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the reconstruction of hormone
linked gene networks

Sean Bankier* and Tom Michoel

Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
Hormones act within in highly dynamic systems and much of the phenotypic

response to variation in hormone levels is mediated by changes in gene

expression. The increase in the number and power of large genetic

association studies has led to the identification of hormone linked genetic

variants. However, the biological mechanisms underpinning the majority of

these loci are poorly understood. The advent of affordable, high throughput

next generation sequencing and readily available transcriptomic databases has

shown that many of these genetic variants also associate with variation in gene

expression levels as expression Quantitative Trait Loci (eQTLs). In addition to

further dissecting complex genetic variation, eQTLs have been applied as tools

for causal inference. Many hormone networks are driven by transcription

factors, and many of these genes can be linked to eQTLs. In this mini-review,

we demonstrate how causal inference and gene networks can be used to

describe the impact of hormone linked genetic variation upon the

transcriptome within an endocrinology context.

KEYWORDS

causal inference, hormones, genetics, eQTL, networks
Introduction

Since the inception of Genome Wide Association Studies (GWAS), nearly two

decades ago (1), there has been a steady expansion in the number of studies conducted as

well as increases in sample size, yielding a wealth of new genetic associations with

complex traits and disease. This approach has offered many new opportunities in

endocrinology (2), where hormonal networks are well understood and hence lend

themselves to informed mapping approaches. However, loci identified by GWAS alone

are insufficient to elucidate the mechanisms by which these traits emerge (3) and efforts

to understand the biology underpinning these associations has proved to be a

significant challenge.

Much of the genetic research related to hormones has focused on monogenic

endocrine disorders with scope for clinical intervention through genetic testing
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schemes. Examples include Autoimmune Polyglandular

Syndrome Type 1 (4) and IPEX syndrome (5) involving

germline mutations within the AIRE and FOXP3 genes

respectively. However many genetic variants that contribute

to different endocrine disorders and risk factors arise from

common variants identified from GWAS (2). Hormone

measurements have been exploited as GWAS traits to

identify regions of the genome associated with hormone

levels (Table 1), but the downstream consequences of these

variants are still poorly understood. However, strides have also

been made to link these GWAS hits to transcriptomic

variation as expression Quantitative Trait Loci (eQTLs) (6).

This mini-review aims to describe how advances in

population genetics have helped to identify regions of the

genome linked to hormone variation, while highlighting how

causal network inference and multi-omic integration can

enhance these findings with added biological relevance and

context. We first describe how GWAS have been used to

identify genetic variants that are associated with complex

traits, as well as discussing the limitations of association

based approaches. The role of in systems genetics is

discussed, including how these have been used to model the

impact of genetic variation upon molecular phenotypes.

Finally, we describe how causal inference methods

have been used to overcome some of the limitations of

GWAS and how these can be in tegra ted for the

reconstruction of causal molecular networks by using

eQTLs as genetic instruments.
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Moving beyond GWAS

GWAS have exploded in popularity over the course of the

last decade. In 2022, the NHGRI-EBI GWAS Catalog lists 5690

studies for more than 372,752 genetic associations (7).

However most of the genome-wide significant loci identified

are of low to moderate penetrance, exacerbating the issue of

missing heritability that has been predicted for complex traits

(8–11). This includes traits such as type II diabetes where only

10% of heritability is explained by the GWAS variants that

have currently been identified (12), although twin and

population studies estimate heritability to be between 20-

80% (13). Missing heritability, combined with the uniform

distribution of GWAS hits across the genome, has even led to

speculation of an “omnigenic” model of inheritance in which

all genes in trait-related cells play a functional role in the

resultant phenotype (8).
The genetic drivers behind many common disease

phenotypes present through complex multi-factorial models of

inheritance (14), as is the case in instances of obesity (15),

cardiovascular disease (16) and type II diabetes (12). The

identification of causal Single Nucleotide Polymorphisms

(SNPs) is further complicated by the presence of pleiotropy,

the phenomenon whereby genetic variation can be seen to

influence multiple phenotypic traits (17). Pleiotropy has been

shown to be highly prevalent across the human genome (18),

with studies showing that up to 90% of trait associated loci are

associated with multiple traits (19).
frontiersin.org
TABLE 1 Top 10 GWAS as determined by discovery sample size, obtained from GWAS catalog (7) under EFO term “hormone measurment”
(EFO_0004730).

