
MASTER THESIS IN PHYSICS/ACOUSTICS

Finite element modeling and experimental
characterization of piezoelectric ceramic disk in air

Espen Fosse
June 2022

UNIVERSITY OF BERGEN

Department of Physics and Technology

NORWAY

i

Abstract

Understanding the piezoelectric disk characteristics and behaviors is essential to achieve

a good system model and can increase accuracy and reduce measurement uncertainties.

This work uses finite element modeling to compare simulations to experimentally obtained

measurements of electrical and acoustic characteristics of the piezoelectric disk Pz27.

The electrical measurements are performed with an impedance analyzer, which mea-

sures the electrical properties of the piezoelectric disk conductance and susceptance. For

the acoustic measurements of the directivity, on-axis pressure, and 2-D horizontal pressure

field of the piezoelectric disk, a MatLab app has been developed to automate the measure-

ments and control the acoustic measuring setup. The sensitivity of the directivity related to

small dislocations of the transducer has been studied.

The finite element simulations compared to experimentally obtained results agree well,

but somewhat low signal-to-noise ratio for some of the frequencies are observed. These re-

sults imply that the finite element simulation software used in this work proves to be a good

tool for predicting measurements.

ii

Acknowledgment

I want to express my gratitude to my supervisor, Prof. Per Lunde, and co-supervisors Math-

ias Myrtveit Sæther and Assoc. Prof. Emer. Magne Vestrheim for their guidance, informative

meetings, and remarks that have been helpful to me in completing this master’s thesis.

I want to thank Sverre Kongsro Finstad for his introduction to the acoustic measurement

setup. I want to give a big thanks to Eivind Nag Mosland for helping me answer questions on

FEMP, sharing knowledge of previously used scripts in the acoustic measurement setup, and

providing general information about instruments in the acoustic measurement setup. I also

want to thank Assoc. Prof. Audun Oppedal Pedersen for always keeping his door open for

questions and discussions that have been very useful. I thank Philip Trætteberg for sharing

knowledge, fruitful discussions, and motivation.

Lastly, I want to thank my family and friends, and my biggest thanks to my partner for her

patience and support and for taking extra good care of our son in times I have worked a lot.

E.F.

Bergen 2022

iii

Contents

Abstract i

Acknowledgment ii

1 Introduction 1

1.1 Background and motivation . 1

1.2 Previous work . 2

1.2.1 Previous work at UiB . 4

1.3 Objectives . 5

1.4 Thesis outline . 6

2 Theory 8

2.1 Modes in the piezoelectric element . 8

2.2 System Model . 10

2.3 Fourier transform . 11

2.4 Speed of sound in air . 12

2.5 Coordinate system . 12

2.6 Absorption in air . 13

2.7 Electronics . 15

2.7.1 Cables . 15

2.7.2 Transmitting electronics . 16

2.7.3 Receiving electronics . 18

2.8 Microphone sensitivity . 21

2.9 Finite element modeling . 22

3 Experimental setup and measurement method 28

3.1 Equipment list . 28

3.2 Electrical measurement setup . 29

3.3 Acoustical measurement setup . 32

3.3.1 Signal generator (I) . 34

3.3.2 Transmitter electronics (II) . 35

iv CONTENTS

3.3.3 Transmitter (III) . 35

3.3.4 Medium (IV) . 36

3.3.5 Receiver (V) . 36

3.3.6 Amplifier (VI) . 36

3.3.7 Filter (VII) . 37

3.3.8 Oscilloscope (VIII) . 37

3.3.9 Environmental parameters . 38

3.3.10 Cables . 38

3.4 Brüel & Kjær 4138 microphone . 39

3.4.1 Microphone sensitivity calibration using a pistonphone 41

3.5 Motor’s setup . 45

3.5.1 Travel distance adjustments of Y-stage . 46

3.6 Reflections . 48

3.7 Signal setup and processing . 52

3.7.1 Transmitted signal . 53

3.7.2 Received signal . 53

3.7.3 Signal filtering . 54

3.7.4 Method for calculating peak-to-peak voltage by using the fast Fourier

transform . 55

3.7.5 Method of calculating pressure . 56

3.7.6 Signal to noise ratio . 57

4 Positioning setup and measurements with the MatLab app 59

4.1 MatLab app screen . 60

4.2 Startup of the MatLab app . 62

4.3 Positioning of the piezoelectric disk . 64

4.3.1 Setup 1 . 66

4.3.2 Setup 2 . 69

4.3.3 Setup 3 . 73

4.3.4 Setup 4 . 74

4.4 Single or series of measurements of electrical and acoustical signals 75

4.5 Transmitter and receiver mounting and positioning sensitivity analysis 76

5 Finite element setup 88

5.1 FEMP 6.1 . 88

5.2 Material parameters . 90

5.2.1 Piezoelectric element, Pz27 . 91

5.2.2 Air . 91

CONTENTS v

5.3 Simulation parameters . 92

5.4 Simulated pressure . 93

5.5 Structure setup . 94

6 Results and discussion 96

6.1 Electrical properties of the piezoelectric disk . 96

6.1.1 Comparison of electrical properties between FE simulations in a vac-

uum and air . 96

6.1.2 Comparison of electrical properties between measurements and FE sim-

ulations . 98

6.2 Acoustic characteristics of the piezoelectric disk 101

6.2.1 Frequency selection for measurements and FE simulations 101

6.2.2 Acoustic signals examples over three different angles and for all used

frequencies . 102

6.2.3 Comparison of directivity between FE simulations and measurements . 104

6.2.4 SNR of directivity measurements . 112

6.2.5 Comparison of directivity at different z distances of FE simulations and

measurements . 114

6.2.6 Comparison of on-axis pressure between FE simulations and measure-

ments . 117

6.2.7 SNR of on-axis pressure measurements . 124

6.2.8 Comparison of 2-D sound pressure field between FE simulations

and measurements . 124

7 Conclusions and further work 130

7.1 Conclusions . 130

7.2 Further work . 132

References 134

A MatLab-scripts 142

A.1 impanal.m . 142

A.2 positioninganalyze directivity.m . 143

A.3 MeasParameters.m . 145

A.4 HVV_0m1.m . 148

A.5 HVV_55m.m . 149

A.6 Vpp.m . 150

A.7 Receiver_Sensitivity.m . 151

A.8 plothorizontalpressurefield_basic.m . 160

vi CONTENTS

A.9 polarPcolor.m . 162

A.10 absorption_in_air.m . 171

A.11 Admittance_plotting.m . 172

B MatLab-app 174

B.1 App’s startup values . 174

B.2 Initialize machine function . 176

B.3 Homing function . 183

B.4 Step function . 185

B.5 Position function . 187

B.6 Moving function . 189

B.7 Instrument connect . 191

B.8 Initialize instruments . 195

B.9 Measure function . 197

B.10 DPO read function . 203

B.11 Environmental measurements . 204

B.12 Setup functions . 205

B.13 Overall functions . 211

B.14 Button functions . 222

C FEMP-scripts 253

C.1 read_inn_project.m (vacuum) . 253

C.2 read_inn_project.m (fluid) . 254

C.3 init_const_project.m . 256

C.4 Pz27.inn . 257

C.5 material5.dat . 259

D Additional information 261

D.1 Derivation of R . 261

D.2 Derivation of j . 262

D.3 Derivation of θr . 263

1

Chapter 1

Introduction

1.1 Background and motivation

The use of ultrasound in industries, commercial products, and science is numerous. In these

areas, ultrasound applications can be topography mapping the sea floor [58][34], detecting

cracks in pipes both on and offshore [77][10][74], fiscal flow measuring [33][3], pregnancy

check [75], or motion detections [59]. A piezoelectric material is often used in such applica-

tions due to the material’s ability to transmit or receive ultrasound due to the piezoelectric

effect and with given structural dimensions [73]. Therefore, there is a need to understand the

behaviors and characteristics of these piezoelectric materials. A good understanding can in-

crease accuracy and reduce uncertainties in measurements. Fiscal flow measurements for

exporting and selling gas [3][33][69][43] are one field where accuracy and low uncertainties

are crucial. Suppose ultrasonic flow meters are chosen over non-ultrasonic. In that case, it

is often due to one or more reasons, such as reasonable purchase price, operation, mainte-

nance, and installation costs, or the equipment is easy to use [45]. Ultrasonic gas meters use

several measurement methods such as transit time, doppler, and correlation [30]. The more

commonly used method is the transit time. This method measures the time difference of

sound propagation between the transmitter and receiver caused by fluid velocity and pro-

duces high accuracy measurements [14].

To better understand an ultrasound measurement system, it is necessary to describe a

complete system model beyond the transmitter and receiver [72]. A complete system model

often consists of a computer, signal generator, transmitter electronics, transmitter trans-

ducer, propagation medium, receiver microphone/transducer, receiver electronics, and ter-

mination at oscilloscope [72]. Describing this system model as a whole or as individual parts

can theoretically improve the understanding of the measurement system considerably. It

also opens up to analyze each individual part of the system model and optimize parame-

ters within each individual block, which further leads to improvements in the measurement

2 CHAPTER 1. INTRODUCTION

system as a whole.

Understanding the piezoelectric element characteristics and behaviors is essential to

achieving a good system model. In a transducer construction, piezoelectric elements are the

main component to transmit and receive ultrasound. Since piezoelectric elements are often

only a part of several components in a larger transducer structure, other components can

be used, for example, to improve the impedance matching of the transducer structure to the

medium [72]. A transducer construction could be matching layers, backing, piezoelectric

material, and housing designed to increase the efficiency of transmitting and receiving ul-

trasound in a given medium [73]. Before designing a transducer structure, it is essential to

have appropriate piezoelectric and material parameters to perform sufficiently good finite

element simulation approximations, such as admittance, axis pressure, and directionality,

that will largely match measurements.

Simulating piezoelectric elements requires knowledge and control over the parame-

ters of the surrounding mediums, materials, and elements. Several years of research on the

parameters of the element used in the present work have provided good approximations of

the parameters. These good approximations come from comparing finite element modeling

with actual measurements and fine-tuning the parameters. This method is well established

within the research community when studying transducer elements.

1.2 Previous work

Knowledge and a good understanding of a transmit-receive ultrasonic measurement system

are necessary to predict the measurement system’s behaviors and electrical and acoustical

characteristics. After years of research on transmitter receiving ultrasonic measurement sys-

tems, the developed modeling software FLOSIM was investigated for use in simulations of

1-D ultrasonic transit time systems. These investigations concluded that it would be an ef-

fective tool in developing future ultrasonic transit time flowmeters [44]. In later years, soft-

ware such as FLOSIM (1-D), FEMP (2-D), and COMSOL (3-D) is used extensively to simulate

and predict various parts of a transmit-receive ultrasonic measuring system. Examples of

works that have used these different software are [71][44][49][22].

Work done by Benny et al. [11] investigates a method to predict and measure the acous-

tic radiation induced by ultrasonic transducers radiating in the air for frequencies less than 1

MHz. This work used a laser vibrometer to map the surface displacement. This surface dis-

placement is used to predict the 2-D sound field, and the predicted sound field is compared

with finite element modeling (FEM) simulations and measured pressure using an ultrasonic

detector. These predictions and measurements were compared in the near-field range of

±20mm in the radial direction and from 5 to 300 mm in the axial direction relative to the

CHAPTER 1. INTRODUCTION 3

transducer surface. The results gave good agreement between the theory and experimental

obtained results. With this method of predicting the sound field of the transducer, problems

arising from standing waves and non-planar waves in near fields are avoided.

Sanabria et al. [62] use a closed reradiation method that combines the Rayleigh-Sommerfeld

integral and time-reversal acoustics, which allows for calculating the entire near and far-field

based on a single 2-D sound pressure field measurement. This sound pressure field is pro-

duced by an air-coupled ultrasound (ACU) probe, where measurements are done in a plane

parallel to the probe’s surface in the near field, and measurements are performed with a

calibrated microphone. This method works for both 3-D (circular, square) and 2-D (rectan-

gular) planar transducers in the frequency range from 50 to 230 kHz, and it is stated that this

method outperforms baffled piston models.

The article by Øyerhamn et al. [49] developed a model describing a transit-receiver

measurement system based on the transducer’s radial mode operating in a homogeneous

fluid medium. It uses axisymmetric FEM of two piezoelectric ceramic disks as transmit re-

ceiver pair and sound propagation in the medium air. The simulated model is compared

with experimental measurements of the transmit-receive voltage-to-voltage transfer func-

tion in the frequency range over the two first radial modes of the two disks and at 1 atm. It is

also compared simulation with the time domain electrical terminals voltages signals of the

transmitting and receiving transducers. Compared to the measurements, this model simula-

tion of the measurement system provides good agreement, but improvements are potentially

identified and discussed.

An article by Chillara et al. [22] studies the generation of ultrasonic Bessel beams from

radial modes to a piezoelectric disk transducer. Laser Doppler Vibrometry is used to measure

the Bessel vibration pattern of the radial mode, which is found to agree well with the numer-

ical simulations. The beam profiles from the four first radial modes of the disc are measured

with a hydrophone in a water tank and compared to predicted results obtained from the

analytical model, and they are in good agreement. These experimental measurements use

similar methods of measuring directivity, on-axis pressure, and 2-D sound pressure field as

the measurements conducted in this work.

There are few articles published regarding radial modes and characterization of the

piezoelectric disk’s radial modes. This leads to the majority of the articles covered in this

section being written about complete transducer constructions and other transducers then

used in this work. However, several of the measurement methods and models are similar to

what has been done in this work.

4 CHAPTER 1. INTRODUCTION

1.2.1 Previous work at UiB

Over the years, much work has been conducted at the University of Bergen with the acous-

tical measurement setup, focusing on investigating the behaviors of piezoelectric disks and

transducers in transmitting and receiving ultrasound in the air. The primary investigation

by the work performed by Storheim [65] is diffraction correction of non-uniformly vibrat-

ing sources. These sources are baffled uniform piston, baffled piezoceramic disk, unbaffled

piezoceramic disk, and side baffled piezoceramic disc. It is used finite element (FE) to sim-

ulate and investigate these sources and then compares them to numerical and analytical

expressions and electrical and acoustic measurements. The diffraction correction behavior

is defined by the sound pressure generated by the source simulations and compared to the

widely used baffled piston diffraction correction. The FE simulation program used to per-

form the simulations was developed by Kocbach [38] in cooperation between the University

of Bergen (UiB) and Christian Michelsen Research AS (CMR) and called Finite Element Mod-

eling of Piezoelectric structures (FEMP).

The work of Mosland and Hauge [48][29] is partially co-written. Mosland’s primary

focus is developing and implementing a modified three-transducer reciprocity calibration

method for use in the surrounding fluid air in a frequency range of 50-300 kHz. This cali-

bration method includes correction due to absorption in air, diffraction effects, and trans-

mitting and receiving electronics. The experiment’s final results are compared to simula-

tions and acoustical measurements with a calibrated condenser microphone. The produced

transmitting voltage response result by Mosland is given in Fig. 1.1 [48] and is used in this

work’s discussion of signal-to-noise results. Hauge’s primary focus is developing and imple-

menting an FE-based linear system model that describes an air measurement system with

arbitrary distances between transmitter and receiver and compares the system model with

experiments performed in air.

Figure 1.1: Comparison of the measurement and simulation of the transmitting voltage re-
sponse |SV | for the transmitting piezoelectric disk Pz27 with d/t = 10 and plotted from 50 kHz
to 300 kHz. The boundaries between "×" in the resonance peaks is V0pp = 2 V and V0pp = 20 V
elsewhere. The result is taken from [48].

CHAPTER 1. INTRODUCTION 5

Andersen [7] used the three-transducer reciprocity calibration method to calibrate two

piezoelectric disks for air in a frequency range of 50-300 kHz and compared the experiment’s

final results with FE simulations. Andersen [7] also implemented lasers to conduct high-

accuracy separation measurements between the two disks.

The work of Søvik [64] is based upon the work of [48][29], where it is further developed

the FE-based linear system model describing a measurement system for gas. This further

development includes the slowly varying phase in the air at 1 atm, with room temperature

and assumption of no airflow, and then compared to experimental measurements.

Hagen [27] is studying improvements to the work of [7] measurement system to sim-

plify the measurements of the system model’s transmission functions at short distances be-

tween transmitter and receiver. It is presented a method to reduce crosstalk, and the experi-

mental result performed is compared to FE simulation by using both FEMP and COMSOL.

Work conducted by Grindheim [26] investigates and measures the transfer function of

a transmit-receiver system and compares results with FE simulations. It is provided good

similarities between calculated and simulated results, but misalignment causes uncertainty

in the transfer function HV V
15open

amplitude, especially around the second radial mode.

The work executed by Finstad [24] measures the electrical characteristics with an impedance

analyzer and acoustical characteristics with a condenser microphone in the air with a piezo-

electrical disk Pz27 and compares results to FE simulations. The frequency of interest covers

the two first radial modes of the disk, where the electrical measurement results show good

comparison with FE simulations. For the acoustical measurements of directivity, it shows

good similarities compared to FE simulations. However, for the acoustical measurement re-

sults of on-axis pressure and transmitter sensitivity, a deviation of around 8 dB is seen.

1.3 Objectives

The main objectives of this work are to experimentally measure the electrical and acoustical

characteristics of a circular piezoelectric disk of type Pz27 with a diameter/thickness (d/t)

ratio of 10, and measure in the frequency range covering the two first radial modes, then

compare the measured results with the FE simulations performed in FEMP. Other primary

objectives of this work are to improve and facilitate the positioning of the piezoelectric disk

in the measurement setup and to automate and reduce the measuring time of the measure-

ments.

The electrical characteristics measurements are the conductance and susceptance, used

to calculate the admittance, and measurements are conducted in the frequency range of

1-300 kHz. The acoustical characteristics measurements are the on-axis pressure, direc-

tivity, and 2-D horizontal pressure field in the near and far field of the piezoelectric disk.

6 CHAPTER 1. INTRODUCTION

These acoustical measurements are performed with several different frequencies covering

the disk’s first radial mode, and directivity measurements also cover the second radial mode.

All measurements are then compared with FE simulations of a modeled piezoelectric disk

radiating in air. The FE simulation program used to perform the simulations is called FEMP

and was developed by Kocbach [38] in cooperation between UiB and CMR. The current ver-

sion of FEMP is 6.1.

The method for improving and facilitating the positioning of the piezoelectric disk is

firstly done by building a MatLab app that controls all stages in the measurement setup.

Secondly, creating a setup guide to find the origo on the piezoelectric disk’s front center with

the app significantly reduces the setup time. It allows for visual control over the position of

the disk via the app by having control of the absolute position of the stages and by know-

ing the disk’s position. The necessity of automating the measurements is due to work done

by Finstad [24], which states that acoustical measurements are highly time-consuming, es-

pecially for the 2-D pressure field. Integrating communication with all instruments in the

experimental setup through the app and controlling the disk’s position makes it possible to

automate the measurements.

Method for analyzing the measurements includes Fourier transforming the measured

signal from time to frequency domain with Matlab’s fast Fourier transform (FFT) function.

This transformation opens up to extracting the peak-to-peak voltage amplitude of the trans-

mitting frequency. This method of finding the voltage is used when calibrating the micro-

phone sensitivity, where microphone sensitivity allows for converting the measured voltage

into pressure. This method for calculating pressure is used when comparing simulated pres-

sure with measurements.

1.4 Thesis outline

Chapter 2 presents the theoretical background and equations used in this work. Chapter 3

presents the instruments used, the experimental setup of electrical and acoustic measure-

ments, and the method for analyzing measurement results. Chapter 4 presents the method

of finding the correct position of the piezoelectric disk relative to the microphone and the

developed MatLap app. Chapter 5 presents the finite element method to simulate the piezo-

electric disk Pz27 vibrating in a vacuum and fully immersed in air. Chapter 6 presents the

results obtained with the FE simulations method, the results obtained from the measure-

ments of the electrical characteristics, the results obtained from the measurements of the

acoustical characteristics, and a discussion of all results. Chapter 7 gives a conclusion and

suggestions for further work.

8

Chapter 2

Theory

This chapter presents the theoretical background and equations used in this work. Sect. 2.1

goes through modes and resonances in the piezoelectric disk and the resonances central to

this work. Sect. 2.2 describes the system model used in the present work. Sect. 2.3 presents

the Fourier transformation theory and its use in this work. Sect. 2.4 presents how the speed

of sound is calculated and used to estimate signal arrival time and length. Sect. 2.5 goes

through the coordinate system used. Sect. 2.6 describes the theory of absorption in air.

Sect. 2.7 presents the transfer functions of transmitter and receiver electronics to calculate

electrical corrections. Sect. 2.8 represents the theory behind the calculations of microphone

sensitivity. Sect. 2.9, the last section in this theory chapter, summarizes the theory behind

finite element modeling.

2.1 Modes in the piezoelectric element

The vibration of a piezoelectric element shaped like a disk with electrodes on each end sur-

face can be described as a weighted superposition of eigenmodes, either with an applied

voltage or displacement [73]. For large d/t ratios, where d is the diameter of the disk and t is

the thickness of the disk, studies show that the piezoelectric disks can oscillate in two kinds

of radial modes (R-modes and A-modes) and four types of thickness modes (T-mode, TE-

mode, TS-mode, and E-mode) [41][38]. The type of modes of interest in this work is the two

first radial extension modes (R-modes), which correspond to standing waves in the radial di-

rection, as illustrated in Fig. 2.1. These modes are the lowest kinds in piezoelectric disks [28],

where R1 is the fundamental radial mode, and R2 is the second radial mode. These first two

modes occur at 98.1 kHz and 249 kHz for the simulated Pz27, as shown as an example in Fig.

2.2, with a d/t ratio matching the element used in this work, see Table 5.3. The displacement

will be at its maximum at these resonance frequencies and is known as the serial resonance

fs [25].

CHAPTER 2. THEORY 9

(a)

(b)

Figure 2.1: Simulated displacement of the piezoelectric disk’s Pz27 two first radial extension
modes with a d/t ratio ≈ 10 mm (a) The fundamental radial mode R1, occurring at 98.1 kHz
(b) the second radial mode R2, occurring at 249 kHz.

Because of the maximum displacement, the piezoelectric disk transmits a maximal

amount of mechanical energy leading to an optimal transmission performance [25]. By per-

forming measurements of the admittance Y and over the frequency span from 1-300 kHz,

which covers the two first radial modes of the disk used in this work, the series resonances of

the piezoelectric disk occur when conductance G is at its maximum [32]. The expression for

the admittance is

Y (f) =G(f)+ i B(f) = 1

Z (f)
= 1

R(f)+ i X (f)
(2.1)

where B is the susceptance and the unit for admittance is Siemens [S], Z is the impedance,

R is the resistance, X is the reactance, and the unit for impedance is ohm [Ω], and f is the

frequency.

Figure 2.2: Simulated GT (f) of a piezoelectric disk with matching d/t ratio of disk used in
present work and markings of the corresponding R1 and R2 modes of the max(G(f)T).

10 CHAPTER 2. THEORY

2.2 System Model

The system model is used to describe the electro-acoustic signal propagation chain via an

ultrasonic measurement system, all the way from the signal generator to the measuring in-

strument consisting of an oscilloscope [49]. The system model in this work, shown in Fig.

2.3, consists of modules connected by nodes. These connections between the modules gen-

erate inputs and outputs. With the assumption that the system can be described as linear

relations, the different nodes can be characterized by transfer functions [72]. An example of

such a transfer function is

H vV
12 = v2

V1
, (2.2)

where V1 is the voltage over the transmitter and v2 is the particle velocity normal to the trans-

mitter surface. Each node in Fig. 2.3 represents either the input or the output variables for

the associated modules [72].

node

0 V0 is the generated output voltage by the signal generator.

0m V0m is the measured voltage at the oscilloscopes channel one or seen as the volt-

age into the transmitting electronics.

1 V1 is the voltage over the electrodes of the transmitter or seen as the voltage out

from transmitting electronics.

2 v2 is the particle velocity normal to the transmitter surface.

3 p3 is the free field, on axis pressure in the medium.

4 p4 is the free field on axis pressure at the front surface of the receiver.

5 V5 is the voltage out from the receiver or seen as the voltage into the receiver

electronics.

5m V5m is the measured voltage at the oscilloscopes channel two or seen as the volt-

age out of the receiver electronics.

A piezoelectric ceramic disk Pz27 is used as the transmitter, and transmitter electronics

couples the transmitter to the oscilloscope, which receives a generated signal from the signal

generator. The receiver in this work is a pressure-field microphone, which measures the

received signal, and induces a voltage. The receiver electronics, consisting of an amplifier

and a filter, before being terminated in the oscilloscope.

CHAPTER 2. THEORY 11

Figure 2.3: Representation of the system model used in this work in the form of a block dia-
gram which is based on [72]

When analyzing the voltages V0m(t) and V5m(t) measured at the oscilloscope, the volt-

ages are Fourier transformed from the time domain to the frequency domain. This transform

enables voltage extraction V (f) for its corresponding frequency spectrum and acts as an ad-

ditional frequency filter.

2.3 Fourier transform

When measuring a signal on an oscilloscope, the amplitude is dependent on the time in the

time domain. If the amplitude of interest lies in a specific frequency, such as the transmitting

frequency, Fourier transform (FT) is used to extract the information on the amplitude for

that given frequency in the frequency domain. This method converts the measured voltage

signal from time domain V (t) to frequency domain V (f). There is also a method to reverse

this process by taking the inverse Fourier transform (IFT), which takes the signal from the

frequency domain V (f) to the time domain V (t). Both these transformations, FT and IFT,

can mathematically be expressed [15] as

V (f) = F T V (t) =
∫ ∞

−∞
V (t)e−i 2π f t d t (2.3)

V (t) = I F T V (f) =
∫ ∞

−∞
V (f)e i 2π f t d f (2.4)

In the present work, the FFT algorithm in MatLab is used [68], which is just an efficient

and fast computation method of discrete Fourier transform (DFT), and returns both nega-

tive and positive frequencies. The negative frequency values correspond to the conjugates

12 CHAPTER 2. THEORY

of the positive frequency values. The FFT algorithm also uses zero-padding, which increases

the length of the signal time in the form of an array of zero amplitude. This array of ze-

roes increases the bins in the signal, increasing the frequency resolution of the solved FFT

and finding the amplitude more accurately for the transmitted signal or other frequencies

present in the signal.

2.4 Speed of sound in air

For a signal with a known frequency and number of cycles, it is of interest in this work to

roughly estimate the signal length and the arrival time of the signal at the receiver. This is

of interest because it is used to set the correct time window of the oscilloscope for a given

distance between the transmitter and receiver, which efficiently discards unnecessary signal

information. Since only a rough estimation is needed, the sound speed in the air cai r used

to calculate the signal length and arrival time does not need to be as accurate. Assuming the

fluid is an adiabatic process, and the gas preserves the ideal gas laws, this will give a speed of

sound that only depends on temperature as [36]

cai r =
√
γRT

M
. (2.5)

Here the γ is the adiabatic constant, R is the gas constant, T is the absolute temperature, and

M is the molar mass of air. Calculating the speed of sound for the temperature TK in kelvin

equal to 273.15 K will give a constant equal to approximately 331 meters per second. Then,

by measuring the temperature in kelvin, the sound speed becomes

cai r ≈ 331

√
T

TK
, (2.6)

which is the method used to roughly calculate the sound speed in the air in this work.

2.5 Coordinate system

Two coordinate systems are used in this work. The coordinate system X, Y, and the Z-axes

correspond to the surface of the piezoelectric disk, see Fig. 2.4, and the coordinates of the X,

Y, and Z-stages which is defined by the travel direction of the different positioning motor’s

in the experimental setup. X, Y, and Z-stages coordinates are found with induction sensors

where the stages reference points are defined, see Table 4.1. There are two categories of co-

ordinate systems based on the reference points: the machine coordinate system, defined by

the reference points and travel limits of the positioning motor’s; the user coordinate system,

CHAPTER 2. THEORY 13

defined by an offset from the reference point. Ideally, the user coordinate system should

overlap the coordinate system of the piezoelectric disk, such that when the X, Y, and Z-stages

move, they are ideally moved in the coordinate system of the X, Y, and Z axis in Fig. 2.4. A ro-

tating stage, R-stage, is also used in this work, where the axis out of the R-stage should ideally

be parallel and overlap the Y-axis. It is studied in Sect. 4.5 what happens if the user coordi-

nates do not overlap the coordinate system of the piezoelectric disk and what uncertainty

this entails.

Figure 2.4: Illustration of the front surface of the piezoelectric disk with a radius a and the
corresponding X, Y, and Z-axis with the origo in the disk’s center, an angle θ to, and arbitrary
pressure point p(r,θ,t) and with a θS representing the symmetrical angle around Z-axis.

2.6 Absorption in air

When using FEMP to simulate the pressure, it considers a lossless fluid. But in reality, when

measuring sound pressure that has propagated through a fluid, there are different mecha-

nisms in the fluid that absorb the sound pressure depending on the propagation distance z.

To compare the experimentally measured pressure with FE simulated pressure in this work,

then absorption must be known. This leads to the equation for the measured free field pres-

sure [72]

p4 = pi e−αN p/m ·z , (2.7)

14 CHAPTER 2. THEORY

where pi is the initial free field pressure without losses and α is the absorption coefficient

given in Neper per meter. Generally, the absorption coefficient is favorable to describe in dB

per meter, which leads to the absorption coefficient [72]

αN p/m = αdB/m

20log10(e)
≈ 0.1151αdB/m . (2.8)

This atmospheric absorption coefficient combines several different attenuations, such as

shear viscosity, thermal conductivity, molecular relaxation, and thermal diffusion [5]. This

combination of attenuation sums up as [72]

αN p/m =αcl +αr ot +αvi b,O +αvi b,N , (2.9)

whereαcl stands for the classical absorption coefficient,αr ot stands for rotational relaxation,

and αvi b,O and αvi b,N are the molecular vibrational relaxation absorption coefficient of oxy-

gen and nitrogen in the air. The cause of αcl is shear viscosity, heat conduction, and thermal

diffusion [5]. In terms of dB per meter, the combined absorption coefficient becomes [5]

αdB/m =8.686 f 2

([
1.84 ·10−11

(
pr

pa

)(
T

Tr

)1/2
]
+

(
Tr

T

)5/2

[
0.01275e

−2239.1
T

fr O

f 2
r O + f 2

+0.1068e
−3352.0

T
fr N

f 2
r N + f 2

])
,

(2.10)

where the relaxation frequency of oxygen is [5]

fr O = pa

pr

(
24+ (4.04 ·104h)(0.02+h)

0.391+h

)
, (2.11)

and the relaxation frequency of nitrogen is [5]

fr N = pa

pr

(
Tr

T

)1/2
(

9+280h ·e
−4.170

((
Tr
T

)1/3−1

))
. (2.12)

Here is pa , the measured pressure in kPa, and pr the reference pressure, 101.325 kPa—further,

T is the measured air temperature, and Tr the reference temperature, 293.15 K. Furthermore,

h is the percent molar concentration of water vapor, and f is the frequency used [5]. In the

given molar concentration of water vapor [5]

h = hr el

(
psat

pr

)(
pr

pa

)
, (2.13)

there is a need to know the relative humidity hr el and saturated pressure psat . Measurements

could provide the relative humidity and give the necessary temperature T value to calculate

CHAPTER 2. THEORY 15

[5]

V =10.79586

(
1− T01

T

)
−5.02808l og10

(
T

T01

)
+1.50474 ·10−4

(
1−10

−8.29692
(

T
T01

−1
))

+0.42873 ·10−3
(
10

4.76955
(
1− T01

T

)
−1

)
−2.2195983,

(2.14)

used to calculate the saturated pressure [5]

psat = pr 10V . (2.15)

T01 is the isothermal triple point temperature for water, 273.16 K.

The calculated absorption coefficient α in dB per meter and the measured pressure

open up to calculating the initial pressure using Eq. 2.7 and 2.8, giving

pi = p4

e−0.1151αdB/m ·z . (2.16)

Using this Eq. 2.16, one can compare pi calculated from the measured pressure p4 with the

simulated pressure after the simulated pressure has been adjusted for the differences in the

voltage across the piezoelectric disk and simulated voltage, see Sect. 5.4. It is worth noting

that this absorption coefficient used in this work does not consider factors such as refraction,

scattering by turbulence, and non-linear propagation effects [5], which are assumed to be

negligible.

2.7 Electronics

Cables connect instruments to the piezoelectric disk and the microphone together within

the transmitting or receiving electronics. In these systems, the ideal voltages across the

piezoelectric disk V1 and the microphone output V5 can not be measured directly. This is due

to the finite impedance of the measurement system as a whole, which affects the voltage sig-

nal flowing through the system. Therefore it is deduced transfer functions that transfer the

input voltages of the transmitted voltage V0m and received voltage V5m to ideal voltage V1

and V5.

2.7.1 Cables

A well-known phenomenon is that signals flowing through cables are affected by the charac-

teristics of the cable. This phenomenon is experimentally proven and, therefore, essential to

consider when calculating the voltage V1 and V5, which lead to seeing the cable as an ideal

uniform transmission line using distributed constants [61]. The coaxial cables terminated

16 CHAPTER 2. THEORY

in a load impedance ZL can then be described as an equivalent circuit [73], as shown in Fig.

2.5.

Figure 2.5: Equivalent circuit of a ideal lossless transmission line with coaxial cable termi-
nated in a load impedance ZL , where distributed constants are Za and Zb .

The distributed constants used in describing the coaxial cable could be defined as two

different impedances Za and Zb , as seen in Fig. 2.5. These impedances are determined by

the characteristic impedance of the cable Z0, the electromagnetic wave number kem , and

the cable length x in meters and given as [73]

Za = i Z0t an

(
kem x

2

)
(2.17)

and

Zb = Z0

i si n(kem x)
. (2.18)

The characteristic impedance and the electromagnetic wave number is [73]

Z0 =
√

Lx

Cx
(2.19)

and

kem =ω
√

LxCx , (2.20)

respectively, where Lx and Cx are the inductance and capacitance per meter, respectively,

and ω is the angular frequency.

2.7.2 Transmitting electronics

In this work, transmitting electronics links the signal generator to the oscilloscope and the

piezoelectric disk with coaxial cables. This part of the system model, seen in Fig. 2.3, can

be described with a circuit diagram, as shown in Fig. 2.6. In this diagram, the voltage over

the piezoelectric disk is V1, and the voltage measured with the oscilloscope is V0m . A transfer

CHAPTER 2. THEORY 17

function can describe this relationship between these two voltages as

HV V
0m1 =

V1

V0m
. (2.21)

From the circuit diagram, the voltage V describes the Thevenin equivalent voltage of the

signal generator, and ZGE N is the Thevenin equivalent impedance. The ZOSC is the oscillo-

scope’s termination impedance, ZT is the piezoelectric disk’s impedance, and Za and Zb are

the coaxial cable impedances. The impedance of the piezoelectric disk is measured with an

impedance analyzer.

Figure 2.6: Circuit diagram of the transmitting electronics, connecting to a signal generator
as a Thevenin equivalent circuit, the piezoelectric disk, and the oscilloscope.

Applying Kirchhoff’s voltage law in the three directions indicated by arrows in Fig. 2.6,

three voltage equations can be deduced,

V0m = Za I1 +Zb I2 (2.22)

V1 = Zb I2 −Za I3 (2.23)

V1 = ZT I3 (2.24)

and with Kirchhoff’s current law, the relation between the three currents I1, I2, and I3 shown

in Fig. 2.6 is

I1 = I2 + I3. (2.25)

By setting Eqs. 2.23 and 2.24 equal to another and solving for the current I3,

I3 = Zb I2

ZT +Za
, (2.26)

18 CHAPTER 2. THEORY

and using substitution and algebraic manipulation of Eqs. (2.22,2.24-2.26), then the transfer

function in Eq. 2.21 is easily derived and gives

HV V
0m1 =

ZT Zb

ZT (Za +Zb)+ (Za +Zb)2 −Z 2
b

, (2.27)

which is a transfer function given in only known impedances and, therefore, used to solve

the voltage V5 with measured voltage V0m .

2.7.3 Receiving electronics

In this work, receiver electronics link the amplifier and filter to the oscilloscope and the mi-

crophone with coaxial and microphone cables, respectively, as seen in Fig. 2.3. Describing

the voltage signal that flows in via input on the filter or amplifier and out via output can

quickly become unnecessarily complicated. This becomes complicated due to the electron-

ics inside the filter or amplifier, which are unknown. Therefore, the electronics are described

as a complex frequency-dependent factor F (f) to simplify this part, which is given as the

black dotted lines, illustrating unknown electronics in Fig. 2.7, separating the input and the

output. In this circuit description of the filter (or amplifier), the input is seen as an open

input with a voltage V5′open and an impedance Z f i l t_open . The output is seen as a Thevenin

equivalent voltage generator V5′ with a Thevenin equivalent impedance Z f i l t_out which is

the output impedance given by the manufacturer. The relation between the input and out-

put of the filter becomes

V5′ =V5′openF (f) (2.28)

and applies to the amplifier and all filters in this work.

Figure 2.7: Illustration of input and output of the filter separated by unknown electronics.
This illustration applies to the amplifier and all filters in this work.

CHAPTER 2. THEORY 19

With the theory of voltage flow from input to the output of the amplifier and the fil-

ters covered, it is necessary to describe what happens between the instruments. In this

work, the microphone cable is neglected, and only the coaxial cables are considered. This

leads to three circuit diagrams, shown in Fig. 2.8. These three circuit diagram transfer func-

tions are almost identical to derive as for the transmitter electronics. The only difference

between the transmitter and receiver electronics is that with the receiver electronics, one of

Kirchoff’s voltage law directions indicated changes, and the values of the receiver electronics

are changed.

Figure 2.8: Three circuit diagrams: Top circuit diagram is the Thevenin equivalent generated
output voltage from the amplifier connected to the filter’s open input channel one via coaxial
cable; the middle circuit diagram is the Thevenin equivalent generated output voltage from
the filter’s output channel one connected to the filter’s open input channel two via coaxial
cable; the bottom circuit diagram is the Thevenin equivalent generated output voltage from
the filter’s output channel two connected to the oscilloscope’s channel two via coaxial cable.

20 CHAPTER 2. THEORY

The transfer function describing the relation of the output voltage of the microphone

V5 and the input voltage in channel two of the oscilloscope V5m is given as

HV V
55m = HV V

55a
·HV V

5a 5′open
·HV V

5′open 5′ ·HV V
5′5′′open

·HV V
5′′open 5′′ ·HV V

5′′5m = V5m

V5
. (2.29)

This transfer function is a combination of multiple transfer functions: the relation of the

voltage V5 and the output voltage of the amplifier V5a as HV V
55a

; the relation of the voltage V5a

and the input voltage of the filters channel one V5′open
as HV V

5a 5′open
; the relation of the voltage

V5′open
and the output voltage of the filters channel one V5′ as HV V

5′open 5′ ; the relation of the

voltage V5′ and the input voltage of the filters channel two V5′′open
as HV V

5′5′′open
; the relation of

the V5′′open
and the output voltage of the filters channel two V5′′ as HV V

5′′open 5′′ ; the relation of the

voltage V5′′ and the V5m as HV V
5′′5m .

The complex frequency-dependent factor given in Eq. 2.28 equals the transfer func-

tions over the amplifier and the filters. The factor is given as a dB gain over the amplifier.

The factor is assumed lossless and equal to one over the filters. These three transfer func-

tions become

HV V
55a

= 10
Gai n

20 , (2.30)

HV V
5′open 5′ = 1, (2.31)

and

HV V
5′′open 5′′ = 1. (2.32)

Using substitution and algebraic manipulation of the equation that is possible to de-

rive from each circuit in Fig. 2.8, the transfer function from the output voltage of the ampli-

fier to the input voltage of the filter’s channel one becomes

HV V
5a 5′open

= Z f i l t ,open[
(Zamp,out+Za1

)
(
1+ Z f i l t ,open+Za1

Zb1

)]
+Z f i l t ,open+Z a1

, (2.33)

the transfer function from the output voltage of the filter’s channel one to the input voltage

of the filter’s channel two becomes

HV V
5′5′′open

= Z f i l t ,open[
(Z f i l t ,out+Za2

)
(
1+ Z f i l t ,open+Za2

Zb2

)]
+Z f i l t ,open+Z a2

, (2.34)

and the transfer function from the output voltage of the filter’s channel two to the input

voltage of the oscilloscope channel two becomes

HV V
5′′5m = Zosc[

(Z f i l t ,out+Za3
)
(
1+ Zosc+Za3

Zb3

)]
+Zosc+Z a3

. (2.35)

CHAPTER 2. THEORY 21

2.8 Microphone sensitivity

Calibration of the Brüel & Kjær 4138 microphone [17] is performed with a Brüel & Kjær 4228

pistonphone [16], which operates at a known frequency of 250 Hz and produces a known

sound pressure level, SPL [20]. The frequency response of the Brüel & Kjær 4138 micro-

phones is given relative to the microphone reference sensitivity |Mr e f (250H z)| when it is

electrically unloaded [19]. It is possible to use the specified microphone sensitivity shown

in the calibration papers, but it is recommended to calibrate the microphone by measur-

ing and calculating microphone sensitivity using the pistonphone. This is due to changes in

conditions such as air pressure, temperature, and any other conditions that may affect the

sensitivity. Other conditions are not known, but aging effects or the receiver electronics may

have additional effects that give a reason to calibrate. To calculate, in general, the free-field

open circuit microphone sensitivity it is used the definition [73]

MV (f) = V5(f)

p4(f)
= |MV (f)|e iφMV , (2.36)

where V5 is the measured voltage at the electrically unloaded receiver, p4 is the free field

pressure at the microphone position when the microphone is not present, |MV (f)| is the

magnitude of the free-field open circuit microphone sensitivity, and φMV is the phase dif-

ference [73]. Since the open circuit pressure response relative to |Mr e f (250H z)| for Brüel &

Kjær 4138 microphone [19] does not specify the phase difference, it is disregarded, and only

the microphone sensitivity is taken into account. The microphone sensitivity is then defined

as [73]

|MV (f)| = Ve f f (f)

pe f f (f)
, (2.37)

where Ve f f is the effective voltage amplitude calculated from the measured voltage V5m as

Ve f f (f) =
V5pp (f)

2
p

2
= 1

2
p

2

V5mpp (f)

HV V
55m(f)

, (2.38)

and the pressure pe f f is the effective pressure amplitude and can be calculated from the

sound pressure level defined as

SPL = 20log10

(
pe f f (f)

pr e f

)
. (2.39)

where pr e f is the reference pressure for air which is 20µPa, and SPL in this work is the known

sound pressure level produced by the pistonphone at 250 Hz .

22 CHAPTER 2. THEORY

2.9 Finite element modeling

This work uses Finite Element Modeling of Piezoelectric structures (FEMP) software to simu-

late the electrical characteristic of YT (f) (admittance in a vacuum and air) and acoustic char-

acteristics of, D(r , θ, f) (directivity), pax(z, f) (on-axis pressure), and p(x,z, f) (2-D sound

pressure field) of a piezoelectric disk. This section presents only a brief overview of the the-

ory behind FEMP, where [38] provides a full description. In FEMP, the FE simulation is sim-

plified by reducing the structure from being a 3-D structure to 2-D by assuming symmetry in

the axisymmetric disk [38]. This assumption implies [38]

∂

∂θS
= 0 ,

where θS is the angle around the Z-axis in Fig. 2.4, and it further assumes no torsion modes

[38]

uθS = 0 ,

where uθS is displacement in the angle θS direction. Other benefits these assumptions pro-

vide are the reduction of the number of piezoelectric constants for the dielectric stiffness [ϵS],

piezoelectric stiffness [e], and elastic stiffness [cE] matrices used in FE calculations, which

decreases computation time [38].

In the FE simulations, a structure is approximated using a finite number of volume el-

ements [38]. Within each volume element, it is defined a number of nodes, see Fig 5.1. With

an increasing number of volume elements, the accuracy of the simulation increases. Other

factors that define the precision of the simulation are the number of nodes, and the inter-

polations function used to solve for quantitative values in an arbitrary position inside the

structure’s elements [38]. The starting equations to find the FE formulation for an unloaded

piezoelectric disc with no surrounding fluids are as follows [32]

−ω2ρp ui = Ti j ,i , (2.40)

Di ,i = 0 , (2.41)

Ti j = cE
i j kl Skl −eki j Ek , (2.42)

and

Di = ei kl Skl +ϵS
i k Ek , (2.43)

where Ti j ,i is the motion for a piezoelectric medium, Di ,i is the Maxwell equation, Ti j and

Di is the constitutive relations for the piezoelectric medium [38], and the rest of the variable’s

descriptions are given in Table 2.2.

CHAPTER 2. THEORY 23

Table 2.2: Description of variables used in Eqs.(2.42) and (2.43) [38].

Variable Description [38] Unit

Ti j Mechanical stress tensor [N /m2]

Skl Mechanical strain tensor [−]

Di Electric flux density [C /m2]

Ek Electric field vector [V /m]

cE
i j kl Elastic stiffness constant tensor with constant electric field [N /m2]

ei kl Piezoelectric constant tensor [C /m2]

ϵS
i k Dielectric constant tensor with constant strain [F /m]

ω Angular frequency [r ad/s]

ρp Piezoelectric medium density [kg /m3]

u Displacement [m]

The piezoelectric structure’s surface, facing a vacuum, is imposed with boundary conditions

[38]. With boundary conditions introduced, the Eqs. 2.40-2.43 is used when setting up weak

formulations using test functions and solving each part of the weak formulation equations

using Gauss Legendre quadrature [38]. With each part solved using Gauss, the final FE for-

mulation for the unloaded case is given as [38]

−ω2

[
Muu 0

0 0

]{
û

φ̂

}
+

[
Kuu Kuφ

Kφu Kφφ

]{
û

φ̂

}
=

{
F

−Q

}
, (2.44)

and the variables of this Eq. 2.44 are given in Table 2.3. The FE formulation, Eq. 2.44 are

transformed to H-form to simplify the calculation of the piezoelectric structure’s resonance

frequencies and response function [38]. With the potentials in the nodes of the elements

condensed out from FE equations and V and I are introduced as voltage and current [39],

Eq. 2.44 becomes [38]

−ω2

[
Muu 0

0 0

]{
û

V

}
+

[
Huu Huφ

Hφu Hφφ

]{
û

V

}
=

{
F

−I/iω

}
. (2.45)

Solving the piezoelectric disk with the direct harmonic analysis method in a vacuum where

there is no outer traction (F = 0) [38], the first expression in Eq. (2.45), is used to calculate the

particle displacement of a piezoelectric structure as [38]

{û} =−[D]−1 {
Huφ

}
V , (2.46)

where Figs. 2.1a and 2.1b are examples of solved piezoelectric structure displacement {û},

24 CHAPTER 2. THEORY

and the matrix [D] is just a simplified notation and is given as [38]

[D] = [Huu]−ω2[Muu] . (2.47)

By inserting the global displacement vector into the second expression in Eq. 2.45, and if

the admittance Y is defined by the current I divided by the voltage V , the admittance of the

piezoelectric structure is given as [38]

Y (ω) = I

V
= iω

(
{Huφ}T [D]−1{Huφ}−Hφφ

)
. (2.48)

In the case of the piezoelectric structure is in a vacuum, the only volume studied isΩp ,

which is the volume of the piezoelectric structure, see Figs. 5.2/5.3. Reviewing the disc sub-

merged into an inviscid and irrotational fluid, a new region,Ω f , occurs which is the fluid vol-

ume [38], see Figs. 5.2/5.4. In the time-harmonic case, the relationship between the acoustic

pressure p and the velocity potential ψ in the fluid is [38]

p = iωρ f ψ. (2.49)

where ρ f is the density of the fluid. The Helmholtz equation governing the fluid velocity

potential ψ [36] is given as

ψ,i i =−k2ψ , (2.50)

where k is the wave number, which is k =ω/c f , where c f is the sound speed in the fluid. The

piezoelectric structure’s surface, facing a fluid, is imposed with new boundary conditions

[38]. With boundary conditions introduced, the FE-formulations Eqs 2.40-2.43 and 2.50 is

used when setting up weak formulations using test functions and solving each part of the

weak formulation equations using Gauss Legendre quadrature [38]. With each part solved

using Gauss, the final FE formulation for the fluid loading is written as [38]

−ω2


Muu 0 0

0 0 0

0 0 −Mψψ




û

φ̂

ψ̂

+iω


0 0 Cuφ

0 0 0

Cψu 0 0




û

φ̂

ψ̂

+


Kuu Kuφ 0

Kφu Kφφ 0

0 0 −Kψψ




û

φ̂

ψ̂

=


0

−Q

0

 ,

(2.51)

and the variables of this Eq. 2.51 are given in Table 2.3.

CHAPTER 2. THEORY 25

Table 2.3: Description of variables and matrices used in Eq.2.44 and 2.51 [38].

Variable Description [38]

[Muu] Global mass matrix

[Mψψ] Global fluid mass matrix

[Cuψ] Global fluid/structure coupling matrix

[Cψu] Global fluid/structure coupling matrix

[Kuu] Global stiffness matrix

[Kuφ] Global piezoelectric stiffness matrix

[Kφu] Global piezoelectric stiffness matrix

[Kφφ] Global dielectric stiffness matrix

[Kψψ] Global fluid stiffness matrix

{F } Global force vector

{Q} Global charge vector

{û} Global displacement vector

φ̂ Global electric potential

ψ̂ Global fluid velocity potential

V Voltage

I Current

The FE formulation, Eq. 2.51 are transformed to H-form and given as [38]

−ω2


Muu 0 0

0 0 0

0 0 −Mψψ




û

V

ψ̂

+iω


0 0 Cuφ

0 0 0

Cψu 0 0




û

V

ψ̂

+


Huu Huφ 0

Hφu Hφφ 0

0 0 −Kψψ




û

V

ψ̂

=


0

−I/iω

0

 .

(2.52)

From Equation (2.52), the global fluid velocity potential and global displacement vector can

be written as [38] {
ψ̂

}=−iω
(
ω2[Mψψ]− [Kψψ]

)−1
[Cψu] {û} , (2.53)

and

{û} =−[E]−1 {
Huφ

}
V , (2.54)

respectively, where the matrix [E] is just a simplified notation and is given as [38]

[E] =
{

[Huu]−ω2[Muu]+ω2[Cuψ]
(−[Kψψ]+ω2[Hψψ]

)−1
[Cψu]

}
, (2.55)

The admittance is obtained by inserting the global displacement into the second expression

26 CHAPTER 2. THEORY

in Eq. 2.52 and written as [38]

Y (ω) = I

V
= iω

{
[Huφ]T [G]−1[Huφ]− [Hφφ]

}
. (2.56)

The global fluid velocity potential is inserted into Eq. (2.49) for the acoustic pressure and

then expressed as [38] {
p̂

}=−iωρ f
{
ψ̂

}
. (2.57)

28

Chapter 3

Experimental setup and measurement

method

This chapter presents the instruments used, the experimental setup of electrical and acous-

tic measurements, and the method for analyzing measurement results. Sect. 3.1 shows a

table of all the equipment that has been used. Sect. 3.2 goes through the method for elec-

trical measurements. Sect. 3.3 goes through the method for acoustic measurements. Sect.

3.4 describes how the microphone sensitivity is calibrated. Sect. 3.5, motor setup and ad-

justment of the Y-stage travel length is described. Sect. 3.6 describes reflections that can

affect the measured signal. Finally Sect. 3.7 describes the signal setup and processing of the

signals.

