). Then, according to Heuristic 1, Bn(r) contains only one

vector of Λ (up to sign), and λ1(Λ) can be approximated with the radius r. Given that

Vol(Bn(r))1/n is approximately equal to
√

2πe
n
r, one gets that

λ1(Λ) ≈
√

n

2πe
· Vol(Λ)1/n. (2.2)

Although this is a derivation of the Heuristic 1, it is often referred to in the literature as

Gaussian Heuristic.

Computational problems

Here, we define some of the computational problems defined on lattices that have proved

to be useful in cryptographic applications. We start by introducing two fundamental

problems.

14

Definition 5. (Shortest Vector Problem (SVP)) Given a basis B of an n−dimensional

lattice Λ, find a vector v ∈ Λ such that ‖v‖ = λ1(Λ).

Definition 6. (Closest Vector Problem (CVP)) Given a basis B of an n−dimensional

lattice Λ and a target vector w ∈ Rn, find a vector v ∈ Λ such that ‖w − v‖ =

mint∈Λ\{w}‖w − t‖.

One can see the SVP as a particular case of the CVP for when the target vector

is the zero vector. Particularly useful in Cryptography are the so-called approximation

problems, i.e. parametrized versions of the above. Specifically, one usually uses a param-

eter γ = γ(n) expressed as a function of the dimension n of the lattice. The following is

the approximate version of the SVP.

Definition 7. (Approximate Shortest Vector Problem (SVPγ)) Let γ ≥ 1 be a real

number. Given a basis B of an n-dimensional lattice Λ, find a non-zero vector v ∈ Λ

such that ‖v‖ ≤ γ · λ1(Λ).

Note that, when γ = 1, then the above corresponds to the plain SVP. The following

are two other important problems in lattice-based cryptography.

Definition 8. (γ−unique Shortest Vector Problem (unique-SVPγ)) Let γ ≥ 1 be a real

number. Given a lattice Λ such that λ2(Λ) > γλ1(Λ), find the unique (up to sign) v ∈ Λ

such that ‖v‖ = λ1(Λ).

Definition 9. (Bounded Distance Decoding (BDD) Let d > 0 be a real number. Given a

basis B of an n−dimensional lattice Λ and a target vector w ∈ Rn such that there exists

a unique lattice vector v ∈ Λ where ‖w − v‖ < d, find v.

Lattice Reduction Algorithms

It is easy to obtain a basis of a lattice from another. Let B ∈ Zn×n be a matrix whose

rows generate a lattice Λ. For any matrix U ∈ Zn×n with det(U) = ±1, the rows of

B′ = UB generate the same lattice Λ. A challenge in Lattice Theory is to find, given

a basis of a lattice, another basis such that this is reduced, i.e., the vectors are (almost)

orthogonal and have a small norm. In this section, we recall some of the most important

reduction algorithms that address this problem.

The LLL algorithm In 1982, Lenstra, Lenstra, and Lovász introduced a polynomial-

time algorithm (LLL) to reduce bases of lattices [21]. In this section, we report some

basic notions and results on the complexity of the LLL algorithm and the quality of the

basis it allows to compute.

2 Preliminaries 15

Definition 10. (Gram-Schmidt Orthogonalization) Let B = {b1, ..., bn ∈ Rn} be a set

of linearly independent vectors in Rn. The Gram-Schmidt Orthogonalization of B is the

set of vectors denoted as B∗ = {b∗1, ..., b∗n ∈ Rn} and defined as follows:

b∗1 = b1, b∗i = bi −
i−1∑
j=1

bi · b∗j
‖b∗j‖2

b∗j , for 1 < i ≤ n.

Definition 11. (LLL-reduced basis) Let B = {b1, ..., bn} be a basis for an n−dimensional

lattice Λ and let B∗ = {b∗1, ..., b∗n} be its associated Gram-Schmidt Orthogonalization. The

basis B is said to be LLL-reduced if it satisfies the following conditions:

|µi,j| =
|bi · b∗j |
‖b∗j‖2

≤ 1

2
, for all 1 ≤ j < i ≤ n, (Size Condition)

‖b∗i ‖2 ≥
(

3

4
− µ2

i,i−1

)
‖b∗i−1‖2, for all 1 < i ≤ n. (Lovász Condition)

Theorem 2 gives us the complexity of LLL algorithm. We refer the reader to the

original paper [21] for a detailed description of the algorithm.

Theorem 2. (LLL Algorithm) The LLL algorithm, on a given input basis {v1, ...,vn}
of an n−dimensional lattice Λ, terminates and returns an LLL-reduced basis {b1, ..., bn}
for Λ in time

O(n6 log3 B),

where B = maxi‖vi‖.

An LLL-reduced basis {b1, ..., bn} of an n−dimensional lattice Λ comes with the

following important property:

‖b1‖ ≤ 2(n−1)/2λ1(Λ).

Therefore, the LLL algorithm solves the SVPγ for γ = 2(n−1)/2.

The BKZ algorithm In 1987, Schnorr introduced a generalization of the LLL al-

gorithm that is nowadays known as the BKZ algorithm [22]. This was then further

improved and instantiated in 1993 by Schnorr and Euchner [23]. The BKZ algorithm of-

fers a trade-off between time complexity and quality of the reduced basis. In particular,

an SVP oracle is used as a sub-routine to solve the SVP on a lattice of smaller dimension

β. For β = 2, the BKZ algorithm corresponds to the LLL algorithm. When increasing

β, the quality of the reduced basis improves at the cost of increasing the overall time

complexity.

16

It has been shown that the BKZ algorithm makes a polynomial number of calls to the

SVP oracle before it terminates [24]. Therefore, to estimate the overall complexity, one

generally considers the complexity of this sub-routine. There are two main approaches

for SVP oracle implementation: lattice enumeration and lattice sieving.

Lattice enumeration was the first one to be implemented. While it requires only

a polynomial amount of space in the problem’s size, it comes with super-exponential

time complexity [25, 26]. On the other hand, sieving algorithms have an exponential

complexity in time and memory that can be expressed as 2cβ+o(β), for a constant c.

Recent asymptotic improvements [27, 28] fixed the constant c to 0.292 for the case of

sieving algorithms running on classical computers. A quantum speed-up allows lowering

it down to c = 0.265 [29]. However, since these algorithms require building a list of lattice

vectors of size (4/3)β/2, one can consider c = log2

√
4/3 = 0.2075 for a conservative lower

bound of their complexity. Also, a recent implementation of BKZ with lattice sieving

overcame the results obtained with enumeration [30].

2.3 Distributions

In this section, we introduce some probability distributions that are useful for our scope.

Definition 12. (Probability Mass Function) Let X be a discrete random variable with

support RX = {x1, x2, ...} finite or countably infinite. The function pX defined as

pX : RX → [0, 1], x 7→ pX(x) = Pr(X = x),

is called the probability mass function (PMF) of X.

The probability mass function defines the probability distribution of a random vari-

able. We write X ∼ D to say that X is with probability distribution D. In the literature,

the corresponding of the PMF for the continuous case is often called probability density

function (pdf).

Definition 13. (Uniform Distribution) Let X be a random variable ranging over a finite

set R with n elements, and let its PMF be defined as

Pr(X = x) = 1/n, for every x ∈ R.

Then X is said to be uniformly distributed over R, and we write X ∼ U(R).

Definition 14. (Normal Distribution) A random variable X is said to be normally

distributed with mean µ ∈ R and standard deviation σ > 0 ∈ R if its probability density

2 Preliminaries 17

function is defined as

1

σ
√

2π
e−

1
2(x−µσ)

2

, for every x ∈ R

and we write X ∼ N (µ, σ).

Definition 15. (Discrete Normal Distribution) A random variable X, with support Z,

is said to follow the Discrete Normal Distribution with mean 0 and variance σ2, denoted

with Dσ,Z, if its PMF is defined as

e−x
2/2σ2∑

b∈Z e
−b2/2σ2 , for every x ∈ Z.

The Normal Distribution is often used to approximate its discrete counterpart. In

particular, given X ∼ Dσ1,Z and Y ∼ Dσ2,Z, one uses the properties valid for the contin-

uous case and approximates the distribution of X + Y with D√
σ2
1+σ2

2 ,Z
.

Definition 16. (Statistic) Let X1, ..., Xn be random variables, and let T (x1, ...xn) be a

real-valued function whose domain includes the sample space of (X1, ..., Xn). Then, the

random variable Y = T (X1, ..., Xn) is called statistic.

An hypothesis is a statement about a parameter of a population. In an hypothesis

testing problem, denote with H0 and H1 the two complementary hypothesis, called

respectively null and alternative hypothesis.

Definition 17. (Hypothesis Test) A hypothesis test is a rule that specifies:

• For which sample values the decision is made to accept H0 as true.

• For which sample values H0 is rejected and H1 is accepted as true.

For random independent samples X1, ...Xn from a population with PMF (of pdf)

f(x|θ), for a parameter θ ∈ Θ, the likelihood function is defined as

L(θ|x) = L(θ|x1, ...xn) =
n∏
i=1

f(xi|θ).

The likelihood ratio test statistic for testing H0 : θ = θ0 versus H1 : θ = θ1 is

λ(x) =
L(θ0|x)

L(θ1|x)
.

18

A likelihood ratio test is any test that has rejection region of the form R = {x : λ(x) ≤ c},
for some constant c, and level α = Pr(x ∈ R|H0).

The Neyman-Pearson Lemma [31] states that the likelihood ratio test is a uniformly

most powerful α level test (see [32, Sec. 8.3.2]).

3 Foundations in Lattice-Based Cryptography 19

3 Foundations in Lattice-Based Cryptography

This section presents a survey on some of the computational problems in lattice-based

cryptography that are of particular interest for this thesis. We refer the reader to [14],

[15], and [16] for more detailed surveys on the topic.

3.1 NTRU

In 1998, Hoffstein, Pipher, and Silverman introduced NTRU, a new public-key cryp-

tosystem that uses polynomial rings over a finite field as building blocks [33]. It includes

two algorithms: NTRUencrypt and NTRUsign that are respectively for public-key en-

cryption and digital signature. In this section, we follow the notation in [16, Chap. 7]

to discuss the underlying problem of key-recovery in NTRUencrypt and its connection

with lattices.

Let n be a prime and let p and q be two moduli such that gcd(n, q) = gcd(p, q) = 1.

Let R, Rp and Rq be polynomial rings defined as follows:

R = Z[x]
/

(xn − 1) , Rp = Zp[x]
/

(xn − 1) , Rq = Zq[x]
/

(xn − 1) .

Given a polynomial a(x) ∈ R, we denote with ak its k−th coefficient, for 0 ≤ k < n. We

use the notation a(x) ? b(x) to write the product of two polynomials a(x), b(x) ∈ R. In

particular, one has that

a(x) ? b(x) = c(x), with ck =
∑

0≤i,j<n | i+j≡k mod n

aibj.

For two positive integers d1, d2, let T (d1, d2) be the set of polynomials in R with

exactly d1 coefficients equal to 1, d2 coefficients equal to −1, and all the others equal to

0.

Key Generation, Encryption and Decryption

Let N , p, q, and d be positive integers with N and p prime, gcd(p, q) = gcd(N, q) = 1,

and q > (6d + 1)p. Choose at random f(x) ∈ T (d + 1, d) invertible in Rp and Rq, and

let Fp(x) and Fq(x) be its inverses in the two polynomial rings respectively. Choose at

random g(x) ∈ T (d, d) and let it be the private key, and let h(x) = Fq(x) ? g(x) mod q

be the public key.

20

To encrypt a message m(x) ∈ Rp, one chooses at random r ∈ T (d, d), and computes

the ciphertext as

c(x) = p · r(x) ? h(x) +m(x) mod q.

The decryption works as follows. Compute f(x) ? c(x) = p · g(x) ? r(x) + f(x) ? m(x)

mod q. The result is then center-lifted4 to a(x) ∈ R, and, finally the message is retrieved

by computing

m(x) = Fp(x) ? a(x) mod p.

The proof of the correctness of NTRUencrypt can be found in [16, Prop. 7.48].

Key Recovery with Lattice Reduction

The following definition formalizes the underlying problem of key-recovering on NTRU-

encrypt.

Definition 18. (NTRU Key-Recovery Problem) Let d be a positive integer and let f(x) ∈
T (d + 1, d) and g(x) ∈ T (d, d) be chosen at random such that f(x) is invertible in Rq

and Rp. Let h(x) ∈ R be such that

f(x) ? h(x) ≡ g(x) mod q. (3.1)

The NTRU Key-Recovery Problem consists of recovering f(x) and g(x) given h(x).

Note that, if (f(x), g(x)) satisfies (3.1), then (xk ? f(x), xk ? g(x)), for 0 ≤ k < n, is

a solution of the problem too. Hence, the solution is not unique.

NTRU is usually classified as a lattice-based cryptosystem because the NTRU Key-

Recovery Problem can be translated into a Shortest Vector Problem on a type of lattice

called NTRU lattice. In this way, one can make an attack based on lattice reduction

algorithms. Similarly, a plaintext-recovery attack can be translated into a Closest Vector

Problem.

Definition 19. (NTRU lattice) Let h = (h0, h1, ..., hn−1) be the vector of coefficients of

an NTRU public key h(x). Define the NTRU lattice ΛNTRU
h associated with h(x) as the

4The center-lift of a polynomial a′(x) ∈ Rq to R is the unique polynomial a(x) ∈ R satisfying a(x)
mod q = a′(x), and with coefficients between −q/2 and q/2.

3 Foundations in Lattice-Based Cryptography 21

lattice generated by the rows of the 2n× 2n matrix

MNTRU

h =

(
In H

O qIn

)
=



1 0 . . . 0 h0 h1 . . . hn−1

0 1 . . . 0 hn−1 h0 . . . hn−2

...
...

. . .
...

...
...

. . .
...

0 0 . . . 1 h1 h2 . . . h0

0 0 . . . 0 q 0 . . . 0

0 0 . . . 0 0 q . . . 0
...

...
. . .

...
...

...
. . .

...

0 0 . . . 0 0 0 . . . q


∈ Z2n×2n.

Let f(x) ∈ T (d+ 1, d) and g(x) ∈ T (d, d) be such that f(x) ? h(x) ≡ g(x) mod q.

Then, one has that

f(x) ? h(x) = g(x) + q · u(x),

for some u(x) ∈ R. Let f , g and u be the coefficient vectors of f(x), g(x), and u(x)

respectively. It is easy to show that

(f ,−u)MNTRU

h = (f ,f ·H − q · u) = (f , g).

Therefore, (f , g) can be obtained as a linear combination of the rows of MNTRU
h and, by

definition, it is a vector of the lattice ΛNTRU
h . For the parameter’s choices used in practice,

(f , g) is a shortest vector of ΛNTRU
h . In this case, solving the SVP for the NTRU lattice

ΛNTRU
h is equivalent to finding f(x) and g(x). In practice, one applies a lattice reduction

algorithm on MNTRU
h to retrieve the private key.

The above and its variants are considered the most efficient approaches to build a

key-recovery attack for NTRU. For a more detailed analysis of the attacks to NTRU, we

refer the reader to [34].

3.2 Learning With Errors

Introduced by Regev in 2005 [35], the Learning With Errors (LWE) problem is nowadays

considered the most critical computational hard problem in Lattice-based Cryptography.

It comes with reductions from worst-case lattice problems to average-case LWE, solidify-

ing the confidence of its hardness [35, 36]. One can use it to build several cryptographic

constructions with different features such as Key-Encapsulation Methods, Public-Key

Encryption, Fully Homomorphic Encryption, etc.

Definition 20. (Learning With Errors Problem) Let m ≥ n be positive integers and let

22

α, cq > 0 be two small parameters. Let q = O(ncq) be prime and let χσ be a non-uniform

probability distribution on Z with mean 0 and standard deviation σ = αq. Given a secret

vector s ∈ Znq chosen uniformly at random, denote with Ls,χσ the probability distribution

over Znq × Zq obtained by choosing a ∈ Znq uniformly at random and e from χσ, and

returning

(a, b = a · s + e mod q) ∈ Znq × Zq. (3.2)

• The Search version of the Learning With Errors (SLWE) problem consists of, given

m samples from Ls,χσ , recovering the secret vector s.

• The Decision version of the Learning With Errors (DLWE) problem consists of,

given m pairs (a, b) ∈ Znq × Zq, deciding whether these are sampled from Ls,χσ or

uniformly at random from Znq × Zq.

Unless differently specified, we will assume that χσ is chosen to be a Discrete Normal

Distribution Dσ,Z with standard deviation σ. It is often convenient to group the m LWE

samples in a matrix-vector pair as follows:

(A, b = A · s + e mod q) ∈ Zm×nq × Zmq .

There exist several approaches to solve both SLWE and DLWE. In general, Regev

gave a decision-to-search reduction for LWE, showing that SLWE and DLWE are indeed

equivalent. We will discuss the approaches to solve LWE in Section 4.

Public-key Encryption Using LWE

In this section, we report a simple public-key cryptosystem based on LWE introduced

by Regev [35].

Let s chosen uniformly at random in Znq be the private key, and let (A, b = A ·s+e

mod q) ∈ Zm×nq × Zmq obtained from Ls,χσ be the public key. To encrypt one bit x of

the message, one does the following. Choose a random subset S among the 2m subsets

of [m], and compute the ciphertext

(ā, b̄) =

(∑
i∈S

ai, x ·
⌊q

2

⌋
+
∑
i∈S

bi

)
.

In decryption, one uses the private key s and decides that x = 0 if b̄− ā · s is closer to

0 than to b q
2
c, x = 1 otherwise.

3 Foundations in Lattice-Based Cryptography 23

LWE Challenge

The TU Darmstadt LWE Challenge is a series of LWE instances that are left for the

public to be solved [37]. These uses cq = 2, α ranging from 0.005 to 0.07, and n ranging

from 40 to 120. Also, for each instance, m = n2 samples are provided. The scope of

this challenge is to give a tool for the cryptographers to test LWE solvers with practical

instances and make comparisons among them. Among the largest instances solved so far

in the challenge, there are (n, α) = (40, 0.03) and (n, α) = (75, 0.005).

On the Secret Distribution

Several variants of LWE have been proposed differing in how the secret is sampled, i.e.,

according to certain non-uniform distributions. In [38], the following reduction that

transforms a standard LWE instance to an LWE instance with the secret distributed

according to the error distribution was introduced.

Let (A, b = A·s+e mod q) be a standard LWE instance. Compute, using Gaussian

Elimination, Ā ∈ Zm×nq such that ĀT is the systematic form of AT . Assume the first n

rows of Ā are linearly independent and let A0 ∈ Zn×nq be the matrix formed by these

rows. Consider the following change of variables

ŝ = A0 · s−


b1

...

bn

 , Â = A ·A−1
0 =


In

ân+1

...

âm

 , b̂ = b− Â ·


b1

...

bn

 =


0

b̂n+1

...

b̂m

 .

Then, the pair (Â, b̂) is an LWE problem where the entries of the secret is equal to

the first n entries of the error vector from the original problem times −1. To make this

transformation, one “loses” n LWE samples. However, due to this reduction, this version

of LWE is generally considered as hard as standard LWE.

In [39], Brakerski et al. studied another variant of LWE, generally referred to as

binary-LWE, where the secret takes values in {0, 1}. In particular, they gave a reduction

from standard LWE to binary-LWE with dimension increasing from n to n log q.

Ring-LWE

The idea of defining an LWE-like problem over polynomial rings was initially studied in

[40] and [41]. Nowadays, it is one of the most promising variants of LWE, thanks to the

24

fact that it provides smaller key-sizes and more efficient implementations than standard

LWE.

Let n be a power of 2. For q prime, let R and Rq be polynomial rings defined as in

Section 3.1.

Definition 21. (Ring-LWE) Let ψσ be a non-uniform distribution over on R with stan-

dard deviation σ. Given a secret polynomial s(x) ∈ Rq chosen uniformly at random, de-

note with Lrs(x),ψσ
the probability distribution over Rq×Rq obtained by sampling a(x) ∈ Rq

uniformly at random, e(x) ∈ Rq according to ψσ, and returning

(a(x), b(x) = a(x) ? s(x) + e(x)) ∈ Rq ×Rq.

• The Search version of the Ring-LWE problem consists of recovering the secret s(x)

given m ≥ 1 samples from Lrs(x),ψσ
.

• The Decision version of the Ring-LWE problem consists of, given m ≥ 1 pairs

(a(x), b(x)) ∈ Rq × Rq, deciding whether these are sampled from Lrs(x),ψσ
or uni-

formly at random from Rq ×Rq.

One can write a sample of Ring-LWE as n samples of LWE where the public matrix

A has a special structure and, therefore, there is a sort of correlation among its rows.

Furthermore, it can be seen as the inhomogeneous version of the NTRU Key-Recovery

Problem (Definition 18). In particular, it was proved to be at least as hard as NTRU

[14]. Ring-LWE also benefits by a worst-case reduction from approximate SVP on ideal

lattices5 to the search version Ring-LWE [41].

3.3 On Using the Ring of Integers Z

The main mathematical objects in the NTRU cryptosystem and in the cryptosystems

based on Ring-LWE are polynomials in Rq. With these, it is often required to develop

some additional ring-specific technicalities to obtain efficient implementations. Some

researchers worked around this issue by introducing new cryptosystems that use, instead,

integer numbers as main mathematical object resulting easy to implement. These base

their security on hard problems defined on Z, analogues to the aforementioned defined

on Rq. In this section, we report the underlying hard problems of two cryptosystems

that can be seen as the integer variants of the NTRU Key-Recovery Problem and Ring-

LWE. Another important cryptosystem following this direction, not covered by this

5a generalization of cyclic lattices.

3 Foundations in Lattice-Based Cryptography 25

section, is The Three Bears Cryptosystem [42], a candidate to the NIST Post-Quantum

Standardization at round two [12].

The AJPS Cryptosystem

In 2018, Aggarwal et al. introduced an NTRU-like public-key cryptosystem that exploits

a property of the Mersenne prime numbers (i.e., a prime of the form 2k − 1, for some

integer k) and uses the elements of Z as main mathematical object [43]. This was

accepted among the competitors for the NIST Post-Quantum Standardization at round

one [12].

Let the Hamming weight of an integer in the range [0, 2k − 1] be the number of

non-zero bits of its binary representation. The security of the AJPS cryptosystem bases

its security on the assumption that the following is a hard problem.

Definition 22. (Mersenne Low Hamming Ratio Search Problem) Let q = 2k − 1 be a

Mersenne prime number, h < k an integer, F and G two integers chosen at random

from the set of k-bit numbers with Hamming weight h. Let H be an integer such that

F ·H ≡ G mod q. (3.3)

The Mersenne Low Hamming Ratio Search Problem (MLHRatioSP) is to find (F,G)

given h and H.

Beunardeau et al. showed how to perform a lattice-based attack on this problem

[44]. Such attack was later analyzed in [45]. This requires more technicalities compared

to the attack in standard NTRU.

Integer Ring-LWE

A variant of Ring-LWE on the ring of integers Z, called Integer Ring-LWE was introduced

by Gu [46].

Let q, n be two positive integers such that q is prime and q > n3, and let p = qn + 1.

Given an error distriubtion ψσ over Z, let ψnσ,q be the probability distribution that samples

u0,, un−1 at random from ψσ and returns u =
∑n−1

i=0 uiq
i ∈ Zp.

Definition 23. (Integer Ring-LWE) Given a secret positive integer s ∈ Zp sampled at

random from ψnσ,q, denote with Lis,ψσ the probability distribution over Zp × Zp obtained

26

by sampling a ∈ Zp uniformly at random, e ∈ Zp from ψnσ,q, and returning

(a, b = a · s+ e mod p) ∈ Zp × Zp.

• The Search version of the Integer Ring-LWE problem consists of, given m ≥ 1

samples from Lis,ψσ , recovering the secret s.

• The Decision version of the Integer Ring-LWE problem consists of, given m ≥ 1

pairs (a, b) ∈ Zp×Zp, deciding whether these are sampled from Lis,ψσ or uniformly

at random from Zp × Zp.

We refer the reader to [46] and [47] (in which the problem is called Integer Polynomial

Learning With Errors) for security reductions regarding Integer Ring-LWE.

4 Attacks to LWE 27

4 Attacks to LWE

Due to its relevancy in Post-Quantum Cryptography, the Learning With Errors problem

has been widely studied and cryptanalysed in recent years. In this section, we survey

the three main approaches discovered so far to solve LWE. For a detailed analysis of the

asymptotic complexity of solving LWE, we refer the reader to [48].

4.1 Algebraic Attacks

Arora and Ge proposed an approach based on algebraic methods to solve LWE instances

[49]. The main idea consists of writing a system of equations such that its resolution

implies solving an LWE problem instance.

Let (a, b = a · s + e) be one LWE sample, and let D ⊂ Zq be a set such that e ∈ D
with high probability. For example, in case of a Discrete Normal Distribution, one can

take D = {−Uσ, ...,+Uσ}, for a small positive integer U . In case of LWE with binary

error, one takes D = {0, 1}. Consider the following polynomial of Zq[x] = Zq[x1, ..., xn]

p(x) =
∏
i∈D

(b− a · x− i).

Then, the secret s ∈ Znq is a zero of p(x), i.e., p(s) = 0. Also, most likely, one has that

p(z) 6= 0, for z 6= s. Given m LWE samples, the system of polynomial equations

{pi(x) = 0}mi=0 (4.1)

has s as a unique solution with high probability. Therefore, solving (4.1) corresponds

to a secret-recovery of the LWE problem instance. To do so, Arora and Ge proposed

to linearize the system by replacing each monomial with a new variable and then use

Gaussian elimination to solve it. Since the number of monomials is(
n+ | D |
| D |

)
,

the complexity of this attack has a strict dependency on the size of D. Albrecht et al.

improved the approach by employing Gröbner bases to solve (4.1) instead of linearization

[50]. In general, this algorithm is subexponential for very small and bounded error. In

particular, given m ≥ 6.6n samples of an LWE instance with binary error in dimension

n, one can solve it in time n220.334n and memory n220.289n [50]. However, for larger noise,

this method becomes inefficient.

28

4.2 Combinatorial Attacks

Informally, the so-called Learning Parity with Noise (LPN) problem can be seen as a

particular case of LWE for q = 2. Blum, Kalai, and Wasserman introduced the so-called

BKW algorithm as a sub-exponential algorithm to solve LPN [51]. Later, Albrecht et

al. presented the first adaptation of the BKW algorithm to LWE [52].

The main idea of the BKW algorithm is to combine the samples with sums and

subtractions to obtain a new, easier-to-solve LWE problem having the same secret. Then,

one applies an efficient guessing procedure for solving it.

Consider an LWE problem instance in dimension n, with secret and error sampled

from a Discrete Normal Distribution Dσ,Z in matrix form

(A, b = A · s + e mod q) ∈ Zm×nq × Zmq .

Let ai1 and ai2 be two rows of A that have in common the first t < n entries6. Then

a′ = ai1 − ai2 = (0, ..., 0︸ ︷︷ ︸
t entries

, ã) mod q, ã ∈ Zn−tq .

Let b′ = bi1 − bi2 mod q and e′ = ei1 − ei2 mod q. Then, the pair

(a′, b′ = a′ · s + e′ mod q) ∈ Znq × Zq

is a sample of an LWE problem with error distribution approximately D√2σ,Z. By per-

forming this kind of operation, generally referred to as a BKW step, for all rows of A

and the corresponding entries of the vector b, one obtains a new LWE instance

(A′, b′ = A′ · s + e′ mod q) ∈ Zm′×nq × Zm′q , (4.2)

where the first t columns of A′ are set to zero. Because of this, the corresponding first t

entries of s play no role in (4.2). Therefore, (4.2) can be seen as an instance of an LWE

problem in dimension n− t.

By sequentially performing several BKW steps, one can reduce the dimension of the

problem to be small enough to allow an efficient error-recovery using techniques based,

for example, on the Fast Fourier Transform (FFT). Since at every step the variance of

the error distribution doubles, it is crucial that the final noise is still small enough to

allow the recovery of the secret.

6Equivalently, if they have t < n entries that are opposite to each other modulo q, one computes
ai1 + ai2 mod q

4 Attacks to LWE 29

A general drawback of the BKW algorithm is that, as one would expect, it requires

a large number of samples (m >> n). A work around, known as sample amplification,

was introduced in [53] for the case of LPN, and consists in combining the samples to

obtain more samples.

Later variants of the algorithm exploited the idea of relaxing the reduction to get

a better time and memory complexity [54, 55, 56, 57]. In these cases, is not required

anymore the entries of the matrix A to be reduced to zero, but instead, they can be

reduced to be “small”.

The asymptotic complexity of the basic version of BKW for LWE was analysed in

[52] and [56]. Let σ = O(ncs) and q = O(ncq). Then, LWE can be solved via BKW in

time 2γ1(n)+o(n) if m = 2Θ(n), and in time 2γ2(n)+o(n) if m = Θ(n log n), where

γ1(n) =
1

2

cq
cq − cs + 1/2

n and γ2(n) =
1

2

cq
cq − cs

n,

and in memory 2Θ(n). For the asymptotic complexity of more developed versions of

BKW, we refer the reader to [48] and [58].

4.3 Lattice-based Attacks

Lattice reduction is considered the best approach to solve LWE. One clear advantage

compared to, for example, the BKW algorithm is that, generally, it does not require many

samples to be executed. Thanks to the asymptotic analysis on the BKZ algorithm, it

is possible to get security estimates on LWE parameters’ choices based on these kinds

of attacks. Furthermore, implementations of BKZ with enumeration or sieving [59, 30]

solved the largest actual LWE instances of the TU Darmstadt LWE Challenge [37].

Two main approaches use lattice reduction to solve LWE: the primal attack, which

addresses the Search version of LWE, and the dual attack, which addresses the Decision

version.

Let (A, b = A · s + e mod q) ∈ Zm×nq ×Znq be an LWE instance where the entries

of s and e are sampled independently from Dσ,Z.

Primal Attack

The strategy is to convert the LWE instance into a unique-SVP instance and then solve

it using a lattice reduction algorithm like BKZ. This approach was studied in [60].

30

Consider the lattice

Λ =
{
x ∈ Zm+n+1 : (A|Im| − b)x = 0 mod q

}
,

where (A|Im| − b) denotes the horizontal concatenation matrix of A, Im, and −b. The

dimension of Λ is d = m+ n+ 1, and the volume is qm. For small enough σ, the vector

v = (s, e, 1) of norm λ ≈ σ
√
n+m is a unique shortest vector of Λ and therefore a

unique-SVP solution for Λ.

We refer the reader to [61] for a recent analysis of the success probability.

Dual Attack

The idea of this attack is to use lattice reduction to find several short vectors in a lattice,

and use them to distinguish an LWE pair from a random one [62, 63].

Define the lattice

Λ′ = {(c1, c2) ∈ Zm × Zn : c1 ·A = c2 mod q}.

In particular, the dimension and the volume of Λ are m+n and qn respectively. One uses

BKZ to reduce a basis of Λ′ and find a short vector (v,w) to be used as a distinguisher

for LWE. Let ` = ‖(v,w)‖, then

y = v · b = v ·A · s + v · e = w · s + v · e mod q

is distributed according to D`σ,Z if (A, b) is an LWE instance, uniform in Zq otherwise.

These two distributions have statistical distance upper bounded by ε = 2 exp (−2π2τ 2)

[64], where τ = `σ/q. In order to have a reasonable success probability, one must find

1/ε2 vectors of norm < `. This can be done by running the BKZ algorithm the necessary

number of times on different randomized bases of the lattice.

Hybrid versions of this attack combining the above with a bruteforce search, were

proposed, for example, in [65, 66].

5 Pairing-based Cryptography 31

5 Pairing-based Cryptography

In this section, we give a brief introduction to the field of Pairing-based Cryptography,

with the scope of explaining the concept of hash maps to the pairing’s domain groups.

We refer the reader to [67] and [68] for complete and detailed surveys on this field.

5.1 The Group of Points of an Elliptic Curve

Definition 24. (Elliptic Curve) Let Fq be a finite field of characteristic p 6= 2, 3 and

order q = pm, for some m > 0. An elliptic curve E defined over Fq is the graph of an

equation of the form

y2 = x3 + Ax+B,

for A,B ∈ Fq such that 4A3 + 27B2 6= 0.

Definition 25. (Supersingular Elliptic Curve) Let Fq be a prime field. An elliptic curve

E defined over Fq is said to be supersingular if #E(Fq) = q + 1. Otherwise, it is said to

be ordinary.

Let F̄q ⊇ Fq be the algebraic closure of Fq. The set E(F̄q) of all points of E taking

values in F̄q, together with a so-called point at infinity O, is an abelian group with

respect to a specific sum operation denoted with ⊕ (see [67, Sec. 2.2]). In particular,

O is the identity element of the group, that is P ⊕ O = O ⊕ P = P . We denote with

−P the point of the elliptic curve symmetrical to P respect to the x−axis. Furthermore,

given a positive integer a, we define the multiplication of a point P by a scalar c as

cP := P ⊕ P ⊕ ...⊕ P︸ ︷︷ ︸
c times

.

Definition 26. (Embedding Degree) Let E be an Elliptic curve defined over Fq and G
be a subgroup of E(F̄q) of order r. Let k be the smallest integer such that r divides qk−1,

then G is said to have embedding degree k.

Definition 27. (r-torsion Group) Let E be an elliptic curve defined over a finite field

Fq and let r be a positive integer. The r-torsion group of E, denoted by E[r], is defined

as the set of all points of E of order r, i.e.

E[r] = {P ∈ E(F̄q) | rP = O}

The idea of using elliptic curves in Cryptography was introduced independently by

32

Miller in 1986 and Koblitz in 1987 [69, 70]. The following is the main hard computational

problem on which Elliptic Curve Cryptography is based on.

