
Evaluation and Improvement
of Machine Learning Algorithms

in Drug Discovery

Kjetil Dyrland

Supervisor: P.G.L. Porta Mana

Co-Supervisor: Alexander S. Lundervold

Master’s thesis in Software Engineering at

Department of Computer Science, Electrical
Engineering and Mathematical Sciences,

Western Norway University of Applied Sciences

Department of Informatics,
University of Bergen

June 1, 2022

Acknowledgements

I would like to express my sincerest gratitude to my supervisor P.G.L. Porta
Mana and co-supervisor Alexander S. Lundervold for guiding me through this
project and for all the great meetings and discussions, and especially P.G.L. for
bringing ‘boller’ and coffee to the meetings. I would also like to thank my family
for endless support throughout the year, and my partner Synne for constant
love, support, and encouragement. Thanks to the Mohn Medical Imaging and
Visualization Centre where the studies and experiments were performed.

i

Contents

1 Summary 1

I Background 3

2 Overview of Machine Learning 4

2.1 Introduction to Machine Learning 4
2.2 Strengths and limitations . 5
2.3 Dataset and inputs . 5
2.4 Overfitting and Underfitting . 6
2.5 Evaluation . 6
2.6 Algorithm example: Random Forest 8

3 Deep Learning for Computer Vision 9

3.1 Introduction . 9
3.2 Loss functions . 10
3.3 Convolutional neural networks for computer vision 12

3.3.1 ResNet . 12

4 Drug Discovery 13

4.1 Introduction . 13
4.2 Representations in Drug Discovery 14

5 Overview of Part II 17

5.1 Does the evaluation stand up to evaluation? 17
5.1.1 Context . 17
5.1.2 Results . 17

5.2 A probability transducer for machine-learning classifiers 18
5.2.1 Context . 18
5.2.2 Results . 18

Bibliography 19

ii

II Publications 21

6 Does the evaluation stand up to evaluation? 22

7 A probability transducer
and decision-theoretic augmentation for machine-learning clas-
sifiers 58

iii

List of Figures

2.1 Confusion matrix for binary classification 7

3.1 Max pooling with 2x2 stride . 10
3.2 Structure of an artificial neural network 11

4.1 Generation of 2D depictions . 15

iv

List of Papers

6 Does the evaluation stand up to evaluation? 22
7 A probability transducer and decision-theoretic augmentation for machine-

learning classifiers . 58

v

Chapter 1

Summary

Drug discovery plays a critical role in today’s society for treating and preventing
sickness and possibly deadly viruses. In early drug discovery development, the
main challenge is to find candidate molecules to be used as drugs to treat a
disease. This also means assessing key properties that are wanted in the inter-
action between molecules and proteins. It is a very difficult problem because
the molecular space is so big and complex. Drug discovery development is es-
timated to take around 12–15 years on average, and the costs of developing a
single drug amount to $2.8 billion dollars in the US [1].

Modern drug discovery and drug development often start with finding candi-
date drug molecules (‘compounds’) that can bind to a target, usually a protein
in our body. Since there are billions of possible molecules to test, this becomes
an endless search for compounds that show promising bioactivity. The search
method is called high-throughput screening (HTS), or virtual HTS (VHTS) in
a virtual environment. The traditional approach to HTS has been to test every
compound one by one. More recent approaches have seen the use of robotics and
of features extracted from the molecule, combining them with machine learning
algorithms, in an effort to make the process more automated. Research has
shown that this will still lead to human errors and bias [2, 3]. So, how can we
use machine learning algorithms to make this approach more cost-efficient and
more robust to human errors?

This project tried to address these issues and led to two scientific papers
as a result. The first paper explores how common evaluation metrics used for
classification can actually be unsuited to the task, leading to severe consequences
when put into a real application. The argument is based on basic principles of
Decision Theory, which is recognized in the field of machine learning [4] but has
not been put into much use. It makes a distinction between predicting the most
probable class and predicting the most valuable class in terms of the “cost” or
“gains” for the classes. In an algorithm for classifying a particular disease in
a patient, the wrong classification could lead to a life or death situation. The
principles also apply to drug discovery, where the cost of further developing
and optimizing a "useless" drug could be huge [5, 6]. The goal of the classifier
should therefore not be to guess the correct class but to choose the optimal
class, and the metric must depend on the type of classification problem. Thus,

1

we show that common metrics such as precision, balanced accuracy, F1-score,
Area Under The Curve, Matthews Correlation Coefficient, and Fowlkes-Mallows
index are affected by this problem, and propose an evaluation method grounded
on the foundations of Decision Theory to provide a solution to this problem.
The metric presented, called utility, takes into account gains and losses for each
correct or incorrect classification of the confusion matrix. For this to work
effectively, the output of the machine learning algorithm needs to be a set of
sensible probabilities for each class. This brings us to the second paper.

Machine learning algorithms usually output a set of real numbers for the
classes they try to predict, which, possibly after some transformation (for exam-
ple the ‘softmax’ function), are meant to represent probabilities for the classes.
However, the problem is that these numbers cannot be reliably interpreted as
actual probabilities, in the sense of degrees of belief [7]. In the paper, we propose
the implementation of a probability transducer to transform the output of the
algorithm into sensible probabilities. These are then used in conjunction with
the utilities to choose the class with the maximal expected utility. The results
show that the transducer gives better scores, in terms of the utilities, for all
cases compared to the standard method used in machine learning.