Reported Trait Discovery sample number Publication date First
author

Nonatopic asthma or fasting insulin
levels

502,660 European 2019-
10-24

Zhu Z (37)

IGF-1 measurement 435,516 European 2021-
07-05

Barton AR (38)

Total testosterone levels 425,097 European 2020-
02-10

Ruth KS (39)

Testosterone levels x smoking
behaviour interaction

414,294 European 2021-
01-06

Liang X (40)

IGF 1 (Gene-based burden) 409,926 European 2021-
10-18

Backman JD (41)

Sex hormone-binding globulin levels 389,354 European 2021-
05-12

Martin S (42)

Body mass index and fasting insulin
(pairwise)

374,012 European, 16,962 African American or Afro-Caribbean, East Asian, Hispanic or Latin
American, South East Asian

2021-
02-22

Huang LO (43)

Insulin-like growth factor 1 levels 340,567 European, 5974 African unspecified, 7283 South Asian 2021-
01-18

Sinnott-Armstrong
N (44)

Circulating leptin levels or HOMA-IR 254,263 Asian unspecified, European, Hispanic or Latin American, NR, South Asian 2020-
04-01

Wang X (45)

Fasting insulin 213,645 African American or Afro- Caribbean, East Asian, European, Hispanic or Latin
American, South Asian

2021-
05-31

Chen J (46)
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These limitations have encouraged the wider integration of

multi-omic data to provide functional context for GWAS

results, linking SNPs to intermediate molecular phenotypes

using systems genetics approaches that consider the global

response to genetic variation (20) (Figures 1A, B). This is

particularly relevant in the case of hormone associated genetic

variation, as many hormones mediate signalling across tissues

(21) through transcriptional changes and can be modelled using

these systems based approaches.
Retrospective of eQTL studies

As transcriptomic data has become more readily available

from highly powered studies, there has been a drive to link SNPs

to variation in gene expression. High throughput sequencing

technologies such as RNA-sequencing (RNA-seq) have

facilitated the analysis of gene expression on a genome wide

scale, replacing SNP microarrays as the leading method for gene

expression analysis (22). In conjunction with the emergence of

large deeply genotyped cohorts, this has allowed for the mapping

of eQTLs on an unprecedented scale.

RNA-seq also provides the advantage of allowing for the

measurement of Allele-Specific Expression (AES), where it is

possible to measure the relative contributions of the maternal

and paternal allele, something that is not possible in microarray

based methods (23). RNA-seq estimates the expression of

different genes through the total read count method, which

measures the number of mapped sequence reads (24). This

allows for the use of traditional eQTL mapping methods such

as linear regression, but also facilitates the direct modelling of
Frontiers in Endocrinology 03
gene expression of total read count using discrete

distributions (22).

Linking GWAS loci to gene expression provides some

indication of a functional relationship, and indeed data have

demonstrated that trait-associated SNPs are more likely than

non-trait associated SNPs to also be associated with changes in

gene expression (eSNPs) (25). eSNPs describe the association

between a single SNP with changes in gene expression whereas

eQTLs are reflective of the association between a genetic locus

and gene expression (26). Although association with changes in

gene expression is not a direct proxy for function, this does help

to better characterise systemic changes that are elicited in

response to trait-associated genetic variation.

eQTLs are categorised on the basis of their proximity to the

gene locus with which they are associated (Figure 1B). This

distinction is important as it provides insight into the

mechanisms by which an eQTL mediates an effect on gene

expression. Cis-eQTLs, located close to their associated gene, are

more likely to be acting locally than those located further away.