3.1 Equipment list

Table 3.1 is the overview of the equipment connected to the movements of the experimental

setup, and Table 3.2 shows the remaining equipment used in the experimental setup

Table 3.1: Equipment used in present work.

Brand/Model Equipment Serial number Documentation/Manual

SMC Hydra TT Motion Controller 1404-0153 [56]

PI C-843.41 Motion Controller 0095103296 [55]

PI C-852.12 Signal processor/Encoder 1460497 [51]

PI M-531.DG Linear stage (X-stage) - [53]

PI M-535.22 Linear stage (Y-stage) 1460497 [52]

PI LS270 Linear stage (Z-stage) 414000926 [57]

PI M-037.PD Rotation stage (R-stage) 109040312 [54]

CHAPTER 3. EXPERIMENTAL SETUP AND MEASUREMENT METHOD 29

Table 3.2: Equipment used in present work.

Brand/Model Equipment Serial number Documentation/Manual

Mitutoyo M310-25 Micrometer 102-301 [47]

Cocraft HL10-S Cross-line laser level 18081157898 [23]

HP 4192A Impedance analyzer 2150J01344 [31]

Vaisala HMT313 Humidity and temperature F4850018 [70]

ASL F250 MkII Thermometer 1365026993 [8]

Paroscientific 740 Barometer 67325 [50]

Agilent 33220A Signal generator MY44023589 [4]

Tektronix DPO3012 Oscilloscope C010246 [66]

Krohn-Hite 3940 Filter AM2626 [40]

Brüel & Kjær 2636 Measurement amplifier 1815638 [18]

Brüel & Kjær 4138 1/8-inch pressure-field microphone 1832479 [17]

Brüel & Kjær UA-160 Adaptor - microphone to preamplifier - [17]

Brüel & Kjær 2633 Preamplifier - [17]

Brüel & Kjær 4228 Pistonphone 1918465 [16]

KEYENCE LK-G3001PV Controller with display 1741187 [35]

KEYENCE LK-G32 Laser sensor 2041141/2041143 [35]

Meggitt A/S Pz27 Ceramic disc Piezoelectric element - [46]

3.2 Electrical measurement setup

The impedance analyzer HP4192A [31] in Fig. 3.1 measures the electrical conductance and

susceptance of the piezoelectric disk used in this work. The conductance, GT , and suscep-

tance, BT , determine the piezoelectric element’s electrical characteristics and are used to

calculate YT . The admittance is given as

YT (f) =GT (f)+ i BT (f) . (3.1)

Before measurements are conducted of the piezoelectric disk, the impedance analyzer is

turned on for at least 30 minutes to warm up the electronics and stabilize the instrument

[31]. After the warm-up, it is necessary to do a zero calibration of the impedance analyzer

to account for the electrical properties of external wires connected to the instrument. The

calibration is performed in two steps: The first calibration is when the external wires con-

nected to the analyzer are separated from each other, leading to an open circuit where the

impedance is Z =∞Ω; The second calibration is when the external wires are kept together,

making a shorted circuit where the impedance Z ≈ 0Ω. These calibrations are generally per-

formed with the highest measuring frequency of the measurement series, which is 300 kHz in

this work. The complete calibration description is in section 3-50 in the manual [31]. Then by

connecting the wires to each of the electrodes or wires soldered to the electrodes, see Fig. 3.2,

the element of interest is ready for measurement. The MatLab script impanal.m in Appendix

30 CHAPTER 3. EXPERIMENTAL SETUP AND MEASUREMENT METHOD

[A.1] sets all measurement parameters before performing measurements and connects to the

analyzer through GPIB. The adjustable parameters are the frequency range, frequency reso-

lution, time delay before measurement after a frequency change, and the root mean square

voltage Vr ms . The frequency range of interest in the present work is 1-300 kHz. This range

covers the piezoelectric element’s first and second radial modes relevant for air/gas mea-

surements. After performing a rough measurement of the GT and BT , the radial modes are

identified. A new measurement is conducted from 1-300 kHz with a higher frequency reso-

lution around the radial modes. The voltage range of the impedance analyzer is from 0.1-1.1

Vr ms , where higher voltage can trigger non-linear effects but reduce the signal-to-noise ratio

[13] or lower voltage increase uncertainties [31]. Previous work done by [48][29] has used 0.3

Vr ms to maximize the accuracy of the measurement of the GT and BT , and therefore is this

voltage used in the present work.

Figure 3.1: Impedance Analyzer HP 4192A [31], with a styrofoam block on the left side and
the external wires used to connect the analyzer to the electrodes on the piezoelectric disk,
pass through the styrofoam block.

When conducting measurements of the piezoelectric element, it is desirable to mini-

mize the mechanical load on the disk. With a styrofoam block, the disk placed in a groove

in the styrofoam, see Fig. 3.2, and wires connected to the electrodes with a slight inward

force, this setup intends to minimalize this load. This minimization helps the element to

vibrate more freely and is essential when compared to FE simulations of the admittance of

the piezoelectric disk in vacuum and fluid. It also helps to give more accurate measure-

ments. However, in previous work, repeatability problems have been observed around the

CHAPTER 3. EXPERIMENTAL SETUP AND MEASUREMENT METHOD 31

resonances of measurements performed by [48][29]. It has been suggested that repeatability

problems arise due to variations in the disk location in the styrofoam groove, the location of

the wires on the electrodes, or different spring-like forces exerted by the wires placed on the

electrodes [48][29]. It is also performed measurements directly on the wires plugs, where the

wires are soldered to the electrodes, see Fig. 3.2b. These measurements are used to compare

to the measurements conducted directly on the electrodes.

(a)

(b)

Figure 3.2: A styrofoam block with a groove holds the piezoelectric element when measuring
the admittance. (a) Measurement is performed with wires from the analyzer placed directly
on the electrodes and (b) to the wires soldered to the electrodes.

32 CHAPTER 3. EXPERIMENTAL SETUP AND MEASUREMENT METHOD

3.3 Acoustical measurement setup

Previous works [65][48][29] started developing the current acoustical measurement setup

and have been continued to be developed by [6][7][64][26][24]. The block diagram in Fig. 3.3

is a detailed description of the current acoustical measurement setup. Figs. 3.4 and 3.5 gives

the setup’s visual overview, and the remaining instruments are shown in Fig. 3.6. There are

two ways to go forward with acoustical measurements, set the settings directly in MatLab

app for single measurements or predefining settings in the MeasurementParameters.m in

Appendix A.3 script for a measurement series, see Sect. 4.4 for changeable settings.

Figure 3.3: Block diagram of the acoustical setup and signal path. The blocks represent dif-
ferent equipment and are given in Table 3.2.

From the measurement system shown in Fig. 3.3, the measurements start with settings

being sent from the computer to the signal generator (I), oscilloscope (VIII), and filter (VII).

The signal generator creates the desired signal and sends it out through the output port. The

oscilloscope reads the signal in channel one, which is connected to the signal generator and

transmitter electronics (II) via BNC T-connector. The signal continues through the transmit-

ter electronics, connected to the transmitter (III) via coaxial cable. Further, the transmitter

sends the signal through the air (IV) before reaching the receiver (V). The received signal

continues further to receiver electronics which amplifies (VI) the signal and filters the signal

with a band-pass filter. The termination of the signal happens at the oscilloscope channel

two after being amplified and filtered.

CHAPTER 3. EXPERIMENTAL SETUP AND MEASUREMENT METHOD 33

Figure 3.4: A overview of some of the equipment in the acoustical setup, where (A) is the
barometer, (I) is the signal generator, (VI) is the amplifier, (VII) is the filter, and (VIII) is the
oscilloscope (Table 3.2).

Figure 3.5: A overview of the chamber in the acoustical setup, where (III) is the piezoelectric
disk/transmitter and (V) is the microphone/receiver (Table 3.2).

34 CHAPTER 3. EXPERIMENTAL SETUP AND MEASUREMENT METHOD

The setup frame is built up of aluminum profiles and placed inside a plastic sheet

chamber. The chamber intends to lower the airflow to increase the accuracy of measure-

ments. The measurements of the environmental parameters that take place inside the cham-

ber are temperature (B)(C) and humidity (C), see Fig. 3.6. Inside the chamber is the place-

ment of the transmitter, receiver, lasers stage (D), and all the moving stages as well. The only

environmental parameter measured outside the chamber is the pressure (A).

Figure 3.6: A overview of some of the equipment in the acoustical setup, where (B) is the
ASLF250 measuring the temperature, (C) the Vaisala measuring temperature and humidity,
and (D) is the laser stage.

3.3.1 Signal generator (I)

The signal generator used in the present work is the Agilent 33220A [4], which communicates

with the computer through GPIB. By predefining the settings, the instrument generates a

sinusoidal burst and sends it out through the output port as V0. Changeable settings are the

number of cycles, frequency, burst rate, and signal voltage amplitude. This work uses a 60-

cycle sine burst and several different frequencies, a burst rate of 25Hz, and a peak-to-peak

voltage signal V0pp of 1 volt to avoid non-linearities of the piezoelectric disk at resonance

frequencies. The low burst rate frequency used is because of letting reverberations of the

piezoelectric disk die out and not letting any reflection interfere with the next burst. The

output impedance of the signal generator is 50 Ω, and at low output impedance, the output

voltage V0 usually is twice the programmed voltage. This doubling of the voltage is because,

with high frequency and broadband signals, coaxial cables have a characteristic impedance

of 50Ω for practical reasons and will halve the voltage V0 to 1 volt peak-to-peak. This halving

of the voltage could easily be calculated by putting a load impedance in series to a Thevenin

circuit, and the output voltage over the load impedance becomes

V0m =V0

(
50Ω

50Ω+50Ωsi g

)
=V0

1

2
. (3.2)

CHAPTER 3. EXPERIMENTAL SETUP AND MEASUREMENT METHOD 35

However, since the termination impedance of the oscilloscope is 1 MΩ, the read voltage will

be approximately 2 volts peak-to-peak due to

V0m =V0

(
1E6Ω

1E6Ω+50Ωsi g

)
≈V0 . (3.3)

With the piezoelectric disk considered in this Thevenin circuit and parallel to the load impedance

of the oscilloscope, this voltage V0m measured changes dependent on the frequencies. Out-

side resonance of the disk, the perceived impedance is much higher than at the resonances.

This change in impedance leads to the voltage V0m measured being closer to 2 volts outside

resonances and closer to 1 volt at resonance.

3.3.2 Transmitter electronics (II)

Transmitting electronics in this work is only a cable linking the piezoelectric disk to the BNC-

T connector at the oscilloscope. It is assumed that this cable has the same characteristics as

an RG58 coaxial cable, see Sect. 3.3.10. This transmitting electronics transfer the voltage V0m

measured at channel one at the oscilloscope to the piezoelectric disk electrodes. The voltage

V1 over the disk is calculated using the transfer function Eq. 2.21.

3.3.3 Transmitter (III)

The transmitter used in the present work is the piezoelectric ceramic disk Pz27. This ceramic

disk, made by Meggit, states low aging rates and stable performance [46]. This ceramic disk

type is a soft lead zirconate titanate (PZT) [46]. It has characteristics such as; high Curie

temperature, low-temperature coefficients, and low mechanical quality factors [46], which

allows the disk to be used in a variety of applications, such as flow meters, and therefore of

interest in this work. The stated dimension of the disk is 2 mm in the thickness direction

and 20 mm in diameter. However, the more accurate dimensions are measured and given

in Table 5.3 in Sect. 5.3. The disk used in this work has previously been used by [26][7][64],

and named #7. This disk has two wires soldered to the electrodes and hung up in a steel rod

attached to the axis of rotation. A voltage V1 applied to the electrodes is generated at the

signal generator and sent through the transmitting electronics. The voltage sets the disk into

motion and starts oscillating with a given frequency. This oscillation excites the piezoelectric

disk with a velocity v2 normal to the electrode front and is transmitted into longitudinal free-

field pressure waves p3 out in the medium.

36 CHAPTER 3. EXPERIMENTAL SETUP AND MEASUREMENT METHOD

3.3.4 Medium (IV)

The medium in this work that surrounds the transmitter and receiver is air. By monitoring

the environmental parameters by measuring the temperature T in ◦C, relative humidity RH

in percentage %, and pressure P in hPa, the air absorption is calculated by Eq. 2.10. The

absorption is essential when correcting for losses in pressure amplitude p4, which makes

the measurement pressure comparable to the FE simulation pressure.

3.3.5 Receiver (V)

The receiver in this work is a 1/8-inch pressure-field microphone of the brand Brüel & Kjær

and is the type 4138 [17]. It measures the free-field pressure p4 and converts it into a voltage

V5. More about the microphone in Sect. 3.4, later in this chapter. This section also covers the

calibration of the microphone sensitivity.

3.3.6 Amplifier (VI)

The amplifier used in the present work is the Brüel & Kjær 2636 Measuring Amplifier and is

adjusted manually [18]. This amplifier is one of two receiver instruments in this acoustical

setup. In this work, the amplifier gain setting is 60 dB and split between the input and output

ports by 40 dB and 20 dB, respectively. Brüel & Kjær state the amplifier’s frequency response

to be flat, 0 dB in the range from 1 Hz to 200 kHz, see Fig 3.7 and can provide up to 100

dB gain with a step of 10 ± 0.05 dB [18]. However, previous work done by Mosland and

Hauge [48][29] did investigate the amplifier’s frequency response and found a more accurate

frequency response, see Fig 3.8. This new frequency response shows that in the frequency

range from approx. 170 kHz to 220 kHz, an additional gain of 0.1 dB must be taken into

account.

Figure 3.7: Typical overall frequency response of the Brüel & Kjær 2636 Measuring Amplifier
[18].

CHAPTER 3. EXPERIMENTAL SETUP AND MEASUREMENT METHOD 37

Figure 3.8: The frequency response of the Brüel & Kjær 2636 Measuring Amplifier created by
[48] by conducting peak-to-peak voltage measurement in the frequency range from 50-300
kHz and normalizing measurements to the peak-to-peak voltage at 50 kHz. This frequency
response is taken from [48].

3.3.7 Filter (VII)

The filter used in the present work is the Krohn-Hite 3940 filter [40], which communicates

with the computer through GPIB. It has two channels, the first for a high-pass filter and the

second for a low-pass filter. The cutoff frequency for the high-pass filter is set to half the

measurement frequency and twice the measurement frequency for the low-pass filter. The

attenuation outside the band-pass for this filter is 24 dB per octave [40]. It is possible to

adjust the filter setting with the MeasurmentParemeters.m script in Appendix A.3.

3.3.8 Oscilloscope (VIII)

The oscilloscope used in the present work is the Tektronix DPO3012 [66], which communi-

cates with the computer through USB. The oscilloscope has two input channels with termi-

nation impedance of 1 MΩ and 11 pF. Channel one read voltage V0 from the signal generator

connected to the oscilloscope by coaxial cable and measured as V0m . Channel two read the

output voltage V5 from the microphone treated by the amplifier and band-pass filter con-

nected by coaxial cables, terminated at the oscilloscope, and measured as V5m . The oscil-

loscope’s changeable settings are averaging, sample count, time per division (t/div), voltage

per division (V/div), and bits. The voltage signal measured is averaged by 128 bursts. The

t/div and V/div are automatically updated with scripts in the MatLab app, where t/div and

V/div depend on the currently displayed signal length and voltage amplitude. The sample

count is set to 10 000 samples, the t/div is usually 40µs or 100µs, and it is ten divisions on the

oscilloscope, leading to a 0.4 ms to 1 ms time window. This time window leads to a sampling

frequency of 25 MS/s or 10 MS/s and is more than sufficient for frequencies between 50 kHz

38 CHAPTER 3. EXPERIMENTAL SETUP AND MEASUREMENT METHOD

to 250 kHz. The bits resolution of the oscilloscope is set to 16-bit.

3.3.9 Environmental parameters

The monitored environmental parameters are pressure, temperature, and relative humidity.

The barometer Paroscientific 740 (A) measures the pressure in hPa with a DIGIQUARTZ®

pressure transducer. This pressure transducer gives high accuracy, resolution, and long-term

stability resulting in an uncertainty of ±0.01 % [50]. Both the ASL F250 MkII (B) and the

Vaisala HMT313 (C) measure the temperature inside the plastic sheet chamber. They use

a PT100 sensor with an uncertainty of ±0.01 ◦C and ±0.1 ◦C, respectively [8][70]. Vaisala

HMT313 also measures relative humidity with a HUMICAP® with an uncertainty of ±0.6 %

when relative humidity is below 40 % and ±1.0 % for above 40 % [70].

3.3.10 Cables

In the acoustical air setup, are two types of cables used. The first cable connects the piezo-

electric disk to the BNC-T connector at the oscilloscope and is assumed to have the same

characteristics as an RG58 coaxial cable. The second type is RG58 coaxial cables connecting

the instruments. The coaxial cables are of different lengths, see Table 3.3, and the character-

istic impedance of type RG58 coaxial cable is 50 Ω. There are also typical specifications for

the RG58 coaxial cable listed in Table 3.4 [73].

Table 3.3: Measured or given length of the cables in the measurement setup.

Cable connection
Cable length

Input1 Input2

Signal generator BNC-T connector 0.25 m

BNC-T connector Piezoelectric disk 3.00 m

Amplifier Filter (Ch.1) 0.50 m

Filter (Ch.1) Filter (Ch.2) 0.80 m

Filter (Ch.2) Oscilloscope 1.50 m

Table 3.4: Typical specifications for RG58 coaxial cables [73]

Description Value Unit

Inductance (L) per meter 250 [nH/m]

Capacitance (C) per meter 100 [pF/m]

CHAPTER 3. EXPERIMENTAL SETUP AND MEASUREMENT METHOD 39

3.4 Brüel & Kjær 4138 microphone

The receiver in the acoustical setup is a microphone of the brand Brüel & Kjær type 4138 [17],

which is a 1/8-inch microphone. This microphone is used together with a 1/4-inch Brüel &

Kjær preamplifier type 2633 [17]. The preamplifier is necessary since the microphone needs

a polarization voltage of 200 V. Brüel & Kjær states that the preamplifier has a flat frequency

response [17]; therefore, only the microphone’s frequency response |M(f)| is considered in

calibration. The given frequency response from the calibration chart of the microphone [19]

goes from 20 Hz to 200 kHz, and is calibrated with an electrostatic actuator and plotted rel-

ative to reference microphone sensitivity |Mr e f (250H z)| at 250 Hz. The calibration chart is

digitized by importing a scanned image of the frequency response into an online software

[60] and recreating the chart by manually inserting data points. The final result of the data

points is plotted, see Fig. 3.9. This method of recreating a plot will give some errors. Factors

that give errors are the thickness of the line, manually placing the data points on the line,

and limitation on pixel movement of the points. Previous work by [24] estimated this error

to be ±0.1 dB.

Figure 3.9: Open-circuit pressure response relative to 250 Hz for Brüel & Kjær microphone
type 4138 with the serial number: 1832479.

In addition to the open-circuit pressure response, it is necessary to include the free

field correction for a given incident angle of sound pressure θi . The free-field correction de-

scribes the increase of sound pressure caused by diffractions [17]. This increase happens at

high frequencies when the wavelength becomes comparable to the diameter of the micro-

phone. By assuming the incident angle of sound pressure between transmitter and receiver

is θi equals 0 degrees, which is the case in this work, the Brüel & Kjær free-field correction

chart is digitized for this angle and added to the open-circuit pressure response. The chart

40 CHAPTER 3. EXPERIMENTAL SETUP AND MEASUREMENT METHOD

used is for the 4138 microphone with a protection grid over the diaphragm [17] and digi-

tized with the same method earlier, and the result is given in Fig. 3.10. This chart goes from

4-200 kHz. The open-circuit pressure response added to the free-field correction gives the

microphone system’s free-field open-circuit pressure response from 4-200 kHz, see Fig. 3.11.

Figure 3.10: Free-field correction relative to 250 Hz for Brüel & Kjær microphone type 4138
with protection grid [17].

Figure 3.11: Open-circuit pressure response, including free-field correction, relative to 250
Hz for Brüel & Kjær microphone type 4138 with the serial number: 1832479.

CHAPTER 3. EXPERIMENTAL SETUP AND MEASUREMENT METHOD 41

3.4.1 Microphone sensitivity calibration using a pistonphone

This work uses a Brüel & Kjær 4228 pistonphone to find the microphone’s system sensitivity

[16]. This pistonphone produces a nominal sound pressure level St ated SPL of 124.11 ± 0.09

dB relative to 20 µPa [20]. It also has a nominal frequency of 250 Hz, or the exact frequency is

102.4 Hz (ISO266) ±0.1 % [20]. If the calibration is under conditions other than the reference

condition, the sound pressure level is given as [20]

Actual SPL = St ated SPL+∆LV +∆Lp , (3.4)

where ∆LV is the load volume correction, ∆Lp is a correction if ambient pressure deviates

from 1013 mbar, and Actual SPL is the corrected sound pressure level. The load volume cor-

rection ∆LV for the given microphone 4138 is 0 dB when using the pistonphone adaptor DP

0774, see Table 3.5. The ambient pressure correction ∆Lp can be read directly off barome-

ter UZ0004 supplied with the pistonphone calibration set [16], see Fig. 3.12. Alternatively,

calculated using an interpolation function between different points read of the barometer

UZ0004, see Table 3.6, and then using the ambient pressure measured with the Paroscien-

tific 740, during the calibration.

Table 3.5: The load volume correction ∆LV given by [20].

Table 3.6: Different points read of the supplied barometer UZ0004 in the pistonphone cali-
bration set [16], see Fig. 3.12, used to calculate the ambient pressure correction ∆Lp .

Pressure 685 mbar 800 mbar 940 mbar 990 mbar 1013 mbar 1060 mbar

Correction -3.4 dB -2.05 dB -0.65 dB -0.20 dB 0.00 dB 0.39 dB

42 CHAPTER 3. EXPERIMENTAL SETUP AND MEASUREMENT METHOD

Figure 3.12: Supplied barometer UZ0004 in the pistonphone calibration set [16].

Using the definition of the microphone sensitivity given in Eq. 2.37 and using the pis-

tonphone, the microphone sensitivity |MV | is calculated as

MV (250 H z) = Ve f f (250 H z)

pe f f (250 H z)
, (3.5)

where Ve f f is the calculated open-circuit effective voltage with Eq. 2.38, and the pressure

pe f f is the free-field effective pressure at the front of the microphone with the assumptions

of normal incidence and plane waves. The oscilloscope records the microphone’s voltage

signal V5m(t) produced by the pistonphone, see Fig. 3.13, and fast Fourier transformed to

the voltage V5m(f), see Sect. 3.7.2, where V5mpp (250 H z) is then calculated as

V5mpp (250 H z) = 4∗V5m(250 H z) = 402.55 mV , (3.6)

where V5mpp (250 H z) is the calculated peak-to-peak voltage from the fast Fourier trans-

formed voltage V5m(250 H z). Then, with the calculated V5mpp (250 H z), the effective voltage

Ve f f is then deduced by using the Eq. 2.38, which gives

Ve f f (250 H z) =
V5pp (250 H z)

2
p

2
= 1

2
p

2

V5mpp (250 H z)

HV V
55m(250 H z)

= 1

2
p

2

402.55

9.998
mV = 14.235 mV , (3.7)

where HV V
55m is the transfer function in Eq. 2.29 and V5pp is the peak-to-peak voltage out of

the microphone. In this calibration, the amplifier gain is set to 20 dB.

CHAPTER 3. EXPERIMENTAL SETUP AND MEASUREMENT METHOD 43

Figure 3.13: V5m(t) measurement generated by the pistonphone with an amplifier gain of 20
dB.

By calculating the Actual SPL with Eq 3.4, which gives

Actual SPL = 124.11 dB −0.251 dB +0 dB = 123.859 , (3.8)

where ∆LV equals 0 dB and ∆Lp equals -0.251 dB, the free-field effective pressure can be

calculated using the Eq. 2.39, which gives

pe f f (250 H z) = pr e f ·10
Actual SPL

20 = 20µPa ·10
123.859

20 = 31.1875 Pa (3.9)

where pr e f is the reference pressure 20 µPa. Then with Equation 3.5, the microphone sensi-

tivity is calculated as

MV (250 H z) = 14.235 mV

31.1875 Pa
= 0.456433 mV /Pa. (3.10)

This calibrated microphone sensitivity |MV (250 H z| at 250 Hz has changed largely in

previous works and calculated to 0.3157 mV/Pa [1], 0.535 mV/Pa [6], 0.493 mV/Pa [48][29],

and now 0.456433 mV/Pa. None of the previous studies answers the significant changes in

calibration results. An observation made in this work was that the higher the gain, the higher

the signal distortion of the measured signal of the pistonphone. This distortion is the reason

why 20 dB gain is used in this work, while it has previously been used as 30 dB by [1] and

[6] and 20 dB by [48][29]. The calibration and calculated microphone sensitivity at 250 Hz

are then added to the open-circuit pressure response, including a free-field correction in Fig.

44 CHAPTER 3. EXPERIMENTAL SETUP AND MEASUREMENT METHOD

3.11, to deduce the free-field open-circuit receiver sensitivity, which is given as

20l og10|Mcal (f)| = 20log10

(|M(f)| |Mcor r (θi = 0, f)| |MV (250H z)|
|Mr e f (250H z)|

)
[dB r e. 1V /Pa] (3.11)

where |Mcal (f)| is the calibrated microphone sensitivity and plotted in Fig. 3.14. The Fig.

3.15 is the equivalent free-field open-circuit receiver sensitivity in mV/Pa.

Figure 3.14: The free-field open-circuit microphones sensitivity from 4-200 kHz in dB.

Figure 3.15: The free-field open-circuit microphones sensitivity from 4-200 kHz in mV/Pa.

CHAPTER 3. EXPERIMENTAL SETUP AND MEASUREMENT METHOD 45

3.5 Motor’s setup

The present work’s motor setup contains two motion controllers, one encoder for Y-stage,

three linear stages (X, Y, and Z-stage), and one rotation stage (R-stage). For an illustration

of the motor setup, see the block diagram of the motor setup, Fig. 3.16. All linear stages use

reference coordinates found by an induction sensor at the end of each linear stage. These

reference coordinates are repetitive and therefore used to find the origin position of the

transducer. More details about using reference coordinates to find the origin position of

the transducer are in the Chapter 4, and the importance of finding the origin position of the

transducer is in the Sect. 4.5.

Figure 3.16: Block diagram of the acoustical motor setup and signal path. The blocks repre-
sent different motors and motor controllers and are given in Table 3.1.

The X and Y-stage set the microphone’s position, and the Z-stage set the distance be-

tween the microphone and transducer. The R-stage rotate the transducer and is used to set

the angle θR of the transducer relative to the microphone. The travel length of the X and Y-

stage is 300 mm, and the Z-stage is 1016 mm, but it is limited to about 900 mm because the

X and Y-stage are a part of the Z-stage linear rail system. The R-stage has no limits and can

rotate an infinite number of degrees, but it is limited to roughly ±90 degrees in this work. All

linear stages move in steps, where one step is equivalent to one mm, or ten step is equiva-

lent to ten mm, for the rotation stage, one step is equivalent to one degree. In this work, it

is needed to adjust the Y-stage after observing wrong travel distance in mm relative to the

given input step.

46 CHAPTER 3. EXPERIMENTAL SETUP AND MEASUREMENT METHOD

3.5.1 Travel distance adjustments of Y-stage

The internal settings of the Y-stage are given by [52] and are:

• the ball screw pitch, b, equal to 2 mm per revolution

• the encoder resolution, er es , equal to 2000 counts per revolution

• the backlash-free gear head, g , which is 29.64197531:1

• the stage resolution, yr es , (calculated from b/er es/g) equal to 0.34 µm per count

Suppose any of the internal settings deviate from [52]. In that case, it will lead to the en-

coder interpreting an inaccurate yr es and reading the incorrect number of counts leading

to a wrong travel distance. It is observed that the Y-stage does not move the desired travel

length but moves a shorter distance. The error is proportional to the input value by a com-

mon factor, e.g., an input value of one step results in a travel distance of half an mm, or

two step results in a travel distance of one mm. The repetitive error in the travel distance

indicates that the error comes from the internal settings of the Y-stage and not because of

damaged parts. Since changing the internal settings has not been possible, a common al-

ternative way of adjusting the travel length has been used. This alternative way is to look

at the ratio of the output travel distance and the input value and define this ratio as travel

resolution, dr es as

dr es = d

s
= 1 , (3.12)

where s is the step and d is the travel distance in mm. If the input value is not equal to the

travel distance, which is the case for the Y-stage, then dr es deviates from one and must be

adjusted with a factor f as

f ·dr es = f · d

s
= 1 . (3.13)

The purpose of this is to alter the number of counts to be counted by the encoder without

physically changing the internal settings but still achieving the correct travel distance. The

travel distance d is measured with a dial gauge with an uncertainty of ±0.01 mm. This dial

gauge is made by the brand TESA Technology [67]. The positioning of the dial gauge, shown

in Fig. 3.17, is as parallel as possible to the Y-stage such that the dial gauge plunger moves

parallel with the stage. The travel distance is measured ten times using s set to 25, and the

average of d is calculated as

d̂ =
∑N

i=1 |di |
N

, (3.14)

and the uncertainty of the travel distance is

σd =
√
σ2

std +σ2
di al , (3.15)

CHAPTER 3. EXPERIMENTAL SETUP AND MEASUREMENT METHOD 47

where σdi al is the uncertainty of the dial gauge and σstd is the estimated standard deviation

calculated as

σstd =
√∑N

i=1(di − d̂)2

N −1
. (3.16)

Figure 3.17: Dial gauge lined up parallel to the Y-stage, ready to measure the travel distance
of the stage.

After calculating the factor with Eq. 3.13, f is tested to find the accuracy of dr es by

taking the input value, s, multiplying it with f , and repeating ten distance measurements. If

the distance resolution still deviates from one, a new factor is calculated as

fnew ·dr es = fnew · d

s · fol d
= 1 , (3.17)

where fnew is the new factor and fol d is the old factor. Then to test fnew to find the accu-

racy of dr es , fnew is replaced with fol d , and the ten distance measurements are repeated.

48 CHAPTER 3. EXPERIMENTAL SETUP AND MEASUREMENT METHOD

This process is repeated until dr es reaches appropriate values, see Fig 3.18. To calculate the

uncertainty of the dr es from Eq. 3.17 the uncertainty σdr es becomes

σdr es =
√(

∂dr es

∂d
·σd

)2

+
(
∂dr es

∂s
·σs

)2

+
(
∂dr es

∂ fol d
·σ fol d

)2

=
√(

1

s · fol d
·σd

)2

, (3.18)

where σ fol d and σs equals zero because the factor and step are exact quantities with zero

uncertainty. The final adjustment factor, f used, equals 1.69028, and the calculated distance

resolution, dr es , equals 1.0000 ± 0.00024.

Figure 3.18: The change in distance resolution, dr es , is adjusted by the factor f found using
the input step, s, equal to 25 steps and the calculated distance d̂ of ten distance measure-
ments.

3.6 Reflections

This acoustic measurement setup contains many surfaces that can reflect a transmitted sound

wave. Such as flat aluminum profiles, steel rods and plates, walls, floor and roof, plastic

sheets, and wood frames. Most of these reflections are non-destructive on the received sig-

nal because of the late arrival time compared to the transmitted signal. The one destructive

reflection that needs to be considered when measuring is the reflection from the vertical rod

behind the transducer. The vertical steel rod has a wedge shape to reduce the reflections,

see Figs. 3.5 and 3.19. This reflection from the vertical rod becomes apparent after the rota-

tion angle θR deviates from 0 degrees, and the reflection starts to become a problem for the

acoustic measurement signal, as illustrated in Fig. 3.19. Calculating the arrival time tr e f l of

CHAPTER 3. EXPERIMENTAL SETUP AND MEASUREMENT METHOD 49

this reflection for every angle of θR is possible with the given equation

tr e f l (θR) =
√

(dr od cos(θR)+ z0)2 + (dr od si n(θR))2 +dr od

cai r
= dh(θR)+dr od

cai r
, (3.19)

where dr od is the distance between the rod and piezoelectric disk, z0 is the direct length be-

tween disk and microphone, and dh is the distance from the vertical rod to the microphone,

which is dependent on the R-stage rotation angle θR .

Figure 3.19: Illustration of direct travel path z0, and reflection path through dr od and dh from
piezoelectric disk to microphone.

By knowing the arrival time of the reflection tr e f l at every angle θR , the interval used to calcu-

late the voltage V5m(f) can be set from the start of the steady state of the acoustic measure-

ment signal to the reflection’s arrival time. This interval prevents the acoustic measurement

signal from being interfered with by reflections and intends to get the best results possible

by the acoustic measurement signal. However, this work uses a sinus burst with a calculated

standard number of cycles, which is used throughout this work. In order to calculate the

number of cycles to be used in the measurements in this work, it is first calculated the time

difference between the acoustic measurement signal coming directly from the piezoelectric

disk and the arrival time of the reflection from the vertical rod ∆t as

∆t (θR , z0) = tr e f l (θR)− z0

cai r
= tr e f l (θR)− tdi r , (3.20)

where tdi r is the direct signal between the disk and microphone. In this work, final mea-

surements are not performed further out than distance z0 equal to 0.3 m. To calculate the

50 CHAPTER 3. EXPERIMENTAL SETUP AND MEASUREMENT METHOD

shortest∆t for this distance (z0 equal to 0.3), which is when θR is equal to 90 degrees, then∆t

can be used to calculate the number of cycles without reflection interfering with the direct

signal of interest. The number of cycles is then calculated for the frequency 98860 Hz as

c ycles = f ·∆t (θR = 90 ◦, z0 = 0.3 m) = 98860 H z ·0.737 ms ≈ 73 . (3.21)

With a calculated number of cycles to be 73, the standard number of cycles is set to 60-

cycles. With a measurement signal combined as a short duration signal tdur , which can be

calculated as

tdur =
c ycles

f
, (3.22)

and with a short burst period i.e. 25 Hz, it is accounted for that all reflections, and any rever-

berations in the piezoelectric disk die out before the next sine burst is transmitted.

By studying the received acoustic measurement signal, it is possible to confirm that the

one destructive reflections come from the vertical steel rod. It can be confirmed by block-

ing the interference and seeing the reflection die out from the live signal at the oscilloscope.

Alternatively, measuring and calculate the arrival time of the reflecting signal from different

angles and compare it to the actual measurements, see Figs. 3.20-3.23. The present work

uses both these methods. By analyzing the signals in Figs. 3.20-3.23, the estimated arrival

time of the direct signal and reflection signal fits well with the several different angles’ pre-

dictions.

Figure 3.20: Reflection at θR equal to 55 degrees, a distance from the microphone to piezo-
electric disk z0 equals 600 mm, and a 30-cycle sine burst with frequency 98860 Hz.

CHAPTER 3. EXPERIMENTAL SETUP AND MEASUREMENT METHOD 51

Figure 3.21: Reflection at θR equal to 60 degrees, a distance from the microphone to piezo-
electric disk z0 equals 600 mm, and a 30-cycle sine burst with frequency 98860 Hz.

Figure 3.22: Reflection at θR equal to 80 degrees, a distance from the microphone to piezo-
electric disk z0 equals 600 mm, and a 30-cycle sine burst with frequency 98860 Hz.

52 CHAPTER 3. EXPERIMENTAL SETUP AND MEASUREMENT METHOD

Figure 3.23: Reflection at θR equal to 90 degrees, a distance from the microphone to piezo-
electric disk z0 equals 600 mm, and a 30-cycle sine burst with frequency 98860 Hz.

3.7 Signal setup and processing

For all measurements performed in this work, the number of pulse cycles is set to 60. This

selection is based on the arrival time of the first reflection from the vertical steel bar behind

the transducer found in Sect. 3.6. To avoid reflection from other places in the measuring

cage and give reflections from the cage time to die out and have no destructive effect on the

measuring signal, a burst rate of 25 Hz is selected. This burst rate also gives the piezoelectric

disk reverberations time to stop before the next cycle is sent out of the disk. The voltage out

of the signal generator V0pp is 1 V peak-to-peak and is selected to avoid non-linearities in the

piezoelectric disk that can occur at high input voltages. Because analyzing a vast amount of

signals in this work, there is a need to find a standard interval range for the measured acous-

tic signal V5m(t) to be Fourier-transformed, which gives good and repetitive results. After

performing measurements and analyzing the acoustic voltage signal V5m(t) over a more ex-

tended period, it is observed that the time for the signal to reach a steady state is approxi-

mately 30 pulses. The end time of the signal interval to Fourier transform is set to 5 pulses

before the estimated end of the signal to ensure the interval is within the transmitted signal

and no transient part is included. All measurements performed in this work are averaged

128 times.

CHAPTER 3. EXPERIMENTAL SETUP AND MEASUREMENT METHOD 53

3.7.1 Transmitted signal

The transfer function HV V
0m1 in Eq. 2.21 is used to calculate the voltage V1 across the electrodes

of the piezoelectric disk by multiplying the transfer function with the Fourier-transformed

measured voltage signal V0m(t). This measured voltage V0m(t) example is shown in Fig. 3.24,

and to Fourier transform the signal, a steady state range is selected. This steady state range

can change depending on the measuring frequency. The Fourier transform of the steady

state range gives the voltage V0m(f).

Figure 3.24: The measurement voltage V0m(t) measured at the input channel one on the
oscilloscope with signal generator frequency and voltage V0(t) set to 98860 Hz and 1 Vp-p.
The two red vertical lines represent the time interval’s start and end, which is the interval
that is FFT.

3.7.2 Received signal

The transfer function HV V
55m in Eq. 2.29 is used to calculate the output voltage V5 from the

microphone by taking the Fourier transformed measured acoustic voltage signal V5m(t) and

dividing it by the transfer function. This measured voltage V5m(t) example is shown in Fig.

3.25, and to Fourier transform the signal, a steady state range is selected based on observa-

tion of vast measurements. These observations led to the interval start of 30 pulses from the

estimated arrival time and 5 pulses before the estimated end time. This interval is used for

all angles and all distances from the microphone. The Fourier transform of the steady state

range gives the voltage signal V5m(f)

54 CHAPTER 3. EXPERIMENTAL SETUP AND MEASUREMENT METHOD

Figure 3.25: The measurement voltage V5m(t) measured at the input channel two on the
oscilloscope with signal generator frequency and voltage V0(t) set to 98860 Hz and 1 Vp-p.
The distance between the microphone and the piezoelectric disk Pz27 z0 is 200 mm, and the
rotation angle θR is 0 degrees. The first black vertical line represents the estimated arrival
time of the signal at the microphone, and the second black vertical line estimates the end of
the signal. The two red vertical lines represent the time interval’s start and end, which is the
interval that is FFT.

3.7.3 Signal filtering

The vertical resolution of the measured V0m(t) and V5m(t) depends on the vertical scaling

selected and the oscilloscope’s bit resolution. With 16-bit resolution, the signal is relatively

good, but the waveform data can be somewhat choppy and uneven. To even out the vertical

resolution of the measurement signal, a Savitzky-Golay filter [63] is used, which is a built-in

function in MatLab’s signal processing toolbox. A Savitzky-Golay filter tries to fit a polyno-

mial of a selected degree to the dataset using a frame length to the date input vector, time,

t, of a selected size. In this work, a fifth-degree polynomial is used for the measured signals

and a frame length of 21. In Fig. 3.26, it is shown the effect of the Savitzky-Golay filter on a

measured signal.

CHAPTER 3. EXPERIMENTAL SETUP AND MEASUREMENT METHOD 55

Figure 3.26: An example of measured receiver signal on input channel 2 of the oscilloscope
filtered with Savitzky-Golay filter.

3.7.4 Method for calculating peak-to-peak voltage by using the fast Fourier

transform

In this work, the Fourier transform method is used to convert a measurement signal that

is filtered, DC-compensated, and range limited from being time-dependent to frequency-

dependent,

V (t)
F F T−−−→V (f) . (3.23)

The DC component is calculated by taking the mean value of the entire measured signal,

which is given as

DC = 1

N

N∑
i=1

V5m,i DC , (3.24)

where N is the number of samples in V5mDC (t), and V5m,i DC is the discrete measurement

sample amplitude. Then the DC component is subtracted from the signal as

V5m(t) =V5mDC (t)−DC , (3.25)

where V5mDC (t) is the signal containing a DC component. The range limited area is further

adjusted, such as the start and end of the interval falling in a zero point, such that it pos-

sesses an integer number of periods. The measured and range-limited signal transformed

56 CHAPTER 3. EXPERIMENTAL SETUP AND MEASUREMENT METHOD

from time-dependent to frequency-dependent is done with the built-in MatLab function

FFT and by using zero padding five times the signal length. Zero padding increases the

Fourier-transformed signal V (f) vector’s frequency resolution, leading to increased voltage

accuracy for the exact applied transmitting frequency, as seen in Fig. 3.27. To find the peak-

to-peak voltage of the FFT signal, the FFT signal V (f) vector must be multiplied by four and

divided by the number of bins of the FFT signal. It must be multiplied by four because the

V (f) vector is split between negative and positive frequencies, which halves the voltage am-

plitude, and a voltage amplitude is half the peak-to-peak value. This leads to the equation,

V5mpp (f) = V (f) ·2 ·2

Nbi ns
= 4V5m(f) , (3.26)

where V5m(f) is the vector output of the FFT, Nbi ns is the number of samples in V (f), and

the final result plotted in Fig. 3.27.

Figure 3.27: FFT of measurement receiver signal in Fig. 3.25 on input channel two of the
oscilloscope filtered with Savitzky-Golay filter and with signal generator frequency and volt-
age V0(t) set to 98860 Hz and 1 Vp-p. The red vertical line marks the transmitting frequency
98860 Hz. The distance between the microphone and the piezoelectric disk Pz27 z0 is 200
mm, and the rotation angle θR is 0 degrees.

3.7.5 Method of calculating pressure

In order to be able to calculate the peak-to-peak free-field pressure p4pp (f), the voltage V5(f)

and the microphone sensitivity |Mcal (f)|, see Fig 3.15, for the transmitter frequency f must

CHAPTER 3. EXPERIMENTAL SETUP AND MEASUREMENT METHOD 57

be calculated. Then, the free-field pressure is calculated using measurement voltage and

calibrated microphone sensitivity, which is

p4pp (f) =
V5pp (f)

Mcal (f)
, (3.27)

where p4pp (f) is the calculated peak-to-peak free field pressure at the microphone.

3.7.6 Signal to noise ratio

This work uses the same method to calculate background noise as in previous works [29][48][24].

This method takes a time window with enough noise samples, which is about a 1 ms time

window containing about 10 000 samples just before the transmission signal’s estimated ar-

rival. With the time window selected, the background noise is calculated by the root-mean-

square-voltage as

V noi se
r ms =

√√√√ 1

N

N∑
i=1

(
V5m,i − V̂5m

)2
, (3.28)

where N is the number of samples of the measurement voltage signal interval V5m(t), V5m,i is

the voltage value of a single sample, and V̂5m is the mean value of the voltage signal. Further-

more, the acoustic measurement signal V5pp (f) is calculated for the frequency of transmitted

signal, which is further used to calculate the root mean squared voltage of the measured sig-

nal as

V5r ms =
V5pp (f)

2
p

2
, (3.29)

where V5r ms is the root mean squared voltage of the received acoustic signal. With the root

mean squared voltage of the acoustic signal and background noise, the signal to noise [12]

can be calculated as

SN R = 20log10

(
V5r ms

V noi se
r ms

)
. (3.30)

59

Chapter 4

Positioning setup and measurements with

the MatLab app

At the beginning of this work, it was not possible to control the air setup’s X, Y, Z, and R-stages

through MatLab and has instead been controlled through the motion controller software

PIMikroMove. In previous works, this has led to all measurements performed over differ-

ent positions, such as directivity, on-axis pressure, and 2-D horizontal pressure field, being

measured manually, which are highly time-consuming. If the measurement had only been

over a few different positions, it would not have been a problem to manually move the posi-

tion of the stages through PIMikroMove. However, automation is a must due to a single 2-D

horizontal pressure field measurement consisting of nearly 10 000 different position mea-

surements, where one measurement manually takes at least 20 seconds. There have previ-

ously been able to control some of the stages through MatLab. However, after the years have

passed, the company Physik Instrumente no longer supports updates for some of the stages,

which has led to communication problems for MatLab with the stages. This issue occurred

because MatLab could not read a C ++ script, and this issue is resolved in this work.

This chapter goes through the Matlab app designed to easily control the air setup’s X,

Y, Z, and R-stages in Sects. 4.1 and 4.2, and find the correct position of the piezoelectric disk

relative to the microphone with a setup wizard in Sect. 4.3. The Matlab app is also designed

to take individual measurements directly through the app or load a set of measurement pa-

rameters and start a measurement series, see Sect. 4.4. Starting a measurement series is the

automation part, where the app takes in parameters through MeasurmentParameters.m

shown in Appendix A.3 and performs the measurements based on the given parameters. The

app then takes the measurement results and saves them into a specified folder in an orga-

nized manner. The app also has built-in codes for safety to stop the motions of the machine,

preventing undesirable crashes and personal injury or material damage. The app’s script is

included in Appendix B. Sect. 4.5 describes the importance of positioning the piezoelectric

60 CHAPTER 4. POSITIONING SETUP AND MEASUREMENTS WITH THE MATLAB APP

disk and what uncertainty the positioning entails.

4.1 MatLab app screen

The first showing when the air controller is opened is the app’s screen, see Fig. 4.1. This

screen contains buttons, labels, LEDs, input fields, and a text window.

Figure 4.1: The MatLab Air Controller app’s screen.

Buttons are an essential element of the app. Pressing one of the buttons executes an

action, such as the stop button, see Fig. 4.2a, which stops the motion of the stages and halts

all actions until the restart button is pushed, see Fig. 4.2b. All buttons use functions inside

the Matlab app.

(a) (b)

Figure 4.2: (a) Stop button and (b) Restart button. If the stop button is pushed, all motions
of the stages stop and halt all actions, and the stop button turns into a restart button. The
control over the app is regained when the restart button is pushed.

Labels serve as informative text. They can be constant, like all labels, not on a button.

Labels on buttons can either be constant or change depending on the state of a button. An

CHAPTER 4. POSITIONING SETUP AND MEASUREMENTS WITH THE MATLAB APP 61

example of such a state change is the stop/restart button in Fig. 4.2. LEDs show a current

state or action being active or not by either being on (green) or off (red/black), see Fig. 4.3,

and the app automatically updates the LED’s state.

(a) Off. (b) On.

Figure 4.3: Indicates if the stop button is active or not. (a) The stop button is pushed if it is
red and prevents stages movements. (b) If the LED is green, the system is up and running.

Input fields are fields with values that can be manually changed, and an example of a

changeable input value is a step value, see Fig. 4.4. A step is a value related to travel distance,

where one step is the same as one millimeter.

Figure 4.4: One out of the four input fields for step.

The text window is to display actions in the form of text. The text window is the white

field in Fig. 4.1 or shown with information as in Fig. 4.5. It helps keep track of all actions, such

as informing about the estimated time of completion of a measurement series. A log is kept

for all messages displayed in the text window. If anything happens, such as the PC turning

off, instruments freezing, or MatLab crashing, the app log can contain the last information

displayed in the text window. In case of a failure happens in a middle of a large measurement

series, the last known position can be extracted from the log, and the measurement series

can quickly be resumed at the last known position.

Figure 4.5: Text window with an illustration of live information from the action performed in
the app.

62 CHAPTER 4. POSITIONING SETUP AND MEASUREMENTS WITH THE MATLAB APP

4.2 Startup of the MatLab app

When starting the air controller app and the screen in Fig. 4.1 is displayed, certain steps

must be taken to ready the measurement setup for measurements. The first action is initial-

izing the machine with the button in Fig. 4.6. The initialize machine button is a function

(Appendix B.2) that sets up a connection between the Hydra TT motion controller and PC

and between the C-843 motion controller and PC, as illustrated in Fig. 3.16. The initialize

machine button also assigns the correct parameter values, such as velocity and acceleration,

to the stages. Parameters and other values assigned to the stages are within the script in

Appendix B.2.

Figure 4.6: The initialize machine button.

After pressing the initialize machine button, all stages need to be "homed" with the

home all button, Fig 4.8a, or the individual home button, Fig 4.8b. The home all button is a

function (Appendix B.3) that starts a sequence in the following order Z, R, X, and Y-stage to

search for their respective reference point. The search for a reference point is when the stage

moves as far as possible in a specific direction until induction sensors detect that the stage is

at its farthest limit range it can travel. At this limit, the position of the machine coordinates

for each stage is defined as the reference point and given in Table 4.1. In the same Table 4.1,

the travel limits of the stages are also given.

Table 4.1: Individual stages reference point after a homing function is run, and the individual
stages travel range given as lower and upper limit.

Reference point Lower limit Upper limit Unit

X-stage 0 0 300 [mm]

Y-stage 0 0 300 [mm]

Z-stage 1016 0 1016 [mm]

R-stage 0 -Inf Inf [degrees]

Whenever the stages search for a reference point or move in general, the LEDs in Fig.

4.7 indicate which stage is moving.

CHAPTER 4. POSITIONING SETUP AND MEASUREMENTS WITH THE MATLAB APP 63

(a) No stages in motion. (b) Z-stage is moving.

Figure 4.7: Indicates the movement of the stages. If the stage is in motion, the LED is green.
No light, no motion.

The individual home button executes the same function as the home all button, but "homes"

only the stage associated with the button. The great thing about the reference points is that

they are repeatable. This means if the app is closed with Z-stage at the machine coordinates

500 mm, and the app is opened again, the machine coordinates 500 mm of the Z-stage can

be found by first using homing function and then traveling from reference points to the ma-

chine coordinates 500 mm.

(a) Home all.

(b) Home.

Figure 4.8: The home all button (a) and the individual home button (b).

With all stages "homed", the user coordinates need to be found. User coordinates are

an offset value from reference points, where the user coordinates are set to 0 mm at this

offset. Setting the coordinate to 0 mm means that if the machine coordinates for Z-stage are

at 500 mm, and the zero button for that individual stage is used, Figs. 4.9c/4.9d, the user

coordinates will display this coordinate position as 0 mm in the app screen position field

(Fig. 4.1). If this stage is moved 10 steps with writing 10 in the input field shown in Fig. 4.4

and moved in the positive direction with the (+) button seen in the app screen in Fig. 4.1, the

user coordinates would display 10 mm, and the machine coordinates would display 510 mm

for that individual stage.

64 CHAPTER 4. POSITIONING SETUP AND MEASUREMENTS WITH THE MATLAB APP

(a) Not all stages is zeroed. (b) All stages is zeroed.

(c) Zero position not found for
a individual stage.

(d) Zero position found for a
individual stage.

Figure 4.9: The zero all button (a)/(b) sets all current positions of stages to 0 mm in the user
coordinates. If it is white (b), it indicates that all stages are zeroed, and (b) indicates that
some or all stages are not using offsets from reference points. The zero button (c)/(d) sets
the current position of the individual stage to 0 mm in the user coordinate. If it is white (d), it
indicates that the stage is zeroed, and (c) indicates that it is not using offsets from reference
points.

The button in Figs. 4.10a/4.10b can be used to switch between machine and user coordi-

nates, and the label on the button and the LEDs in Fig. 4.11 will change depending on which

coordinate system is active.