Definition 28. (Elliptic Curve Discrete Logarithm Problem (ECDLP)) Let E be an

elliptic curve defined over a finite field Fq. Let G ⊆ E(F̄q) be a group of prime order r,

and P be a generator for G. The Elliptic Curve Discrete Logarithm Problem consists of,

given a point Q ∈ G, finding n ∈ Zr such that Q = nP .

5.2 Pairings in Cryptography

We now introduce the definition of the main mathematical object which characterizes

Pairing-based Cryptography. Pairings were initially employed in Cryptography as a

tool to build attacks to ECDLP. More specifically, they were used to reduce ECDLP

to a classical Discrete Logarithm Problem (DLP) over finite fields [71, 72]. Later on,

researchers found out how to use them to build cryptographic protocols covering a wide

variety of features [73, 74, 75].

Definition 29. (Pairing) A pairing is a map e defined on the direct product of two

abelian, finite and additive cyclic groups G1 and G2 to some other abelian, finite and

multiplicative cyclic group GT

e(·, ·) : G1 ×G2 → GT

which has the following properties:

1. Bilinear: for any pair (P1, P2) ∈ G1 × G2 and for any (a, b) ∈ Z × Z, we have

e(aP1, bP2) = e(P1, P2)ab.

2. Non-degenerate: if e(P, S) = 1 for any S ∈ G2, then P = O, and if e(P, S) = 1

for any P ∈ G1, then S = O.

3. Computable: there is a polynomial-time algorithm to compute e(P1, P2), for any

(P1, P2) ∈ G1 ×G2.

The Weil pairing and the Tate pairing are examples of pairings where G1 and G2

are groups of points of an elliptic curve. More in general, pairings used in Cryptography

are classified into four types according to the choice of G1 and G2, usually taken as

subgroups of E[r].

• Type 1. The elliptic curve is supersingular and G1 = G2.

5 Pairing-based Cryptography 33

• Type 2. The elliptic curve is ordinary, and G1 6= G2. There exists an efficiently

computable homomorphism ψ : G2 → G1.

• Type 3. The elliptic curve is ordinary, and G1 6= G2. There exists an homomor-

phism ψ : G2 → G1, but there is no known efficient way to compute it.

• Type 4. The elliptic curve is ordinary, and G1 6= G2. In this case G2 = E[r].

For efficiency and security reasons, type 3 pairings are the ones used in practice. In

this case, G1,G2 and GT are chosen to be

G1 = E(Fq) ∩ E[r], G2 = E[r] ∩ ker(π − [q]), GT = (Fqk)∗,

where π is the Frobenius endomorphism, [q] : E(Fq)→ E(Fq) maps P 7→ qP , r is a prime

divisor of #E(Fq) and k is the corresponding embedding degree.

For security reasons, one wants that both ECDLP and DLP are hard respectively

in E(Fq) and (Fqk)∗. The elliptic curves that satisfy such conditions, for a relatively

small k, and that are suitable for use in combination with pairings are called pairing-

friendly. It has been shown that these kinds of curves are rare, and they require dedicated

constructions [76, 77]. The MNT curves were the first family of pairing-friendly elliptic

curves to be discovered [78]. Then, several other families have been proposed [79, 80,

81, 82, 83].

Joux’s Three Party Key Agreement

To give an example of use of pairings in Cryptography, we report the key agreement

protocol introduced by Joux [73]. For simplicity, we assume to use a type-1 pairing that

is also symmetric. However, it is easy to generalize it for type-3 pairings.

Let Alice, Bob, and Chris be three participants that need to agree on a secret (key).

Let P ∈ G1 be a point publicly known and let a, b, and c be three secret scalars chosen

at random by the three participant respectively. Alice computes aP and sends it over

the public channel. She receives bP and cP from Bob and Chris (see Figure 5). Alice

can compute a shared key as

k = e(bP, cP)a = e(P, P)abc.

Similarly, Bob computes k = e(aP, cP)b and Chris k = e(aP, bP)c. All the three partic-

ipants agreed on a common secret k.

34

Alice BobaP

bP

bP
cP

Chris
aP

cP

a b

c

Figure 5: Joux’s three-party key agreement

5.3 Hash-Maps to G1 and G2

Several protocols supporting Identity-based Encryption (IBE) have been constructed

using pairings. This type of public-key encryption, conceived for the first time by Shamir

in 1985 [84], uses some unique information directly linked with the identity of a user (e.g.,

name, phone number, email address, IP address, etc.) as a public key.

Typically, given a binary string ID representative of a user, one wants to map (hash)

such a string into a mathematical object to be used within a protocol, namely a point of

G1 or G2. Let {0, 1}∗ be the set of all binary strings of any fixed length. With H1 and

H2, we denote two hash-maps that map an alphanumeric string (e.g., a phone number),

written in its binary notation as an element ID ∈ {0, 1}∗, respectively to G1 and G2:

H1 : {0, 1}∗ → G1, H2 : {0, 1}∗ → G2

ID 7→ H1(ID), ID 7→ H2(ID).

For the case of type 3 pairings, computing H1 can be done efficiently using the

so-called cofactor multiplication method. The group G1 is the unique subgroup of order

r of E(Fq). One first hashes ID to a random point P ∈ E(Fq), then multiplies it by the

cofactor c = #E(Fq)/r. In this way, we are sure that cP ∈ G1. Theoretically, this same

approach can be applied for hashing to G2 too. However, the cofactor of G2 is generally

a very large integer which makes this multiplication expensive. Scott et al. [85] proposed

a method to speed up such multiplication. A further improvement of this method was

later obtained by Fuentes et al. [86].

6 Contributions 35

6 Contributions

In this section, we list the contribution to the field for each paper included in this thesis.

In [87], we construct a non-trivial reduction of the Mersenne Low Hamming Com-

bination Search Problem (MLHCombSP)7 to Integer Linear Programming (ILP). This

reduction allows to build a new framework to solve MLHCombSP. Furthermore, we dis-

covered a new family of weak keys for which a key-recovery attack is possible and runs

in polynomial time.

In [88], we make a concrete analysis of the complexity of Integer-RLWE. In particu-

lar, we provide the details to perform a the meet-in-the-middle attack and a lattice-based

attack for the case of Integer-RLWE. Then, we exploit a weakness on the parameters

given by Gu [46] to build a more efficient lattice-based attack. This drastically reduces

the security of Integer-RLWE for weak choices of n.

In [89], we present two main improvements for the BKW algorithms: a new reduc-

tion step that significantly improves the so-called Lazy Modulus Switching technique

introduced in [54], and a new guessing method based on the Fast Walsh Hadamard

Transform (FWHT). We present two implementations of BKW for LWE that can solve

relatively large instances of the problem. The first one, called RBBL (RAM-Based BKW

for LWE), is faster and uses only RAM memory. The second one, called FBBL (File-

Based BKW for LWE), uses a combination of RAM and disk memory to overcome the

limitations of RBBL and solve larger instances. With these implementations, we solve

some LWE problems with a large number of samples and with parameters as in the TU

Darmstadt LWE Challenge [37]. Furthermore, we use sample amplification to solve the

original TU Darmstadt LWE Challenge with parameters (n, α) = (40, 0.005) for which

only n2 samples are provided.

Since the publication of Kim and Barbulescu’s attack on the Discrete Logarithm

Problem in finite field extensions [90], the BLS family of pairing-friendly elliptic curves

[79] gained interest in the community and found widespread adoption in applications.

In [91], we fill a gap in the field and compute explicit formulas to hash to G2 for the

BLS family of pairing-friendly elliptic curves. In particular, we apply both Scott et al.

[85] and Fuentes et al. [86] methods and compare the maps obtained with the two for

embedding degree k ∈ {12, 24, 30}. For the cases of k = 42 and k = 48, we could not

apply Fuentes et al. method directly, but we use theoretical means to obtain hash maps

that are more efficient than the one obtained with the Scott et al. method.

7the inhomogeneous version of MLHRatioSP (see Definition 22).

36

Bibliography

[1] A. Kerckhoffs, “La Cryptographie Militaire,” Journal des Sciences Militaires,

pp. 161–191, 1883.

[2] C. E. Shannon, “Communication theory of secrecy systems,” The Bell System Tech-

nical Journal, vol. 28, no. 4, pp. 656–715, 1949.

[3] R. F. Churchhouse, Codes and Ciphers: Julius Caesar, the Enigma, and the Inter-

net. Cambridge University Pres, 2001.

[4] D. Kahn, The Codebreakers: The Comprehensive History of Secret Communication

from Ancient Times to the Internet. Scribner, 1996.

[5] J. H. Ellis, “The Possibility of Secure Non-Secret Digital Encryption.” https://

cryptocellar.org/cesg/possnse.pdf, 1970.

[6] W. Diffie and M. E. Hellman, “New Directions in Cryptography,” IEEE Transaction

on Information Theory, vol. 22, no. 6, pp. 644–654, 1976.

[7] R. L. Rivest, A. Shamir, and L. Adleman, “A Method For Obtaining Digital Signa-

tures and Public-Key Cryptosystems,” Communications of the ACM, vol. 21, no. 2,

pp. 120–126, 1978.

[8] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version

1.2.” RFC 5246 (Proposed Standard), Aug. 2008. Updated by RFCs 5746, 5878,

6176.

[9] P. Shor, “Algorithms for Quantum Computation: Discrete Logarithms and Factor-

ing,” in Proceedings 35th Annual Symposium on Foundations of Computer Science,

pp. 124–134, 1994.

[10] F. Arute et al., “Quantum Supremacy using a Programmable Superconducting Pro-

cessor,” Nature, vol. 574, pp. 505–510, 2019.

[11] H. Zhong et al., “Quantum Computational Advantage using Photons,” Science,

vol. 370, no. 6523, pp. 1460–1463, 2020.

[12] NIST, “Post-quantum cryptography standardization.”

https://csrc.nist.gov/Projects/post-quantum-cryptography/

post-quantum-cryptography-standardization.

[13] S. Lang, Algebra. Springer, 2002.

BIBLIOGRAPHY 37

[14] A Decade of Lattice Cryptography, vol. 10, Now Publishers, 2016.

[15] S. D. Galbraith, Mathematics of Public Key Cryptography. https://www.math.

auckland.ac.nz/∼sgal018/crypto-book/crypto-book.html, 2nd ed., 2018.

[16] J. Hoffstein, J. Pipher, and J. H. Silverman, An Introduction to Mathematical Cryp-

tography. Springer, 2nd ed., 2014.

[17] P. Q. Nguyen and B. Valle, The LLL Algorithm: Survey and Applications. Springer,

1st ed., 2009.

[18] C. Hermite, “Extraits de Lettres de M. Ch. Hermite à M. Jacobi sur Différents

Oobjects de la Théorie des Nombres. (Continuation).,” Journal für die reine und

angewandte Mathematik (Crelles Journal), vol. 1850, no. 40, pp. 279–315, 1850.

[19] J. H. Conway, N. J. A. Sloane, and E. Bannai, Sphere-Packings, Lattices, and

Groups. Springer, 1987.

[20] J. Milnor and D. Husemoller, Symmetric Bilinear Forms. Springer, 1973.

[21] A. K. Lenstra, H. W. Lenstra, and L. Lovasz, “Factoring Polynomials with Rational

Coefficients,” Mathematische Annalen, vol. 261, pp. 515–534, 1982.

[22] C. Schnorr, “A Hierarchy of Polynomial Time Lattice Basis Reduction Algorithms,”

vol. 53, pp. 201–224, Elsevier, 1987.

[23] C. Schnorr and M. Euchner, “Lattice Basis Reduction: Improved Practical Algo-

rithms and Solving Subset Sum Problems,” Mathematical Programming, vol. 66,

pp. 181–199, 08 1994.

[24] G. Hanrot, X. Pujol, and D. Stehlé, “Terminating BKZ.” Cryptology ePrint Archive,

Report 2011/198, 2011. https://eprint.iacr.org/2011/198.

[25] N. Gama, P. Q. Nguyen, and O. Regev, “Lattice Enumeration Using Extreme Prun-

ing,” in Advances in Cryptology – EUROCRYPT 2010, vol. 6110 of LNCS, pp. 257–

278, Springer, 2010.

[26] Y. Chen and P. Q. Nguyen, “BKZ 2.0: Better Lattice Security Estimates,” in

Advances in Cryptology – ASIACRYPT 2011, vol. 7073 of LNCS, pp. 1–20, Springer,

2011.

[27] T. Laarhoven, “Sieving for Shortest Vectors in Lattices Using Angular Locality-

Sensitive Hashing,” in Advances in Cryptology – CRYPTO 2015, vol. 9215 of LNCS,

pp. 3–22, Springer, 2015.

38

[28] A. Becker, L. Ducas, N. Gama, and T. Laarhoven, “New Directions in Nearest

Neighbor Searching with Applications to Lattice Sieving,” in Proceedings of the

Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 10–

24, SIAM, 2016.

[29] T. Laarhoven, “Search Problems in Cryptography.” PhD thesis, Eindhoven Univer-

sity of Technology, 2015. https://thijs.com/docs/phd-final.pdf.

[30] M. R. Albrecht, L. Ducas, G. Herold, E. Kirshanova, E. W. Postlethwaite, and

M. Stevens, “The General Sieve Kernel and New Records in Lattice Reduction,” in

Advances in Cryptology – EUROCRYPT 2019, vol. 11477 of LNCS, pp. 717–746,

Springer, 2019.

[31] J. Neyman and E. S. Pearson, “On the Problem of the Most Efficient Tests of

Statistical Hypotheses,” Philosophical Transactions of the Royal Society of London.

Series A, Containing Papers of a Mathematical or Physical Character, vol. 231,

pp. 289–337, 1933.

[32] G. Casella and R. Berger, Statistical Inference. Duxbury Advanced Series in Statis-

tics and Decision Sciences, Thomson Learning, 2002.

[33] J. Hoffstein, J. Pipher, and J. H. Silverman, “NTRU: A Ring-Based Public Key

Cryptosystem,” in Algorithmic Number Theory, LNCS, vol. 1423, pp. 267–288,

Springer, 1998.

[34] C. Chen, O. Danba, J. Hoffstein, A. Hülsing, J. Rijneveld, J. M. Schanck,

P. Schwabe, W. Whyte, and Z. Zhang, “NTRU: Algorithm Specifications And Sup-

porting Documentation.” https://ntru.org/f/ntru-20190330.pdf, 2019.

[35] O. Regev, “On Lattices, Learning with Errors, Random Linear Codes, and Cryp-

tography,” in Proceedings of the Thirty-seventh Annual ACM Symposium on Theory

of Computing, pp. 84–93, ACM, 2005.

[36] C. Peikert, “Public-Key Cryptosystems from the Worst-Case Shortest Vector Prob-

lem: Extended Abstract,” in Proceedings of the Forty-First Annual ACM Sympo-

sium on Theory of Computing, pp. 333–342, ACM, 2009.

[37] “TU Darmstadt Learning with Errors Challenge.” https://www.latticechallenge.

org/lwe challenge/challenge.php. Accessed: 2021-10-02.

[38] B. Applebaum, D. Cash, C. Peikert, and A. Sahai, “Fast Cryptographic Primitives

and Circular-Secure Encryption Based on Hard Learning Problems,” in Advances

in Cryptology - CRYPTO 2009, vol. 5677 of LNCS, pp. 595–618, Springer, 2009.

BIBLIOGRAPHY 39

[39] Z. Brakerski, A. Langlois, C. Peikert, O. Regev, and D. Stehlé, “Classical Hardness

of Learning with Errors,” in Proceedings of the Forty-Fifth Annual ACM Symposium

on Theory of Computing, pp. 575–584, ACM, 2013.

[40] D. Stehlé, R. Steinfeld, K. Tanaka, and K. Xagawa, “Efficient Public-Key Encryp-

tion Based on Ideal Lattices,” in Advances in Cryptology – ASIACRYPT 2009,

vol. 5912 of LNCS, pp. 617–635, Springer, 2009.

[41] V. Lyubashevsky, C. Peikert, and O. Regev, “On Ideal Lattices and Learning with

Errors over Rings,” in Advances in Cryptology – EUROCRYPT 2010, vol. 6110 of

LNCS, pp. 1–23, Springer, 2010.

[42] M. Hamburg, “Module-LWE Key Exchange and Encryption: The Three Bears.”

https://www.shiftleft.org/papers/threebears/threebears-draft1.pdf, 2017.

[43] D. Aggarwal, A. Joux, A. Prakash, and M. Santha, “A New Public-Key Cryp-

tosystem via Mersenne Numbers,” in Advances in Cryptology – CRYPTO 2018,

vol. 10993 of LNCS, pp. 459–482, Springer, 2018.

[44] M. Beunardeau, A. Connolly, R. Géraud, and D. Naccache, “On the Hardness of

the Mersenne Low Hamming Ratio Assumption,” in Progress in Cryptology – LAT-

INCRYPT 2017, vol. 11368 of LNCS, pp. 166–174, Springer, 2019.

[45] K. de Boer, L. Ducas, S. Jeffery, and R. de Wolf, “Attacks on the AJPS Mersenne-

Based Cryptosystem,” in Post-Quantum Cryptography, vol. 10786 of LNCS, pp. 101–

120, Springer, 2018.

[46] C. Gu, “Integer Version of Ring-LWE and Its Applications,” in Security and Privacy

in Social Networks and Big Data - 5th International Symposium, SocialSec 2019,

Copenhagen, Denmark, vol. 1095 of Communications in Computer and Information

Science, pp. 110–122, Springer, 2019.

[47] J. Devevey, A. Sakzad, D. Stehlé, and R. Steinfeld, “On the Integer Polynomial

Learning with Errors Problem,” in Public-Key Cryptography – PKC 2021, vol. 12710

of LNCS, pp. 184–214, Springer, 2021.

[48] G. Herold, E. Kirshanova, and A. May, “On the Asymptotic Complexity of Solving

LWE,” Designs, Codes and Cryptography, vol. 86, pp. 55–83, 2018.

[49] S. Arora and R. Ge, “New Algorithms for Learning in Presence of Errors,” in Au-

tomata, Languages and Programming, vol. 6755 of LNCS, pp. 403–415, Springer,

2011.

40

[50] M. R. Albrecht, C. Cid, J. C. Faugère, R. Fitzpatrick, and L. Perret, “Algebraic

Algorithms for LWE Problems,” in ACM Communications in Computer Algebra,

vol. 49, pp. 62–91, ACM, 2015.

[51] A. Blum, A. Kalai, and H. Wasserman, “Noise-Tolerant Learning, the Parity Prob-

lem, and the Statistical Query model,” in Proceedings of the Thirty-Second Annual

ACM Symposium on Theory of Computing, pp. 435–440, ACM, 2000.

[52] M. R. Albrecht, C. Cid, J.-C. Faugère, R. Fitzpatrick, and L. Perret, “On the

Complexity of the BKW Algorithm on LWE,” Design, Codes and Cryptography,

vol. 74, no. 2, pp. 325–354, 2015.

[53] V. Lyubashevsky, “The Parity Problem in the Presence of Noise, Decoding Random

Linear Codes, and the Subset Sum Problem,” in Approximation, Randomization

and Combinatorial Optimization: Algorithms and Techniques, vol. 2129 of LNCS,

pp. 378–389, Springer, 2005.

[54] M. R. Albrecht, J.-C. Faugère, R. Fitzpatrick, and L. Perret, “Lazy Modulus Switch-

ing for the BKW Algorithm on LWE,” in Proceedings of the 17th International Con-

ference on Public-Key Cryptography – PKC 2014, vol. 8383 of LNCS, pp. 429–445,

Springer, 2014.

[55] Q. Guo, T. Johansson, and P. Stankovski, “Coded-BKW: Solving LWE Using Lat-

tice Codes,” in Advances in Cryptology – CRYPTO 2015, vol. 9215 of LNCS, pp. 23–

42, Springer, 2015.

[56] P. Kirchner and P. Fouque, “An Improved BKW Algorithm for LWE with Applica-

tions to Cryptography and lattices,” in Advances in Cryptology – CRYPTO 2015,

vol. 9215 of LNCS, pp. 43–62, Springer, 2015.

[57] Q. Guo, T. Johansson, E. Mårtensson, and P. Stankovski, “Coded-BKW with Siev-

ing,” in Advances in Cryptology – ASIACRYPT 2017, vol. 10624 of LNCS, pp. 323–

346, Springer, 2017.

[58] Q. Guo, T. Johansson, E. Mårtensson, and P. Stankovski Wagner, “On the Asymp-

totics of Solving the LWE Problem Using Coded-BKW With Sieving,” IEEE Trans-

actions on Information Theory, vol. 65, no. 8, pp. 5243–5259, 2019.

[59] R. Xu, S. L. Yeo, K. Fukushima, T. Takagi, H. Seo, S. Kiyomoto, and M. Hen-

ricksen, “An Experimental Study of the BDD Approach for the Search LWE Prob-

lem,” in Applied Cryptography and Network Security - 15th International Confer-

ence, vol. 10355 of LNCS, pp. 253–272, Springer, 2017.

BIBLIOGRAPHY 41

[60] M. R. Albrecht, R. Fitzpatrick, and F. Göpfert, “On the Efficacy of Solving LWE by

Reduction to Unique-SVP,” in Information Security and Cryptology – ICISC 2013,

vol. 8565 of LNCS, pp. 293–310, Springer, 2014.

[61] E. W. Postlethwaite and F. Virdia, “On the Success Probability of Solving Unique

SVP via BKZ,” in Public-Key Cryptography – PKC 2021, vol. 12710 of LNCS,

pp. 68–98, Springer, 2021.

[62] D. Micciancio and O. Regev, “Lattice-based cryptography,” in Post-Quantum Cryp-

tography, pp. 147–191, Springer, 2009.

[63] M. R. Albrecht, “On Dual Lattice Attacks Against Small-Secret LWE and Parame-

ter Choices in HElib and SEAL,” in Advances in Cryptology – EUROCRYPT 2017,

vol. 10212 of LNCS, pp. 103–129, Springer, 2017.

[64] D. Micciancio and O. Regev, “Worst-Case to Average-case Reductions Based on

Gaussian Measures,” in 45th Annual IEEE Symposium on Foundations of Computer

Science, pp. 372–381, IEEE, 2004.

[65] T. Espitau, A. Joux, and N. Kharchenko, “On a Dual/Hybrid Approach to Small

Secret LWE,” in Progress in Cryptology – INDOCRYPT 2020, vol. 12578 of LNCS,

pp. 440–462, Springer, 2020.

[66] L. Bi, X. Lu, J. Luo, K. Wang, and Z. Zhang, “Hybrid Dual Attack on LWE

with Arbitrary Secrets.” Cryptology ePrint Archive, Report 2021/152, 2021. https:

//ia.cr/2021/152.

[67] L. C. Washington, Elliptic Curves: Number Theory and Cryptography, Second Edi-

tion. Chapman & Hall/CRC, 2008.

[68] N. E. Mrabet and M. Joye, Guide to Pairing-Based Cryptography. Chapman &

Hall/CRC, 2016.

[69] V. S. Miller, “Use of Elliptic Curves in Cryptography,” in Advances in Cryptology

— CRYPTO 1985, vol. 218 of LNCS, pp. 417–426, Springer, 1986.

[70] N. Koblitz, “Elliptic Curve Cryptosystems,” in Mathematics of Computation,

vol. 48, pp. 203–209, AMS, 1987.

[71] A. Menezes, T. Okamoto, and S. Vanstone, “Reducing Elliptic Curve Logarithms

to Logarithms in a Finite Field,” in IEEE Transactions on Information Theory,

vol. 39, pp. 1639–1646, IEEE, 1993.

42

[72] G. Frey and H.-G. Rück, “A Remark Concerning m-Divisibility and the Discrete

Logarithm in the Divisor Class Group of Curves,” in Mathematics of Computation,

vol. 62, pp. 865–874, American Mathematical Society, 1994.

[73] A. Joux, “A One Round Protocol for Tripartite Diffie–Hellman,” in Algorithmic

Number Theory, vol. 1838 of LNCS, pp. 385–393, Springer, 2000.

[74] E. Okamoto and T. Okamoto, “Cryptosystems Based on Elliptic Curve Pairing,”

in Modeling Decisions for Artificial Intelligence, vol. 3558 of LNCS, pp. 13–23,

Springer, 2005.

[75] D. Boneh and M. Franklin, “Identity-Based Encryption from the Weil Pairing,”

in Advances in Cryptology — CRYPTO 2001, vol. 2139 of LNCS, pp. 213–229,

Springer, 2001.

[76] R. Balasubramanian and N. Koblitz, “The Improbability That an Elliptic Curve

Has Subexponential Discrete Log Problem under the Menezes–Okamoto–Vanstone

Algorithm,” in Journal of Cryptology, vol. 11, pp. 141–145, Springer, 1998.

[77] F. Luca, D. Mireles, and I. E. Shparlinski, “MOV Attack in Various Subgroups on

Elliptic Curves,” in Illinois Journal of Mathematics, vol. 48, pp. 1041–1052, Duke

University Press, 2004.

[78] A. Miyaji, M. Nakabayashi, and S. Nonmembers, “New Explicit Conditions of El-

liptic Curve Traces for FR-Reduction,” in Transactions on Fundamentals of Elec-

tronics, Communications and Computer Sciences, vol. 84, IEICE, 2001.

[79] P. S. L. M. Barreto, B. Lynn, and M. Scott, “Constructing Elliptic Curves with

Prescribed Embedding Degrees,” in Security in Communication Networks, vol. 2576

of LNCS, pp. 257–267, Springer, 2003.

[80] P. S. L. M. Barreto and M. Naehrig, “Pairing-Friendly Elliptic Curves of Prime

Order,” in Selected Areas in Cryptography, vol. 3897 of LNCS, pp. 319–331, Springer,

2006.

[81] D. Freeman, “Constructing Pairing-Friendly Elliptic Curves with Embedding De-

gree 10,” in Algorithmic Number Theory, vol. 4076 of LNCS, pp. 452–465, Springer,

2006.

[82] E. J. Kachisa, E. F. Schaefer, and M. Scott, “Constructing Brezing-Weng Pairing-

Friendly Elliptic Curves Using Elements in the Cyclotomic Field,” in Pairing-Based

Cryptography – Pairing 2008, vol. 5209 of LNCS, pp. 126–135, Springer, 2008.

[83] M. Scott and A. Guillevic, “A New Family of Pairing-Friendly Elliptic Curves,” in

Arithmetic of Finite Fields, vol. 11321 of LNCS, pp. 43–57, Springer, 2018.

BIBLIOGRAPHY 43

[84] A. Shamir, “Identity-Based Cryptosystems and Signature Schemes,” in Advances in

Cryptology, vol. 196 of LNCS, pp. 47–53, Springer, 1985.

[85] M. Scott, N. Benger, M. Charlemagne, L. J. Dominguez Perez, and E. J. Kachisa,

“Fast Hashing to G2 on Pairing-Friendly Curves,” in Pairing-Based Cryptography

– Pairing 2009, vol. 5671 of LNCS, pp. 102–113, Springer, 2009.

[86] L. Fuentes-Castañeda, E. Knapp, and F. Rodŕıguez-Henŕıquez, “Faster Hashing to

G2,” in Selected Areas in Cryptography, vol. 7707 of LNCS, pp. 412–430, Springer,

2012.

[87] A. Budroni and A. Tenti, “The Mersenne Low Hamming Combination Search

Problem Can Be Reduced to an ILP Problem,” in Progress in Cryptology –

AFRICACRYPT 2019, vol. 11627 of LNCS, pp. 41–55, Springer, 2019.

[88] A. Budroni, B. Chetioui, and E. Franch, “Attacks on Integer-RLWE,” in Proceeding

of the 22nd International Conference on Information and Communications Security,

2020, vol. 12282 of LNCS, pp. 528–542, Springer, 2020.

[89] A. Budroni, Q. Guo, T. Johansson, E. Mårtensson, and P. S. Wagner, “Improve-

ments on Making BKW Practical for Solving LWE,” in Special Issue ”Public-Key

Cryptography in the Post-quantum Era” of Cryptography, vol. 5, MDPI, 2021.

[90] T. Kim and R. Barbulescu, “Extended Tower Number Field Sieve: A New Com-

plexity for the Medium Prime Case,” in Advances in Cryptology – CRYPTO 2016,

vol. 9814 of LNCS, pp. 543–571, Springer, 2016.

[91] A. Budroni and F. Pintore, “Efficient Hash Maps to G2 on BLS Curves,” Applicable

Algebra in Engineering, Communication and Computing, 2020.

44

Part II

Included Papers

Paper 1

48 The MLHCombSP can be reduced to an ILP Problem

1 Introduction 49

The Mersenne Low Hamming

Combination Search Problem can be

reduced to an ILP Problem

Alessandro Budroni and Andrea Tenti

Abstract: In 2017, Aggarwal, Joux, Prakash, and Santha proposed an

innovative NTRU-like public-key cryptosystem that was believed to be

quantum resistant, based on Mersenne prime numbers q = 2N − 1. After

a successful attack designed by Beunardeau, Connolly, Géraud, and Nac-

cache, the authors revised the protocol which was accepted for Round 1

of the Post-Quantum Cryptography Standardization Process organized

by NIST. The security of this protocol is based on the assumption that a

so-called Mersenne Low Hamming Combination Search Problem (MLH-

CombSP) is hard to solve. In this work, we present a reduction of MLH-

CombSP to Integer Linear Programming (ILP). This opens new research

directions for assessing the concrete robustness of such cryptosystem. In

particular, we uncover a new family of weak keys, for whose our attack

runs in polynomial time.

Keywords: Post-Quantum Cryptography, Public-Key Cryptography,

Integer Linear Programming, Mersenne-Based Cryptosystem.

1 Introduction

In [1], Aggarwal, Joux, Prakash, and Santha introduced a new public-key encryption

scheme similar to the NTRU cryptosystem [2] that employs the properties of Mersenne

numbers.

A Mersenne number is an integer q = 2N − 1 so that N is prime. One can associate

to each element in the ring Zq a binary string representing 0 ≤ a < q of the class [a] ∈ Zq.
The secret key is a pair of elements F and G ∈ Zq with Hamming weight h <

√
N/10.

Let R be chosen at random from Zq; the public key is given by the pair (R, T ≡ RF +G

mod q). The security assumption (and the mathematical problem that supports the

robustness of this cryptosystem) is that it is hard to recover F and G, knowing only R

50 The MLHCombSP can be reduced to an ILP Problem

and T . This assumption is called Mersenne Low Hamming Combination Search Problem

(MLHCombSP).

The version in [1] is the second iteration of the cryptosystem, first presented in [3].

The security assumptions were based on a problem similar to MLHCombSP and called

Mersenne Low Hamming Ratio Search Problem (MLHRatioSP). That system has been

successfully attacked by Beunardeau et al. in [4]. The attack is performed via a series

of calls to an SVP-oracle. Its complexity has been estimated by de Boer et al. in [5].

They also showed that a Meet-in-the-Middle attack is possible using locality-sensitive

hashing, which improves upon brute force. However, Beunardeau et al. attack turned

out to be the most effective of the two. After the publications of these works, Aggarwal

et al. revised the protocol [1] to prevent the above attacks from being effective against

the full-scale cipher.

This protocol has been accepted to the Round 1 of the Post-Quantum Cryptography

Standardization Process organized by NIST. However, it does not appear among the

proposals for Round 2.

1.1 Our Contribution/Outline

In this work we present a non-trivial reduction of the underlying mathematical problem

of [1] to a relatively low-dimensional Integer Linear Programming (ILP) instance. The

secret key is a solution of the resulting ILP instance with probability p, that depends on

the size of F and G.

In section 2, we introduce notation and related work. Furthermore, we recap the

Beunardeau et al. attack against [3] with a generalization to the MLHCombSP. Section 3

describes our reduction together with the success probability analysis. There, we describe

a variation in the description of the ILP to be solved, that allows some flexibility for

the attacker. In particular, one can perform a trade-off between the success probability

of the attack and the dimension of the resulting ILP. The application of this trade-off

is shown by two examples. In section 4, we describe a new family of weak keys (F,G)

and the probability of such a pair to appear. These keys are characterized by a long

sequence of zeros in their bit-wise representation. The family is obtained by performing

two independent rotations on F and G. After these rotations, F and G become small

and easy to recover. In this way the size of the set of the weak keys increases. For

example, for N = 1279 and h = 17 (parameters used in [4]), a random key is weak in the

sense of Beunardeau et al. with probability ∼ 2−34. In what follows, we estimate that a

random key is weak with probability ∼ 2−11.

2 Preliminaries 51

2 Preliminaries

Definition 1. Let N be a prime number and let q = 2N−1. Then q is called a Mersenne

number. If q is also prime, then it is called Mersenne prime number.

Let seqN : {0, ..., q − 1} → {0, 1}N be the map which associates to each A the

corresponding N -bits binary representation seqN(A) with most-significant bit to the

left.

Let us consider an integer 0 ≤ B < q, seqN maps [B] ∈ Zq to the N -bits binary

representation of B. We define the Hamming weight w(B) of B as the Hamming weight

of seqN(B), i.e. the number of 1s in seqN(B).

Lemma 1. Let k ≥ 0 be a positive integer, let A be an N-bits number, and let q = 2N−1.

Then seqN(2kA mod q) corresponds to a rotation of seqN(A) of k positions to the left

and seqN(2−kA mod q) corresponds to a rotation of k positions to the right.

Proof. We prove it by induction on k. Write seqN(A) = (AN−1, ..., A1, A0), where AN−1

is the most significant bit of A. Then we can represent A as

A = AN−1 · 2N−1 + ...+ A1 · 2 + A0.

If we multiply A by 2 modulo q we obtain

2 · A ≡ AN−1 · 2N + AN−2 · 2N−1 + ...+ A1 · 22 + A0 · 2 mod q

≡ AN−2 · 2N−1 + ...+ A1 · 22 + A0 · 2 + AN−1 mod q.

