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Abstract

Male sex and advanced age are associated with severe symptoms of COVID-19. Sex and

age also exhibit substantial associations with genome-wide DNA methylation (DNAm) differ-

ences in humans. Using a random sample of Illumina EPIC-based genome-wide methy-

lomes from peripheral whole blood of 1,976 parents, participating in The Norwegian Mother,

Father and Child Cohort Study (MoBa), we explored whether DNAm in genes linked to

SARS-CoV-2 host cell entry and to severe COVID-19 were associated with sex and age.

This was carried out by testing 1,572 DNAm sites (CpGs) located near 45 genes for associa-

tions with age and sex. We found that DNAm in 281 and 231 of 1,572 CpGs were associated

(pFDR<0.01) with sex and aging, respectively. CpGs linked to SARS-CoV-2 host cell entry

genes were all associated with age and sex, except for the ACE2 receptor gene (located on

the X-chromosome), which was only associated with sex (pFDR<0.01). Furthermore, we

examined whether 1,487 autosomal CpGs associated with host-cell entry and severe

COVID-19 were more or less associated with sex and age than what would be expected

from the same number of randomly sampled genome-wide CpGs. We found that the CpGs

associated with host-cell entry and severe COVID-19 were not more or less associated with

sex (R2 = 0.77, p = 0.09) than the CpGs sampled from random genomic regions; age was

actually found to be significantly less so (R2 = 0.36, p = 0.04). Hence, while we found wide-

spread associations between sex and age at CpGs linked to genes implicated with SARS-

CoV-2 host cell entry and severe COVID-19, the effect from the sum of these CpGs was not

stronger than that from randomly sampled CpGs; for age it was significantly less so. These

findings could suggest that advanced age and male sex may not be unsurmountable barri-

ers for the SARS-CoV-2 virus to evolve increased infectiousness.
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Introduction

The clinical picture of coronavirus disease 2019 (COVID-19), caused by the severe acute respi-

ratory syndrome coronavirus 2 (SARS-CoV-2) virus, shows substantial variation; from asymp-

tomatic to severe pneumonia-like distress requiring the aid of respirators and, in some cases,

even death [1]. The SARS-CoV-1 and SARS-CoV-2 Betacoronaviruses share the same host

species, i.e. horseshoe bats (Rhinolophus sp.), in addition to several genetic and phenotypic

similarities [2]. In humans, both viruses bind to a receptor, coded by a gene located on the X

chromosome expressing an angiotensin converting enzyme (ACE2), with a trimeric Spike pro-

tein (S) [2]. The S protein is divided into the subdomains S1, which includes the receptor bind-

ing domain (RBD), and S2 that mediates viral-host membrane fusion [2] (See S1 Fig). Current

knowledge suggests that SARS-CoV-2 can enter host cells via two routes [3, 4]. One route, the

early entry pathway, is through virus-host cell membrane fusion. The other described route,

known as the late entry pathway, is via virus attachment to the ACE2 receptor at the cell sur-

face and endocytosis. Both modes of entry have in common that they are currently believed to

exclusively go through the ACE2 receptor [3]. For the early entry pathway, the furin site,

located between the S1 and S2 subdomains of the S protein, must be cleaved before the trans-

membrane serine 2 protease (TMPRSS2) can cleave the S2’ site. The cleavage of the furin site

takes place during virus assembly and maturation [4]. The S2’ site is located within the S2 sub-

domain of the S protein and becomes exposed during binding to ACE2 if the furin site is

cleaved [3]. Neuropilin-1 (NRP1) has recently been found to enhance SARS-CoV-2 infectivity

through the early pathway entry but is not necessary for infection [5]. Cleavage of the furin site

seems to complicate the late pathway entry as the S protein is not in an optimal state for entry

via endocytosis [3]. Conversely, while complicating the early pathway entry due to the required

cleavage, the uncleaved furin site increases affinity for the late pathway entry through endocy-

tosis [3]. Cleavage of the furin site leads to a less stable S protein which seems to favor early

versus late pathway entry. During the endocytosis phase of the late pathway entry, cathepsin L/

B (CTSL and CTSB) cleave the S’ site before the viral genome is released into the cell for subse-

quent viral biosynthesis [3, 4].