Typically this distance is defined as being within 1 Mb of the

associated transcription start site (27, 28). Outside of this

threshold, eQTLs are said to be acting distally with associated

genes in trans. Trans-eQTLs can be associated with genes located

several megabases away including those on other

chromosomes (29).

If an eQTL is cis-acting, this is likely to suggests a physical

interaction between the eQTL and the associated gene. For

example, a cis-eQTL sitting in an enhancer region may

facilitate either an increased or decreased affinity for binding

with a transcription factor (30, 31). Trans-eQTLs, on the other

hand, associated with a distal gene, may influence transcription
A

B

C

FIGURE 1

(A) Genetic variation (Left) influences complex traits (Right) through quantitative changes in intermediate phenotypes (Middle). Molecular
interactions are shown as arrows, where the direction of the arrow indicates the direction of the flow of biological information. (B) Intermediate
phenotypes can be modelled as biological networks using causal inference to uncover directed relationships between the molecular
determinants that mediate the effect of genetic changes on complex traits. (C) Cis and trans gene regulation. Gene A (green) encodes a
transcription factor (TF) which regulates the expression of gene B (purple). The eQTL (yellow), acts as a cis-eQTL for gene A by causing a
change in the sequence of gene A’s cis-regulatory element (orange) which may either increase or decrease the binding affinity of any
corresponding TFs. The same eQTL is a trans-eQTL for Gene B as by changing the expression of the TF encoded by gene A, this in turn
influences the expression of gene B.
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indirectly through an intermediary gene product or working in

conjunction with local cis-eQTLs (32). Most gene regulation

takes place in cis, within regulatory regions and this is reflected

by cis signals appearing more strongly than trans effects from

eQTL mapping studies (33).

Genomes are consistent between cell types, but the way in

which these genes are expressed varies drastically between

tissues, and much of the regulation that mediates this disparity

takes place at the transcriptome. Tissue gene expression profiles

as measured by bulk RNA-seq are composed of distinct cell

types, however cellular deconvolution methods can estimate the

relative contributions of different cells types within the bulk

sample. Methods that use single cell RNA-seq data performmost

effectively as described in a recent benchmarking study (34).

Developments and reduced costs for RNA-seq methods has

led to the establishment of large multi-tissue eQTL catalogues

(Table 2). One of the most comprehensive projects to produce an

atlas of transcriptome wide genetic effects has been conducted by

the GTEx consortium, who have generated tissue specific eQTL

data from an impressive number of post-mortem samples. In the

latest release of data from GTEx v8 (35), the authors present

both trans and cis associations from 49 different tissues. AES

methods have also been applied using GTEx with the aim of

improving the power of eQTL mapping studies. Zhabotynsky

and colleagues show that AES both improves the power to detect

eQTLs in GTEx tissues and the quantification of individual-

specific genetic effects, while observing a similar levels of

enrichment of GWAS hits within eQTL sets as seen using

linear models (36).
Causal inference in genetic
epidemiology

Mendelian randomisation (MR) is a causal inference based

approach that has been applied extensively in relation to SNP

associated phenotypes (57). During meiosis, alleles are randomly

seg- regated within chromosomes during gamete production.

This independent assortment ensures that alleles are randomly
Frontiers in Endocrinology 04
distributed across a given population, much in the same way that

treatments are allocated during randomised controlled trials,

hence the “randomisation” in MR refers to the way in which

alleles randomly segregate from parent to offspring (58).

MR uses an Instrumental Variable (IV) analysis framework

to obtain causal relationships between biological traits

(Figure 2A). For this methodology, the IV is used to infer a

causal relationship between an exposure and an outcome

variable. IV analysis requires the following assumptions: 1)

The IV should be robustly associated with the exposure. 2)

The IV should only be causal for the outcome through the

exposure (58). 3) The IV should be independent from any

confounding factors that are causal for the exposure or the

outcome (59, 60). Given these assumptions, the IV acts as a

proxy for the exposure to infer a directed relationship between

the exposure and outcome, where the detection of a causal

relationship between the instrument and outcome can be

inferred as a causal relationship between exposure and

outcome, due to the elimination of an alternative causal path.