Then seqN(2 · A) = (AN−2, ..., A0, AN−1), i.e. the left rotation of 1 position of

seqN(A).

By inductive hypothesis, seqN(2k · A) corresponds to the left rotation of k positions of

seqN(A), then seqN(2k+1 · A) = seqN(2 · 2k · A) corresponds to the left rotation of one

position of seqN(2k ·A), that is the left rotation of k + 1 positions of seqN(A). The case

right rotations of seqN(A) follows trivially.

The security of the Aggarwal et al. cryptosystem [1] relies on the assumption that

the following two problems are hard to solve.

Mersenne Low Hamming Ratio Search Problem Let q = 2N − 1 be a Mersenne

prime number, h < N an integer, F and G two integers chosen at random from the set

52 The MLHCombSP can be reduced to an ILP Problem

of N -bit numbers with Hamming weight h. Let H < q be the non-negative integer such

that

H ≡ F

G
mod q. (2.1)

The Mersenne Low Hamming Ratio Search Problem (MLHRatioSP) is to find (F,G)

given h and H.

Mersenne Low Hamming Combination Search Problem Let q = 2N − 1 be a

Mersenne prime number, h < N an integer, R a random N -bit number, and F,G integers

chosen at random from the set of N -bits numbers with Hamming weight h. Let T < q

be the non-negative integer such that

RF +G ≡ T mod q. (2.2)

The Mersenne Low Hamming Combination Search Problem (MLHCombSP) is to find

(F,G) given h and the pair (R, T).

In [3], the authors suggest to choose N and h to be such that
(
N−1
h−1

)
≥ 2λ and

4h2 < N , for a desired λ-bit security level. After the publications of the attacks by

Beunardeau et al. [4] and De Boer et al. [5], the authors revised the choice of the

parameters to be such that h = λ and 10h2 < N , see [1].

2.1 Previous Attacks

Brute force attack In [3], Aggarwal et al. showed that a brute force attack to

the MLHRatioSP would require
(
N−1
h−1

)
trials. One assumes that one of the two secret

numbers, say F , has a 1 in the most significant bit (condition that can be obtained by

a rotation of seqN(F)). Then one should check, for every N -bits number with 1 as most

significant bit and weight h, whether the corresponding G through relation (2.1) has

weight h. This approach does not apply to the MLHCombSP, which instead requires(
N
h

)
trials.

Meet-in-the-Middle attack De Boer et al. [5] showed that a Meet-in-the-Middle

attack to MLHRatioSP is possible using locality-sensitive hashing with complexity

Õ
(√(

N−1
h−1

))
on classical computers and Õ

(
3

√(
N−1
h−1

))
on quantum computers.

Weak Keys and Lattice attack Following the parameters’ setting in [3], Beunardeau

et al. found a weak key attack to the MLHRatioSP for the case when both F and G

2 Preliminaries 53

happen to have bits set to 1 only in their right halves, i.e. F,G <
√

2N [4]. This event

happens with probability approximately 2−2h, for h << N .

Following the above idea, Beunardeau et al. also presented a more general attack to

the MLHRatioSP which consists of guessing a decomposition of F and G into windows

of bits such that all the ‘1’s are “close” to the right-most bit of such windows. Then F

and G can be recovered through a lattice reduction algorithm such as LLL [6]. Even if

Beunardeau et al. showed that this attack practically hits the security estimations in

[3], they did not present any clear asymptotic analysis of its complexity. However, de

Boer et al. [5], computed the complexity of this attack.

In [1], the authors stated that the above attack likely generalizes to the MLH-

CombSP case. Building directly on the work presented in [5], we show in the next sub-

section that this is true. However we refer the reader to [4] and [5] for a more detailed

description.

2.2 The Beunardeau et al. attack on MLHCombSP

Since F is taken at random among the N -bits numbers with Hamming weight h, w.h.p.

the ‘1’ valued bits of seqN(F) do not appear in big clusters along the N possible positions.

One then computes an interval-like partition P of {0, . . . , N − 1} at random, i.e. each

set of P is of the form {a, a+ 1, . . . , b− 1, b}, with 0 ≤ a < b < N . Let all ‘1’ valued bits

of seqN(F) fall in the right-half of one of the sets of P . Then, each set of P corresponds

to a binary substring of seqN(F), corresponding in turn to a “small” number. Therefore,

the array of these numbers can be seen as a representation of F .

Let P = {P1, .., Pk} andQ = {Q1, ..., Ql} be two interval-like partitions of {0, ..., N−
1} and (R, T) ∈ Z2

q be public parameters of an MLHCombSP instance. Let pi, qi be the

smallest elements of Pi, Qi respectively. We consider the following integer lattice.

LP,Q,R,T =

{
(x1, ..., xk, y1, ..., yl, u) | R ·

k∑
i=1

2pi · xi +
l∑

j=1

2qi · yi − uT ≡ 0 mod q

}

The above defined lattice LP,Q,R,T has volume det(LP,Q,R,T) = q and rank d =

k + l + 1. Let (F,G) ∈ Z2
q be such that w(F) = w(G) = h and RF + G ≡ T as in a

MLHCombSP instance. Define the vector

s = (f1, ..., fk, g1, ..., gl, 1) ∈ LP,Q,R,T ,

54 The MLHCombSP can be reduced to an ILP Problem

where 0 ≤ fi < 2|Pi| and 0 ≤ gj < 2|Qj | are the unique natural numbers such that∑k
i=1 fi · 2pi = F and

∑l
j=1 gj · 2qj = G, where | · | denotes the cardinality operator. One

wishes to find the vector s by a lattice reduction algorithm applied to LP,Q,R,T .

The lattice LP,Q,R,T is very similar to the one defined in [5] for the MLHRatioSP

and their success probability analysis of the attack holds for this case too. Therefore the

following conclusions follow directly from the work of de Boer et al.

Given two partitions P and Q of {0, ..., N − 1} with block size at least N/d +

Θ(logN), where d = k + l + 1 with k = |P | and l = |Q|. The success probability of

finding the vector s ∈ LP,Q,R,T using a SVP-oracle is 2−2h+o(1).

Remark 1. The above attack is actually a simplified version of the attack of Beunardeau

et al. Indeed, a more general attack can be made by considering the variation of partition

sizes and the fraction of each partition block. This variant of the attack has success

probability 2−(2+δ)h+o(1), for some small constant δ > 0 [5].

Remark 2. In practice, instead of an SVP-oracle, the LLL algorithm [6] which has

polynomial complexity is used. This decreases the overall complexity of the attack, but

the success probability is decreased too [5].

The above attack was made against the parameters setting contained in the first

version of Aggarwal et al. work. However, as already mentioned, in the most recent

version of their work the authors revisited the protocol in order to withstand it.

2.3 Integer Linear Programming

An Integer Linear Programming (ILP) problem in his canonical form is defined as follows.

Given a matrix A ∈ Qm×n and two vectors c ∈ Qn and b ∈ Qm, minimize (or maximise)

the quantity

cTx

subject to 
Ax ≤ b,

x ≥ 0,

x ∈ Zn

The number n is called the dimension of the ILP. An ILP-oracle is an oracle that solves

any ILP instance.

Solving a general ILP is proved to be NP-hard [7]. Nevertheless, understanding the

3 ILP Reduction 55

complexity of specific families of ILP problems is not an easy task: it can widely vary

from case to case [8]. For example, when the problem can be reduced to a simple Linear

Programming problem, it is proved that it has polynomial complexity [9]. H. Lenstra

also provided a polynomial algorithm for certain ILP problems [10].

Nowadays there exists families of ILP solving algorithms, for example Branch and

Bound [11], Lagrange relaxation [12], Column Generation [13], and the Cutting Planes

[14], whose implementations [15, 16] are able to solve in practice relatively challenging

instances.

3 ILP Reduction

Let R, T be two random elements of Z∗q. We define the map ϕ : Zq → Zq sending

X 7→ −RX + T . Any point on the graph of ϕ, namely {(X,ϕ(X))}X∈Zq , satisfying the

condition that both coordinates have Hamming weight equal to h is a solution to the

MLHCombSP. We denote such condition as the graph condition.

We notice that ϕ is bijective, for it is the combination of two bijective functions

(i.e. multiplication times a nonzero element of a field and sum with an element of

the underlying group). This means that for any subset U ⊆ Zq, the restriction ϕ|U is

injective. Hence, | Im(ϕ|U)| = |U|.

Let V be another subset of Zq, and assume that ϕ behaves like a random bijection

from Zq to itself. The probability that a random element of Im(ϕ|U) is in V is given by
|V|

2N−1
. Hence the expected size of Im(ϕ|U)∩V is given by the mean of the Hypergeometric

distribution [17] in |U| draws, from a population of size 2N − 1 that contains |V| objects

that yield a success. That is:

E(| Im(ϕ|U) ∩ V|) =
|U||V|
2N − 1

. (3.1)

Remark 3. The expectation (3.1) is obtained assuming that ϕ is a random bijection of

Zq. We verified experimentally that this is accurate also for ϕ(X) = −RX + T .

Let U ,V ⊂ Zq be such that F ∈ U and G ∈ V . Then, (F,G) is a solution of the

system of constraints 
T −Rx ≡ y mod q,

x ∈ U ,

y ∈ V .

(3.2)

56 The MLHCombSP can be reduced to an ILP Problem

For every fixed instance of x ∈ {0, . . . , q − 1} , there is exactly one a ∈ Z that

satisfies 0 ≤ T + aq −Rx < q. It is possible to represent (3.2) in terms of integers:
T + qa−Rx = y,

x ∈ U ,

y ∈ V .

(3.3)

Assume that U = {lx3 , lx3 +1, . . . , ux3 −1, ux3} and V = {ly, ly +1, . . . , uy−1, uy}, for

some integers lx3 , ux3 , ly, uy < q, and that F ∈ U and G ∈ V . Assume also that (3.3) has

a unique solution. Then, one can use an ILP solver to recover (F,G) from the following

ILP instance. Minimize the quantity in the integer variables x1, x2, x3, y:

Tx1 + qx2 −Rx3 + 0y (3.4)

with constraints 

y = Tx1 + qx2 −Rx3,

x1 = 1,

lx3 ≤ x3 ≤ ux3 ,

ly ≤ Tx1 + qx2 −Rx3 ≤ uy .

(3.5)

Note that y is a redundant variable because it is set to be integer by default (T, q and R

are integers) and it takes the value of the minimized quantity. Therefore the ILP (3.4)

with constraints (3.5) has dimension 3.

Remark 4. Our approach consists of looking for settings where the ILP has only one

solution. For this reason, one can use any linear combination of the variables x1, x2, x3, y

in (3.4) to define the quantity to minimize.

Finding good choices on U and V (i.e. small and containing F and G with high prob-

ability) is, in general, a difficult task. One can exploit the fact that F has weight exactly

h to establish the following ILP problem in the integer variables x1, x2, x3, n1, . . . , nN , y:

Tx1 + qx2 −Rx3 + 0n1 + · · ·+ 0nN + 0y, (3.6)

3 ILP Reduction 57

with constraints 

y = Tx1 + qx2 −Rx3,

x1 = 1,

x3 =
∑N

i=1 ni2
i−1,

0 ≤ ni ≤ 1, for i = 1, . . . , N∑N
i=1 ni = h,

ly ≤ y ≤ uy .

(3.7)

Using these constraints results in having U of size |U| =
(
N
h

)
. On the other hand, the

dimension of the ILP to be solved increased from 3 to N+3 (the variable y is redundant).

In subsection 3.1, we show how to obtain a trade-off between the number of variables of

the ILP to be solved or the size of U .

3.1 Merging Bits

To reduce the number of variables of the ILP (3.6), one can merge more than one bit

within each variable ni. Consider the 2s-ary representation of x3 =
∑dN/se

i=1 2s(i−1)ni. For

s = 2, each ni can assume values in {0, 1, 2, 3} and the total weight of x3 varies between

h and 2h, as we prove in Proposition 1. Compared to the setting in (3.6) and (3.7), this

results in an increase of the size of U , and decrease of the number of variables: from

N + 3 to dN/2e+ 3.

Example 1. Let F = (00010011) and h = 3. By merging bits in pairs and assuming the

ILP gives the correct solution, one gets n1 = (00), n2 = (01), n3 = (00), n4 = (11). The

total sum results in n1 + n2 + n3 + n4 = 4 ≤ 2h = 6.

Using this method, it is possible to merge an arbitrary number of bits together. Let

S = dN/se. Consider the following system of linear inequalities.

T + aq −Rx = y,

2h − 1 ≤ y ≤ 2N − 2N−h,

x =
∑S

i=1 2s(i−1)ni,

0 ≤ ni ≤ 2s − 1, for 1 ≤ i ≤ S,

h ≤
∑S

i=1 ni ≤ 2s−1h.

(3.8)

We prove in Proposition 1 that a solution (X,ϕ(X)) satisfying the graph condition is

also a solution to the system of inequalities (3.8) and, therefore, it can be obtained via

an ILP-oracle. Generally, choosing larger s implies a decrease of the probability that the

58 The MLHCombSP can be reduced to an ILP Problem

ILP-oracle will return the correct solutions because the number of solutions satisfying

the conditions increase.

Proposition 1. Let F,G ∈ Zq such that ϕ(F) = G and the Hamming weight of seqN(F)

is h. Then there exists an integer solution (x, y, a, n1, . . . , nS) that solves the system (3.8),

with x = F and y = G .

Proof. The first equation and the first inequality of (3.8) are satisfied by the definition

of ϕ and by the fact that y is of weight h. The second equation and the second inequality

represent the fact that we are writing x in base 2s. Hence the only remaining thing to

prove is that the last inequality holds.

Let F = F020 + . . .+FN−12N−1. We notice that ni =
∑s−1

j=0 F(i−1)s+j2
j. For the fact

that
∑N−1

i=0 F (i) = h, we conclude that

S∑
i=1

ni =
S∑
i=1

s−1∑
j=0

F(i−1)s+j2
j ≥

S∑
i=1

s−1∑
j=0

F(i−1)s+j = h.

We prove the second inequality by induction on h. For h = 1, ni is a string of weight

1 of s bits. That is at most 2s−1.

Assuming that the inequality holds for h− 1. If ni ≤ 2s−1 for every i, the inequality

is satisfied. Hence we assume that there exists one j for which nj > 2s−1. This means

that the Hamming weight of seqs(nj) ≥ 2. Then one gets:∑
i

ni ≤ 2s +
∑
i 6=j

ni.

The sum of the Hamming weights of seqs(nj), j 6= i is at most h − 2. By inductive

hypothesis, it follows that ∑
i

ni ≤ 2s + 2s−1(h− 2) = 2s−1h.

The following Proposition determines the size of U that one obtains from considering

the constraints in (3.8).

Proposition 2. Let U be the set containing all 0 ≤ F < q, whose 2s-ary representation

3 ILP Reduction 59

F =
∑S

i=1 ni2
i−1 satisfies 0 ≤ ni < 2s, for 1 ≤ i ≤ S and h ≤

∑S
i=1 ni ≤ 2s−1h. Then

|U| =
2s−1h∑
d=h

l2s(S, d),

where lt(n, d) is the number of integer solutions to z1 + . . .+ zn = d, 0 ≤ zi < t.

Proof. Let d be one of the values of
∑S

i=1 ni. For each d, we consider all the possible

configurations of n1, . . . , nS. Since each of these is bounded by 2s − 1, the number of

legitimate configurations is l2s(S, d).

Examples

In Table 3.1 and Table 3.2 we report the dimensions of the ILP instances, for two

concrete parameter choices, resulting when varying s. For each case, we give the success

probability of the attack that is computed as follows. Consider the set

V = {2h − 1, 2h, . . . , 2N−t − 2N−t−h},

with t satisfying log2(|U|) ≤ t, and U constructed as in Proposition 2 so that it contains

F by default. Since log2(|V|) < N − t, we have that |U||V| < 2N . Therefore, because of

the estimation in (3.1), if G ∈ V , then we expect (3.8) to have a unique solution with

x = F and y = G. In this case, the private key (F,G) can be successfully retrieved

with a query to an ILP-oracle and, therefore, the success probability of the attack is the

probability that G ∈ V .

Let EG be the number of ‘0’ valued bits before the first ‘1’ in seqN(G). One wants

to compute the probability that, for a fixed s, log2(|U|) ≤ EG. The random variable EG

is distributed according to the negative hypergeometric distribution [18]:

Pr(EG = t) =

(
N−t−1
N−t−h

)(
N

N−h

) .
In Table 3.1 and Table 3.2 the success probability and the number of ILP variables,

computed as dN/se+ 3, are presented for a variety of s1. We notice that the parameters

in Table 3.1 violate the guidelines given in [1]. These corresponds to the parameters

choice of the first iteration of the protocol [3], and are the ones attacked by Beunardeau

et al. [4].

1The redundant variable y is not taken into account when computing the number of ILP variables.

60 The MLHCombSP can be reduced to an ILP Problem

s Probability of success Number of variables in ILP

1 2−2.56 1282

2 2−3.97 643

3 2−6.13 430

4 2−9.13 323

5 2−12.94 259

6 2−17.33 217

7 2−21.73 186

8 2−26.07 163

9 2−30.47 146

10 2−34.06 131

Table 3.1: parameters: N = 1279 and h = 17

s Probability of success Number of variables in ILP

1 2−1.36 1282

2 2−1.78 643

3 2−2.80 430

4 2−4.29 323

5 2−6.26 259

6 2−8.64 217

7 2−11.18 186

8 2−13.71 163

9 2−16.27 146

10 2−18.42 131

Table 3.2: parameters: N = 1279 and h = 11

Remark 5. It is possible to increase the probability of success by taking into consideration

the fact that G has weight h too. In this case, one would need to add more constraints to

the set V, as done for the set U , resulting in an increase of the number of ILP variables.

Remark 6. The approach can be easily adjusted in order to solve the MLHRatioSP by

taking T = 0.

4 A new family of weak keys

In [4], a family of weak keys was introduced for the MLHRatioSP. Those were the ones

for which all the ‘1’ valued bits appeared in the right halves of seqN(F) and seqN(G). As

4 A new family of weak keys 61

noted in [1], one can break keys in this family by performing a rational reconstruction

[19] of the quotient H defined by (2.1). A key in this family appears with probability

approximately 2−2h. Many keys which have a long sequence of zeros in the middle of

their bit-sequence representation are not considered as weak keys in [4]. However, we

show that this is a weakness that can be exploited.

Let u, v ≥ 0 be two integers. The following transformation

(2(u−v)R)(2vF) + 2uG ≡ 2uT mod q (4.1)

gives a new instance of the MLHCombSP where the binary representation of the public

values R and T are rotated by u − v and u positions respectively. The secret values F

and G are rotated by v and u positions. In practice, the transformation 4.1 allows us to

rotate the binary representation of F and G by multiplying R and T times powers of 2.

We will say that F is minimized by u rotations if

2uF mod q = min
0≤ũ<N
ũ∈N

2ũF mod q.

In particular, the binary representation of 2uF has its longest sequence of consecutive

zeros arranged to the left.

Our attack targets keys for which F and G contain long sequences of zeros in their

binary representations. The approach consists of minimizing through rotations F and

G using (4.1), then defining an ILP problem as in (3.4) with exceptionally tight bounds

so that the solution is unique.

Assume F and G have been minimized already as much as possible through rota-

tions, and let EF and EG be respectively the length of the largest sequences of consecutive

zeros of F and G. In this case, one can set V = {2N−EG−1, 2N−EG−1 + 1, . . . , 2N−EG − 1}
so that |V| = 2N−EG−1. Let U ⊂ Fq be such that |U| < 2EG+1 and F ∈ U . Then, because

of estimation (3.1), there is only one expected solution to the system of constraints:
T −Rx ≡ y mod q,

x ∈ U ,

y ∈ V .

(4.2)

and this solution is x = F , y = G with high probability. Once found, one can rotate

back the solutions to retrieve the original pair. More in general, one expects a unique

solution when EF +EG ≥ N , and this can be retrieved by solving an ILP instance with

only three variables.

62 The MLHCombSP can be reduced to an ILP Problem

Let A be a random positive N -bits integer such that w(A) = h, and let EA be the

length of the longest sequence of zeros in its binary representation considering rotations.

Let k ≤ N − h be a positive integer. Our goal is to evaluate the probability

Pr(EA = k). (4.3)

Computing the exact probability (4.3) involves a recursive formula and it is hard in

practice. For this reason, we used the following approximation. Consider the set of

tuples

Ωh,N =

{
(a1, a2 . . . , ah)|a1 ≥ ai ≥ 0 for i > 0,

h∑
i=1

ai = N − h

}
.

One can use the elements of Ωh,N to represents the distribution of zeros in seq(A) after

the best rotational shift (the one that minimizes A). In particular, a1, a2, ..., ah represents

the length of each sequence of consecutive zeros as follows

0...0︸︷︷︸
a1 times

1 0...0︸︷︷︸
a2 times

1 ... 1 0...0︸︷︷︸
ah times

1.

Note that a1 ≥ ai, for i > 1, ensures that we are considering already the best shift

possible.

Proposition 3. Let (a1, a2, ..., ah) be chosen uniformly at random from Ωh,N . Then

Pr(a1 = k) =
lk+1(h− 1, N − h− k)∑N−h
i=0 li+1(h− 1, N − h− i)

, (4.4)

where lt(n, d) is the number of integer solutions to z1 + . . .+ zn = d, 0 ≤ zi < t.

Proof. Let A : Ωh,N → Z be the function that maps (a1, a2, ..., ah) to a1. For 0 ≤ k ≤
N − h, A−1

h,N(k) is the subset of Ωh,N containing the tuples of the form (k, a2, . . . , ah)

under the condition that aj ≤ k for every j and that
∑h

j=2 aj = N − h− k. The number

of such tuples is lk+1(h− 1, N − h− k).

We verified experimentally that the above model approximates well (4.3). Proposi-

tion 3 allowed us to discover a new family of weak keys, namely, pairs (F,G) such that

EF + EG ≥ N . We used (4.4) to derive the following formula

Pr(EF + EG ≥ N) ≈
2(N−h)∑
a=N

a∑
k=0

lk+1(h− 1, N − h− k)la−k+1(h− 1, N − h− k)(∑N−h
i=0 li+1(h− 1, N − h− i)

)2 .

Note that EG and EF are upper bounded by N−h, and their lower bound is N/h−1 if h

5 Conclusions and Future Work 63

dividesN , bN/hc otherwise. ForN = 1279 and h = 17, the expected length of the longest

sequence of zeros is approximately 256. For these parameters, there is approximately

one key every 211 with EF +EG ≥ N , and such keys are weak as explained below. This

improves upon Beunardeau et al. work for which 1 over 234 keys is weak.

Let CILP be the cost of solving a system with 3 variables and unique solution as

in (4.2). To retrieve the key, one must perform up to N2 rotations to find the one that

minimizes F and G. Since EF is unknown, for each rotation, one makes a query to the

ILP-oracle for every possible value EF = k can take. One must try up to N−h−bN/hc+2

possible k to find a unique solution to (4.2), where U = {2h − 1, 2h, . . . , 2N−k − 2N−k−h}
and V = {2h − 1, 2h, . . . , 2k − 2k−h}. The overall cost is (N − h− bN/hc+ 2)N2CILP <

N3CILP .

H. Lenstra introduced an algorithm [10] that solves the decisional ILP problem with

a fixed number of variables in polynomial time in the size of the problem input. This

problem consists in deciding whether there exists a solution to the ILP instance satisfying

the constraints or not. One can use a branch and bound -like approach in combination

with Lenstra’s algorithm to solve our ILP instances in 3 variables. In particular, one

may split U in two subsets U1 and U2, and apply Lenstra’s algorithm to decide which

one contains the (unique) solution. Assume this is U1. Then, one applies the same

procedure to U1 and so on. It takes log(|U|) steps to isolate and find the solution of the

ILP instance. The overall cost CILP is therefore polynomial in N .

5 Conclusions and Future Work

This work introduces techniques to reduce the MLHCombSP to ILP. In Section 3, we

show how to make a trade-off between the success probability of retrieving the private

key via an ILP-oracle query and number of variables of the resulting ILP problem. In

general, it is not easy to determine the complexity of an ILP instance. Unlike Linear

Programming, the dimension of ILP is not determinant in establishing whether an in-

stance is feasible or not to solve [20]. Therefore the size of the ILPs emerging from

the reduction in Section 3 is not necessarily related to their hardness. Unfortunately,

the vast majority of the ILP solvers available does not support big numbers arithmetic.

This prevented us from performing noteworthy experiments (N > 60) on this reduction.

With a dedicated implementation, it could be possible to perform such experiments and

obtain empirical hints about the complexity of these ILP instances.

In Section 4, we introduce a new family of weak keys for which a key-recovery

64 The MLHCombSP can be reduced to an ILP Problem

attack runs in polynomial time by solving ILP instances with only 3 variables and only

one expected solution. In particular, this family is significantly larger than the family of

weak keys discovered by Beunardeu et al.

Bibliography

[1] D. Aggarwal, A. Joux, A. Prakash, and M. Santha, “A New Public-Key Cryp-

tosystem via Mersenne Numbers,” in Advances in Cryptology – CRYPTO 2018,

vol. 10993 of LNCS, pp. 459–482, Springer, 2018.

[2] J. Hoffstein, J. Pipher, and J. H. Silverman, “NTRU: A Ring-based Public Key

Cryptosystem,” Algorithmic Number Theory, 12 1998.

[3] D. Aggarwal, A. Joux, A. Prakash, and M. Santha, “A New Public-Key Cryp-

tosystem via Mersenne Numbers.” Cryptology ePrint Archive, Report 2017/481 ,

version:20170530.072202, 2017.

[4] M. Beunardeau, A. Connolly, R. Géraud, and D. Naccache, “On the Hardness of the

Mersenne Low Hamming Ratio Assumption.” Cryptology ePrint Archive, Report

2017/522, 2017.

[5] K. de Boer, L. Ducas, S. Jeffery, and R. de Wolf, “Attacks on the AJPS Mersenne-

Based Cryptosystem,” in Post-Quantum Cryptography, vol. 10786 of LNCS, pp. 101–

120, Springer, 2018.

[6] A. K. Lenstra, H. W. Lenstra, and L. Lovasz, “Factoring Polynomials with Rational

Coefficients,” Mathematische Annalen, vol. 261, no. 4, pp. 515–534, 1982.

[7] C. H. Papadimitriou, “On the Complexity of Integer Programming,” in Journal of

ACM, vol. 28, pp. 765–768, ACM, 1981.

[8] A. Schrijver, Theory of Linear and Integer Programming. John Wiley & Sons, 1986.

[9] L. Wolsey, Integer Programming. Wiley Series in Discrete Mathematics and Opti-

mization, John Wiley & Sons, 1998.

[10] H. W. Lenstra, Integer Programming with a Fixed Number of Variables, vol. 8 of

Mathematics of Operations Research. Informs, 1983.

[11] D. R. Morrison, S. H. Jacobson, J. J. Sauppe, and E. C. Sewell, Branch-and-Bound

Algorithms, vol. 19 of Discrete Optimization. Elsevier Science Publishers, 2016.

BIBLIOGRAPHY 65

[12] M. L. Fisher, “The Lagrangian Relaxation Method for Solving Integer Programming

Problems,” in Management Science, vol. 27, pp. 1–18, Informs, 1981.

[13] L. Appelgren, “A Column Generation Algorithm for a Ship Scheduling Problem,”

in Transportation Science, vol. 3, pp. 53–68, Informs, 02 1969.

[14] H. Marchand, A. Martin, R. Weismantel, and L. Wolsey, “Cutting Planes in Inte-

ger and Mixed Integer Programming,” in Discrete Applied Mathematics, vol. 123,

pp. 397–446, Elsevier Science Publishers, 2002.

[15] I. CPLEX Optimizer, “IBM ILOG CPLEX Optimization Studio,” 2018.

[16] L. Gurobi Optimization, “Gurobi Optimizer Reference Manual,” 2018.

[17] G. Casella and R. L. Berger, Statistical Inference, vol. 2. Duxbury Pacific Grove,

2002.

[18] K. J. Berry and P. W. Mielke Jr, “The Negative Hypergeometric Probability Dis-

tribution: Sampling Without Replacement from a Finite Population,” in Perceptual

and Motor Skills, vol. 86, pp. 207–210, SAGE, 1998.

[19] P. S. Wang, “A P-adic Algorithm for Univariate Partial Fractions,” in Proceedings

of the Fourth ACM Symposium on Symbolic and Algebraic Computation, SYMSAC

1981, pp. 212–217, ACM, 1981.

[20] D. Bertsimas and R. Weismantel, Optimization Over Integers. Dynamic Ideas, 2005.

66 The MLHCombSP can be reduced to an ILP Problem

Paper 2

68 Attacks on Integer-RLWE

1 Introduction 69

Attacks on Integer-RLWE

Alessandro Budroni, Benjamin Chetioui and Ermes Franch

Abstract: In 2019, Gu Chunsheng introduced Integer-RLWE, a variant

of RLWE devoid of some of its efficiency flaws. Most notably, he proposes

a setting where one of the security parameters n can be an arbitrary

positive integer, contrarily to the typical construction n = 2k. In this

paper, we analyze the new problem and implement the classical meet-

in-the-middle and lattice-based attacks. We then use the peculiarity of

the construction of n to build an improved lattice-based attack in cases

where n is composite with an odd divisor. For example, for a certain

parameters setting, we reduce the estimated complexity of the attack

from 2288 to 2164. We also present reproducible experiments confirming

our theoretical results.

Keywords: Post-quantum cryptography, Meet-in-the-middle, Lattice-

based attack, I-RLWE.

1 Introduction

In 2006, Regev introduced the Learning With Errors (LWE) [1] problem, one of the most

important candidate trapdoors in post-quantum cryptography today. This problem has

gained the trust of researchers thanks to its simplicity and its connection to lattice theory,

which has been studied for years and provides us with useful security estimates. However,

cryptosystems based on LWE present the disadvantage of having large public key sizes.

In order to overcome this problem, Lyubashevsky, Peikert and Regev introduced Ring-

LWE (RLWE) in 2010 [2], a related problem that allows smaller key sizes and more

efficient encryption and decryption.

Let R = Z[x]/(xn + 1) and let Rq = R/qR, for an integer n > 1 and a prime q. The

Search RLWE problem consists in finding the secret s ∈ Rq given samples of the form

(a, b = as + e) ∈ Rq × Rq, where e ∈ Rq is a “small” polynomial drawn from a certain

distribution. Another variant of the problem is the Decision RLWE, which consists in

distinguishing the pairs (a, b = as+e) ∈ Rq×Rq from pairs drawn uniformly at random

from Rq ×Rq.

However, efficiency varies over different polynomial rings in RLWE and a dedicated

70 Attacks on Integer-RLWE

optimization is required for each one of them. To overcome this inconvenience, Gu

Chunsheng introduced a variant of RLWE named Integer-RLWE (I-RLWE) [3]. In this

new problem the variable x in RLWE is substituted with a prime q and the space of keys

Rq is substituted with Zp, i.e. the set of integers modulo p = qn + 1. The samples are of

the form (a, b = as+ e) ∈ Zp × Zp, where s =
∑n−1

i=0 siq
i and e =

∑n−1
i=0 eiq

i such that si

and ei are “small”.

In his work, Gu also presented a public-key encryption protocol based on I-RLWE.

It is therefore important to analyze this problem and gain a better understanding of the

security it offers.

It is worth mentioning that a similar work has been done by Aggarwal et al. [4],

who introduced an integer-version of the NTRU protocol, and by Beunardeau et al. [5]

and de Boer et al. [6], who cryptanalyzed it. Moreover, a module version of I-RLWE is

used in ThreeBears [7], a candidate protocol in the NIST Post-Quantum Standardization

Process.

1.1 Contribution

In this paper, we analyze the complexity of the I-RLWE problem.

We provide some background and notation in Section 2. In Section 3 we adapt

two standard attacks to this problem, namely a meet-in-the-middle attack [8] and a

lattice-based attack [9]. These two attacks are straightforward to adapt to the problem,

thus providing an upper bound for the acceptable complexity of further attacks with

minimal effort; studying these attacks is a natural choice. We adapt the meet-in-the-

middle attack of Cheon et al. [8] on Decision LWE to Search I-RLWE, and analyze its

complexity. Likewise, we produce a lattice-based attack and follow the analysis of Alkim

et al. [10] to determine its complexity.

In his work [3], Gu introduces a setting in which q = 2t, instead of a prime, and

n can be any positive integer, instead of n = 2k. We exploit this setting to construct

a lattice-based attack, similar to Gentry’s attack on NTRU-composite [11], for cases

where n is neither prime nor a power of two, and q is an arbitrary positive integer. We

show in Section 4 how these weak choices of n affect the estimated security of I-RLWE.

Furthermore, we provide experiments supporting our theoretical estimates in Section 5.

Finally we give our conclusions in Section 6.

2 Preliminaries and Notation 71

2 Preliminaries and Notation

We denote the set of the real, rational and integer numbers with R,Q,Z respectively.

Bold lower case letters represent vectors. For a given vector v, vj represents its j-th

component. For a positive integer p, we write Zp = Z/pZ. Furthermore, the notation

[a]p ∈ {0, ..., p − 1} indicates a mod p and, similarly, [v]p is the vector composed by

the entries of the integer vector v reduced modulo p. The notation ‖v‖ denotes the

Euclidean norm of v. Matrices are denoted with upper case bold M.