Host infectivity to SARS-CoV-2 depends both on viral- and host genetic factors [6]. The

gene coding for the ACE2 receptor is located on the X chromosome [7]. In humans, females

have two copies of the X chromosome, inherited from each parent, while males have one

maternally inherited copy [8]. The second copy of the X chromosome in females is replaced by

a paternally inherited Y chromosome in males [9]. One of the two X chromosomes located in

female cells is inactivated (XCI) which is marked by ubiquitous DNA methylation (DNAm)

[8]. DNAm is typically taken to be the addition of a methyl group to Cytosine in Cytosine-

Guanine (CpG) di-nucleotide pairs [10]. Which of the two X-chromosomes in females become

inactivated varies randomly from cell to cell [8]. Hence, female cells express one of two ACE2

receptor variants inherited from each parents while males express only a maternally inherited

variant [11, 12]. Due to the strong association with cell type differentiation [13], DNAm is the

most studied epigenetic mark [10]. It has also been found that genome-wide DNAm varies

throughout the life-course and as a consequence of genetics and environmental exposures

[14]. In particular, a substantial fraction of genome-wide DNAm differences have both been

attributed to age and sex differences in humans [15, 16]. Indeed, numerous DNAm-based epi-

genetic clocks have been created that can predict chronological age from different cell types

[17]. Epigenetic clocks have also been discovered from certain cell types that can predict age

with a high accuracy [18]. There are also epigenetic clocks that can measure biological age

linked to all-cause mortality [19]. DNAm-based epigenetic clocks have recently been linked to
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T and NK cell activation suggesting that epigenetic clocks are in general reflective of host

immune system status [20].

Current risk factors for severe COVID-19 symptoms are advanced age [21, 22] and being

male [11]. COVID-19 outcomes may also be influenced by DNAm in multiple tissues and

organs owing to the systemic nature of the disease [23]. Two recent genome-wide association

studies (GWASs) of severe COVID-19 [1, 24] reported single nucleotide polymorphisms

(SNPs) significantly linked to 16 genes in total. The strong association of severe COVID-19

with sex [11] and age [25] motivated us to examine whether DNAm differences associated

with sex and age could be linked to genes implicated with severe COVID-19, defined as critical

respiratory failure [1, 24]. We additionally scrutinized age and sex effects of CpGs related to

genes involved in SARS-CoV-2 host cell entry. In particular, we examined both ACE2 and

TMPRSS2 genes and their associated STRING network clusters [26] (11 + 11 = 22 genes in

total) as well as 7 genes [3, 5, 27, 28] implicated with both early and late pathway entry.

In total, we looked for sex and age related DNAm differences in 1,572 CpG loci (1,487 auto-

somal CpGs and 85 X chromome CpGs), linked to 45 genes (41 autosomal genes and 4 X chro-

mosome genes) associated with severe COVID-19 and SARS-CoV-2 host cell entry, in 1,976

parents participating in the Norwegian Mother, Father and Child Cohort Study (MoBa).

Materials and methods

The study population was taken from The Norwegian Mother, Father and Child Study cohort

(MoBa) [29]. Information regarding the study population can be found in Table 1.

The establishment of MoBa and initial data collection was based on a license from the Nor-

wegian Data Protection Agency and approval from The Regional Committees for Medical and

Health Research Ethics (REK). The MoBa cohort is currently regulated by the Norwegian

Health Registry Act. The current study was approved by REK South-East (2017/1362) in Nor-

way 26.09.2017. Data collection by MoBa was carried out during 2001–2009 in accordance

with the Norwegian Data Protection Agency after securing approval from REK. All partici-

pants provided written informed consent.