(a) (b)

Figure 4.10: (a) indicates that the machine coordinates are active. If pushed, it turns into (b)
and indicates that the user coordinates are active.

Figure 4.11: Indicates the active coordinate system. In this figure, it is the machine coordi-
nates system that is active.

4.3 Positioning of the piezoelectric disk

User coordinates are used to find zero coordinates for X, Y, and Z-stages that are as close as

possible to the origin of the X, Y, and Z axis defined in Fig. 2.4 and to avoid the effects that can

CHAPTER 4. POSITIONING SETUP AND MEASUREMENTS WITH THE MATLAB APP 65

occur, which is described in Sect. 4.5. The user coordinates for the R-stage thet aR is zeroed

when the piezoelectric disk’s Z-axis is parallel with Z-stage. To find these coordinates, the

setup wizard is used by pushing the setup button in Fig. 4.12.

Figure 4.12: The setup button

This setup wizard provides guidance, and a choice of five setups, as seen in Fig. 4.13, where:

the setup one is used to find θT , see Figs. 4.19 and 4.32; the setup two is used to find σ, see

Figs. 4.23 and 4.37; the setup three is used to set θR equals 0 degrees; the setup four is used

to find the distance z0; the setup five is used to find θT and z0 and calculate constants of a

slope such that the position of the microphone is adjusted respect to θT and the distance z0

such that angle θT equals θM , see Fig. 4.33, for all distances between the microphone and

piezoelectric disk. However, this work never used setup five and linear compensation, and

compensation was always turned off.

Figure 4.13: Setup wizard that makes the user able to choose different setups.

In Fig. 4.13, it says L equals laser stage (see Fig. 3.6 (D)), which is the laser stage set up

by [7], and the laser sensors are of the type LK-G32 from Keyence used with a controller

LK-G3001PV and listed in Table 3.2. For all the setup choices, the laser stage needs to be

elevated all the way up before starting to measure. The distance dx denoted in Fig. 4.14 is

the distance between the two fronts of the lasers and calibrated by [7] and given in Table 4.2.

In Table 4.2, there are also listed key features of the lasers. The distance denoted dr e f equals

30 mm and is the reference distance. From dr e f , the measuring range of the laser is ±5 mm.

66 CHAPTER 4. POSITIONING SETUP AND MEASUREMENTS WITH THE MATLAB APP

When measuring with lasers 1 and 2, they measure a distance d1 and d2, which are negative

values for distances from the laser front to the object that are greater than dr e f or positive if

the distance is less than dr e f .

Figure 4.14: Schematic of the two lasers LK-G32 and illustrating the measuring rages. The
distance dr e f is the reference distance of 30 mm, and dx is the distance of 182.5692 mm
between the two laser fronts. [35]

Table 4.2: Different key features of the two lasers LK-G32, given in [35], and the distance dx

is the calibrated distance by [7].

LK-G32 laser sensor Unit

dx 182.5692 [mm]

dr e f 30 [mm]

Range ±5 [mm]

Spot diameter Approx. ø30 [µm]

Linearity ±0.05% (of full scale = ±5 mm) [-]

Repeatability 0.05 [µm]

Light source (viable light) 655 [nm]

4.3.1 Setup 1

For all setup choices in Fig. 4.13, the Z-stage moves in front of the laser after clicking the

measure button in Fig 4.15.

Figure 4.15: The measure button.

CHAPTER 4. POSITIONING SETUP AND MEASUREMENTS WITH THE MATLAB APP 67

When the Z-stage has arrived in front of the laser and the piezoelectric disk is within the

laser’s measuring range, as illustrated in Fig. 4.16, the laser’s software opens.

Figure 4.16: Side view of the piezoelectric disk being within the laser 1 measuring range.

The laser software that came with the purchase of the lasers is called LK-navigators. This

LK-navigators screen is seen in Fig. 4.17.

Figure 4.17: LK-navigator screen from Keyence.

Adjustment screws on the laser stage are used to move the laser point to the highest point of

the piezoelectric disk front surface. The disk must be slightly rotated, clock, or counterclock-

wise, so the solder lump is not at the highest point of the disk’s front surface. By clicking the

68 CHAPTER 4. POSITIONING SETUP AND MEASUREMENTS WITH THE MATLAB APP

view measurement value from the LK-navigator screen and clicking the measurement value

acquisition start, see Fig. 4.18, it starts averaging the distance d11 value from the reference

distance dr e f . The measured value is then written into an open GUI, and measurements are

repeated at the bottom of the disk’s front surface, measuring d12, see Fig 4.19

Figure 4.18: LK-navigator measurement value display.

Figure 4.19: Side view of the tilt angle θT of the piezoelectric disk relative to the laser one
beam direction and distances d11 (highest point) and d14 (lowest point).

After measuring the top and bottom distances and inserting the diameter of the piezo-

electric disk in the open GUI (Graphical User Interface), the app calculates the tilting angle

θT with the equation

θT = si n−1
(

d12 −d11

d

)
, (4.1)

CHAPTER 4. POSITIONING SETUP AND MEASUREMENTS WITH THE MATLAB APP 69

where d is the diameter of the disk. With known angle θT , and if the angle of the piezoelectric

disk is more significant than 0.5 degrees, the tilt is adjusted, and the setup one is repeated.

This tilt is manually adjusted, and the goal is to get the angle as small as possible. This ad-

justment reduces the effect of θT modeled in Sect. 4.5 is not significant in the measuring

frequency range up to 300 kHz.

4.3.2 Setup 2

Before starting this setup, it is essential to get the middle of the vertical rod and horizontal

rod, which is attached to the R-stage, and the pointy bolt on the R-stage, which is aligned

with the R-stage rotation axis, to construct a vertical plane in between them. The reason

for creating this plane is to create a parallel plane with the YZ-stage plane. This opens up

to move the front center of the piezoelectric disk with the 3-D-printed part that now moves

in the XZ-stage plane, see Fig. 4.20. Then the Y-axis, which passes through the front center

of the disk, is defined in Sect. 4.5 can be moved as close as possible to the R-stage axis of

rotation after finding σ.

Figure 4.20: Movement of the piezoelectric disk front center in the XZ-stage plane with 3-D
printed part adjustment screws.

A vertical laser is used to find this vertical plane passing through the rods and the bolt,

see Fig. 4.21. First, in Fig. 4.21a, the vertical laser overlaps the black line on a white tape

in the back of the measuring cage that has the same distance to the Z-stage as the pointy

bolt. Secondly, in Fig. 4.21b, a piece of paper behind the pointy bolt is used to see the casted

shadow of the bolt tip being in the center of the laser line. And lastly, in Figs. 4.21c and 4.21d,

The laser line is in the middle of the vertical and horizontal rod.

70 CHAPTER 4. POSITIONING SETUP AND MEASUREMENTS WITH THE MATLAB APP

(a) (b)

(c) (d)

Figure 4.21: Illustrating the vertical laser creating the vertical plane parallel with the YZ-stage
plane by laser (a) overlapping the black line on a white tape in the back of the measuring
cage, (b) casted shadow of the bolt tip being in the center of the laser line, (c) and (d) the
laser line is in the middle of the vertical and horizontal rod.

When selecting setup two, the procedure is the same as the setup one. Instead of mea-

suring the piezoelectric disk front surface’s highest point d11 and lowest point d12 distances,

it is measured on the front surface farthest right side of the disk d13 and left side d14, see Fig.

4.22. The measured values and diameter d is written into an opened GUI. The app calculates

the θr as

θr = si n−1
(

d13 −d14

d

)
. (4.2)

Furthermore, θr is used in the subsequent calculations to determine the distance σ to the

R-stage rotation axis.

CHAPTER 4. POSITIONING SETUP AND MEASUREMENTS WITH THE MATLAB APP 71

Figure 4.22: Top view of the rotation angle θr of the piezoelectric disk relative to the laser one
beam direction and distances d13 (farthest right point) and d14 (farthest left point).

Then following three distances in Fig 4.23 are measured. First distance, d15 on the

piezoelectric disk front center surface, and the result is written into the open GUI. The R-

stage then rotates with an angle θR equals γ, then the second distance d16 is measured with-

out adjusting the laser’s position. It is worth noting that gamma is a negative angle because

R-stage rotates in a clockwise direction which is a negative direction. Then the last distance,

d17, is measured after adjusting the laser stage position by moving the laser point back to the

disk’s center, and the results are written into the open GUI. Fig 4.23 illustrates these three

measurements.

Figure 4.23: Illustration of the three measured distances d15, d16, and d17, where σ is the
distance between the center of the piezoelectric disk and the horizontal distance to the R-
stage rotation axis and γ is the θR rotation angle.

72 CHAPTER 4. POSITIONING SETUP AND MEASUREMENTS WITH THE MATLAB APP

With these three distances measured, d15, d16, and d17 the app can calculate the distances

Xmov and Zmov , which are the distances to move the piezoelectric disk front center with

adjustment screws of the 3-D printed part seen in Fig. 4.20. This movement of the front

surface will reduce the distance σ and its effect analyzed in Sect. 4.5. By illustrating this

trigonometric problem first, as in Fig. 4.24, and calculate the distance a as

a = d16 −d17

t an(θr +γ)
(4.3)

where d17−d16 equals the opposite distance of the triangle with angle θr +γ in Fig 4.24, θr is

the calculated value from Eq. 4.2 and γ is the rotated angle by R-stage.

Figure 4.24: Trigonometric problem used in calculating the movement distances Xmov and
Zmov , which is used to reduce the distance σ. The distances d15, d16, and d17 are the mea-
sured distances and are marked as three points. The angle θr is a calculated angle from
measurements, and γ is a (negative) rotation angle of the R-stage. The angle φ and ψ are
calculated angles.

Then the angleφ in Fig. 4.24 is calculated by using the calculated distance a and the distance

d15 and d17 as

φ= t an−1
(

a

d15 −d17

)
, (4.4)

CHAPTER 4. POSITIONING SETUP AND MEASUREMENTS WITH THE MATLAB APP 73

where d15 − d17 is the adjacent distance of the smaller triangle with angle φ in Fig. 4.24.

Furthermore, the hypotenuse distance h for this same triangle is calculated as

h = d15 −d17

cos(φ)
. (4.5)

Now, the angle ψ and radius σ in Fig. 4.24 can be calculated by using the distances a, and h,

and the angle, φ, which gives

ψ=φ− |γ|
2

, (4.6)

and

σ= h/2

si n(γ/2)
. (4.7)

Then it is easy to calculate the distances Xmov and Zmov by using the calculated radiusσ and

the angle ψ, which gives

Xmov = cos(ψ)σ , (4.8)

and

Zmov = si n(ψ)σ . (4.9)

After finding the Xmov and Zmov distances with Eqs. 4.8 and 4.9, the app calculates the ro-

tation of the 3-D printed part in Fig 4.20 adjustment screws to move the front center of the

piezoelectric disk to the R-stage rotation axis and reduce the effects of σ. By using the model

in Sect. 4.5, and analyzing the results for different values ofσ and the angleα, it is found that

for σ equal to 2 mm, the effects are insignificant in the measuring frequency range up to 300

kHz.

4.3.3 Setup 3

In this setup, the same method is used for finding θr as in setup two. The difference is that

θr is now used to straighten up the R-stage of the measured angle, so the piezoelectric disk

surface is now perpendicular relative to the laser one’s beam. When the piezoelectric disk is

perpendicular to the laser beam, the R-stage is zeroed such that θR is equal to 0 degrees in

the user coordinates. This angle for θR is now saved into a zero.mat file such that the angle is

stored safely in case of computer failure. In case of failure, these coordinates are loaded into

the app with the load button in Fig. 4.25.

Figure 4.25: The load button.

74 CHAPTER 4. POSITIONING SETUP AND MEASUREMENTS WITH THE MATLAB APP

4.3.4 Setup 4

The last setup used is setup four, which is used to find the distance between the piezoelectric

disk front surface and the microphone. This measurement is illustrated in Fig. 4.26. Before

selecting this setup, the laser position is adjusted such that the laser point is in the center of

the piezoelectric disk. After selecting setup four, the app asks to move the X and Y-stage to

position the microphone’s center in the laser.

Figure 4.26: Illustration of laser stage measuring the distance between the piezoelectric disk
(left side) and the microphone (right side).

With the laser in the center of the disk and microphone, the X and Y-stage are zeroed,

setting the user coordinates equal to 0 mm. Then by clicking the measure button in Fig. 4.15,

the LK-navigator software opens and is used as described earlier, and then the distances d18

and d21 in Fig. 4.26 are measured, and the results are written into the open GUI. The app

calculates the total distance between the transducer and the microphone as

dtot = (dr e f −d18)+dx + (dr e f −d21) (4.10)

where dr e f and dx distances are given in Table 4.2. The app then uses dtot to take the current

machine coordinate of the Z-stage and subtract that position whit dtot , and that result is set

as Z-stage user coordinates to equal 0 mm. When all the setup wizards are completed, the

exit setup in Fig. 4.13 is chosen, the Z-stage backs away from the laser stage, and the laser

stage is manually lowered.

CHAPTER 4. POSITIONING SETUP AND MEASUREMENTS WITH THE MATLAB APP 75

4.4 Single or series of measurements of electrical and acous-

tical signals

When the instrument connect button is pushed, see Fig. 4.27; all instruments in the experi-

mental setup, see Fig. 3.3, are connected to the app.

Figure 4.27: Instrument connect button.

When calibrating the microphone, it is used the DPO CH2 read-only in the drop-down

list, accessed by the down arrow in Fig. 4.28, which only reads the oscilloscopes screen.

When identifying and measuring the reflection, a single measurement is used by using DPO

CH2 accessed by the down arrow in Fig. 4.28, and the settings are set in Fig. 4.29. When

measuring the reflection, the setting used is 1 V which is the signal generator voltage V0pp , a

sinus burst of 30 cycles, and a 25 Hz burst rate. It is also used in the reflection measurement

frequency of 98860 Hz and a sample count of 10 000 samples, and the signal is averaged 128

times.

Figure 4.28: Measurement read button.

Figure 4.29: Single measurement adjustable parameters.

When it is performed, large measurements, such as directivity, on-axis pressure, and 2-

D sound pressure field, the MeasurmentParameters.m script in Appendix A.3 is used. This

script is used to preset the type of measurement being conducted, the measurement fre-

quency, the measuring range in angle and distance direction, the peak-to-peak voltage of the

signal generator, the signal averaging, the number of cycles of the measurement signal, the

burst rate, the filter setting, the number of sample count, and which channel that measures

the electrical or acoustical signal at the oscilloscope. When the correct parameters are set

76 CHAPTER 4. POSITIONING SETUP AND MEASUREMENTS WITH THE MATLAB APP

in the script for the type of measurement being conducted, the parameters are then loaded

into the app with the load button in Fig. 4.25, and the start button in Fig. 4.30 is pushed.

Figure 4.30: Start button.

This starts the measurement series by the app automatically driving the stages to the first

measuring position. When the stages arrive at the first measuring position, the app sends

all settings to the different instruments, and the electrical voltage V0m(t) is first measured.

Then the time window of the oscilloscope is adjusted automatically to fit the acoustical sig-

nal V5m(t), the acoustical voltage is measured, and environmental parameters are measured.

After the first measurement is complete, the results are automatically saved into a specific

folder, and the measurement series continues to its next position and repeats the measure-

ments cycle until it is finished with the measurement series.

4.5 Transmitter and receiver mounting and positioning sen-

sitivity analysis

It is vital to go through the MatLab Air Controller app’s setup, which is designed to adjust

and find the correct position of the piezoelectric disk relative to the microphone. The setup

wizard helps to set the user coordinates to be as near as possible to the origin of the X, Y,

and Z axis given in Fig. 4.31. Sects. 4.3.1-4.3.4 goes through the actual setup wizard in more

detail and explains the user coordinates. The coordinates of the X, Y, and Z axis origin are

defined in Figs. 2.4 and 4.31 as the piezoelectric disk front center, where Y-axis is parallel to

the Y-stage and overlaps the R-stage rotation axis. The XZ-axis-plane is the horizontal plane.

Further, the XY-axis-plane is vertical and matches the piezoelectric disk surface plane under

perfect conditions of the orientation of the piezoelectric disk.

However, the world is rarely under perfect conditions, leading to different orientations

that can affect the measured pressure. These influences lead to changes in the directivity,

on-axis pressure, and 2-D sound pressure measurements from their true values relative to

perfect orientations. In this work, three different orientations are analyzed that can affect the

measured pressure and modeled how it affects the FE simulation directivity. These modeled

deviations can be analyzed and indicate how large a deviation can be allowed from perfect

orientation without affecting the measurement results.

CHAPTER 4. POSITIONING SETUP AND MEASUREMENTS WITH THE MATLAB APP 77

Figure 4.31: X, Y, and Z coordinate with origin in the piezoelectric disk’s front center, where
the XZ-axis-plane is the horizontal plane, and the XY-axis-plane is the vertical plane over-
lapping the piezoelectric disk’s front surface. Y-axis is parallel with Y-stage and lies on the
R-stage rotation axis.

The three analyzed orientations that can affect the measurements come from tilt an-

gles or offset distances. The first orientation is the piezoelectric disk being tilted at an angle

θT forward or backwards, see Fig. 4.32. The second orientation is an offset value β from the

XZ-axis-plane to the microphone’s front center resulting in an angle θM relative to the Z-axis,

see Fig. 4.33. The difference between the first and second orientations is that the tilt angle

θT of the piezoelectric disk is constant for all distances z0 between the piezoelectric disk and

microphone centers, and the angle θM depends on β and the distance z0 between the piezo-

electric disk and microphone centers. Since θM depends on β and the distance z0 between

the microphone and the piezoelectric disk centers, θM can have a significant impact in the

near field for small β. However, into the far field, the impact of θM would decrease rapidly.

The third and last orientation is a horizontal offsetσ from the piezoelectric disk’s front center

or seen as an offset from the X, Y, and Z-axis origo to the R-stage rotation axis, as illustrated

later in Fig. 4.37. This orientation leads to the center of the microphone’s front no longer

orbits with a constant distance of z0 around the piezoelectric disk front center. This orbit

changes the distance between the microphone and the piezoelectric disk depending on the

78 CHAPTER 4. POSITIONING SETUP AND MEASUREMENTS WITH THE MATLAB APP

R-stage rotation angle θR .

Figure 4.32: Left illustrates the 2-D view of the YZ-plane where the XY-plane crosses the
piezoelectric disk’s front center. The disk is tilted with an angle θT and distanced a distance
of z0 from origo to the microphone’s front center. The right illustrates the case in a 3-D view.

Figure 4.33: Left illustrates the 2-D view of the YZ-plane where the XY-plane lies on the piezo-
electric disk’s surface. The microphone’s front center is offset a distance β from the XZ-plane
and distanced at a distance of z0 from origo. The right illustrates the case in a 3-D view.

The first and second orientations can be described as two points A and B on a sphere

with a radius of z0 and an angular distance θ between the points, see Fig. 4.34. The distance

from the X, Y, and Z-axis origin to the directivity D(θ = 0, z0, f) is described as the OA vector in

Fig. 4.34, where θ equal to zero is the on-axis perpendicular to the piezoelectric disk surface,

z0 as the simulated distance and f as simulated frequency. The distance from the X, Y, and

CHAPTER 4. POSITIONING SETUP AND MEASUREMENTS WITH THE MATLAB APP 79

Z-axis origin to the front center of the microphone is described as OB in Fig. 4.34. The θT

is the tilt of the piezoelectric disk, θM is the angle to the center of the microphone’s front

dependent on β from X’Z’-axis-plane in Fig. 4.34 and z0, θ is the angle between points A and

B on the sphere, and θR is the R-stage rotation in Fig. 4.34.

Figure 4.34: Illustration of the first (OA) and second (OB) orientations and the different val-
ues of θT disk tilt, β microphone offset, z0 sphere radius, −→nY normal unit vector of point A,−−→nM normal unit vector of point B, θ angle distance between A and B, and θR R-stage rotation
[76].

The angle θR ranges from 0 to 2π, and θT and θM range from -π/2 to π/2. To derive the

angle distance θ, one first looks at the dot product of the vectors OA and OB as

−−→
O A ·−−→OB = z2

0cosθ , (4.11)

80 CHAPTER 4. POSITIONING SETUP AND MEASUREMENTS WITH THE MATLAB APP

which is equivalent to the dot product between the normal unit vectors of OA and OB, which

equals to
−→nY ·−→nM = cosθ . (4.12)

In the X’, Y’, and Z’-axis frame in Fig. 4.34, the normal unit vectors can be written as

−→nY =


0

si n(θT)

cos(θT)

 , (4.13)

and

−→nM =


cos(θM)si n(θR)

si n(θM)

cos(θM)cos(θR)

 , (4.14)

and solving Eq. 4.12 for θ by inserting the normal unit vectors, the angle is written as

θ = cos−1 (si n(θM)si n(θT)+ cos(θM)cos(θT)cos(θR)) . (4.15)

With an equation for θ, it can now be analyzed the effect of θT and θM of the R-stage

rotation range θR from -90 to 90 degrees and plot the logarithmic result of D(θ,z0, f) against

the measured angle θR . Plotting against θR is due to it being the perceived angle, while θ

describes the actual angle between the microphone’s front center and D(θ = 0,z0, f), see Figs.

4.35 and 4.36 for the results of the modeling. The script used to model this is included in

Appendix A.2.

By analyzing Fig. 4.35, it can be seen that simulated directivity with the frequency

98100 Hz is affected by the tilt of two degrees. The modeled tilts affect the sidelobes by in-

creasing dB strength, where the first side lobes increase by approximately 0.64 dB, and the

maximum of the first sidelobes shifts slightly inwards. By analyzing Fig. 4.36, it can be seen

that simulated directivity with the frequency 249050 Hz is affected by the tilt of two degrees

in a higher degree than for 98100Hz. The modeled tilts affect the sidelobes by increasing dB

strength, and the main lobe is highly affected by having a decrease of 3.835 dB. Such an effect

in the main lobe should be easily recognized in measurements.

CHAPTER 4. POSITIONING SETUP AND MEASUREMENTS WITH THE MATLAB APP 81

Figure 4.35: Simulated directivity at 0.2 m and frequency of 98100 Hz and analyzing the effect
of the θT and θM equals two.

Figure 4.36: Simulated directivity at 0.2 m and frequency of 249050 Hz and analyzing the
effect of the θT and θM equals two.

The third orientation is a horizontal offsetσ from the piezoelectric disk’s front center to

the R-stage rotation axis, as illustrated later in Fig. 4.37. The distance from the R-stage rota-

tion axis to the microphone front center is R and is constant. The center of the microphone’s

82 CHAPTER 4. POSITIONING SETUP AND MEASUREMENTS WITH THE MATLAB APP

front no longer orbits with a constant distance of z0 around the piezoelectric disk front cen-

ter, instead orbits with an changing distance z(θR) dependent on the rotation angle. The

angle α is the angle from the line passing through the R-stage rotation axis and microphone

front center when θR equals zero and to the piezoelectric disk’s front center. The distance

z0 is the horizontal distance from the piezoelectric disk to the microphone when θR equals

zero.

Figure 4.37: Illustration of the top view XZ-plane of the third orientation with a distance
sigma from R-stage to disk’s front center. The orbital radius of the microphone is the distance
R. The angle alpha is the angle from the R line to the disk’s front center.

The third, including first and second orientations, can be described as two points on a

sphere with a radius of z0 and an angular distance θ between the points. The distance from

the X, Y, and Z-axis origin to the directivity D(θ = 0, z0, f) is described as the OA vector in

Fig 4.38, where θ equal to zero is the on-axis perpendicular to the piezoelectric disk surface,

z0 as the simulated distance and f as simulated frequency. The distance from the X, Y, and

Z-axis origin to a point on the sphere where the line passes through the front center of the

microphone is described as OB in Fig 4.38. The θT is the tilt of the piezoelectric disk, θm is

the angle to the center of the microphone’s front dependent on β from X’Z’-axis-plane and

j , θ is the angle between points A and B on the sphere, and the θr is the horizontal rotation

in Fig 4.38.

CHAPTER 4. POSITIONING SETUP AND MEASUREMENTS WITH THE MATLAB APP 83

Figure 4.38: Illustration of the third, including first and second orientations, OA and OB, and
the different values of θT disk tilt, β microphone offset, z0 sphere radius, −→nY normal unit
vector of point A, −→nm normal unit vector of point B, θ angle distance between A and B, and
θr horizontal rotation.

The dot product between the normal unit vectors of OA and OB equals to

−→nY ·−→nm = cosθ , (4.16)

where in the X, Y, and Z-axis frame, the normal unit vector can be written as

−→nm =


cos(θm)si n(θr)

si n(θm)

cos(θm)cos(θr)

 . (4.17)

84 CHAPTER 4. POSITIONING SETUP AND MEASUREMENTS WITH THE MATLAB APP

The offset beta can be set to a constant or calculated with θM and the distance z0 and equals

β= z0si n(θM) , (4.18)

and the distance j0, which is the horizontal distance from the piezoelectric disk to the mi-

crophone when θR equals zero, is

j0 = z0cos(θM) . (4.19)

The radius of the microphones orbit R is derived in Appendix D.1 and equals

R =σcos(α)+
√

j 2
0 +σ2(cos2(α)−1) , (4.20)

and the distance j from the piezoelectric disk front center to any point on the microphones

orbit is derived in Appendix D.2 and is

j =
√

R2 −2Rσcos(α−θR)+σ2 . (4.21)

With the equation for the distance j and offset β, the angle θm can be calculated as

θm = t an−1
(
β

j

)
, (4.22)

and with the distances j , j0, and R, the cos(θr) is derived in Appendix D.3 and equals to

cos(θr) = j 2 + j 2
0 −4R2si n2(θR /2)

2 j j0
. (4.23)

With Eqs 4.22 and 4.23, it is possible to calculate θ with Eq. 4.16 by inserting the normal unit

vectors and θ equals to

θ = cos−1 (si n(θm)si n(θT)+ cos(θm)cos(θT)cos(θr)) . (4.24)

Now with θ deduced for all three orientations, the effects of the distanceσ and starting angle

α can be analyzed in the R-stage rotation range θR from -90 to 90 degrees. The results are

then plotted by taking the logarithmic result of D(θ,z(θR), f)/max(D(θ,z(θR) f)) and plotting

it against the measured angle θR . The distance between the microphone’s front center to the

piezoelectric disk’s front center z is now dependent on the change in θm ’s angle. This change

in the distance z is solved by using interpolation between several distance simulations. In

Fig. 4.39, the simulated directivity at 98100 Hz and the effect of distance σ equals 5 mm, and

the angle α equals 0, 90, 180, and 270 degrees are analyzed. From Fig. 4.39, it is seen that

the modeled effects are largely dependent on the starting angle α. At α equals 0 degrees, the

CHAPTER 4. POSITIONING SETUP AND MEASUREMENTS WITH THE MATLAB APP 85

entire signal is compressed closer to θR equals 0 degrees, and for α equals 180 degrees, the

entire signal is stretched out relative to θR equals 0 degrees. At α equal 90 and 270 degrees,

the signal is either stretched out on one side of θR equals 0 degrees and compressed closer to

θR equals 0 degrees on the other side. In Fig. 4.40, the simulated directivity at 249050 Hz and

the effect of distance σ equals 5 mm, and the angle α equals 0, 90, 180, and 270 degrees are

analyzed. From Fig. 4.40, it is seen that the modeled effects of σ and α behave in the same

matter as in Fig 4.39.

(a)

(b)

Figure 4.39: Simulated directivity at 0.2 m and frequency of 98100 Hz and analyzing the effect
of the σ equals 5 mm and α equals 0, 90, 180, 270 degrees.

86 CHAPTER 4. POSITIONING SETUP AND MEASUREMENTS WITH THE MATLAB APP

(a)

(b)

Figure 4.40: Simulated directivity at 0.2 m and frequency of 249050 Hz and analyzing the
effect of the σ equals 5 mm and α equals 0, 90, 180, 270 degrees. (a) is the simulated and
modeled effect from -90 to 90 degrees (b) is the simulated and modeled effect from 0 to 90
degrees.

88

Chapter 5

Finite element setup

This work uses the finite element method to simulate the piezoelectric disk Pz27 vibrating in

a vacuum and fully immersed in a air. Sect. 5.1 gives information on FEMP and the current

version used in this work, the different files FEMP uses, and a brief description of FEMP.

Sect. 5.2 gives info on the material parameters, the material parameters of the piezoelectric

element, and the parameters for the fluid. Sect. 5.3 gives information on the simulation

parameters used in this work and their associated values. Sect. 5.4 describes the conversion

of simulated pressure to comparable pressure with the measured pressure. Sect. 5.5 gives a

visualization of the simulation structures.

5.1 FEMP 6.1

This work performs finite element simulations with the simulation tool FEMP developed by

Kocbach [38] in a cooperation between the University of Bergen (UiB) and Christian Michelsen

Research AS (CMR). Students and researchers at UiB and CMR/NORCE have continued de-

veloping FEMP ever since, and the current version used is FEMP 6.1. The programming

language MATLAB [68] allows for fast implementation and visualization [38], making it the

choice for the programming language of FEMP.

Different files are needed to alter variables, parameters, areas, points, boundary con-

ditions, and materials to be able to run simulations. The file matertial_.dat in Appendix C.5

defines the transducer material and fluid parameters. The file _.inn in Appendix C.4 defines

the set parameters; dimension of the structure, elements in the fluid or structure, material

or fluid number, radius from origo to infinite elements region. The rest of the file defines

simulation variables and parameters; material file, elements per wavelength frequency, or-

der of the finite elements, order of the infinite elements, the frequency range, and type of

simulations like direct harmonic analysis used to calculate, e.g., admittance. The scripts

read_inn_project.m and init_const_project.m in Appendix C.1, C.2, and C.3 defines struc-

CHAPTER 5. FINITE ELEMENT SETUP 89

ture, areas, points and boundary conditions. It also uses the set parameters from the _.inn

file.

FE approximates structures with a given number of volumes/elements, where compu-

tational time relies on the size and complexity of the structures. To reduce the complexity

and, thereby, the computational time, FEMP implements axis symmetry which reduces vol-

umes to rectangles. A problem modeled in FEMP may consist of up to two domains, finite

elements and infinite elements domains. The finite elements domain uses 8 node isopara-

metric elements to solve the parameters inside the element, and the global to local coor-

dinates transition with interpolation functions [21], see Fig. 5.1. In this domain, finite ele-

ments consist of the transducer regionΩp and can consist of the inner fluid regionΩ f 1 [38],

depending on the type of simulation. The infinite elements domain is not isoparametric but

described by conjugates Astley-Leis infinite elements [9] and is solved using 10th order in-

finite elements. In this domain, infinite elements consist of the outer fluid region Ω f 2 [38],

see Fig. 5.2.

Figure 5.1: The colored area is the piezoelectric discs volume Ωp split into a number of el-
ements in the global coordinates and shows the connection from one element, m, from the
global coordinates to the local coordinates for the 8 node isoparametric element [38].

90 CHAPTER 5. FINITE ELEMENT SETUP

Figure 5.2: Illustration of the piezoelectric disc volume Ωp , the surrounding finite fluid vol-
umeΩ f 1 and the infinite volumeΩ f 2, the distance Ri n f described in Sect. 5.3, and the mesh-
ing angle ̸ splitting the surrounding fluid volumeΩ f 1 andΩ f 2 into three regions [38].

5.2 Material parameters

Piezoelectrical material data provided by manufacturers can often be incomplete or inaccu-

rate. This incompleteness and inaccuracy can arise from variations in the composition in

different batches, uncertainties, or lack of methods to provide better results of the material

parameters. In simulations, it is essential to have as accurate material parameters as possible

such that simulations match measurements. This matching is a demanding task to accom-

plish, and this work uses material parameters found in [37] and presented in Table 5.1. The

material parameters of the piezoelectric element that FEMP uses are elastic stiffness matrix

with a constant electric field [cE], piezoelectric stiffness matrix [e], and dielectric stiffness

matrix with constant strain [ϵS] [38]. The fluid parameters that FEMP uses are bulk modulus

K and density ρ. With complex values of the piezoelectric constants, it is possible to describe

mechanical and electrical losses in the piezoelectric element, but fluid losses are not consid-

ered [38]. The material numbers are set in the _.inn file to select the materials or fluid for

simulations. These numbers correspond to the material found in the material_.dat file.

CHAPTER 5. FINITE ELEMENT SETUP 91

5.2.1 Piezoelectric element, Pz27

The manufacturer of the piezoelectric element Pz27 used in this work is Meggitt, earlier

known as Ferroperm. They state that their element has a variation of ±5% for all param-

eters and the lowest variation from batch to batch [46]. Previous work has shown that the

parameters provided by Meggitt are not in the best agreement when used in simulations and

compared with measurements [42][37][1]. This inaccuracy led to an adjusted dataset of Pz27

by Lohne and Knappskog [42][37], which has improved the agreement in the first and sec-

ond radial mode. This dataset is shown in Tabel 5.1 and used to compare the simulations

and measurements in this work.

Table 5.1: Because of inaccuracy in the original dataset from Meggit and others manufac-
turers, there is used in present work the adjusted dataset set for piezoelectric element Pz27
made by Lohne and further improved by Knappskog [42][37].

Parameters Unit Lohne/Knappskog [42][37]

cE
11 [1010Pa] 11.8750

(
1+ i 1

95.7500

)
cE

33 [1010Pa] 11.2050
(
1+ i 1

177.990

)
cE

44 [1010Pa] 2.11000
(
1+ i 1

75.0000

)
cE

12 [1010Pa] 7.43000
(
1+ i 1

71.2400

)
cE

13 [1010Pa] 7.42500
(
1+ i 1

120.190

)
e15 [C /m2] 11.2000

(
1− i 1

200.000

)
e31 [C /m2] −5.40000

(
1− i 1

166.000

)
e33 [C /m2] 16.0389

(
1− i 1

323.770

)
ϵS

11 [10−9F /m] 8.11043
(
1+ i 1

50.0000

)
ϵS

33 [10−9F /m] 8.14585
(
1+ i 1

86.2800

)
ρ [kg /m3] 7700

5.2.2 Air

When doing finite element simulations in a fluid, the dataset needs the parameters density

ρ and bulk modulus K for the given fluid. Since the given fluid in this work is air, and den-

sity and bulk modulus are dependent on environmental conditions, setting the temperature

and pressure is necessary. At 20◦C and 1atm, Appendix A10 in Kinsler & Frey [36] gives the

density and sound speed. Using the definition of the thermodynamic speed of sound given

as [36]

c =
√

K

ρ
, (5.1)

92 CHAPTER 5. FINITE ELEMENT SETUP

the bulk modulus can be calculated by rewriting this definition as

K = c2ρ . (5.2)

The values found, calculated, and used in the material dataset are given in Table 5.2.

Table 5.2: The material dataset for air used in this work, for 1 atm and 20 ◦C. [36].

Name Parameter Unit Value

Sound speed c [m/s] 343

Density ρ [kg /m3] 1.21

Bulk modelus K [105Pa] 1.42355

5.3 Simulation parameters

Simulation in FEMP requires a set of parameters defined in the _.inn file, where the number

of parameters depends on the type of simulation or structural complexity. The parameters

used in this work are only those accounted for here.

Radius and thickness are the dimensions that define the piezoelectric element in this

work. They are measured with a Mitutoyo M310-25 micrometer [47] and given in Table 5.3.

These dimensions are then used in FEMP when simulating. The element simulation’s accu-

racy and computational time depend on elements per wavelength and frequency [38]. In the

case of vacuum, the elements per wavelength used are 98 in radius and thickness direction.

For the non-vacuum case, the element per wavelength is 7 in the fluid, 25 in radius, and 98

in thickness. When calculating the wavelength, the frequency is the maximum simulated

frequency [38]. Fluids use the wavelength for longitudinal waves, while materials use the

wavelength for shear waves [38]. The reason for using shear waves, the shortest wavelength,

over longitudinal weaves is that the number of elements per wavelength needed to obtain a

specific accuracy is almost equal in radial and thickness directions [38]. This investigation of

comparing shear weaves against longitudinal waves is done by [38].

Table 5.3: Measured dimensions of the piezoelectric element Pz27 with calculated uncer-
tainties. The dimensions measured with Mitutoyo M310-25 micrometer [47] and are mean
values of ten measurements.

Element number in batch Diameter Thickness Unit

#7 20.25±0.01 2.048±0.011 [mm]

CHAPTER 5. FINITE ELEMENT SETUP 93

Studies of [38] make it possible to calculate the optimal distance from origo to the

boundary between finite and infinite elements. Using 10th order infinite elements in simu-

lation, [38] suggest the normalized distance

Ri n f /(a2/λ) = S (5.3)

should be larger or equal to the critical distance S = 0.32. This normalized value corresponds

to Ri n f , approximately 28 mm at the maximum simulated frequency of 300 kHz and sound

speed in the air. Therefore Ri n f is set to 30 mm in this work. When it comes to the order

of finite elements, 8 nodes are used, corresponding to 2nd order isoparametric elements [2].

Typically the meshing angle ̸ for fluid regions is set to 1.3 rad [2], see Fig. 5.2.

FEMP uses direct harmonic analysis to solve the FE problem over a set range of fre-

quencies [38]. For simulation of the element fully immersed in the fluid, a wide frequency

range can take a lot of computing power and computation time. Therefore, all simulations

performed in this work only simulate the frequency range of interest from 1-300 kHz with a

step of 50 Hz. These simulations also account for complex losses in the element. The main

computed quantities in this work are admittance YT (f), directivity D(r , θ, f), 2-D near-field

and far-field pressure p(x,z, f), and on-axis pressure pax(z, f).

5.4 Simulated pressure

The voltage V1 over the piezoelectric disk, described in Sect. 2.7.2, will change according

to the measuring frequency. At around resonance, this voltage decreases rapidly relative to

the V0 voltage generated by the signal generator. The voltage over the piezoelectric disk can

be calculated by measuring V0m with the oscilloscope and using the transfer function HV V
0m1,

see Eq. 2.21. Due to the simulated pressure amplitude being linear dependent on the input

voltage amplitude
{psi m}

Vsi m
= {ppp }

V1pp

, (5.4)

where psi m is the simulation pressure, Vsi m is the simulation voltage applied to the piezo-

electric disk, V1pp is the peak-to-peak voltage calculated over the piezoelectric disk, and ppp

is the adjusted peak-to-peak simulation pressure, which is used to compare to peak-to-peak

measurement pressure p4pp . The simulated pressure psi m can be scaled by the measured

peak-to-peak voltage V1pp as

{ppp } = {psi m}

Vsi m
V1pp , (5.5)

where Vsi m is equal to 1 V in these simulations.

94 CHAPTER 5. FINITE ELEMENT SETUP

5.5 Structure setup

This work uses two different read_inn_project.m scripts given in Appendix C.1 C.2, one for

the element fully immersed in the fluid and one for vacuum simulations. Plotting the mesh

view, Fig. 5.3 and 5.4, visualize the result of the two scripts and the FE problem to solve.

Figure 5.3: For illustration purposes is the mesh view of vacuum simulation, plotted with 7
elements per wavelength in radial and thickness direction at a frequency of 300 kHz.

Figure 5.4: For illustration purposes is the mesh view of piezoelectric disc fully immersed in
fluid simulation, plotted with 2 element per wavelength in fluid at a frequency of 100 kHz.
Elements per wavelength in radial and thickness direction are set to 7 and 28.

96

Chapter 6

Results and discussion

This chapter presents the results obtained with the FE simulations method described in

Chapter 5. The results obtained by performing measurements of the piezoelectric disk’s

electrical properties with an impedance analyzer (Table 3.2) described in Sect. 3.2 are also

presented. And finally, acoustic measurements with the piezoelectric disk transmitting ul-

trasound and measured with a condenser microphone by Brüel & Kjær are presented. Sect.

6.1 presents all the electrical properties from FE simulations and the measurements results.

Sect. 6.2 presents all the acoustically measurements results compared to FE simulations.

6.1 Electrical properties of the piezoelectric disk

This section studies the FE simulated electrical properties of a piezoelectric disk with the

same dimensions as piezoelectric disk in Table 5.3. The electrical properties of piezoelectric

disk are studied by measuring the properties and compared with the FE simulated electrical

properties performed in FEMP.

6.1.1 Comparison of electrical properties between FE simulations in a vac-

uum and air

The piezoelectric disk’s electrical admittance FE simulations are done in a vacuum and air

from 1-300 kHz. This frequency range covers the two first radial modes, given the datasets in

Tables 5.1 and 5.2, and the dimension of the piezoelectric disk in Table 5.3 is used. The reason

for doing the simulations in both vacuum and air is to see how the air impacts the electrical

properties of the piezoelectric disk. Based on the plots in Fig. 6.1, there is considerable

overlap between simulated admittance for vacuum and air. One has to zoom in significantly

to see that they do not overlap perfectly in the plot. The reason for this is that the acoustic

impedance in the air is small, which can cause the piezoelectric disk to be considered to

CHAPTER 6. RESULTS AND DISCUSSION 97

oscillate in a vacuum.

Figure 6.1: FE simulation of the piezoelectric’s admittance plotted in dB relative to one
siemens over the frequency range of 1-300 kHz. FE simulation of the disk in a vacuum is
the blue line, and the FE simulation of the disk in the air is the stippled red line.

The radial modes are found by determining the maximum conductance defined as the

serial resonance frequency [32](Sect. 2.1). By studying Fig. 6.2, the maximum conductance

is found at 98.1 kHz for the first radial mode R1 and 249.05 kHz for the second radial mode

R2. For completeness of the comparison of the FE simulated piezoelectric disk are, the sus-

ceptance shown in Fig. 6.3.

Figure 6.2: FE simulation of the piezoelectric’s conductance plotted in dB relative to one
siemens over the frequency range of 1-300 kHz. FE simulation of the disk in a vacuum is the
blue line, and the FE simulation of the disk in the air is the stippled red line.

98 CHAPTER 6. RESULTS AND DISCUSSION

Figure 6.3: FE simulation of the piezoelectric’s susceptance over the frequency range of 1-300
kHz. FE simulation of the disk in a vacuum is the blue line, and the FE simulation of the disk
in the air is the stippled red line.

6.1.2 Comparison of electrical properties between measurements and FE

simulations

The piezoelectric disk’s electrical conductance and susceptance are measured with the impedance

analyzer as described in Sect. 3.2. It is measured directly on the electrodes and measured on

the wires that are soldered onto the electrodes. This is done to see if the short, thin wires

soldered to the electrodes affect the measurement results. The results from the impedance

analyzer are then compared to the FE simulation in air. The frequency range of the mea-

surements of the electrical properties on the piezoelectric disk matches the FE simulations

frequency range, 1-300 kHz. Fig. 6.4 compares the conductance of the measurement results

directly on the electrodes, the measurements on the wires, and the FE simulations. In Fig.

6.4, there is a large overlap between the electrode and wire measurements. However, in the

frequency range from approx. 50 kHz to 75 kHz in this figure, there are small irregular spikes

in the conductance of the electrode measurement. There is a much more consistent mea-

surement result on the wires than the electrodes’ measurement. This smoother result may

be due to the wires soldered to the electrodes providing better current flow than measuring

directly on the electrodes. However, this statement does not explain why irregularities only

appear in the specific measuring range from 50 kHz to 75 kHz and are only positive in order

of magnitude. Furthermore, it also does not explain why it is only shown in the conductance

and not for the susceptance and admittance of the same measurement, see Figs. 6.5 and 6.6.

Since the irregularity is frequency-dependent, it is possible that the wires touching the elec-

CHAPTER 6. RESULTS AND DISCUSSION 99

trodes may have a spring load effect on the electrodes. This "spring" then vibrates close to a

resonant frequency and contributes to the irregularities in this frequency range. One thought

is that the spikes may occur due to a certain vibration of the disk, but this is weakened be-

cause they are not seen in the wire measurement. The last thought is that these irregularities

happen due to noise. Regarding the large difference between measured and simulated con-

ductance in the frequency range from approx. 110 kHz to 165 kHz. It is thought that this

arises due to the piezoelectric constants used in the FE simulations not perfectly matching

the piezoelectric constant of the piezoelectric disk or the fact that these measurements are

performed with solder lump, which is not considered in the FE simulations.

Figure 6.4: FE simulation and measurement of the piezoelectric’s conductance plotted in dB
relative to one siemens over the frequency range of 1-300 kHz. FE simulation of the disk in a
vacuum is the red line, the measured on the disk electrodes is the blue line, and the measured
on the wired soldered to the disk electrode is the stippled turquoise line.

By comparing the measurement and FE simulated conductances, it is seen that the

simulated conductance’s first radial extension mode, R1, frequency is shifted slightly down,

and the magnitude is not as large as the measured values. The same shift is seen in com-

paring simulated and measured radial mode, R2, but to a greater extent. The frequencies of

the maximum conductances are given in Table 6.1, and the frequency differences and mag-

nitude differences of the maximum conductances of FE simulated relative to the measured

are shown in Table 6.2.

100 CHAPTER 6. RESULTS AND DISCUSSION

Table 6.1: Comparison of the frequencies of the maximum conductances found in Fig. 6.4
of the FE simulation in air and measurements made with the impedance analyzer. R1 is the
first radial extension mode, and R2 is the second radial extension mode.

Mode Simulated Measured on wires Measured on electrodes Unit

R1 98100 98860 98870 [Hz]

R2 249050 250500 250550 [Hz]

Table 6.2: Comparison of the magnitude difference ∆Magnitude and frequency difference
∆f of the maximum conductances found in Fig. 6.4 of the FE simulation in air relative to the
measurements made with the impedance analyzer. R1 is the first radial extension mode, and
R2 is the second radial extension mode.

Simulated vs Measured on wires

Mode ∆Magnitude ∆ f

R1 0.86 dB 760 Hz

R2 -1.01 dB 1450 Hz

Simulated vs Measured on electrodes

Mode ∆Magnitude ∆ f

R1 0.61 dB 770 Hz

R2 -1.1 dB 1500 Hz

Figure 6.5: FE simulation and measurement of the piezoelectric’s susceptance over the fre-
quency range of 1-300 kHz. FE simulation of the disk in a vacuum is the red line, the mea-
sured on the disk electrodes is the blue line, and the measured on the wired soldered to the
disk electrode is the stippled turquoise.

CHAPTER 6. RESULTS AND DISCUSSION 101

Figure 6.6: FE simulation and measurement of the piezoelectric’s conductance plotted in dB
relative to one siemens over the frequency range of 1-300 kHz. FE simulation of the disk in a
vacuum is the red line, the measured on the disk electrodes is the blue line, and the measured
on the wired soldered to the disk electrode is the stippled turquoise line.

6.2 Acoustic characteristics of the piezoelectric disk

In this section, acoustic measurements made with the piezoelectric disk are studied and

compared with FE simulations. First, the frequencies used in the acoustic measurements

and which simulation frequencies to compare with the measurements are determined. Then

directivity measurements are presented, then on-axis pressure measurements, and finally, 2-

D sound pressure field of the near and far field.

6.2.1 Frequency selection for measurements and FE simulations

For the on-axis pressure and 2-D pressure field, the frequencies used correspond to 1:2, 2:3,

1:1, 3:2, and 2:1 of the first radial modes given in Table 6.1. For the directivity, the frequencies

used correspond to the same frequencies as for the on-axis pressure and 2-D pressure field

and, in addition, the second radial mode given in Table 6.1. This method of scaling the fre-

quency relative to the first radial modes is due to the FE simulation, and the measurement

results of the radial modes in Tabel 6.1 are not equal. In order to be able to compare the

acoustic characteristics of simulations and measurements with each other, it is then cho-

sen to use the first radial modes of the FE simulation and measurement as the reference

frequency when comparing results outside the resonance. The final frequencies used for

comparing measurements to FE simulations are shown in Table 6.3.

A reason for only measuring directivity at the second radial mode is due to directivity

being a normalized quantity, making it feasible to compare FE simulations with directivity

102 CHAPTER 6. RESULTS AND DISCUSSION

measurements. Another reason is that the second radial mode only is used to measure di-

rectivity is that microphone sensitivity is not valid for such high frequencies, see Fig 3.14.

Therefore, only qualitative measurements can be made for such frequencies, and only cho-

sen to do so for directivity due to lack of time.

Table 6.3: The scaling factor of the modes in parentheses and the calculated frequency result,
used to compare acoustic characteristics between simulation and measurement. Delta f is
the frequency difference between the simulations and the measurements comparisons.

Scaling of mode
Simulation

frequency

Measurement

frequency
∆ f Unit

1:2 (R1) 49050 49430 380 [Hz]

2:3 (R1) 65400 65907 507 [Hz]

1:1 (R1) 98100 98860 760 [Hz]

3:2 (R1) 147150 148290 1140 [Hz]

2:1 (R1) 196200 197720 1520 [Hz]

1:1 (R2) 249050 250500 1470 [Hz]

6.2.2 Acoustic signals examples over three different angles and for all used

frequencies

This section gives examples of the measurement results of the acoustic signal V5m(t), mea-

sured at channel two on the oscilloscope at three different angles and for all frequencies in

Table 6.3. These examples demonstrate that the acoustic signal quality changes with chang-

ing measuring angles. This change can be due to measurements performed in the nodes in

the directivity pattern or with too low voltage amplitude V0pp used outside resonance fre-

quencies, which can lead to low signal-to-noise ratio (SNR) and low-pressure amplitudes.

(a) (b) (c)

Figure 6.7: Comparison of the acoustic measurement signal for the frequency 49430 Hz, and
for the angles (a) 0 degrees, (b) 25 degrees, and (c) 50 degrees. The plot is given in voltage
vs. time. The red dotted lines represent the time domain used in FFT, and the black dotted
represents the start and end of the signal. The distance between the piezoelectric disk and
microphone is 0.2 m. (T = 25.2 ◦C, RH = 32.6 %, P = 990 hPa).

CHAPTER 6. RESULTS AND DISCUSSION 103

(a) (b) (c)

Figure 6.8: Comparison of the acoustic measurement signal for the frequency 65906 Hz, and
for the angles (a) 0 degrees, (b) 25 degrees, and (c) 50 degrees. The plot is given in voltage
vs. time. The red dotted lines represent the time domain used in FFT, and the black dotted
represents the start and end of the signal. The distance between the piezoelectric disk and
microphone is 0.2 m. (T = 25.3 ◦C, RH = 35.3 %, P = 990 hPa).

(a) (b) (c)

Figure 6.9: Comparison of the acoustic measurement signal for the frequency 98860 Hz, and
for the angles (a) 0 degrees, (b) 25 degrees, and (c) 50 degrees. The plot is given in voltage
vs. time. The red dotted lines represent the time domain used in FFT, and the black dotted
represents the start and end of the signal. The distance between the piezoelectric disk and
microphone is 0.2 m. (T = 25.1 ◦C, RH = 33.4 %, P = 991 hPa).

(a) (b) (c)

Figure 6.10: Comparison of the acoustic measurement signal for the frequency 148290 Hz,
and for the angles (a) 0 degrees, (b) 25 degrees, and (c) 50 degrees. The plot is given in voltage
vs. time. The red dotted lines represent the time domain used in FFT, and the black dotted
represents the start and end of the signal. The distance between the piezoelectric disk and
microphone is 0.2 m. (T = 25.3 ◦C, RH = 36.3 %, P = 990 hPa).