Let q be an odd prime and let p = qn+1, for n > 1 integer. Given a ∈ Zp\{p−1}, let

a′ be the integer representative of a in {0, ..., p−2}. We denote with a = (a0, a1, ..., an−1)

the vector of its components in base q. i.e. a′ =
∑n−1

i=0 aiq
i. Similarly, if we represent a 6=

p
2

with the integer a′ ∈
{
−p

2
+ 1, ..., p

2
− 1
}

, then we can uniquely write a′ =
∑n−1

i=0 aiq
i,

with ai ∈
{
− q−1

2
, ..., q−1

2

}
. Hence we will write a = (a0, a1, ..., an−1) ∈

{
− q−1

2
, ..., q−1

2

}n
.

Therefore, through this paper, for every mentioned residue a ∈ Zp, we implicitly refer to

its corresponding vector of components in base q as a. Vice versa, for a given vector of

components a, we implicitly call a the corresponding residue in Zp, as explained above.

We use the symbol ≈B to denote the reflexive and symmetric relation between two

vectors x ≈B y iff ‖x− y‖∞ ≤ B for some positive integer B < q
2
. In a natural way we

can extend this relation to x, y ∈ Zp applying the relation above to the vectors of the

corresponding components in base q.

2.1 Discrete Gaussian Distributions

In the following we write x ∼ D to mean that the random variable x follows the distribu-

tion D. Let ρ0,σ(x) be the probability distribution function of the Gaussian distribution

N(0, σ) with mean 0 and variance σ2. We denote with DZ,σ the discrete Gaussian dis-

tribution on Z with mean 0 and variance σ2 that assigns to each a ∈ Z the probability

ρ0,σ(a)∑
d∈Z ρ0,σ(d)

=
exp(−πa2/2σ2)∑
d∈Z exp(−πd2/2σ2)

.

Given n independent random variables x1, ..., xn ∼ DZ,σ, we assume y =
∑n

i=1 xi follows

the distribution DZ,σ
√
n. This is a common assumption in this field and it comes from

the approximation of the discrete Gaussian distribution with the continuous one. With

the notation v ← DZn,σ we indicate a vector in Zn with entries sampled independently

at random from DZ,σ.

72 Attacks on Integer-RLWE

Furthermore, we denote with UZq the uniform distribution over Zq and, similarly,

v ← UZnq is a vector in Znq with entries sampled independently and uniformly at random

from Zq.

2.2 Lattices

In this subsection we recall some important definitions and notions of lattice theory. For

a more detailed resource on this topic, we refer the reader to [12].

A lattice is a discrete additive subgroup of Rn. Let b1, ..., bm ∈ Rn be a set of

linearly independent vectors. We define the lattice generated by b1, ..., bm as

L(b1, ..., bm) =

{
v ∈ Rn : v =

m∑
i=1

αibi, αi ∈ Z

}
.

A basis is any set of linearly independent vectors that generates the lattice as a Z-module

and the dimension is the number of vectors in a basis. Let B a matrix whose rows form a

basis of L, we then define the volume of L as Vol(L) =
√

det(BBT). Unless differently

specified, we consider full-rank lattices through this paper — that is, the case when

m = n.

Definition 1. Let b1, ..., bn ∈ Rn be a set of linearly independent vectors. We denote

with b∗1, ..., b
∗
n the Gram-Schmidt Orthogonalization of b1, ..., bn defined as follows:

b∗1 = b1, b∗i = bi −
i−1∑
j=1

〈
bi, b

∗
j

〉
‖b∗j‖2

b∗j , for 1 < i ≤ n.

Definition 2. Given a basis of a lattice L and a gap factor α ≥ 1, the unique Shortest

Vector Problem with a gap factor α (uSVPα) is to find (if it exists) the unique non-zero

v ∈ L such that any u ∈ L with ‖u‖ ≤ α‖v‖ is an integral multiple of v.

Estimating the complexity to solve uSVPα is a central problem in lattice-based

cryptography [9]. The following, known as Gaussian Heuristic, gives us an estimate of

the length of the shortest vector in a random lattice.

Heuristic 1. Let L be a full-rank lattice of dimension n and let v ∈ L be a shortest

non-zero vector. Then

‖v‖ ≈
√

n

2πe
· Vol(L)1/n.

3 Standard Attacks 73

2.3 Integer Ring-Learning With Errors

We give here the definitions for the two versions of the Integer-RLWE (I-RLWE) problem

introduced by Gu [3]. Let q, n be two positive integers such that q is prime and q > n3,

and let p = qn + 1.

Definition 3. Let s ← DZn,σ be secret and let s be the corresponding element in Zq.
Given an arbitrary number of samples of the form

(a, b = as+ e mod p) ∈ Zp × Zp, (2.1)

where a ← UZp and e has the vector of components e sampled from DZn,σ, the Search

Integer-RLWE problem is to retrieve the secret s.

Definition 4. Let s ← DZn,σ be secret and let s be the corresponding element in Zq.
The Decision Integer-RLWE problem is to distinguish with non-negligible advantage

between an arbitrary number of samples of the form

(a, b = as+ e mod p) ∈ Zp × Zp, (2.2)

where a← UZp and e has the vector of components e sampled from DZn,σ, and the same

number of samples drawn uniformly at random from Zp × Zp.

In this paper, we address the Search Integer-RLWE problem, referred in the follow-

ing sections as I-RLWE. In Section 3, we will consider n to be a power of 2 and σ =
√
n,

as suggested by Gu [3] in the original definition. However, we will exploit a relaxation

on n claimed in Remark 4.1 of [3] to build a more efficient attack in Section 4.

3 Standard Attacks

3.1 Meet-in-the-Middle attack

A classical meet-in-the-middle (MITM) attack on LWE was previously described [8].

Due to the connection I-RLWE has with LWE, we follow the exact same methodology

to perform our attack. We also draw inspiration from the work of de Boer et al. on the

AJPS Mersenne-Based Cryptosystem [6].

Consider an I-RLWE sample (a, b = as + e mod p). Let v = s mod qn/2 and

74 Attacks on Integer-RLWE

y = s− v. For the MITM approach, we consider the noisy relation

ay ≈B b− av,

defined in Section 2.

Let B a positive integer, which parametrizes the probability of finding the right

secret depending on n. In particular, the probability that a given component of s falls in

the range {−B, . . . , B} is given by PB = P (x ∈ {−B, . . . , B} : x ∼ N(0, σ)). It follows

that the probability of all the components of s and e to fall in the range {−B, . . . , B}
is P 2n

B .

The MITM attack starts by building the table

T =
{

(av, v) : v = (x1,x2),x1 ∈ {−B, . . . , B}n/2,x2 ∈ {0}n/2
}
⊂ Zp × Zp.

The second part of the MITM attack consists in an exhaustive search for y such that

y ∈
{

(y1,y2) : y1 ∈ {0}n/2,y2 ∈ {−B, . . . , B}n/2
}

, and b − ay ∈ Zp is close to av, the

first component of values in T . If such a case occurs for a given y and a given key-value

pair (av, v) ∈ T , then we set s′ = v+ y, and we compute e′ = b− as′ mod p. Finally, if

we have e′ ≈B 0, then s′ is a likely candidate for s.

The difficult component of this attack lies in determining an efficient search algo-

rithm to find an element in T that is close to b− ay mod p, as is the case for the same

attack on LWE.

We achieve this by applying the Noisy Collision Search described by Cheon et al. [8],

with some slight adjustments to fit our problem. As such, the below description is directly

adapted from their approach.

Noisy Collision Search

In order to efficiently split the search space, Cheon et al. propose a locality sensitive

hashing function sgn : Zq → {0, 1} defined as sgn(x) = 1, for x ∈ {0, . . . , q−1
2
}, and 0

otherwise. Consider the set VB = {− q−1
2

+B, . . . ,−B − 1} ∪ {B, . . . , q−1
2
−B}. For any

y and t ∈ Zp such that y ≈B t, if yi ∈ VB, for a given index i, then sgn(yi) = sgn(ti).

To deal with the case when yi /∈ VB, Cheon et al. define a function sgn’ : Zq →

3 Standard Attacks 75

{0, 1,×} that returns sgn(y) if y ∈ VB, and × otherwise. × indicates that the result

may be either a 1 or a 0.

Meet-in-the-Middle Algorithm

Our proposal makes use of two sub-algorithms described in the work of Cheon et al.,

namely Preprocess and Search [8]. We note that in our case, m = n and otherwise

perform slight adjustments so as to fit them to the Search Integer-RLWE. The two

algorithms detailed below are thus nearly taken verbatim from the aforementioned paper,

where the only changes pertain to the content of T and H as well as the accumulation

of the results of Search in a list L. We define sgn(x) (respectively sgn’(x)) to denote the

application of sgn (respectively sgn’) to each of the components of x.

• Preprocess: On input T ⊂ Zp × Zp

1. Initialize an empty hash table H with 2n (empty) lists with indexes in {0, 1}n.

2. For each (t, z) ∈ T ,

– append (t, z) into the list indexed sgn(t).

3. Return non-empty lists H.

• Search: On input a hash table H, a query y ∈ {x | x ∈ Znq } and a distance bound

B,

1. Initialize an empty list L.

2. For each bin ∈ {0, 1}n obtained from sgn’(y) by replacing × by 0 or 1,

– If H has a list indexed by bin, for each (t, z) in the list, check whether

‖y − t‖∞ ≤ B. If so, append z + y to L.

3. Return L.

Since our changes do not modify the core of the algorithms, we rely on the proof of

correctness provided for the original algorithms.

In the same way, we need to adapt the MITM algorithm provided by Cheon et al.

76 Attacks on Integer-RLWE

Pseudocode for this is given by Algorithm 1.

Algorithm 1: Meet-in-the-middle attack for Search I-RLWE

Input: A sample (a, b) ∈ Zp × Zp
(n, q) such that p = qn + 1

a positive integer B

Output: A list R of candidates for s

1 Initialize an empty list R

2 Compute T =
{

(av, v) : v = (x1,x2),x1 ∈ {−B, . . . , B}n/2,x2 ∈ {0}n/2
}

3 Run Preprocess on input T to have a hash table H
4 for y ∈ {x | x ∈ {−B, . . . , B}n/2} do

5 Concatenate the result of Search on input (H, b− ay,B) to R

6 end

7 return R

Since both e and s are sampled from the same distribution, we use the same B for

the construction of T and for the Search step of the attack. The choice of B affects

both the probability of success and the complexity of the MITM algorithm. A higher

accuracy, i.e. larger B, gives a better probability of the attack to succeed, but implies

also a higher complexity.

Success of the Attack

We use the empirical three-sigma rule of the normal distribution, also known as the

68-95-99.7 rule, to determine a good value for B. Take for example n = 256; according

to the construction of I-RLWE, we have σ =
√
n = 16. The empirical three-sigma rule

states that, if we set B = 3σ, PB = P (x ∈ {−B, . . . , B} : x ∼ N(0, σ)) ≈ 0.9973.

In this setting, the probability that ‖(s, e)‖∞ ≤ B (i.e. that the algorithm succeeds)

is about 0.9973512 ≈ 0.25. On the other hand, if we set B = 4σ, then the algorithm will

find the right secret with probability about 0.9999512 ≈ 0.95.

Complexity Analysis

According to the construction of T , we write NT = |T | = (2B + 1)n/2. We assume that

the insertion of an element into a list has complexity O(1). Now, for each element in

T , Preprocess needs to call sgn n times. It follows that the time cost of Preprocess is

NT · n.

3 Standard Attacks 77

Since the size of VB is q−4B, we have that P (yi ∈ VB) = 1−4B/q and P (yi /∈ VB) =

4B/q. The average number of positions with yi not in VB is 4nB/q and the number of

look ups in T is heuristically 24nB/q (cfr. Lemma 2 and 3 of [8]).

Each one of these lookups returns a list of elements. We are interested in counting

the average number of elements contained in one of the lists of H.

Proposition 1. Suppose that for (t, z) ∈ T , t comes from a uniform distribution over

Znq . Then, the average length of a given list in H is NT
2n

.

Search thus finds O(24nB/q · NT
2n

) elements. Finally, it must compute ‖ · ‖∞ for each

of them, which has O(n) cost.

We summarize these results in Table 3.1.

Table 3.1: Time cost for noisy search

Preprocess Search (per query)

NT · n O(24nB/q · NT
2n
· n)

The full MITM algorithm also consists of two phases. We denote by Tpre the time

complexity of the whole preprocessing phase (i.e. the building of T and the call to

Preprocess), and by Tsearch the time complexity of the whole search phase, and give a

cost estimation for them below:

• Tpre consists of NT multiplications in Zp to build T , added to the cost of executing

Preprocess that is NT · n. Hence, Tpre = O(NT).

• Tsearch consists of NT queries to Search, thus Tsearch = O(NT · 24nB/q · NT
2n
· n).

3.2 Lattice-Based Attack

The most successful approach to solve LWE consists of converting this problem into a

lattice problem (e.g. uSVP) and then applying a lattice reduction algorithm that solves

it [13]. This approach also provides us with estimates of the security of LWE against

lattice attacks based on the complexity of such reduction algorithms. Hence, it is natural

to apply a lattice-based attack to I-RLWE.

Consider an I-RLWE sample (a, b = as + e mod p). One wants to define a lattice

that, given a small enough standard deviation σ, contains the target vector v = (s, e, 1)

78 Attacks on Integer-RLWE

as a shortest vector. Next, one applies a reduction algorithm on a basis of such a lattice

in order to find v.

Consider the following lattice:

L =

{
(x,y, u) ∈ Zn × Zn × Z : a

n−1∑
i=0

xiq
i +

n−1∑
j=0

yjq
j − ub ≡ 0 mod p

}
. (3.1)

By definition, we have that v ∈ L. Furthermore, its norm is expected to be ‖v‖ ≈ σ
√

2n

because the entries of s and e are distributed according to DZ,σ. Let us find a basis for

L. Define w(i) as the vector formed by the components in base q of −aqi mod p, for

i = 0, ..., n− 1. We indicate with W the n× n matrix whose i-th row is the w(i) vector.

We also define the matrix:

Q =



q −1 0 . . . 0 0

0 q −1 0 . . . 0
...

.
...

0 . . . 0 q −1 0

0 0 . . . 0 q −1

1 0 . . . 0 0 q


∈ Zn×n.

Based on the above, we define the following matrix:

B =



0

In W
...

0

0

0n×n Q
...

0

0 . . . 0 b0 . . . bn−1 1


∈ Z(2n+1)×(2n+1),

where b =
∑n−1

i=0 biq
i. The rows of B form a basis for L and Vol(L) = | det(B)| = p.

In the unlikely case of −aqi ≡ p − 1 mod p, for some 0 ≤ i ≤ n − 1, the basis

B is not defined. For this situation, one can exploit the fact that q is coprime with p

and use the following general construction to generate a basis for L. Given a lattice

S = {(x0, ..., xm−1) ∈ Zm :
∑m−1

i=0 xici ≡ 0 mod q, ci ∈ Z}, where at least one of the ai

3 Standard Attacks 79

is coprime with p, one can build a basis for S as follows. Assume c0 is coprime with p

and let di ≡ −ci/c0 mod p , for 1 ≤ i ≤ m − 1. A basis for S is given by the rows of

the following matrix



p 0 0 . . . 0

d1 1 0 . . . 0

d2 0 1 . . . 0
...

...
.

...

dm−1 0 0 . . . 1


∈ Zm×m.

This construction gives in general a basis with larger vectors than the ones of B.

Therefore, for the cases when −aqi 6≡ p − 1 mod p for all 0 ≤ i < n, it is preferable to

consider B.

Success Condition and Complexity

The best reduction algorithm known in practice is the Block-Korkine-Zolotarev (BKZ)

algorithm [14]. This algorithm a reduced basis by calling an SVP oracle in a smaller

dimension β a polynomial number of times [15].

By taking the analysis in [10] for the case of LWE as a model, we determine the

success condition as follows. The Geometric Series Assumption [16, 13] states that a

BKZ-reduced basis of a lattice L of dimension d is such that

‖b∗i ‖ = δd−2i−1
β · Vol(L)1/d, where δβ =

(
(πβ)1/β · β

2πe

)1/2(β−1)

.

Furthermore, the BKZ algorithm will detect the unique shortest vector v of the lattice

if its projection π(v) onto Span{b∗d−β+1, ..., b
∗
d} is shorter than the norm of b∗d−β. Let λ

be the norm of the such projected vector. Then, the attack will succeed if

λ ≤ δ2β−d−1
β · Vol(L)1/d.

In our case, we have that d = 2n + 1 and Vol(L) = p ≈ qn. The projection π(v) of our

target vector has expected norm ≈ σ
√
β. We give an heuristic argument for that. Let

B∗ be a matrix whose rows are b∗1, ..., b
∗
d. One can represent v = (x1, ..., xd)B

∗, then

π(v) =
∑

d−β<i≤d xib
∗
i . The norm satisfies

‖π(v)‖2 =
∑

d−β<i≤d

x2
i ‖b∗i ‖2.

80 Attacks on Integer-RLWE

The entries of the vector (x1‖b∗1‖, ..., xd‖b∗d‖) have variance σ, except for the very last

one because b∗1, ..., b
∗
d are orthogonal, and the expectation vector of v is (0, ..., 0, 1). This

implies that the entries of π(v) are distributed according to a shifted DZ,σ, for a small

shift, and ‖π(v)‖ ≈ σ
√
β.

In order to succeed with the attack, one must choose β to be such that

σ
√
β ≤ δ

2(β−n−1)
β q1/2. (3.2)

Since the complexity of BKZ is mostly ruled by the calls to the SVP oracle in di-

mension β, we only take the estimated complexity of this sub-routine into consideration.

In the literature, there are two main directions for SVP oracle implementations: lat-

tice sieving and lattice enumeration. Thanks to recent developments [17, 18, 19], lattice

sieving took an asymptotic advantage over lattice enumeration. For this reason, we will

consider only the estimated complexity provided by lattice sieving, that is ≈ 20.292β on

classical computers. The memory requirements are of the same order of magnitude.

As in the literature for LWE and RLWE, we use the above estimate to determine

the theoretical security of I-RLWE for select parameters.

4 Improved Lattice-Based Attack for Weak Choices

of n

In Remark 4.1 of [3], Gu claims that, for q = 2t, one can choose n to be an arbitrary

positive integer, while the usual choice in RLWE-based schemes is of the form n = 2k,

for some integer k. He justifies this different setting with more efficient encryption and

decryption processes in his protocol. In this subsection we introduce a lattice-based

attack that exploits the fact that n is neither a prime, nor a power of 2.

Consider the following lemma.

Lemma 1. Let n ∈ Z+ such that n = n̂k, for some positive integers n̂ and k, and let q

be a positive integer. Then qn + 1 ≡ 0 mod qn̂ + 1 if and only if k is odd.

Proof. Since n = n̂k, it follows that qn + 1 as (qn̂)k + 1 and qn̂ ≡ −1 mod qn̂ + 1. It

follows that:

qn + 1 ≡ (qn̂)k + 1 ≡ (−1)k + 1 ≡ 0 mod qn̂ + 1⇔ k is odd.

4 Improved Lattice-Based Attack for Weak Choices of n 81

Let n̂ be a divisor of n such that n/n̂ is odd. Then p̂ = qn̂ + 1 divides p = qn + 1.

Let x ∈ Zp \ {p − 1} be such that the components (x0, ..., xn−1) of its representation in

base q follow the distribution DZ,σ, for a small σ with respect to q. Then we have that

x̂ = (x mod p̂) ∈ Zp̂ has the following representation in base q:

x̂ = (x̂0, x̂1, ..., x̂n̂−1) ,

where x̂i =
∑n/n̂−1

j=0 (−1)jxjn̂+i, for i = 0, ..., n̂ − 1. This can be easily seen by applying

the reduction qn̂ ≡ −1 mod p̂ to x = x0 + x1q + x2q
2 + ...+ xn−1q

n−1. The entries of x̂

follow the distribution DZ,σ̂, where σ̂ = σ
√

n/n̂.

Consider an I-RLWE sample (a, b = as+ e mod p) and let â = a mod p̂ and b̂ = b

mod p̂. Thanks to the Chinese Remainder Theorem, we have that

b̂ = âŝ+ ê mod p̂, (4.1)

where ŝ (resp. ê) = s (resp. e) mod p̂. In other words, it is possible to obtain a

new instance of the I-RLWE problem in a smaller dimension n̂ such that we have that

ŝ, ê ∼ DZn̂,σ̂, where σ̂ = σ
√

n/n̂.

The attack introduced in this section can be divided in two steps. First, one per-

formes the lattice attack explained in Subsection 3.2 on the I-RLWE problem (4.1) to

retrieve ŝ and ê. Then, one performs a second lattice reduction to finally retrieve s and

e from a lattice with larger volume.

Consider the following lattice:

L1 =

{
(x,y, u) ∈ Zn̂ × Zn̂ × Z : â

n̂−1∑
i=0

xiq
i +

n̂−1∑
j=0

yjq
j − ub̂ ≡ 0 mod p̂

}
. (4.2)

Analogously to the lattice defined in Subsection 3.2, L1 contains the reduced target

vector v̂ = (ŝ, ê, 1) and its volume is Vol(L1) = p̂ ≈ qn̂. One can apply a lattice

reduction algorithm to find v̂ and so the reduced secret ŝ and error ê. Next, we define

the following lattice:

L2 =

(x,y,u) ∈ Zn × Zn × Z3 :

x− u1ŝ ≡ 0 mod p̂,

y − u2ê ≡ 0 mod p̂,

a
∑n−1

i=0 xiq
i +
∑n−1

j=0 yjq
j − u3b ≡ 0 mod p

 , (4.3)

where u = (u1, u2, u3). This lattice contains the target vector v = (s, e,1), where

82 Attacks on Integer-RLWE

1 = (1, 1, 1), and, as there are more conditions on its vectors, we expect it to have a

larger volume and dimension compared to the lattice defined by (3.1).

The approach we followed to write a basis for L2 varies according to the relations

between GCD(b, p), GCD(ŝ, p̂) and GCD(ê, p̂). For sake of conciseness, we show how to

build a basis for the attacker’s best case scenario, i.e. when GCD(b, p) = GCD(ŝ, p̂) =

GCD(ê, p̂) = 1.

Consider the following matrix:

B2 =



v1 0 y1

In 0n×n
...

...
...

vn 0 yn

0 w1 yn+1

0n×n In
...

...
...

0 wn y2n

0 . . . 0 0 . . . 0 p̂ 0 0

0 . . . 0 0 . . . 0 0 p̂ 0

0 . . . 0 0 . . . 0 0 0 p



∈ Z(2n+3)×(2n+3),

where

vi = qi−1ŝ−1 mod p̂ i = 1, ..., n,

wi = qi−1ê−1 mod p̂ i = 1, ..., n,

yi =

aqi−1b−1 mod p if i = 1, ..., n,

qi−1b−1 mod p if i = n+ 1, ..., 2n.

It is easy to check that B2 is a basis of L2 and Vol(L2) = pp̂2. In general, Vol(L2)

is upper bounded by pp̂2 ≈ qn+2n̂. This bound is reached in the attacker’s best case

scenario.

4.1 Analysis and Success Condition

In order for the attack to be successful, the reduced vector v̂ = (ŝ, ê, 1) must be small

enough to be a shortest vector of L1. The entries of this vector (except the last one that

is set to 1) follow the distribution DZ,σ̂, where σ̂ = σ
√

n/n̂. Therefore, its expected norm

is ≈ σ
√

2n̂+ 1. Using the Gaussian Heuristic, we check whether v̂ is shorter than the

4 Improved Lattice-Based Attack for Weak Choices of n 83

estimated shortest vector in L1:

‖v̂‖ ≈ σ̂
√

2n̂+ 1 = σ

√
n

n̂

√
2n̂+ 1 ≤

√
2n̂+ 1

2πe
· q1/2.

Then, one gets that σ must be such that:

σ ≤
√
q

n̂

2nπe
. (4.4)

In his paper, Gu suggested σ =
√
n and q > n3. In this setting, condition (4.4) is

satisfied.

We give a condition on the block size β1 for the BKZ-β1 reduction algorithm to find

the target vector v̂, using an approach as in Subsection 3.2. For a lattice of dimension

2n̂+ 1 and volume p̂, β1 must be such that:

σ̂
√
β1 ≤ δ

2(β1−n̂−1)
β1

· q
n̂

2n̂+1 .

Similarly, the target vector v will be found through a BKZ-β2 reduction on a basis of L2

if the block size β2 is such that

σ
√
β2 ≤ δ

2(β2−n−2)
β2

· q
n+2n̂
2n+3 ,

where the dimension of the lattice is 2n+ 3 and the volume is Vol(L2) = pp̂2 ≈ qn+2n̂.

In Table 4.1 we show the significant advantage of using this approach over the

standard lattice attack described in Subsection 3.2 for some choices of n and n̂. The

complexity, based on the required cost for performing lattice sieving, drops significantly.

This allows us to conclude that n must not have odd divisors, that is to say n is either

a prime or a power of 2, in line with the setting of RLWE.

84 Attacks on Integer-RLWE

Parameters Standard Lattice Attack Improved Lattice Attack

n n̂ q β Complexity β1 β2 Complexity

2000 400 233 987 288 130 561 164

1500 300 232 713 208 83 396 116

1200 240 231 559 163 < 60 304 89

1000 200 230 463 135 < 60 246 71

Table 4.1: Columns 1, 2 and 3 define the parameters, with σ =
√
n. Columns 4 and

7 contain the minimum block size (β and β2) of the BKZ subroutine required to find

the target vector v respectively from lattice (3.1) and (4.3). Column 6 contains the

minimum block size β1 to find v̂ from reducing a basis of lattice (4.2). The complexities

in column 5 and 8 are expressed in log2 and correspond to the lattice sieving complexity

with parameter respectively β and β2

Remark 1. This attack can be further improved when n has more than one odd divisor

by adding more conditions in the definition of L2.

Remark 2. We remark that these choices of n remain weak for any q and not only in

the setting that Gu proposes.

5 Experiments

In order to confirm our theoretical results, we performed some practical experiments

which we report in this section.

First we generated some I-RLWE samples, then we used the BKZ implementation

contained in the General Sieve Kernel [20], the cutting-edge implementation at the mo-

ment of writing, in order to perform the attacks. Finally we compared the minimum

block size parameter β of the BKZ reduction required to successfully retrieve the secret

and the error for both approaches. For each instance, we empirically chose n̂ among the

possible choices so that the uSVP on the corresponding L1 is the easiest. In particular,

the uSVP on L1 for our parameters choice was solvable using BKZ with β = 1, i.e., with

the LLL algorithm1.

1Note that the LLL algorithm does not guarantee to solve uSVP in general for dimensions > 2.

6 Conclusion 85

In the table below we report the results obtained during our experiments. The I-

RLWE samples that we used in our experiments can be found at

https://archive.org/details/irlwesamples.

Parameters Standard Lattice Attack Improved Lattice Attack

n n̂ q β β1 β2

130 26 222 41 1 2

110 22 221 28 1 2

105 15 221 9 1 2

Table 5.1: Columns 1, 2 and 3 define the parameters, with σ =
√
n. Column 3 report

the minimum block size β that allowed us to retrieve the target vector v through BKZ

reduction on the lattice defined in (3.1). Similarly, columns 4 and 5 report the minimum

block sizes β1 and β2 for lattices (4.2) and (4.3) respectively, so that the attack was

successful. Note that BKZ with β1 = 1 corresponds to LLL.

6 Conclusion

In this work, we adapted a meet-in-the-middle attack and a lattice-based attack from

LWE to I-RLWE. The latter, as in the case of LWE and RLWE, gives us theoretical

estimates regarding the security provided by I-RLWE.

We introduced a new lattice-based attack against I-RLWE when the parameter n

is chosen as a composite number divisible by an odd number. This attack exploits the

weakness on the choice of n to build a new lattice of larger volume, leading to a more

efficient secret and error recovery through lattice reduction. We provided theoretical

estimates of our attack showing how the complexity of solving I-RLWE reduces in this

setting. For example, for n = 2000 the complexity reduces from 2288, estimated with

the standard lattice attack, to 2164. This gap also appears for smaller n as in the case

for n = 1000 where the complexity drops from 2135 to 271. This attack likely applies to

RLWE; however, this was not investigated as the setting considered here is avoided in

the literature of RLWE-based protocols.

To confirm our theoretical results, we run experiments for n up to 130. Our results

shows that a much smaller block-size parameter β is required in the BKZ lattice reduction

86 Attacks on Integer-RLWE

algorithm in order to successfully recover the secret and the error.

We conclude remarking that choices of n as in the aforementioned case must defi-

nitely be avoided in I-RLWE, as is prescribed for RLWE.

Bibliography

[1] O. Regev, “On Lattices, Learning with Errors, Random Linear Codes, and Cryp-

tography,” in Proceedings of the Thirty-seventh Annual ACM Symposium on Theory

of Computing, STOC ’05, pp. 84–93, ACM, 2005.

[2] V. Lyubashevsky, C. Peikert, and O. Regev, “On Ideal Lattices and Learning with

Errors over Rings,” in Advances in Cryptology – EUROCRYPT 2010, vol. 6110 of

LNCS, pp. 1–23, Springer, 2010.

[3] C. Gu, “Integer Version of Ring-LWE and Its Applications,” in Security and Privacy

in Social Networks and Big Data - 5th International Symposium, SocialSec 2019,

Copenhagen, Denmark, vol. 1095 of Communications in Computer and Information

Science, pp. 110–122, Springer, 2019.

[4] D. Aggarwal, A. Joux, A. Prakash, and M. Santha, “A New Public-Key Cryp-

tosystem via Mersenne Numbers,” in Advances in Cryptology – CRYPTO 2018,

vol. 10993 of LNCS, pp. 459–482, Springer, 2018.

[5] M. Beunardeau, A. Connolly, R. Géraud, and D. Naccache, “On the Hardness of

the Mersenne Low Hamming Ratio Assumption,” in Progress in Cryptology – LAT-

INCRYPT 2017, vol. 11368 of LNCS, pp. 166–174, Springer, 2019.

[6] K. de Boer, L. Ducas, S. Jeffery, and R. de Wolf, “Attacks on the AJPS Mersenne-

Based Cryptosystem,” in Post-Quantum Cryptography, vol. 10786 of LNCS, pp. 101–

120, Springer, 2018.

[7] M. Hamburg, “Threebears.” Technical report, National Institute of Standards

and Technology, 2017. https://csrc.nist.gov/Projects/post-quantum-cryptography/

round-2-submissions.

[8] J. H. Cheon, M. Hhan, S. Hong, and Y. Son, “A Hybrid of Dual and Meet-in-

the-Middle Attack on Sparse and Ternary Secret LWE,” in IEEE Access, vol. 7,

pp. 89497–89506, IEEE, 2019.

BIBLIOGRAPHY 87

[9] M. R. Albrecht, R. Fitzpatrick, and F. Göpfert, “On the Efficacy of Solving LWE by

Reduction to Unique-SVP,” in Information Security and Cryptology – ICISC 2013,

vol. 8565 of LNCS, pp. 293–310, Springer, 2014.

[10] E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe, “Post-Quantum Key Ex-

change: A New Hope,” in Proceedings of the 25th USENIX Conference on Security

Symposium, SEC’16, p. 327–343, USENIX, 2016.

[11] C. Gentry, “Key Recovery and Message Attacks on NTRU-Composite,” in Advances

in Cryptology — EUROCRYPT 2001, vol. 2045 of LNCS, pp. 182–194, Springer,

2001.

[12] J. Hoffstein, J. Pipher, and J. H. Silverman, An Introduction to Mathematical Cryp-

tography. Springer Publishing Company, Incorporated, 2nd ed., 2014.

[13] M. Albrecht, F. Göpfert, F. Virdia, and T. Wunderer, “Revisiting the Expected

Cost of Solving uSVP and Applications to LWE,” in Advances in Cryptology -

ASIACRYPT 2017, vol. 10625 of LNCS, pp. 297–322, Springer, 2017.

[14] Y. Chen and P. Q. Nguyen, “BKZ 2.0: Better Lattice Security Estimates,” in

Advances in Cryptology – ASIACRYPT 2011, vol. 7073 of LNCS, pp. 1–20, Springer,

2011.

[15] G. Hanrot, X. Pujol, and D. Stehlé, “Terminating BKZ.” Cryptology ePrint Archive,

Report 2011/198, 2011. https://eprint.iacr.org/2011/198.

[16] Y. Chen, “Lattice Reduction and Concrete Security of Fully Homomorphic Encryp-

tion.” PhD Thesis, l’Université Paris Diderot, 2013. https://archive.org/details/

PhDChen13.

[17] A. Becker, L. Ducas, N. Gama, and T. Laarhoven, “New Directions in Nearest

Neighbor Searching with Applications to Lattice Sieving,” in Proceedings of the

Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA

’16, p. 10–24, SIAM, 2016.

[18] L. Ducas, “Shortest Vector from Lattice Sieving: A Few Dimensions for Free,” in

Advances in Cryptology – EUROCRYPT 2018 (J. B. Nielsen and V. Rijmen, eds.),

vol. 10820 of LNCS, pp. 125–145, Springer, 2018.

[19] T. Laarhoven and A. Mariano, “Progressive Lattice Sieving,” in Post-Quantum

Cryptography, vol. 10786 of LNCS, pp. 292–311, Springer, 2018.

[20] M. R. Albrecht, L. Ducas, G. Herold, E. Kirshanova, E. W. Postlethwaite, and

M. Stevens, “The General Sieve Kernel and New Records in Lattice Reduction,” in

88 Attacks on Integer-RLWE

Advances in Cryptology – EUROCRYPT 2019, vol. 11477 of LNCS, pp. 717–746,

Springer, 2019.