We used 1,976 randomly sampled adults (see Table 1) from MoBa [29]. The DNA methyla-

tion of these subjects were measured from peripheral blood using Illumina’s Infinium Methy-

lationEPIC array. Quality control and preprocessing was carried out using the RnBeads

package [30]. During the quality control procedure, probes with cross-hybridization, high

detection P-value (>0.01) and those near single-nucleotide polymorphisms (SNP) (three last

bases of the probe sequence overlaps with a SNP) were excluded resulting in a total of 770,586

out of 846,232 autosomal probes (total probes on the Illumina EPIC array is 865,859 probes,

19,090 probes are located on the X chromosome and 537 on the Y chromosome). Signal inten-

sities were background-corrected using enmix.oob [31] before probe Type I and Type II cali-

brations were carried out using the beta-mixture quantile normalization (BMIQ) procedure

[32]. The X chromosomes were preprocessed independently of the autosomes to prevent bias

due to X chromosome inactivation. The same guidelines were used for the X chromosomes as

for the autosomes. Using the same exclusion principles as for autosomes we ended up with

Table 1. Study population characteristics.

Males Females

Number 991(50.2%) 985(49.8%)

Median age in years (mean) 32.3(32.8)(18.3, 58.6) 30.1(30.1)(18.3, 45.5)

The table shows the study population’s sex (number (percent)) and age (median (mean)(min,max)) characteristics.

https://doi.org/10.1371/journal.pone.0269105.t001
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16,841 probes on the X chromosome on which BMIQ was performed. Further details regard-

ing quality control of these samples can be found in Lee et al. [33]. Estimates of the different

cell types were carried out using the reference set described by Salas et al. [34] using the House-

man procedure [35]. All cell types, i.e. CD4+ T and CD8+ T cells, NK cells, B cells, monocytes

and neutrophils, were adjusted for in the regression analyses.

Statistical modeling was carried out using mixed-effects regression with the R package

‘nlme’ [36, 37]. DNAm at each CpG was treated as the outcome (β values), with sex and age as

explanatory variables. EPIC array plates were included as random intercept effects. Regression

models used to assess the DNAm effects of sex and age were reciprocally adjusted for age and

sex together with cell type proportion estimates.

Adjustment for multiple testing was performed using false discovery rate (FDR) and Bon-

ferroni on 770,586 autosomal + 16,841 X chromosomal CpG sites = 787,427 tests in total. We

considered only genome-wide pFDR<0.01 as statistically significant. Analyses of CpGs located

on the X-chromosome (particularly CpGs linked to the ACE2 receptor gene) were stratified

for males and females due to XCI.

Prediction models were performed using Lasso penalized regression from the ‘glmnet’

package [38] with the X matrix consisting of the 1,487 CpGs linked to 41 genes associated with

severe COVID-19 and SARS-CoV-2 host cell entry located on the autosomes. The outcome of

the Lasso regression was binomial for sex (male/female) and continuous for age (days, subse-

quently converted to years). Half the individuals (n = 988) were selected randomly with the

corresponding outcome (sex/age) for training while prediction was carried out on the other

half (n = 988 individuals). Subsequent linear regressions were performed on predicted versus

given age in days and sex respectively, from which the coefficient of variation R2 was recorded.

For randomization, 1,487 CpGs were selected randomly from the autosomal CpGs with train-

ing and prediction performed on the same halves of the samples as above. The randomization

procedure was repeated 1,000 times for both sex and age outcomes, respectively, with subse-

quent linear regressions on given and predicted age/sex. The variance explained parameter

(R2) was recorded for the regression models and corresponding distributions were made as

can be seen in Fig 2C and 2D for sex and age. The p values for R2 were computed using the

empirical distributions shown in Fig 2 panels C and D. All estimations and regression results

can be found in S1 Appendix.

Results and discussion

In total, we examined 1,572 CpGs (including 85 CpGs on the X chromosome) related to 45

host genes (4 genes were located on the X chromosome). Because of X chromosome inactiva-

tion (XCI) [8], we analyzed genes located on autosomes separately from genes on the X chro-

mosome. Results from the regression analyses can be found in Table 2 as well as in S1

Appendix, which also includes regression estimates and information regarding the genes

included in the study.