104 CHAPTER 6. RESULTS AND DISCUSSION

(a) (b) (c)

Figure 6.11: Comparison of the acoustic measurement signal for the frequency 197720 Hz,
and for the angles (a) 0 degrees, (b) 25 degrees, and (c) 50 degrees. The plot is given in voltage
vs. time. The red dotted lines represent the time domain used in FFT, and the black dotted
represents the start and end of the signal. The distance between the piezoelectric disk and
microphone is 0.2 m. (T = 25.4 ◦C, RH = 37.8 %, P = 991 hPa).

(a) (b) (c)

Figure 6.12: Comparison of the acoustic measurement signal for the frequency 250500 Hz,
and for the angles (a) 0 degrees, (b) 25 degrees, and (c) 50 degrees. The plot is given in voltage
vs. time. The red dotted lines represent the time domain used in FFT, and the black dotted
represents the start and end of the signal. The distance between the piezoelectric disk and
microphone is 0.2 m. (T = 26.3 ◦C, RH = 40.2 %, P = 1007 hPa).

6.2.3 Comparison of directivity between FE simulations and measurements

The directivity measurements of the piezoelectric disk are performed at the frequencies given

in Table 6.3 and over the angles -90 to 90 degrees with one-degree resolution. These mea-

surement results are compared to the corresponding FE simulations of the directivity with

the frequencies in Table 6.3. All directivity measurements and simulations are conducted at

a distance of 0.2 m between the disk and microphone. The voltage from the signal genera-

tor was 1 V0pp , and the received signal was amplified by 60 dB. The measurement results are

normalized relative to the maximum voltage and plotted linearly and logarithmically. At the

measuring distance of 0.2 m, all measurements are performed except for one frequency in

the far field, see Table 6.4, where the Rayleigh distance defines the far field as

zR = πa2

λ
, (6.1)

CHAPTER 6. RESULTS AND DISCUSSION 105

where λ is the wavelength defined by sound speed divided by the frequency. The measure-

ments are desirable to carry out in the far field but not too far out in the far field because it is

also desirable to obtain a good SNR.

For Fig. 6.13, the measurement shows good agreement in the main and first side lobe

relative to the simulation. However, from the first side lob and with the angle continuing

to increase, there appears to be noise present in the measurement. In the first side lobe,

effects due to tilting θT or angle θM from the model in Sect. 4.5 can be seen as being present

in the measurement, and a σ effect at α approx. 0 degrees can also seem to be present.

However, these effects are not consistent for all degrees, which leads to the probability that

there are other reasons why these effects occur. In the second side lobe, the magnitude of the

measurements is lower compared to the simulation and can be due to SNR. At this second

side lobe, which is at about 50 degrees, Fig. 6.7c does show a significant amount of noise is

present relative to the measurement signal.

Table 6.4: Rayleigh distance for the different measurement frequencies where sound speed c
= 343 m/s and radius of the disk a = 10 mm are used when calculating the distance.

Rayleigh distance Frequency

46.3 mm 49430 Hz

60.4 mm 65907 Hz

90.6 mm 98860 Hz

135.8 mm 148290 Hz

181.1 mm 197720 Hz

229.4 mm 250500 Hz

In Fig. 6.14, the measurement shows good agreement in the main lobe relative to the

simulations. Regarding the first side lobe, there is a magnitude difference between the nega-

tive and positive degrees where the negative is greater than the positive degree. Furthermore,

this magnitude difference is shifted for the second side lobe, where the positive is greater

than the negative degree. This directivity behavior is one of the reasons for the method in

Sect. 4.5, were developed. This was to study if this behavior was due to the disk’s positioning

relative to the microphone when the R-stage rotates. But this behavior is not absent in the

developed method in Sect. 4.5, which leads to the thought that this occurs due to the disk

not being perfectly axisymmetric. This discrepancy may be due to the wires soldered to the

electrodes and causes anti-axisymmetric effects, damage in the polarization after soldering

on the electrodes, or some aging or structural defects.

In Fig 6.15, the measurement shows similar behaviors as Fig. 6.14, but both first side

lobes are larger in magnitude relative to the simulation. When it comes to the second and

106 CHAPTER 6. RESULTS AND DISCUSSION

third side lobes, they seem to melt into each other, especially seen on the negative angle side.

(a)

(b)

Figure 6.13: The directivity is given linearly (a) and logarithmically (b), and at the angles
from -90 to 90 degrees with one-degree resolution. Directivity frequency is 49430 Hz for
measurement and 49050 Hz for simulation, both conducted at a distance of 0.2 m. (T = 25.2
◦C, RH = 32.6 %, P = 990 hPa).

CHAPTER 6. RESULTS AND DISCUSSION 107

(a)

(b)

Figure 6.14: The directivity is given linearly (a) and logarithmically (b), and at the angles
from -90 to 90 degrees with one-degree resolution. Directivity frequency is 65907 Hz for
measurement and 65400 Hz for simulation, both conducted at a distance of 0.2 m. (T = 25.3
◦C, RH = 35.3 %, P = 990 hPa).

108 CHAPTER 6. RESULTS AND DISCUSSION

(a)

(b)

Figure 6.15: The directivity is given linearly (a) and logarithmically (b), and at the angles
from -90 to 90 degrees with one-degree resolution. Directivity frequency is 98860 Hz for
measurement and 98100 Hz for simulation, both conducted at a distance of 0.2 m. (T = 25.1
◦C, RH = 33.4 %, P = 991 hPa).

CHAPTER 6. RESULTS AND DISCUSSION 109

(a)

(b)

Figure 6.16: The directivity is given linearly (a) and logarithmically (b), and at the angles
from -90 to 90 degrees with one-degree resolution. Directivity frequency is 148290 Hz for
measurement and 147150 Hz for simulation, both conducted at a distance of 0.2 m. (T = 25.3
◦C, RH = 36.3 %, P = 990 hPa).

110 CHAPTER 6. RESULTS AND DISCUSSION

(a)

(b)

Figure 6.17: The directivity is given linearly (a) and logarithmically (b), and at the angles
from -90 to 90 degrees with one-degree resolution. Directivity frequency is 197720 Hz for
measurement and 196200 Hz for simulation, both conducted at a distance of 0.2 m. (T = 25.4
◦C, RH = 37.8 %, P = 991 hPa).

CHAPTER 6. RESULTS AND DISCUSSION 111

(a)

(b)

Figure 6.18: The directivity is given linearly (a) and logarithmically (b), and at the angles
from -90 to 90 degrees with one-degree resolution. Directivity frequency is 250500 Hz for
measurement and 249050 Hz for simulation, both conducted at a distance of 0.2 m. (T = 26.3
◦C, RH = 40.2 %, P = 1007 hPa).

112 CHAPTER 6. RESULTS AND DISCUSSION

In Fig 6.16, the measurement shows good agreement in the main lobe relative to the

simulations and, to some degree, good agreement in the first and second side lobes. Be-

yond the second side lobes, there seems to be relatively much noise present in measure-

ment, which seems to be true for the measurement signal as well, see Figs. 6.10b and 6.10c.

It is worth noting that it is used a relatively low signal generator output voltage, V0pp , which

is 1 V. With this low voltage and compared to Fig. 1.1, measured by [48], it can be seen that

the transmitting voltage response SV of this type of piezoelectric disk for this particular fre-

quency range is relatively low. This low SV impacts the transmitting efficiency, which most

likely is the cause of much noise being present in the measurement due to bad SNR. Since

this is not at a resonance frequency, the measuring voltage should and can be much higher

and still not cause a non-linear effect in the piezoelectric disk.

In Fig 6.17, the measurement shows good agreement in the main, first and second side

lobes. Beyond the second side lobes, there seems to be relatively much noise present in

measurement, which is true for the measurement signal as well, see Figs. 6.11b and 6.11c.

In the first side lobe, effects due to tilting θT or angle θM from the model in Sect. 4.5 can be

seen as being present in the measurement. These effects can be due to θT or θM exceeding

0.5 degrees.

For the last directivity measurement seen in Fig. 6.18, the measurement results are

similar to the result in Fig. 6.17, but with less noise.

6.2.4 SNR of directivity measurements

In Fig 6.19, the SNR of directivity measurements is presented for all measurement frequen-

cies in Tabel 6.3 and at the measurement distance of 0.2 m between the piezoelectric disk

and microphone. Generally, a good SNR magnitude is 20 dB when the measurement voltage

V5r ms is 10 times greater than the rms noise voltage V noi se
r ms . The highest SNR magnitude is 63

dB and is related to the frequency 98860 Hz (the first radial mode). The lowest SNR magni-

tude is -25.4 dB and is related to the frequency 197720 Hz. With an SNR less than 0 dB, the

rms noise voltage V noi se
r ms is larger than the measurement voltage V5r ms .

For the directivity measurement with a frequency of 49430 Hz, the SNR magnitude of

the main lobe stays above 20 dB. The SNR magnitude starts to drop below 20 dB when the

angle passes 30 degrees. When the SNR drops below 20 dB, noise starts appearing in the

measurements, as seen in Fig. 6.13.

For the directivity measurement with a frequency of 65907 Hz, the SNR magnitude is

generally above 20 dB, except for node points of the directivity beam where the SNR magni-

tude goes below 20 dB. This measurement is generally stable, as seen in Fig. 6.14.

For the directivity measurement with a frequency of 98860 Hz, the SNR magnitude

stays well above 40dB, except for the node points of the directivity beam at approx. 20 de-

CHAPTER 6. RESULTS AND DISCUSSION 113

grees where the SNR magnitude goes below 40 dB. This measurement is stable, as seen in

Fig. 6.15.

For the directivity measurement with a frequency of 148290 Hz, the SNR magnitude

is below 20 dB. At some point, the V noi se
r ms is calculated to be larger than the measurement

voltage V5r ms . This measurement is generally unstable from approx 20 degrees, as seen in

Fig. 6.16.

For the directivity measurement with a frequency of 197720 Hz, the SNR magnitude is

generally below 20 dB, and for all angles larger than 20 degrees, the V noi se
r ms is calculated to

be larger than the measurement voltage V5r ms . This measurement is generally unstable from

approx 15 degrees, but appear to follow the simulation even if there is noise visibly present,

as seen in Fig. 6.17.

For the last directivity measurement with a frequency of 250500 Hz, the main, first,

and second side lobes stay above the SNR magnitude of 20 dB. The angles between approxi-

mately 15 to 60 degrees remain between the SNR magnitude of 0 dB and 20 dB. For the angles

increasing past 60 degrees, the SNR magnitude is larger than 20 dB. Between 0 dB and 20 dB,

the measurements may appear to follow simulation to some degree in Fig. 6.18, but noise is

visibly present.

Measurements of the directivity beam pattern for different frequencies show relatively

good agreements with the simulations. However, the SNR is quite low and negative for some

of the frequencies used, especially for the measurement frequencies 148290 Hz and 197720

Hz. This can be due to the low signal generator peak-to-peak voltage equal to 1 V0pp . If the

transmitting voltage response SV information in Fig. 1.1 had been considered when con-

ducting measurements, the signal generator voltage would have been increased for frequen-

cies outside the first and second radial modes. This is due to work done by Mosland [48],

which shows that high signal generator voltages at the first and second radial modes give

non-linear effects at these frequencies. Therefore the work conducted by [48] did measure

SV with two different signal generator voltages, which are V0pp = 20 V outside resonance and

V0pp = 2 V at resonance to avoid non-linear effects. If these measurements conducted in this

work had used the same voltages as [48], it would most likely increase the SNR ratio giving

better measurement results.

114 CHAPTER 6. RESULTS AND DISCUSSION

Figure 6.19: Signal-to-noise ratio of all directivity measurements at the distance of 0.2 m.

6.2.5 Comparison of directivity at different z distances of FE simulations

and measurements

In Fig. 6.20 it is studied the change in the FE directivity simulations as a function of increas-

ing distance z. This is to investigate how increasing the distance affects the directivity and

investigate how large the distance must be before the directivity stabilizes. The same study is

performed for directivity measurements, but not to the same extent since it is not measured

further out than to z = 0.8 m, see Fig 6.21.

For the FE directivity simulations, shown in Fig. 6.20, it can be seen that the amplitude

of the side lobes of the directivity changes with the distance. The amplitude difference is

most noticeable for simulations that have not been performed far enough into the far field,

where the far field distance for this frequency is 90.6 mm, see Tabel 6.4. The further into

the distant far field that simulations are performed, the more stable the directivity becomes.

After 10 m into the far field, there is minimal change up to 10 km and can be seen as they

overlap in Fig. 6.20. The directivity measurements at the distances 0.2 m, 0.5 m, and 0.8 m,

shown in Fig. 6.21, and the FE directivity simulations at 0.2 m, 0.5 m, and 0.8 m, shown in Fig.

6.20, do not share the same effects. For the directivity measurements in Fig. 6.21, the largest

difference in the first side lobe is between 0.2 m and 0.8 m on the positive angle side and is

1.38 dB. Compare this magnitude to the FE directivity simulations first side lobe between 0.2

m and 0.8 m, which is 2.61 dB. The directivity measurement side lobes in Fig. 6.21 vary for

which distance is greatest in magnitude.

CHAPTER 6. RESULTS AND DISCUSSION 115

(a)

(b)

Figure 6.20: The FE directivity simulations is given linearly (a) and logarithmically (b), and
at the angles from -90 to 90 degrees with one-degree resolution. Directivity simulation fre-
quency is 98100 Hz and conducted at a distance of 0.2 m, 0.5 m, 0.8 m, 10 m, 1 km, and 10
km.

116 CHAPTER 6. RESULTS AND DISCUSSION

(a)

(b)

Figure 6.21: The directivity measurements is given linearly (a) and logarithmically (b), and
at the angles from -90 to 90 degrees with one-degree resolution. Directivity measurement
frequency is 98860 Hz and conducted at a distance of 0.2 m, 0.5 m, and 0.8 m. (T = 25.2 ◦C,
RH = 32.6 %, P = 990 hPa).

CHAPTER 6. RESULTS AND DISCUSSION 117

6.2.6 Comparison of on-axis pressure between FE simulations and mea-

surements

The on-axis pressure of the piezoelectric disk is measured with frequencies given in Table

6.3, excluding 250500 Hz, and at the z distance from 0.1 mm to 0.3 m. The spatial resolutions

of the z distance vary with increasing distance and are given in Table 6.5. With increasing

z distance, the spatial resolution decreases when it approaches far field, and the on-axis

pressure approaches 1/z dependency. The resolution is more significant in the near field

due to several pressure nodes and maximums that need to be documented. If the spatial

resolution is too low in the near field, it is easy to miss relevant pressure changes. All on-axis

pressure measurements and simulations are plotted as pressure amplitude vs. distance z

and sound pressure level (SPL) vs. distance z.

Table 6.5: Spatial resolution of on-axis pressure measurements from 0.1-300 mm.

Start of Interval Spatial resolution Stop of Interval Unit

0.1 0.1 30 [mm]

31 1 100 [mm]

105 5 300 [mm]

In Fig. 6.22, the on-axis pressure measurement shows good agreement with the FE

simulation. It is seen some ripples in the measurements with the increasing z distance. The

distance between each maximum of the ripples is approximately 3.2-3.6 mm. The ripples

slowly die out and can’t be seen anymore from about 0.1 m. For the pressure node, the simu-

lation pressure is higher than for measurement. The 1/z dependency shows good agreement

with measurement until at around 0.15 m.

In Fig 6.23, the on-axis pressure measurement shows good agreement with the FE sim-

ulation. As for earlier on-axis pressure measurement, this also contains ripples with the in-

creasing z distance. The distance between each maximum of the ripples is approximately

2.2-2.7 mm. The ripples slowly die out and can’t be seen anymore from about 0.1 m. The sim-

ulation pressure is higher for the first pressure maximum and node than for measurement.

At the last pressure maximum, the measurement pressure is higher than for simulation. The

1/z dependency shows excellent agreement with measurement.

In Fig 6.24, the on-axis pressure measurement shows good agreement with the FE sim-

ulation but starts to deviate when z becomes less than 0.0145 m. As for all earlier on-axis

pressure measurements, this also contains ripples with the increasing z distance. The dis-

tance between each maximum of the ripples is approximately 1.6-1.8 mm. The ripples slowly

die out and can’t be seen anymore from about 0.075 m. At the last pressure maximum, the

118 CHAPTER 6. RESULTS AND DISCUSSION

simulation pressure is higher than for the measurement and continues to be higher with

increasing distance z. The 1/z dependency shows good agreement with measurement and

starts to deviate in the near field at approximately 0.075 m.

In Fig. 6.25, the on-axis pressure measurement shows some agreement with the FE

simulation, but a significant deviation can be seen from the last pressure maximum. As

for all earlier on-axis pressure measurements, this also contains ripples, but the ripples are

more significant for this frequency than all earlier measurements. The distance between

each maximum of the ripples is approximately 1.1-1.2 mm, and the ripples die abruptly out

at about 0.03 m. The 1/z dependency shows some agreement with measurement in the far

field. For the pressure nodes and maximums, it can be seen that they are shifted a little to

the left.

In Fig. 6.26, the on-axis pressure measurement shows good agreement with the FE

simulation, but a significant deviation can be seen. For the last maximum pressure, the mea-

surements deviate by about 30 % less than for simulated pressure. As for all earlier on-axis

pressure measurements, this also contains ripples, and they abruptly die out at about 0.029

m. The distance between each maximum of the ripples is approximately 0.8-0.9 mm. The

pressure nodes and maximums show good agreement with the FE simulation but with lesser

pressure amplitude.

By comparing all distances between the ripple maximums with the wavelength in Ta-

ble 6.6, it can be seen that all wavelengths divided by two lies within the distance ranges of

the ripple maximums with the corresponding frequency. This implies that these ripples are

probably caused by standing waves between the microphone and the piezoelectric disk. The

pressure shape for all measurements seems to agree well with simulations when one disre-

gards the magnitude. All on-axis pressure plots also have a 1/z dependency, which usually

happens in the far field at around Rayleigh distance, where pressure amplitude decreases

with the inverse of the increasing z distance. For Fig 6.22, 6.25, and 6.26, there also seems to

be some noise present at around 0.15 m and continues with increasing distance z.

Table 6.6: Signal length and wavelength λ for the different frequencies used in on-axis mea-
surements. It is used 60-cycle sine burst, and the sound speed c = 343 m/s.

Frequency Signal Length λ

49430 Hz 416.3 mm 6.939 mm

65907 Hz 312.3 mm 5.204 mm

98860 Hz 208.2 mm 3.470 mm

148290 Hz 138.8 mm 2.313 mm

197720 Hz 104.1 mm 1.735 mm

CHAPTER 6. RESULTS AND DISCUSSION 119

(a)

(b)

Figure 6.22: On-axis pressure given in pressure amplitude (a) and SPL (b), from 0.1 mm to 0.3
m with decreasing spatial resolution with increasing distance z. On-axis pressure frequency
is 49430 Hz for measurement and 49050 Hz for simulation. The Black stippled line represents
Rayleigh distance, and turquoise represents 1/z dependency. (T = 26.2 ◦C, RH = 31.7 %, P =
1010 hPa).

120 CHAPTER 6. RESULTS AND DISCUSSION

(a)

(b)

Figure 6.23: On-axis pressure given in pressure amplitude (a) and SPL (b), from 0.1 mm to 0.3
m with decreasing spatial resolution with increasing distance z. On-axis pressure frequency
is 65907 Hz for measurement and 65400 Hz for simulation. The Black stippled line represents
Rayleigh distance, and turquoise represents 1/z dependency. (T = 25.1 ◦C, RH = 42.1 %, P =
999 hPa).

CHAPTER 6. RESULTS AND DISCUSSION 121

(a)

(b)

Figure 6.24: On-axis pressure given in pressure amplitude (a) and SPL (b), from 0.1 mm to 0.3
m with decreasing spatial resolution with increasing distance z. On-axis pressure frequency
is 98860 Hz for measurement and 98100 Hz for simulation. The Black stippled line represents
Rayleigh distance, and turquoise represents 1/z dependency. (T = 26.0 ◦C, RH = 35.0 %, P =
1012 hPa).

122 CHAPTER 6. RESULTS AND DISCUSSION

(a)

(b)

(c)

Figure 6.25: On-axis pressure given in pressure amplitude (a), SPL (b), and z distance log
scaled (c), from 0.1 mm to 0.3 m with decreasing spatial resolution with increasing distance
z. On-axis pressure frequency is 148290 Hz for measurement and 147150 Hz for simulation.
The Black stippled line represents Rayleigh distance, and turquoise represents 1/z depen-
dency. (T = 25.2 ◦C, RH = 42.4 %, P = 998 hPa).

CHAPTER 6. RESULTS AND DISCUSSION 123

(a)

(b)

(c)

Figure 6.26: On-axis pressure given in pressure amplitude (a), SPL (b), and z distance log
scaled (c), from 0.1 mm to 0.3 m with decreasing spatial resolution with increasing distance
z. On-axis pressure frequency is 197720 Hz for measurement and 196200 Hz for simulation.
The Black stippled line represents Rayleigh distance, and turquoise represents 1/z depen-
dency. (T = 24.5 ◦C, RH = 40.1 %, P = 1007 hPa).

124 CHAPTER 6. RESULTS AND DISCUSSION

6.2.7 SNR of on-axis pressure measurements

In Fig 6.27, the SNR of on-axis pressure measurements is presented for all measurement

frequencies in Tabel 6.3, excluding 250500 Hz, and at the z distance from 0.1 mm to 0.3 m.

The on-axis pressure SNR is generally good for all frequencies and stays well above 20 dB.

For the frequency 148290 Hz, the SNR measurement drops below 20 dB at about a z distance

equal to 0.2 m. For the frequency 197720 Hz, the SNR measurement drops below 20 dB at

about a z distance equal to 0.25 m.

These results in this work have not presented examples of the acoustic signal with in-

creasing distance, such as it was presented for different angles in Sect. 6.2.2, due to lack of

time. However, from the on-axis SNR in Fig 6.27, it can be assumed that with increasing z

distance, the SNR for different angles will be worsened relative to the SNR given in Fig 6.19.

Figure 6.27: Signal to noise ratio of all measured on-axis pressure from 0.1 mm to 0.3 m. (T,
RH, and P see individual measurements, Figs 6.22-6.26).

6.2.8 Comparison of 2-D sound pressure field between FE simulations

and measurements

In this section, the 2-D sound pressure field for near and far fields is studied, and FE sim-

ulations are compared with measurements. Because the diameter of the piezoelectric disk

is 10 mm in radius, the sound pressure field of the disk starts at a z distance of 15 mm to

avoid crashing with the microphone and extends as far as the z distance of 300 mm. The

measurements for each 2-D pressure field are composed of 9350 individual measurements

for different positions and angles and performed with the frequencies given in Table 6.3,

CHAPTER 6. RESULTS AND DISCUSSION 125

excluding 250500 Hz. The resolution of the angle stays constant throughout each measure-

ment series and is set to one degree. The measurement is performed from -93 to 93 degrees

for each measured 2-D pressure field with variating spatial resolution z given in Table 6.7.

The spatial resolution closest to the receiver provides the best spatial resolution, and with

increasing distance z, the spatial resolution decreases.

Table 6.7: The z distance spatial resolution of 2-D sound pressure field measurements from
15-300mm.

Start Interval Spatial resolution Stop Interval Unit

15 1 30 [mm]

35 5 100 [mm]

110 10 300 [mm]

The FE-simulated 2-D pressure field has no distance limitations in the near field, such as

measurements performed with the piezoelectric disk. This means that simulations calculate

the pressure from the structure’s surface and out as far as 300 mm.

In Fig. 6.28, the measurement of the 2-D pressure field compared to the FE simulated

pressure field shows good agreement. All lobes present in the measurement are present in

the FE simulation.

In Fig. 6.29, the measurement of the 2-D pressure field compared to the FE simulated

pressure field shows good agreement. All lobes present in the measurement are present in

the FE simulation.

In Fig 6.30, the measurement of the 2-D pressure field compared to the FE simulated

pressure field shows relatively good agreement. However, all lobes seen in the FE simulation

are not as easy to identify in the measurement. The same effect in the 2-D pressure field mea-

surement can be seen as for the directivity in Fig. 6.15, where some of the lobes discussed

seem to melt into each other. This overlap between lobes mainly applies to the second and

third side lobes for the negative angle side.

In Fig 6.31, the measurement of the 2-D pressure field compared to the FE simulated

pressure field shows good agreement. However, it becomes more difficult to see the side

lobes with the increasing angle, and some side lobes overlap. The difficulties occur probably

due to low SNR shown in Fig. 6.19 and deviations seen in the directivity beam pattern from

approximately 20 degrees in Fig. 6.16.

In Fig. 6.32, the measurement of the 2-D pressure field compared to the FE simulated

pressure field shows reasonable agreement. However, it becomes more difficult to see the

side lobes with the increasing angle, probably due to the low SNR shown in Fig. 6.19. Even

though the SNR is low, it is possible to see that the side lobes are present. It is worth noting

126 CHAPTER 6. RESULTS AND DISCUSSION

the one pressure node at zero degrees and from about 15-20 mm, see Fig 6.26, is documented

in the measurement and agrees well with the FE simulation.

For all 2-D pressure field measurements seen in Fig. 6.28-6.32, the main lobe and first

side lobes can be identified and correspond well to the FE simulations.

Figure 6.28: Measured (left) 2-D pressure field from 0.015-0.3 m with frequency 49430 Hz
and simulated (right) from 0-0.3 m with frequency 49050 Hz with matching dB scale.

CHAPTER 6. RESULTS AND DISCUSSION 127

Figure 6.29: Measured (left) 2-D pressure field from 0.015-0.3 m with frequency 65907 Hz
and simulated (right) from 0-0.3 m with frequency 65400 Hz with matching dB scale.

Figure 6.30: Measured (left) 2-D pressure field from 0.015-0.3 m with frequency 98860 Hz
and simulated (right) from 0-0.3 m with frequency 98100 Hz with matching dB scale.

128 CHAPTER 6. RESULTS AND DISCUSSION

Figure 6.31: Measured (left) 2-D pressure field from 0.015-0.3 m with frequency 148290 Hz
and simulated (right) from 0-0.3 m with frequency 147150 Hz with matching dB scale.

Figure 6.32: Measured (left) 2-D pressure field from 0.015-0.3 m with frequency 197720 Hz
and simulated (right) from 0-0.3 m with frequency 196200 Hz with matching dB scale.

130

Chapter 7

Conclusions and further work

7.1 Conclusions

The measuring system, which consists of the piezoelectric disk Pz27, the receiver micro-

phone Brüel & Kjær 4138, and the associated electronics for the measuring setup, has been

studied when conducting measurements in the air in this work. All measurements per-

formed with the measurement setup are compared with FE simulations. A MatLab app has

also been created that has automated the measurement process, which has been very im-

portant to be able to carry out this work and will benefit everyone else who will continue to

work with this measurement setup. Without automation, the large number of measurements

performed in this work would not have been possible to conduct.

The electrical measurements and FE simulations gave good and comparable results.

The radial extension modes R1 and R2 measurement performed on the wires soldered to

the piezoelectric electrodes corresponded well with the FE simulation and deviated no more

than 0.77 % and 0.58 % in frequency, respectively. The magnitude difference of the R1 and R2

modes deviated no more than 0.86 dB and -1.01 dB, respectively. Based on this, it can be said

that the measurement and FE simulation of the electrical properties correspond well due to

the good matching of the piezoelectric constants. However, there is room for improvements

in the 110 kHz to 165 kHz range by adding solder lump in FE simulations to improve the

results even more.

This work has studied two types of comparison between measurement and FE simu-

lation of the directivity. The first type is the directivity measurements and FE simulations

performed with a constant distance between the piezoelectric disk and microphone using

different frequencies (Figs. 6.13 - 6.18). The second type is the directivity measurements

and FE simulations performed with a constant frequency over several distances between the

piezoelectric disk and microphone (Figs. 6.20 and 6.21). The first type of directivity measure-

ment gave good results in all the main lobes, and, in general, the results are comparable to

CHAPTER 7. CONCLUSIONS AND FURTHER WORK 131

the FE simulations. After increasing the angle beyond the first side lobes, the measurements

in Fig 6.13, 6.16 - 6.18 suffers from low SNR, which is concluded to be due to the low signal

generator peak-to-peak voltage 1 V that was used when conducting the measurement. For

all directivity measurements, asymmetry mirrored around the main lobe is present, which

is concluded to be due to the solder lump on each side of the electrodes and a combination

of not a perfect symmetry within the disk due to aging effects and changes in polarization

after soldering. The second type of directivity measurement gave good results but not the

same increase in the magnitude of the side lobes as for the FE simulations. The directivity

measurements did more or less give similar results for all the different distances with small

deviations in between the results. A conclusion about this behavior has not been drawn.

The number of measured pressure nodes agrees with simulations of the on-axis pres-

sure. It is concluded that there are standing waves between the microphone and the piezo-

electric disk in the on-axis measurements in Figs. 6.22 - 6.26, and these are difficult to avoid.

It has been measured with a given number of pulse cycles that have been constant through-

out all measurements performed in this work. This constant number of cycles has proven

to be a good choice for achieving good measurement results but did cause problems with

standing waves deep into the near field. The pressure amplitude differs in the near field re-

garding the measurement compared to FE simulation for the first radial mode, Fig. 6.24, and

the cause is unknown. The larger deviation in pressure of the measurements compared to FE

simulations in Figs 6.25 and 6.26 is concluded to be due to conducting measurements out-

side the Brüel & Kjær 1/8-inch pressure microphone’s stated flat frequency response from

6.5 Hz to 140 kHz ±2 dB, the measurements results will entail larger uncertainties then ex-

pected. It can be concluded that 1/z dependency in the pressure is present for all on-axis

measurements.

The 2-D pressure field measurements give good results compared to FE simulated 2-D

pressure fields. However, it is clear that measurement and simulation results are not perfect

matches, but it is still a substantial overlap between them. The most noticeable difference

between measurement and simulation results is due to the SNR, as clearly seen in Figs. 6.31,

6.32, and noticeable in 6.28, and concluded to be due to the low signal generator peak-to-

peak voltage of 1 V. For the 2-D pressure measurements in Figs. 6.30 and 6.31, it is clearly

asymmetry mirrored around the main lobe is present, which is concluded to be due to the

solder lump on each side of the electrodes and a combination of not a perfect symmetry

within the disk due to aging effects and changes in polarization after soldering.

All measurement results conducted in this work and compared to FE simulation gave

good agreements, and it can be concluded that using FE simulations is a good tool for ap-

proximating the admittance, directivity, on-axis pressure, and 2D pressure fields in the near

and far fields.

132 CHAPTER 7. CONCLUSIONS AND FURTHER WORK

7.2 Further work

Further work can be, exploring the effect of a solder lump on the edge of the electrodes of

the piezoelectric disk with 3-D simulations in air to try recreating the asymmetric effects that

occur in the present work.

Since it used a constant number of cycles throughout this work, further work can in-

crease the number of cycles for frequencies higher than the first radial mode at 98860 Hz,

e.g., 150 kHz to 90 cycles, 200 kHz to 120 cycles, and 250 kHz to 150 cycles and still avoid re-

flections from vertical rod and study if this can improve measurements results by obtaining

a longer steady state area.

If possible, a suggestion for further work is to increase the accuracy of the microphone

sensitivity beyond 140 kHz with a frequency-dependent factor.

Further work can be, performing measurements with a higher signal generator output

voltage, e.g., 2-volt peak-to-peak at resonances and 20-volt peak-to-peak outside resonance,

and studying improvements on the SNR ratio, which can further improve measurement re-

sults. It can also be suggested to improve the method of calculating the SNR.

More work can be conducting measurements on different-sized piezoelectric disks or

other types of disks that can be interesting for gas measurements.

Finally, work regarding on-axis measurements in the near field to try to lower the ef-

fects of standing waves between the piezoelectric disk and microphone.

134

References

[1] Aanes, M. (2009). Undersøkelser av piezokeramiske skiver. Målinger og endelig element

analyser. Master’s thesis, University of Bergen, Department of Physics and Technology,

Bergen, Norway.

[2] Aanes, M. (2011). A Guide to "inn-files" to FEMP 5. University of Bergen, Department of

Physics and Technology, Bergen, Norway.

[3] AGA-9 (1998). Measurement of Gas by Multipath Ultrasonic Meters. Transmission Mea-

surement Committee Report No.9, A.G.A, American Gas Association, Wilson Boulevard, Ar-

lington, USA.

[4] Agilent Technologies (2007). Agilent 33220A 20 MHz Waveform Generator User’s Guide.

3501 Stevens Creek Blvd. Santa Clara, CA 95052 USA: Agilent Technologies Inc.

[5] American National Standard (ANSI S1.26-1995(ASA 113-1995)). Method for Calculating

of the Absorption of Sound by the Atmosphere. New York, USA: Reaffirmed by ANSI 2004.

[6] Amundsen, Ø. S. (2011). Material constants determination for piezoelectric disks, and

influence on source sensitivity. Measurements and simulations. Master’s thesis, Univer-

sity of Bergen, Department of Physics and Technology, Bergen, Norway.

[7] Andersen, K. K. (2015). Reciprocity calibration of ultrasonic piezoelectric disks in air.

Master’s thesis, University of Bergen, Department of Physics and Technology, Bergen, Nor-

way.

[8] ASL (1997). F250 MKII precision Thermometer. Operator’s Handbool. 40 Tanners Drive,

Blakelands. Milton Keynes, MK 14 5BN, England: Automatic Systems Laboratoties LTD.

[9] Astley, R. J. (2000). Infinite elements for wave problems: a review of current formulations

and an assessment of accuracy. International Journal for Numerical Methods in Engineer-

ing 49(7), 951–976.

REFERENCES 135

[10] Baby, S., T. Balasubramanian, and R. Pardikar (2003). Ultrasonic study for detection

of inner diameter cracking in pipeline girth welds using creeping waves. International

Journal of Pressure Vessels and Piping 80(2), 139–146.

[11] Benny, G., G. Hayward, and R. Chapman (2000). Beam profile measurements and sim-

ulations for ultrasonic transducers operating in air. The Journal of the Acoustical Society

of America 107(4), 2089–2100.

[12] Bentley, J. P. (2005). Principles of Measurement Systems (Fourth Edition ed.). Harlow,

England: Pearson Prentice Hall.

[13] Blackburn, John, F. and M. G. Cain (2006). Nonlinear piezoelectric resonance: A theoret-

ically rigorous approach to constant IV measurements. Journal of Applied Physics 100(11),

114101.

[14] Brassier, P., B. Hosten, and F. Vulovic (2001). High-frequency transducers and correla-

tion method to enhance ultrasonic gas flow metering. Flow Measurement and Instrumen-

tation 12(3), 201–211.

[15] Brigham, E. O. (1988). The fast Fourier transform and its applications. Englewood Cliffs,

USA: Prentice-Hall, Inc.

[16] Brüel & Kjær (1982). Product Data, Pistonphone — Type 4228. Nærum, Denmark: Brüel

& Kjær, Sound & Vibration Measurement A/S.

[17] Brüel & Kjær (1982). Condenser Microphones and Microphone Preamplifiers for acoustic

measurements. Nærum, Denmark: Brüel & Kjær, Sound & Vibration Measurement A/S.

[18] Brüel & Kjær (1985). Instruction Manual, Measuring Amplifier Type 2636. Nærum, Den-

mark: Brüel & Kjær, Sound & Vibration Measurement A/S.

[19] Brüel & Kjær (1995). Calibration data for Type 4138 microphone serial no. 1832479.

Nærum, Denmark: Brüel & Kjær, Sound & Vibration Measurement A/S.

[20] Brüel & Kjær (1996). Calibration data for Type 4228 pistonphone serial no. 1918465.

Nærum, Denmark: Brüel & Kjær, Sound & Vibration Measurement A/S.

[21] Burnett, D. S. (1987). Finite Element Analysis, From Concepts To Application (Reprinted

with correction May, 1988 ed.). Whippany New Jersey, USA: Addison-Wesley Publishing

Company.

[22] Chillara, V. K., E. S. Davis, C. Pantea, and D. N. Sinha (2019). Ultrasonic bessel beam

generation from radial modes of piezoelectric discs. Ultrasonics 96, 140–148.

136 REFERENCES

[23] Cocraft (2022). Instruction manual Cocraft Cross-Line Laser Level HL 10-S. Jungfern-

stieg, Hamburg: Cocraft.

[24] Finstad, S. K. (2021). Characterization and finite element modelling of piezoelectric

ceramic discs vibrating in air, for a frequency range including the first two radial modes.

Master’s thesis, University of Bergen, Department of Physics and Technology, Bergen, Nor-

way.

[25] Getman, I. and S. Lopatin (2000). Matching of series and parallel resonance frequencies

for ultrasonic piezoelectric transducers. In ISAF 2000. Proceedings of the 2000 12th IEEE

International Symposium on Applications of Ferroelectrics (IEEE Cat. No.00CH37076), Vol-

ume 2, pp. 713–715 vol. 2.

[26] Grindheim, R. (2019). Ultrasonic measurement systems for gas. Experimental and theo-

retical characterization using piezoelectric elements at radial mode vibration in air. Mas-

ter’s thesis, University of Bergen, Department of Physics and Technology, Bergen, Norway.

[27] Hagen, A. (2017). Ultrasonic measurement systems with diffraction correction for gas.

Master’s thesis, University of Bergen, Department of Physics and Technology, Bergen, Nor-

way.

[28] Hatano, H. and J. Oosumi (1983). Effect of bevelling on the thickness vibration of high-

frequency Pb(ZrTi)O3 ceramic transducers. Ultrasonics 21(5), 205–210.

[29] Hauge, R. (2013). Finite element modeling of ultrasound measurement systems for gas.

Comparison with experiments in air. Master’s thesis, University of Bergen, Department of

Physics and Technology, Bergen, Norway.

[30] Hauptmann, P., N. Hoppe, and A. Püttmer (2002). Application of ultrasonic sensors in

the process industry. Measurement Science and Technology 13, R73.

[31] Hawlett-Packard (1982). Operation and service manual. Model 4192A LF Impedance

Analyzer. Japan, Tokyo: Hawlett-Packard Company.

[32] IEEE Standard on Piezoelectricity (1987). The Institute of Electrical and Electronics En-

gineers. 345 East 47th Street, New York, NY 10017, USA.

[33] ISO 17089-1: (2019). Measurement of fluid flow in closed conduits - Ultrasonic meters

for gas — Part 1: Meters for custody transfer and allocation measurement.

[34] Kenny, A., I. Cato, M. Desprez, G. Fader, R. Schüttenhelm, and J. Side (2003, 01). An

overview of seabed-mapping technologies in the context of marine habitat classification.

ICES Journal of Marine Science 60(2), 411–418.

REFERENCES 137

[35] Keyence (2013). High-speed, High-accuracy CCD Laser Displacement Sensor LK-G Series

User’s Manual. 500 Park Boulevard, USA: Keyence.

[36] Kinsler, L. E., A. R. Frey, A. B. Coppens, and J. V. Sanders (2000). Fundamentals of Acous-

tics (Fourth Edition ed.). Hoboken, USA: John Wiley & Sons Inc.

[37] Knappskog, V. (2007). Radiellmode Svingninger i Piezoelektriske Ultralydtransdusere

for Luft. Målinger og Endelig Element Analyser. Master’s thesis, University of Bergen, De-

partment of Physics and Technology, Bergen, Norway.

[38] Kocbach, J. (2000). Finite Element Modeling of Ultrasonic Piezoelectric Transducers. Ph.

D. thesis, University of Bergen, Department of Physics, Bergen, Norway.

[39] Kocbach, J., P. Lunde, and M. Vestrheim (1999). Femp - finite element modeling of

piezoelectric structures. theory and verification for piezoceramic disks. Technical report,

No 1999-07 University of Bergen, Department of Physics, Christian Michelsen Reasearch,

Bergen, Norway.

[40] Krohn-Hite (2014). Operating anad Maintenance Manual KH Model 3940/3944. Brock-

ton, USA: Krohn-Hite Corporation.

[41] Kunkel, H., S. Locke, and B. Pikeroen (1990). Finite-element analysis of vibrational

modes in piezoelectric ceramic disks. IEEE Transactions on Ultrasonics, Ferroelectrics,

and Frequency Control 37(4), 316–328.

[42] Lohne, K. D. (2005). Undersøkelse og Utnyttelse av Svingemoder i Ultralyd Trans-

duserkonstruksjoner. Master’s thesis, University of Bergen, Department of Physics and

Technology, Bergen, Norway.

[43] Lunde, P., K.-E. Frøysa, V. Martinez, and Torvanger (2008). Pressure and temperature

effects for Ormen Lange ultrasonic gas flow meters,-Results from a follow-up study. Uni-

versity of Bergen, Department of Physics and Technology, Christian Michelsen Research,

CMR Prototech. Bergen, Norway.

[44] Lygre, A., M. Vestrheim, P. Lunde, and V. Berge (1987). Numerical simulation of ultra-

sonic flowmeters. pp. 196–201.

[45] Lynnworth, L. and Y. Liu (2007). Ultasonic flowmeters: Half-century progress report

1955-2005. Ultrasonics 44 Suppl 1, e1371–8.

[46] Meggitt (2018). Data Sheet Type PZ27. Porthusvej 4, DK3490, Kvistgaard, Denmark:

Meggitt A/S.

138 REFERENCES

[47] Mitutoyo (2018). Outside Micrometer User’s Manual. Mitutoyo.

[48] Mosland, E. (2013). Reciprocity calibration method for ultrasonic piezoelectric trans-

ducers in air. Master’s thesis, University of Bergen, Department of Physics and Technol-

ogy, Bergen, Norway.

[49] Øyerhamn, R., E. Mosland, E. Storheim, P. Lunde, M. Vestrheim, and J. Kocbach (2018).

Finite element modeling of ultrasound measurement systems for gas. comparison with

experiments in air. The Journal of the Acoustical Society of America, Department of Physics

and Technology, University of Bergen, Bergen, Norway.

[50] Paroscientific (2002). Digiquartz Precision Pressure Instruments. Model 770. Paroscien-

tific, Inc.

[51] Physik Instrumente (1995). Operating Manual MS44 E C-852 Signal Processor For Incre-

mental Encoders. D-763337 Waldbronn, Germany: Physik Instrumente (PI) GmbH & Co.

KG.

[52] Physik Instrumente (1996). Product Instruction MP 30 E M-500 Linear Positioning

Stages. D-763337 Waldbronn, Germany: Physik Instrumente (PI) GmbH & Co. KG.

[53] Physik Instrumente (1998). Operating Manual MP 33E M-501.xx Series Linear Position-

ing Stages. D-763337 Waldbronn, Germany: Physik Instrumente (PI) GmbH & Co. KG.

[54] Physik Instrumente (2007). MP 34E M-037/M-038 Worm-Gear Rotation Stages. Auf der

Romerstr. 1 76228 Karlsruhe, Germany: Physik Instrumente (PI) GmbH & Co. KG.

[55] Physik Instrumente (2009). MS77E User Manual, C-843 Motor Controller Card. Auf der

Romerstr. 1 76228 Karlsruhe, Germany: Physik Instrumente (PI) GmbH & Co. KG.

[56] Physik Instrumente (2016). Hydra Handbook. Auf der Romerstr. 1 76228 Karlsruhe,

Germany: Physik Instrumente (PI) GmbH & Co. KG.

[57] Physik Instrumente (2018). Linear Stage for Very High Loads, LS-270. Auf der Romerstr.

1 76228 Karlsruhe, Germany: Physik Instrumente (PI) GmbH & Co. KG.

[58] Pickrill, R. A. and B. J. Todd (2003). The multiple roles of acoustic mapping in inte-

grated ocean management, canadian atlantic continental margin. Ocean & Coastal Man-

agement 46(6), 601–614.

[59] Ricci, R. and A. Sona (2013). Experimental validation of an ultrasound-based measure-

ment system for human motion detection and analysis. In 2013 IEEE International Instru-

mentation and Measurement Technology Conference (I2MTC), pp. 300–305.

REFERENCES 139

[60] Rohatgi, A. (2021). Webplotdigitizer: Version 4.5.

https://automeris.io/WebPlotDigitizer , last accessed:11.04.2022.

[61] Ronold W. P. King, Harry Rowe Mimno, A. H. W. (1945). Transmission Lines Antennas

and Wave Guides (First Edition ed.). New York, USA: McGraw-Hill Book Company, INC.

[62] Sanabria, S. J., T. Marhenke, R. Furrer, and J. Neuenschwander (2018). Calculation of

volumetric sound field of pulsed air-coupled ultrasound transducers based on single-

plane measurements. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency

Control 65, 72–84.

[63] Schafer, R. W. (2011). What is a savitzky-golay filter? [lecture notes]. IEEE Signal Pro-

cessing Magazine 28(4), 111–117.

[64] Søvik, A. A. (2015). Ultrasonic measurement systems for gas. Finite element modelling

compared with measurements in air. Master’s thesis, University of Bergen, Department of

Physics and Technology, Bergen, Norway.

[65] Storheim, E. (2015). Diffraction effects in the ultrasonic field of transmitting and re-

ceiving circular piezoceramic disks in radial mode vibration FE modelling and comparison

with measurements in air. Ph. D. thesis, University of Bergen, Department of Physics and

Technology, Bergen, Norway.

[66] Tektronix (2012). Mixed Signal Oscilloscopes MSO3000 Series, DPO3000 Series Data

Sheet. Beaverton, Oregon, USA, Tektronix Inc.

[67] TESA Technology (2022). Analogue dial gauges, metric, Standard model, resolution 0.01

mm, measuring range 30 mm. Brown& Sharpe TESA, USA.

[68] The Mathworks, Inc. (2022). MATLAB version (R2021b). Natick, Massachusetts: The

Mathworks, Inc.

[69] The Norwegian Petroleum Directorate (2001). Regulations relating to measurement of

petroleum for fiscal purposes and for calculation of CO2-tax (the measurement regula-

tions).

[70] Vaisala Oyj (2014). User’s Guide. Vaisala HUMICAP Humidity and Temperature Trans-

mitter HMT310. Vanha Nurmijärventie 21, FI-01670 Vantaa, Finland: Vaisala Oyj.

[71] Vervik, S. (2000). Methods for characterization of gas-coupled ultrasonic sender-receiver

measurement systems. Ph. D. thesis, University of Bergen, Department of Physics and

Technology, Bergen, Norway.

140 REFERENCES

[72] Vestrheim, M. (2013). PHYS 373 Akustiske Målesystemer, Lecture notes. Bergen, Norway:

University of Bergen, Department of Physics and Technology.

[73] Vestrheim, M. (2013). PHYS 272 Akustiske Transdusere, Lecture notes. Bergen, Norway:

University of Bergen, Department of Physics and Technology.

[74] Wang, Z., Q. Cao, N. Luan, and L. Zhang (2008). Development of new pipeline main-

tenance system for repairing early-built offshore oil pipelines. In 2008 IEEE International

Conference on Industrial Technology, pp. 1–6.

[75] Whitworth M, Bricker L, M. C. (2015). Ultrasound for fetal assessment in early preg-

nancy.

[76] Wikipedia (2022). Angular distance. https://en.wikipedia.org/wiki/Angular_distance,

last accessed:15.06.2022.

[77] Yu, Y., A. Safari, X. Niu, B. Drinkwater, and K. V. Horoshenkov (2021). Acoustic and ul-

trasonic techniques for defect detection and condition monitoring in water and sewerage

pipes: A review. Applied Acoustics 183, 108282.

142

Appendix A

MatLab-scripts

A.1 impanal.m

1 clear all

2 clc

3 close all

4 instrreset

5 vinfo = instrhwinfo('visa','agilent');

6 vinfo.ObjectConstructorName

7 obj1 = visa('agilent','GPIB0::17::INSTR');

8

9 % Connect to instrument object, obj1.

10 fopen(obj1);

11 fprintf(obj1, 'V1');

12 %%

13

14 % Osc. level [V]

15 amplitude = 0.3;

16 f = [100:50:97450,97500:10:99500,99550:50:300000]/1000; % Hz

17

18 %%

19 ol = sprintf('%3.3f',amplitude);

20 % Sett analysator i mode for admittans−måling

21 fprintf(obj1, ['A2C3F1OL',ol,'EN']);

22

23 % Tids−streng på format yyyymmddHHMMSS

24 time = datestr(now, 'yyyymmddHHMMSS');

25 % Tittelen som målingen blir lagra under

26

27 i = 1;

APPENDIX A. MATLAB-SCRIPTS 143

28 ii = 1;

29 antal = length(f);

30 g = ones(1,antal);

31 b = ones(1,antal);

32 fr = ones(1,antal);

33 disp([num2str(antal),' frekvenser.'])

34 disp('Starter måling...')

35 for freq = f

36 percent = i/antal*100;

37 if percent >= ii*10

38 disp([num2str(ii*10),' %'])

39 ii = ii + 1;

40 end

41 s = sprintf('%3.3f',freq);

42 fprintf(obj1, ['FR',s,'ENEX']);

43 pause(0.1)

44 data1 = fscanf(obj1);

45 d=sscanf(data1,'%4c%f,%4c%f,%2c%f');

46 g(i)=d(5);b(i)=d(10);fr(i)=d(13);

47 i = i + 1;

48 end

49 disp('Måling ferdig.')

50 disp('Lagrer data...')

51 stoptime = datestr(now, 'yyyymmddHHMMSS');

52 save(stoptime,'g','b','fr')

53 disp('Ferdig!')

A.2 positioninganalyze directivity.m

1 %%%%%%%%%%%%%%%%%%%%%%%%

2 % The script was created to analyze how much

3 % incorrect positioning affects the simulated

4 % directivity of the piezoelectric disk

5 %

6 % Created by Espen Fosse 2022

7 %%%%%%%%%%%%%%%%%%%%%%%%

8

9 clear all

10

11 % loading the values

12 d1 = load('PZ27_result_0.2m.mat');

13 d2 = load('PZ27_result_0.5m.mat');

144 APPENDIX A. MATLAB-SCRIPTS

14 d3 = load('PZ27_result_0.8m.mat');

15

16 sim = 1;

17 % frequency indeks

18 % 1963 − 98100Hz

19 % 2944 − 147150Hz

20 % 4982 = 249050Hz

21 mode = 4982;

22 % decimal distance and angle for interpolation functions

23 decdist = 3;

24 decang = 2;

25

26 disp(['simulation frequency ', num2str(d1.result.directivity_f{1}(mode))...

])

27

28 ang(1,:) = rad2deg(d1.result.directivity_theta{sim})+90;

29 Y_k(1,:) = abs(d1.result.directivity{sim}(:,mode).');

30 ang(2,:) = rad2deg(d2.result.directivity_theta{sim})+90;

31 Y_k(2,:) = abs(d2.result.directivity{sim}(:,mode).');

32 ang(3,:) = rad2deg(d3.result.directivity_theta{sim})+90;

33 Y_k(3,:) = abs(d3.result.directivity{sim}(:,mode).');

34

35 Y_org = [fliplr(abs(d1.result.directivity{sim}(:,mode).')),abs(...

d1.result.directivity{sim}(:,mode).')];

36 ang_org = [−fliplr(rad2deg(d1.result.directivity_theta{sim})+90),rad2deg...