Paper 3

90 Improvements on Making BKW Practical for Solving LWE

1 Introduction 91

Improvements on Making BKW

Practical for Solving LWE

Alessandro Budroni, Qian Guo, Thomas Johansson, Erik M̊artensson
and Paul Stankovski Wagner

Abstract: The Learning with Errors (LWE) problem is one of the main

mathematical foundations of post-quantum cryptography. One of the

main groups of algorithms for solving LWE is the Blum-Kalai-Wasserman

(BKW) algorithm. This paper presents new improvements of BKW-style

algorithms for solving LWE instances. We target minimum concrete com-

plexity and we introduce a new reduction step where we partially reduce

the last position in an iteration and finish the reduction in the next itera-

tion, allowing non-integer step sizes. We also introduce a new procedure

in the secret recovery by mapping the problem to binary problems and

applying the Fast Walsh Hadamard Transform. The complexity of the

resulting algorithm compares favorably to all other previous approaches,

including lattice sieving. We additionally show the steps of implementing

the approach for large LWE problem instances. We provide two imple-

mentations of the algorithm, one RAM-based approach that is optimized

for speed and one file-based approach which overcomes RAM limitations

by using file-based storage

Keywords: BKW, LWE, Lattice-Based Cryptography, FWHT, Post-

Quantum Cryptography.

1 Introduction

Since a large-scale quantum computer easily breaks both the problem of integer factor-

ing and the discrete logarithm problem [1], public-key cryptography needs to be based

on other underlying mathematical problems. In post-quantum cryptography - the re-

search area studying such replacements - lattice-based problems are the most promising

candidates. In the NIST post-quantum standardization competition, 5 out of 7 finalists

and 2 out of 8 alternates are lattice-based [2].

The Learning with Errors problem (LWE) introduced by Regev in [3], is the main

92 Improvements on Making BKW Practical for Solving LWE

problem in lattice-based cryptography. It has a theoretically very interesting average-case

to worst-case reduction to standard lattice-based problems. It has many cryptographic

applications, including but not limited to, design of Fully Homomorphic Encryption

Schemes (FHE). An interesting special case of LWE is the Learning Parity with Noise

problem (LPN), introduced in [4], which has interesting applications in light-weight

cryptography.

Considerable cryptanalytic effort has been spent on algorithms for solving LWE.

These can be divided into three categories: lattice-reduction, algebraic methods and

combinatorial methods. The algebraic methods were introduced by Arora and Ge in [5]

and further considered in [6]. For very small noise these methods perform very well, but

otherwise the approach is inefficient. The methods based on lattice-reduction are cur-

rently the most efficient ones in practise. One way of comparing the different approaches

is through the Darmstadt LWE Challenges [7], where the lattice-based approach called

General Sieve Kernel (G6K) is the currently most successful algorithm in breaking chal-

lenges [8]. The combinatorial algorithms are all based on the Blum-Kalai-Wasserman

(BKW) algorithm, and these will be the focus of this paper.

For surveys on the concrete and asymptotic complexity of solving LWE, see [9] and

[10, 11], respectively. In essence, BKW-style algorithms have a better asymptotic per-

formance than lattice-based approaches for parameter choices with large noise. Unlike

lattice-based approaches, BKW-style algorithms pay a penalty when the number of sam-

ples is limited (like in the Darmstadt challenges and many cryptographic schemes). A

recent example of a scheme allowing for a very large number of LWE samples is found

in [12].

1.1 Related Work

The BKW algorithm was originally developed as the first subexponential algorithm for

solving the LPN problem [13]. In [14] the algorithm was improved, introducing new

concepts like LF2 and the use of the fast Walsh-Hadamard transform (FWHT) for the

distinguishing phase. A new distinguisher using subspace hypothesis testing was intro-

duced in [15, 16].

The BKW algorithm was first applied to the LWE problem in [17]. This idea was

improved in [18], where the idea of Lazy Modulus Switching (LMS) was introduced. The

idea was improved in [19, 20], where [19] introduced so called coded-BKW steps. The

idea of combining coded-BKW or LMS with techniques from lattice sieving [21] lead to

the next improvement [22]. This combined approach was slightly improved in [11, 23].

1 Introduction 93

The distinguishing part of the BKW algorithm for solving LWE was improved by using

the Fast Fourier Transform (FFT) in [24]. One drawback of BKW is its high memory-

usage. To remedy this, time-memory trade-offs for the BKW algorithm were recently

studied in [25, 26, 27]. A recent fast implementation of the BKW algorithm for solving

LPN is in [28].

1.2 Contributions

In this paper we introduce a new BKW-style algorithm including the following.

• A generalized reduction step that we refer to as smooth-LMS, allowing us to use

non-integer step sizes. These steps allow us to use the same time, space and sample

complexity in each reduction step of the algorithm, which improves performance

compared to previous work.

• A binary-oriented method for the guessing phase, transforming the LWE problem

into an LPN problem. While the previous FFT method guesses a few positions of

the secret vector and finds the correct one, this approach instead finds the least

significant bits of a large amount of positions using the FWHT. This method allows

us to correctly distinguish the secret with a larger noise level, generally leading to

an improved performance compared to the FFT based method. In addition, the

FWHT is much faster in implementation.

• Concrete complexity calculations for the proposed algorithm showing the lowest

known complexity for some parameter choices selected as in the Darmstadt LWE

Challenge instances, but with unrestricted number of samples.

• Two implementations of the algorithm that follow two different strategies in

memory-management. One is fast, light, and uses solely RAM-memory. The lat-

ter follows a file-based strategy to overcome the memory limitations imposed by

using only RAM. The file read/write is minimized by implementing the algorithm

in a clever way. Simulation results on solving larger instances are presented and

verifies the previous theoretical arguments.

1.3 Organization

We organize the rest of the paper as follows. We introduce some necessary background

in Section 2. In Section 3 we cover previous work on applying the BKW algorithm to the

94 Improvements on Making BKW Practical for Solving LWE

LWE problem. Then in Section 4 we introduce our new Smooth-LMS reduction method.

Next, in Section 5 we go over our new binary-oriented guessing procedure. Sections 6

and 7 cover the complexity analysis and implementation of our algorithm, respectively.

Section 8 describes our experimental results using the implementation. Finally, the paper

is concluded in Section 9.

2 Background

2.1 Notation

Throughout the paper we use the following notations.

• We write log(·) for the base 2 logarithm.

• In the n-dimensional Euclidean space Rn, by the norm of a vector x =

(x1, x2, . . . , xn) we consider its L2-norm, defined as

‖x‖ =
√
x2

1 + · · ·+ x2
n.

The Euclidean distance between vectors x and y in Rn is defined as ‖x− y‖.

• Elements in Zq are represented by the set of integers in [− q−1
2
, q−1

2
].

• For an [N, k] linear code, N denotes the code length and k denotes the dimension.

2.2 The LWE and LPN Problems

The LWE problem [3] is defined as follows.

Definition 1. Let n be a positive integer, q a prime, and let X be an error distribution

selected as the discrete Gaussian distribution on Zq with variance σ2. Fix s to be a secret

vector in Znq , chosen from some distribution (usually the uniform distribution). Denote

by Ls,X the probability distribution on Znq ×Zq obtained by choosing a ∈ Znq uniformly at

random, choosing an error e ∈ Zq from X and returning

(a, z) = (a, 〈a, s〉+ e)

in Znq ×Zq. The (search) LWE problem is to find the secret vector s given a fixed number

of samples from Ls,X .

2 Background 95

The definition above gives the search LWE problem, as the problem description asks

for the recovery of the secret vector s. Another version is the decision LWE problem, in

which case the problem is to distinguish between samples drawn from Ls,X and a uniform

distribution on Znq × Zq.

Let us also define the LPN problem, which is a binary special case of LWE.

Definition 2. Let k be a positive integer, let x be a secret binary vector of length k and

let X ∼ Berη be a Bernoulli distributed error with parameter η > 0. Let Lx,X denote the

probability distribution on Fk2×F2 obtained by choosing g uniformly at random, choosing

e ∈ F2 from X and returning

(g, z) = (g, 〈g,x〉+ e)

The (search) LPN problem is to find the secret vector x given a fixed number of samples

from Lx,X .

Just like for LWE, we can also, analogously, define decision LPN.

Previously, analysis of algorithms solving the LWE problem have used two different

approaches. One being calculating the number of operations needed to solve a certain

instance for a particular algorithm, and then comparing the different complexity results.

The other being asymptotic analysis. Solvers for the LWE problem with suitable pa-

rameters are expected to have fully exponential complexity, bounded by 2cn as n tends

to infinity, where the value of c depends on the algorithms and the parameters of the

involved distributions. In this paper, we focus on the complexity computed as the num-

ber of arithmetic operations in Zq, for solving particular LWE instances (and we do not

consider the asymptotics).

2.3 Discrete Gaussian Distributions

We define the discrete Gaussian distribution over Z with mean 0 and variance σ2, denoted

DZ,σ as the probability distribution obtained by assigning a probability proportional to

exp(−x2/(2σ2)) to each x ∈ Z. Then, the discrete Gaussian distribution X over Zq
with variance σ2 (also denoted Xσ) can be defined by folding DZ,σ and accumulating the

value of the probability mass function over all integers in each residue class modulo q. It

makes sense to consider the noise level as α, where σ = αq. We also define the rounded

Gaussian distribution on Zq. This distribution samples values by sampling values from

the continuous Gaussian distribution with mean 0 and variance σ2, rounding to the

96 Improvements on Making BKW Practical for Solving LWE

closest integer and then folding the result to the corresponding value in Zq. We denote

it by Ψ̄σ,q.

If two independent X1 and X2 are drawn from Xσ1 and Xσ2 respectively, we make the

heuristic assumption that their sum is drawn from X√
σ2
1+σ2

2
. We make the corresponding

assumption for the rounded Gaussian distribution.

3 A Review of BKW-style Algorithms

3.1 The LWE Problem Reformulated

Assume that m samples

(a1, z1), (a2, z2), . . . , (am, zm),

are collected from the LWE distribution Ls,X , where ai ∈ Znq , zi ∈ Zq. Let z =

(z1, z2, . . . , zm) and y = (y1, y2, . . . , ym) = sA. We have

z = sA + e,

where A =
[
aT

1 aT
2 · · · aT

m

]
, zi = yi + ei = 〈s, ai〉+ ei and ei

$← X . The search LWE

problem is a decoding problem, where A serves as the generator matrix for a linear code

over Zq and z is a received word. Finding the secret vector s is equivalent to finding the

codeword y = sA for which the Euclidean distance ||y − z|| is minimal. In the sequel,

we adopt the notation ai = (ai1, ai2, . . . , ain).

3.2 Transforming the Secret Distribution

A transformation [29, 30] can be applied to ensure that the secret vector follows the

same distribution X as the noise. It is done as follows. We write A in systematic form

via Gaussian elimination. Assume that the first n columns are linearly independent and

form the matrix A0. Define D = A0
−1 and write ŝ = sD−1 − (z1, z2, . . . , zn). Hence,

we can derive an equivalent problem described by Â = (I, âT
n+1, â

T
n+2, · · · , âT

m), where

Â = DA. We compute

ẑ = z− (z1, z2, . . . , zn)Â = (0, ẑn+1, ẑn+2, . . . , ẑm).

Using this transformation, each entry in the secret vector s is now distributed according

to X . The fact that entries in s are small is a very useful property in several of the

3 A Review of BKW-style Algorithms 97

known reduction algorithms for solving LWE.

The noise distribution X is usually chosen as the discrete Gaussian distribution or

the rounded Gaussian Distribution from Section 2.3.

3.3 Sample Amplification

In some versions of the LWE problem, such as the Darmstadt Challenges [7], the number

of available samples is limited. To get more samples, sample amplification can be used.

For example, assume that we have M samples (a1, b1), (a2, b2), ..., (aM , bM). Then we

can form new samples, using an index set I of size k, as(∑
j∈I

±aj,
∑
j∈I

±bj

)
. (3.1)

Given an initial number of samples M we can produce up to 2k−1
(
M
k

)
samples. This

comes at a cost of increasing the noise level (standard deviation) to
√
k · σ. This also

increases the sample dependency.

3.4 Iterating and Guessing

BKW-style algorithms work by combining samples in many steps in such a way that we

reach a system of equations over Zq of the form z = sA+E, where E = (E1, E2, . . . , Em)

and the entries Ei, i = 1, 2, . . . ,m are sums of not too many original noise vectors, say

Ei =
∑2t

j=1 eij , and where t is the number of iterations. The process also reduces the

norm of column vectors in A to be small. Let ni, i = 1, 2, . . . , t denote the number of

reduced positions in step i and let Ni =
∑i

j=1 nj. If n = Nt, then every reduced equation

is of form

zi = 〈ai, s〉+ Ei, (3.2)

for i = 1, 2, . . . ,m. The right hand side can be approximated as a sample drawn from

a discrete Gaussian and if the standard deviation is not too large, then the sequence

of samples z1, z2, . . . can be distinguished from a uniform distribution. We will then

need to determine the number of required samples to distinguish between the uniform

distribution on Zq and Xσ. Relying on standard theory from statistics, using either

previous work [31] or Bleichenbacher’s definition of bias [32], we can find that the required

number of samples is roughly

98 Improvements on Making BKW Practical for Solving LWE

C · e2π
(
σ
√

2π
q

)2

, (3.3)

where C is a small positive constant, whose value was studied in [33]. Initially, an optimal

but exhaustive distinguisher was used [34]. While minimizing the sample complexity,

it was slow and limited the number of positions that could be guessed. This basic

approach was improved in [24], using the FFT. This was in turn a generalization of the

corresponding distinguisher for LPN, which used the FWHT [14]. It was shown in [33]

that the FFT distinguisher matches the sample complexity of the optimal distinguisher.

3.5 Plain BKW

The basic BKW algorithm was originally developed for solving LPN in [13]. It was first

applied to LWE in [17]. The reduction part of this approach means that we reduce a

fixed number b of positions in the column vectors of A to zero in each step. In each

iteration, the dimension of A is decreased by b and after t iterations the dimension has

decreased by bt.

3.6 Coded-BKW and LMS

LMS was introduced in [18] and improved in [20]. Coded-BKW was introduced in [19].

Both methods reduce positions in the columns of A to a small magnitude, but not to

zero, allowing reduction of more positions per step. In LMS this is achieved by mapping

samples to the same category if the ni considered positions give the same result when

integer divided by a suitable parameter p. In coded-BKW this is instead achieved by

mapping samples to the same category if they are close to the same codeword in an

[ni, ki] linear code, for a suitable value ki. Samples mapped to the same category give

rise to new samples by subtracting them. The main idea [20, 19] is that positions in

later iterations do not need to be reduced as much as the first ones, giving different ni

values in different steps.

3.7 LF1, LF2, Unnatural Selection

Each step of the reduction part of the BKW algorithm consists of two parts. First

samples are mapped to categories depending on their position values on the currently

relevant ni positions. Next, pairs of samples within the categories are added/subtracted

to reduce the current ni positions to form a new generation of samples. This can be

4 BKW-style Reduction Using Smooth-LMS 99

done in a couple of different ways.

Originally this was done using what is called LF1. Here we pick a representative

from each category and form new samples by adding/subtracting samples to/from this

sample. This approach makes the final samples independent, but also gradually decreases

the sample size. In [14] the approach called LF2 was introduced. Here we add/subtract

every possible pair within each category to form new samples. This approach requires

only 3 samples within each category to form a new generation of the same size. The

final samples are no longer independent, but experiments have shown that this effect is

negligible.

In [18] unnatural selection was introduced.The idea is to produce more samples

than needed from each category, but only keep the best samples, typically the ones with

minimum norm on the current Ni positions in the columns of A.

3.8 Coded-BKW with Sieving

When using coded-BKW or LMS, the previously reduced Ni−1 positions of the columns

of A increase in magnitude with an average factor
√

2 in each reduction step. This

problem was addressed in [22] by using unnatural selection to only produce samples that

kept the magnitude of the previous Ni−1 positions small. Instead of testing all possible

pairs of samples within the categories, this procedure was sped-up using lattice sieving

techniques of [21]. This approach was slightly improved in [11, 23].

4 BKW-style Reduction Using Smooth-LMS

In this section we introduce a new reduction algorithm solving the problem of having

the same complexity and memory usage in each iteration of a BKW-style reduction.

The novel idea is to use simple LMS to reduce a certain number of positions and then

partially reduce one extra position. This allows for balancing the complexity among the

steps and hence to reduce more positions in total.

4.1 A New BKW-style Step

Assume having a large set of samples written as before in the form z = sA + e mod q.

Assume also that the entries of the secret vector s are drawn from some restricted

100 Improvements on Making BKW Practical for Solving LWE

distribution with small standard deviation (compared to the alphabet size q). If this is

not the case, the transformation from Section 3.2 should be applied. Moreover, in case

the later distinguishing process involves some positions to be guessed or transformed, we

assume that this has been already considered and all positions in our coming description

should be reduced.

The goal of this BKW-type procedure is to make the norms of the column vectors

of A small by adding and subtracting equations together in a number of steps. Having

expressions of the form zi = sai + Ei mod q, if we can reach a case where ||ai|| is not

too large, then sai + Ei can be considered as a random variable drawn from a discrete

Gaussian distribution Xσ. Furthermore, Xσ mod q can be distinguished from a uniform

distribution over Zq if σ is not too large.

Now let us describe the new reduction procedure. Fix the number of reduction

steps to be t. We will also fix a maximum list size to be 2v, meaning that A can have

at most 2v columns. In each iteration i, we are going to reduce some positions to be

upper limited in magnitude by Ci, for i = 1, ..., t. Namely, these positions that are fully

treated in iteration i will only have values in the set {−Ci + 1, . . . , 0, 1, . . . , Ci − 1} of

size 2Ci − 1. We do this by dividing up the q possible values into intervals of length Ci.

We also adopt the notation βi = q/Ci, which describes the number of intervals we divide

up the positions into. We assume that βi > 2.

First step. In the first iteration, assume that we have stored A. We first compute

the required compression starting in iteration 1 by computing C1 (we will explain how

later). We then evaluate how many positions n1 that can be fully reduced by computing

n1 = bv/ log β1c. The position n1 + 1 can be partially reduced to be in an interval of size

C ′1 fulfilling β′1 ·β
n1
1 ·3/2 ≤ 2v, where β′1 = q/C ′1. Now we do an LMS step that ”transfers

between iterations” in the following way.

We run through all the columns of A. For column i, we simply denote it as x =

(x1, x2, . . . , xn) and we compute:

kj =

xj div C1, x1 ≥ 0

−xj div C1, x1 < 0
, for j = 1, . . . , n1,

kn1+1 =

xn1+1 div C ′1, x1 ≥ 0

−xn1+1 div C ′1, x1 < 0
.

The vector Ki = (k1, k2, . . . , kn1+1) is now an index to a sorted list L, storing these

4 BKW-style Reduction Using Smooth-LMS 101

vectors1. Except for the inverting of values if x1 < 0, samples should have the same

index if and only if all position values are the same when integer divided by C1 (C ′1 for

the last position). So we assign L(Ki) = L(Ki)∪{i}. After we have inserted all columns

into the list L, we go to the combining part.

We build a new matrix A in the following way. Run through all indices K and if

|L(K)| ≥ 2 combine every pair of vectors in L(K) by subtracting/adding2 them to form

a new column in the new matrix A. Stop when the number of new columns has reached

2v. For each column in A we have that:

• the absolute value of each position j ∈ {1, . . . , n1} is < C1,

• the absolute value of position n1 + 1 is < C ′1.

Next steps. We now describe all the next iterations, numbered as l = 2, 3, . . . , t.

Iteration l will involve positions from Nl−1 + 1 =
∑l−1

i=1 ni + 1 to Nl + 1. The very first

position has possibly already been partially reduced and its absolute value is < C ′l−1,

so the interval for possible values is of size 2C ′l−1 − 1. Assume that the desired interval

size in iteration l is Cl. In order to achieve the corresponding reduction factor βl, we

split this interval in β′′l = (2C ′l−1 − 1)/Cl subintervals. We then compute how many

positions nl that can be fully reduced by computing nl = b(v − log β′′l)/ log βlc. The

position Nl + 1 can finally be partially reduced to be in an interval of size C ′l fulfilling

β′l · β
nl−1
l β′′l · 3/2 ≤ 2v, where β′l = q/C ′l .

Similar to iteration 1, we run through all the columns of A. For each column

i in the matrix A denoted as x we do the following. For each vector position in

{Nl−1 + 1, . . . , Nl + 1} , we compute (here div means integer division)

kj =

xNl−1+j div Cl, xNl−1+1 ≥ 0

−xNl−1+j div Cl, xNl−1+1 < 0
, for j = 1, . . . , nl,

knl =

xNl+1 div C ′l , xNl−1+1 ≥ 0

−xNl+1 div C ′l , xNl−1+1 < 0
. (4.1)

The vector K = (k1, k2, . . . , knl+1
) is again an index to a sorted list L, keeping track

of columns3. So again we assign L(K) = L(K) ∪ {i}. After we have inserted all column

1The point of inverting all position values if x1 < 0 is to make sure that samples that get reduced when
added should be given the same index. For example (x1, x2, . . . , xn1+1) and (−x1,−x2, . . . ,−xn1+1) are
mapped to the same category.

2Depending on what reduces the sample the most.
3Also here the point of inverting all position values if xNl−1+1 < 0 is to make sure that samples that

get reduced when added should be given the same index. For example (xNl−1+1, xNl−1+2, . . . , xNl+1)

102 Improvements on Making BKW Practical for Solving LWE

indices into the list L, we go to the combining part.

As in the first step, we build a new A as follows. Run through all indices K and if

|L(K)| ≥ 2 combine every pair of vectors by adding/subtracting them to form a column

in the new matrix A. Stop when the number of new columns has reached 2v.

For the last iteration, since Nt is the last row of A, one applies the same step as

above but without reducing the extra position. After t iterations, one gets equations on

the form (3.2), where the ai vectors in A have reduced norm.

4.2 Smooth-Plain BKW

The procedure described above also applies to plain BKW steps. For example, if in

the first iteration one sets C1 = 1 and C ′1 > 1, then each column vector x of A will

be reduced such that x1 = . . . = xn1 = 0 and xn1+1 ∈ {−C ′1 + 1, . . . , C ′1 − 1}. Thus,

one can either continue with another smooth-Plain BKW step by setting also C2 = 1 in

the second iteration, or switch to smooth-LMS. In both cases, we have the advantage of

having xn1 already partially reduced. Using these smooth-Plain steps we can reduce a

couple of extra positions in the plain pre-processing steps of the BKW algorithm.

4.3 How to Choose the Interval Sizes Ci

To achieve as small norm of the vectors as possible, we would like the variance of all

positions to be equally large, after completing all iterations. Assume that a position

x takes values uniformly in the set {−(C − 1)/2, . . . , 0, 1, . . . , (C − 1)/2}, for C > 0.

Thus, we have that Var[x] = (C − 1)(C + 1)/12. Assuming C is somewhat large, we

approximately get Var[x] = C2/12. When subtracting/adding two such values, the

variance increases to 2Var[x] in each iteration. Therefore, a reduced position will have

an expected growth of
√

2. For this reason, we choose a relation for the interval sizes of

the form

Ci = 2−(t−i)/2Ct, i = 1, . . . , t− 1.

This makes the variance of each position roughly the same, after completing all iterations.

In particular, our vectors ||ai|| in A are expected to have norm at most
√
nCt/

√
12, and

Ct is determined according to the final noise allowed in the guessing phase. Ignoring the

pre-processing step with smooth-Plain BKW steps, the maximum dimension n that can

be reduced is then n = Nt =
∑t

i=1 ni.

and (−xNl−1+1,−xNl−1+2, . . . ,−xNl+1) are mapped to the same category.

4 BKW-style Reduction Using Smooth-LMS 103

Example 1. Let q = 1601 and α = 0.005, so σ = αq ≈ 8. Let us compute how

many positions can be reduced using 2v = 228 list entries. The idea is that the variance

of the right hand side in (3.2) should be minimized by making the variance of the two

terms roughly equal. The error part Ei is the sum of 2t initial errors, so its variance is

Var[Ei] = 2tσ2. In order to be able to distinguish the samples according to (3.3), we set

Var[Ei] < q2/2. This will give us the number of iterations possible as 2tσ2 ≈ q2/2 or

2t ≈ 16012/(2 · 82) leading to t = 14. Now we bound the variance of the scalar product

part of (3.2) also to be < q2/2, so nσ2C2
t /12 ≈ q2/2 leading to C2

t ≈ 12q2/(2nσ2) and

C2
t ≈ 12 · 16012/(2n · 82) or Ct ≈ 80 if n < 38. Then one chooses Ct−1 = bCt/

√
2e = 57

and so on.

4.4 Unnatural Selection

We can improve performance by using the unnatural selection discussed in Section 3.7.

Let us make some basic observations. Combining nl positions using interval size C

gives as previously described a value in the set {−(C− 1)/2, . . . , 0, 1, . . . (C− 1)/2}, and

results in Var[x] = (C − 1)(C + 1)/12. Combining two vectors from the same category,

a position value y = x1 + x2, where x1, x2 are as above, results in a value in the interval

{−(C − 1), . . . , 0, 1, . . . (C − 1)} with variance Var[y] = (C − 1)(C + 1)/6. Now observe

that for the resulting reduced positions, smaller values are much more probable than

larger ones.

4.5 On Optimizing Cl Values

The choice of the parameter Cl within a Smooth-LMS step can be optimized in order to

achieve a lower number of category in the next step. For example, consider q = 1601 and

Cl = 250. The number of categories for a single position would be
⌊

q
2Cl+1

⌋
= 3. Clearly,

the same result can be obtained if one chooses Cl = 200. The difference is that with

this second choice of Cl, for the same cost (linear on the number of categories), one gets

more reduced samples at the end of the step. Therefore, a lower number of categories is

required for the next step.

4.6 An Illustration of Smooth Reduction Steps

Figure 3.1 illustrates how the smooth versions of LMS steps and plain BKW reduction

steps outperforms their standard counterparts by partially reducing an extra position in

104 Improvements on Making BKW Practical for Solving LWE

Plain Smooth-plain LMS Smooth LMS

Figure 3.1: An illustration of how the magnitudes of the a vectors change over the
reduction steps for different versions of the BKW algorithm. The heights correspond to
magnitudes and the width corresponds to the number of positions. The figure is taken
from [35].

each step. The figure is from [35]. In [35] Figures 7.1 and 7.3 also illustrate aspects of

BKW reduction algorithms.

5 A Binary Partial Guessing Approach

In this section we propose a new way of reducing the guessing step to a binary version.

This way, we are able to efficiently use the FWHT to guess many entries in a small

number of operations. In Section 6 we do the theoretical analysis and show that this

indeed leads to a more efficient procedure than all previous ones.

5.1 From LWE to LPN

First, we need to introduce a slight modification to the original system of equations

before the reduction part. Assume that we have turned the distribution of s to be the

noise distribution, through the standard transformation described in Section 3.2. The

result after this is written as before

z = sA + e. (5.1)

5 A Binary Partial Guessing Approach 105

Now we perform a multiplication by 2 to each equation, resulting in

z′ = sA′ + 2e,

since when multiplied with a known value, we can compute the result modulo q.

Next, we apply the reduction steps and make the values in A′ as small as possible

by performing BKW-like steps. In our case we apply the smooth-LMS step from the

previous section, but any other reduction method like coded-BKW with sieving would

be possible. If A′ =
[
aT

1 aT
2 · · · aT

m

]
the output of this step is a matrix where the

Euclidean norm of each ai is small. The result is written as

z′′ = sA′′ + 2E, (5.2)

where E = (E1, E2, . . . , Em) and Ei =
∑2t

j=1 eij as before.

Finally, we transform the entire system to the binary case by considering

z′′0 = s0A
′′
0 + e mod 2, (5.3)

where z′′0 is the vector of least significant bits in z′′, s0 the vector of least significant bits

in s, A′′0 = (A′′ mod 2) and e denotes the binary error introduced.

We can now examine the error ej in position j of e. In (5.2) we have equations of

the form zj =
∑

i siaij + 2Ej in Zq, which can be written on integer form as

zj =
∑
i

siaij + 2Ej + kj · q. (5.4)

Now if |
∑

i siaij + 2Ej| < q/2 then kj = 0. In this case (5.4) can be reduced mod

2 without error and ej = 0. In general, the error is computed as ej = kj mod 2. So one

can compute a distribution for ej = kj mod 2 by computing P (kj = x). It is possible to

compute such distribution either making a general approximation or precisely for each

specific position j using the known values aj and zj. Note that the distribution of ej de-

pends on zj. Also note that if aj is reduced to a small norm and the number of steps t

is not too large, then it is quite likely that |
∑

i siaij + 2Ej| < q/2 leading to P (ej = 0)

being large.

For the binary system, we finally need to find the secret value s0. Either

106 Improvements on Making BKW Practical for Solving LWE

1. there are no errors (or almost no errors), corresponding to P (ej = 0) ≈ 1. Then one

can solve for s0 directly using Gaussian elimination (or possibly some information

set decoding algorithm in the case of a few possible errors).

2. or the noise is larger. The binary system of equations corresponds to the situation

of a fast correlation attack [36], or secret recovery in an LPN problem [13]. Thus,

one may apply an FWHT to recover the binary secret values.

5.2 Guessing s0 Using the FWHT

The approach of using the FWHT to find the most likely s0 in the binary system in (5.3)

comes directly from previous literature on Fast Correlation Attacks [37].

Let k denote an n-bit vector (k0, k1, . . . , kn−1) (also considered as an integer) and

consider a sequence Xk, k = 0, 1, . . . , N − 1, N = 2n. It can for example be a sequence

of occurrence values in the time domain, e.g. Xk = the number of occurrences of X = k.

The Walsh-Hadamard Transform is defined as

X̂w =
N−1∑
k=0

Xk · (−1)w·k, (5.5)

where w ·k denotes the bitwise dot product of the binary representation of the n-bit

indices w and k. There exists an efficient method (FWHT) to compute the WHT in

time O(N logN). Given the matrix A′′0, we define Xk =
∑

j∈J(−1)z
′′
j , where J is the set

of all columns of the matrix A′′0 that equal k. Then, one computes maxw |X̂w|, and we

have that s0 corresponds to w̄ such that |X̂w̄| = maxw |X̂w|. In addition, X̂w is simply

the (biased) sum of the noise terms.

Soft Received Information

The bias of X̂w actually depends on the value of z′′j . So a slightly better approach is

to use “soft received information” by defining Xk =
∑

j∈J(−1)z
′′
j · εz′′j , where εz′′j is the

bias corresponding to z′′j . For each x ∈ {−(q − 1)/2, ..., (q − 1)/2}, the bias εx can be

efficiently pre-computed so that its evaluation does not affect the overall complexity of

the guessing procedure.

5 A Binary Partial Guessing Approach 107

Hybrid Guessing

One can use hybrid approach to balance the overall complexity among reduction and

guessing phases. Indeed, it is possible to leave some rows of the matrix A unreduced

and apply an exhaustive search over the corresponding positions in combination with

the previously described guessing step. Since the overall complexity of the algorithm is

additive in reduction and guessing phases, one can use hybrid approach to balance the

overall complexity among the two. Moreover, we remark that this exhaustive search can

easily benefit from parallelization.

Even Selection

When transforming the system to a binary (5.3), we can zero out some positions to

get an easier problem. This can be achieved by ensuring that, when reducing A′, some

specific rows of A′′ are small4 and additionally have even coefficients, making sure to have

enough samples left for the guessing phase. In this way we cancel out the corresponding

entries of s when reducing modulo 2 and get a smaller binary system of equations.

5.3 Retrieving the Original Secret

Once s0 is correctly guessed, it is possible to obtain a new LWE problem instance with

the secret half as big as follows. Write s = 2s′ + s0. Define Â = 2A and ẑ = z − s0A.

Then we have that

ẑ = s′Â + e. (5.6)

The entries of s′ have a bit-size half as large as the entries of s, therefore (5.6) is an

easier problem than (5.1). One can apply the procedure described above to (5.6) and

guess the new binary secret s1, i.e. the least significant bits of s′. The cost of doing

this will be significantly smaller as shorter secret translates to computationally easier

reduction steps. Thus, computationally speaking, the LWE problem can be considered

solved once we manage to guess the least significant bits of s. Given the list of binary

vectors s0, s1, s2, ..., sd, it is easy to retrieve the original secret s.

Generally, if sdi = 0, then si ≥ 0 and (s0i , s1i , ..., sdi) is nothing else than its binary

representation. Conversely, if sdi = 1, then si < 0. To compute its magnitude in this

case, one must look again at (s0i , s1i , ..., sdi) and consider that all negative entries of s

4For a specific entry aj in a vector and the corresponding value sj in the secret, we should have
aj · sj < q.

108 Improvements on Making BKW Practical for Solving LWE

Algorithm 2: BKW-FWHT with smooth reduction (main framework)

1 Input: Matrix A with n rows and m columns, received vector z of length m and
algorithm parameters t1, t2, t3, nlimit, σset
Step 0: Use Gaussian elimination to change the distribution of the secret vector;
Step 1: Use t1 smooth-plain BKW steps to remove the bottom npbkw entries;
Step 2: Use t2 smooth-LMS steps to reduce ncod1 more entries;
Step 3: Perform the multiplying-2 operations;
Step 4: Use t3 smooth-LMS steps to reduce the remaining nt ≤ nlimit entries;
Step 5: Transform all the samples to the binary field and recover the partial secret
key by the FWHT. We can exhaustively guess some positions.

cannot be reduced any further than −1. Namely, if for example sk is negative and at

step j < d is reduced to be −1, then sjk = s(j+1)k
= · · · = sdk = 1.

The following example shows how to retrieve the original secret s once the list of

least significant bits vectors s0, s1, ..., sd has been guessed.