We found that 200 and 231 differentially methylated probes (DMPs), located near genes

related to both SARS-CoV-2 host cell entry and severe COVID-19, were significantly associ-

ated (pFDR<0.01) with sex and age respectively on autosomes (See Fig 1, panels A and B).

While sex-associated CpGs (Fig 1A) were more hyper-methylated (800 vs 687 CpGs, 133 vs 69

DMPs pFDR<0.01) age-associated CpGs (Fig 1B) were predominantly hypo-methylated (839

vs 648 CpGs, 130 vs 101 DMPs pFDR<0.01). Linear regressions of DNAm of CpGs on the X-

chromosome, assessing whether sex differences could be found at any of the sites connected to

the genes linked with SARS-CoV-2 host cell entry (no genes currently identified with severe

COVID-19 were located on the X chromosome), resulted in 81 significant DMPs (pFDR<0.01)
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Table 2. SARS-CoV-2 genes associated with host cell entry and severe COVID-19. The table shows information regarding genes associated with SARS-CoV-2 host cell

entry as well as severe COVID-19. Source describes the source justifying the inclusion of the gene, Gene identifier refers to the gene symbol, Sex associated shows number

of DMPs significantly associated with sex (pFDR<0.01), Age associated shows the same for age, CpGs linked to gene indicates the number of CpGs on the EPIC array linked

to that particular gene and, finally, the last column Chromosome displays the chromosome number on which the gene is located.

Source Gene Sex associated Age associated CpGs linked to gene Chromosome

ACE2 Cluster [12] ACE2� 12 0 15 X

AGT 0 1 13 1

AGTR1 6 12 29 3

AGTR2� 5 0 5 X

DPP4 6 7 36 2

MEP1A 5 1 12 6

MEP1B 2 1 3 18

MME 2 16 35 3

PRCP 9 1 38 11

REN 2 1 13 1

XPNPEP2� 17 0 18 X

TMPRSS2 Cluster [12] TMPRSS2 1 7 32 21

AR� 47 0 47 X

ERG 16 15 78 21

ETV1 10 6 45 7

ETV4 0 5 32 17

FAM3B 1 7 18 21

FKBP5 9 5 49 6

NKX3-1 2 4 15 8

PTEN 14 2 76 10

SLC45A3 6 4 34 1

TMPRSS4 3 10 44 11

GWAS [1] ABO 0 2 18 9

Entry [14] ADAM17 8 0 33 2

GWAS [11] CCHCR1 5 2 59 6

GWAS [1] CCR9 1 4 15 3

Entry (late pathway) [3] CTSB 6 4 38 8

Entry (late pathway) [3] CTSL 0 3 5 9

GWAS [1] CXCR6 2 1 14 3

GWAS [11] DPP9 5 1 52 19

Entry (early pathway) [3] FURIN 7 5 47 15

GWAS [1] FYCO1 5 4 38 3

GWAS [11] HLA-G 6 8 18 6

Entry [13] HMGB1 5 2 22 13

GWAS [1] IFNAR2 2 1 29 21

GWAS [1,11] LZTFL1 6 7 40 3

GWAS [11] NOTCH4 18 38 139 6

Entry [4] NRP1 13 14 79 10

Entry [4] NRP2 4 19 85 2

GWAS [11] OAS1 5 2 15 12

GWAS [11] OAS2 1 1 23 12

GWAS [11] OAS3 3 0 21 12

GWAS [1] SLC6A20 1 7 39 3

GWAS [11] TYK2 2 1 46 19

GWAS [1] XCR1 1 0 10 3

(Continued)
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out of 85. In general, there are profound DNAm differences between males and females on the

X chromosome (Fig 1 panels C, D and E). Whether these are true differences or artifacts on

the EPIC array resulting from XCI is unclear. We therefore performed stratified regression

analysis for males and females with age as the explanatory variable and DNAm from each CpG

as outcome (β values). Age was not significantly associated with any CpGs related to the ACE2
gene or any other gene linked to SARS-CoV-2 host cell entry on the X chromosome. This may

suggest that the SARS-CoV-2 virus may bind with equal affinity to the ACE2 host receptor in