(d1.result.directivity_theta{sim})+90];

37 % interpolated amplitude over new angles

38 angle = (0:10^−(decang):180);

39 p(1,:) = interp1(ang(1,:),Y_k(1,:),angle,'spline');

40 p(2,:) = interp1(ang(2,:),Y_k(2,:),angle,'spline');

41 p(3,:) = interp1(ang(3,:),Y_k(3,:),angle,'spline');

42

43 % original distances in mm

44 dist = [200,500,800];

45

46 % plotting angle in degrees

47 theta_R = (−90:0.1:90);

48 % tilt angle of piezoelectric disk in degrees

49 theta_T = 0;

50 % radius to center of from piezoelectric disk to rotation stage in mm

51 sigma = 5;

52 % line going through rotation stage to center of microphone's

53 % start position and alpha is the angle from line to center of

54 % piezoelectric disk front in degrees

55 alpha = 180;

APPENDIX A. MATLAB-SCRIPTS 145

56 % start distance to in mm

57 z0 = 200;

58 % initial angle from microphone center to xz−plane

59 theta_M = 0;

60

61 beta = z0*sind(theta_M);

62 r0 = z0*cosd(theta_M);

63 R = sigma*cosd(alpha)+sqrt(r0^2+sigma^2*(cosd(alpha)^2−1));

64 r = sqrt(R^2−2*R*sigma*cosd(alpha−theta_R)+sigma^2);

65 theta_m = atand(beta./r);

66 costheta_r = (r.^2+r0^2−4*R^2*sind(theta_R/2).^2)./(2*r.*r0);

67 theta = acosd(sind(theta_m)*sind(theta_T)+cosd(theta_m)*cosd(theta_T).*...

costheta_r);

68

69 % sound propagation distance

70 z = r./cosd(theta_m);

71

72 % interpolated amplitudes over distances

73 distance = (round(min(z),decdist):10^−(decdist):round(max(z),decdist));

74

75 for i = 1:length(p)

76 p2(:,i) = interp1(dist,p(:,i),distance,'spline');

77 end

78

79 for i = 1:length(theta)

80 col = find(round(angle,decang)==round(theta(i),decang));

81 row = find(round(distance,decdist)==round(z(i),decdist));

82 D(i) = p2(row,col);

83 end

84

85 Y_orgplot = 20*log10(Y_org./max(Y_org));

86 Y_orgplot2 = Y_org./max(Y_org);

87 D_plot = 20*log10(D./max(D));

88

89 % plot(ang_org,Y_orgplot,'r')

90 % plot(ang_org,Y_orgplot2,'r')

91

92 plot(ang_org,Y_orgplot,'r',theta_R,D_plot,'b')

93 xlim([−90 90])

94 xticks([−90 −60 −30 0 30 60 90])

95 ylim([−30 0])

A.3 MeasParameters.m

146 APPENDIX A. MATLAB-SCRIPTS

1 %%

2 % Information about the calibration of the measurement microphone.

3 % Part of the software for acoustic measurements in air.

4 % Espen Storheim, 2011

5 % Based on work by Vidar Knappskog and Magne Aanes.

6 %

7 % Modified by Rune Hauge and Eivind Mosland, 2012/2013

8 % Modified by Espen Fosse 2021/2022

9 %%

10

11 function meas = MeasParameters()

12 %% General measurement info.

13

14 % Version of this software which was used to make the measurements. ...

Should

15 % be taken from elsewhere.

16

17 % Name of the person performing the measurement.

18 meas.name = 'E_F';

19 % meas.name = 'ENM';

20

21 % Information about the transmitting transducer.

22 meas.source = 'Pz27 disk, D = 20.0 mm, T = 2.0 mm, Element No. 7 in ...

batch 9/12.';

23

24 % Information about the receiving transducer.

25 meas.receiver = 'B&K Type 4138 mic';

26

27 % Additional notes regarding the specific simulation.

28 % meas.notes = 'Sensitivity';

29 meas.notes = 'Directivity';

30 % meas.notes = 'On Axis Pressure';

31

32 meas.info = 'Måler direktiviteten over mangen distanser for å plotte...

2d feltet';

33 %% Measure distances for primary axis and secondary axis [mm]

34

35 % Primary axis is z−axis, distance between transducer to

36 % microphone/transducer

37 meas.primary_axis = [120:10:300];

38 % meas.primary_axis = [880];

39

40 % Secondary axis can be your x, y or rotation axis, if no secoundary...

is

41 % used, set value to 0

APPENDIX A. MATLAB-SCRIPTS 147

42 meas.secondary_axis = [−93:1:93];

43 % meas.secondary_axis = [0];

44 %% Measure frequency [Hz]

45 meas.frequency = [98.86e3*3/2];

46 % meas.frequency = [97e3:0.1e3:97.9e3];

47 %% Define initial bandpass filter low and high cutoff frequency [kHz...

]

48

49 for i = 1:length(meas.frequency)

50 meas.cutoff_1(i) = (meas.frequency(i)/1000)/2;

51 meas.cutoff_2(i) = (meas.frequency(i)/1000)*2;

52 end

53 %% Input waveform data.

54

55 % Vpp voltage out from the signal generator [V]. This is the ...

actual voltage

56 % level of the function generator

57 meas.voltage_inn = 1;

58

59 % measured signal averaging(2,4,8,16,...,512)

60 meas.average = 128;

61

62 % scaling averaging (2,4,8,16,...,512), if set to 1, simple sampel ...

is

63 % taken insted of averaging, which is the smartest choice

64 meas.average_scaling = 1;

65

66 % Time in Hz between burst

67 meas.burst_rate = 25;

68

69 % Approximate time before the signal is averaged.

70 meas.average_time = meas.average/meas.burst_rate;

71 meas.average_time_scaling = meas.average_scaling/meas.burst_rate;

72

73 % Estemated travel time from tranducer to microphone/transducer.

74 % Normally faktor is 2, and then signal duration becomes

75 % faktor*estemated_travle time

76 meas.est_travel_time_faktor = 2;

77 % If signal duration becomes less then ~ faktor*10 cm then min ...

signal

78 % duration is used insted of faktor*estemated_travle time

79 meas.min_sig_duration = meas.est_travel_time_faktor*2.9155e−04;

80

81 % Normally, signal cycles changes based on distance from microphone,...

but

148 APPENDIX A. MATLAB-SCRIPTS

82 % this can be override with setting sig_cycles to not eaqual to 0

83 meas.sig_cycles = 60;

84

85 % A note on the input voltage: The signal generator claims that the ...

voltage

86 % specified above is the peak to peak voltage. This is the case when...

the

87 % generator is connected to a 50 Ohm load. However, the transmitting

88 % transducer typically has an electrical impedance in the kilo Ohm ...

range and is connected

89 % directly to the generator. This causes a voltage division which ...

depends

90 % of the impedance of the transducer, and hence an impedance ...

mismatch.

91 %% Oscilloscope parameters.

92

93 % Allowed values: 1e3, 10e3, 100e3, 1000e3, or 5000e3.

94 meas.sample_count = 10e3;

95

96 % Channel number where the signal generator is connected.

97 meas.channel_electrical = 1;

98

99 % Channel number where the oscilloscope is connected.

100 meas.channel_acoustical = 2;

101 %% Total input gain in the B&K 2636 measurement amplifier [dB].

102

103 % Only recorded for later reference. Must be set manually.

104 meas.gain_in = 40;

105 meas.gain_out = 20;

106 meas.gain = meas.gain_in + meas.gain_out;

107 end

A.4 HVV_0m1.m

1 function HVV_0m1 = HVV_0m1(Frequency)

2 % HVV_0m1(f) calculates the transfer function HVV_0m1 from oscilloscope ...

to

3 % transmitter for given frequency

4 % f: Frequency [Hz]

5 f = Frequency;

6 % Cable length from oscilloscope to transducer in m

7 x = 3;

APPENDIX A. MATLAB-SCRIPTS 149

8 % Typical inductance per m values for RG58 coaxial cables

9 Lx = 250e−9;

10 % Typical capicitance per m values for RG58 coaxial cables

11 Cx = 100e−12;

12

13 Z0 = sqrt(Lx/Cx);

14 omega = 2*pi.*f;

15 kem = omega*sqrt(Lx*Cx);

16 Za = 1i*Z0*tan((kem*x)/2);

17 Zb = Z0./(1i*sin(kem*x));

18 load #7_admittance.mat fr b g

19 Z = 1./(g+1i*b);

20 ff = fr*1000;

21 ZT = interp1(ff, Z, f, 'spline');

22

23 HVV_0m1 = ZT.*Zb./(ZT.*(Za+Zb)+(Za+Zb).^2−Zb.^2);

A.5 HVV_55m.m

1 function HVV_55m = HVV_55m(Frequency,Gain)

2 % HVV_55m(f) calculates the transfer function HVV_0m1 from microphone to

3 % oscilloscope for given frequency

4 % f: Frequency [Hz]

5 f = Frequency;

6 % Cable length from amplifier to filter ch1 in m

7 x1 = 0.5;

8 % Cable length from filter ch1 to filter ch2 in m

9 x2 = 0.8;

10 % Cable length from filter ch2 to oscilloscope in m

11 x3 = 1.5;

12 % Typical inductance per m values for RG58 coaxial cables

13 Lx = 250e−9;

14 % Typical capicitance per m values for RG58 coaxial cables

15 Cx = 100e−12;

16

17 omega = 2*pi*f;

18

19 Zamp_out = 100;

20

21 Cfilt = 100e−12;

22 Rfilt = 1e6;

23 Zfilt_out = 50;

150 APPENDIX A. MATLAB-SCRIPTS

24 Zfilt = 1./(1i*omega*Cfilt+1/Rfilt);

25

26 Cosc = 11.5e−12;

27 Rosc = 1e6;

28 Zosc = 1./(1i*omega*Cosc+1/Rosc);

29

30 Lx = 250e−9;

31 Cx = 100e−12;

32 Z0 = sqrt(Lx/Cx);

33 kem = omega*sqrt(Lx*Cx);

34

35 Za1 = 1i*Z0*tan((kem*x1)/2);

36 Zb1 = Z0./(1i*sin(kem*x1));

37

38 Za2 = 1i*Z0*tan((kem*x2)/2);

39 Zb2 = Z0./(1i*sin(kem*x2));

40

41 Za3 = 1i*Z0*tan((kem*x3)/2);

42 Zb3 = Z0./(1i*sin(kem*x3));

43 HVV_55a = 10^(Gain/20);

44 HVV_5a51 = Zfilt./((Zamp_out+Za1).*(1+(Zfilt+Za1)./Zb1)+Zfilt+Za1);

45 HVV_5152 = Zfilt./((Zfilt_out+Za2).*(1+(Zfilt+Za2)./Zb2)+Zfilt+Za2);

46 HVV_525m = Zosc./((Zfilt_out+Za3).*(1+(Zosc+Za3)./Zb3)+Zosc+Za3);

47

48 HVV_55m = HVV_55a*HVV_5a51.*HVV_5152.*HVV_525m;

A.6 Vpp.m

1 function Vpp = Vpp(time,amplitude,start,stop,freq,filtorder,filtframelen...

)

2 % Finding the DC component by taking the mean value of signal

3 DC = mean(amplitude);

4 % Subtract the DC value from signal

5 amp = amplitude−DC;

6 zeropadding = length(amplitude)*5;

7

8 % SampleInfoStruct.Both = 'IntCycles'; % bør brukes ved zeropad

9 SampleInfoStruct.Both = 'IntPeriods'; % bør brukes ved zeropad

10 SampleInfoStruct.StartVal = start;

11 SampleInfoStruct.EndVal = stop;

12 SigStruct.SigFreq = freq;

13 % Dersom 'intPeriods' eller 'IntCycles' eller bruk av peak_peak

APPENDIX A. MATLAB-SCRIPTS 151

14 SigStruct.periodFracJump = 1/16;

15 % Program starts

16 SigStruct.x = time;

17 SigStruct.y = amp;

18 CutOffIndxs = find_index_in_sig_advanced(SigStruct,SampleInfoStruct);

19 Sig_wa_reg = SigStruct.y(CutOffIndxs(2) : CutOffIndxs(3));

20

21 % framelenght must be odd

22 if rem(filtframelen,2) == 0

23 filtframelen = filtframelen+1;

24 end

25

26 % filtering the measured signal with Savitzky−Golay method

27 filtered = sgolayfilt(Sig_wa_reg,filtorder,filtframelen);

28

29 % Y_k_tmp = fourier_transform(SigStruct.x,Sig_wa_reg,zeropadding);

30 Y_k_tmp = fourier_transform(SigStruct.x,filtered,zeropadding);

31

32 % finding the peak to peak voltage at given frequency

33 Vpp = 2*2*abs(interp1(abs(Y_k_tmp{1}), Y_k_tmp{2}, freq, 'cubic'));

A.7 Receiver_Sensitivity.m

1 function Mv_f=Receiver_Sensitivity(Frequency)

2 % Linear interpolation of the dB correction from different ambient

3 % pressures

4 load Mv_measurment.mat

5

6 x = [685 800 940 990 1013 1060];

7 y = [−3.4 −2.05 −0.65 −0.2 0 0.39];

8 s = fit(x.',y.','linearinterp');

9

10 % Load volume correction, for DP 0774 = 0dB

11 Lv = 0;

12 % Correction for ambient pressure

13 Lp = s(DPO.pressure);

14 % Stated sound pressure level

15 sSPL = 124.11;

16 % Actual sound pressure level of pistophone

17 aSPL = sSPL + Lp + Lv;

18 % Amplifier gain

19 Gain = 20;

152 APPENDIX A. MATLAB-SCRIPTS

20

21 % Frequency from pistonphone

22 freq = 251.2;

23 V_ppmax = Vpp(DPO.x,DPO.wf,1,length(DPO.x),freq,5,10);

24 HVV = abs(HVV_55m(250,Gain));

25 Veff = V_ppmax/(HVV*2*sqrt(2));

26 peff = 10^(aSPL/20)*20*1e−6;

27

28 % Calculated calibrated reciver sensitivity. 0.4563mV/Pa in my case. The

29 % given sensitivity of the microphone is 0.822 mV/Pa.

30 Mv = Veff/peff;

31

32 % Open circuit pressure response

33 D1 = [20.058132685561468, −0.03159553295001594

34 21.05087511963177, −0.00497567448031333

35 22.09308910488738, −0.0046992481202954295

36 23.075127239496453, −0.0044504643962790524

37 24.100816983586117, −0.0042016806722635636

38 25.050753654543616, −0.003980539584249598

39 26.038132196432052, −0.003759398496234745

40 27.06442838520751, −0.0035382574082207796

41 28.131176164717257, −0.0033171163202068144

42 29.09901530059949, −0.0031236178681943727

43 30.100152460974538, −0.002930119416181931

44 30.9856398639198, −0.002764263600170125

45 32.05168540481925, −0.0025707651481585714

46 33.15440771277152, −0.002377266696147018

47 34.29506863372019, −0.0021837682441345763

48 35.64681298953859, −0.001962627156120611

49 37.05183651569491, −0.0017414860681066457

50 38.141828818330985, −0.0015756302520957277

51 39.64519370079917, −0.001354489164079986

52 41.207813895344884, −0.001133348076066909

53 43.03950182712216, −0.0008845643520523083

54 44.952608314320514, −0.0006357806280359313

55 47.17890095209987, −0.026702786377701848

56 49.514695074759025, −0.026426360017684836

57 51.966132717579626, −0.026149933657667823

58 54.80312407373893, −0.0258458646616484

59 57.795878408724505, −0.05188522777531457

60 60.65638501271208, −0.025265369305611074

61 63.65943986891338, −0.024988942945593173

62 66.48910290436899, −0.024740159221576796

63 69.44454450323498, −0.024491375497561307

64 72.53135552449893, −0.02424259177354493

APPENDIX A. MATLAB-SCRIPTS 153

65 75.75537534091245, −0.02399380804952944

66 79.5059705627214, −0.02371738168951154

67 83.44352977364937, −0.049784387439179234

68 87.5747601008906, −0.04950796107916222

69 91.91192875425654, −0.07557496682882991

70 97.39920832615756, −0.07524325519680808

71 102.71653131456982, −0.07493918620078865

72 108.84886181419361, −0.0746074745687677

73 116.46748492230017, −0.07422047766474282

74 124.01861390768617, −0.07386112339672035

75 132.69900855770388, −0.07347412649269547

76 141.98696725722905, −0.07308712958867059

77 153.40041900372466, −0.07264484741264177

78 162.55865338014362, −0.07231313578062082

79 172.2610165824735, −0.04563799203891428

80 182.545256834413, −0.04530628040689244

81 195.32208783488707, −0.04491928350286756

82 208.99320342673101, −0.04453228659884356

83 224.70441044155518, −0.04411764705881627

84 238.11959971942048, −0.04378593542679532

85 256.02040349742686, −0.04337129588676891

86 273.93995662570694, −0.04298429898274403

87 293.1137472285418, −0.042597302078719146

88 312.1176753565441, −0.042237947810695786

89 332.35371657275545, −0.041878593542673315

90 353.9017545018618, −0.041519239274649955

91 376.8468519956459, −0.041159885006627484

92 405.18276132827987, −0.06708867757628667

93 435.64930742610267, −0.09301747014594586

94 461.6582224554411, −0.09268575851392491

95 493.9709168008378, −0.09229876160990003

96 528.5452630893234, −0.09191176470587514

97 571.0317389443935, −0.09146948252984721

98 605.1231875570597, −0.09113777089782538

99 653.7652878517716, −0.09069548872179745

100 720.0916947063869, −0.06379920389207516

101 797.0012625520569, −0.06321870853603784

102 877.8727895316784, −0.06266585581600292

103 953.0337476511787, −0.06219593100397258

104 1029.6422202576316, −0.06175364882794465

105 1101.7096344831245, −0.06136665192391977

106 1190.2692395984482, −0.06092436974789095

107 1311.0455738980609, −0.060371517027856036

108 1389.3169549145211, −0.0600398053958342

109 1515.5722906662636, −0.059542237947802334

154 APPENDIX A. MATLAB-SCRIPTS

110 1629.5064742385878, −0.05912759840777593

111 1752.0325016325971, −0.085056390977436

112 1883.7427432984218, −0.0846417514374096

113 2015.5909386274632, −0.08425475453338471

114 2146.2710779771282, −0.08389540026536224

115 2318.7964995463685, −0.08345311808933431

116 2481.1331726557723, −0.10940955329499413

117 2654.7943226984075, −0.10902255639096925

118 2786.2313178527374, −0.10874613003095224

119 2952.5734934578413, −0.10841441839893129

120 3113.76358094979, −0.10811034940291187

121 3315.694012410975, −0.1340944272445741

122 3513.645902525506, −0.13376271561255315

123 3759.575381442612, −0.13337571870852827

124 4003.3261471992037, −0.1330163644405049

125 4283.529656781166, −0.13262936753648003

126 4561.2508162331815, −0.13227001326845755

127 4833.638147410243, −0.1582817337461231

128 5197.010201254747, −0.15786709420609668

129 5587.698997786313, −0.1574524546660685

130 5949.975524079862, −0.15709310039804603

131 6335.740123291306, −0.15673374613002267

132 6845.030979856471, −0.15629146395399474

133 7359.723291062311, −0.18222025652365392

134 7874.850018159103, −0.18183325961962993

135 8304.76235267869, −0.1815291906236114

136 8886.034892537247, −0.18114219371958562

137 9462.157882459767, −0.18078283945156226

138 9978.726245725167, −0.18047877045554284

139 10371.880529349377, −0.1539141972578424

140 11044.337805733268, −0.15355484298981903

141 11535.082573171361, −0.12696262715611795

142 12106.176378560287, −0.12668620079610005

143 12583.15059193551, −0.10012162759840049

144 13205.931772154905, −0.0735017691286961

145 13859.74814335345, −0.0732253427686782

146 14758.114661653412, −0.04652255639096836

147 15714.951906534357, −0.04616320212294589

148 16977.920077169827, −0.019377487837231477

149 18342.389582936732, 0.007408226448482047

150 19816.51781154511, 0.03419394073419646

151 21305.91262297363, 0.06095201238390935

152 22796.82221585644, 0.08768244139762071

153 24988.582880231424, 0.11455108359134059

154 27523.327493266388, 0.16779080053074757

APPENDIX A. MATLAB-SCRIPTS 155

155 29448.859105935688, 0.22086466165414365

156 31662.21355962875, 0.24762273330385653

157 33069.59941653967, 0.24787151702787114

158 35382.60763185681, 0.3272888102609546

159 38040.776002059705, 0.40673374613003865

160 40507.13651879439, 0.407093100398062

161 43341.0152322141, 0.4601669615214581

162 45927.13546765157, 0.513185537372852

163 48432.95961514873, 0.5661764705882435

164 50341.950685981115, 0.5663976116762575

165 52582.864033026635, 0.4612726669615306

166 55456.913162824414, 0.35620300751880585

167 58206.10232391049, 0.2511057054400796

168 61091.57820945313, 0.14600840336135246

169 63197.26505637179, 0.040828173374621635

170 65063.36147790973, −0.14340999557716927

171 66984.56021837509, −0.3276481645289602

172 69294.42319019328, −0.4591718266253775

173 71334.01878699053, −0.48534940291905393

174 72721.8084799586, −0.3798651039363037

175 74859.99778107263, −0.3533558160106054

176 76322.21394529774, −0.3795886775762858

177 78192.3034605607, −0.45848076072533317

178 79719.6084756157, −0.48471362229101267

179 82064.80287834875, −0.48454776647500264

180 84481.5693191942, −0.5370687748783638

181 86969.5082947287, −0.5895897832817241

182 89530.71579967023, −0.6421107916850861

183 92608.14619754962, −0.5892304290137016

184 94870.03632559274, −0.536405351614321

185 97657.94290884356, −0.4835526315789389

186 100530.84790012054, −0.483386775762928

187 103488.26811712357, −0.48322091994691707

188 106529.43511934493, −0.43036819991153585

189 109658.29650014469, −0.3511720477664664

190 112879.05523803871, −0.2719758956213978

191 116192.63547874281, −0.1664363113666445

192 119026.92395984495, −0.06092436974789095

193 121928.48669724895, 0.07093100398054819

194 123699.48719847444, 0.2027310924369825

195 126718.82613948248, 0.2818996019460487

196 129815.82914620957, 0.30838124723574367

197 132337.32807373017, 0.4665524104378651

198 134909.86459873084, 0.5983801415303054

199 137532.4092678341, 0.730207872622743

156 APPENDIX A. MATLAB-SCRIPTS

200 140205.93420114485, 0.8620356037151797

201 142242.41301320156, 0.993835692171614

202 144306.26707734872, 1.1519792127377348

203 145692.10249991124, 1.3364385227775415

204 147088.99976687875, 1.5472412649270328

205 148499.290498152, 1.7580440070765242

206 149923.103110395, 1.9688467492260155

207 151358.2551025438, 2.2059929234851925

208 152804.81096584388, 2.469482529854056

209 153528.57439263677, 2.6539141972578606

210 155000.60782678, 2.8647169394073515

211 156486.75513151608, 3.0755196815568433

212 157987.15163077012, 3.286322423706334

213 159501.93394595556, 3.497125165855826

214 161033.699921934, 3.6815844758956318

215 164161.5642534129, 3.839755639097754

216 166548.54063330134, 3.9452122954445032

217 168165.95944322916, 3.945267580716507

218 169809.46128984625, 3.839949137549767

219 172304.87949111866, 3.681971472799656

220 173994.14714333607, 3.5239661654135435

221 175708.02838608803, 3.2869305616983735

222 177438.79174219005, 3.0498949579832035

223 179186.6035042316, 2.812859354268034

224 180076.5825961926, 2.602139540026546

225 180970.98201181978, 2.3914197257850605

226 182753.5866375774, 2.1543841220698905

227 184556.56956080245, 1.8910050862450332

228 185470.3868064449, 1.7066287041132338

229 187300.17272927362, 1.4432496682883773

230 188230.4500736161, 1.2325298540468905

231 189165.3478938763, 1.0218100398054037

232 190101.98514062806, 0.8374336576736052

233 191971.5996297703, 0.6267414860681209

234 192928.02601257144, 0.38967823971694937

235 193889.21743055253, 0.15261499336577788

236 195817.0164099142, −0.2424812030075083

237 197751.8993713959, −0.5322036709420512

238 199699.79978422992, −0.7692392746572221];

239

240 % Free field correction for mic B&K type 4138

241 D2 = [4007.553556653379, 0.16216216216216317

242 4171.523985222408, 0.16216216216216317

243 4361.593637668383, 0.16216216216215962

244 4560.34969849724, 0.193050193050194

APPENDIX A. MATLAB-SCRIPTS 157

245 4768.162992759082, 0.22393822393822482

246 5097.729374567116, 0.22393822393822482

247 5425.876500218985, 0.25482625482625565

248 5826.807002226876, 0.25482625482625565

249 6174.314057706561, 0.28571428571429003

250 6601.108787041513, 0.3166023166023155

251 7025.990009476682, 0.3166023166023173

252 7511.656186541617, 0.34749034749034813

253 8175.30676583339, 0.37837837837837895

254 8701.561343001555, 0.4092664092664098

255 9220.516914934291, 0.4401544401544406

256 9946.116316699288, 0.47104247104246966

257 10681.1802408922, 0.5328185328185313

258 11267.881754716329, 0.5637065637065639

259 12100.560859005827, 0.594594594594593

260 12822.304123128384, 0.6563706563706564

261 13466.479211351674, 0.6872586872586872

262 14333.415276075924, 0.7490347490347471

263 15120.815394438714, 0.8108108108108105

264 15951.562477890415, 0.903474903474903

265 16753.043310019864, 0.9652509652509647

266 17438.69982304954, 1.0270270270270263

267 18233.58344722897, 1.1196911196911188

268 19064.699128981494, 1.2123552123552113

269 19933.69838301448, 1.3050193050193037

270 20749.649446205003, 1.3976833976833962

271 21599.000038410624, 1.4903474903474887

272 22583.646254091753, 1.613899613899612

273 23718.761913320126, 1.7683397683397661

274 24800.042950269042, 1.8918918918918912

275 25700.570216429194, 2.0154440154440145

276 26633.796996808847, 2.1389961389961396

277 27478.205414054573, 2.262548262548263

278 28349.547855592133, 2.416988416988419

279 29379.131512011878, 2.5714285714285694

280 30446.107034819277, 2.7258687258687235

281 31411.562559999464, 2.8803088803088794

282 32407.818818171745, 3.0656370656370644

283 33435.48083424683, 3.2200772200772203

284 34342.37281678526, 3.3745173745173727

285 35431.78649771378, 3.590733590733592

286 36555.339469596234, 3.7451737451737444

287 37883.37113186014, 3.96138996138996

288 39084.888741774914, 4.146718146718147

289 40324.745193745155, 4.362934362934363

158 APPENDIX A. MATLAB-SCRIPTS

290 41603.6939783443, 4.548262548262544

291 42923.20619330782, 4.733590733590733

292 44087.69264795654, 4.9189189189189175

293 45284.03074875428, 5.135135135135135

294 46512.565266454076, 5.32046332046332

295 47774.42934948241, 5.505791505791505

296 49070.527213316214, 5.69111969111969

297 50401.78760437459, 5.876447876447875

298 51539.014520064986, 6.06177606177606

299 52701.598732028, 6.216216216216214

300 53890.407777012966, 6.370656370656368

301 54861.04856995523, 6.525096525096522

302 55849.17194630681, 6.679536679536676

303 57109.30942505863, 6.864864864864862

304 58397.8796703138, 7.050193050193046

305 59715.524217003884, 7.235521235521232

306 60791.43201484806, 7.420849420849418

307 62163.439290876755, 7.637065637065634

308 63850.270386668846, 7.85328185328185

309 65291.31285998187, 8.069498069498065

310 66764.87834999173, 8.285714285714283

311 67967.4061677525, 8.440154440154437

312 69191.98994649285, 8.625482625482622

313 70753.18444092202, 8.810810810810807

314 72350.01940002342, 9.027027027027025

315 73982.89347039249, 9.243243243243239

316 75652.62002196065, 9.459459459459456

317 77705.93130923978, 9.706563706563703

318 79459.22778529546, 9.891891891891888

319 81252.08428567818, 10.077220077220073

320 83456.41522816512, 10.262548262548261

321 86103.33786363956, 10.447876447876443

322 88833.70149212686, 10.602316602316598

323 91242.14849115594, 10.694980694980691

324 94134.38579384239, 10.787644787644783

325 97117.74570825178, 10.849420849420845

326 99749.07255594028, 10.849420849420845

327 102451.10558398512, 10.818532818532812

328 104757.92713762312, 10.75675675675675

329 107116.07557106025, 10.66409266409266

330 109040.3819306176, 10.57142857142857

331 110999.25784423781, 10.478764478764475

332 113497.2506241556, 10.355212355212352

333 115534.86772433866, 10.200772200772198

334 117086.88349409054, 10.077220077220073

APPENDIX A. MATLAB-SCRIPTS 159

335 119188.94530354132, 9.922779922779918

336 120788.66213038097, 9.737451737451732

337 122409.8498572236, 9.552123552123547

338 124052.79665978807, 9.366795366795362

339 125717.79458159857, 9.181467181467175

340 127405.13958589552, 8.996138996138992

341 129114.39121616929, 8.779922779922774

342 130845.82363460216, 8.532818532818528

343 132600.4746748429, 8.285714285714281

344 134378.65570012658, 8.038610038610035

345 135576.81927932706, 7.85328185328185

346 136784.09732192638, 7.606177606177602

347 139232.5974887442, 7.173745173745171

348 141096.47927815863, 6.803088803088798

349 143622.17312571823, 6.370656370656365

350 144899.43123038978, 6.061776061776056

351 146183.8568004814, 5.598455598455592

352 147482.20497857765, 5.227799227799224

353 149456.52278259964, 4.857142857142852

354 150783.07285878315, 4.45559845559845

355 152120.52484430978, 4.023166023166018

356 154153.39907145244, 3.5289575289575232

357 154834.6752811324, 3.2818532818532784

358 155518.0705690526, 3.0038610038610045

359 156902.92052218987, 2.7567567567567526

360 157596.34815742142, 2.509652509652506

361 158998.79289760426, 2.2316602316602285

362 160415.55770201754, 2.0154440154440127

363 161844.01856674667, 1.7683397683397644

364 162557.41889281085, 1.4594594594594579

365 164004.95250168373, 1.2123552123552095

366 165466.32488206084, 0.9961389961389937

367 167684.2775382433, 0.718146718146718

368 169178.43468459754, 0.5019305019305005

369 172212.73393191773, 0.2548262548262521

370 174521.11716896, −0.023166023166027117

371 177653.27752833022, −0.20849420849421207

372 180037.68437647808, −0.39382239382239526

373 183267.80058292698, −0.6100386100386093

374 188224.65855738753, −0.8571428571428577

375 193318.91070103558, −1.0115830115830153

376 197666.07300972778, −1.2277992277992293

377 200322.53149526555, −1.3204633204633254];

378

379

160 APPENDIX A. MATLAB-SCRIPTS

380 % cubic interpolation between points of open circuit pressure response

381 cubic1 = interp1(D1(:,1),D1(:,2),Frequency,'spline');

382

383 % cubic interpolation between points of free field correction for mic B&...

K type 4138

384 cubic2 = interp1(D2(:,1),D2(:,2),Frequency,'spline');

385

386 % Open circuit responce including mikrophone free field correction

387 cubic3 = cubic1+cubic2;

388

389 % Open circuit responce including mikrophone free field correction with

390 % calibration

391 Y = 20*log10(Mv)+cubic3;

392 % Go from dB to mV/Pa

393 Mv_f = 10.^(Y/20)*1e3;

A.8 plothorizontalpressurefield_basic.m

1 % plothorizontalpressurefield_basic.m

2 % Fargeplott av trykkfeltet. Fungerar både for PML og uendelege element.

3 % @author Espen Storheim, 2013(?)

4 %

5 % Skriptet er modifisert litt av Eivind Nag Mosland i desember 2020

6

7 % Simuleringsnummer, dersom parametrisk

8 sim = 1;

9

10 % Frekvens

11 f_ind =2;

12 FFr = result.nearfieldpressure_f{sim};

13 disp(['Viser trykkfeltet for f = ' num2str(FFr(f_ind)/1e3) ' kHz'])

14

15 % modene = find(FFr == f);

16

17 % Sett til ein dersom det er ei pml−køyring, eller ein berre vil sjÅ pÅ ...

dei

18 % endelege elementa (ikkje det som er rekna ut i dei uendelege).

19 ispml = 0;

20

21 % Hentar ut koordinatane til nodane og det tilh?yrande komplekse ...

trykkjet.

22 if ispml

APPENDIX A. MATLAB-SCRIPTS 161

23 P_r = [result.nearfieldpressure_r{sim}.'];

24 P_z = [result.nearfieldpressure_z{sim}.'];

25 P = [result.nearfieldpressure{sim}(:,f_ind)];

26 else

27 P_r = [result.nearfieldpressure_r{sim}.';result.farfieldpressure_r{...

sim}];

28 P_z = [result.nearfieldpressure_z{sim}.';result.farfieldpressure_z{...

sim}];

29 P = [result.nearfieldpressure{sim}(:,f_ind);result.farfieldpressure{...

sim}(:,f_ind)];

30 end

31

32 % Ser på dB−magnituda til trykket. Kan også sjå på fasen.

33 P = 20*log10(abs(P)*mean(pressurefield_result.V1)/(2*20e−6));

34

35 NEWSIM_press = 0;

36

37 % Delaunay delar matrisa opp i nokre trekantar.

38 TRI = delaunay(P_z,P_r);

39

40 X = [];

41 Y = [];

42 C = [];

43

44 % Her er det endring frå FEMP originalt. Har bytta om P_z og P_r ...

samanlikna

45 % med originalfila. Grunnen til dette er at det er enklare å plotte det

46 % slik enn å rotere labels og ticks, m.m.

47 for ii = 1:3

48 X(1:size(TRI,1),ii) = P_z(TRI(:,ii));

49 Y(1:size(TRI,1),ii) = P_r(TRI(:,ii));

50 C(1:size(TRI,1),ii) = P(TRI(:,ii));

51 end

52

53 %% Plotting av feltet.

54 % Plottar feltet for r => 0.

55 fig = figure;

56 h1 = patch(X.',Y.',C.');

57 %h1 = contourf(X.',Y.',C.');

58 set(h1,'edgecolor','none');

59

60 % Plottar feltet for r <= 0. No har ein dobbelt opp i r = 0.

61 hold on

62 h2 = patch(X.',−Y.',C.');

63 set(h2,'edgecolor','none');

162 APPENDIX A. MATLAB-SCRIPTS

64 hold off

65

66 %% Colorbar og aksetekstar.

67 defaxis = gca;

68 h = colorbar;

69 ylabel(h, '20log |p| [dB re 1 Pa/V]')

70 axes(defaxis)

71 xlabel('Axial distance, z [m]')

72 ylabel('Lateral distance, r [m]')

73 axis image

74

75 %% Begrensar områda.

76 xlim([0 0.3])

77 ylim([−0.301 0.301])

A.9 polarPcolor.m

1 function [varargout] = polarPcolor(R,theta,Z,varargin)

2 % [h,c] = polarPcolor1(R,theta,Z,varargin) is a pseudocolor plot of ...

matrix

3 % Z for a vector radius R and a vector angle theta.

4 % The elements of Z specify the color in each cell of the

5 % plot. The goal is to apply pcolor function with a polar grid, which

6 % provides a better visualization than a cartesian grid.

7 %

8 %% Syntax

9 %

10 % [h,c] = polarPcolor(R,theta,Z)

11 % [h,c] = polarPcolor(R,theta,Z,'Ncircles',10)

12 % [h,c] = polarPcolor(R,theta,Z,'Nspokes',5)

13 % [h,c] = polarPcolor(R,theta,Z,'Nspokes',5,'colBar',0)

14 % [h,c] = polarPcolor(R,theta,Z,'Nspokes',5,'labelR','r (km)')

15 %

16 % INPUT

17 % * R :

18 % − type: float

19 % − size: [1 x Nrr] where Nrr = numel(R).

20 % − dimension: radial distance.

21 % * theta :

22 % − type: float

23 % − size: [1 x Ntheta] where Ntheta = numel(theta).

24 % − dimension: azimuth or elevation angle (deg).

APPENDIX A. MATLAB-SCRIPTS 163

25 % − N.B.: The zero is defined with respect to the North.

26 % * Z :

27 % − type: float

28 % − size: [Ntheta x Nrr]

29 % − dimension: user's defined .

30 % * varargin:

31 % − Ncircles: number of circles for the grid definition.

32 % − autoOrigin: 'on' (the first circle of the plar grid has a ...

radius

33 % equal to the lowest value of R) or 'off'.

34 % − Nspokes: number of spokes for the grid definition.

35 % − colBar: display the colorbar or not.

36 % − labelR: title for radial axis.

37 % − RtickLabel: Tick label for the radial axis.

38 % − colormap: Colormap for the pcolor function

39 % − ncolor: Number of colors in the colorbar and pcolor

40 % − circlesPos: position of the circles with respect to the ...

origin

41 % (it overwrites Ncircles if necessary)

42 %

43 %

44 % OUTPUT

45 % h: returns a handle to a SURFACE object.

46 % c: returns a handle to a COLORBAR object.

47 %

48 %% Examples

49 % R = linspace(3,10,100);

50 % theta = linspace(0,180,360);

51 % Z = linspace(0,10,360)'*linspace(0,10,100);

52 % figure

53 % polarPcolor(R,theta,Z,'Ncircles',3)

54 %

55 %% Author

56 % Etienne Cheynet, University of Stavanger, Norway. 23/10/2019

57 % see also pcolor

58 %

59 %% InputParseer

60 p = inputParser();

61 p.CaseSensitive = false;

62 p.addOptional('Ncircles',5);

63 p.addOptional('autoOrigin','on');

64 p.addOptional('Nspokes',8);

65 p.addOptional('labelR','');

66 p.addOptional('RtickLabel',[]);

67 p.addOptional('colBar',1);

164 APPENDIX A. MATLAB-SCRIPTS

68 p.addOptional('Rscale','linear');

69 p.addOptional('colormap','parula');

70 p.addOptional('ncolor',[]);

71 p.addOptional('typeRose','meteo'); % 'meteo' or 'default'

72 p.addOptional('circlesPos',[]);

73 p.parse(varargin{:});

74 Ncircles = p.Results.Ncircles;

75 Nspokes = p.Results.Nspokes ;

76 labelR = p.Results.labelR ;

77 RtickLabel = p.Results.RtickLabel ;

78 colBar = p.Results.colBar ;

79 Rscale = p.Results.Rscale ;

80 autoOrigin = p.Results.autoOrigin ;

81 myColorMap = p.Results.colormap ;

82 ncolor = p.Results.ncolor ;

83 circPos = p.Results.circlesPos ;

84 typeRose = p.Results.typeRose ;

85 if ~isempty(circPos)

86 Origin = max([min(circPos),min(R)]);

87 circPos(circPos<min(R))=[];

88 circPos(circPos>max(R))=[];

89 elseif strcmpi(autoOrigin,'on')

90 Origin = min(R);

91 elseif strcmpi(autoOrigin,'off')

92 Origin = 0;

93 else

94 error(' ''autoOrigin'' must be ''on'' or ''of'' ')

95 end

96 if Origin==0 && strcmpi(Rscale,'log')

97 warning(' The origin cannot be set to 0 if R is expressed on a ...

logarithmic axis. The value ''Rmin'' is used instead')

98 Origin = min(R);

99 end

100 if isempty(circPos)

101 if ~isempty(RtickLabel)

102 if numel(RtickLabel)~=Ncircles

103 error(' The radial ticklabel must be equal to Ncircles');

104 end

105 if any(cellfun(@ischar,RtickLabel)==0)

106 error(' The radial ticklabel must be a cell array of ...

characters');

107 end

108 end

109 end

110 if ~isempty(circPos)

APPENDIX A. MATLAB-SCRIPTS 165

111 circPos = unique([min(R),circPos,max(R)]);

112 end

113 %% Preliminary checks

114 % case where dimension is reversed

115 Nrr = numel(R);

116 Noo = numel(theta);

117 if isequal(size(Z),[Noo,Nrr]) && Noo~=Nrr,

118 Z=Z';

119 end

120 % case where dimension of Z is not compatible with theta and R

121 if ~isequal(size(Z),[Nrr,Noo])

122 fprintf('\n')

123 fprintf(['Size of Z is : [',num2str(size(Z)),'] \n']);

124 fprintf(['Size of R is : [',num2str(size(R)),'] \n']);

125 fprintf(['Size of theta is : [',num2str(size(theta)),'] \n\n']);

126 error(' dimension of Z does not agree with dimension of R and Theta'...

)

127 end

128 %% data plot

129 rMin = min(R);

130 rMax = max(R);

131 thetaMin=min(theta);

132 thetaMax =max(theta);

133 if strcmpi(typeRose,'meteo')

134 theta = theta;

135 elseif strcmpi(typeRose,'default')

136 theta = 90−theta;

137 else

138 error('"type" must be "meteo" or "default" ');

139 end

140 % Definition of the mesh

141 cax = newplot;

142 Rrange = rMax − rMin; % get the range for the radius

143 [rNorm] = getRnorm(Rscale,Origin,R,Rrange); % getRnorm is a nested ...

function

144 YY = (rNorm)'*cosd(theta);

145 XX = (rNorm)'*sind(theta);

146 h = pcolor(XX,YY,Z,'parent',cax);

147 if ~isempty(ncolor)

148 cmap = feval(myColorMap,ncolor);

149 colormap(gca,cmap);

150 else

151 colormap(gca,myColorMap);

152 end

153 % disp([max(R/Rrange),max(rNorm)])

166 APPENDIX A. MATLAB-SCRIPTS

154 shading flat

155 set(cax,'dataaspectratio',[1 1 1]);axis off;

156 if ~ishold(cax);

157 % make a radial grid

158 hold(cax,'on')

159 % Draw circles and spokes

160 createSpokes(thetaMin,thetaMax,Ncircles,circPos,Nspokes);

161 createCircles(rMin,rMax,thetaMin,thetaMax,Ncircles,circPos,Nspokes)

162 end

163 %% PLot colorbar if specified

164 if colBar==1,

165 c =colorbar('location','WestOutside');

166 caxis([quantile(Z(:),0.01),quantile(Z(:),0.99)])

167 else

168 c = [];

169 end

170 %% Outputs

171 nargoutchk(0,2)

172 if nargout==1,

173 varargout{1}=h;

174 elseif nargout==2,

175 varargout{1}=h;

176 varargout{2}=c;

177 end

178 %...

%%...

179 % Nested functions

180 %...

%%...

181 function createSpokes(thetaMin,thetaMax,Ncircles,circlesPos,Nspokes)

182

183 spokeMesh = round(linspace(thetaMin,thetaMax,Nspokes));

184 if isempty(circlesPos)

185 circleMesh = linspace(rMin,rMax,Ncircles);

186 else

187 circleMesh = circlesPos;

188 end

189 contourD = abs((circleMesh − circleMesh(1))/Rrange+R(1)/Rrange);

190

191 if strcmpi(typeRose,'meteo')

192 cost = cosd(90−spokeMesh); % the zero angle is aligned with ...

North

193 sint = sind(90−spokeMesh); % the zero angle is aligned with ...

APPENDIX A. MATLAB-SCRIPTS 167

North

194 elseif strcmpi(typeRose,'default')

195 cost = cosd(spokeMesh); % the zero angle is aligned with ...

east

196 sint = sind(spokeMesh); % the zero angle is aligned with ...

east

197 else

198 error('"type" must be "meteo" or "default" ');

199 end

200

201 for kk = 1:Nspokes

202

203 X = cost(kk)*contourD;

204 Y = sint(kk)*contourD;

205

206 if Origin==0

207 X(1)=Origin;

208 Y(1)=Origin;

209 end

210 plot(X,Y,'color',[0.5,0.5,0.5],'linewidth',0.75,...

211 'handlevisibility','off');

212 % plot graduations of angles

213 % avoid superimposition of 0 and 360

214 if and(thetaMin==0,thetaMax == 360),

215 if spokeMesh(kk)<360,

216

217 text(1.05.*contourD(end).*cost(kk),...

218 1.05.*contourD(end).*sint(kk),...

219 [num2str(spokeMesh(kk),3),char(176)],...

220 'horiz', 'center', 'vert', 'middle');

221 end

222 else

223 text(1.05.*contourD(end).*cost(kk),...

224 1.05.*contourD(end).*sint(kk),...

225 [num2str(spokeMesh(kk),3),char(176)],...

226 'horiz', 'center', 'vert', 'middle');

227 end

228

229 end

230 end

231 function createCircles(rMin,rMax,thetaMin,thetaMax,Ncircles,...

circlePos,Nspokes)

232

233 if isempty(circlePos)

234 if Origin ==0 % if the origin is set at rMin

168 APPENDIX A. MATLAB-SCRIPTS

235 contourD = linspace(0,1+R(1)/Rrange,Ncircles);

236 else % if the origin is automatically centered at 0

237 contourD = linspace(0,1,Ncircles)+R(1)/Rrange;

238 end

239 else

240

241 contourD = circlePos−circlePos(1);

242 contourD = contourD./max(contourD)*max(R/Rrange);

243 contourD =[contourD(1:end−1)./contourD(end),1]+R(1)/Rrange;

244 end

245

246 if isempty(circlePos)

247 if strcmpi(Rscale,'linear')||strcmpi(Rscale,'lin'),

248 tickMesh = linspace(rMin,rMax,Ncircles);

249 elseif strcmpi(Rscale,'log')||strcmpi(Rscale,'logarithmic'),

250 tickMesh = logspace(log10(rMin),log10(rMax),Ncircles);

251 else

252 error('''Rscale'' must be ''log'' or ''linear'' ');

253 end

254 else

255 tickMesh = circlePos;

256 Ncircles = numel(tickMesh);

257 end

258

259 % define the grid in polar coordinates

260

261

262 if strcmpi(typeRose,'meteo')

263 angleGrid = linspace(90−thetaMin,90−thetaMax,100);

264 elseif strcmpi(typeRose,'default')

265 angleGrid = linspace(thetaMin,thetaMax,100);

266 else

267 error('"type" must be "meteo" or "default" ');

268 end

269

270 xGrid = cosd(angleGrid);

271 yGrid = sind(angleGrid);

272 spokeMesh = linspace(thetaMin,thetaMax,Nspokes);

273

274 % plot circles

275 for kk=1:length(contourD)

276 X = xGrid*contourD(kk);

277 Y = yGrid*contourD(kk);

278 plot(X,Y,'color',[0.5,0.5,0.5],'linewidth',1);

279 end

APPENDIX A. MATLAB-SCRIPTS 169

280 % radius tick label

281

282 position = 0.51.*(spokeMesh(min(Nspokes,round(Ncircles/2)))+...

283 spokeMesh(min(Nspokes,1+round(Ncircles/2))));

284 if strcmpi(typeRose,'meteo'),position = 90−position; end

285 if strcmpi(typeRose,'default') && min(90−theta)<5,position = 0; ...

end

286 if min(round(theta))==90 && strcmpi(typeRose,'meteo'), position...

= 0; end

287 if max(round(theta))==90 && strcmpi(typeRose,'meteo'), position...

= 0; end

288

289 for kk=1:Ncircles

290 if isempty(RtickLabel),

291 rtick = num2str(tickMesh(kk),2);

292 else

293 rtick = RtickLabel(kk);

294 end

295

296 % radial graduations

297 t = text(contourD(kk).*cosd(position),...

298 (contourD(kk)).*sind(position),...

299 rtick,'verticalalignment','BaseLine',...

300 'horizontalAlignment', 'right',...

301 'handlevisibility','off','parent',cax);

302 if min(round(abs(90−theta)))<5 && strcmpi(typeRose,'default'...

),

303 t.Position = t.Position − [0,0.1,0];

304 t.Interpreter = 'latex';

305 clear t;

306 end

307 if min(round(theta))==90 && strcmpi(typeRose,'meteo')

308 t.Position = t.Position + [0,0.02,0];

309 t.Interpreter = 'latex';

310 clear t;

311 elseif max(round(theta))==90 && strcmpi(typeRose,'meteo')

312 t.Position = t.Position − [0,0.05,0];

313 t.Interpreter = 'latex';

314 clear t;

315 end

316

317 % annotate spokes

318 if max(theta)−min(theta)>180,

319 t = text(contourD(end).*1.3.*cosd(position),...

320 contourD(end).*1.3.*sind(position),...

170 APPENDIX A. MATLAB-SCRIPTS

321 [labelR],'verticalalignment','bottom',...

322 'horizontalAlignment', 'right',...

323 'handlevisibility','off','parent',cax);

324 else

325 t = text(contourD(end).*0.6.*cosd(position),...

326 contourD(end).*0.6.*sind(position),...

327 [labelR],'verticalalignment','bottom',...

328 'horizontalAlignment', 'right',...

329 'handlevisibility','off','parent',cax);

330 end

331

332 t.Interpreter = 'latex';

333 if min(round(theta))==90 && strcmpi(typeRose,'meteo'),

334 t.Position = t.Position + [0,0.05,0];

335 clear t;

336 elseif max(round(theta))==90 && strcmpi(typeRose,'meteo'),

337 t.Position = t.Position + [0,0.05,0];

338 clear t;

339 end

340 % if min(round(abs(90−theta)))<5 && strcmpi(...

typeRose,'default'),

341 % t.Position = t.Position − [0,0.12,0];

342 % t.Interpreter = 'latex';

343 % clear t;

344 % end

345 end

346

347 end

348 function [rNorm] = getRnorm(Rscale,Origin,R,Rrange)

349 if strcmpi(Rscale,'linear')||strcmpi(Rscale,'lin')

350 rNorm = R−R(1)+Origin;

351 rNorm = (rNorm)/max(rNorm)*max(R/Rrange);

352 elseif strcmpi(Rscale,'log')||strcmpi(Rscale,'logarithmic')

353 if rMin<=0

354 error(' The radial vector cannot be lower or equal to 0 ...

if the logarithmic scale is used');

355 end

356 rNorm = log10(R); %normalized radius [0,1]

357 rNorm =rNorm−rNorm(1);

358 rNorm = (rNorm)/max(rNorm)*max(R/Rrange);

359 else

360 error('''Rscale'' must be ''log'' or ''linear'' ');

361 end

362 end

363 end

APPENDIX A. MATLAB-SCRIPTS 171

A.10 absorption_in_air.m

1 function alpha = absorption_in_air(Frequency,Pressure,RH,Temperature)

2 %Calculating the absorption coefficient alpha dB/m

3

4 % Measure frequency

5 f=Frequency;

6 % Paroscientific reads pressure in hPa, coverting it to kPa

7 p=Pressure/10;

8 % Relative humidity read by Vaisala

9 h_rel=RH;

10

11 % Triple point isothermal temperature(0.01C)

12 T_01=273.16;

13 % Referance pressure in kPa (1atm)

14 p_ref=101.325;

15 %Referance temperature in Kelvin (20 degC)

16 T_ref=293.15;

17 % Temperature read by ASL f250 konverted to Kelvin

18 T=Temperature+273.15;

19

20 % Molar concentration of water in the air

21 V=10.79586*(1−(T_01/T))−5.02808.*log10(T/T_01)+1.50474*(10^−4)*(1−10^(−8...

.29692*(T/T_01−1)))+0.42873*(10^−3)*(−1+10^(4.76955*(1−T_01/T)))−2...