Example 2. Assume that the secret has length n = 10 and that its entries’ distribution

has standard deviation σ = 3. Then, performing the above procedure dlog2 4σe = 4 times,

with high probability we reduced the secret as much as possible. In the following example,

one can note that s3 determines the sign of s. Therefore, the magnitude of si is retrieved

by looking at s0, s1, s2.

s0 :

s1 :

s2 :

s3 :

s :

(1 0 0 0 1 1 0 1 0 0)

(0 0 1 0 0 1 0 1 1 0)

(1 0 0 0 0 1 1 0 1 1)

(1 0 0 0 0 1 0 0 1 1)

(−3 0 2 0 1 −1 4 3 −2 −4)

Note that if one performs one more iteration, the corresponding binary secret s4 will be

the same as s3 because we already reached the maximum reduction of s possible.

6 Analysis of the Algorithm and its Complexity

In this section, we describe in detail the newly-proposed algorithm called BKW-FWHT

with smooth reduction (BKW-FWHT-SR).

6 Analysis of the Algorithm and its Complexity 109

6.1 The Algorithm

The main steps of the new BKW-FWHT-SR algorithm are described in Algorithm 2.

We start by changing the distribution of the secret vector with the secret-noise transfor-

mation [29], if necessary.

The general framework is similar to the coded-BKW with sieving procedure pro-

posed in [22]. In our implementation, we instantiated coded-BKW with sieving steps

with smooth-LMS steps discussed before for the ease of implementation.

The different part of the new algorithm is that after certain reduction steps, we

perform a multiplication by 2 to each reduced sample as described in Section 5. We then

continue reducing the remain positions and perform the mod 2 operations to transform

the entire system to the binary case. Now we obtain a list of LPN samples and solve the

corresponding LPN instance via known techniques such as FWHT or partial guessing.

One high level description is that we aim to input an LWE instance to the LWE-to-

LPN transform developed in Section 5, and solve the instance by using a solver for LPN.

To optimize the performance, we first perform some reduction steps to have a new LWE

instance with reduced dimension but larger noise. We then feed the obtained instance

to the LWE-to-LPN transform.

6.2 The Complexity of Each Step

From now on we assume that the secret is already distributed as the noise distribution

or that the secret-noise transform is performed. We use the LF2 heuristics and assume

the sample size is unchanged before and after each reduction step. We now start with

smooth-plain BKW steps and let lred be the number of positions already reduced.

Smooth-Plain BKW steps.

Given m initial samples, we could on average have b2m
3
c categories5 for one plain BKW

step in the LF2 setting. Instead we could assume for 2b0 categories, and thus the number

of samples m is 1.5 · 2b0 . Let CpBKW be the cost of all smooth-plain BKW steps, whose

initial value is set to be 0. If a step starts with a position never being reduced before,

we can reduce lp positions, where lp =
⌊

b
log2(q)

⌋
. Otherwise, when the first position is

5The number of categories is halved compared with the LF2 setting for LPN. The difference is that
we could add and subtract samples for LWE.

110 Improvements on Making BKW Practical for Solving LWE

partially reduced in the previous step and we need β′ categories to further reduce this

position, we can in total fully reduce lp positions, where lp = 1 +
⌊
b−log2(β′)

log2(q)

⌋
.

For this smooth-plain BKW step, we compute

Cpbkw += ((n+ 1− lred) ·m+ Cd,pbkw),

where Cd,pbkw = m is the cost of modulus switching for the last partially reduced position

in this step. We then update the number of the reduced positions, lred += lp.

After iterating for t1 times, we could compute Cpbkw and lred. We will continue

updating lred and denote npbkw the length reduced by the smooth-plain BKW steps.

Smooth-LMS steps before the multiplication of 2.

We assume that the final noise contribution from each position reduced by LMS is

similar, bounded by a preset value σset. Since the noise variable generated in the i-th

(0 ≤ i ≤ t2−1) Smooth-LMS step will be added by 2t2+t3−i times and also be multiplied

by 2, we compute σ2
set =

2t2+t3−i×4C2
i,LMS1

12
, where Ci,LMS1 is the length of the interval

after the LMS reduction in this step. We use βi,LMS1 categories for one position, where

βi,LMS1 = d q
Ci,LMS1

e. Similar to smooth-plain BKW steps, if this step starts with an new

position, we can reduce lp positions, where lp = b b
log2(βi,LMS1)

c. Otherwise, when the first

position is partially reduced in the previous step and we need β′p,i,LMS1 categories to

further reduce this position, we can in total fully reduce lp positions, where lp = 1 +

b b−log2(β′p,i,LMS1)

log2(βi,LMS1)
c. Let CLMS1 be the cost of Smooth-LMS steps before the multiplication

of 2, which is innitialized to 0. For this step, we compute

CLMS1 += (n+ 1− lred) ·m,

and then update the number of the reduced positions, lred += lp.

After iterating t2 times, we compute CLMS1 and lred. We expect lred = n − nt

(nt ≤ nlimit) positions have been fully reduced and will continue updating lred.

Smooth-LMS steps after the multiplication of 2.

The formulas are similar to those for Smooth-LMS steps before the multiplication of 2.

The difference is that the noise term is no longer multiplied by 2, so we have σ2
set =

2t3−iC2
i,LMS2

12
, for 0 ≤ i ≤ t3 − 1. Also, we need to track the a vector of length nt for the

6 Analysis of the Algorithm and its Complexity 111

later distinguisher. The cost is

CLMS2 = t3 · (nt + 1) ·m.

We also need to count the cost for multiplying samples by 2 and the mod2 operations,

and the LMS decoding cost, which are

CmulMod = 2 · (nt + 1) ·m,

Cdec = (n− npbkw + t2 + t3) ·m.

FWHT distinguisher and partial guessing.

After the LWE-to-LPN transformation, we have an LPN problem with dimension nt and

m instance. We perform partial guessing on nguess positions, and use FWHT to recover

the remaining nFWHT = nt − nguess positions. The cost is,

Cdistin = 2nguess · ((nguess + 1) ·m+ nFWHT · 2nFWHT).

6.3 The Data Complexity

We now discuss the data complexity of the new FWHT distinguisher. In the integer

form, we have the following equation,

zj =
nt−1∑
i=0

siaij + 2Ej + kj · q.

If |
∑
siaij + 2Ej| < q/2 then kj = 0. Then the equation can be reduced mod 2 without

error. In general, the error is ej = kj mod 2.

We employ a smart FWHT distinguisher with soft received information, as described

in Section 5. From [38], we know the sample complexity can be approximated as m ≈
4 ln(2nt)

Ez=t[D(ez=t||Ub)]
.

For different value of zj, the distribution of ej is different. The maximum bias is

112 Improvements on Making BKW Practical for Solving LWE

σf q D(Xσf ,2q||U2q) Ez=t[D(ez=t||Ub)]

0.5q 1601 −2.974149 −2.974995
0.6q 1601 −4.577082 −4.577116
0.7q 1601 −6.442575 −6.442576
0.8q 1601 −8.582783 −8.582783

Table 6.1: The comparison between D(Xσf ,2q||U2q) and Ez=t[D(ez=t||Ub)]

achieved when zj = 0. In this sense, we could compute the divergence as

Ez=t[D(ez=t||Ub)] =
∑
t∈Zq

Pr (z = t)D(ez=t||Ub)

=
∑
t∈Zq

Pr (z = t) (
1∑
i=0

Pr (ez=t = i) log(2 · Pr (ez=t = i)))

where ez is the Bernoulli variable conditioned on the value of z and Ub the uniform

distribution over the binary field.

Following the previous research [17], we approximate the noise
∑
siaij + 2Ej as

discrete Gaussian with standard deviation σf . If σf is large, the probability Pr (z = t)

is very close to 1/q. Then, the expectation Ez=t,t∈Zq [D(ez=t||Ub)] can be approximated

as ∑
t∈Zq

1∑
i=0

Pr (z = t)Pr (ez=t = i) log(2q · Pr (ez=t = i, z = t)),

i.e., the divergence between a discrete Gaussian with the same standard deviation and

a uniform distribution over 2q, D(Xσf ,2q||U2q). We numerically computed that the ap-

proximation is rather accurate when the noise is sufficiently large (see Table 6.1). In

conclusion, we use the formula

m ≈ 4 ln(2nt)

D(Xσf ,2q||U2q)
,

to estimate the data complexity of the new distinguisher. It remains to control the overall

variance σ2
f . Since we assume that the noise contribution from each reduced position by

LMS is the same and the multiplication of 2 will double the standard deviation, we can

derive σ2
f = 4 ∗ 2t1+t2+t3σ2 + σ2σ2

set(n− npbkw).

Note: The final noise is a combination of three parts, the noise from the LWE problem,

the LMS steps before the multiplication by 2, and the LMS steps after the multiplication

by 2. The final partial key recovery problem is equivalent to distinguishing a discrete

7 Implementations 113

Gaussian from uniform with the alphabet size doubled. We see that with the multiplica-

tion by 2, the variances of the first and the second noise parts are increased by a factor

of 4, but the last noise part does not expand. This intuitively explains the gain of the

new binary distinguisher.

6.4 In Summary

We have the following theorem to estimate the complexity of the attack.

Theorem 1. The time complexity of the new algorithm is

C = Cpbkw + CLMS1 + CLMS2 + Cdec + Cdistin + CmulMod,

under the condition that

m ≥ 4 ln(2nt)

D(Xσf ,2q||U2q)
,

where σ2
f = 4 ∗ 2t1+t2+t3σ2 + σ2σ2

set(n− npbkw).

6.5 Numerical Estimation

We numerically estimate the complexity of the new algorithm BKW-FWHT-SR (shown

in Table 6.2). It improves the known approaches when the noise rate (represented by α)

becomes larger. We should note that compared with the previous BKW-type algorithms,

the implementation is much easier though the complexity gain might be mild.

7 Implementations

We produced two different C implementations of the BKW algorithm, as presented in

this manuscript. These mainly differ in memory management. The first one referred to as

RBBL (Ram-Based BKW for LWE), is light, fast, and relies only on RAM usage. How-

ever, this turned out to be a limiting factor for solving hard LWE instances. Therefore,

the second implementation, referred to as FBBL (File-Based BKW for LWE), follows a

design strategy that can be seen as a transition away from such a limiting factor. The

main idea is to use a file-based approach to store the samples, moving the memory con-

straint from RAM to disk capacity. More details are given in the next sections. Both im-

plementations are available as open-source libraries at https://github.com/FBBL. Some

simulation results are presented in Section 8.

114 Improvements on Making BKW Practical for Solving LWE

n q α LWE estimator [9]

BKW- Coded- usvp dec dual

FWHT-
SR

BKW ENU Sieve ENU Sieve ENU Sieve

40 1601 0.005 34.4 42.6 31.4 41.5 34.7 44.6 39.1 47.5
0.010 39.3 43.7 34.0 44.8 36.3 44.9 51.1 57.9
0.015 42.4 52.6 42.5 54.2 43.1 50.6 61.5 64.4
0.020 46.2 52.6 - - 51.9 58.2 73.1 75.9
0.025 48.3 52.7 - - 59.2 66.1 84.7 85.4
0.030 50.0 52.7 - - 67.1 68.9 96.3 92.5

45 2027 0.005 37.7 55.2 31.8 41.9 35.0 44.8 41.5 51.6
0.010 43.5 55.2 39.5 51.2 41.2 48.2 57.0 64.6
0.015 48.3 55.2 50.4 61.3 51.2 58.3 74.3 74.9
0.020 51.2 55.2 - - 61.1 65.0 86.8 86.1
0.025 54.1 55.3 - - 71.0 71.4 100.7 95.0
0.030 56.3 64.1 - - 80.2 78.7 116.2 104.1

50 2503 0.005 41.8 46.4 32.4 42.6 35.5 45.1 46.7 58.0
0.010 48.7 56.0 46.0 57.5 47.6 54.1 66.8 65.4
0.015 52.5 56.8 - - 60.8 63.6 84.9 83.5
0.020 56.4 61.9 - - 72.1 72.1 101.9 96.5
0.025 59.3 66.1 - - 83.5 80.8 120.0 105.7
0.030 63.3 66.3 - - 94.2 89.1 134.0 115.6

70
4903

0.005 58.3 62.3 52.3 54.2 55.2 63.3 76.2 75.9

0.010 67.1 73.7 - - 80.4 77.1 111.3 98.9
0.015 73.3 75.6 - - 102.5 93.2 146.0 118.0

120 14401 0.005 100.1 110.5 133.0 93.2 135.5 111.4 181.9 133.2
0.010 115.1 124.0 - - 195.0 150.4 266.2 165.7
0.015 127.0 136.8 - - 246.4 183.2 334.0 209.8

Table 6.2: Estimated time complexity comparison (in log2(·)) for solving LWE instances
in the TU Darmstadt LWE challenge [7]. Here unlimited number of samples are assumed.
The last columns show the complexity estimation from the LWE estimator [9]. ”ENU”
represents the enumeration cost model is employed and ”Sieve” represents the sieving
cost model is used. Bold-faced numbers are the smallest among the estimations with
these different approaches.

7.1 RAM-based Implementation

Storing samples directly in RAM allows a simple and fast implementation. The pur-

pose of RBBL is to achieve good results in solving relatively small LWE instances and

provide a comparison against the file-based solution FBBL. RBBL supports Smooth-

7 Implementations 115

LMS reduction steps, including Smooth-Plain BKW steps. The FWHT-based guessing

method introduced in Sections 4 and 5 is implemented in both its plain and hybrid

version.

Memory and sample organization

The samples are stored in heap within a single array, allowing for a single (and faster)

memory allocation. For each category, we allocate enough memory to fit a fixed number

of samples. Therefore, if for a certain category the number of new samples exceeds the

category capacity, some samples get discarded.

Parallelization

RBBL supports parallelization using the POSIX Threads utility. Within the steps of the

reduction phase, each thread gets assigned to different sets of categories and performs

independently sums and subtractions of samples. A system of mutexes prevents memory

corruption caused by two or more threads writing to the same category, and therefore

to the same memory cells, at the same time. The guessing phase benefits from paral-

lelization when using the hybrid guesser. All the possible combinations of entries of the

bruteforce positions are equally distributed among the available threads, which perform

an FWHT for each one of them. Finally, one chooses the guess paired with the highest

probability, as explained in Section 5.2.

7.2 File-based Implementation

A file-based implementation is needed when the amount of memory required to store the

samples exceeds the available RAM. FBBL supports most known BKW reduction steps,

FFT and FWHT-based guessing methods, and hybrid guessing approaches. Different

reduction steps can be combined arbitrarily, and the implementation also allows full

recovery of the initial secret, including the initial transform and guessing all parts of the

secret vector (if all intermediate reduction results have been stored and are compatible).

A key success factor in the software design was to avoid unnecessary reliance on RAM,

so we have employed file-based storage where necessary and practically possible. We

describe below how we dealt with some interesting performance issues.

116 Improvements on Making BKW Practical for Solving LWE

File-based Sample Storage

Samples get stored in a file, sorted according to their category. The necessary space

for a fixed number of samples is reserved into the file for each category. Then a storage

writer writes down the samples from RAM to file in the space reserved for their categories

(possibly discarding some samples if they are full or leaving some empty space otherwise).

A category mapping, unique for each reduction type, defines what category index a given

sample belongs to6.

When samples are combined in the reduction step, we can either subtract or add

them together. Subtraction of samples is performed within a single category, while addi-

tion needs to take two samples from adjacent categories. For example, considering how

plain-BKW reduction works for just one position with modulus q, there are q different

categories, one for each position value. Samples in categories a and q − a are adjacent

since they cancel out (at that position) when added together. The category mapping

is constructed so that adjacent categories are stored as neighbors on file, in order to

maintain a sequential access pattern, avoiding the need for random accesses on file.

Consider one BKW reduction step. A reduction step takes a sample file as input

and produces a new sample file as output. The fast dual SSDs of our target machine

are used for efficiency here, reading from the source file, writing to the destination file.

Sample reading is performed sequentially from beginning to end of file. This is very

straightforward, reading a pair of adjacent categories into memory, processing them (the

reduction), and writing the resulting samples to (another) file. Writing samples to the

destination file is much more elaborate, utilizing as much of the RAM as is available as a

buffer, flushing to disk with one sequential write to the destination file. This needs to be

done whenever the buffer fills up, generally, but depending on the problem parameters,

the amount of RAM and disk memory used, requiring multiple flushes.

Optional Sample Amplification

We support optional sample amplification. That is, if a problem instance has a limited

number of initial samples (e.g., the Darmstadt LWE challenge), then it is possible to

combine several of these to produce new samples (more, but with higher noise).

While this is very straightforward in theory, we have noticed considerable perfor-

mance effects when this recombination is performed näıvely. For example, combining

6In this section a category is defined slightly differently from the rest of the paper. A category
together with its adjacent category are together what we simply refer to as a category in the rest of the
paper.

7 Implementations 117

triples of initial samples using a nested loop is problematic in practice for some in-

stances, since some initial samples become over-represented – Some samples are used

more often than others when implemented this way.

We have solved this by using a Linear Feedback Shift Register to efficiently and

pseudo-randomly distribute the selection of initial samples more evenly.

Employing Meta-Categories

For some LWE problem instances, using a very high number of categories with few sam-

ples in each is a good option. This can be problematic to handle in an implementation,

but we have used meta-categories to handle this situation. For example, using plain

BKW reduction steps with modulus q and three positions, we end up with q3 different

categories. With q large, an option is to use only two out of the three position values

in a vector to first map it into one out of q2 different meta-categories. When processing

the (meta-)categories, one then needs an additional pre-processing in form of a sorting

step in order to divide the samples into their respective (non-meta) categories (based on

all three position values), before proceeding as per usual.

We have used this implementation trick to, for example, implement plain BKW

reduction for three positions. One may think of the process as brute-forcing one out of

three positions in the reduction step.

Parallelization

The hybrid FWHT-based guessing method benefits from parallelization similarly to the

hybrid guesser in the RBBL implementation. To every available thread we assign an

equal number of possible guesses for the bruteforced part. Each thread independently

runs an FWHT, and the most likely guess among all threads is chosen as the solution.

Due to our focus on storage-related sample processing, we have not yet parallelized the

BKW steps. This would require more effort compared to the RBBL case since one would

want to parallelize the writing-to-file part too. It is in our future plan to work on it.

7.3 A Novel Idea for Fast Storage Writing

Here we introduce a new approach to handle file-based sample storage, which is particu-

larly efficient for SSDs. That is, we describe a procedure for writing samples to physical

118 Improvements on Making BKW Practical for Solving LWE

storage in an efficient way for large LWE instances with many samples. It is intended to

be used in future implementations.

Intuition

The main idea is to utilize the fact that disk access has much lower time penalty for SSD

disks than for classical mechanical disks. In other words, we make use of the fact that

SSDs act more like random access memory.

On a high level, the idea is to bunch several categories together into a well-chosen

number of meta-categories. This can be done in a very general way, simply by grouping

the category indices into intervals of suitable length (depending on available memory).

We then make a rough sorting into these meta-categories, where we keep the samples un-

sorted (within their respective meta-category). For every such meta-category we utilise

a separate file handle, so we have, say, w different write positions on disk. The gain

here is that we can simply employ the rough sorting and then directly flush each newly

created sample (or batches of them if buffering is employed) into their respective file

by appending. As mentioned, this technique works better for SSD-type disks than me-

chanical ones, because there is a penalty for physically moving the write head for every

append operation. Of course, this can partially be dealt with by buffering the outputs,

but this is a trade-off issue between performance gain of the algorithm itself versus the

performance penalties of moving between the w different write positions, which explains

why the solution is more interesting for SSD storage.

Technical description

Assume we have a table T ram in RAM and a larger table on disk denoted T disk. Then,

one splits the list of size 2v into m = 2v/M different parts, where M is related to the

maximum RAM that can be used. Clearly, one such part matches the maximum RAM

size, i.e., one part contains as many entries as can be contained in RAM.

Define a simple map ϕ(K) = p, where p ∈ {0, 1, . . . ,m−1}. A table T ram in RAM is

created and contains m storage units denoted T ramp , p ∈ {0, 1, . . . ,m−1}. When reading

column i from A, one computes the corresponding index K according to Equation (4.1)

for the column x and then the file part by ϕ(K) = p. The column vector x is then stored

in the storage units T ramp .

Once the table T ram is full, we append the parts to the larger table on disk T disk,

again containing m storage units denoted T diskp , p ∈ {0, 1, . . . ,m− 1}. Store the content

7 Implementations 119

of T ramp in T diskp , appended to previous content, for p = 0, 1 . . . ,m − 1. Therefore, the

table T ram is now empty and ready and start over again and read columns of A.

In the combining step, we read the content of one T diskp to RAM. But because the

content is not fully sorted, we now address the table T ram by the K values instead.

Assume that T ram now is sorted according to K. Step through T ram and for all entries

with the same K value, we create all combinations of differences between these vectors.

Write them to a new A in successive order.

7.4 Other Implementation Aspects

Some more things to consider implementation-wise are the following.

Strict Unnatural Selection

There are advantages to performing very strict unnatural selection in the last reduction

step, drastically reducing the total number of samples. First of all, this allows us to

reduce more positions and/or reduce the positions to a much lower magnitude. Secondly,

having much fewer samples speeds up the FWHT distinguisher, allowing us to brute-force

guess more positions.

We leave investigating the idea of applying aggressive unnatural selection in each

step, in other words coded-BKW with sieving, for future implementation work.

Skipping the All 0s Guess When Using the FWHT Distinguisher

Consider the guess where all the LSBs of the secret are equal to 0. For that guess (5.5)

simplifies to

m−1∑
j=0

(−1)z
′′
j . (7.1)

Since even values of z′′j are more common than odd values, this sum is biased, mean-

ing that the FWHT is much more likely to choose this guess. Since it is exceptionally

unlikely that this guess is the correct one, we can improve the distinguisher by simply

discarding this guess.

120 Improvements on Making BKW Practical for Solving LWE

FWHT Distinguisher When the RAM is a Limitation

Suppose that the FWHT distinguisher is applied on n positions, where the 2n corre-

sponding values are too many to store in RAM. It is possible to do a binary brute-force

search over r of the position values of (5.5) and calculate an FWHT with only n− r bits

for each of the possible 2r bit sequences. This approach reduces the space complexity of

the algorithm from O(2n) to O(2n−r)

The time complexity of the normal FWHT distinguisher, including the cost of pro-

cessing the m samples to calculate the Xk values, is

O(m+ n · 2n). (7.2)

When brute-forcing r positions, we need to iterate over all m samples and calculate

a scalar product of r positions, and calculate an FWHT of n− r bits, for each of the 2r

guesses. This leads to a time complexity of

O(2r(rm+ (n− r) · 2n−r)). (7.3)

On the Minimum Population Size

It turns out that it is possible to use slightly less samples than a worst-case analysis would

imply. The samples after a reduction step are not completely evenly spread out among

the categories. The overproduction of categories with extra samples overcompensates for

the lack of production from categories with few samples. The uneven spread of samples

is due to two factors.

• By design, a small fraction of the categories will get fewer samples on average.

• Even ignoring the first point, the spread will due to randomness not be perfectly

even.

Let us analyze the situation in detail. Assume that we have N categories, M samples

and that the probability of a sample being mapped to category i is pi, where
∑N

i=1 pi = 1.

Let Xi denote the number of samples in category i and Yi = Xi(Xi − 1)/2 denote the

number of samples produces in category i. With this notation the expected new samples

being produced is

8 Experimental Results 121

E

(
N∑
i=1

Yi

)
=

N∑
i=1

E(X2
i)− E(Xi)

2
.

The number of samples in category i are Xi ∼ B(M, pi). Using well-known formulas

for the mean and the variance of the binomial distribution we get

E(X2
i) = V (Xi) + E(Xi)

2 = Mpi(1− pi) +M2p2
i ,

leading to a total expected production of

N∑
i=1

E(X2
i)− E(Xi)

2
=

N∑
i=1

Mp2
i (M − 1)

2
.

Setting the production equal to M and solving for M gives us

M = 1 +
2∑N
i=1 p

2
i

Notice here that further away from uniformly random the pi values are, the smaller

we need M to be. Assuming that all categories have pi = 1/N we get

M = 1 + 2N.

We can thus keep the sample size constant using 2N + 1 samples, gaining a factor

of 2/3 over a worst-case analysis, which assumes that we need 3N samples. Notice that

we gain from this effect even if we use larger values of M than needed and choose the

best samples using unnatural selection.

8 Experimental Results

In this section we report some of the experimental results obtained in solving real LWE

instances with varying parameters. Our main goal was to confirm our theory and to

prove that BKW algorithms can be used in practice to solve relatively large instances.

For the case of FBBL, there is still room to run a more optimized code and possibly

to make more optimal parameter choices. However, the results show that the BKW

122 Improvements on Making BKW Practical for Solving LWE

algorithm is practical and that its performances are on a comparable scale to the ones

from lattice-based approaches.

We considered two different scenarios. In the first case, we assumed for each LWE

instance to have access to an arbitrary large number of samples. Here we create the

desired amount of samples ourselves7. In the second case, we considered instances with

a limited number of samples. An LWE problem is considered solved when the binary

secret is correctly guessed, for reasons explained in Section 5.3.

Target Machine

For our file-based experiments, we assembled a machine, that will be referred as machine

A, to achieve a high speed in file reading/writing. We used an ASUS PRIME X399-A

motherboard, a 4.0GHz Ryzen Threadripper 1950X processor and 128GiB of 2666MHz

DDR4 RAM. For storage we used a separate (slow) SSD Samsung 860 QVO for the

operating system (Windows 10), an Ultrastar HE12 12TB SATA mechanical disk, and

dual (fast) SSDs SAMSUNG 970 EVO Plus 2TiB NVMe M.2 internal. While the machine

is built from standard parts with a limited budget, we have primarily attempted to

maximize the amount of RAM and the size and read/write speeds of the fast SSDs for

overall ability to solve large LWE problem instances.

For the RAM-based experiments, we switched to a machine equipped with a faster

processor. We used a desktop with processor 3.60GHz Intel Core i7-7700 CPU, running

Linux Mint 20 and with 32 GB of RAM. We will refer to this second machine as machine

B.

Unlimited Number of Samples

We targeted the parameter choices of the TU Darmstadt challenges [7]. For each in-

stance, we generated as many initial samples as needed according to our estimations. In

Example 3 we present our parameter choices for one of these. In Table 8.1 we report

the details of the largest solved instances. One can see that RBBL achieves consider-

ably faster results than FBBL, both when comparing them on the same machine B, and

when FBBL runs on machine A. This gives us an idea of how much the results obtained

using FBBL on larger LWE instances could be improved if using RBBL on a machine

with a larger RAM available.

Example 3. Let us consider an LWE instance with n = 40, q = 1601 and σ = 0.005 · q.
To successfully guess the secret, we first performed 8 smooth-plain BKW steps reducing

7we used rounded Gaussian noise for simplicity of implementation.

8 Experimental Results 123

n q α number of initial samples running time library machine cores

40 1601 0.005 16 M 19 s RBBL B 15
40 1601 0.005 16 M 5 min 53 s FBBL B 15
40 1601 0.005 16 M 3 min 57 s FBBL A 15
40 1601 0.010 570 M 1 h 41 min FBBL A 15
40 1601 0.015 4.2 B 1 d 14 h FBBL A 15
45 2027 0.005 250 M 1 h 0 min FBBL A 15
45 2027 0.010 8.3 B 4 d 21.5 h FBBL A 15
50 2503 0.005 2.7 B 1 d 1.5 h FBBL A 15

Table 8.1: Experimental results on target parameters. When using FBBL, parallelization
was used only in the guessing phase, while the reduction phase was executed on a single
core.

17 positions to zero. We used the following parameters.

ni = 2, Ci = 1, for i = 1, . . . , 8,

(C ′1, C
′
2, C

′
3, C

′
4, C

′
5, C

′
6, C

′
7, C

′
8) = (280, 80, 20, 5, 1, 178, 41, 9).

Note that C ′5 = 1. In this way, we exploited the smoothness to zero one additional

position. For this reason, we start step 6 by skipping one position. Finally, we did 5

smooth-LMS steps using the following parameters:

(n9, n10, n11, n12, n13) = (4, 4, 4, 5, 5)

(C9, C10, C11, C12, C13) = (13, 24, 33, 48, 66)

(C ′9, C
′
10, C

′
11, C

′
12, C

′
13) = (267, 534, 321, 48, 66).

These parameters are chosen in such a way that the number of categories8 is ≈ 15M in

the early stages and ≈ 23M at its most. We started with 16M samples that guaranteed

us to end up with enough samples for guessing the right solution. The last position is

brute-forced and therefore left untouched at the last reduction step.

Limited Number of Samples

We solved the original TU Darmstadt LWE challenge instance [7] with parameters n =

40, α = 0.005 and the number of samples limited to m = 1600. We did this by forming

140 million samples using sample amplifying with triples of samples, taking 6 steps of

smooth-plain BKW on 14 entries, followed by 6 steps of smooth-LMS on 25 entries. The

8The number of categories here is the double of what is explained in previous sections since opposite
samples are put in different categories in the implementation.

124 Improvements on Making BKW Practical for Solving LWE

final position was left to brute-force. The overall running time, obtained with FBBL on

machine A, was 55 minutes.

9 Conclusions and Future Work

We introduced a novel and easy approach to implementing a BKW reduction step, which

allows balancing the complexity among the iterations, and an FWHT-based guessing pro-

cedure able to correctly guess the secret with relatively large noise level. Together with

a file-based approach of storing samples, the above define a new BKW algorithm specif-

ically designed to solve practical LWE instances, where the available RAM is typically

a limiting factor.

With an implementation of the file-based algorithm, we managed to solve 6 challenges

with Darmstadt Challenge-type parameters, but with unlimited number of samples, 3

more challenges than in the conference version of the paper [39]. For the 3 previously

solved challenges, we made substantial improvements in runtime. We also managed to

solve the easiest Darmstadt challenge, in its original form.

Furthermore, we implemented a fully RAM-based version of the new algorithm, to com-

pare against the file-based approach, in settings where the available RAM was not a

limiting factor. We leave to future work also experimenting such implementation with

harder LWE instances on machines with larger RAM available. We did parallelize the

FWHT and the RAM-based version of the algorithm, but we leave more parallelization

work and other optimization work for the future.

While we managed to substantially improve the implementation results of the conference

version of the paper [39], we believe that significant improvements to the algorithm can

still be made to reduce the gap compared to lattice-based techniques for solving LWE.

For example, it remains to investigate the concrete improvement of employing the siev-

ing aspect of Coded-BKW with Sieving [22]. Also, the investigation of the specific design

of the BKW algorithm for handling the problem of few initial samples is left for future

work.

Bibliography

[1] P. Shor, “Algorithms for Quantum Computation: Discrete Logarithms and Factor-

ing,” in Proceedings 35th Annual Symposium on Foundations of Computer Science,

pp. 124–134, 1994.

[2] “NIST Post-Quantum Cryptography Standardization.”

BIBLIOGRAPHY 125

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/

Post-Quantum-Cryptography-Standardization. Accessed: 2018-09-24.

[3] O. Regev, “On Lattices, Learning with Errors, Random Linear Codes, and Cryp-

tography,” in Proceedings of the Thirty-seventh Annual ACM Symposium on Theory

of Computing, pp. 84–93, ACM, 2005.

[4] A. Blum, M. Furst, M. Kearns, and R. J. Lipton, “Cryptographic Primitives Based

on Hard Learning Problems,” in Advances in Cryptology — CRYPTO’ 93, vol. 773

of LNCS, pp. 278–291, Springer, 1994.

[5] S. Arora and R. Ge, “New Algorithms for Learning in Presence of Errors,” in Au-

tomata, Languages and Programming, vol. 6755 of LNCS, pp. 403–415, Springer,

2011.

[6] M. R. Albrecht, C. Cid, J. C. Faugère, R. Fitzpatrick, and L. Perret, “Algebraic

Algorithms for LWE Problems,” in ACM Communications in Computer Algebra,

vol. 49, pp. 62–91, ACM, 2015.

[7] “TU Darmstadt Learning with Errors Challenge.” https://www.latticechallenge.

org/lwe challenge/challenge.php. Accessed: 2020-05-01.

[8] M. R. Albrecht, L. Ducas, G. Herold, E. Kirshanova, E. W. Postlethwaite, and

M. Stevens, “The General Sieve Kernel and New Records in Lattice Reduction,” in

Advances in Cryptology – EUROCRYPT 2019, vol. 11477 of LNCS, pp. 717–746,

Springer, 2019.

[9] M. R. Albrecht, R. Player, and S. Scott, “On the Concrete Hardness of Learning

With Errors,” in Journal of Mathematical Cryptology, vol. 9, De Gruyter, 2015.

[10] G. Herold, E. Kirshanova, and A. May, “On the Asymptotic Complexity of Solving

LWE,” Designs, Codes and Cryptography, vol. 86, pp. 55–83, 2018.

[11] Q. Guo, T. Johansson, E. Mårtensson, and P. Stankovski Wagner, “On the Asymp-

totics of Solving the LWE Problem Using Coded-BKW with Sieving,” IEEE Trans-

actions on Information Theory, vol. 65, no. 8, pp. 5243–5259, 2019.

[12] S. Katsumata, K. Kwiatkowski, F. Pintore, and T. Prest, “Scalable Ciphertext Com-

pression Techniques for Post-quantum KEMs and Their Applications,” in Advances

in Cryptology – ASIACRYPT 2020, vol. 12491 of LNCS, pp. 289–320, Springer,

2020.

[13] A. Blum, A. Kalai, and H. Wasserman, “Noise-tolerant learning, the parity problem,

and the statistical query model,” in Proceedings of the Thirty-Second Annual ACM

Symposium on Theory of Computing, pp. 435–440, ACM, 2000.