Given the IV assumptions and continuous traits, the average

causal effect of the exposure on the outcome can be estimated by

the ratio of the covariances of the IV and the exposure and

outcome respectively (60).

The use of genetic variants as instruments in MR has become

an important method for establishing causal relationships in

biological systems where gene expression acts as an exposure.

eQTLs have been shown to satisfy the IV assumptions through a

robust association with gene expression, given the same eQTL is

not also directly associated with the outcome (61). This also

overcomes issues related to confounding as genetic variation is

fixed at conception and is therefore highly unlikely to be

confounded by the same causal factors influencing

downstream phenotypes (62) outside of systemic variation in

population structure. Issues can arise when an eQTL is also

directly associated with the outcome, however this can be

overcome through careful instrument selection and testing for

pleiotropy (63).

It has been challenging to identify causal variants from

GWAS results alone as a result of Linkage Disequilibrium
TABLE 2 Top 10 RNA-seq based eQTL studies as determined by sample size, obtained from eQTL catalogue (47).

Study name Cell type or tissues Number of samples Number of donors

GTEx (v8) (35) 49 tissues 15,178 838

TwinsUK (48) adipose, LCLs1, skin, blood 1364 433

Schmiedel (49) 15 immune cell types 1331 91

Quach (50) monocytes 969 200

CommonMind (51) brain (DLPFC3) 590 590

ROSMAP (52) brain (DLPFC3) 576 576

GENCORD (53) LCLs1, fibroblasts, T cells 560 195

FUSION (54) adipose, muscle 559 302

BLUEPRINT (55) monocytes, neutrophils, CD4+ T cells 554 197

Nedelec (2016) (56) macrophages 493 168
frontiersin.org
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(LD), resulting in the observation of the non-random

inheritance of alleles at a given loci with SNPs that are in LD

(64). Therefore, if a true causal SNP for a trait is present and

detectable at a given locus, the causal SNP and all other SNPs in

LD will be identified as being associated with the trait in

question, leading to an increase in type I error rate (65). In the

instance of using eQTLs to obtain causal estimates between

traits, as the eQTL is being used as an instrument it is not

necessary that it is causal for the trait in question and eQTLs in

LD will also be suitable.
Reconstruction of causal gene
networks

Jansen and Nap first proposed the integration of genomic

information to identify changes in continuous molecular traits

associated with the segregation of genotypes within a

population in 2001 (66). What the authors originally

describe as “genetical genomics”, outlines a strategy to link

genetic variation within a population to gene expression data,

at the time obtained from microarray assays, and to other

sources of expression data relating to proteins and

metabolites. This has provided the foundation for modern

day systems genetics, which allows for the integration of
Frontiers in Endocrinology 05
genetic and quantitative data with the ultimate aim of

generating biological networks that can be linked to complex

traits (20).

Most network based approaches to date have focused on

correlation, through the development of co-expression networks

using transcriptomic data (67). Co-expression networks were

first proposed in the 1990s (68) and have been used to identify

novel pathways in complex traits and disease as wide ranging as

depression (69), muscular disease (70), and cardiovascular

disease (71). They have also been used to identify clusters of

genes that are linked to different phenotypic characteristics for

conditions such as endometriosis (72). These methods are

capable of reconstructing edges (connections between nodes)

between co-expressed genes but are limited due to their inability

to distinguish between different causal models (Figure 2B).

Pairwise gene-gene relationships are capable of providing a

foundation for gene network reconstruction using sufficiently

large transcriptomic datasets (73–77). MR based methods can be

used to obtain probability estimates for causal relationships

between genes when provided with robust genetic instruments.