.2195983;

22

23 % Molar humidity

24 h=h_rel*(10^V)*(p/p_ref)^−1;

25

26 % Relaxation frequency for Oxygen

27 f_rO=(p/p_ref)*(24 + ((4.04*(10^4)*h)*(0.02+h)/(0.391+h)));

28

29 % Relaxation frequency for Nitrogen

30 f_rN=(p/p_ref)*(T/T_ref)^(−0.5)*(9+280*h*exp(−4.170*((T/T_ref)^(−1/3)−1)...

));

31

32 % Absorption coefficient i dB/m

33 alpha=8.686*f^2*((1.84*(10^−11)*(p/p_ref)^−1*(T/T_ref)^(0.5)) + (T/...

T_ref)^(−5/2)*(0.01275*(exp(−2239.1/T))*(f_rO/(f_rO^2+f^2)) + 0.1068*...

exp(−3352/T)*(f_rN/(f_rN^2+f^2))));

172 APPENDIX A. MATLAB-SCRIPTS

A.11 Admittance_plotting.m

1 % simulated admittence

2 load('PZ27_result.mat')

3 f = result.admittance_f{1}/1000;

4 YT = result.admittance{1};

5 YT_log = 20*log10(abs(YT));

6 % YT_ang = angle(YT);

7

8 GT = real(YT);

9 GT_log = 20*log10(GT);

10

11 BT = imag(YT);

12

13 load('PZ27_result_fluid.mat')

14 f_fluid = result.admittance_f{1}/1000;

15 YT_fluid = result.admittance{1};

16 YT_log_fluid = 20*log10(abs(YT_fluid));

17 % YT_ang_fluid = angle(YT_fluid);

18

19

20

21 GT_fluid = real(YT_fluid);

22 GT_log_fluid = 20*log10(GT_fluid);

23

24 BT_fluid = imag(YT_fluid);

25

26 % measured admittance

27 % load('20220203132417.mat')

28 % load('20220403155415.mat')

29 f_m = fr(2:end);

30 YT_m = g(2:end)+1i*b(2:end);

31 YT_m_log = 20*log10(abs(YT_m));

32 % YT_m_ang = angle(YT_m);

33

34 GT_m = g(2:end);

35 GT_m_log = 20*log10(GT_m);

36

37 BT_m = b(2:end);

38

39 figure

40 box on

41 hold on

APPENDIX A. MATLAB-SCRIPTS 173

42 plot(f,YT_log,'LineWidth',2,'Color','r')

43 plot(f_fluid,YT_log_fluid,'−−','LineWidth',2,'Color','g')

44 plot(f_m,YT_m_log,'LineWidth',2,'Color','b')

45 xlabel('Frequency [kHz]')

46 ylabel('20log_{10}|Y_T| [dB re. 1 S]')

47 legend('Simuleted','Simuleted fluid','Measured')

48 set(gca,'FontSize',22,'FontName','Times New Roman')

49 ylim([−90 −25])

50 hold off

51

52 figure

53 hold on

54 box on

55 hold on

56 plot(f,GT_log,'LineWidth',2,'Color','r')

57 plot(f_fluid,GT_log_fluid,'−−','LineWidth',2,'Color','g')

58 plot(f_m,GT_m_log,'LineWidth',2,'Color','b')

59 xlabel('Frequency [kHz]')

60 ylabel('20log_{10}(G_T) [dB re. 1 S]')

61 legend('Simuleted','Simuleted fluid','Measured')

62 set(gca,'FontSize',22,'FontName','Times New Roman')

63 ylim([−110 −25])

64 hold off

65

66 figure

67 hold on

68 box on

69 hold on

70 plot(f,BT,'LineWidth',2,'Color','r')

71 plot(f_fluid,BT_fluid,'−−','LineWidth',2,'Color','g')

72 plot(f_m,BT_m,'LineWidth',2,'Color','b')

73 xlabel('Frequency [kHz]')

74 ylabel('B_T [S]')

75 legend('Simuleted','Simuleted fluid','Measured')

76 set(gca,'FontSize',22,'FontName','Times New Roman')

77 % ylim([−110 −25])

78 hold off

174

Appendix B

MatLab-app

B.1 App’s startup values

1 properties (Access = public)

2 % color for app design

3 red = [1,0,0];

4 green = [0,1,0];

5 black = [0,0,0];

6 grey = [0.96,0.96,0.96];

7

8 % indicates if a certain axis is homed or zeroed where rotation

9 % axis has no induction sensor activated and therfore rotation axis

10 % is always homed

11 homed = [0,0,0,1];

12 zeroed = [0,0,0,0];

13

14 % the travell distance of y axis had to be callibrated because

15 % y step = 10 was not 10mm; y calibration factor

16 factor = 1.69027948373533;

17

18

19 % values indicates if somthing is acitve or not

20 initialized = 0;

21 initializing = 0;

22 connected = 0;

23 connecting = 0;

24

25 % if initialize or connecting fails

26 initfail = 0;

27 connectfail = 0;

APPENDIX B. MATLAB-APP 175

28

29 % other values app use

30 stop = 0;

31 start = 0;

32 stage = 0;

33 setup = 0;

34 zeroz = 0;

35 safety = 0;

36 limits = 0;

37 comp = 0;

38 distance_transducer_microphone = 0;

39 distance_transducer_rotaxis = 0;

40 transducer_perpendicular_laser = 0;

41 transducer_perpendicular_mainlobe = 0;

42 tilt_angle_and_distance = 0;

43 tilt_angle = 0;

44

45 % empty values for app log and the path for the app

46 text = {};

47 path = '';

48

49

50 % Measurements values

51 meas = {};

52 x = 0;

53 wf = 0;

54 timeDiv = '';

55 maxV = 0;

56 result = {};

57 time = 0;

58 selpath = '';

59 measurement = 0;

60 meas_el_sig = 0;

61 filt_setting = 0;

62 gen_setting = 0;

63 environment = 0;

64 angle = [];

65 distance = [];

66

67 % Number of bytes per word (8−bit if 1, 16−bit if 2, ...) when

68 % reading oscilloscope

69 noB = 2;

70

71 % absolute position or absolute value for the zero position

72 zeropos = {};

176 APPENDIX B. MATLAB-APP

73 abspos = {};

74 field = {'xaxis','yaxis','zaxis','rotaxis'};

75 name = {'X−axis','Y−axis','Z−axis','Rotation−axis'};

76 linearslope = {};

77

78

79 % handels that controll devices

80 controller = {};

81 instrument = {};

82 end

B.2 Initialize machine function

1 methods (Access = public)

2 %%

3 % following function handles the motion controllers and to each

4 % axis in the air setup

5 function InitMotor(app)

6 %%%

7 % Skript InitMotor is used to connect to the controllers of X,

8 % Y, Z and Rotation−axis in the air setup.

9 % X, Y, Z and Rotation−axis can be used to move relatively or

10 % absolute values.

11 %

12 % Espen Fosse, 2021/2022

13 %%%

14

15 % clear handle for controllers

16 app.controller = {};

17

18 % Initialisation of LS−270 with HydraTT motor controller

19 app.controller.HydraTT = serialport('COM1',115200);

20 writeline(app.controller.HydraTT,'version')

21 app.controller.HydraTT_idn = readline(app.controller.HydraTT);

22

23 if isstring(app.controller.HydraTT_idn)

24 app.controller.HydraTT_idn = strip(app.controller.HydraTT_idn);

25 WriteTextInWindow(app,['Connected to: Physik Instrumente, Hydra ...

TT, V' num2str(app.controller.HydraTT_idn)])

26 else

27 WriteTextInWindow(app,'Could not connenct to Hydra TT')

28 app.initfail = 1;

APPENDIX B. MATLAB-APP 177

29 return

30 end

31

32 % z axis

33 app.controller.HydraTT_LS270 = 1;

34 % Initiate Motor restart

35 writeline(app.controller.HydraTT,[num2str(...

app.controller.HydraTT_LS270) ' init']);

36

37 % Sets PID constants for motor

38 app.controller.HydraTT_LS270_P = 0;

39 app.controller.HydraTT_LS270_I = 0.001;

40 app.controller.HydraTT_LS270_D = 0;

41 writeline(app.controller.HydraTT,[num2str(...

app.controller.HydraTT_LS270_P) ' 1 ' num2str(...

app.controller.HydraTT_LS270) ' setsp']);

42 writeline(app.controller.HydraTT,[num2str(...

app.controller.HydraTT_LS270_I) ' 2 ' num2str(...

app.controller.HydraTT_LS270) ' setsp']);

43 writeline(app.controller.HydraTT,[num2str(...

app.controller.HydraTT_LS270_D) ' 3 ' num2str(...

app.controller.HydraTT_LS270) ' setsp']);

44

45 % Sets motor acceleration and velocity

46 app.controller.HydraTT_LS270_aks = 2;

47 app.controller.HydraTT_LS270_vel = 10;

48 writeline(app.controller.HydraTT,[num2str(...

app.controller.HydraTT_LS270_aks) ' ' num2str(...

app.controller.HydraTT_LS270) ' sna']);

49 writeline(app.controller.HydraTT,[num2str(...

app.controller.HydraTT_LS270_vel) ' ' num2str(...

app.controller.HydraTT_LS270) ' snv']);

50

51 % Initialisation of M−535.22, M−531.DG and M−037.PD with C843.41 ...

motor controller

52

53 % Create Instance of controller class

54 app.controller.C843 = C843_GCS_Controller();

55 % rotation axis name

56 app.controller.C843_M037PD_name = ('M−037.PD');

57 % x axis name

58 app.controller.C843_M531DG_name = ('M−531.DG');

59 % y axis name

60 app.controller.C843_M53522_name = ('M−535.22');

61

178 APPENDIX B. MATLAB-APP

62 % Connect using PCI

63 app.controller.C843 = app.controller.C843.Connect(1);

64 app.controller.C843 = app.controller.C843.InitializeController();

65

66 % Query controller identification

67 WriteTextInWindow(app,['Connected to: ' app.controller.C843.qIDN()])

68 % Query axes

69 app.controller.C843_availableaxes = app.controller.C843.qSAI_ALL();

70 if(isempty(app.controller.C843_availableaxes))

71 noax2 = 'No available axes on C.843.41 Motor Controller';

72 WriteTextInWindow(app,noax2)

73 app.initfail = 1;

74 return

75 end

76

77 % x axis

78 app.controller.C843_M531DG = app.controller.C843_availableaxes(4);

79 % y axis

80 app.controller.C843_M53522 = app.controller.C843_availableaxes(2);

81 % rotation axis

82 app.controller.C843_M037PD = app.controller.C843_availableaxes(3);

83

84 % Connect a stage

85 % connecting to x axis

86 app.controller.C843.CST(app.controller.C843_M531DG,...

app.controller.C843_M531DG_name);

87 % connecting to y axis

88 app.controller.C843.CST(app.controller.C843_M53522,...

app.controller.C843_M53522_name);

89 % connecting to rotation axis

90 app.controller.C843.CST(app.controller.C843_M037PD,...

app.controller.C843_M037PD_name);

91

92 % Initialize x and y rotation axis

93 app.controller.C843.INI(app.controller.C843_M531DG);

94 app.controller.C843.INI(app.controller.C843_M53522);

95 app.controller.C843.INI(app.controller.C843_M037PD);

96

97 % set to Acceleration, Deceleration and Velocity of rotation axis

98 app.controller.C843.ACC(app.controller.C843_M037PD,0.5)

99 app.controller.C843.DEC(app.controller.C843_M037PD,0.5)

100 app.controller.C843.VEL(app.controller.C843_M037PD,10)

101

102 %% Configuration values for LS−270

103

APPENDIX B. MATLAB-APP 179

104 % Verdier som ikke skal endres. Konfigurasjonsinstillingene skal væ...

re

105 % lagret på HYDRA−TT. Skal det være problemer med bevegelse av LS...

−270

106 % er det en ide og 'uncomment' denne seksjonen og kjøre InitMotor og

107 % 'comment' alt i denne seksjonen igjen etterpå.

108 % (Etter erfaring, så er det greit å alltid ha disse 'uncomment')

109

110

111 % Sets the Vector velocity

112 writeline(app.controller.HydraTT,[num2str(1) ' sv']);

113

114 % Sets the Vector acceleration

115 writeline(app.controller.HydraTT,[num2str(1) ' sa']);

116

117 % Sets the Emergency switch configuration

118 writeline(app.controller.HydraTT,[num2str(1) ' setemsw']);

119

120 % Sets the Hardware limits

121 writeline(app.controller.HydraTT,[num2str(0) ' ' num2str(1016) ' ' ...

num2str(app.controller.HydraTT_LS270) ' setnlimit']);

122

123 % Sets the Initial limits

124 writeline(app.controller.HydraTT,[num2str(0) ' ' num2str(1016) ' ' ...

num2str(app.controller.HydraTT_LS270) ' setinilimit']);

125

126 % Sets the Pitch

127 writeline(app.controller.HydraTT,[num2str(5) ' ' num2str(...

app.controller.HydraTT_LS270) ' setpitch']);

128

129 % Sets the Motor form

130 writeline(app.controller.HydraTT,[num2str(0) ' ' num2str(...

app.controller.HydraTT_LS270) ' setmotor']);

131

132 % Sets the Motor current shift value

133 writeline(app.controller.HydraTT,[num2str(0.092540) ' ' num2str(...

app.controller.HydraTT_LS270) ' setMCShift']);

134

135 % Sets the Stop deceleration

136 writeline(app.controller.HydraTT,[num2str(74) ' ' num2str(...

app.controller.HydraTT_LS270) ' ssd']);

137

138 % Sets the FRT parameters

139 writeline(app.controller.HydraTT,[num2str(0) ' 1 ' num2str(...

app.controller.HydraTT_LS270) ' setfrtpara']);

180 APPENDIX B. MATLAB-APP

140 writeline(app.controller.HydraTT,[num2str(0) ' 2 ' num2str(...

app.controller.HydraTT_LS270) ' setfrtpara']);

141

142 % Sets the Calibration velocity

143 writeline(app.controller.HydraTT,[num2str(10) ' 1 ' num2str(...

app.controller.HydraTT_LS270) ' setncalvel']);

144 writeline(app.controller.HydraTT,[num2str(0.1) ' 2 ' num2str(...

app.controller.HydraTT_LS270) ' setncalvel']);

145

146 % Sets the Range measure velocity

147 writeline(app.controller.HydraTT,[num2str(10) ' 1 ' num2str(...

app.controller.HydraTT_LS270) ' setnrmvel']);

148 writeline(app.controller.HydraTT,[num2str(0.1) ' 2 ' num2str(...

app.controller.HydraTT_LS270) ' setnrmvel']);

149

150 % Sets the Reference velocity

151 writeline(app.controller.HydraTT,[num2str(1) ' 1 ' num2str(...

app.controller.HydraTT_LS270) ' setnrefvel']);

152 writeline(app.controller.HydraTT,[num2str(0.1) ' 2 ' num2str(...

app.controller.HydraTT_LS270) ' setnrefvel']);

153

154 % Sets the Motion function

155 writeline(app.controller.HydraTT,[num2str(7) ' ' num2str(...

app.controller.HydraTT_LS270) ' setmotionfunc']);

156

157 % Sets the Position origin configuration

158 writeline(app.controller.HydraTT,[num2str(1) ' 1 ' num2str(...

app.controller.HydraTT_LS270) ' setorgconfig']);

159

160 % Sets Reference configuration

161 writeline(app.controller.HydraTT,[num2str(0) ' ' num2str(...

app.controller.HydraTT_LS270) ' setref']);

162

163 % Sets the Calibration switch distance

164 writeline(app.controller.HydraTT,[num2str(0) ' ' num2str(...

app.controller.HydraTT_LS270) ' setncalswdist']);

165

166 % Sets the Motor voltage minimum

167 writeline(app.controller.HydraTT,[num2str(3.6) ' ' num2str(...

app.controller.HydraTT_LS270) ' setumotmin']);

168

169 % Sets the Motor voltage gradient

170 writeline(app.controller.HydraTT,[num2str(7) ' ' num2str(...

app.controller.HydraTT_LS270) ' setumotgrad']);

171

APPENDIX B. MATLAB-APP 181

172 % Sets the Motor current limit

173 writeline(app.controller.HydraTT,[num2str(5) ' ' num2str(...

app.controller.HydraTT_LS270) ' setmaxcurrent']);

174

175 % Sets the Motor pole pairs

176 writeline(app.controller.HydraTT,[num2str(100) ' ' num2str(...

app.controller.HydraTT_LS270) ' setpolepairs']);

177

178 % Sets the Motor phase number

179 writeline(app.controller.HydraTT,[num2str(2) ' ' num2str(...

app.controller.HydraTT_LS270) ' setphases']);

180

181 % Sets the Positioning control mode

182 writeline(app.controller.HydraTT,[num2str(2) ' ' num2str(...

app.controller.HydraTT_LS270) ' setcloop']);

183

184 % Sets the Target window

185 writeline(app.controller.HydraTT,[num2str(0.0002) ' ' num2str(0.0002...

) ' ' num2str(app.controller.HydraTT_LS270) ' setclwindow']);

186

187 % Sets the Time on target

188 writeline(app.controller.HydraTT,[num2str(0.02) ' ' num2str(...

app.controller.HydraTT_LS270) ' setclwintime']);

189

190 % Sets the Scale period

191 writeline(app.controller.HydraTT,[num2str(−0.02) ' ' num2str(...

app.controller.HydraTT_LS270) ' setclperiod']);

192

193 % Sets the Position display selection

194 writeline(app.controller.HydraTT,[num2str(1) ' ' num2str(...

app.controller.HydraTT_LS270) ' setselpos']);

195

196 % Configures the Motor brake control function

197 writeline(app.controller.HydraTT,[num2str(0) ' 0 ' num2str(...

app.controller.HydraTT_LS270) ' setbrakefunc']);

198 writeline(app.controller.HydraTT,[num2str(3) ' 1 ' num2str(...

app.controller.HydraTT_LS270) ' setbrakefunc']);

199

200 % Enables or disables the Clock and direction function

201 writeline(app.controller.HydraTT,[num2str(0) ' ' num2str(...

app.controller.HydraTT_LS270) ' setcdfunc']);

202

203 % Sets the Clock and direction width

204 writeline(app.controller.HydraTT,[num2str(250) ' ' num2str(...

app.controller.HydraTT_LS270) ' setcdwidth']);

182 APPENDIX B. MATLAB-APP

205

206 % Configures the Servo control

207 writeline(app.controller.HydraTT,[num2str(100) ' 4 ' num2str(...

app.controller.HydraTT_LS270) ' setsp']);

208 writeline(app.controller.HydraTT,[num2str(0) ' 5 ' num2str(...

app.controller.HydraTT_LS270) ' setsp']);

209 writeline(app.controller.HydraTT,[num2str(24) ' 6 ' num2str(...

app.controller.HydraTT_LS270) ' setsp']);

210 writeline(app.controller.HydraTT,[num2str(1) ' 7 ' num2str(...

app.controller.HydraTT_LS270) ' setsp']);

211 writeline(app.controller.HydraTT,[num2str(1) ' 8 ' num2str(...

app.controller.HydraTT_LS270) ' setsp']);

212 writeline(app.controller.HydraTT,[num2str(0.0000) ' 9 ' num2str(...

app.controller.HydraTT_LS270) ' setsp']);

213

214 % Configures the Adaptive positioning control

215 writeline(app.controller.HydraTT,[num2str(0) ' 1 ' num2str(...

app.controller.HydraTT_LS270) ' setadaptive']);

216 writeline(app.controller.HydraTT,[num2str(0.025) ' 2 ' num2str(...

app.controller.HydraTT_LS270) ' setadaptive']);

217 writeline(app.controller.HydraTT,[num2str(0) ' 3 ' num2str(...

app.controller.HydraTT_LS270) ' setadaptive']);

218 writeline(app.controller.HydraTT,[num2str(0) ' 4 ' num2str(...

app.controller.HydraTT_LS270) ' setadaptive']);

219 writeline(app.controller.HydraTT,[num2str(0.1) ' 5 ' num2str(...

app.controller.HydraTT_LS270) ' setadaptive']);

220 writeline(app.controller.HydraTT,[num2str(0) ' 6 ' num2str(...

app.controller.HydraTT_LS270) ' setadaptive']);

221 writeline(app.controller.HydraTT,[num2str(0) ' 7 ' num2str(...

app.controller.HydraTT_LS270) ' setadaptive']);

222 writeline(app.controller.HydraTT,[num2str(0.0001) ' 8 ' num2str(...

app.controller.HydraTT_LS270) ' setadaptive']);

223 writeline(app.controller.HydraTT,[num2str(0) ' 9 ' num2str(...

app.controller.HydraTT_LS270) ' setadaptive']);

224

225 % Configures the Auto commutation

226 writeline(app.controller.HydraTT,[num2str(0) ' 1 ' num2str(...

app.controller.HydraTT_LS270) ' setamc']);

227 writeline(app.controller.HydraTT,[num2str(0) ' 2 ' num2str(...

app.controller.HydraTT_LS270) ' setamc']);

228 writeline(app.controller.HydraTT,[num2str(1) ' 3 ' num2str(...

app.controller.HydraTT_LS270) ' setamc']);

229

230 % Sets the specified Motor parameters entry

231 writeline(app.controller.HydraTT,[num2str(0) ' 1 ' num2str(...

APPENDIX B. MATLAB-APP 183

app.controller.HydraTT_LS270) ' setmotorpara']);

232 writeline(app.controller.HydraTT,[num2str(1) ' 2 ' num2str(...

app.controller.HydraTT_LS270) ' setmotorpara']);

233 writeline(app.controller.HydraTT,[num2str(0.9) ' 3 ' num2str(...

app.controller.HydraTT_LS270) ' setmotorpara']);

234 writeline(app.controller.HydraTT,[num2str(0.0025) ' 4 ' num2str(...

app.controller.HydraTT_LS270) ' setmotorpara']);

235 writeline(app.controller.HydraTT,[num2str(10) ' 5 ' num2str(...

app.controller.HydraTT_LS270) ' setmotorpara']);

236 writeline(app.controller.HydraTT,[num2str(1) ' 6 ' num2str(...

app.controller.HydraTT_LS270) ' setmotorpara']);

237

238 % Lagrer parameterene for opsettet som er i bruk

239 writeline(app.controller.HydraTT,'csave');

240 writeline(app.controller.HydraTT,'1 nsave');

241 end

B.3 Homing function

1 %

2 function HomeMotor(app,a)

3 %%%

4 % Script HomeMotor is made so that each stage can find its

5 % absolute zero position.

6 %

7 % a: which stage is to be homed

8 % a = (1, 'x' or 'X') for X−axis (M−531.DG)

9 % a = (2, 'y' or 'Y') for Y−axis (M−535.22)

10 % a = (3, 'z' or 'Z') for Z−axis (LS−270)

11 % a = (4, 'r' or 'R') for Rotation−axis (M−037.PD)

12 %

13 % Espen Fosse, 2021/2022

14 %%%

15

16 if a == 1 || strcmp(a,'x') || strcmp(a,'X')

17 ax = app.controller.C843_M531DG;

18 a = 1;

19 elseif a == 2 || strcmp(a,'y') || strcmp(a,'Y')

20 ax = app.controller.C843_M53522;

21 a = 2;

22 elseif a == 3 || strcmp(a,'z') || strcmp(a,'Z')

23 ax = app.controller.HydraTT_LS270;

184 APPENDIX B. MATLAB-APP

24 a = 3;

25 elseif a == 4 || strcmp(a,'r') || strcmp(a,'R')

26 ax = app.controller.C843_M037PD;

27 a = 4;

28 else

29 noaxwtn = 'No axis with that name';

30 WriteTextInWindow(app,noaxwtn)

31 return

32 end

33

34 if ax == app.controller.HydraTT_LS270

35 cmd = [num2str(ax) ' nrm'];

36 writeline(app.controller.HydraTT,cmd);

37 WriteTextInWindow(app,[app.name{a} ' is traveling Home'])

38 MovingMotor(app,a)

39 writeline(app.controller.HydraTT,['1016 ' num2str(ax) ' setnpos'...

])

40 if app.stop == 1

41 WriteTextInWindow(app,[app.name{a} ' stopped Home'])

42 else

43 WriteTextInWindow(app,[app.name{a} ' is now Home'])

44 end

45 PositionMotor(app,a);

46 elseif ax == app.controller.C843_M037PD

47 app.controller.C843.MOV(ax,0)

48 WriteTextInWindow(app,[app.name{a} ' is traveling Home'])

49 MovingMotor(app,a)

50 if app.stop == 1

51 WriteTextInWindow(app,[app.name{a} ' stopped Home'])

52 else

53 WriteTextInWindow(app,[app.name{a} ' is now Home'])

54 end

55 PositionMotor(app,a);

56 else

57 app.controller.C843.FNL(ax)

58 WriteTextInWindow(app,[app.name{a} ' is traveling Home'])

59 MovingMotor(app,a)

60 if app.stop == 1

61 WriteTextInWindow(app,[app.name{a} ' stopped Home'])

62 else

63 WriteTextInWindow(app,[app.name{a} ' is now Home'])

64 end

65 PositionMotor(app,a);

66 end

67 end

APPENDIX B. MATLAB-APP 185

68 %

B.4 Step function

1 function StepMotor(app,s,a,m)

2 %%%

3 % Skript StepMotor that is used to move X, Y, Z og

4 % Rotation−axis in the air setup.

5 %

6 % s: amount of steps in [mm] or [degrees]; s = 1 is the same

7 % as 1[degree] or 1[mm].

8 % a: axis that is going to move is determed by

9 % a = (1, 'x' or 'X') for X−axis (M−531.DG)

10 % a = (2, 'y' or 'Y') for Y−axis (M−535.22)

11 % a = (3, 'z' or 'Z') for Z−axis (LS−270)

12 % a = (4, 'r' or 'R') for Rotation−axis (M−037.PD)

13 % m: movments is relative m = 0; movments is absolute m = 1

14 %

15 % Espen Fosse, 2021/2022

16 %%%

17 if a == 1 || strcmp(a,'x') || strcmp(a,'X')

18 ax = app.controller.C843_M531DG;

19 a = 1;

20 elseif a == 2 || strcmp(a,'y') || strcmp(a,'Y')

21 ax = app.controller.C843_M53522;

22 a = 2;

23 elseif a == 3 || strcmp(a,'z') || strcmp(a,'Z')

24 ax = app.controller.HydraTT_LS270;

25 a = 3;

26 elseif a == 4 || strcmp(a,'r') || strcmp(a,'R')

27 ax = app.controller.C843_M037PD;

28 a = 4;

29 else

30 noaxwtn = 'No axis with that name';

31 WriteTextInWindow(app,noaxwtn)

32 return

33 end

34

35 if a == 3

36 if (m==0)

37 cmd = [num2str(s) ' ' num2str(ax) ' nr'];

38 writeline(app.controller.HydraTT,cmd);

186 APPENDIX B. MATLAB-APP

39 txt = [app.name{a} ' is moving ' num2str(s) '[mm]'];

40 WriteTextInWindow(app,txt)

41 MovingMotor(app,a)

42 PositionMotor(app,a);

43 elseif (m==1)

44 cmd = [num2str(s) ' ' num2str(ax) ' nm'];

45 writeline(app.controller.HydraTT,cmd);

46 if strcmpi(app.MACHINECOORDS_Button.Text,'MACHINE COORDS')

47 txt = [app.name{a} ' is moving to ' num2str(s) '[mm]: M ...

COORD''S'];

48 else

49 s2 = s−app.zeropos.(app.field{a});

50 txt = [app.name{a} ' is moving to ' num2str(s2) '[mm]: U...

COORD''S'];

51 end

52 WriteTextInWindow(app,txt)

53 MovingMotor(app,a)

54 PositionMotor(app,a);

55 else

56 WriteTextInWindow(app,'Wrong value for movement type: ...

relative movements m=0; absolute movements m=1')

57 return

58 end

59 else

60 if a == 2

61 s = s*app.factor;

62 end

63 if (m==0)

64 app.controller.C843.MVR(ax,s)

65 if a == 2

66 s = s/app.factor;

67 end

68 if a == 4

69 WriteTextInWindow(app,[app.name{a} ' is moving ' num2str...

(s) '[degree]'])

70 else

71 WriteTextInWindow(app,[app.name{a} ' is moving ' num2str...

(s) '[mm]'])

72 end

73 MovingMotor(app,a)

74 PositionMotor(app,a);

75 elseif (m==1)

76 app.controller.C843.MOV(ax,s)

77 if a == 2

78 s = s/app.factor;

APPENDIX B. MATLAB-APP 187

79 end

80 if a == 4

81 if strcmpi(app.MACHINECOORDS_Button.Text,'MACHINE COORDS...

')

82 txt = [app.name{a} ' is moving to ' num2str(s) '[...

degree]: M COORD''S'];

83 else

84 s2 = s−app.zeropos.(app.field{a});

85 txt = [app.name{a} ' is moving to ' num2str(s2) '[...

degree]: U COORD''S'];

86 end

87 WriteTextInWindow(app,txt)

88 else

89 if strcmpi(app.MACHINECOORDS_Button.Text,'MACHINE COORDS...

')

90 txt = [app.name{a} ' is moving to ' num2str(s) '[mm...

]: M COORD''S'];

91 else

92 s2 = s−app.zeropos.(app.field{a});

93 txt = [app.name{a} ' is moving to ' num2str(s2) '[mm...

]: U COORD''S'];

94 end

95 WriteTextInWindow(app,txt)

96 end

97 MovingMotor(app,a)

98 PositionMotor(app,a);

99 else

100 WriteTextInWindow(app,'Wrong value for movement type: ...

relative movements m=0; absolute movements m=1')

101 return

102 end

103 end

104 end

105 %

B.5 Position function

1 function PositionMotor(app,a)

2 %%%

3 % Script PositionMotor tells the absolute position of axis

4 %

5 % a: which axis to read position

188 APPENDIX B. MATLAB-APP

6 % a = (1, 'x' or 'X') for X−axis (M−531.DG)

7 % a = (2, 'y' or 'Y') for Y−axis (M−535.22)

8 % a = (3, 'z' or 'Z') for Z−axis (LS−270)

9 % a = (4, 'r' or 'R') for Rotation−axis (M−037.PD)

10 %

11 % Espen Fosse, 2021/2022

12 %%%

13

14 if a == 1 || strcmp(a,'x') || strcmp(a,'X')

15 ax = app.controller.C843_M531DG;

16 a = 1;

17 elseif a == 2 || strcmp(a,'y') || strcmp(a,'Y')

18 ax = app.controller.C843_M53522;

19 a = 2;

20 elseif a == 3 || strcmp(a,'z') || strcmp(a,'Z')

21 ax = app.controller.HydraTT_LS270;

22 a = 3;

23 elseif a == 4 || strcmp(a,'r') || strcmp(a,'R')

24 ax = app.controller.C843_M037PD;

25 a = 4;

26 else

27 noax = 'No axis with that name';

28 WriteTextInWindow(app,noax)

29 return

30 end

31

32 if a == 3

33 pos = writeread(app.controller.HydraTT,[num2str(ax) ' np']);

34 pos = str2double(strip(pos));

35 if strcmpi(app.MACHINECOORDS_Button.Text,'MACHINE COORDS')

36 txt = [app.name{a} ' is at ' num2str(pos) '[mm]: M COORD''S'...

];

37 elseif app.zeroed(a) == 0

38 txt = [app.name{a} ' is at ' num2str(pos) '[mm]: U COORD''S'...

];

39 else

40 pos2 = pos−app.zeropos.(app.field{a});

41 txt = [app.name{a} ' is at ' num2str(pos2) '[mm]: U COORD''S...

'];

42 end

43 WriteTextInWindow(app,txt)

44 app.abspos.(app.field{a}) = pos;

45 elseif a == 4

46 pos = app.controller.C843.qPOS(ax);

47 if strcmpi(app.MACHINECOORDS_Button.Text,'MACHINE COORDS')

APPENDIX B. MATLAB-APP 189

48 txt = [app.name{a} ' is at ' num2str(pos) '[degree]: M COORD...

''S'];

49 elseif app.zeroed(a) == 0

50 txt = [app.name{a} ' is at ' num2str(pos) '[degree]: U COORD...

''S'];

51 else

52 pos2 = pos−app.zeropos.(app.field{a});

53 txt = [app.name{a} ' is at ' num2str(pos2) '[degree]: U ...

COORD''S'];

54 end

55 WriteTextInWindow(app,txt)

56 app.abspos.(app.field{a}) = pos;

57 else

58 pos = app.controller.C843.qPOS(ax);

59 if a == 2

60 pos = pos/app.factor;

61 end

62 if strcmpi(app.MACHINECOORDS_Button.Text,'MACHINE COORDS')

63 txt = [app.name{a} ' is at ' num2str(pos) '[mm]: M COORD''S'...

];

64 elseif app.zeroed(a) == 0

65 txt = [app.name{a} ' is at ' num2str(pos) '[mm]: U COORD''S'...

];

66 else

67 pos2 = pos−app.zeropos.(app.field{a});

68 txt = [app.name{a} ' is at ' num2str(pos2) '[mm]: U COORD''S...

'];

69 end

70 WriteTextInWindow(app,txt)

71 app.abspos.(app.field{a}) = pos;

72 end

73 end

74 %

B.6 Moving function

1 function MovingMotor(app,a)

2 %%%

3 % Script makes MatLab/app wait until axis that moves is reach its

4 % destination.

5 %

6 % a: which axis that is moving

190 APPENDIX B. MATLAB-APP

7 % a = (1, 'x' or 'X') for X−axis (M−531.DG)

8 % a = (2, 'y' or 'Y') for Y−axis (M−535.22)

9 % a = (3, 'z' or 'Z') for Z−axis (LS−270)

10 % a = (4, 'r' or 'R') for Rotation−axis (M−037.PD)

11 %

12 % Espen Fosse, 2021/2022

13 %%%

14

15 if a == 1 || strcmp(a,'x') || strcmp(a,'X')

16 ax = app.controller.C843_M531DG;

17 elseif a == 2 || strcmp(a,'y') || strcmp(a,'Y')

18 ax = app.controller.C843_M53522;

19 elseif a == 3 || strcmp(a,'z') || strcmp(a,'Z')

20 ax = app.controller.HydraTT_LS270;

21 elseif a == 4 || strcmp(a,'r') || strcmp(a,'R')

22 ax = app.controller.C843_M037PD;

23 else

24 noax = 'No axis with that name';

25 WriteTextInWindow(app,noax)

26 return

27 end

28

29 if a == 3

30 while true

31 pause(0.1)

32 writeline(app.controller.HydraTT,[num2str(ax) ' nst']);

33 beveger_seg = readline(app.controller.HydraTT);

34 number = str2double(beveger_seg);

35 if app.stop == 1

36 return

37 elseif (number ==32 || number ==36)

38 return

39 else

40 continue

41 end

42 end

43

44 else

45 while(app.controller.C843.IsMoving(ax))

46 pause(0.1);

47 if app.stop == 1

48 return

49 end

50 end

51 % pause set because IsMoving(ax) kan make matlab freeze

APPENDIX B. MATLAB-APP 191

52 pause(0.25);

53 end

54

55 end

56 %

B.7 Instrument connect

1 % following function handels the instruments and measurements

2 function InstrumentConnect(app)

3 %%%

4 % Script InstrumentConnect creates a handle to the instruments

5 % that is a part of the air setup

6 %

7 % Espen Storheim, 2011

8 % Based on work by Vidar Knappskog and Magne Aanes.

9 % Modified by Espen Fosse to be used in app, 2021/2022.

10 %%%

11

12 % clear handle of instruments

13 app.instrument = {};

14 ActionButtons(app)

15 set(app.STOP_Button,'Enable','Off')

16 set(app.INSTRUMENTCONNECT_Button,'Enable','On')

17

18 %% Signal Generator Agilent 33220A. S/N:

19

20 % Find a GPIB object.

21 app.instrument.generator = instrfind('Type', 'gpib', 'BoardIndex', ...

0, 'PrimaryAddress', 10, 'Tag', '');

22

23 % Create the GPIB object if it does not exist

24 % otherwise use the object that was found.

25 if isempty(app.instrument.generator)

26 app.instrument.generator = gpib('NI', 0, 10);

27 else

28 fclose(app.instrument.generator);

29 app.instrument.generator = app.instrument.generator(1);

30 end

31

32 fopen(app.instrument.generator);

33 app.instrument.generator_name = 'Agilent 33220A. S/N: ';

192 APPENDIX B. MATLAB-APP

34 app.instrument.generator_idn = query(app.instrument.generator,'*IDN?...

');

35

36 % Test the connection. Should be a command where the response can be

37 % verified.

38 if isempty(app.instrument.generator_idn)

39 WriteTextInWindow(app,'Warning: The signal generator is not ...

connected or configured properly.')

40 app.connectfail = 1;

41 return

42 else

43 WriteTextInWindow(app,'1: The signal generator is connected and ...

appears to be working.')

44 end

45

46 %% Digital Oscilloscope Tektronix DPO3012. S/N:

47

48 app.instrument.scope = visadev("USB0::0x0699::0x0410::C024017::0::...

INSTR");

49 % app.instrument.scope = visadev("USB0::0x0699::0x0410::...

C024018::0::INSTR");

50 % app.instrument.scope = visadev("USB0::0x0699::0x0410::...

C011044::0::INSTR");

51 % app.instrument.scope = visadev('USB0::0x0699::0x0410::...

C010246::0::INSTR'); %problems, it freezes matlab

52 app.instrument.scope_name = 'Tektronix DPO3012. S/N: ';

53 app.instrument.scope_idn = writeread(app.instrument.scope,'*IDN?');

54

55 % Test the connection. Should be a command where the response can be

56 % verified.

57 if isempty(app.instrument.scope_idn)

58 WriteTextInWindow(app,'Warning: The oscilloscope is not ...

connected or configured properly.')

59 app.connectfail = 1;

60 return

61 else

62 WriteTextInWindow(app,'2: The oscilloscope is connected and ...

appears to be working.')

63 end

64

65 %% Pressure sensor: Paroscientific DigiQuartz 740. S/N:

66

67 app.instrument.pressure = visadev('COM13');

68 app.instrument.pressure_name = 'Paroscientific DigiQuartz 740. S/N:'...

;

APPENDIX B. MATLAB-APP 193

69 app.instrument.pressure_idn = writeread(app.instrument.pressure,'...

*0100P3');

70

71 % Test the connection. Should be a command where the response can be

72 % verified.

73 if isempty(app.instrument.pressure_idn)

74 WriteTextInWindow(app,'Warning: The paroscientific is not ...

connected or configured properly.')

75 app.connectfail = 1;

76 return

77 else

78 WriteTextInWindow(app,'3: The paroscientific is connected and ...

appears to be working.')

79 end

80

81 %% Relative humidity and temperature sensor: Vaisala HMT313. S/N:

82

83 app.instrument.humidity = visadev('COM7');

84 configureTerminator(app.instrument.humidity,"CR")

85 app.instrument.humidity_name = 'Vaisala HMT313. S/N:';

86 app.instrument.humidity_idn = writeread(app.instrument.humidity,'...

send');

87

88 % Test the connection. Should be a command where the response can be

89 % verified.

90 if isempty(app.instrument.humidity_idn)

91 WriteTextInWindow(app,'Warning: The vasisala is not connected or...

configured properly.')

92 app.connectfail = 1;

93 return

94 else

95 WriteTextInWindow(app,'4: The vasisala is connected and appears ...

to be working.')

96 end

97

98 %% Bandpass filter: Krohn−Hite 3940A. S/N: AM2626.

99

100 % Find a GPIB object.

101 app.instrument.filter = instrfind('Type', 'gpib', 'BoardIndex', 0, '...

PrimaryAddress', 25, 'Tag', '');

102

103 % Create the GPIB object if it does not exist

104 % otherwise use the object that was found.

105 if isempty(app.instrument.filter)

106 app.instrument.filter = gpib('NI', 0, 25);

194 APPENDIX B. MATLAB-APP

107 else

108 fclose(app.instrument.filter);

109 app.instrument.filter = app.instrument.filter(1);

110 end

111 fopen(app.instrument.filter);

112 app.instrument.filter_name = 'Krohn−Hite 3940A. S/N: AM2626';

113 app.instrument.filter_idn = query(app.instrument.filter,'*IDN?');

114

115 % Test the connection. Should be a command where the response can be

116 % verified.

117 if isempty(app.instrument.filter_idn)

118 WriteTextInWindow(app,'Warning: The filter is not connected or ...

configured properly.')

119 app.connectfail = 1;

120 return

121 else

122 WriteTextInWindow(app,'5: The filter is connected and appears to...

be working.')

123 end

124

125 %% Temperature sensor: ASL F250. S/N:

126 % Find a GPIB object.

127 app.instrument.temperature = instrfind('Type', 'gpib', 'BoardIndex',...

0, 'PrimaryAddress', 3, 'Tag', '');

128

129 % Create the GPIB object if it does not exist

130 % otherwise use the object that was found.

131 if isempty(app.instrument.temperature)

132 app.instrument.temperature = gpib('NI', 0, 3);

133 else

134 fclose(app.instrument.temperature);

135 app.instrument.temperature = app.instrument.temperature(1);

136 end

137

138 fopen(app.instrument.temperature);

139 set(app.instrument.temperature,'EOSmode','read&write');

140 set(app.instrument.temperature,'EOSCharCode',10); % Set terminator ...

to LF.

141 app.instrument.temperature_name = 'ASL F250 mk II. S/N: ';

142 fprintf(app.instrument.temperature,'A0');

143 app.instrument.temperature_idn = fscanf(app.instrument.temperature);

144

145 % Test the connection. Should be a command where the response can be

146 % verified.

147 if isempty(app.instrument.temperature_idn)

APPENDIX B. MATLAB-APP 195

148 WriteTextInWindow(app,'Warning: The thermometer is not connected...

or configured properly.')

149 app.connectfail = 1;

150 return

151 else

152 WriteTextInWindow(app,'6: The thermometer is connected and ...

appears to be working.')

153 end

154 end

155 %

B.8 Initialize instruments

1 function InitInstruments(app)

2 % Initialize the bandpass filter.

3 % There seems to be an overflow when the commands are combined, so ...

they

4 % have been separated and a pause of 100 ms is set between each

5 % command.

6 %

7 % Set the input and output gain on both channels to 0 dB.

8 txt = 'Initialize Bandpass Filter';

9 WriteTextInWindow(app,txt)

10 fprintf(app.instrument.filter,'AL;0IG;0OG;B');

11 pause(0.1)

12 % Set channel 1 to high pass mode.

13 fprintf(app.instrument.filter,'CH1.1;M2');

14 pause(0.1)

15 % Set the cutoff frequency for channel 1.

16 fprintf(app.instrument.filter,['F' num2str(app.result.cutoff_f1) 'K'...

]);

17 pause(0.1)

18 % Set channel 2 to low pass mode.

19 fprintf(app.instrument.filter,'CH1.2;M1');

20 pause(0.1)

21 % Set the cutoff frequency for channel 2.

22 fprintf(app.instrument.filter,['F' num2str(app.result.cutoff_f2) 'K'...

]);

23

24 % Initialize the oscilloscope.

25 txt = 'Initialize Oscilloscope';

26 WriteTextInWindow(app,txt)

196 APPENDIX B. MATLAB-APP

27 % Code for the Tektronix DPO3012.

28 % Set the acquisition mode to averaging.

29 writeline(app.instrument.scope,'ACQ:MOD AVE');

30 % Set the number of cycles to average.

31 writeline(app.instrument.scope,['ACQ:NUMAV ' num2str(...

app.meas.average)]);

32 % Number of points which shall be read from the scope.

33 writeline(app.instrument.scope,['HOR:RECO ' num2str(...

app.meas.sample_count)]);

34 % Start point for the recorded signal

35 writeline(app.instrument.scope,'DAT:START 1');

36 % Stop point for the recorded signal

37 writeline(app.instrument.scope,['DAT:STOP ' num2str(...

app.meas.sample_count)]);

38 % Trigger specifications. Set to edge detection from external ...

source.

39 writeline(app.instrument.scope,'TRIG:A:EDGE:SOU EXT');

40 % Set the trigger type to positive edge.

41 writeline(app.instrument.scope,'TRIG:A:TYP EDG');

42 % 2012.11.19 EM: Added additional initialization.

43 % CH1

44 % Set Offset to zero.

45 writeline(app.instrument.scope,'CH1:OFFS 0');

46 % Set position to zero.

47 writeline(app.instrument.scope,'CH1:POS 0');

48 % Set coupling to AC.

49 writeline(app.instrument.scope,'CH1:COUP AC');

50 % CH2

51 % Set Offset to zero.

52 writeline(app.instrument.scope,'CH2:OFFS 0');

53 % Set position to zero.

54 writeline(app.instrument.scope,'CH2:POS 0');

55 % Set coupling to AC.

56 writeline(app.instrument.scope,'CH2:COUP AC');

57 % Number of bytes per word (8−bit if 1, 16−bit if 2, ...)

58 writeline(app.instrument.scope,['DATA:ENCDG SRIBINARY;WIDTH ' ...

num2str(app.noB)])

59

60

61 % Initialize Signal Generator

62 txt = 'Initialize Signal Generator';

63 WriteTextInWindow(app,txt)

64 fprintf(app.instrument.generator,'BM:STATe on'); % burst mode

65 fprintf(app.instrument.generator,['BM:INT:RATE ' num2str(...

app.meas.burst_rate)]);

APPENDIX B. MATLAB-APP 197

66 fprintf(app.instrument.generator,['BM:NCYC ', num2str(...

app.result.sig_cycles)]);

67 fprintf(app.instrument.generator,['FREQ ', num2str(...

app.result.frequency)]);

68 fprintf(app.instrument.generator,['VOLT ' num2str(...

app.meas.voltage_inn)]);

69 end

70 %

B.9 Measure function

1 function Measure(app)

2 % Voltage scalings in oscilloscope, unit: V/div

3 voltageScalings = [1e−3, 2e−3, 5e−3, 10e−3, 20e−3, 50e−3, 100e−3, ...

200e−3, 500e−3 1 2 5 10];

4 % The are 8 visible divisons on the screen and two above/below ...

outside,

5 % i.e., 10 in total. Maximum amplitude thus corresponds to

6 % 5*verticalScalings, but is set to 4.5 to be on the save side

7 NumVerDivs_max = 4.5;

8 NumVerDivs_min = 1.7;

9

10 % Time scalings in oscilloscope, unit: mus/div

11 timeScalings = [40 100 200 400 1000]*1e−6;

12 maxNumHorDivs = 10;

13

14 % Set scope acquisition mode to SEQUENCE instead of RUNSTOP, so that...

a

15 % measurement is aquired when prompted, instead of continuously. See...

page

16 % 2−97 in programming manual for details.

17 writeline(app.instrument.scope,'ACQ:STOPA SEQ');

18

19 txt = ['Measure frequency ' num2str(app.result.frequency/1000) 'kHz'...

];

20 WriteTextInWindow(app,txt)

21

22

23 if app.gen_setting == 1

24 txt = 'Adjusting signal generator settings';

25 WriteTextInWindow(app,txt)

26 % Common settings for electrical and acoustical signal

198 APPENDIX B. MATLAB-APP

27 % Update signal generator settings

28 fprintf(app.instrument.generator,['BM:NCYC ', num2str(...

app.result.sig_cycles)]);

29 fprintf(app.instrument.generator,['FREQ ', num2str(...

app.result.frequency)]);

30 % Give little time to signal generator to set the setting

31 pause(0.1)

32 end

33

34 % Find appropriate horizontal scaling & update time/Div

35 tScaling = timeScalings(find(timeScalings*maxNumHorDivs >= ...

app.result.sig_duration*1.5,1));

36 writeline(app.instrument.scope,['HOR:SCA ',num2str(tScaling)]);

37

38 if app.meas_el_sig == 1

39

40 txt = 'Starting measurements of the electrical pulses';

41 WriteTextInWindow(app,txt)

42

43 %% Electrical signal (transmitter excitation)

44

45 % Set the delay of acquisition data so that the resulting ...

waveform is

46 % centered tScaling*5 after the trigger occurs. (See 2−234 in ...

manual)

47 writeline(app.instrument.scope,['HOR:DEL:TIM ',num2str(tScaling...

*5)]);

48

49 % Find appropriate vertical scaling for transmitter excitation ...

signal

50 vScaling = voltageScalings(find(NumVerDivs_max*voltageScalings ...

>= app.meas.voltage_inn,1));

51 % Set voltage/div

52 writeline(app.instrument.scope,['CH',num2str(...

app.meas.channel_electrical),':SCA ' num2str(vScaling)]);

53

54 % Set the number of cycles to average.

55 writeline(app.instrument.scope,['ACQ:NUMAV ' num2str(...

app.meas.average)]);

56 % Number of points which shall be read from the scope.

57 writeline(app.instrument.scope,['HOR:RECO ' num2str(...

app.meas.sample_count)]);

58

59 % Start aquisition.

60 writeline(app.instrument.scope,'ACQ:STATE RUN');

APPENDIX B. MATLAB-APP 199

61 txt = 'Starting aquisition';

62 WriteTextInWindow(app,txt)

63 pause(app.meas.average_time)

64 DPO_read(app,app.meas.channel_electrical);

65 app.result.electric_t = app.x;

66 app.result.electric = app.wf;

67 app.result.electric_timescale = app.timeDiv;

68 app.result.electric_maxV = app.maxV;

69 app.result.electric_Vscale = str2double(writeread(...

app.instrument.scope,['CH',num2str(...

app.meas.channel_electrical),':SCA?']));

70 app.result.electric_Termination = str2double(writeread(...

app.instrument.scope,['CH',num2str(...

app.meas.channel_electrical),':TER?']));

71 txt = 'Finished reading the electrical pulses';

72 WriteTextInWindow(app,txt)

73 end

74 %% Acoustical signal (receiving transducer)

75

76 txt = 'Starting measurements of the acoustical pulses';

77 WriteTextInWindow(app,txt)

78

79 if app.filt_setting == 1

80 txt = 'Adjusting filter settings';

81 WriteTextInWindow(app,txt)

82 % Adjust the bandwidth of the KH−filter

83 % Set the cutoff frequency for filter channel 1. (Not working ...

properly)

84 fprintf(app.instrument.filter,['CH1.1;F' num2str(...

app.result.cutoff_f1) 'K']);

85 pause(0.2)

86 % Set the cutoff frequency for channel 2.

87 fprintf(app.instrument.filter,['CH1.2;F' num2str(...

app.result.cutoff_f2) 'K']);

88 % Give little time to filter to set the setting

89 pause(0.1)

90 end

91

92 % Set the delay of acquisition data so that the resulting waveform ...

is

93 % centered [tScaling*5 + (under)estimated plane wave travel time] ...

after

94 % the trigger occurs. (See 2−234 in manual)

95 writeline(app.instrument.scope,['HOR:DEL:TIM ',num2str(tScaling*5−0...

.5*tScaling+app.result.est_travel_time)]);

200 APPENDIX B. MATLAB-APP

96

97 if app.meas.average_scaling == 1

98 % Set aquisition mode to single sample instead of averaging

99 % This speeds things up, and ensures that the noise−prior−to−...

averaging

100 % is not clipped, which could distort the averaged signals. See ...

meas.

101 % setup chapter in Hauge (2013) or Mosland (2013) for details

102 writeline(app.instrument.scope,'ACQ:MOD SAM');

103 else

104 % Set the number of cycles to average.