Table 2. (Continued)

Source Gene Sex associated Age associated CpGs linked to gene Chromosome

Total 45 281 (200 without X chromosome genes) 231 1572 (1487 on autosomes + 85 on X

chromosome)

‘�’ Gene located on X chromosome.

https://doi.org/10.1371/journal.pone.0269105.t002

Fig 1. DNA methylation in genes associated with COVID-19. Panel A) shows a volcano plot of the–log10 transformed p values (vertical axis) of the

coefficients resulting from regressing DNAm in autosomal CpGs linked to COVID-19 genes on sex (horizontal axis). Black colored dots signify non-

significantly associated CpGs, orange dots pFDR<0.01 significantly associated CpGs and red dots Bonferroni pB<0.05 significantly associated CpGs. Panel B is

similar to Panel A but the coefficients now reflect age instead of sex. The DNAm density of the CpGs linked to the ACE2 receptor gene on the X chromosome

can be seen in Panel C. Red colored lines designate females while blue lines males. Panel D shows the DNAm density for all CpGs related to the four ACE2/

TMPRSS2 STRING network clustered genes (ACE2, AGTR2, AR, XPNPEP2) located on the X chromosome, while the total DNAm density differences between

males and females stemming from the 16,841 X-linked CpGs is depicted in Panel E.

https://doi.org/10.1371/journal.pone.0269105.g001

PLOS ONE Exploration of epigenetic age and sex effects on COVID-19 associated genes

PLOS ONE | https://doi.org/10.1371/journal.pone.0269105 June 9, 2022 6 / 12

https://doi.org/10.1371/journal.pone.0269105.t002
https://doi.org/10.1371/journal.pone.0269105.g001
https://doi.org/10.1371/journal.pone.0269105


all age groups in peripheral blood. The CpGs on the EPIC array located near the ACE2 gene

are mainly found in transcription start sites (TSSs) (5 CpGs), untranslated regions (UTR’s)(2

CpGs), gene bodies (6 CpGs) and exons (2 CpGs) according to UCSC annotation (https://

genome.ucsc.edu/). The five CpGs associated with the ACE2 gene annotated to TSS were

Fig 2. Predicting sex and age in SARS-CoV-2 associated host genes. Panel A shows the association between autosomal CpGs, linked to SARS-CoV-2 host

genes/severe COVID-19, and predicted sex (vertical axis). Panel B shows the association between CpGs predicting age (vertical axis) and given age (horizontal

axis). The distributions of the variance explained parameter R2, stemming from 1,000 randomizations of genome-wide randomly selected CpGs against sex and

age, are shown in Panels C and D, respectively. The vertical dashed line designates the corresponding R2 for the sex (R2 = 0.77, p = 0.09) and age (R2 = 0.36,

p = 0.04) regression models depicted in panels A and B.

https://doi.org/10.1371/journal.pone.0269105.g002
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hyper-methylated, with some slight hemi-methylation in females that could be an artifact of

XCI (see S2 Fig). This could indicate that the ACE2 gene is not expressed in whole blood,

which has been suggested elsewhere [39]. If, on the other hand, the ACE2 gene is expressed,

our findings may point to that the ACE2 gene is differently methylated between males and

females supporting the previously reported sex differences with regards to COVID-19 infec-

tion [11]. In the ACE2 gene STRING network cluster we also find the DPP4 receptor gene for

the more deadly but far less infectious Middle Eastern Respiratory Syndrome Coronavirus

(MERS-CoV) [2]. For the DPP4 gene, 6 CpGs were significantly associated with sex and 7 with

age. In contrast to the ACE2 receptor, the TMPRSS2 protease, linked to early pathway entry, is

mostly associated with age (6 DMPs versus 1 DMP for sex). The furin protease had 7 DMPs

associated with sex and 5 with age. For the genes coding for the proteases facilitating late entry

pathway (CTSL and CTSB) we found that no CpGs were significantly associated with sex for