126 Improvements on Making BKW Practical for Solving LWE

[14] É. Levieil and P.-A. Fouque, “An Improved LPN Algorithm,” in Security and Cryp-

tography for Networks, vol. 4116 of LNCS, pp. 348–359, Springer, 2006.

[15] Q. Guo, T. Johansson, and C. Löndahl, “Solving LPN Using Covering Codes,” in

Advances in Cryptology – ASIACRYPT 2014, vol. 8873 of LNCS, pp. 1–20, Springer,

2014.

[16] Q. Guo, T. Johansson, and C. Löndahl, “Solving LPN Using Covering Codes,”

Journal of Cryptology, vol. 33, no. 1, pp. 1–33, 2020.

[17] M. R. Albrecht, C. Cid, J.-C. Faugère, R. Fitzpatrick, and L. Perret, “On the

Complexity of the BKW Algorithm on LWE,” Design, Codes and Cryptography,

vol. 74, no. 2, pp. 325–354, 2015.

[18] M. R. Albrecht, J.-C. Faugère, R. Fitzpatrick, and L. Perret, “Lazy Modulus Switch-

ing for the BKW Algorithm on LWE,” in Proceedings of the 17th International Con-

ference on Public-Key Cryptography – PKC 2014, vol. 8383 of LNCS, pp. 429–445,

Springer, 2014.

[19] Q. Guo, T. Johansson, and P. Stankovski, “Coded-BKW: Solving LWE Using Lat-

tice Codes,” in Advances in Cryptology – CRYPTO 2015, vol. 9215 of LNCS, pp. 23–

42, Springer, 2015.

[20] P. Kirchner and P. Fouque, “An Improved BKW Algorithm for LWE with Applica-

tions to Cryptography and Lattices,” in Advances in Cryptology – CRYPTO 2015,

vol. 9215 of LNCS, pp. 43–62, Springer, 2015.

[21] A. Becker, L. Ducas, N. Gama, and T. Laarhoven, “New Directions in Nearest

Neighbor Searching with Applications to Lattice Sieving,” in Proceedings of the

Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 10–

24, SIAM, 2016.

[22] Q. Guo, T. Johansson, E. Mårtensson, and P. Stankovski, “Coded-BKW with Siev-

ing,” in Advances in Cryptology – ASIACRYPT 2017, vol. 10624 of LNCS, pp. 323–

346, Springer, 2017.

[23] E. Mårtensson, “The Asymptotic Complexity of Coded-BKW with Sieving Using

Increasing Reduction Factors,” in 2019 IEEE International Symposium on Infor-

mation Theory (ISIT), pp. 2579–2583, IEEE, 2019.

[24] A. Duc, F. Tramèr, and S. Vaudenay, “Better Algorithms for LWE and LWR,” in

Advances in Cryptology – EUROCRYPT 2015, vol. 9056 of LNCS, pp. 173–202,

Springer, 2015.

BIBLIOGRAPHY 127

[25] A. Esser, R. Kübler, and A. May, “LPN Decoded,” in Advances in Cryptology –

CRYPTO 2017, vol. 10402 of LNCS, pp. 486–514, Springer, 2017.

[26] A. Esser, F. Heuer, , R. Kübler, A. May, and C. Sohler, “Dissection-BKW,” in Ad-

vances in Cryptology – CRYPTO 2018, vol. 10992 of LNCS, pp. 638–666, Springer,

2018.

[27] C. Delaplace, A. Esser, and A. May, “Improved Low-Memory Subset Sum and

LPN Algorithms via Multiple Collisions,” in Cryptography and Coding - 17th IMA

International Conference, vol. 11929 of LNCS, pp. 178–199, Springer, 2019.

[28] T. Wiggers and S. Samardjiska, “Practically Solving LPN,” in 2021 IEEE Interna-

tional Symposium on Information Theory (ISIT), IEEE, 2021.

[29] B. Applebaum, D. Cash, C. Peikert, and A. Sahai, “Fast Cryptographic Primitives

and Circular-Secure Encryption Based on Hard Learning Problems,” in Advances

in Cryptology - CRYPTO 2009, vol. 5677 of LNCS, pp. 595–618, Springer, 2009.

[30] P. Kirchner, “Improved Generalized Birthday Attack.” Cryptology ePrint Archive,

Report 2011/377, 2011. https://ia.cr/2011/377.

[31] R. Lindner and C. Peikert, “Better Key Sizes (and Attacks) for LWE-Based Encryp-

tion,” in Topics in Cryptology – CT-RSA 2011, vol. 6558 of LNCS, pp. 319–339,

Springer, 2011.

[32] E. D. Mulder, M. Hutter, M. E. Marson, and P. Pearson, “Using Bleichenbacher’s

Solution to the Hidden Number Problem to Attack Nonce Leaks in 384-bit ECDSA:

Extended Version,” Journal of Cryptographic Engineering, vol. 4, no. 1, pp. 33–45,

2014.

[33] Q. Guo, E. Mårtensson, and P. Stankovski Wagner, “On the Sample Complexity

of solving LWE using BKW-Style Algorithms,” in 2021 IEEE International Sym-

posium on Information Theory (ISIT), IEEE, 2021.

[34] T. Baignères, P. Junod, and S. Vaudenay, “How Far Can We Go Beyond Linear

Cryptanalysis?,” in Advances in Cryptology - ASIACRYPT 2004, vol. 3329 of LNCS,

pp. 432–450, Springer, 2004.

[35] E. Mårtensson, Some Notes on Post-Quantum Cryptanalysis. PhD thesis, Lund Uni-

versity, 2020. https://lup.lub.lu.se/search/files/88158602/thesis main document.

pdf.

[36] W. Meier and O. Staffelbach, “Fast Correlation Attacks on Certain Stream Ciphers,”

Journal of Cryptology, vol. 1, pp. 159–176, 1989.

128 Improvements on Making BKW Practical for Solving LWE

[37] P. Chose, A. Joux, and M. Mitton, “Fast Correlation Attacks: An Algorithmic Point

of View,” in Advances in Cryptology — EUROCRYPT 2002, vol. 9215 of LNCS,

pp. 209–221, Springer, 2002.

[38] Y. Lu, W. Meier, and S. Vaudenay, “The Conditional Correlation Attack: A Practi-

cal Attack on Bluetooth Encryption,” in Advances in Cryptology – CRYPTO 2005,

pp. 97–117, Springer, 2005.

[39] A. Budroni, Q. Guo, T. Johansson, E. Mårtensson, and P. Stankovski Wagner,

“Making the BKW Algorithm Practical for LWE,” in Progress in Cryptology –

INDOCRYPT 2020, vol. 12578 of LNCS, pp. 417–439, Springer, 2020.

Paper 4

130 Efficient Hash Maps to G2 on BLS curves

1 Introduction 131

Efficient Hash Maps to G2 on BLS

curves

Alessandro Budroni and Federico Pintore

Abstract: When a pairing e : G1 × G2 → GT , on an elliptic curve

E defined over a finite field Fq, is exploited for an identity-based pro-

tocol, there is often the need to hash binary strings into G1 and G2.

Traditionally, G1 = E(Fq) ∩ E[r], where r is a prime integer, and

G2 = Ẽ(Fqk/d) ∩ Ẽ[r], where Ẽ is a twist of E of order d, and k is

the embedding degree of E w.r.t. r. The standard approach for hash-

ing into G2 is to map to a general point P ∈ Ẽ(Fqk/d) and then multiply

it by the cofactor c = #Ẽ(Fqk/d)/r. Usually, the multiplication by c is

computationally expensive. In order to speed up such a computation,

two different methods - by Scott et al. [1] and by Fuentes et al. [2] -

have been proposed. In this paper we consider these two methods for

BLS pairing-friendly curves having k ∈ {12, 24, 30, 42, 48}, providing ef-

ficiency comparisons. When k = 42, 48, the application of Fuentes et

al. method requires expensive computations which were infeasible for

the computational power at our disposal. For these cases, we propose

hashing maps that we obtained following Fuentes et al. idea.

Keywords: Pairing-based Cryptography, Pairing-friendly Elliptic

Curves, Fast Hashing.

1 Introduction

1.1 Pairings in Cryptography

Pairings on elliptic curves have been first used in Cryptography to transport elliptic

curve discrete logarithms into finite field discrete logarithms ([3], [4]), for which there

are index-calculus algorithms running in subexponential time. In recent years, several

protocols have been proposed with pairings on elliptic curves as building blocks. Among

them, it is possible to enumerate Joux’s three party key agreement protocol [5], a non-

interactive key-exchange [6], an identity-based encryption [7], and a short signatures

scheme [8].

132 Efficient Hash Maps to G2 on BLS curves

Traditionally, pairings that have been considered for applications are the Tate and

Weil pairings on elliptic curves over finite fields, and other related pairings, for example

the Eta pairing [9], the Ate pairing [10], and their generalisations [11]. Let Fq be a finite

field with characteristic p 6= 2, 3 and order q = pm, for some m > 0. For an elliptic curve

E defined over Fq, all these pairings take as inputs points on E(Fq) or on E(Fqk) - where

Fqk is an extension field of the base field Fq - and return as outputs elements of (Fqk)∗.

In this paper we will only consider asymmetric pairings e. In particular, given a

prime r such that r||#E(Fq) (i.e. r|#E(Fq) but r2 - #E(Fq)), then e will be of the form:

e : G1 ×G2 → GT

where G1 and G2 are elliptic curve subgroups of order r defined as:

• G1 = E(Fq) ∩ E[r],

• G2 = E[r]∩ker(π− [q]), where π is the Frobenius endomorphism and [q] : E(Fq)→
E(Fq) maps P 7→ qP ,

while GT is a subgroup of order r of (Fqk)∗. With k is denoted the embedding degree

of E with respect to r, i.e. the smallest positive integer such that r | qk − 1. Such G2

always exists as the Frobenius endomorphism on E[r] has eigenvalues 1 and q.

For pairing-based cryptosystems to be secure, the discrete logarithm problem on

both E(Fq) and (Fqk)∗ must be computationally infeasible. The elliptic curves satisfying

this condition, for a relatively small embedding degree k, are called pairing-friendly

elliptic curves. The first formal definition of pairing-friendly elliptic curves has been

formulated by Freeman et al. in their comprehensive paper [12].

1.2 Families of pairing-friendly elliptic curves

The works of Balasubramanian and Koblitz [13] and Luca et al. [14] show that pairing-

friendly elliptic curves are rare, and hence they require dedicated constructions. In recent

years a number of methods for constructing such curves have been proposed [15], [16],

[17], [18], [19], [20]. The general pattern is the same for all of them: given an embedding

degree k, find three integers n, r, q for which there exists an elliptic curve E defined over

Fq and such that

• #E(Fq) = n,

1 Introduction 133

• r ≥ √q is a prime factor of n,

• k is the embedding degree of E w.r.t. r.

Then the complex multiplication (CM) method [21] is used to determine the equation of

the above elliptic curve E.

However, instead of producing single pairing-friendly elliptic curves by means of spe-

cific integers k, n, r, q, all the cited methods produce families of pairing-friendly elliptic

curves. In particular, the integers n, r, q are replaced by suitable polynomials n(x), r(x),

q(x) ∈ Q[x]. For some appropriate x0 ∈ Z, n(x0), r(x0), q(x0) are integers such that

there exists an elliptic curve E defined over Fq(x0), having n(x0) rational points, with

prime r(x0)||n(x0), and k as embedding degree w.r.t. r(x0). The triple (n(x), r(x), q(x))

defines a family of pairing-friendly elliptic curves, each of them parametrised by the in-

tegers n(x0), r(x0), q(x0) for some x0 ∈ Z. If for every x0 ∈ Z there exists an elliptic

curve with n(x0), r(x0), q(x0) as parameters, the family defined by (n(x), r(x), q(x)) is

said to be complete, otherwise it is called sparse.

The paring-friendly (sparse or complete) families of curves obtained with the meth-

ods enumerated above are known as MNT curves [15], BLS curves [16], [17], BN curves

[18], Freeman curves [19] and KSS curves [20], respectively.

1.3 Hashing to G2

When pairings on elliptic curves are used for identity-based protocols, there is often a

need to map binary strings representing the identity of the parties into random points

of G1 and G2. These tasks are known as hashing to G1 and hashing to G2 respectively.

Hashing to G1 is relatively easy. In fact, since G1 is the unique subgroup of order

r in E(Fq) (thanks to the assumption r||#E(Fq)), the standard approach is to hash

to a point P ∈ E(Fq) and then multiply it by the cofactor c = #E(Fq)/r. On the

other hand, if E admits a twist1 Ẽ of degree d that divides k, then G2 is isomorphic

to Ẽ(Fqk/d) ∩ Ẽ[r].Consequently the same approach can be used for hashing into G2.

Nevertheless, the latter requires a multiplication by a large cofactor and hence expensive

computations.

We note that the intermediate step of hashing into a general rational point should be

handled carefully for efficiency and security reasons. In particular, some cryptosystems

are proved to be secure when such an intermediate hash function is modelled as a random

1an elliptic curve isomorphic to E over an extension field of Fq.

134 Efficient Hash Maps to G2 on BLS curves

oracle into the curve. In order to guarantee its secure replacement with the random

oracle, the concept of indifferentiable hash function has been introduced [22].

1.4 Related Work

In 2009, Scott et al. [1] exploited an efficiently-computable endomorphism ψ : Ẽ → Ẽ to

reduce the computational cost of the cofactor multiplication required for hashing to G2.

An improvement of this method was then proposed by Fuentes et al. in 2011 [2]. Since

pairing-friendly families vary significantly, in order to highlight the benefits of the two

methods, families of curves were considered case-by-case in [1] and in [2]. In particular,

both papers focus on BN curves with k = 12, Freeman curves with k = 10 and KSS

curves with k = 8, 18. However, new advances on the Number Field Sieve (NFS) ([23],

[24], [25]) for computing discrete logarithms in multiplicative groups of finite fields, and

hence in GT , have decreased the security of some asymmetric parings, including those

built on BN curves [26], [27]. In the light of these results, BLS curves are attracting

more interest for efficiency reasons, since their security has been only slightly reduced

by recent NFS advances [26], [27].

Scott et al. and Fuentes et al. methods are the only two proposed so far that

improve upon standard cofactor multiplication for hashing to G2. However, to the best

of our knowledge, there are not published sources explicitly applying both Scott et al.

and Fuentes et al. methods to BLS curves with k ∈ {12, 24, 30, 42, 48}, and providing

efficiency comparison of the outcomes.

1.5 Contributions and Outline

In this paper that gap is filled for BLS curves with k = 12, 24, 30. We provide a compar-

ison on the efficiency of the two methods. In a recently-published book [28], it is stated

that, for BLS curves with k = 12, 24, the most efficient method for mapping into G2 is

the one proposed by Scott et al. This is opposite to our results.

Both methods require a pre-computation to obtain parameterised hashing formulas

valid for all the curves that belong to a specific family of pairing-friendly curves. In

particular, Scott et al. method needs polynomial modular arithmetic, while Fuentes et

al. method requires the application of a generalized LLL algorithm to a polynomial

matrix. In this paper, we first applied Scott et al. method to BLS curves with k ∈
{12, 24, 30, 42, 48}. Then we explicitly applied Fuentes et al. method to BLS curves

with k ∈ {12, 24, 30}. However, running LLL for the other two remaining cases revealed

2 Known methods for efficiently mapping into G2 135

to be infeasible for our resources. Nevertheless, for k ∈ {42, 48}, we propose suitable

hash maps which allow to speed up the execution of cofactor multiplications with respect

to Scott et al. method.

Our efficiency conclusions are that hashing on BLS curves following Fuentes et al.

method is faster than applying Scott et al. method, for every k ∈ {12, 24, 30, 42, 48}.

The remainder of this paper is organized as follows. In Section 2 we recall Scott

et al. and Fuentes et al. methods. For the sake of easy reference, in Subsection 2.1 we

summarise BLS curves’ parameters. In Section 3, the Scott et al. method is applied to

BLS curves with embedding degree k ∈ {12, 24, 30, 42, 48}. In Section 4, Fuentes et al.

method is applied to BLS curves with k ∈ {12, 24, 30}. In Section 5, we exploit some

patterns in the maps computed with Fuentes et al. method to retrieve hash maps for

BLS curves with k = 42, 48 which are more efficient than the ones presented in Section

3. Finally, an efficiency comparison of the maps for BLS curves is provided in Section 6.

2 Known methods for efficiently mapping into G2

The problem of generating random points in G2, known as hashing to G2, is usually

solved selecting a random point P ∈ Ẽ(Fqk/d) and then computing [c]P , where c is the

cofactor defined as c = #Ẽ(Fqk/d)/r. Due to the size of c, this scalar multiplication is

generally expensive and consequently a bottleneck in hashing to G2.

In [29], Gallant, Lambert and Vanstone give a method to speed up scalar multi-

plications [w]P in E(Fq)[r]. This method is based on the knowledge of a non-trivial

multiple of the point P , that is obtained from an efficiently computable endomorphism

ω : E → E such that ω(P) is a multiple of P .

2.1 Scott et al. method

Building on the above idea, Galbraith and Scott [30, Section 8] reduced the computa-

tional cost of multiplying by the cofactor c for BN curves by using a suitable group

endomorphism ψ : Ẽ → Ẽ. This method was later improved and generalized by Scott et

al. [1]. Such an endomorphism is defined as ψ = ϕ−1◦π◦ϕ, where π is the q-power Frobe-

nius on E and ϕ is an isomorphism from the twist curve Ẽ to E. The endomorphism ψ

satisfies

ψ2(P)− [t]ψ(P) + [p]P =∞ (2.1)

136 Efficient Hash Maps to G2 on BLS curves

for all P ∈ Ẽ(Fp2). In the above relation, t is the trace of Frobenius p + 1 − #E(Fp).
Given that the cofactor of G2 for BN curves is c = p− 1 + t, with a simple substitution,

one gets

[c]P = [p− 1 + t]P = [t](π(P) + P)− π2(P)− P.

This gives us a speed up as t is about half the size of c, yielding to a less expensive scalar

multiplication. The generalization of the method introduced by Scott et al. works as

follows. Express first the cofactor c to the base p as

c = c0 + c1p+ · · ·+ c`p
`. (2.2)

Then use (2.1) to simplify the multiplication [c]P as

[c]P = [c0 + c1p+ · · ·+ c`p
`]P = [g0]P + [g1]ψ(P) + · · ·+ [g2`]ψ

2`(P) (2.3)

for some | gi | < p for every i.

This approach was applied to several families of pairing-friendly curves. In partic-

ular, the curves taken into account in [1] are: the MNT curves for the case k = 6, the

BN curves with k = 12, the Freeman curves with k = 10 and the KSS curves for the

cases k = 8 and k = 18. It is important to highlight that all these families are composed

by curves defined over a prime field Fp, with p, the order r and the trace t expressed

as polynomials having rational coefficients. Consequently, also the cofactor c can be de-

scribed as a polynomial in Q[x]. Thanks to such a parameterisation, Scott et al. speed

up the cofactor multiplication [c]P reducing it to the evaluation of a polynomial of the

powers ψi(P), with coefficients that are polynomials in x. Such coefficients are obtained

by means of polynomial modular arithmetic. In particular, all these coefficients have de-

grees smaller than deg(p(x)) (for the same reason, numerical coefficients gi are bounded

by q).

2.2 Fuentes et al. method

Fuentes et al. [2] improved Scott et al. method observing that, in order to obtain a

non-zero multiple of P ∈ Ẽ(Fqk/d) having order r, it is sufficient to multiply P by c′, a

multiple of c such that c′ 6≡ 0 (mod r). In particular they proved the following result

(see [2], page 11):

Theorem 1. If Ẽ(Fqk/d) is cyclic and q ≡ 1 (mod d), then there exists a polynomial

h(z) = h0 + h1z + · · ·+ hϕ(k)−1z
ϕ(k)−1 ∈ Z[z] (2.4)

2 Known methods for efficiently mapping into G2 137

such that:

• h(ψ)P is a multiple of [c]P for all P ∈ Ẽ(Fqk/d);

• the coefficients of h(z) satisfy | hi |ϕ(k)≤ c for all i.

We note that here ϕ stands for the Euler’s totient function, while ψ is the efficiently

computable endomorphism satisfying (2.1).

The first condition about h(z) gives a tool for computing a multiple of [c]P as the

sum of some scalar multiplications. These multiplications are computationally light since

their scalar factors are bounded thanks to the second condition satisfied by h(z).

The proof of Thereom 1 is by construction, exploiting the LLL algorithm of Lenstra,

Lenstra and Lovász [31]. For the sake of easy reference we sketch the proof. We refer

the reader to [28, Sec. 8.5] and [2, Sec. 5] for more details.

Let q = pk/d and let t̂ be the trace of the q−power Frobenius of E. This can be

computed from t using the recursive formula t0 = 2, t1 = t, and ti+1 = t · ti− p · ti−1 [32].

Then, we set t̂ = tk/d. We have that #Ẽ(Fq) = q + 1 + t̂ (see [10]), and let f̂ be such

that t̂2 − 4q = Df̂ 2, where D is square-free.

The trace t̃ of the q-power of Ẽ over Fq, for d = 2, 3, 4, 6 can be computed using the

formulas given by Hess et al. [10]. For the case of our interest d = 6, t̃ is equal to

(±3f̂ + t̂)/2.

Let ñ denote the cardinality #Ẽ(Fq) = q + 1 + t̃, and let f̃ be the integer such that

t̃2−4q = Df̃ 2. Analogously, we denote with f the integer for which t2−4p = Df 2 holds.

First of all, it is observed ([2, Lemma 2]) that if gcd(ñ, f̃) = 1, then, for every point

P ∈ Ẽ(Fq), one has that ψ(P) = [a]P , where:

a =
t

2
+
f(t̃− 2)

2f̃
mod ñ or a =

t

2
− f(t̃− 2)

2f̃
mod ñ, (2.5)

and therefore h(ψ)P = [h(a)]P . Then, the relation

ψk|Ẽ(Fq) = idẼ(Fq),

where ψ|Ẽ(Fq) denotes a restriction of ψ on Ẽ(Fq), is obtained. Hence Φk(a) ≡ 0 (mod ñ),

where Φk is the k-th cyclotomic polynomial (which has degree equal to ϕ(k)). This allows

to restrict the search of h(z) into the set of all polynomials of Z[z] of degree less than

ϕ(k). Let a denote the column vector with i-entry −ai. Consider the vectors of the

138 Efficient Hash Maps to G2 on BLS curves

integer lattice generated by the matrix

M =

[
c 0

a Iϕ(k)−1

]
.

This lattice is of dimension ϕ(k) and volume c. Any vector (h0, h1, ..., hϕ(k)−1) of the

lattice results in a polynomial h(z) = h0 + h1z + ... + hϕ(k)−1z
ϕ(k)−1 ∈ Z[z] such that

h(a) ≡ 0 (mod c). Finally, it is observed that the considered lattice and the convex

set generated by all vectors of the form (± | c |1/ϕ(k), . . . ,± | c |1/ϕ(k)) have non-empty

intersection. Such an element lying in this intersection could be obtained using the LLL

algorithm2 [31] and determines the coefficients of a polynomial h(z) ∈ Z[z] with the

desired properties.

In [2], such a polynomial is obtained for the BN curves with k = 12, the Freeman

curves with k = 10, the KSS curves for the cases k = 8 and k = 18. As already observed,

these families are composed by curves defined over a prime field Fp, with p, q, r, t, f ,

t̂, f̂ , t̃, f̃ and ñ expressed as polynomials with rational coefficients. For example, for an

elliptic curve E with complex multiplication, one computes the polynomials f(x) and

f̃(x) such that t2(x)− 4p(x) = Df 2(x) and t̃2(x)− 4q(x) = Df̃ 2(x), where D is a square

free integer. Consequently, using the same formulas as above, but using polynomials at

the place of scalars (r(x) instead of r, and so on), also the cofactor c can be described as

a polynomials c(x) ∈ Q[x], and one obtains a parametrization of a in (2.5) by a rational

function

a(x) =
t(x)

2
± f(x)(t̃(x)− 2)

2f̃(x)
mod ñ(x). (2.6)

The matrix M for the parameterised c and a is

M =

[
c(x) 0

a(x) Iϕ(k)−1

]
,

where a(x) is the column vector with i-entry−ai(x) (mod c(x)), and it generates a lattice

in Q[x]ϕ(k). The algorithm in [33], takes M as input and returns a matrix M ′ having as

rows a reduced basis for the lattice generated by M . Considering the polynomials that

compose a row of M ′ as coefficients of 1, z, z2, . . . , zϕ(k)−1 respectively, Fuentes et al.

were able to obtain a polynomial h(z) =
∑

i hi(x)zi ∈ Z[x][z] which satisfy the following

two conditions:

(CI) h(a(x)) ≡ s(x)c(x) (mod ñ(x)), with gcd(s(x), r(x)) = 1, for some s(x) ∈ Q[x];

2Not that this holds only for relatively small k

2 Known methods for efficiently mapping into G2 139

(CII) deg(hi(x)) ≤ deg(c(x))/ϕ(k), where ϕ is the Euler’s totient function.

The first condition assures that [h(a(x0))]P is a non-zero multiple of [c(x0)]P for every

value x0 ∈ Z of the parameter x, and that such a multiple can be computed as the sum

of some scalar multiplications. These multiplications are computationally light thanks

to the second condition in which scalar factors are bounded.

Consequently, for the BN, Freeman and KSS pairing-friendly families curves, Fuentes

et al. compute a formula for hashing into G2 that is valid for every curve in the family

itself. In particular, the cofactor multiplication [c(x)]P is reduced to the evaluation of a

polynomial of the powers ψi(P), with coefficients that are polynomials in x. Fuentes et

al. provided evidence that their method is faster than that of Scott et al. for the same

curves from the families BN, Freeman and KSS.

2.3 BLS curves

Families of pairing-friendly curves vary significantly, hence it is not possible to a priori

determine if one of the two above hashing methods is more efficient than the other for

a given family. BLS curves recently gained interest [26], [27]. Thus it is of interest to

determine also for these curves which is, among Scott et al. and Fuentes et al. methods,

the more efficient one. In [28, Section 8.5], the Scott et al. method is explicitly applied

to BLS curves with k ∈ {12, 24} and it is stated that, for these cases, this produces the

most efficient hash maps.

In this paper we derive formulas for BLS curves with k = {12, 24, 30} using both

methods. We provide evidences that, on the contrary, the most efficient method is the

one of Fuentes et al. Furthermore, we apply Scott et al. method also to BLS curves with

k ∈ {42, 48}. The computations necessary, within Fuentes et al. method, to obtain the

polynomial h(z) for BLS curves with k = 42, 48 were infeasible for the computational

power at our disposal. In Section 5, we propose polynomials h(z) =
∑

i h(x)zi which

satisfy (CI). That is h(a(x)) is congruent to a multiple of c(x) modulo ñ(x). For k =

48 the polynomial satisfy deg(hi(x)) ≤ deg(c(x))/ϕ(k) for every i, satisfying therefore

condition (CII) too. For k = 42, the same condition is satisfied for every hi(x) except

for h0(x) that has degree equal to bdeg(c(x))/ϕ(k)c+ 1.

We conclude this section briefly recalling BLS curves’ parameters. Barreto, Lynn and

Scott [16], and Brezing and Weng [17] proposed a polynomial parameterisation for com-

plete families of pairing-friendly curves having prime fields Fp as basefields, fixed embed-

ding degrees, and short Weierstrass equations of the form y2 = x3 + b.

140 Efficient Hash Maps to G2 on BLS curves

In the following, we consider only those BLS curves with embedding degree k =

12, 24, 30, 42, 48. For all cases, we have that k is a multiple of 6. This choice is due to

efficiency reasons, since every such curve admits a twist of the highest possible degree

d = 6 [10], allowing to consider G2 as a subgroup of Ẽ(Fpk/6). In this case BLS curves

are parameterised by the following polynomials [12]:

p(x) =
1

3
(x− 1)2(xk/3 − xk/6 + 1) + x,

r(x) = Φk(x),

t(x) = x+ 1,

where Φk is the cyclotomic polynomial of order k.

3 Scott et al. method on BLS curves

In this section Scott et al. hashing method is applied to BLS curves with embedding

degree k equal to 12, 24, 30, 42 and 48 respectively. Such an application requires first

to determine the cardinality ñ(x) ∈ Q[x] of Ẽ(Fpk/d(x)), where d = 6. Then, one must

execute polynomial modular arithmetic as briefly described in the previous section (for

further details the reader could refer to Algorithm 2 in [1]).

3.1 BLS-12

For BLS curves with k = 12, the prime p and the group order r are parameterised by

the polynomials:

p(x) =
1

3
(x− 1)2(x4 − x2 + 1) + x,

r(x) = x4 − x2 + 1.

Since k/d = 2, the group G2 a subgroup of Ẽ(Fp2(x)) and the cofactor c(x) is:

c(x) =
1

9
(x8 − 4x7 + 5x6 − 4x4 + 6x3 − 4x2 − 4x+ 13). (3.1)

For a point P ∈ Ẽ(Fp2(x)), Scott et al. method reduces the scalar multiplication [3c(x)]P

to

[3c(x)]P = [x3 − x2 − x+ 4]P + [x3 − x2 − x+ 1]ψ(P) + [−x2 + 2x− 1]ψ2(P), (3.2)

3 Scott et al. method on BLS curves 141

where ψ is the endomorphism defined in Section 2.1. We consider [3c(x)]P instead of

[c(x)]P to ignore the common denominator of 3 that occurs writing c(x) to the base p(x).

According to [28, Sec. 8.5], scalar multiplication (3.2) can be computed at the cost of

6 point additions, 2 point doublings, 3 scalar multiplications by the parameter x and 3

applications of ψ.

3.2 BLS-24

BLS-24 curves are parameterised by the polynomials:

p(x) =
1

3
(x− 1)2(x8 − x4 + 1) + x,

r(x) = x8 − x4 + 1.

As in the Section 3.1, we consider [3c(x)]P instead of [c(x)]P . In this case G2 ⊂ Ẽ(Fp4(x))

and the cofactor is a polynomial c(x) of degree 32. Applying Scott et al. method, the

scalar multiplication [3c(x)]P , where P ∈ Ẽ(Fp4(x)), is reduced to

[3c(x)]P = [λ0]P +
6∑
i=1

[λi]ψ
i(P), (3.3)

where λ0, λ1, λ2, λ3, λ4, λ5, λ6 are polynomials of Z[x] with degrees ≤ 8, and are reported

in Appendix A. According to [28, Sec. 8.5], the scalar multiplication (3.3) can be com-

puted at the cost of 21 point additions, 4 point doublings, 8 scalar multiplications by

the parameter x and 6 applications of ψ.

3.3 BLS-30

BLS curves with embedding degree k = 30 are parameterised by:

p(x) =
1

3
(x− 1)2(x10 − x5 + 1) + x,

r(x) = x8 + x7 − x5 − x4 − x3 + x+ 1.

In this case the cofactor is a polynomial c(x) of degree 52 while G2 is a subgroup of

Ẽ(Fp5(x)) of order r(x). For a point P ∈ Ẽ(Fp5(x)), one expresses the scalar multiplication

[3c(x)]P according to Scott et al. as:

[3c(x)]P = [λ0]P +
8∑
i=1

[λi]ψ
i(P), (3.4)

142 Efficient Hash Maps to G2 on BLS curves

where {λj | j = 0, . . . , 8} are polynomials of Z[x] of degree ≤ 11. They are reported

in Appendix A. The right hand side of (3.4) can be computed at the cost of 82 point

additions, 16 point doublings, 11 scalar multiplications by the parameter x and 67 ap-

plications of ψ.

3.4 BLS-42

In the case of BLS curves with k = 42, the group G2 = Ẽ(Fp7(x)) ∩ Ẽ[r(x)], where:

p(x) =
1

3
(x− 1)2(x14 − x7 + 1) + x,

r(x) = x12 + x11 − x9 − x8 + x6 − x4 − x3 + x+ 1.

The cofactor is parameterised by a polynomial c(x) of degree 100. Writing it to the base

p(x), the scalar multiplication [3c(x)]P , with P ∈ Ẽ(Fp7(x)), is reduced to

[3c(x)]P = [λ0]P +
12∑
i=1

[λi]ψ
i(P), (3.5)

where {λj | j = 0, . . . , 12} are polynomials of Z[x] with degrees ≤ 15, and are reported

in Appendix A. Then (3.5) can be computed at the cost of 151 point additions, 54 point

doublings, 15 scalar multiplications by the parameter x and 125 applications of ψ.

3.5 BLS-48

For BLS curves with k = 48, the prime p and the group order r are parameterised by

the polynomials:

p(x) =
1

3
(x− 1)2(x16 − x8 + 1) + x,

r(x) = x16 − x8 + 1.

The cofactor c(x) is a polynomial of degree 128 and G2 is a subgroup of Ẽ(Fp8(x)). Given

some rational point P ∈ Ẽ(Fp8(x)), Scott et al. method reduces the scalar multiplication

[3c(x)]P to

[3c(x)]P = [λ0]P +
14∑
i=1

[λi]ψ
i(P), (3.6)

4 Fuentes et al. method on BLS curves with k = 12, 24, 30 143

where {λj | j = 0, . . . , 14} are polynomials of Z[x] with degrees ≤ 16, and are reported

in Appendix A. As in previous cases, we consider [3c(x)]P instead of [c(x)]P . The

scalar multiplication (3.6) can be computed at the cost of 132 point additions, 120 point

doublings, 16 scalar multiplications by the parameter x and 130 applications of ψ.

4 Fuentes et al. method on BLS curves with k =

12, 24, 30

In this section we apply Fuentes et al. hashing method to BLS for k equal to 12, 24 and

30. We have already noticed that this method requires an expensive pre-computation

in order to obtain the polynomial h(z). This was infeasible when k ∈ {42, 48} for the

computational power at our disposal. For this reason, we do not consider these cases in

this section and we will address them with a different approach in Section 5.