105 writeline(app.instrument.scope,['ACQ:NUMAV ' num2str(...

app.meas.average_scaling)]);

106 end

107 % Number of points which shall be read from the scope.

108 writeline(app.instrument.scope,['HOR:RECO ' num2str(...

app.meas.sample_count)]);

109

110 % Find appropriate vertical scaling for receiver signal

111 writeline(app.instrument.scope,'ACQ:STATE RUN');

112 pause(app.meas.average_time_scaling)

113 DPO_read(app,app.meas.channel_acoustical);

114 Scaling = str2double(writeread(app.instrument.scope,['CH',num2str(...

app.meas.channel_acoustical),':SCA?']));

115

116 ind = find(Scaling==voltageScalings);

117 if isempty(ind)

118 txt = 'ind is empty!';

119 WriteTextInWindow(app,txt)

120 ind = 1;

121 writeline(app.instrument.scope,['CH',num2str(...

app.meas.channel_acoustical),':SCA ',num2str(voltageScalings(...

ind))]);

122 % Start aquisition.

123 writeline(app.instrument.scope,'ACQ:STATE RUN');

124 txt = 'Checking scaling';

125 WriteTextInWindow(app,txt)

126 pause(app.meas.average_time_scaling)

127 DPO_read(app,app.meas.channel_acoustical);

128 end

129

130 scaling_down = 0;

131 finished = 0;

132 while ~finished

133 % Debugging, app.Vmax or ind is empty inside the while loop

APPENDIX B. MATLAB-APP 201

134 if isempty(app.maxV)

135 % Start aquisition.

136 txt = 'Max voltage not found. Trying to find max voltage...'...

;

137 WriteTextInWindow(app,txt)

138 writeline(app.instrument.scope,'ACQ:STATE RUN');

139 pause(app.meas.average_time_scaling)

140 DPO_read(app,app.meas.channel_acoustical);

141 if ~isempty(app.maxV)

142 txt = 'Max voltage found';

143 WriteTextInWindow(app,txt)

144 end

145 continue

146 elseif isempty(ind)

147 txt = 'ind is empty!';

148 WriteTextInWindow(app,txt)

149 ind = 1;

150 writeline(app.instrument.scope,['CH',num2str(...

app.meas.channel_acoustical),':SCA ',num2str(...

voltageScalings(ind))]);

151 % Start aquisition.

152 writeline(app.instrument.scope,'ACQ:STATE RUN');

153 pause(app.meas.average_time_scaling)

154 DPO_read(app,app.meas.channel_acoustical);

155

156 end

157 % Continue on finding the correct amplitude scaling

158 if app.maxV >= voltageScalings(ind)*NumVerDivs_max

159 txt = 'Increasing scaling';

160 WriteTextInWindow(app,txt)

161 Scaling = voltageScalings(ind+1);

162 writeline(app.instrument.scope,['CH',num2str(...

app.meas.channel_acoustical),':SCA ',num2str(Scaling)]);

163 ind = ind +1;

164 % Start aquisition.

165 writeline(app.instrument.scope,'ACQ:STATE RUN');

166 pause(app.meas.average_time_scaling)

167 DPO_read(app,app.meas.channel_acoustical);

168

169 elseif ind ~= 1 && app.maxV <= voltageScalings(ind)*...

NumVerDivs_min

170 txt = 'Decreasing scaling';

171 WriteTextInWindow(app,txt)

172 Scaling = voltageScalings(ind−1);

173 writeline(app.instrument.scope,['CH',num2str(...

202 APPENDIX B. MATLAB-APP

app.meas.channel_acoustical),':SCA ',num2str(Scaling)]);

174 ind = ind −1;

175 % Start aquisition.

176 writeline(app.instrument.scope,'ACQ:STATE RUN');

177 pause(app.meas.average_time_scaling)

178 DPO_read(app,app.meas.channel_acoustical);

179 scaling_down = scaling_down + 1;

180 % Prevent while loop to scale up and down over, and

181 % over again.

182 if scaling_down == 20

183 if isempty(app.Vmax)

184 txt = 'Max Voltage is empty';

185 WriteTextInWindow(app,txt)

186 scaling_down = scaling_down−1;

187 continue

188 end

189 txt = 'Scaling caught in a loop. The lowest scaling ...

value is selected';

190 WriteTextInWindow(app,txt)

191 break

192 end

193 else

194 txt = 'Correct scaling';

195 WriteTextInWindow(app,txt)

196 finished = 1;

197 end

198 end

199

200 if app.meas.average_scaling == 1

201 % Reset aquisition mode to averaging

202 writeline(app.instrument.scope,'ACQ:MOD AVE');

203 end

204

205 % Set the number of cycles to average.

206 writeline(app.instrument.scope,['ACQ:NUMAV ' num2str(...

app.meas.average)]);

207 % Number of points which shall be read from the scope.

208 writeline(app.instrument.scope,['HOR:RECO ' num2str(...

app.meas.sample_count)]);

209

210 % Start aquisition.

211 writeline(app.instrument.scope,'ACQ:STATE RUN');

212 txt = 'Starting aquisition';

213 WriteTextInWindow(app,txt)

214 pause(app.meas.average_time)

APPENDIX B. MATLAB-APP 203

215 DPO_read(app,app.meas.channel_acoustical);

216

217 app.result.acoustic_t = app.x;

218 app.result.acoustic = app.wf;

219 app.result.acoustic_timescale = app.timeDiv;

220 app.result.acoustic_maxV = app.maxV;

221 app.result.acoustic_Vscale = str2double(writeread(...

app.instrument.scope,['CH',num2str(app.meas.channel_acoustical),'...

:SCA?']));

222 app.result.acoustic_Termination = str2double(writeread(...

app.instrument.scope,['CH',num2str(app.meas.channel_acoustical),'...

:TER?']));

223 txt = 'Finished reading the acoustical pulses';

224 WriteTextInWindow(app,txt)

225 end

226 %

B.10 DPO read function

1 function DPO_read(app,ch)

2 % Set data source

3 writeline(app.instrument.scope,['DAT:SOUR CH' num2str(ch)]);

4

5 % Set what samples to retrieve

6 writeline(app.instrument.scope,'DAT:START 1');

7 writeline(app.instrument.scope,['DAT:STOP ' num2str(...

app.meas.sample_count)]);

8

9 % Read the data

10 writeline(app.instrument.scope,'CURV?');

11

12 if app.noB == 2

13 ydata = readbinblock(app.instrument.scope,'int16');

14 txt = 'Reading ydata 16−bit';

15 WriteTextInWindow(app,txt)

16 elseif app.noB == 1

17 ydata = readbinblock(app.instrument.scope,'int8');

18 txt = 'Reading ydata 8−bit';

19 WriteTextInWindow(app,txt)

20 else

21 WriteTextInWindow(app,'Unsupported word length');

22 end

204 APPENDIX B. MATLAB-APP

23

24 % Flush the termination character from the scope

25 flush(app.instrument.scope);

26 txt = 'Reading additional data';

27 WriteTextInWindow(app,txt)

28

29 % Horizontal scaling

30 app.timeDiv = str2double(writeread(app.instrument.scope,'HOR:SCA?'))...

;

31 % Horizontal offset

32 xze = str2double(writeread(app.instrument.scope,'WFMO:XZE?'));

33 % Horizontal increment

34 xin = str2double(writeread(app.instrument.scope,'WFMO:XIN?'));

35 % Digital vertical offset

36 YOF = str2double(writeread(app.instrument.scope,'WFMO:YOF?'));

37 % Vertical multiplying factor

38 YMU = str2double(writeread(app.instrument.scope,'WFMO:YMU?'));

39 % Vertical offset

40 YZE = str2double(writeread(app.instrument.scope,'WFMO:YZE?'));

41 % Voltage/current vector

42 app.wf = (ydata−YOF)*YMU + YZE;

43 % Time vector

44 app.x = (0:(length(ydata)−1))*xin + xze;

45 % max voltage

46 app.maxV = max(abs(app.wf));

47 end

48 %

B.11 Environmental measurements

1 function VaisalaHMT313_read(app)

2 txt = 'Reading Vaisala temperature and humidity';

3 WriteTextInWindow(app,txt)

4 app.result.vaisala = writeread(app.instrument.humidity,'send');

5 app.result.vaisala = regexp(app.result.vaisala,'\d+.\d*','Match');

6 app.result.vaisala_RH = str2double(app.result.vaisala(1));

7 app.result.vaisala_T = str2double(app.result.vaisala(2));

8 end

9 %

1 function Paroscientific(app)

APPENDIX B. MATLAB-APP 205

2 txt = 'Reading Paroscientific pressure';

3 WriteTextInWindow(app,txt)

4 app.result.pressure = writeread(app.instrument.pressure,'*0100P3');

5 app.result.pressure = str2double(app.result.pressure{1}(6:end−1));

6 end

7 %

1 function ASLF250(app)

2 txt = 'Reading ASL F250 temperature';

3 WriteTextInWindow(app,txt)

4 fprintf(app.instrument.temperature,'A0');

5 pause(0.1)

6 app.result.temperature = fscanf(app.instrument.temperature);

7 app.result.temperature = regexp(app.result.temperature,'\d+.\d*','...

Match');

8 app.result.temperature = str2double(app.result.temperature(1));

9 end

10 %

11 %%

B.12 Setup functions

1 %%

2 % following function handles transducer and microphone posistion so

3 % you can find user/zero coordinates

4 function ATL(app,y)

5 %%

6 % Angle of transducer relativt to laser

7 %

8 % y = 0: manually measure left and right side of transducer

9 % and make it perpendicular to laser.

10 %

11 % y = 1: manually measure top and bottom of transducer to

12 % find angle of transducer tilted upp or downward.

13 %%

14 system('C:\Program Files (x86)\KEYENCE\LK−Navigator\LK−Navigator.exe...

&');

15 system('Taskkill /IM cmd.exe');

16 if y == 0

17 inputvalues = inputdlg({'Front left side of transducer','Front ...

right side of transducer','Radius of transducer'},'Measured ...

206 APPENDIX B. MATLAB-APP

average value [mm]',[1,50],{num2str(0);num2str(0);num2str(10)...

});

18 if isempty(inputvalues)

19 return

20 elseif cellfun('isempty',inputvalues(1)) || cellfun('isempty',...

inputvalues(2)) || cellfun('isempty',inputvalues(3))

21 return

22 else

23 inputvalues = cellfun(@str2num,inputvalues);

24 theta = asind((inputvalues(2)−inputvalues(1))/(2*inputvalues...

(3)));

25 StepMotorFunc(app,theta,4,0)

26 if app.stop == 1

27 app.stop = 0;

28 return

29 end

30 ZERO_R_ButtonPushed(app, matlab.ui.control.Button)

31 end

32 elseif y == 1

33 inputvalues = inputdlg({'Top of transducer','Buttom of ...

transducer','Radius of transducer'},'Measured average value [...

mm]',[1,50],{num2str(0);num2str(0);num2str(10)});

34 if isempty(inputvalues)

35 return

36 elseif cellfun('isempty',inputvalues(1)) || cellfun('isempty',...

inputvalues(2)) || cellfun('isempty',inputvalues(3))

37 return

38 else

39 inputvalues = cellfun(@str2num,inputvalues);

40 app.angle = asind((inputvalues(2)−inputvalues(1))/(2*...

inputvalues(3)));

41 end

42 if app.angle == 0

43 txt = 'Transducer is perpendicular laser';

44 WriteTextInWindow(app,txt)

45 elseif app.angle < 0

46 txt = ['Transducer is tilted ' num2str(abs(app.angle)) ' ...

degrees downward'];

47 WriteTextInWindow(app,txt)

48 elseif app.angle > 0

49 txt = ['Transducer is tilted ' num2str(abs(app.angle)) ' ...

degrees uppward'];

50 WriteTextInWindow(app,txt)

51 end

52 end

APPENDIX B. MATLAB-APP 207

53 end

54 %

55 function DTRax(app)

56 %%

57 % Distance from transducer middlepoint to rotation axis

58 %%

59 system('C:\Program Files (x86)\KEYENCE\LK−Navigator\LK−Navigator.exe...

&');

60 system('Taskkill /IM cmd.exe');

61 inputvalues = inputdlg({'Front left side of transducer','Front right...

side of transducer','Radius of transducer'},'Measured average ...

value [mm]',[1,50],{num2str(0);num2str(0);num2str(10)});

62 if isempty(inputvalues)

63 return

64 elseif cellfun('isempty',inputvalues(1)) || cellfun('isempty',...

inputvalues(2)) || cellfun('isempty',inputvalues(3))

65 return

66 else

67 inputvalues = cellfun(@str2num,inputvalues);

68 theta = asind((inputvalues(1)−inputvalues(2))/(2*inputvalues(3))...

);

69 end

70

71 inputvalues = inputdlg('Measure with laser in middle of transducer',...

'Measured average value [mm]',[1,50]);

72 if cellfun('isempty',inputvalues)

73 return

74 else

75 inputvalues = cellfun(@str2num,inputvalues);

76 d1 = inputvalues;

77 end

78

79 alpha = −10;

80 StepMotorFunc(app,alpha,4,0)

81 if app.stop == 1

82 app.stop = 0;

83 return

84 end

85

86 inputvalues = inputdlg({'Measure at point after move transducer','...

Move and measure with laser in middle of transducer'},'Measured ...

average value [mm]',[1,50]);

87 if isempty(inputvalues)

88 return

89 elseif cellfun('isempty',inputvalues(1)) || cellfun('isempty',...

208 APPENDIX B. MATLAB-APP

inputvalues(2))

90 return

91 else

92 inputvalues = cellfun(@str2num,inputvalues);

93 d2 = inputvalues(1);

94 d3 = inputvalues(2);

95 end

96

97 StepMotorFunc(app,−alpha,4,0)

98 if app.stop == 1

99 app.stop = 0;

100 return

101 end

102

103 zpitch = 0.7;

104 xpitch = 0.5;

105

106 a = (d2−d3)/tand(theta+alpha);

107 phi = atand(a/(d1−d3));

108 h = (d1−d3)/cosd(phi);

109 gamma = phi + alpha/2;

110 r = (h/2)/sind(alpha/2);

111 z_mov = sind(gamma)*r;

112 x_mov = cosd(gamma)*r;

113 txt = ['Transducer are at X =' num2str(x_mov) '[mm] and Z =' num2str...

(z_mov) '[mm] from rotation axis'];

114 WriteTextInWindow(app,txt)

115

116 rotate_x = x_mov/xpitch;

117 rotate_z = z_mov/zpitch;

118 wholerot_x = fix(rotate_x);

119 wholerot_z = fix(rotate_z);

120

121 restrot_x = round(360*abs(rotate_x−wholerot_x));

122 restrot_z = round(360*abs(rotate_z−wholerot_z));

123

124 if rotate_x > 0

125 if wholerot_x == 0

126 txt_1 = ['Rotate X knob ' num2str(restrot_x) ' degrees CW.'...

];

127 WriteTextInWindow(app,txt_1)

128 elseif abs(wholerot_x) == 1

129 txt_1 = ['Rotate X knob ' num2str(abs(wholerot_x)) ' time CW...

, and aditional ' num2str(restrot_x) ' degrees.'];

130 WriteTextInWindow(app,txt_1)

APPENDIX B. MATLAB-APP 209

131 else

132 txt_1 = ['Rotate X knob ' num2str(abs(wholerot_x)) ' times ...

CW, and aditional ' num2str(restrot_x) ' degrees.'];

133 WriteTextInWindow(app,txt_1)

134 end

135 else

136 if wholerot_x == 0

137 txt_1 = ['Rotate X knob ' num2str(restrot_x) ' degrees CCW.'...

];

138 WriteTextInWindow(app,txt_1)

139 elseif abs(wholerot_x) == 1

140 txt_1 = ['Rotate X knob ' num2str(abs(wholerot_x)) ' time ...

CCW, and aditional ' num2str(restrot_x) ' degrees.'];

141 WriteTextInWindow(app,txt_1)

142 else

143 txt_1 = ['Rotate X knob ' num2str(abs(wholerot_x)) ' times ...

CCW, and aditional ' num2str(restrot_x) ' degrees.'];

144 WriteTextInWindow(app,txt_1)

145 end

146 end

147

148 if rotate_z > 0

149 if wholerot_z == 0

150 txt_2 = ['Rotate Z knob ' num2str(restrot_z) ' degrees CCW.'...

];

151 WriteTextInWindow(app,txt_2)

152 elseif abs(wholerot_z) == 1

153 txt_2 = ['Rotate Z knob ' num2str(abs(wholerot_z)) ' time ...

CCW, and aditional ' num2str(restrot_z) ' degrees.'];

154 WriteTextInWindow(app,txt_2)

155 else

156 txt_2 = ['Rotate Z knob ' num2str(abs(wholerot_z)) ' times ...

CCW, and aditional ' num2str(restrot_z) ' degrees.'];

157 WriteTextInWindow(app,txt_2)

158 end

159 else

160 if wholerot_z == 0

161 txt_2 = ['Rotate Z knob ' num2str(restrot_z) ' degrees CW.'...

];

162 WriteTextInWindow(app,txt_2)

163 elseif abs(wholerot_z) == 1

164 txt_2 = ['Rotate Z knob ' num2str(abs(wholerot_z)) ' time ...

CW, and aditional ' num2str(restrot_z) ' degrees.'];

165 WriteTextInWindow(app,txt_2)

166 else

210 APPENDIX B. MATLAB-APP

167 txt_2 = ['Rotate Z knob ' num2str(abs(wholerot_z)) ' times ...

CW, and aditional ' num2str(restrot_z) ' degrees.'];

168 WriteTextInWindow(app,txt_2)

169 end

170 end

171 questdlg({txt_1,txt_2},'Manually move the transducer','Ok','Ok')

172 end

173 %

174 function DTM(app)

175 %%

176 % Distance from transducer to microphone/transducer

177 %%

178 system('C:\Program Files (x86)\KEYENCE\LK−Navigator\LK−Navigator.exe...

&');

179 system('Taskkill /IM cmd.exe');

180

181 inputvalues = inputdlg({'Value one at transducer','Value two at ...

microphone/transducer'},'Measured average value [mm]',[1,50]);

182 if isempty(inputvalues)

183 return

184 elseif cellfun('isempty',inputvalues(1)) || cellfun('isempty',...

inputvalues(2))

185 return

186 else

187 inputvalues = cellfun(@str2num,inputvalues);

188 app.distance = 30 + 30 + 182.5692 − inputvalues(1) − inputvalues...

(2);

189 value = app.abspos.(app.field{3})−app.distance;

190 txt = ['Dictance from transducer to microphone/transducer is ...

measured to be ' num2str(app.distance) '[mm]'];

191 WriteTextInWindow(app,txt)

192

193 choice = questdlg(['Do you want current position to ' app.name...

{1} ' to be zero?'],'Zero Position','Yes','No','No');

194 switch choice

195 case 'Yes'

196 SaveZero(app,1,'')

197 end

198 choice = questdlg(['Do you want current position to ' app.name...

{2} ' to be zero?'],'Zero Position','Yes','No','No');

199 switch choice

200 case 'Yes'

201 SaveZero(app,2,'')

202 end

203 SaveZero(app,3,value)

APPENDIX B. MATLAB-APP 211

204 end

205 end

206 %

207 function MLY(app)

208 %%

209 % Main Lobe on y axis, linear slope

210 % constants

211 %%

212 if app.zeroed(3) == 0

213 txt = 'Find zero z posistion with Setup 3, 4 or load zero.mat';

214 WriteTextInWindow(app,txt)

215 elseif app.zeroed(2) == 0

216 txt = 'Find zero y posistion with Setup 3, 4 or load zero.mat';

217 WriteTextInWindow(app,txt)

218 else

219 if isempty(app.angle)

220 txt = 'No angle is found';

221 WriteTextInWindow(app,txt)

222 return

223 elseif isempty(app.distance)

224 txt = 'No distance from transducer to microphone/transducer ...

is found';

225 WriteTextInWindow(app,txt)

226 return

227 else

228 delta_y = tand(app.angle)*app.distance;

229 app.linearslope.a = delta_y/app.distance;

230 app.linearslope.b = app.zeropos.(app.field{2});

231 SaveLinearSlope(app)

232 end

233 end

234 end

235 %

236 %%

B.13 Overall functions

1 %%

2 % following functions handles different needs in the app

3 function ResetButtons(app)

4 buttons = [app.MACHINECOORDS_Button,app.GO_TO_ZERO_Button,...

app.GO_TO_ZERO_X_Button,app.GO_TO_ZERO_Y_Button,...

212 APPENDIX B. MATLAB-APP

app.GO_TO_ZERO_Z_Button,app.GO_TO_ZERO_R_Button,...

app.ZERO_ALL_Button,app.ZERO_X_Button,app.ZERO_Y_Button,...

app.ZERO_Z_Button,app.ZERO_R_Button,app.POSITEIVESTEP_X_Button,...

app.POSITEIVESTEP_Y_Button,app.POSITEIVESTEP_Z_Button,...

app.POSITEIVESTEP_R_Button,app.NEGATIVESTEP_X_Button,...

app.NEGATIVESTEP_Y_Button,app.NEGATIVESTEP_Z_Button,...

app.NEGATIVESTEP_R_Button,app.HOME_ALL_Button,app.HOME_X_Button,...

app.HOME_Y_Button,app.HOME_Z_Button,app.HOME_R_Button,...

app.INITISLIZEMACHINE_Button,app.INSTRUMENTCONNECT_Button,...

app.SETUP_Button,app.LOAD_Button,app.START_Button,app.STOP_Button...

,app.READ_DropDown,app.READ_Button];

5 set(buttons,'Enable','Off')

6 if app.initialized == 0

7 set(buttons(25),'Enable','On')

8 elseif ~all(app.homed)

9 set(buttons,'Enable','On')

10 movebuttons = [app.POSITEIVESTEP_X_Button,...

app.NEGATIVESTEP_X_Button;app.POSITEIVESTEP_Y_Button,...

app.NEGATIVESTEP_Y_Button;app.POSITEIVESTEP_Z_Button,...

app.NEGATIVESTEP_Z_Button;app.POSITEIVESTEP_R_Button,...

app.NEGATIVESTEP_R_Button];

11 for i = 1:length(app.homed)

12 if app.homed(i) == 0

13 set(movebuttons(i,:),'Enable','Off')

14 else

15 set(movebuttons(i,:),'Enable','On')

16 end

17 end

18 else

19 set(buttons,'Enable','On')

20 end

21 if app.connected == 0

22 set(buttons(31),'Enable','Off')

23 set(buttons(32),'Enable','Off')

24 end

25 end

26 %

27 function ResetColor(app)

28 color = [app.ZERO_ALL_Button,app.ZERO_X_Button,app.ZERO_Y_Button,...

app.ZERO_Z_Button,app.ZERO_R_Button];

29 for i = 1:length(app.zeroed)

30 if app.zeroed(i) == 0

31 set(color(1,(i+1)),'BackgroundColor',app.red)

32 else

33 set(color(1,(i+1)),'BackgroundColor',app.grey)

APPENDIX B. MATLAB-APP 213

34 end

35 end

36 if all(app.zeroed == 1)

37 set(color(1,1),'BackgroundColor',app.grey)

38 else

39 set(color(1,1),'BackgroundColor',app.red)

40 end

41 end

42 %

43 function ActionButtons(app)

44 buttons = [app.MACHINECOORDS_Button,app.GO_TO_ZERO_Button,...

app.GO_TO_ZERO_X_Button,app.GO_TO_ZERO_Y_Button,...

app.GO_TO_ZERO_Z_Button,app.GO_TO_ZERO_R_Button,...

app.ZERO_ALL_Button,app.ZERO_X_Button,app.ZERO_Y_Button,...

app.ZERO_Z_Button,app.ZERO_R_Button,app.POSITEIVESTEP_X_Button,...

app.POSITEIVESTEP_Y_Button,app.POSITEIVESTEP_Z_Button,...

app.POSITEIVESTEP_R_Button,app.NEGATIVESTEP_X_Button,...

app.NEGATIVESTEP_Y_Button,app.NEGATIVESTEP_Z_Button,...

app.NEGATIVESTEP_R_Button,app.HOME_ALL_Button,app.HOME_X_Button,...

app.HOME_Y_Button,app.HOME_Z_Button,app.HOME_R_Button,...

app.INITISLIZEMACHINE_Button,app.INSTRUMENTCONNECT_Button,...

app.SETUP_Button,app.LOAD_Button,app.START_Button,app.STOP_Button...

,app.READ_DropDown,app.READ_Button];

45 set(buttons,'Enable','Off')

46 set(app.STOP_Button,'Enable','On')

47 end

48 %

49 function ActionLamp(app,onoff,a)

50 lamp = [app.X_Lamp,app.Y_Lamp,app.Z_Lamp,app.R_Lamp];

51 if onoff

52 set(lamp(a),'Color',app.green);

53 else

54 set(lamp(a),'Color',app.black);

55 end

56 end

57 %

58 function WritePosition(app)

59 value = [app.X_EditField,app.Y_EditField,app.Z_EditField, ...

60 app.R_EditField];

61 if app.MACHINECOORDS_Lamp.Color == app.green

62 for i = 1:4

63 value(i).Value = app.abspos.(app.field{i});

64 end

65 else

66 for i = 1:4

214 APPENDIX B. MATLAB-APP

67 if app.zeroed(i) == 1

68 value(i).Value = app.abspos.(app.field{i})−app.zeropos.(...

app.field{i});

69 else

70 value(i).Value = app.abspos.(app.field{i});

71 end

72 end

73 end

74 end

75 %

76 function WriteTextInWindow(app,txt)

77 app.text = app.TextArea.Value;

78 if cellfun(@isempty,app.text)

79 app.text{1} = txt;

80 app.TextArea.Value = app.text;

81 else

82 if length(app.text) >= 100

83 app.text = app.text(2:end);

84 end

85 app.text{length(app.text)+1} = txt;

86 app.TextArea.Value = app.text;

87 end

88 scroll(app.TextArea, 'bottom')

89

90

91 if not(isfolder([app.path '\App_LOG']))

92 mkdir([app.path '\App_LOG'])

93 end

94 celltext{1} = txt;

95 if ~isfile([app.path '\App_LOG\TextWindow' app.time '.txt'])

96 writecell(celltext, [app.path '\App_LOG\TextWindow' app.time '...

.txt'], 'QuoteStrings',false);

97 else

98 writecell(celltext, [app.path '\App_LOG\TextWindow' app.time '...

.txt'], 'QuoteStrings',false,'WriteMode','append')

99 end

100 end

101 %

102 function HomeMotorFunc(app,a)

103 if app.stop == 1

104 WritePosition(app)

105 return

106 end

107 ActionButtons(app)

108 ActionLamp(app,true,a)

APPENDIX B. MATLAB-APP 215

109 app.safety = 1;

110 while app.safety == 1

111 HomeMotor(app,a)

112 app.safety = 0;

113 end

114 if app.stop == 1

115 WritePosition(app)

116 return

117 end

118 ActionLamp(app,false,a)

119 app.homed(a) = 1;

120 WritePosition(app)

121 ResetButtons(app)

122 end

123 %

124 function StepMotorFunc(app,s,a,m)

125 if app.homed(a) == 0

126 txt = [app.name{a} ' is not homed'];

127 WriteTextInWindow(app,txt)

128 return

129 end

130

131 if app.stop == 1

132 WritePosition(app)

133 return

134 end

135

136 softlim.xaxis = [0,300];

137 softlim.yaxis = [0,300];

138 softlim.zaxis = [0,1016];

139

140 if a ~=4

141 pos = app.abspos.(app.field{a});

142 lowerlim = softlim.(app.field{a})(1);

143 upperlim = softlim.(app.field{a})(2);

144 end

145

146 if a == 4

147 ActionButtons(app)

148 ActionLamp(app,true,a)

149 app.safety = 1;

150 while app.safety == 1

151 StepMotor(app,s,a,m)

152 app.safety = 0;

153 end

216 APPENDIX B. MATLAB-APP

154 if app.stop == 1

155 WritePosition(app)

156 return

157 end

158 ActionLamp(app,false,a)

159 WritePosition(app)

160 ResetButtons(app)

161 elseif m == 0

162 if s < 0 && pos+s < lowerlim

163 ActionButtons(app)

164 ActionLamp(app,true,a)

165 app.safety = 1;

166 while app.safety == 1

167 StepMotor(app,lowerlim,a,1)

168 app.safety = 0;

169 end

170 if app.stop == 1

171 WritePosition(app)

172 return

173 end

174 ActionLamp(app,false,a)

175 WritePosition(app)

176 ResetButtons(app)

177 txt = 'Reached lower limit';

178 WriteTextInWindow(app,txt)

179 elseif s > 0 && pos+s > upperlim

180 ActionButtons(app)

181 ActionLamp(app,true,a)

182 app.safety = 1;

183 while app.safety == 1

184 StepMotor(app,upperlim,a,1)

185 app.safety = 0;

186 end

187 if app.stop == 1

188 WritePosition(app)

189 return

190 end

191 ActionLamp(app,false,a)

192 WritePosition(app)

193 ResetButtons(app)

194 txt = 'Reached upper limit';

195 WriteTextInWindow(app,txt)

196 else

197 ActionButtons(app)

198 ActionLamp(app,true,a)

APPENDIX B. MATLAB-APP 217

199 app.safety = 1;

200 while app.safety == 1

201 StepMotor(app,s,a,m)

202 app.safety = 0;

203 end

204 if app.stop == 1

205 WritePosition(app)

206 return

207 end

208 ActionLamp(app,false,a)

209 WritePosition(app)

210 ResetButtons(app)

211 end

212 else

213 if s <= lowerlim

214 ActionButtons(app)

215 ActionLamp(app,true,a)

216 app.safety = 1;

217 while app.safety == 1

218 StepMotor(app,lowerlim,a,1)

219 app.safety = 0;

220 end

221 if app.stop == 1

222 WritePosition(app)

223 return

224 end

225 ActionLamp(app,false,a)

226 WritePosition(app)

227 ResetButtons(app)

228 txt = 'Reached lower limit';

229 WriteTextInWindow(app,txt)

230 elseif s >= upperlim

231 ActionButtons(app)

232 ActionLamp(app,true,a)

233 app.safety = 1;

234 while app.safety == 1

235 StepMotor(app,upperlim,a,1)

236 app.safety = 0;

237 end

238 if app.stop == 1

239 WritePosition(app)

240 return

241 end

242 ActionLamp(app,false,a)

243 WritePosition(app)

218 APPENDIX B. MATLAB-APP

244 ResetButtons(app)

245 txt = 'Reached upper limit';

246 WriteTextInWindow(app,txt)

247 else

248 ActionButtons(app)

249 ActionLamp(app,true,a)

250 app.safety = 1;

251 while app.safety == 1

252 StepMotor(app,s,a,m)

253 app.safety = 0;

254 end

255 if app.stop == 1

256 WritePosition(app)

257 return

258 end

259 ActionLamp(app,false,a)

260 WritePosition(app)

261 ResetButtons(app)

262 end

263 end

264 end

265 %

266 function SaveZero(app,a,value)

267 if isempty(value)

268 if a == 2

269 app.linearslope.b = app.abspos.(app.field{a});

270 SaveLinearSlope(app)

271 end

272 app.zeropos.(app.field{a}) = app.abspos.(app.field{a});

273 zero = app.zeropos;

274 if isfile([app.path '\zero.mat'])

275 save([app.path '\zero.mat'],'−struct','zero','−append')

276 else

277 save([app.path '\zero.mat'],'−struct','zero')

278 end

279 app.zeroed(a) = 1;

280 WritePosition(app)

281 ResetColor(app)

282 else

283 if a == 2

284 app.linearslope.b = value;

285 SaveLinearSlope(app)

286 end

287 app.zeropos.(app.field{a}) = value;

288 zero = app.zeropos;

APPENDIX B. MATLAB-APP 219

289 if isfile([app.path '\zero.mat'])

290 save([app.path '\zero.mat'],'−struct','zero','−append')

291 else

292 save([app.path '\zero.mat'],'−struct','zero')

293 end

294 app.zeroed(a) = 1;

295 WritePosition(app)

296 ResetColor(app)

297 end

298 end

299 %

300 function SaveLinearSlope(app)

301 slope = app.linearslope;

302 if isfile([app.path '\slope.mat'])

303 save([app.path '\slope.mat'],'−struct','slope','−append')

304 else

305 save([app.path '\slope.mat'],'−struct','slope')

306 end

307 end

308 %

309 function SaveMeasurements(app)

310 if strcmpi(app.meas.notes,'Main Lobe on y−axis')

311 filename_1 = [app.meas.date '_Main_Lobe_Y'];

312 elseif strcmpi(app.meas.notes,'Main Lobe on x−axis')

313 filename_1 = [app.meas.date '_Main_Lobe_X'];

314 else

315 filename_1 = [app.meas.date '_' app.meas.name];

316 end

317 newfolder_1 = [app.selpath '\' filename_1];

318 if ~isfolder(newfolder_1)

319 mkdir(newfolder_1)

320 end

321 if app.measurement == 1

322 txt = 'Saving Measurement Parameters';

323 WriteTextInWindow(app,txt)

324 savepath_1 = [newfolder_1 '\measurement_parameters.mat'];

325 m = matfile(savepath_1,'Writable',true);

326 m.parameters = app.meas;

327 end

328 if strcmpi(app.meas.notes,'Directivity')

329 filename_2 = ['Primary_axis_' num2str(...

app.result.primary_axis_pos) '[mm]'];

330 newfolder_2 = [newfolder_1 '\' filename_2];

331 if ~isfolder(newfolder_2)

332 mkdir(newfolder_2)

220 APPENDIX B. MATLAB-APP

333 end

334 filename_3 = ['Frequency_' num2str(app.result.frequency) '[Hz]'...

];

335 newfolder_3 = [newfolder_2 '\' filename_3];

336 if ~isfolder(newfolder_3)

337 mkdir(newfolder_3)

338 end

339 txt = 'Saving Results';

340 WriteTextInWindow(app,txt)

341 if strcmpi(app.result.secondary_axis,'rotaxis')

342 savepath_2 = [newfolder_3 '\' num2str(...

app.result.secondary_axis_pos) '[degree].mat'];

343 else

344 savepath_2 = [newfolder_3 '\' num2str(...

app.result.secondary_axis_pos) '[mm].mat'];

345 end

346 n = matfile(savepath_2,'Writable',true);

347 n.results = app.result;

348 elseif strcmpi(app.meas.notes,'On Axis Pressure')

349 filename_2 = ['Frequency_' num2str(app.result.frequency) '[Hz]'...

];

350 newfolder_2 = [newfolder_1 '\' filename_2];

351 if ~isfolder(newfolder_2)

352 mkdir(newfolder_2)

353 end

354 if strcmpi(app.result.secondary_axis,'rotaxis')

355 filename_3 = ['Secondary_axis' num2str(...

app.result.secondary_axis_pos) '[degree]'];

356 else

357 filename_3 = ['Secondary_axis' num2str(...

app.result.secondary_axis_pos) '[mm]'];

358 end

359 newfolder_3 = [newfolder_2 '\' filename_3];

360 if ~isfolder(newfolder_3)

361 mkdir(newfolder_3)

362 end

363 txt = 'Saving Results';

364 WriteTextInWindow(app,txt)

365 savepath_2 = [newfolder_3 '\' num2str(...

app.result.primary_axis_pos) '[mm].mat'];

366 n = matfile(savepath_2,'Writable',true);

367 n.results = app.result;

368 elseif strcmpi(app.meas.notes,'Sensitivity')

369 filename_2 = ['Primary_axis_' num2str(...

app.result.primary_axis_pos) '[mm]'];

APPENDIX B. MATLAB-APP 221

370 newfolder_2 = [newfolder_1 '\' filename_2];

371 if ~isfolder(newfolder_2)

372 mkdir(newfolder_2)

373 end

374 if strcmpi(app.result.secondary_axis,'rotaxis')

375 filename_3 = ['Secondary_axis' num2str(...

app.result.secondary_axis_pos) '[degree]'];

376 else

377 filename_3 = ['Secondary_axis' num2str(...

app.result.secondary_axis_pos) '[mm]'];

378 end

379 newfolder_3 = [newfolder_2 '\' filename_3];

380 if ~isfolder(newfolder_3)

381 mkdir(newfolder_3)

382 end

383 txt = 'Saving Results';

384 WriteTextInWindow(app,txt)

385 savepath_2 = [newfolder_3 '\' num2str(app.result.frequency) '[Hz...

].mat'];

386 n = matfile(savepath_2,'Writable',true);

387 n.results = app.result;

388 elseif strcmpi(app.meas.notes,'Main Lobe on y−axis')

389 filename_2 = ['Primary_axis_' num2str(...

app.result.primary_axis_pos) '[mm]'];

390 newfolder_2 = [newfolder_1 '\' filename_2];

391 if ~isfolder(newfolder_2)

392 mkdir(newfolder_2)

393 end

394 filename_3 = ['Frequency_' num2str(app.result.frequency) '[Hz]'...

];

395 newfolder_3 = [newfolder_2 '\' filename_3];

396 if ~isfolder(newfolder_3)

397 mkdir(newfolder_3)

398 end

399 txt = 'Saving Results';

400 WriteTextInWindow(app,txt)

401 if strcmpi(app.result.secondary_axis,'rotaxis')

402 savepath_2 = [newfolder_3 '\' num2str(...

app.result.secondary_axis_pos) '[degree].mat'];

403 else

404 savepath_2 = [newfolder_3 '\' num2str(...

app.result.secondary_axis_pos) '[mm].mat'];

405 end

406 n = matfile(savepath_2,'Writable',true);

407 n.results = app.result;

222 APPENDIX B. MATLAB-APP

408 elseif strcmpi(app.meas.notes,'Main Lobe on x−axis')

409 filename_2 = ['Primary_axis_' num2str(...

app.result.primary_axis_pos) '[mm]'];

410 newfolder_2 = [newfolder_1 '\' filename_2];

411 if ~isfolder(newfolder_2)

412 mkdir(newfolder_2)

413 end

414 filename_3 = ['Frequency_' num2str(app.result.frequency) '[Hz]'...

];

415 newfolder_3 = [newfolder_2 '\' filename_3];

416 if ~isfolder(newfolder_3)

417 mkdir(newfolder_3)

418 end

419 txt = 'Saving Results';

420 WriteTextInWindow(app,txt)

421 if strcmpi(app.result.secondary_axis,'rotaxis')

422 savepath_2 = [newfolder_3 '\' num2str(...

app.result.secondary_axis_pos) '[degree].mat'];

423 else

424 savepath_2 = [newfolder_3 '\' num2str(...

app.result.secondary_axis_pos) '[mm].mat'];

425 end

426 n = matfile(savepath_2,'Writable',true);

427 n.results = app.result;

428 end

429 end

430 %

431 %%

B.14 Button functions

1 % Callbacks that handle component events

2 methods (Access = private)

3

4 % Code that executes after component creation

5 function startupFcn(app)

6 % At start up, resets all buttons

7 app.path = fileparts(mfilename('fullpath'));

8 addpath(app.path)

9 app.time = strcat(datestr(now,'yyyy_mm_dd_HH_MM'));

10 ResetButtons(app)

11 ResetColor(app)

APPENDIX B. MATLAB-APP 223

12 end

13

14 % Button pushed function: INITISLIZEMACHINE_Button

15 function INITISLIZEMACHINE_ButtonPushed(app, event)

16 % If you accedentaly hit INIT button, you have the ability to

17 % stop

18 if app.initializing == 1

19 return

20 elseif app.initialized == 1

21 choice = questdlg('WARNING: Do you want to initialize again?','...

WARNING','Yes','No','No');

22 switch choice

23 case 'No'

24 return

25 end

26 end

27

28 app.TextArea.Value = '';

29

30 % Set up connection to the motor controllers with InitMotor and

31 % finds initial position of with PositionMotor.

32 % app.initializing sets everything on pause to initializing and

33 % finding position is done.

34 app.initializing = 1;

35 while app.initializing == 1

36 InitMotor(app)

37 if app.initfail == 1

38 txt = 'Initialize Machine failed';

39 WriteTextInWindow(app,txt)

40 app.initfail = 0;

41 app.initializing = 0;

42 return

43 end

44 for i = 1:4

45 PositionMotor(app,i);

46 app.zeroed(i) = 0;

47 if i == 4

48 app.homed(i) = 1;

49 else

50 app.homed(i) = 0;

51 end

52 end

53 app.initialized = 1;

54 app.initializing = 0;

55 end

224 APPENDIX B. MATLAB-APP

56

57 % Set stop lamp to green to tell user that app is ready to and

58 % set machine coordinates/absolute positions to correct state

59 app.STOP_Lamp.Color = app.green;

60 app.MACHINECOORDS_Lamp.Color = app.green;

61 app.MACHINECOORDS_Button.Text = 'MACHINE COORDS';

62 app.SETUP_Button.Text = 'SETUP';

63 app.USERCOORDS_Lamp.Color = app.black;

64 % Write position to position fields and reset buttons and

65 % colors to corret states.

66 WritePosition(app)

67 ResetButtons(app)

68 ResetColor(app)

69 end

70

71 % Button pushed function: INSTRUMENTCONNECT_Button

72 function INSTRUMENTCONNECT_ButtonPushed(app, event)

73 % If you accedentaly hit instr button, you have the ability to

74 % stop

75 if app.connected == 1

76 choice = questdlg('WARNING: Do you want to connect to ...

instruments again?','WARNING','Yes','No','No');

77 switch choice

78 case 'No'

79 return

80 end

81 end

82 InstrumentConnect(app)

83 if app.connectfail == 1

84 txt = 'Instrument Connect failed';

85 WriteTextInWindow(app,txt)

86 app.connectfail = 0;

87 return

88 end

89 app.connected = 1;

90 set(app.STOP_Button,'Enable','On')

91 ResetButtons(app)

92 end

93

94 % Button pushed function: HOME_ALL_Button

95 function HOME_ALL_ButtonPushed(app, event)

96 txt = 'Home All';

97 WriteTextInWindow(app,txt)

98 home_order = [4,3,1,2];

99 for i = 1:length(home_order)

APPENDIX B. MATLAB-APP 225

100 HomeMotorFunc(app,home_order(i))

101 if app.stop == 1

102 app.stop = 0;

103 return

104 end

105 end

106 end

107

108 % Button pushed function: HOME_X_Button

109 function HOME_X_ButtonPushed(app, event)

110 txt = ['Home ' app.name{1}];

111 WriteTextInWindow(app,txt)

112 HomeMotorFunc(app,1)

113 if app.stop == 1

114 app.stop = 0;

115 return

116 end

117 end

118

119 % Button pushed function: HOME_Y_Button

120 function HOME_Y_ButtonPushed(app, event)

121 txt = ['Home ' app.name{2}];

122 WriteTextInWindow(app,txt)

123 HomeMotorFunc(app,2)

124 if app.stop == 1

125 app.stop = 0;

126 return

127 end

128 end

129

130 % Button pushed function: HOME_Z_Button

131 function HOME_Z_ButtonPushed(app, event)

132 txt = ['Home ' app.name{3}];

133 WriteTextInWindow(app,txt)

134 HomeMotorFunc(app,3)

135 if app.stop == 1

136 app.stop = 0;

137 return

138 end

139 end

140

141 % Button pushed function: HOME_R_Button

142 function HOME_R_ButtonPushed(app, event)

143 txt = ['Home ' app.name{4}];

144 WriteTextInWindow(app,txt)

226 APPENDIX B. MATLAB-APP

145 HomeMotorFunc(app,4)

146 if app.stop == 1

147 app.stop = 0;

148 return

149 end

150 end

151

152 % Button pushed function: POSITEIVESTEP_X_Button

153 function POSITEIVESTEP_X_ButtonPushed(app, event)

154 if app.STEP_X_DIR_EditField.Value < 0

155 return

156 end

157 step = app.STEP_X_DIR_EditField.Value;

158 StepMotorFunc(app,step,1,0)

159 if app.stop == 1

160 app.stop = 0;

161 return

162 end

163 end

164

165 % Button pushed function: POSITEIVESTEP_Y_Button

166 function POSITEIVESTEP_Y_ButtonPushed(app, event)

167 if app.STEP_Y_DIR_EditField.Value < 0

168 return

169 end

170 step = app.STEP_Y_DIR_EditField.Value;

171 StepMotorFunc(app,step,2,0)

172 if app.stop == 1

173 app.stop = 0;

174 return

175 end

176 end

177

178 % Button pushed function: POSITEIVESTEP_Z_Button

179 function POSITEIVESTEP_Z_ButtonPushed(app, event)

180 if app.STEP_Z_DIR_EditField.Value < 0

181 return

182 elseif app.setup == 1

183 questdlg('WARNING: Exit setup!','WARNING','Ok','Ok')

184 return

185 end

186 step = app.STEP_Z_DIR_EditField.Value;

187 StepMotorFunc(app,step,3,0)

188 if app.stop == 1

189 app.stop = 0;

APPENDIX B. MATLAB-APP 227

190 return

191 end

192 end

193

194 % Button pushed function: POSITEIVESTEP_R_Button

195 function POSITEIVESTEP_R_ButtonPushed(app, event)

196 if app.STEP_R_DIR_EditField.Value < 0

197 return

198 end

199 step = app.STEP_R_DIR_EditField.Value;

200 StepMotorFunc(app,step,4,0)

201 if app.stop == 1

202 app.stop = 0;

203 return

204 end

205 end

206

207 % Button pushed function: NEGATIVESTEP_X_Button

208 function NEGATIVESTEP_X_ButtonPushed(app, event)

209 if app.STEP_X_DIR_EditField.Value < 0

210 return

211 end

212 step = −app.STEP_X_DIR_EditField.Value;

213 StepMotorFunc(app,step,1,0)

214 if app.stop == 1

215 app.stop = 0;

216 return

217 end

218 end

219

220 % Button pushed function: NEGATIVESTEP_Y_Button

221 function NEGATIVESTEP_Y_ButtonPushed(app, event)

222 if app.STEP_Y_DIR_EditField.Value < 0

223 return

224 end

225 step = −app.STEP_Y_DIR_EditField.Value;

226 StepMotorFunc(app,step,2,0)

227 if app.stop == 1

228 app.stop = 0;

229 return

230 end

231 end

232

233 % Button pushed function: NEGATIVESTEP_Z_Button

234 function NEGATIVESTEP_Z_ButtonPushed(app, event)

228 APPENDIX B. MATLAB-APP

235 if app.STEP_Z_DIR_EditField.Value < 0

236 return

237 elseif app.setup == 1

238 questdlg('WARNING: Exit setup!','WARNING','Ok','Ok')

239 return

240 elseif app.zeroed(3) == 1 && app.zeroz == 1

241 newpos = app.abspos.zaxis−app.STEP_Z_DIR_EditField.Value;

242 if newpos < app.zeropos.zaxis

243 choice = questdlg('WARNING: You are crossing your zero point...

, this may cause you to crash with the microphone/...

transducer.','WARNING','Don''t cross', 'Ignore','Don''t ...

cross');

244 switch choice

245 case 'Don''t cross'

246 return

247 case ''

248 return

249 case 'Ignore'

250 app.zeroz = 0;

251 end

252 end

253 end

254 step = −app.STEP_Z_DIR_EditField.Value;

255 StepMotorFunc(app,step,3,0)

256 if app.stop == 1

257 app.stop = 0;

258 return

259 end

260 end

261

262 % Button pushed function: NEGATIVESTEP_R_Button

263 function NEGATIVESTEP_R_ButtonPushed(app, event)

264 if app.STEP_R_DIR_EditField.Value < 0

265 return

266 end

267 step = −app.STEP_R_DIR_EditField.Value;

268 StepMotorFunc(app,step,4,0)

269 if app.stop == 1

270 app.stop = 0;

271 return

272 end

273 end

274

275 % Button pushed function: STOP_Button

276 function STOP_ButtonPushed(app, event)

APPENDIX B. MATLAB-APP 229

277 if strcmpi(app.STOP_Button.Text,'STOP')

278 txt = 'Stop';

279 WriteTextInWindow(app,txt)

280 app.stop = 1;

281 ActionButtons(app)

282 app.STOP_Lamp.Color = app.red;

283 app.controller.C843.STP();

284 writeline(app.controller.HydraTT,'1 nabort')

285 for i = 1:4

286 ActionLamp(app,false,i)

287 end

288 app.STOP_Button.Text='RESTART';

289 elseif strcmpi(app.STOP_Button.Text,'RESTART') && app.safety == 0

290 txt = 'Restart';

291 WriteTextInWindow(app,txt)

292 app.STOP_Lamp.Color = app.green;

293 app.STOP_Button.Text='STOP';

294 ResetButtons(app)

295 end

296 end

297

298 % Button pushed function: ZERO_ALL_Button

299 function ZERO_ALL_ButtonPushed(app, event)

300 txt = 'Zero All';

301 WriteTextInWindow(app,txt)

302 for i = 1:4

303 SaveZero(app,i,'')

304 end

305 end

306

307 % Button pushed function: ZERO_X_Button

308 function ZERO_X_ButtonPushed(app, event)

309 txt = ['Zero ' app.name{1}];

310 WriteTextInWindow(app,txt)

311 SaveZero(app,1,'')

312 end

313

314 % Button pushed function: ZERO_Y_Button

315 function ZERO_Y_ButtonPushed(app, event)

316 txt = ['Zero ' app.name{2}];

317 WriteTextInWindow(app,txt)

318 SaveZero(app,2,'')

319 end

320

321 % Button pushed function: ZERO_Z_Button

230 APPENDIX B. MATLAB-APP

322 function ZERO_Z_ButtonPushed(app, event)

323 txt = ['Zero ' app.name{3}];

324 WriteTextInWindow(app,txt)

325 SaveZero(app,3,'')

326 end

327

328 % Button pushed function: ZERO_R_Button

329 function ZERO_R_ButtonPushed(app, event)

330 txt = ['Zero ' app.name{4}];

331 WriteTextInWindow(app,txt)

332 SaveZero(app,4,'')

333 end

334

335 % Button pushed function: GO_TO_ZERO_Button

336 function GO_TO_ZERO_ButtonPushed(app, event)

337 txt = 'All Go To Zero';

338 WriteTextInWindow(app,txt)

339

340 gotozero_order = [4,1,2,3];

341 for i = 1:length(gotozero_order)

342 if app.homed(gotozero_order(i)) == 0

343 txt = [app.name{gotozero_order(i)} ' is not homed.'];

344 WriteTextInWindow(app,txt)

345 continue

346 elseif app.zeroed(gotozero_order(i)) == 0

347 txt = [app.name{gotozero_order(i)} ' have no zero ...

coordinates'];

348 WriteTextInWindow(app,txt)

349 continue

350 elseif app.setup == 1 && gotozero_order(i) == 3

351 txt = ['Exit Setup to move ' app.name{gotozero_order(i)} ' ...

to zero'];

352 WriteTextInWindow(app,txt)

353 continue

354 elseif app.zeroed(gotozero_order(i)) == 1

355 pos = app.zeropos.(app.field{gotozero_order(i)});

356 if gotozero_order(i) == 3

357 distmic = 10;

358 choice = questdlg('WARNING: Possible collision can occur...

with the microphone/transducer.','WARNING',['Stop at...