CTSL, while 3 (of 5) CpGs were associated with age. For CTSB, 6 CpGs were significantly asso-

ciated with sex and 4 with age. Other genes associated with SARS-CoV-2 host cell entry

included metallopeptidase domain 17 (ADAM17) [28] (8 and 0 CpGs significantly associated

with sex and age, respectively), high mobility group box 1 gene (HMGB1) [27] (5 and 2

DMPs), NRP1 (13 and 14 DMPs) as well as NRP2 genes [5] (4 and 19 DMPs). These findings

may suggest that age could potentially influence the mode of entry for SARS-CoV-2 [40]. In

particular, as the CpGs linked to the TMPRSS2 gene were strongly associated with age our

findings may suggest that enhanced late pathway entry via endocytosis could increase

COVID-19 infectivity by allowing additional age groups to be more susceptible to infection

[41].

Only one of 16 genes were shared between the two previously mentioned GWASs: Leucine

zipper transcription factor-like proten 1 (LZTFL1). Of the DMPs linked to the LZTFL1 gene,

there were 6 CpGs significantly associated with sex and 7 with age. In total, we found that 63

CpGs were significantly associated with sex while 79 were associated with age of the 576 CpGs

linked to the 16 genes associated with severe COVID-19.

Since it has been found that both sex and age DMPs are wide-spread in the human genome

[15], we made sex- and age predictors based only on the 1,487 CpGs linked to the autosomal

genes associated with SARS-CoV-2 host cell entry and severe COVID-19. We randomly

selected half the samples for training of the Lasso classifier (n = 988 samples) and the other

half (again n = 988 samples) for prediction. Fig 2, panels A and B, show the results from these

prediction models for sex and age. The variance explained (R2) was 77% for the sex-based

model and 36% for age. We also compared our Lasso models with corresponding sex- and age

based models trained on 1,487 randomly selected genome-wide CpGs. These predictions were

performed 1,000 times for both sex and age models and R2 distributions from the subsequent

regression models can be seen in Fig 2C and 2D, respectively. Fig 2C indicates that the predic-

tion model for sex did not perform significantly different, with respect to R2, from genome-

wide random draws of CpGs (p = 0.09). For age (Fig 2D), we found that R2 was actually slightly

lower than expected compared to R2 from randomly drawn CpGs (p = 0.04). Hence, while we

found several sex and age related DMPs linked to genes associated with severe COVID-19 and

SARS-CoV-2 host cell entry the proportion did not exceed what would be expected from ran-

dom genome-wide sampling of CpGs. While we found no differences for sex related DMPs

linked to severe COVID-19 and host cell entry connected genes, for age related DMPs the

effect was found to be lower than expected. Our findings therefore may suggest that age and

sex may not be impossible barriers for the SARS-CoV-2 virus to increase infectiousness [42].

Strengths of our study include the use of a large randomly selected and homogeneous popu-

lation as well as the use of the Illumina EPIC array with 850K probes. A weakness of this study

is the restriction to peripheral blood. A recent study did however find strong associations
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between DNAm and COVID-19 infection in peripheral blood [43]. Nevertheless, scrutiny of

CpGs in cells from the upper and lower respiratory tract is likely to be more revealing in terms

of SARS-CoV-2 host cell entry. Another more general weakness is that the effects reported

here are likely underestimations as the EPIC array only covers approximately 3% of methyla-

tion sites in the human genome [44].

Conclusions

In summary, we found no association between age and DMPs related to the ACE2 receptor

gene but several DMPs associated with sex. Whether these differences are due to X inactivation

bias is not known. Furthermore, we found no hypo-methylated DMPs linked to the ACE2
TSS, raising the question whether this receptor is at all expressed in peripheral blood. In gen-

eral, we detected widespread associations between sex and age in CpGs linked to genes associ-

ated with host cell entry as well as severe COVID-19. However, these DMPs did not appear to

be more strongly associated with sex and age than CpGs drawn genome-wide at random sug-

gesting that age and sex may not be impossible obstacles for the SARS-CoV-2 virus to sur-

mount to increase infectivity.
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