4.1 BLS-12

For BLS curves with k = 12, the value a in (2.5) is parameterised by the following

polynomial in x:

a(x) =
1

2

(
t(x) + f(x)

t̃(x)− 2

f̃(x)

)
≡ 25

299
x11 − 25

69
x10 +

508

897
x9 − 268

897
x8 − 112

897
x7+

+
586

897
x6 − 518

897
x5 − 126

299
x4 +

367

299
x3 − 215

897
x2 +

64

299
x+

41

69
(mod ñ(x)).

Reducing the matrix

M =


c(x) 0 0 0

−a(x) mod c(x) 1 0 0

−a2(x) mod c(x) 0 1 0

−a3(x) mod c(x) 0 0 1


using generalised LLL [33], we obtain

M ′ =


−x+ 1 −2 x− 1 x2 − x+ 1

−2 0 x2 − x+ 1 x− 1

0 x2 − x− 1 x− 1 2

x2 − x− 1 x− 1 2 0

 .

144 Efficient Hash Maps to G2 on BLS curves

The polynomial h(z) can be defined from the 4-th row of M ′ as

h(z) =
4∑
i=1

M ′(4, i)zi−1 = (x2 − x− 1) + (x− 1)z + 2z2 (4.1)

and so

h(a(x)) = (x2 − x− 1) + (x− 1)a(x) + 2a2(x) ≡ (3x2 − 3)c(x) (mod ñ(x)),

with gcd(3x2 − 3, r(x)) = 1. Hence, if P ∈ Ẽ(Fp2(x)), then [h(a(x))]P is a multiple of

[c(x)]P . In particular:

[h(a(x))]P = h(ψ)P = [x2 − x− 1]P + [x− 1]ψ(P) + [2]ψ2(P). (4.2)

This can be computed at the cost of 5 point additions, 1 point doubling, 2 scalar multi-

plications by the parameter x and 3 applications of ψ.

4.2 BLS-24

As in the previous case, for the BLS curves with k = 24, we obtain a polynomial a(x) of

degree 39, and h(z) defined as:

h(z) = (x4 − x3 − 1) + (x3 − x2)z + (x2 − x)z2 + (x− 1)z3 + 2z4, (4.3)

where h(a(x)) is congruent to (3x4 − 3)c(x) modulo ñ(x). Since gcd(3x4 − 3, r(x)) = 1,

then [h(a(x))]P , for P ∈ Ẽ(Fp4(x)), is a point of G2, and

[h(a(x))]P = [x4−x3−1]P+[x3−x2]ψ(P)+[x2−x]ψ2(P)+[x−1]ψ3(P)+[2]ψ4(P). (4.4)

To compute the image of P , it requires 9 point additions, 1 point doubling, 4 scalar

multiplications by x and 10 applications of the endomorphism ψ.

4.3 BLS-30

In the case of BLS curves with embedding degree k = 30, Fuentes et al. method con-

structs a polynomial a(x) of degree equal to 59 and to a polynomial h(z) defined by

5 Faster hash maps for BLS curves with k = 42, 48 145

follows:

h(z) = (x5 − x4 − 1) + (−x5 + 2x4 − x3 + 1)z + (x5 − 2x4 + 2x3 − x2 − 1)z2+

+ (x4 − 2x3 + 2x2 − x)z3 + (x3 − 2x2 + 2x− 1)z4 + (x2 − 2x+ 3)z5+

+ (x− 3)z6 + 2z7,

(4.5)

where h(a(x)) is congruent to (3x5 − 3)c(x) modulo ñ(x). Hence

[h(a(x))]P = [x5 − x4 − 1]P + [−x5 + 2x4 − x3 + 1]ψ(P)+

+ [x5 − 2x4 + 2x3 − x2 − 1]ψ2(P) + [x4 − 2x3 + 2x2 − x]ψ3(P)+

+ [x3 − 2x2 + 2x− 1]ψ4(P) + [x2 − 2x+ 3]ψ5(P) + [x− 3]ψ6(P)+

+ [2]ψ7(P)

(4.6)

returns a point P ∈ G2 = Ẽ(Fp5(x))∩Ẽ[r(x)], for P ∈ Ẽ(Fp5(x)), since gcd(3x5−3, r(x)) =

1. The formula (4.6) can be computed at the cost of 25 point additions, 2 point doubling,

5 scalar multiplications by the parameter x and 27 applications of ψ.

5 Faster hash maps for BLS curves with k = 42, 48

In the previous section, we observed that the degree of the polynomial a(x) grows when

k grows. The results in Section 3 show that the same holds for c(x) too. This affects

the sizes of the polynomials composing the matrix M and the computational cost to

reduce it. The computational power at our disposal did not allow us to complete the

application of Fuentes et al. method to BLS curves with k = 42 and k = 48. However,

in this section we give two formulas h(z) obtained without the use of the LLL algorithm.

We begin considering the case k = 48.

5.1 BLS-48

We note that two of the polynomials h(z) obtained in the previous section, precisely

(4.1) and (4.3), satisfy:

(i) deg(h(z)) = k/6,

(ii) hk/6(x) = 2,

(iii) hi(x) = xdeg(h(z))−i − xdeg(h(z))−i−1, for 0 < i < k/6,

146 Efficient Hash Maps to G2 on BLS curves

(iv) h0(x) = xdeg(h(z)) − xdeg(h(z))−1 − 1.

For k = 48, we define the polynomial

h(z) = (x8 − x7 − 1) +
7∑
i=1

(x8−i − x7−i)zi + 2z8.

This polynomial satisfies (i),(ii),(iii) and (iv), and conditions (CI), (CII) as proved below.

Proposition 1. For a BLS curve with k = 48 defined over Fp(x), the polynomial

h(z) = (x8 − x7 − 1) +
7∑
i=1

(x8−i − x7−i)zi + 2z8,

satisfies the two conditions:

• [h](ψ)P is a multiple of [c(x)]P for all P ∈ Ẽ(Fpk/d(x));

• the coefficients hi of h(z) satisfy deg(hi(x)) ≤ deg(c(x))/ϕ(k) for all i.

The point

[h(ψ)]P = [x8 − x7 − 1]P +
7∑
i=1

[x8−i − x7−i]ψi(P) + [2]ψ8(P) (5.1)

belongs to G2 = Ẽ(Fp8(x)) ∩ Ẽ[r(x)] for every P ∈ Ẽ(Fp8(x)).

Proof. Consider the parametrization of BLS-48 curves from Section 3.5. Let ñ(x), f(x),

f̃(x), t(x) and t̃(x) be the polynomial prametrization of ñ, f, f̃ , t and t̃ respectively. In

particular, we verified by direct computation that gcd(f̃(x), ñ(x)) = 1. This ensures that

(see (2.6))

a(x) =
t(x)

2
− f(x)(t̃(x)− 2)

2f̃(x)
mod ñ(x)

is a polynomial with rational coefficients. By direct computation, the following relation

holds:

h(a(x)) ≡ 3(x8 − 1)c(x) mod ñ(x).

Let x0 ∈ Z and let a and c be equal to a(x0) and c(x0) respectively. Then h(a) ≡ 0

mod c. As ψP = [a]P , it follows that [h(ψ)P] = [h(a)]P is a multiple of [c]P , and

therefore [h(ψ)]P ∈ G2. In Appendix B we provide the magma [34] code used to verify

this proof.

5 Faster hash maps for BLS curves with k = 42, 48 147

Let h0(x), . . . , h8(x) denote the coefficients of h(z). It is easy to see that deg(hi(x)) ≤
deg(c(x))/ϕ(k) for all i ∈ {0, . . . , 8}, since c(x) has degree 128 and ϕ(48) = 16.

The right hand side of (5.1) can be computed at the cost of 17 point additions, 1

point doubling, 8 scalar multiplications by the parameter x and 36 applications of ψ.

5.2 BLS-42

The same approach does not work for BLS curves with k = 42. Indeed, for k = 42, the

polynomial

ξ(z) = (x7 − x6 − 1) +
6∑
i=1

(x8−i − x7−i)zi + 2z7

satisfies conditions (i),(ii),(iii) and (iv), but ξ(a(x)) is not a multiple of c(x). However,

we observed that the following relation holds:

ξ(a(x))/c(x) = 3(x7 − 1)/(x2 − x+ 1).

Let h(z) = (x2−x+1)((x7−x6−1)+
∑6

i=1(x8−i−x7−i)zi+2z7), we were able to obtain

a multiple of c(x) that almost satisfies the two conditions (CI), (CII). This is specified

in the following proposition.

Proposition 2. For a BLS curve E, defined over Fp(x) with k = 42, the polynomial

h(z) =
(
x9 − 2x8 + 2x7 − x6 − x2 + x− 1

)
+

+
6∑
i=1

(
x9−i − 2x8−i + 2x7−i − x6−i) zi +

(
2x2 − 2x+ 2

)
z7

(5.2)

is such that:

• h(ψ)P is a multiple of [c(x)]P for all P ∈ Ẽ(Fpk/d(x));

• the coefficients hi of h(z) satisfy deg(hi(x)) ≤ deg(c(x))/ϕ(k) for all i 6= 0;

• the constant term h0 of h(z) has degree equal to bdeg(c(x))/ϕ(k)c+ 1.

Hence, the point

[h(ψ)]P =
[
x9 − 2x8 + 2x7 − x6 − x2 + x− 1

]
P

+
6∑
i=1

[
x9−i − 2x8−i + 2x7−i − x6−i]ψi(P) +

[
2x2 − 2x+ 2

]
ψ7(P)

(5.3)

148 Efficient Hash Maps to G2 on BLS curves

belongs to G2 = Ẽ(Fp7(x)) ∩ Ẽ[r(x)], for every P ∈ Ẽ(Fp7(x)).

Proof. We follow here the same reasoning as in the proof of Proposition 1. Consider the

parametrization of Section 3.4. The following relation holds:

h(a(x)) ≡ 3(x7 − 1)c(x) mod ñ(x).

Therefore, h(a(x)) is a non-zero multiple of c(x), and [h(ψ)]P ∈ G2. We provide in

Appendix B the magma code that we used to make the computational verifications of

this proof.

Denoting with h0(x), . . . , h7(x) the coefficients of h(z), it could be observed that

deg(hi(x)) ≤ deg(c(x))/ϕ(k) for all i ∈ {1, . . . , 7}, since c(x) has degree 100 and ϕ(42)

is equal to 12. The degree of h0(x) is equal to bdeg(c(x))/ϕ(k)c+ 1.

The right hand side of (5.3) can be computed at the cost of 33 point additions, 1

point doubling, 9 scalar multiplications by the parameter x and 42 applications of ψ.

Note that h(z) does not fully satisfies condition (CII), since h0(x) = x9 − 2x8 + 2x7 −
x6 − x2 + x− 1 is of degree 9, instead of being ≤ bdeg(c(x))/ϕ(k)c = 8.

6 Comparisons and conclusions

In Table 6.1, we present an efficiency comparison between the hash maps into G2 from

the previous three sections. The second column refers to the hash maps obtained by

applying Scott et al. method (see Section 3). The third column contains computational

costs of the hash maps obtained by applying Fuentes et al. method (see Section 4). The

last column reports the costs of the hash maps we proposed in Section 5. With ‘A’ we

denote a point addition, with ‘D’ a point doubling, with ‘Z’ a scalar multiplication by

the parameter x and with ‘ψ’ an application of the endomorphism ψ.

Curve Scott et al. Fuentes et al. Our proposals
BLS-12 6A 2D 3Z 3ψ 5A 1D 2Z 3ψ
BLS-24 21A 4D 8Z 6ψ 9A 1D 4Z 10ψ
BLS-30 82A 16D 11Z 67ψ 25A 2D 5Z 27ψ
BLS-42 151A 54D 15Z 125ψ 33A 1D 9Z 42ψ
BLS-48 132A 120D 16Z 130ψ 17A 1D 8Z 36ψ

Table 6.1: Comparison between the computational cost of each hash map.

BIBLIOGRAPHY 149

We underline that, in each hashing maps, the multiplication by x dominates the

other operations. In fact, the algorithms to compute large scalar multiplications generally

require many point additions and doublings. Furthermore, the endomorphism ψ can be

efficiently computed.

For k = 12, 24 and 30, the hash map found following Fuentes et al. method turned

out to be more efficient than the ones found with Scott et al. method. In particular, for

k = 12 we see a 3/2-fold improvement, for k = 24 the hash map is twice as fast as that

of Scott et al., while for k = 30 the hash map determines a 11/5-fold improvement.

For BLS curves with k = 42, our proposed hash map leads to a 15/9-fold improvement

over Scott et al. method. Finally, for k = 48, our hash map is twice faster than the one

obtained according to Scott et al.

Using the Apache Milagro Crypto Library [35], we implemented the hash maps

(3.2) and (4.2) for BLS with k = 12 obtained by applying Scott et al. and Fuentes et al.

method respectively. In Table 6.2 we summarise the timing results of two benchmark

tests for the two hash maps run on two different devices.

Processor Scott et al. Fuentes et al.
Intel(R) Core(TM) i5-5257U 64-bit - 2.7 GHz 2.83 ms 1.98 ms
Quad-core ARM Cortex A53 64-bit - 1.2 GHz 50.26 ms 35.88 ms

Table 6.2: Each value corresponds to the average time (in milliseconds) considered for each
hash from a sample of 1000 hashes.

These experimental results show that the hashing map obtained with Fuentes et al.

method is approximately 30% faster than the map obtained with Scott et al. method,

as we expected from the estimations in Table 6.1.

Bibliography

[1] M. Scott, N. Benger, M. Charlemagne, L. J. Dominguez Perez, and E. J. Kachisa,

“Fast Hashing to G2 on Pairing-Friendly Curves,” in Pairing-Based Cryptography

– Pairing 2009, vol. 5671 of LNCS, pp. 102–113, Springer, 2009.

[2] L. Fuentes-Castañeda, E. Knapp, and F. Rodŕıguez-Henŕıquez, “Faster Hashing to

G2,” in Selected Areas in Cryptography, vol. 7707 of LNCS, pp. 412–430, Springer,

2012.

[3] A. Menezes, T. Okamoto, and S. Vanstone, “Reducing Elliptic Curve Logarithms

150 Efficient Hash Maps to G2 on BLS curves

to Logarithms in a Finite Field,” in IEEE Transactions on Information Theory,

vol. 39, pp. 1639–1646, IEEE, 1993.

[4] G. Frey and H.-G. Rück, “A Remark Concerning m-Divisibility and the Discrete

Logarithm in the Divisor Class Group of Curves,” in Mathematics of Computation,

vol. 62, pp. 865–874, American Mathematical Society, 1994.

[5] A. Joux, “A One Round Protocol for Tripartite Diffie–Hellman,” in Algorithmic

Number Theory, vol. 1838 of LNCS, pp. 385–393, Springer, 2000.

[6] R. Sakai, K. Ohgishi, and M. Kasahara, “Cryptosystems Based on Pairings,” in Pro-

ceedings of the 2000 Symposium on Cryptography and Information Security, SCIRP,

2000.

[7] D. Boneh and M. Franklin, “Identity-Based Encryption from the Weil Pairing,”

in Advances in Cryptology — CRYPTO 2001, vol. 2139 of LNCS, pp. 213–229,

Springer, 2001.

[8] D. Boneh, B. Lynn, and H. Shacham, “Short Signatures from the Weil Pairing,”

Journal of Cryptology, vol. 17, no. 4, pp. 297–319, 2004.

[9] P. S. L. M. Barreto, S. Galbraith, C. O. Éigeartaigh, and M. Scott, “Efficient Pairing

Computation on Supersingular Abelian Varieties,” Designs, Codes and Cryptogra-

phy, vol. 42, no. 3, pp. 239–271, 2007.

[10] F. Hess, N. Smart, and F. Vercauteren, “The Eta Pairing Revisited,” in IEEE

Transactions on Information Theory, vol. 52, pp. 4595–4602, IEEE, 2006.

[11] F. Hess, “Pairing Lattices,” in International Conference on Pairing-Based Cryptog-

raphy, vol. 5209 of LNCS, pp. 18–38, 2008. Springer.

[12] D. Freeman, M. Scott, and E. Teske, “A Taxonomy of Pairing-Friendly Elliptic

Curves,” Journal of Cryptology, vol. 23, no. 2, pp. 224–280, 2010.

[13] R. Balasubramanian and N. Koblitz, “The Improbability That an Elliptic Curve

Has Subexponential Discrete Log Problem under the Menezes–Okamoto–Vanstone

Algorithm,” Journal of Cryptology, vol. 11, no. 2, pp. 141–145, 1998.

[14] F. Luca, D. J. Mireles, and I. E. Shparlinski, “MOV Attack in Various Subgroups

on Elliptic Curves,” Illinois Journal of Mathematics, vol. 48, no. 3, pp. 1041–1052,

2004.

[15] A. Miyaji, M. Nakabayashi, and S. Takano, “New Explicit Conditions of Ellip-

tic Curve Traces for FR-reduction,” in IEICE Transactions on Fundamentals of

BIBLIOGRAPHY 151

Electronics, Communications and Computer Sciences, vol. E84–A, pp. 1234–1243,

IEICE, 2001.

[16] P. S. L. M. Barreto, B. Lynn, and M. Scott, “Constructing Elliptic Curves with

Prescribed Embedding Degrees,” in Security in Communication Networks, vol. 2576

of LNCS, pp. 257–267, Springer, 2003.

[17] F. Brezing and A. Weng, “Elliptic Curves Suitable for Pairing Based Cryptography,”

Designs, Codes and Cryptography, vol. 37 (1), pp. 133–141. 2005.

[18] P. S. L. M. Barreto and M. Naehrig, “Pairing-Friendly Elliptic Curves of Prime

Order,” in Selected Areas in Cryptography, vol. 3897 of LNCS, pp. 319–331, Springer,

2006.

[19] D. Freeman, “Constructing Pairing-Friendly Elliptic Curves with Embedding De-

gree 10,” in Algorithmic Number Theory, vol. 4076 of LNCS, pp. 452–465, Springer,

2006.

[20] E. J. Kachisa, E. F. Schaefer, and M. Scott, “Constructing Brezing-Weng Pairing-

Friendly Elliptic Curves Using Elements in the Cyclotomic Field,” in Pairing-Based

Cryptography – Pairing 2008, vol. 5209 of LNCS, pp. 126–135, Springer, 2008.

[21] K. Rubin and A. Silverberg, “Choosing the Correct Elliptic Curve in the CM

Method,” Mathematics of Computation, vol. 79 (269), pp. 545–561. 2010.

[22] E. Brier, J. S. Coron, T. Icart, D. Madore, H. Randriam, and M. Tibouchi, “Effi-

cient Indifferentiable Hashing into Ordinary Elliptic Curves,” in Annual Cryptology

Conference, vol. 6223 of LNCS, pp. 237–254, Springer, 2010.

[23] R. Barbulescu, P. Gaudry, and T. Kleinjung, “The Tower Number Field Sieve,”

in Advances in Cryptology – ASIACRYPT 2015, vol. 9453 of LNCS, pp. 31–55,

Springer, 2015.

[24] T. Kim and R. Barbulescu, “Extended Tower Number Field Sieve: A New Com-

plexity for the Medium Prime Case,” in Advances in Cryptology – CRYPTO 2016,

vol. 9814 of LNCS, pp. 543–571, Springer, 2016.

[25] T. Kim and J. Jeong, “Extended Tower Number Field Sieve with Application to

Finite Fields of Arbitrary Composite Extension Degree,” in IACR International

Workshop on Public Key Cryptography, vol. 10174 of LNCS, pp. 388–408, 2017.

Springer.

[26] A. Menezes, P. Sarkar, and S. Singh, “Challenges with Assessing the Impact of

NFS Advances on the Security of Pairing-based Cryptography,” in Proceedings of

Mycrypt, vol. 10311 of LNCS, pp. 83–108, 2016.

152 Efficient Hash Maps to G2 on BLS curves

[27] R. Barbulescu and S. Duquesne, “Updating Key Size Estimations for Pairings,”

Journal of Cryptology, vol. 32, pp. 1298–1336, 2017.

[28] N. El Mrabet and M. Joye, Guide to Pairing-Based Cryptography. Cryptography

and Network Security, Chapman & Hall/CRC, 1st ed., 2017.

[29] R. P. Gallant, R. J. Lambert, and S. A. Vanstone, “Faster Point Multiplication on

Elliptic Curves with Efficient Endomorphisms,” in Annual International Cryptology

Conference, vol. 2139 of LNCS, pp. 190–200, 2001.

[30] S. D. Galbraith and M. Scott, “Exponentiation in pairing-friendly groups us-

ing homomorphisms,” in International Conference on Pairing-Based Cryptography,

vol. 5209 of LNCS, pp. 211–224, Springer.

[31] A. K. Lenstra, H. W. Lenstra, and L. Lovasz, “Factoring Polynomials with Rational

Coefficients,” Mathematische Annalen, vol. 261, pp. 515–534, 1982.

[32] A. J. Menezes, Elliptic Curve Public Key Cryptosystems., vol. 234 of The Kluwer

International Series in Engineering and Computer Science. Kluwer, 1997.

[33] S. Paulus, “Lattice Basis Reduction in Function Fields,” in International Algorith-

mic Number Theory Symposium, vol. 1423 of LNCS, pp. 567–575, Springer, 1998.

[34] W. Bosma, J. Cannon, and C. Playoust, “The Magma algebra system. I. The user

language,” Journal of Symbolic Computation, vol. 24, no. 3-4, pp. 235–265, 1997.

[35] Miracl-Apache, “Apache Milagro Crypto Library (AMCL).” https://github.com/

apache/incubator-milagro-crypto-c.

Appendix A 153

Appendix A

In the following we report the polynomials in x which are the coefficients of the hash

maps obtained by applying Scott et al. method to BLS curves having k = 24, 30, 42, 48.

BLS-24

Given a rational point P ∈ Ẽ(Fp4(x)), the map (3.3) sends P into the element [λ0]P +∑6
i=1[λi]ψ

i(P) of G2, where:

λ0 =− 2x8 + 4x7 − 3x5 + 3x4 − 2x3 − 2x2 + x+ 4,

λ1 =x5 − x4 − 2x3 + 2x2 + x− 1,

λ2 =x5 − x4 − x+ 1,

λ3 =x5 − x4 − x+ 1,

λ4 =− 3x4 + x3 + 4x2 + x− 3,

λ5 =3x3 − 3x2 − 3x+ 3,

λ6 =− x2 + 2x− 1.

BLS-30

The map (3.4) sends P ∈ Ẽ(Fp5(x)) into the element [λ0]P +
∑8

i=1[λi]ψ
i(P) ∈ G2, with:

λ0 = x11 − x10 − 2x9 + 3x8 + 2x7 − 3x6 − x5 + 2x4 − x3 + 4x2 + x+ 7,

λ1 = x11 − 3x10 + 3x9 + x8 − 5x7 + x6 + 4x5 − x4 − 4x3 + 4x2 − 8x− 11,

λ2 = − x10 + 4x9 − 6x8 + 5x7 − 2x6 + 2x5 − 5x4 + 4x3 − 3x+ 11,

λ3 = x8 − 2x7 + 2x6 − x5 − x4 + 2x3 − 2x2 + x,

λ4 = x8 − 2x7 + 2x6 − x5 − x3 + 2x2 − 2x+ 1,

λ5 = − 4x7 + 3x6 + 2x5 − x4 − x3 + 2x2 + 3x− 4,

λ6 = 6x6 − 7x5 − 3x4 + 8x3 − 3x2 − 7x+ 6,

λ7 = − 4x5 + 8x4 − 4x3 − 4x2 + 8x− 4,

λ8 = x4 − 3x3 + 4x2 − 3x+ 1.

154 Efficient Hash Maps to G2 on BLS curves

BLS-42

The map (3.5) sends P ∈ Ẽ(Fp7(x)) into the element [λ0]P +
∑12

i=1[λi]ψ
i(P) ∈ G2, with:

λ0 = −4x15 + 7x14 − x13 − 4x12 + 4x11 + 2x10 − 4x9 + 5x8 − 4x7 − 2x6 + 2x5

− 2x4 − 4x3 + 9x2 + 5x+ 9,

λ1 = 6x15 − 7x14 − 9x13 + 15x12 − 14x10 + 7x9 − 2x8 − 5x7 + 13x6 − 3x5

− 7x4 + 11x3 + 6x2 − 22x− 19,

λ2 = −7x14 + 15x13 − 4x12 − 14x11 + 15x10 + 2x9 − 13x8 + 19x7 − 9x6 − 14x5

+ 15x4 − 16x2 + 4x+ 22,

λ3 = 2x13 − 6x12 + 6x11 + x10 − 8x9 + 8x8 − 3x7 − 9x6 + 12x5 + 2x4 − 13x3

+ 10x2 + 4x− 6,

λ4 = −x12 + 4x11 − 6x10 + 5x9 − 2x8 + 3x5 − 7x4 + 5x3 + x2 − 5x+ 3,

λ5 = x10 − 2x9 + 2x8 − x7 − x4 + 2x3 − 2x2 + x,

λ6 = x10 − 2x9 + 2x8 − x7 − x3 + 2x2 − 2x+ 1,

λ7 = −6x9 − 2x8 + 2x7 + 6x6 + 6x3 + 2x2 − 2x− 6,

λ8 = 15x8 + 5x7 − 19x6 − 8x5 + 14x4 − 8x3 − 19x2 + 5x+ 15,

λ9 = −20x7 + 5x6 + 30x5 − 15x4 − 15x3 + 30x2 + 5x− 20,

λ10 = 15x6 − 16x5 − 12x4 + 26x3 − 12x2 − 16x+ 15,

λ11 = −6x5 + 12x4 − 6x3 − 6x2 + 12x− 6,

λ12 = x4 − 3x3 + 4x2 − 3x+ 1.

BLS-48

The map (3.6) sends P ∈ Ẽ(Fp8(x)) into the element [λ0]P +
∑14

i=1[λi]ψ
i(P) of G2, where:

λ0 = −6x16 − 2x15 + 8x14 + 14x13 − 14x11 − 8x10 + 3x9 + 11x8 + 8x7 − 14x5

− 14x4 + 8x2 + 5x+ 4,

λ1 = 10x15 + 6x14 − 26x13 − 22x12 + 22x11 + 26x10 − 5x9 − 11x8 − 16x7 − 24x6

+ 10x5 + 46x4 + 24x3 − 16x2 − 19x− 5,

Appendix B 155

λ2 = −14x14 + 4x13 + 34x12 − 34x10 − 3x9 + 13x8 + 24x6 + 26x5 − 34x4 − 56x3

+ 29x+ 11,

λ3 = 8x13 − 8x12 − 16x11 + 16x10 + 9x9 − 9x8 − 22x5 − 10x4 + 40x3 + 24x2

− 19x− 13,

λ4 = −4x12 + 8x11 − 7x9 + 3x8 + 12x4 − 4x3 − 20x2 + 3x+ 9,

λ5 = x9 − x8 − 4x3 + 4x2 + 3x− 3,

λ6 = x9 − x8 − x+ 1,

λ7 = x9 − x8 − x+ 1,

λ8 = −7x8 − 13x7 − 8x6 + 14x5 + 28x4 + 14x3 − 8x2 − 13x− 7,

λ9 = 21x7 + 43x6 + 6x5 − 70x4 − 70x3 + 6x2 + 43x+ 21,

λ10 = −35x6 − 55x5 + 34x4 + 112x3 + 34x2 − 55x− 35,

λ11 = 35x5 + 29x4 − 64x3 − 64x2 + 29x+ 35,

λ12 = −21x4 + x3 + 40x2 + x− 21,

λ13 = 7x3 − 7x2 − 7x+ 7,

λ14 = −x2 + 2x− 1.

156 Efficient Hash Maps to G2 on BLS curves

Appendix B

Magma Code for the Verification of Proposition 1

P<x> := PolynomialRing(Rationals());

k := 48;

p := ((x -1)^2)*(x^16 -x^8 +1)/3 +x;

r := x^16 -x^8 +1;

t := x +1;

f := Sqrt(-(t^2-4*p)/3);

q := p^8;

// count points on twist over extension

tau := [P!0: i in [1..9]];

tau[1] := 2;

tau[2] := t;

for i in [2..8] do

tau[i+1]:= t*tau[i]-p*tau[i-1];

end for;

t_hat := tau[9];

f_hat := Sqrt((-1/3)*(t_hat^2-4*q));

t_tilde := (3*f_hat+t_hat)/2;

f_tilde := Sqrt((-1/3)*(t_tilde^2 - 4*q));

n_tilde := q + 1 -(3*f_hat + t_hat)/2;

// check that GCD(n_tilde, f_tilde) = 1

GCD(n_tilde, f_tilde) eq 1;

c := n_tilde/r;

a := ((1/2)*(t - f*(t_tilde -2)*InverseMod(f_tilde,n_tilde))) mod n_tilde;

//a := ((1/2)*(t + f*(t_tilde -2)*InverseMod(f_tilde,n_tilde))) mod n_tilde;

// if the following is false, one must take the other option for a

(a mod r) eq (p mod r);

c := P!c;

Appendix B 157

// write the map

H := [P!0: i in [1..((k div 6)+1)]];

H[1] := x^(k div 6)-x^((k div 6)-1)-1;

for i in [2..(k div 6)] do

H[i] := x^((k div 6)+1 -i) - x^((k div 6) -i);

end for;

H[((k div 6)+1)] := 2;

// compute h(a)

h_a :=(H[1] + H[2]*a + H[3]*a^2 + H[4]*a^3 + H[5]*a^4 + H[6]*a^5 + H[7]*a^6 +

H[8]*a^7 + H[9]*a^8) mod n_tilde;

s := h_a/c;

GCD(P!s,r) eq 1;

// check that h(a) = 0 mod c

(h_a mod c) eq 0;

Magma Code for the Verification of Proposition 2

P<x> := PolynomialRing(Rationals());

k := 42;

p := ((x -1)^2)*(x^14 -x^7 +1)/3 +x;

r := P!CyclotomicPolynomial(k);

t := x +1;

f := Sqrt(-(t^2-4*p)/3);

q := p^7;

// count points on twist over extension

tau := [P!0: i in [1..8]];

tau[1] := 2;

tau[2] := t;

for i in [2..7] do

tau[i+1]:= t*tau[i]-p*tau[i-1];

end for;

t_hat := tau[8];

f_hat := Sqrt((-1/3)*(t_hat^2-4*q));

t_tilde := (3*f_hat+t_hat)/2;

158 Efficient Hash Maps to G2 on BLS curves

f_tilde := Sqrt((-1/3)*(t_tilde^2 - 4*q));

n_tilde := q + 1 -(3*f_hat + t_hat)/2;

// check that GCD(n_tilde, f_tilde) = 1

GCD(n_tilde, f_tilde) eq 1;

c := n_tilde/r;

c := P!c;

a := ((1/2)*(t + f*(t_tilde -2)*InverseMod(f_tilde,n_tilde))) mod n_tilde;

//a := ((1/2)*(t - f*(t_tilde -2)*InverseMod(f_tilde,n_tilde))) mod n_tilde;

// if the following is false, one must take the other option for a

(a mod r) eq (p mod r);

// write the map

C := [P!0: i in [1..((k div 6)+1)]];

C[1] := (x^(k div 6)-x^((k div 6)-1)-1)*(x^2 - x + 1);

for i in [2..(k div 6)] do

C[i] := (x^((k div 6)+1 -i) - x^((k div 6) -i))*(x^2 - x + 1);

end for;

C[((k div 6)+1)] := 2*(x^2 - x + 1);

// compute h(a)

h_a :=(C[1] + C[2]*a + C[3]*a^2 + C[4]*a^3 + C[5]*a^4 + C[6]*a^5 + C[7]*a^6 +

C[8]*a^7) mod n_tilde;

s := h_a/c;

GCD(P!s,r) eq 1;

// check that h(a) = 0 mod c

(h_a mod c) eq 0;

Errata for

Notes on Lattice-Based Cryptography

Alessandro Budroni

Thesis for the degree philosophiae doctor (PhD)

at the University of Bergen

______________________ _______________________

(date and sign. of candidate) (date and sign. of faculty)

 2

Errata

• page 19, 5 lines from the end, fix line that starts with a dot

• page 19, 4 lines from the end: add blank space missing before 'invertible'

• page 19, 2 lines from the end: fix spacing before \mod

• page 31, line 3: fix paring -> pairing

• page 34, 3 lines from the end: add a reference for 'Scott et al'

• page 50, last line: fix *with* probability

• page 55, line 12: fix equals -> equal

• page 61, 4 lines from the end: remove 'it'

• page 62, 4 lines from the end: discovered -> discover

• page 70, 10 lines from the end: a reference seems to be missing for 'Cheon et al'

• page 70, 5 lines from the end: the Gentry's -> Gentry's

• page 80, 7 lines from the end: the first 'nor' should be a 'neither'

• page 105, just below (5. 2): remove the indentation

• page 108, last line before section 6: 'the the'

• page 109, 8 lines from the end: 'the the'

• page 177, first line: fix triplets -> triples

• page 132, line 3: add missing blank space before 'Let'

• page 137, line 10: Lovasz -> Lov\'asz

• page 141, line 10: add missing blank space before 'In'

Graphic design: Com
m

unication Division, UiB / Print: Skipnes Kom
m

unikasjon AS

uib.no

ISBN: 9788230866252 (print)
9788230860243 (PDF)

	105329 Alessandro Budroni_v2_Elektronisk
	105329 Alessandro Budroni_v2_korrekturfil
	105329 Alessandro Budroni_v2_innmat
	105329 Alessandro Budroni_v2Elektronsk_bakside
	105329 Alessandro Budroni_v2Elektronsk_bakside