' num2str(distmic) '[mm]'], 'Ignore',['Stop at ' ...

num2str(distmic) '[mm]']);

359 switch choice

360 case ['Stop at ' num2str(distmic) '[mm]']

361 StepMotorFunc(app,(pos + distmic),gotozero_order...

APPENDIX B. MATLAB-APP 231

(i),1)

362 if app.stop == 1

363 app.stop = 0;

364 return

365 end

366 case ''

367 return

368 case 'Ignore'

369 StepMotorFunc(app,pos,gotozero_order(i),1)

370 if app.stop == 1

371 app.stop = 0;

372 return

373 end

374 end

375 else

376 StepMotorFunc(app,pos,gotozero_order(i),1)

377 if app.stop == 1

378 app.stop = 0;

379 return

380 end

381 end

382 end

383 end

384 end

385

386 % Button pushed function: GO_TO_ZERO_X_Button

387 function GO_TO_ZERO_X_ButtonPushed(app, event)

388 if app.homed(1) == 0

389 txt = [app.name{1} ' is not homed.'];

390 WriteTextInWindow(app,txt)

391 return

392 elseif app.zeroed(1) == 0

393 txt = [app.name{1} ' have no zero coordinates'];

394 WriteTextInWindow(app,txt)

395 return

396 end

397

398 txt = [app.name{1} ' Go To Zero'];

399 WriteTextInWindow(app,txt)

400

401 pos = app.zeropos.(app.field{1});

402 StepMotorFunc(app,pos,1,1)

403 if app.stop == 1

404 app.stop = 0;

405 return

232 APPENDIX B. MATLAB-APP

406 end

407 end

408

409 % Button pushed function: GO_TO_ZERO_Y_Button

410 function GO_TO_ZERO_Y_ButtonPushed(app, event)

411 if app.homed(2) == 0

412 txt = [app.name{2} ' is not homed.'];

413 WriteTextInWindow(app,txt)

414 return

415 elseif app.zeroed(2) == 0

416 txt = [app.name{2} ' have no zero coordinates'];

417 WriteTextInWindow(app,txt)

418 return

419 end

420

421 txt = [app.name{2} ' Go To Zero'];

422 WriteTextInWindow(app,txt)

423

424 pos = app.zeropos.(app.field{2});

425 StepMotorFunc(app,pos,2,1)

426 if app.stop == 1

427 app.stop = 0;

428 return

429 end

430 end

431

432 % Button pushed function: GO_TO_ZERO_Z_Button

433 function GO_TO_ZERO_Z_ButtonPushed(app, event)

434 if app.setup == 1

435 txt = 'Exit Setup';

436 WriteTextInWindow(app,txt)

437 return

438 elseif app.homed(3) == 0

439 txt = [app.name{3} ' is not homed.'];

440 WriteTextInWindow(app,txt)

441 return

442 elseif app.zeroed(3) == 0

443 txt = [app.name{3} ' have no zero coordinates'];

444 WriteTextInWindow(app,txt)

445 return

446 end

447

448 txt = [app.name{3} ' Go To Zero'];

449 WriteTextInWindow(app,txt)

450

APPENDIX B. MATLAB-APP 233

451 pos = app.zeropos.(app.field{3});

452 distmic = 10;

453 choice = questdlg('WARNING: Possible collision can occur with the ...

microphone/transducer.','WARNING',['Stop at ' num2str(distmic) '[...

mm]'], 'Ignore',['Stop at ' num2str(distmic) '[mm]']);

454 switch choice

455 case ['Stop at ' num2str(distmic) '[mm]']

456 StepMotorFunc(app,(pos + distmic),3,1)

457 if app.stop == 1

458 app.stop = 0;

459 return

460 end

461 case ''

462 return

463 case 'Ignore'

464 StepMotorFunc(app,pos,3,1)

465 if app.stop == 1

466 app.stop = 0;

467 return

468 end

469 end

470 end

471

472 % Button pushed function: GO_TO_ZERO_R_Button

473 function GO_TO_ZERO_R_ButtonPushed(app, event)

474 if app.homed(4) == 0

475 txt = [app.name{4} ' is not homed.'];

476 WriteTextInWindow(app,txt)

477 return

478 elseif app.zeroed(4) == 0

479 txt = [app.name{4} ' have no zero coordinates'];

480 WriteTextInWindow(app,txt)

481 return

482 end

483

484 txt = [app.name{4} ' Go To Zero'];

485 WriteTextInWindow(app,txt)

486

487 pos = app.zeropos.(app.field{4});

488 StepMotorFunc(app,pos,4,1)

489 if app.stop == 1

490 app.stop = 0;

491 return

492 end

493 end

234 APPENDIX B. MATLAB-APP

494

495 % Button pushed function: MACHINECOORDS_Button

496 function MACHINECOORDS_ButtonPushed(app, event)

497 if strcmpi(app.MACHINECOORDS_Button.Text,'MACHINE COORDS')

498 txt = 'User Coordinates';

499 WriteTextInWindow(app,txt)

500 app.MACHINECOORDS_Button.Text = 'USER COORDS';

501 app.MACHINECOORDS_Lamp.Color = app.black;

502 app.USERCOORDS_Lamp.Color = app.green;

503 for i = 1:4

504 WritePosition(app)

505 end

506 elseif strcmpi(app.MACHINECOORDS_Button.Text,'USER COORDS')

507 txt = 'Machine Coordinates';

508 WriteTextInWindow(app,txt)

509 app.MACHINECOORDS_Button.Text = 'MACHINE COORDS';

510 app.MACHINECOORDS_Lamp.Color = app.green;

511 app.USERCOORDS_Lamp.Color = app.black;

512 for i = 1:4

513 WritePosition(app)

514 end

515 end

516 end

517

518 % Button pushed function: LOAD_Button

519 function LOAD_ButtonPushed(app, event)

520 txt = 'Load';

521 WriteTextInWindow(app,txt)

522 [file,selpathh] = uigetfile({'*m';'*mat'});

523 selectedfile = fullfile(selpathh,file);

524 if isequal(file,0)

525 txt = 'Canceled Loading';

526 WriteTextInWindow(app,txt)

527 return

528 else

529 txt = ['Loaded File: ', selectedfile];

530 WriteTextInWindow(app,txt)

531 end

532 if strcmpi(file,'zero.mat')

533 app.zeropos = load(selectedfile);

534 app.zeroed(1) = 1;

535 app.zeroed(2) = 1;

536 app.zeroed(3) = 1;

537 app.zeroed(4) = 1;

538 app.zeroz = 1;

APPENDIX B. MATLAB-APP 235

539 elseif strcmpi(file,'MeasParameters.m')

540 app.meas = MeasParameters;

541 app.start = 1;

542 elseif strcmpi(file,'MainLobeX.m')

543 app.meas = MainLobeX;

544 app.start = 1;

545 elseif strcmpi(file,'MainLobeY.m')

546 app.meas = MainLobeY;

547 app.start = 1;

548 elseif strcmpi(file,'slope.mat')

549 app.linearslope = load(selectedfile);

550 app.comp = 1;

551 else

552 txt = 'File not supported by app';

553 WriteTextInWindow(app,txt)

554 end

555 WritePosition(app)

556 ResetColor(app)

557 end

558

559 % Button pushed function: SETUP_Button

560 function SETUP_ButtonPushed(app, event)

561 if ~all(app.homed)

562 txt = 'Not all axis is homed';

563 WriteTextInWindow(app,txt)

564 return

565 elseif strcmpi(app.SETUP_Button.Text,'SETUP')

566 txt = 'Setup';

567 WriteTextInWindow(app,txt)

568 set = {'SETUP';'';'L = Laser stage is needed, take it up before ...

start.'};

569 list = {'Setup 1: Tilt angle of transducer: (L)';

570 'Setup 2: Distance from transducer to rotationaxis: (L)';

571 'Setup 3: Transducer perpendicular to laser: (L)';

572 'Setup 4: Distance from transducer to microphone/transducer:...

(L)';

573 'Setup 5: Tilt angle of transducer and distance to ...

microphone/transducer: (L)';

574 'Turn off linear slope compensation';

575 'Exit Setup'};

576 choice = listdlg('PromptString',set,'ListSize',[400,150],'...

ListString',list,'SelectionMode','single');

577 if isempty(choice)

578 choice = 0;

579 end

236 APPENDIX B. MATLAB-APP

580 switch choice

581 case 0

582 txt = 'Canceled Setup';

583 WriteTextInWindow(app,txt)

584 return

585 case 1

586 app.setup = 1;

587 txt = 'Setup 1';

588 WriteTextInWindow(app,txt)

589 StepMotorFunc(app,360,3,1)

590 if app.stop == 1

591 app.stop = 0;

592 return

593 end

594 txt = 'Ready to measure? Click measure';

595 WriteTextInWindow(app,txt)

596 questdlg(txt,'Choose','Ok','Ok');

597 app.SETUP_Button.Text = 'MEASURE';

598 app.tilt_angle = 1;

599 case 2

600 app.setup = 1;

601 txt = 'Setup 2';

602 WriteTextInWindow(app,txt)

603 StepMotorFunc(app,360,3,1)

604 if app.stop == 1

605 app.stop = 0;

606 return

607 end

608 txt = 'Ready to measure? Click measure';

609 WriteTextInWindow(app,txt)

610 questdlg(txt,'Choose','Ok','Ok');

611 app.SETUP_Button.Text = 'MEASURE';

612 app.distance_transducer_rotaxis = 1;

613 case 3

614 app.setup = 1;

615 txt = 'Setup 3';

616 WriteTextInWindow(app,txt)

617 StepMotorFunc(app,360,3,1)

618 if app.stop == 1

619 app.stop = 0;

620 return

621 end

622 txt = 'Ready to measure? Click measure';

623 WriteTextInWindow(app,txt)

624 questdlg(txt,'Choose','Ok','Ok');

APPENDIX B. MATLAB-APP 237

625 app.SETUP_Button.Text = 'MEASURE';

626 app.transducer_perpendicular_laser = 1;

627 case 4

628 app.setup = 1;

629 txt = 'Setup 4';

630 WriteTextInWindow(app,txt)

631 StepMotorFunc(app,360,3,1)

632 if app.stop == 1

633 app.stop = 0;

634 return

635 end

636 txt = 'Adjust laser such laser point is in the center of...

transducer and then adjust the X and Y−axis such ...

laser point is in center microphone/transducer';

637 WriteTextInWindow(app,txt)

638 questdlg(txt,'Choose','Ok','Ok');

639 app.SETUP_Button.Text = 'MEASURE';

640 app.distance_transducer_microphone = 1;

641 case 5

642 app.setup = 1;

643 txt = 'Setup 5';

644 WriteTextInWindow(app,txt)

645 StepMotorFunc(app,360,3,1)

646 if app.stop == 1

647 app.stop = 0;

648 return

649 end

650 txt = 'Adjust laser such laser point is in the center of...

transducer and then adjust the X and Y−axis such ...

laser point is in center microphone/transducer';

651 WriteTextInWindow(app,txt)

652 questdlg(txt,'Choose','Ok','Ok');

653 app.SETUP_Button.Text = 'MEASURE';

654 app.tilt_angle_and_distance = 1;

655 case 6

656 app.comp = 0;

657 case 7

658 app.setup = 0;

659 txt = 'Exit Setup';

660 WriteTextInWindow(app,txt)

661 app.distance_transducer_microphone = 0;

662 app.distance_transducer_rotaxis = 0;

663 app.transducer_perpendicular_laser = 0;

664 app.tilt_angle_and_distance = 0;

665 app.tilt_angle = 0;

238 APPENDIX B. MATLAB-APP

666 app.SETUP_Button.Text = 'SETUP';

667 if app.abspos.(app.field{3}) < 500

668 StepMotorFunc(app,500,3,1)

669 if app.stop == 1

670 app.stop = 0;

671 return

672 end

673 end

674 end

675 else

676 txt = 'Measure';

677 WriteTextInWindow(app,txt)

678 if app.distance_transducer_microphone == 1

679 DTM(app)

680 app.distance_transducer_microphone = 0;

681 elseif app.distance_transducer_rotaxis == 1

682 DTRax(app)

683 app.distance_transducer_rotaxis = 0;

684 elseif app.transducer_perpendicular_laser == 1

685 ATL(app,0)

686 app.transducer_perpendicular_laser = 0;

687 elseif app.tilt_angle_and_distance == 1

688 DTM(app)

689 ATL(app,1)

690 MLY(app)

691 app.tilt_angle_and_distance = 0;

692 elseif app.tilt_angle == 1

693 ATL(app,1)

694 app.tilt_angle = 0;

695 end

696 app.SETUP_Button.Text = 'SETUP';

697 end

698 end

699

700 % Button pushed function: START_Button

701 function START_ButtonPushed(app, event)

702 notes = {'Directivity','Sensitivity','On Axis Pressure','Main Lobe ...

on y−axis','Main Lobe on x−axis'};

703

704 if app.start == 0

705 txt = 'No measurement parameters loaded';

706 WriteTextInWindow(app,txt)

707 return

708 elseif ~all(app.homed)

709 txt = 'Not all axis is homed';

APPENDIX B. MATLAB-APP 239

710 WriteTextInWindow(app,txt)

711 return

712 elseif ~all(app.zeroed)

713 txt = 'Not all axis have zero coordinates';

714 WriteTextInWindow(app,txt)

715 return

716 elseif app.connected == 0

717 txt = 'Not connected to instruments';

718 WriteTextInWindow(app,txt)

719 return

720 elseif ~any(strcmp(notes,app.meas.notes))

721 txt = 'No meas.notes of that type, you have to modify ...

SaveMeasurements(app) or choose meas.notes:';

722 WriteTextInWindow(app,txt)

723 for i = 1:length(notes)

724 txt = notes{i};

725 WriteTextInWindow(app,txt)

726 end

727 return

728 end

729

730 if strcmpi(app.MACHINECOORDS_Button.Text,'MACHINE COORDS')

731 MACHINECOORDS_ButtonPushed(app, ...

matlab.ui.eventdata.ButtonPushedData)

732 end

733

734 primary_axis = 3;

735 txt = [app.name{primary_axis} ' are the primary axis'];

736 WriteTextInWindow(app,txt)

737

738 mainlobex = 0;

739 if strcmpi(app.meas.notes,'Main Lobe on y−axis')

740 secondary_axis = 2;

741 elseif strcmpi(app.meas.notes,'Main Lobe on x−axis')

742 secondary_axis = 4;

743 mainlobex = 1;

744 else

745 set = {'Secondary axis';'';'Choose your secondary axis'};

746 list = {'X−axis';'Y−axis';'Rotation−axis'};

747 choice = listdlg('PromptString',set,'ListSize',[150,80],'...

ListString',list,'SelectionMode','single');

748 if isempty(choice)

749 choice = 0;

750 end

751 switch choice

240 APPENDIX B. MATLAB-APP

752 case 0

753 return

754 case 1

755 secondary_axis = 1;

756 case 2

757 secondary_axis = 2;

758 case 3

759 secondary_axis = 4;

760 end

761 end

762 txt = [app.name{secondary_axis} ' selected as secondary axis'];

763 WriteTextInWindow(app,txt)

764

765 app.selpath = uigetdir(app.path);

766 if isempty(app.selpath)

767 app.selpath = app.path;

768 end

769

770 axis = [1,2,3,4];

771 axis = axis(axis~=primary_axis);

772 axis = axis(axis~=secondary_axis);

773

774 app.meas.zeropos = app.zeropos;

775 app.meas.date = strcat(datestr(now,'yyyy_mm_dd_HH_MM'));

776

777 app.measurement = 0;

778 started = 0;

779 init = 0;

780

781 freq_change = zeros(length(app.meas.primary_axis),width(...

app.meas.secondary_axis)*length(app.meas.frequency));

782 for ii = 1:length(app.meas.primary_axis)

783 ll = 0;

784 for jj = 1:width(app.meas.secondary_axis)

785 for kk = 1:length(app.meas.frequency)

786

787 % Calculate current measurement and total

788 % measurements

789 app.measurement = app.measurement + 1;

790 totmeas = length(app.meas.primary_axis)*width(...

app.meas.secondary_axis)*length(app.meas.frequency);

791 measurementleft = totmeas−app.measurement;

792 app.result.measurement = ['Measurement ' num2str(...

app.measurement) ' of ' num2str(totmeas)];

793

APPENDIX B. MATLAB-APP 241

794 % Needed to reduce measurement time, and following

795 % script measure only the output signal when

796 % distance in z direction changes, the last signal

797 % before moving in z direction and measure with a

798 % frequency of 10 when no changes in z direction.

799 ll = ll+1;

800 if ~ismember(kk,freq_change(ii,:))

801 if strcmpi(app.meas.notes,'On Axis Pressure')

802 % measure el signal for first or every 10n

803 % distance

804 if ii == 1

805 app.meas_el_sig = 1;

806 elseif mod(ii,10) == 0

807 app.meas_el_sig = 1;

808 else

809 app.meas_el_sig = 0;

810 end

811 freq_change(ii,ll) = kk;

812 z_dist = 1;

813 else

814 % measure el signal because of new z distance

815 freq_change(ii,ll) = kk;

816 app.meas_el_sig = 1;

817 z_dist = 1;

818 end

819 elseif mod(sum(freq_change(ii,:)==kk),10) == 0

820 % measure el signal because of 10n frequency

821 freq_change(ii,ll) = kk;

822 app.meas_el_sig = 1;

823 z_dist = 0;

824 elseif width(freq_change) < ll+length(app.meas.frequency...

)

825 % measure el signal because of last secoundary ...

movment

826 freq_change(ii,ll) = kk;

827 app.meas_el_sig = 1;

828 z_dist = 0;

829 else

830 % measure only acoutical

831 freq_change(ii,ll) = kk;

832 app.meas_el_sig = 0;

833 z_dist = 0;

834 end

835

836 % Prevent to change filter settings if frequency is

242 APPENDIX B. MATLAB-APP

837 % not changed

838 if app.measurement == 1

839 % Set filter settings for first time

840 app.filt_setting = 1;

841 elseif ll == 1 && ii−1 ~= 0 && freq_change(ii−1,width(...

freq_change)) ~= freq_change(ii,ll)

842 % Changes filter settings because frequency

843 % changed whith z movment

844 app.filt_setting = 1;

845 elseif ll−1 ~= 0 && freq_change(ii,ll) ~= freq_change(ii...

,(ll−1))

846 % Changes filter settings because of frequency

847 % changed

848 app.filt_setting = 1;

849 else

850 % Frequency is the same and filter stays

851 % unchanged

852 app.filt_setting = 0;

853 end

854

855 % Prevent generator settings to change if frequency

856 % or z distance is unchanged

857 if app.filt_setting == 1

858 app.gen_setting = 1;

859 elseif z_dist == 1

860 app.gen_setting = 1;

861 else

862 app.gen_setting = 0;

863 end

864

865 % Measure enviroment signal with a frequency of 30

866 if app.measurement == 1

867 app.environment = 1;

868 elseif mod(app.measurement,30) == 0

869 app.environment = 1;

870 else

871 app.environment = 0;

872 end

873

874 step_primary = app.zeropos.(app.field{primary_axis})+...

app.meas.primary_axis(ii);

875 if mod(ii,2) == 0

876 stepdirrev = fliplr(app.meas.secondary_axis);

877 if height(app.meas.secondary_axis) > 1

878 step_secondary = app.zeropos.(app.field{...

APPENDIX B. MATLAB-APP 243

secondary_axis})+stepdirrev(ii,jj);

879 else

880 step_secondary = app.zeropos.(app.field{...

secondary_axis})+stepdirrev(jj);

881 end

882 else

883 if height(app.meas.secondary_axis) > 1

884 step_secondary = app.zeropos.(app.field{...

secondary_axis})+app.meas.secondary_axis(ii,...

jj);

885 else

886 step_secondary = app.zeropos.(app.field{...

secondary_axis})+app.meas.secondary_axis(jj);

887 end

888 end

889

890 for tt = 1:length(axis)

891 if axis(tt) == 2 && app.comp == 1

892 app.result.lin_slope_const_a = app.linearslope.a...

;

893 app.result.lin_slope_const_b = app.linearslope.b...

;

894 compensation = app.linearslope.a*...

app.meas.primary_axis(ii)+app.linearslope.b;

895 if round((app.abspos.(app.field{axis(tt)})− ...

compensation),4) ~= 0

896 StepMotorFunc(app,compensation,axis(tt),1)

897 if app.stop == 1

898 app.stop = 0;

899 return

900 end

901 end

902 elseif axis(tt) == 1 && mainlobex == 1

903 position = app.zeropos.(app.field{axis(tt)})+...

app.meas.xaxis_offset;

904 if round((app.abspos.(app.field{axis(tt)})− ...

position),4) ~= 0

905 StepMotorFunc(app,position,axis(tt),1)

906 if app.stop == 1

907 app.stop = 0;

908 return

909 end

910 end

911 elseif started == 0 || round((app.abspos.(app.field{...

axis(tt)})−app.zeropos.(app.field{axis(tt)})),4) ...

244 APPENDIX B. MATLAB-APP

~= 0

912 step = app.zeropos.(app.field{axis(tt)});

913 StepMotorFunc(app,step,axis(tt),1)

914 if app.stop == 1

915 app.stop = 0;

916 return

917 end

918 end

919 end

920

921 if length(app.meas.primary_axis) == 1

922 if started == 0 || round((app.abspos.(app.field{...

primary_axis})−app.zeropos.(app.field{...

primary_axis})),4) ~= app.meas.primary_axis(ii)

923 StepMotorFunc(app,step_primary,primary_axis,1)

924 if app.stop == 1

925 app.stop = 0;

926 return

927 end

928 end

929 elseif round((app.abspos.(app.field{primary_axis})−...

app.zeropos.(app.field{primary_axis})),4) ~= ...

app.meas.primary_axis(ii)

930 StepMotorFunc(app,step_primary,primary_axis,1)

931 if app.stop == 1

932 app.stop = 0;

933 return

934 end

935 end

936

937 if mod(ii,2) == 0

938 if height(app.meas.secondary_axis) > 1

939 if round((app.abspos.(app.field{secondary_axis})...

−app.zeropos.(app.field{secondary_axis})),4) ...

~= stepdirrev(ii,jj)

940 StepMotorFunc(app,step_secondary,...

secondary_axis,1)

941 if app.stop == 1

942 app.stop = 0;

943 return

944 end

945 end

946 elseif round((app.abspos.(app.field{secondary_axis})...

−app.zeropos.(app.field{secondary_axis})),4) ~= ...

stepdirrev(jj)

APPENDIX B. MATLAB-APP 245

947 StepMotorFunc(app,step_secondary,secondary_axis...

,1)

948 if app.stop == 1

949 app.stop = 0;

950 return

951 end

952 end

953 else

954 if height(app.meas.secondary_axis) > 1

955 if round((app.abspos.(app.field{secondary_axis})...

−app.zeropos.(app.field{secondary_axis})),4) ...

~= app.meas.secondary_axis(ii,jj)

956 StepMotorFunc(app,step_secondary,...

secondary_axis,1)

957 if app.stop == 1

958 app.stop = 0;

959 return

960 end

961 end

962 elseif round((app.abspos.(app.field{secondary_axis})...

−app.zeropos.(app.field{secondary_axis})),4) ~= ...

app.meas.secondary_axis(jj)

963 StepMotorFunc(app,step_secondary,secondary_axis...

,1)

964 if app.stop == 1

965 app.stop = 0;

966 return

967 end

968 end

969 end

970

971 app.result.primary_axis = app.field{primary_axis};

972 app.result.secondary_axis = app.field{secondary_axis};

973 app.result.primary_axis_pos = app.meas.primary_axis(ii);

974 if mod(ii,2) == 0

975 if height(app.meas.secondary_axis) > 1

976 app.result.secondary_axis_pos = stepdirrev(ii,jj...

);

977 else

978 app.result.secondary_axis_pos = stepdirrev(jj);

979 end

980 else

981 if height(app.meas.secondary_axis) > 1

982 app.result.secondary_axis_pos = ...

app.meas.secondary_axis(ii,jj);

246 APPENDIX B. MATLAB-APP

983 else

984 app.result.secondary_axis_pos = ...

app.meas.secondary_axis(jj);

985 end

986 end

987 app.result.pos.(app.field{1}) = app.abspos.(app.field...

{1})−app.zeropos.(app.field{1});

988 app.result.pos.(app.field{2}) = app.abspos.(app.field...

{2})−app.zeropos.(app.field{2});

989 app.result.pos.(app.field{3}) = app.abspos.(app.field...

{3})−app.zeropos.(app.field{3});

990 app.result.pos.(app.field{4}) = app.abspos.(app.field...

{4})−app.zeropos.(app.field{4});

991 app.result.abs_pos.(app.field{1}) = app.abspos.(...

app.field{1});

992 app.result.abs_pos.(app.field{2}) = app.abspos.(...

app.field{2});

993 app.result.abs_pos.(app.field{3}) = app.abspos.(...

app.field{3});

994 app.result.abs_pos.(app.field{4}) = app.abspos.(...

app.field{4});

995

996 distance_to_microphone = app.result.pos.(app.field{3})*1...

e−3;

997 if app.environment == 1

998 VaisalaHMT313_read(app)

999 Paroscientific(app)

1000 ASLF250(app)

1001 end

1002

1003 app.result.sound_speed = 331*sqrt((...

app.result.temperature+273.15)/273.15);

1004 app.result.est_travel_time = (distance_to_microphone/...

app.result.sound_speed);

1005 % override with own signal cycles if not set to 0

1006 if app.meas.sig_cycles == 0

1007 sig_duration_nominal = max((...

app.meas.est_travel_time_faktor*...

app.result.est_travel_time),...

app.meas.min_sig_duration);

1008 app.result.sig_cycles = floor(app.meas.frequency(kk)...

*sig_duration_nominal);

1009 else

1010 app.result.sig_cycles = app.meas.sig_cycles;

1011 end

APPENDIX B. MATLAB-APP 247

1012 app.result.sig_duration = app.result.sig_cycles/...

app.meas.frequency(kk);

1013 app.result.frequency = app.meas.frequency(kk);

1014 app.result.cutoff_f1 = app.meas.cutoff_1(kk);

1015 app.result.cutoff_f2 = app.meas.cutoff_2(kk);

1016

1017 % Start time

1018 if started == 0

1019 start_time = datetime('now');

1020 started = 1;

1021 end

1022

1023 % Initialize first time

1024 if init == 0

1025 InitInstruments(app)

1026 init = 1;

1027 end

1028 Measure(app)

1029

1030 app.result.time = datetime('now');

1031 time_used = app.result.time−start_time;

1032 average_time = (time_used)/app.measurement;

1033 time_finished = average_time*measurementleft;

1034

1035 SaveMeasurements(app)

1036

1037 if measurementleft >= 1

1038 txt = ['Measurement ' num2str(app.measurement) ' is ...

complete'];

1039 WriteTextInWindow(app,txt)

1040 txt = ['There are ' num2str(measurementleft) ' ...

measurements left'];

1041 WriteTextInWindow(app,txt)

1042 txt = ['The current average time for each ...

measurement is ' datestr(average_time,'MM:SS')];

1043 WriteTextInWindow(app,txt)

1044 txt = ['Expected to be complete at ' datestr(...

app.result.time+time_finished)];

1045 WriteTextInWindow(app,txt)

1046 else

1047 txt = ['The measurements are complete and took ' ...

datestr(time_used,'dd:HH:MM:SS')];

1048 WriteTextInWindow(app,txt)

1049 end

1050

248 APPENDIX B. MATLAB-APP

1051 % Reset scope acquisition mode to RUNSTOP, so that ...

realtime changes is

1052 % visible on the oscilloscope.

1053 writeline(app.instrument.scope,'ACQ:STOPA RUNST');

1054 end

1055 end

1056 end

1057 end

1058

1059 % Button pushed function: READ_Button

1060 function READ_ButtonPushed(app, event)

1061 read = app.READ_DropDown.Value;

1062 switch read

1063 case 'DPO CH1'

1064 app.meas = {};

1065 app.meas.sample_count = app.SAMPLE_COUNT_Spinner.Value;

1066 app.meas.average = app.AVERAGE_Spinner.Value;

1067 app.meas.voltage_inn = app.VOLT_Spinner.Value;

1068 app.meas.burst_rate = app.BURST_RATE_Spinner.Value;

1069 app.meas.average_time = app.meas.average/app.meas.burst_rate...

+1;

1070 app.result.frequency = app.FREQUENCY_Spinner.Value;

1071 app.result.cutoff_f1 = (app.result.frequency/1000)/2;

1072 app.result.cutoff_f2 = (app.result.frequency/1000)*2;

1073 app.result.sig_cycles = app.CYCLES_Spinner.Value;

1074

1075 InitInstruments(app)

1076

1077 % Set scope acquisition mode to SEQUENCE instead of RUNSTOP,...

so that a

1078 % measurement is aquired when prompted, instead of ...

continuously. See page

1079 % 2−97 in programming manual for details.

1080 writeline(app.instrument.scope,'ACQ:STOPA SEQ');

1081

1082 % Reset aquisition mode to averaging

1083 writeline(app.instrument.scope,'ACQ:MOD AVE');

1084 % Set the number of cycles to average.

1085 writeline(app.instrument.scope,['ACQ:NUMAV ' num2str(...

app.meas.average)]);

1086 % Number of points which shall be read from the scope.

1087 writeline(app.instrument.scope,['HOR:RECO ' num2str(...

app.meas.sample_count)]);

1088

1089 % Start aquisition.

APPENDIX B. MATLAB-APP 249

1090 writeline(app.instrument.scope,'ACQ:STATE RUN');

1091 txt = 'Starting aquisition';

1092 WriteTextInWindow(app,txt)

1093 pause(app.meas.average_time)

1094

1095 DPO_read(app,1)

1096 dporesult.x = app.x;

1097 dporesult.wf = app.wf;

1098

1099 Paroscientific(app)

1100 dporesult.pressure = app.result.pressure;

1101 VaisalaHMT313_read(app)

1102

1103 dporesult.vaisala_RH = app.result.vaisala_RH;

1104 dporesult.vaisala_T = app.result.vaisala_T;

1105

1106 ASLF250(app)

1107 dporesult.temperature = app.result.temperature;

1108

1109 for fn = fieldnames(app.result)'

1110 app.meas.(fn{1}) = app.result.(fn{1});

1111 end

1112 dporesult.settings = app.meas;

1113 txt = 'Saving Measurement Parameters';

1114 WriteTextInWindow(app,txt)

1115 savepath = [app.path '\DPO_read_CH1.mat'];

1116 m = matfile(savepath,'Writable',true);

1117 m.DPO = dporesult;

1118 txt = 'Finished';

1119 WriteTextInWindow(app,txt)

1120 % Reset scope acquisition mode to RUNSTOP, so that realtime ...

changes is

1121 % visible on the oscilloscope.

1122 writeline(app.instrument.scope,'ACQ:STOPA RUNSTop');

1123 case 'DPO CH2'

1124 app.meas = {};

1125 app.meas.sample_count = app.SAMPLE_COUNT_Spinner.Value;

1126 app.meas.average = app.AVERAGE_Spinner.Value;

1127 app.meas.voltage_inn = app.VOLT_Spinner.Value;

1128 app.meas.burst_rate = app.BURST_RATE_Spinner.Value;

1129 app.meas.average_time = app.meas.average/app.meas.burst_rate...

+1;

1130 app.result.frequency = app.FREQUENCY_Spinner.Value;

1131 app.result.cutoff_f1 = (app.result.frequency/1000)/2;

1132 app.result.cutoff_f2 = (app.result.frequency/1000)*2;

250 APPENDIX B. MATLAB-APP

1133 app.result.sig_cycles = app.CYCLES_Spinner.Value;

1134

1135 InitInstruments(app)

1136

1137 % Set scope acquisition mode to SEQUENCE instead of RUNSTOP,...

so that a

1138 % measurement is aquired when prompted, instead of ...

continuously. See page

1139 % 2−97 in programming manual for details.

1140 writeline(app.instrument.scope,'ACQ:STOPA SEQ');

1141

1142 % Reset aquisition mode to averaging

1143 writeline(app.instrument.scope,'ACQ:MOD AVE');

1144 % Set the number of cycles to average.

1145 writeline(app.instrument.scope,['ACQ:NUMAV ' num2str(...

app.meas.average)]);

1146 % Number of points which shall be read from the scope.

1147 writeline(app.instrument.scope,['HOR:RECO ' num2str(...

app.meas.sample_count)]);

1148

1149 % Start aquisition.

1150 writeline(app.instrument.scope,'ACQ:STATE RUN');

1151 txt = 'Starting aquisition';

1152 WriteTextInWindow(app,txt)

1153 pause(app.meas.average_time)

1154

1155 DPO_read(app,2)

1156 dporesult.x = app.x;

1157 dporesult.wf = app.wf;

1158

1159 Paroscientific(app)

1160 dporesult.pressure = app.result.pressure;

1161 VaisalaHMT313_read(app)

1162

1163 dporesult.vaisala_RH = app.result.vaisala_RH;

1164 dporesult.vaisala_T = app.result.vaisala_T;

1165

1166 ASLF250(app)

1167 dporesult.temperature = app.result.temperature;

1168

1169 for fn = fieldnames(app.result)'

1170 app.meas.(fn{1}) = app.result.(fn{1});

1171 end

1172 dporesult.settings = app.meas;

1173 txt = 'Saving Measurement Parameters';

APPENDIX B. MATLAB-APP 251

1174 WriteTextInWindow(app,txt)

1175 savepath = [app.path '\DPO_read_CH2.mat'];

1176 m = matfile(savepath,'Writable',true);

1177 m.DPO = dporesult;

1178 txt = 'Finished';

1179 WriteTextInWindow(app,txt)

1180 % Reset scope acquisition mode to RUNSTOP, so that realtime ...

changes is

1181 % visible on the oscilloscope.

1182 writeline(app.instrument.scope,'ACQ:STOPA RUNST');

1183 case 'DPO CH2 Read Only'

1184 % Reading only from screen, only changeable value is

1185 % samplecount. Useful when calibrating microphone.

1186 app.meas = {};

1187 app.meas.sample_count = app.SAMPLE_COUNT_Spinner.Value;

1188

1189 DPO_read(app,2)

1190 dporesult.x = app.x;

1191 dporesult.wf = app.wf;

1192

1193 Paroscientific(app)

1194 dporesult.pressure = app.result.pressure;

1195 VaisalaHMT313_read(app)

1196

1197 dporesult.vaisala_RH = app.result.vaisala_RH;

1198 dporesult.vaisala_T = app.result.vaisala_T;

1199

1200 ASLF250(app)

1201 dporesult.temperature = app.result.temperature;

1202

1203 dporesult.sample_count = app.meas.sample_count;

1204

1205 txt = 'Saving Measurement Parameters';

1206 WriteTextInWindow(app,txt)

1207 savepath = [app.path '\DPO_read_CH2_Read.mat'];

1208 m = matfile(savepath,'Writable',true);

1209 m.DPO = dporesult;

1210 txt = 'Finished';

1211 WriteTextInWindow(app,txt)

1212 case 'PAROSCIENTIFIC'

1213 Paroscientific(app)

1214 txt = num2str(app.result.pressure);

1215 WriteTextInWindow(app,txt)

1216 case 'VAISALA'

1217 VaisalaHMT313_read(app)

252 APPENDIX B. MATLAB-APP

1218 txt = ['Relative Humidity = ' num2str(app.result.vaisala_RH)...

];

1219 WriteTextInWindow(app,txt)

1220 txt = ['Temperature = ' num2str(app.result.vaisala_T)];

1221 WriteTextInWindow(app,txt)

1222 case 'ASLF250'

1223 ASLF250(app)

1224 txt = ['Temperature = ' num2str(app.result.temperature)];

1225 WriteTextInWindow(app,txt)

1226 end

1227 end

253

Appendix C

FEMP-scripts

C.1 read_inn_project.m (vacuum)

1 function [read]=read_inn_project(read,commands);

2 %%%

3 % Read .inn−file. Note that this function calls a project specific

4 % read_inn_project.m which should be in the working directory

5 %

6 % Part of FEMP (Finite Element Modeling of Piezoelectric structures)

7 % Programmed by Jan Kocbach (jan@kocbach.net)

8 % (C) 2000 Jan Kocbach. This file is free software; you can ...

redistribute

9 % it and/or modify it only under the the terms of the GNU GENERAL PUBLIC

10 % LICENSE which should be included along with this file.

11 % (C) 2000−2010 Christian Michelsen Research AS

12 %%%

13

14 % Put a file read_inn_project.m in your project directory to define ...

local

15 % FEMP input commands. Also include init_const_project.m in this ...

directory

16 % and define the commands there.

17 global glob;

18 read=read;

19

20

21 %% piezodiskfluid_egen

22 if ~isempty(read.piezodiskfluidtest)

23

24 read.points=[]; read.areas=[]; read.materials=[]; read.dof=[]; ...

254 APPENDIX C. FEMP-SCRIPTS

read.restraints=[];

25

26 r=read.piezodiskfluidtest(1,1,:);

27 t=read.piezodiskfluidtest(1,2,:);

28 rfluid=read.piezodiskfluidtest(1,3,:);

29 elfluid=read.piezodiskfluidtest(1,4,:);

30 matnum=read.piezodiskfluidtest(1,5,:);

31 elr=read.piezodiskfluidtest(1,6,:);

32 elt=read.piezodiskfluidtest(1,7,:);

33 matnumfluid=read.piezodiskfluidtest(1,8,:);

34 theta=read.piezodiskfluidtest(1,9,:);

35

36 for s=1:size(r,3)

37 rfluidtemp=0+rfluid(s);

38 rinffluid=rfluidtemp*2;

39 read.points(:,:,s)=[

40 1 0 −t(s)/2;

41 2 r(s) −t(s)/2;

42 3 0 t(s)/2;

43 4 r(s) t(s)/2];

44

45 read.areas(:,:,s)=[1 1 2 4 3 elr(s) elt(s) 0 0];

46

47 read.materials(:,:,s)=[1 glob.globvariables.piezo matnum(s)];

48

49 read.dof(:,:,s)=[−1 1 t(s)/2−1e−9 t(s)/2+1e−9 glob.free.ep];

50 read.restraints(:,:,s)=[−1 1 −t(s)/2−1e−9 −t(s)/2+1e−9 ...

glob.free.ep 1];

51 glob.tfront(s)=t(s)/2;

52 end

53 end

C.2 read_inn_project.m (fluid)

1 function [read]=read_inn_project(read,commands);

2 %%%

3 % Read .inn−file. Note that this function calls a project specific

4 % read_inn_project.m which should be in the working directory

5 %

6 % Part of FEMP (Finite Element Modeling of Piezoelectric structures)

7 % Programmed by Jan Kocbach (jan@kocbach.net)

8 % (C) 2000 Jan Kocbach. This file is free software; you can ...

APPENDIX C. FEMP-SCRIPTS 255

redistribute

9 % it and/or modify it only under the the terms of the GNU GENERAL PUBLIC

10 % LICENSE which should be included along with this file.

11 % (C) 2000−2010 Christian Michelsen Research AS

12 %%%

13

14 % Put a file read_inn_project.m in your project directory to define ...

local

15 % FEMP input commands. Also include init_const_project.m in this ...

directory

16 % and define the commands there.

17 global glob;

18 read=read;

19

20

21 %% piezodiskfluid_egen

22 if ~isempty(read.piezodiskfluidtest)

23

24 read.points=[]; read.areas=[]; read.materials=[]; read.dof=[]; ...

read.restraints=[];

25

26 r=read.piezodiskfluidtest(1,1,:);

27 t=read.piezodiskfluidtest(1,2,:);

28 rfluid=read.piezodiskfluidtest(1,3,:);

29 elfluid=read.piezodiskfluidtest(1,4,:);

30 matnum=read.piezodiskfluidtest(1,5,:);

31 elr=read.piezodiskfluidtest(1,6,:);

32 elt=read.piezodiskfluidtest(1,7,:);

33 matnumfluid=read.piezodiskfluidtest(1,8,:);

34 theta=read.piezodiskfluidtest(1,9,:);

35

36 for s=1:size(r,3)

37 rfluidtemp=0+rfluid(s);

38 rinffluid=rfluidtemp*2;

39 read.points(:,:,s)=[

40 1 0 −t(s)/2;

41 2 r(s) −t(s)/2;

42 3 0 t(s)/2;

43 4 r(s) t(s)/2;

44 5 0 rfluid(s);

45 6 rfluid(s)*sin(theta(s)) rfluid(s)*cos(theta(s));

46 7 rfluid(s)*sin(theta(s)) −rfluid(s)*cos(theta(s));

47 8 0 −rfluid(s);

48 9 0 rinffluid;

49 10 rinffluid*sin(theta(s)) rinffluid*cos(theta(s));

256 APPENDIX C. FEMP-SCRIPTS

50 11 rinffluid*sin(theta(s)) −rinffluid*cos(theta(s));

51 12 0 −rinffluid;

52 13 0 0];

53

54 read.areas(:,:,s)=[1 1 2 4 3 elr(s) elt(s) 0 0;

55 2 3 4 6 5 elfluid(s) elfluid(s) 0 13;

56 2 4 2 7 6 elfluid(s) elfluid(s) 0 13;

57 2 2 1 8 7 elfluid(s) elfluid(s) 0 13;

58 3 5 6 10 9 1 1 13 13;

59 3 6 7 11 10 1 1 13 13;

60 3 7 8 12 11 1 1 13 13];

61

62 read.materials(:,:,s)=[1 glob.globvariables.piezo matnum(s);

63 2 glob.globvariables.fluid matnumfluid(s);

64 3 glob.globvariables.infinitefluid matnumfluid(s)];

65

66 read.dof(:,:,s)=[−1 1 t(s)/2−1e−9 t(s)/2+1e−9 glob.free.ep];

67 read.restraints(:,:,s)=[−1 1 −t(s)/2−1e−9 −t(s)/2+1e−9 ...

glob.free.ep 1];

68 glob.tfront(s)=t(s)/2;

69 end

70 end

C.3 init_const_project.m

1 %%%

2 % Initialization of constants for FEMP

3 % Part of FEMP (Finite Element Modeling of Piezoelectric structures)

4 % Programmed by Jan Kocbach (jan@kocbach.net)

5 % (C) 2000 Jan Kocbach. This file is free software; you can ...

redistribute

6 % it and/or modify it only under the the terms of the GNU GENERAL PUBLIC

7 % LICENSE which should be included along with this file.

8 % (C) 2000−2010 Christian Michelsen Research AS

9 %%%

10

11

12 %%%

13 % INIT_CONST_PROJECT: Initialize constants − project specifix

14 %%%

15

16 % Make a copy of this file in your project folder to

APPENDIX C. FEMP-SCRIPTS 257

17 % make project specific definitions

18

19 %'piezodiskfront1',

20

21 commands = [commands,'piezodiskfluidtest'];

C.4 Pz27.inn

1 set

2 Radius_P, 10e−3

3 Thickness_P, 2e−3

4 Radius_Infel, 30e−3

5 Elements_FL, 7

6 Materialnumber_P, 77

7 Elements_R_P, 7

8 Elements_T_P, 7

9 Materialnumber_FL, 10101

10 Theta, 1.3

11 end

12

13 materialfile

14 5

15 end

16

17 meshingtype

18 elementsperwavelength,300e3

19 end

20

21 viewmesh

22 0

23 end

24

25 # The order of the finite elements is 2 − i.e. 8 node isoparametric ...

elements are applied

26 order

27 2

28 end

29

30 # The order of the infinite elements is set to 10.

31 infiniteorder

32 10

33 end

258 APPENDIX C. FEMP-SCRIPTS

34

35 piezodiskfluidtest

36 Radius_P,Thickness_P,Radius_Infel,Elements_FL,Materialnumber_P,...

Elements_R_P,Elements_T_P,Materialnumber_FL,Theta,q_DampDist_r,...

q_DampDist_z

37 end

38

39 #directharmonicanalysis

40 #0,50,300e3,complex_loss

41 #end

42

43 #admittance

44 #0,0,0

45 #end

46

47 #save

48 #admittance,admittance_f

49 #end

50

51 #nearfieldpressure

52 #0,0,0,−1,1,−1,1

53 #end

54

55 # Calculate far−field pressure for the frequencies used in the time−...

harmonic

56 # analysis. Calculate out to 3 times the distance at which the infinite

57 # elements are applied (10*7.0 mm= 70.0 mm), with 20 divisions per 7.0 ...

mm.

58

59 #farfieldpressure

60 #0,0,0,10,20

61 #end

62

63 #save

64 #farfieldpressure,farfieldpressure_f,farfieldpressure_r,...

farfieldpressure_z,nearfieldpressure,nearfieldpressure_z,...

nearfieldpressure_r,nearfieldpressure_f

65 #end

66

67 #onaxispressure

68 #0,0,0,10,20

69 #end

70

71 #directivity

72 #0,0,0,1

APPENDIX C. FEMP-SCRIPTS 259

73 #end

74

75 #sensitivity

76 #0,0,0,1

77 #end

78

79 #save

80 #sensitivity,sensitivity_f,directivity,directivity_theta,directivity_f

81 #end

82

83 #save

84 #sensitivity,sensitivity_f,onaxispressure,onaxispressure_r,...

onaxispressure_f

85 #end

86

87 #save

88 #sensitivity,sensitivity_f,directivity,directivity_theta,directivity_f,...

onaxispressure,onaxispressure_r,onaxispressure_f

89 #end

90

91 #save('test_res.mat','result','−v7.3');

C.5 material5.dat

1 77 piezo pz27 (Lohne/Knappskog)

2 # mechanical terms

3 1.1875E+11 7.43000E+10 7.42500E+10 0.00000E+00 0.00000E+00 0.00000E+00

4 7.43000E+10 1.1875E+11 7.42500E+10 0.00000E+00 0.00000E+00 0.00000E+00

5 7.42500E+10 7.42500E+10 1.12050E+11 0.00000E+00 0.00000E+00 0.00000E...

+00

6 0.00000E+00 0.00000E+00 0.00000E+00 2.11000E+10 0.00000E+00 0.00000E...

+00

7 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 2.11000E+10 0.00000E...

+00

8 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 2.22250E...

+10

9 # coupling terms

10 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.12000E+01 0.00000E...

+00

11 0.00000E+00 0.00000E+00 0.00000E+00 1.12000E+01 0.00000E+00 0.00000E...

+00

12 −5.40000E+00 −5.40000E+00 1.60389E+01 0.00000E+00 0.00000E+00 0.00000E...

260 APPENDIX C. FEMP-SCRIPTS

+00

13 # dielectric terms

14 8.11043e−09 0.00000E+00 0.00000E+00

15 0.00000E+00 8.11043e−09 0.00000E+00

16 0.00000E+00 0.00000E+00 8.14585e−09

17 # density and damping coefficients

18 7.70000E+03 9.99000e+02 9.99000e+02

19 # mechanical Q−factors

20 9.57500e+01 7.12400e+01 1.20190e+02 0.00000e+00 0.00000e+00 0.00000e...

+00

21 7.12400e+01 9.57500e+01 1.20190e+02 0.00000e+00 0.00000e+00 0.00000e...

+00

22 1.20190e+02 1.20190e+02 1.77990e+02 0.00000e+00 0.00000e+00 0.00000e...

+00

23 0.00000e+00 0.00000e+00 0.00000e+00 7.50000e+01 0.00000e+00 0.00000e...

+00

24 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 7.50000e+01 0.00000e...

+00

25 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.25342e...

+02

26 # piezoelectric Q−factors

27 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 −2.00000e+02 0.00000e...

+00

28 0.00000e+00 0.00000e+00 0.00000e+00 −2.00000e+02 0.00000e+00 0.00000e...

+00

29 −1.66000e+02 −1.66000e+02 −3.23770e+02 0.00000e+00 0.00000e+00 0...

.00000e+00

30 # dielectric Q−factors

31 5.00000e+01 0.00000e+00 0.00000e+00

32 0.00000e+00 5.00000e+01 0.00000e+00

33 0.00000e+00 0.00000e+00 8.62800e+01

34 # end of material data

35

36 10100 fluid air

37 1.20500E+00 1.41767E+05 0.00000E+00 0.00000E+00

38 10101 fluid air20grader

39 1.21000E+00 1.42355e+05 0.00000E+00 0.00000E+00

261

Appendix D

Additional information

D.1 Derivation of R

262 APPENDIX D. ADDITIONAL INFORMATION

D.2 Derivation of j

APPENDIX D. ADDITIONAL INFORMATION 263

D.3 Derivation of θr

	Abstract
	Acknowledgment
	Introduction
	Background and motivation
	Previous work
	Previous work at UiB

	Objectives
	Thesis outline

	Theory
	Modes in the piezoelectric element
	System Model
	Fourier transform
	Speed of sound in air
	Coordinate system
	Absorption in air
	Electronics
	Cables
	Transmitting electronics
	Receiving electronics

	Microphone sensitivity
	Finite element modeling

	Experimental setup and measurement method
	Equipment list
	Electrical measurement setup
	Acoustical measurement setup
	Signal generator (I)
	Transmitter electronics (II)
	Transmitter (III)
	Medium (IV)
	Receiver (V)
	Amplifier (VI)
	Filter (VII)
	Oscilloscope (VIII)
	Environmental parameters
	Cables

	Brüel & Kjær 4138 microphone
	Microphone sensitivity calibration using a pistonphone

	Motor's setup
	Travel distance adjustments of Y-stage

	Reflections
	Signal setup and processing
	Transmitted signal
	Received signal
	Signal filtering
	Method for calculating peak-to-peak voltage by using the fast Fourier transform
	Method of calculating pressure
	Signal to noise ratio

	Positioning setup and measurements with the MatLab app
	MatLab app screen
	Startup of the MatLab app
	Positioning of the piezoelectric disk
	Setup 1
	Setup 2
	Setup 3
	Setup 4

	Single or series of measurements of electrical and acoustical signals
	Transmitter and receiver mounting and positioning sensitivity analysis

	Finite element setup
	FEMP 6.1
	Material parameters
	Piezoelectric element, Pz27
	Air

	Simulation parameters
	Simulated pressure
	Structure setup

	Results and discussion
	Electrical properties of the piezoelectric disk
	Comparison of electrical properties between FE simulations in a vacuum and air
	Comparison of electrical properties between measurements and FE simulations

	Acoustic characteristics of the piezoelectric disk
	Frequency selection for measurements and FE simulations
	Acoustic signals examples over three different angles and for all used frequencies
	Comparison of directivity between FE simulations and measurements
	SNR of directivity measurements
	Comparison of directivity at different z distances of FE simulations and measurements
	Comparison of on-axis pressure between FE simulations and measurements
	SNR of on-axis pressure measurements
	Comparison of 2-D sound pressure field between FE simulations and measurements

	Conclusions and further work
	Conclusions
	Further work

	References
	MatLab-scripts
	impanal.m
	positioninganalyze directivity.m
	MeasParameters.m
	HVV_0m1.m
	HVV_55m.m
	Vpp.m
	Receiver_Sensitivity.m
	plothorizontalpressurefield_basic.m
	polarPcolor.m
	absorption_in_air.m
	Admittance_plotting.m

	MatLab-app
	App's startup values
	Initialize machine function
	Homing function
	Step function
	Position function
	Moving function
	Instrument connect
	Initialize instruments
	Measure function
	DPO read function
	Environmental measurements
	Setup functions
	Overall functions
	Button functions

	FEMP-scripts
	read_inn_project.m (vacuum)
	read_inn_project.m (fluid)
	init_const_project.m
	Pz27.inn
	material5.dat

	Additional information
	Derivation of R
	Derivation of j
	Derivation of r