A method that facilities this approach is the tool Findr, which

incorporates eQTLs within an MR framework to obtain the

Bayesian posterior probability of a causal relationship between a

pair of genes, using a combination of likelihood ratio tests to

account for any unobserved confounding (77).
A B

C

FIGURE 2

(A) Instrumental Variable paradigm. The instrumental variable (Z) is causally associated with the exposure (X) which in turn is causally associated
with the outcome (Y). The IV will account for any confounding (U) that affects the exposure or outcome, assuming independence of U. (B)
Causal modelling of pairwise gene-gene relationships. (Left) Simple causal model where Trait A is influenced by Gene A, through Gene B
(Middle) Reactive model where Gene B influences both Gene A and Trait A, therefore any association between Gene A and Trait A is a non-
causal relationship. (Right) Association between Genes A and B is a result of unobserved confounding, therefore there is no causal relationship
between Gene A and Trait A. (C) Reconstructing gene networks from pairwise relationships. (Left) Prospective pairwise relationships between
genes with a robust eQTL (blue and orange) and other genes within a dataset. (Middle) Causal inference approaches are employed to obtain a
probability matrix for the likelihood of a causal relationship between gene pairs. (Right) A filtering step is imposed e.g. a False Discovery Rate
(FDR) cut-off, which will return relationships that cross this threshold to be assembled as directed networks.
frontiersin.org
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Bayesian networks are acyclic graphs that have been used for

modelling gene networks as they allow for the incorporation of

prior knowledge and are capable of resolving issues of

conditional independence in data (73, 78–81). Bayesian

networks are developed using frequency tables from discrete

data, however in cases of continuous data such as transcriptomic

datasets, posterior probabilities can be calculated from density

functions (82). By obtaining posterior probabilities for pairwise

relationships between genes with tools such as Findr, it is

possible to reconstruct networks of genes (nodes) that are

connected by posterior probabilities (edges) at a given thresh-

old (83) (Figure 2C).

An issue encountered within Bayesian network analysis, is

that as the number of network nodes increases so does the

number of potential network edges. Given the high dimensional

datasets commonly generated from next generation sequencing,

standard Bayesian network methods are often computationally

prohibitive (84). Novel methods to overcome the computational

burden include the use of eQTL and transcriptomic data within a

node ordering approach which prioritises given relationships,

reducing the number of possible networks (83).

There is a wealth of data relating to the role of gene

regulation, including available cis-regulatory elements (85) and

transcription factor binding sites (86). The incorporation of

these data allows for the construction of robust priors for

Bayesian causal inference (83). eQTLs are also particularly well

suited to filling this role and have been used to identify genes

driving cardiovascular disease (71), type II diabetes (79) and

Acute Myeloid Leukaemia (87) when combined with gene

expression data.

A combination of different approaches can be used in the

dissection of GWAS hits for complex disease, as demonstrated

by Small and colleagues who were able to reconstruct networks

of genes associated with SNPs linked to type II diabetes and

mediated through the gene KLF14 (88).

The researchers were able to show that cis-eQTLs for KLF14

regulated a larger adipose specific gene network that was

significantly enriched for metabolic pathways. This highlights

the role of a network approach when combined with traditional

genetic association and linkage studies. More recently, a 2022

study demonstrated how it was possible to use eQTLs to identify

tissue specific clusters driven by “key driver genes” (89). Some of

these key drivers were then validated using similar MR based

methods as described in this mini-review.
Conclusion

Over the course of this mini-review we have described how

GWAS have been used to link genetic variants to different

endocrine traits, including changes in hormone levels. Much

of this variation is reflected at the transcriptome, indicated by the

presence of cell type specific eQTLs. There have been many
Frontiers in Endocrinology 06
thorough studies that have used network based approaches to

understand the impact of genetic variation upon phenotypes,

although without causal inference, it is challenging to identify

the causal drivers of these networks. The use of eQTLs in MR has

lead to identification of causal relationships between different

traits, including molecular phenotypes. Through an extension of

this pairwise approach to causal inference, we propose an

systems genetics framework through which the reconstruction

of causal gene networks is possible, with particular relevance

to endocrinology.
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