2

Part I

Background

3

Chapter 2

Overview of Machine
Learning

This section will give a quick overview of some basic machine learning (ML)
concepts and techniques. They must be understood before we go into more
detail in the rest of the thesis.

2.1 Introduction to Machine Learning
Machine learning is a sub-field of artificial intelligence (AI) and is based on
statistics, probability, mathematics, and computer science. Its purpose is to
learn deterministic or statistical relationships from data, as well as the features
in the data that are important for such relationships, and to make decisions
based on the learned knowledge. A machine learning model is an algorithm that
is trained on a specific set of data. Machine learning has three main categories
based on the purpose of the algorithm:

• In supervised learning, the purpose is to find the unknown value of
something, for example, an object’s class or a physical quantity, given
the known values of other variables. For this reason, the training data is
labeled, meaning the data has a "ground truth" value and the model tries
to predict this value. We call the prediction classification if the goal is to
predict what class the input belongs to, e.g. a cat or a dog. We call the
prediction regression if the value to be predicted can assume a continuous
range of values, e.g. the price of a house.

• Unsupervised learning tries to find features and relations in the data,
which are therefore unlabelled during training. Since the data are unla-
belled there is no right or wrong answer that a human can make much
sense of. This also makes it difficult to evaluate the performance of ma-
chine learning algorithms in this category.

• Reinforcement learning uses the concept of giving rewards and penal-
ties as feedback signals to an algorithm. Based on the feedback signals, the
algorithm learns the best method for the problem. Reinforcement learning

4

is used in tasks like self-driving cars, automatic drones, and video game
AIs.

2.2 Strengths and limitations
One of the benefits of using ML is that the computational part is automated. It
takes away the stress from the human that can lead to human errors and takes
care of repetitive and computationally expensive procedures. ML can also find
trends and patterns that are not apparent to humans. For example, data that
appear in high-dimensional spaces can be difficult for humans to interpret. It
can also be used to solve problems in a wide area of fields, from self-driving cars
to the prediction of house prices. Advancements in computing power and the
availability of good software in recent years have made ML an extremely cheap
and fast option for research tasks [8].

All this said, ML still has a lot of limitations. First of all, training an ML
model requires a lot of data, and in some fields data are scarce. Second, the data
have to be representative of the future data that the ML algorithm will process
during its operation, and not be affected by biases or other errors. Third, there
is also an ethical problem: when the ML algorithm makes a mistake, who is
to blame for that mistake? Should the programmer be blamed, the computer,
or someone else? For example, in medicine and drug discovery, an erroneous
prediction by the ML model could lead to giving wrong diagnoses or wrong
drugs to patients and could, in the worst case, be life-threatening.

Fourth, there is the problem of tuning and evaluating the model. Tuning
the model is no easy process, as there is a bunch of small parameters to tweak
and adjust. Getting these wrong often leads to unwanted bias or overfitting
problems. There is also an abundance of evaluation metrics to choose from;
we will explore some in section 2.5. Usually, all of them are used for the same
numerical experiments even though they were made for completely different use
cases. Many of the commonly used ML evaluation metrics in classification are
not reliable when looking for the most optimal algorithm [9, 10].

2.3 Dataset and inputs
ML algorithms depend on the quality and quantity of the dataset they are given
for learning. If the dataset is poorly put together and small, the algorithm will
most likely perform poorly. That is why ML practitioners say that working with
machine learning algorithms is at least 80% data pre-processing and cleaning
and 20% algorithms [11]. Some of the more difficult problems in data pre-
processing include identifying erroneous values, compensating for missing values,
and estimating noise. Most of the time, it is not possible to solve these problems
directly, so the programmer has to work around them. For data points with
partially missing values, for example, the programmer may simply discard the
whole data point, or use estimated values in place of the missing ones. Data
augmentation is a set of techniques to create synthetic but plausible data, to
increase the amount of training data. For example, in image-related problems,
data augmentation consists of creating additional images by rotating, flipping,
or modifying colors in an image of the original dataset. For instance, from an

5

image of a dog, we can create images with the same dog but turn it upside-down
or use slightly different colors. The idea behind such a procedure is to help the
ML algorithm learn which image features are relevant (such as specific shapes),
and which are irrelevant (such as positions or orientations).

2.4 Overfitting and Underfitting
In all ML applications, the model must be effective on new, unseen data, mean-
ing it has to generalize well. If the performance is poor on new unseen data, it
usually means that the model has either overfitted or underfitted on the training
data. Overfitting is the case where the model relies on features in the training
data that are irrelevant to any unseen data. Underfitting is the tendency to not
learn specific features that are relevant and present in the training data.

So, how do we solve these problems?
First of all, it is common practice to split the dataset into a training, vali-

dation, and test set. The training data is used to fit the model; the validation
set is used to validate the model and update its hyperparameters (learning rate,
regularization, etc.). The test set is a ’final’ test to check how good the model
is for ’unseen’ data. Doing this allows us to see more easily if the model is over-
fitting or underfitting, by looking at the loss and accuracy for the training and
validation sets. The model overfits if the training loss goes significantly down
and validation loss goes up after each epoch. Conversely, the model underfits if
the loss stays high for both the training data and validation data. To solve the
overfitting problem, the best solution would be to collect more training data, but
in most cases, this is not an option. Other options can be to apply techniques,
such as regularization, to the model (L1, L2, dropout, etc.). Regularization is
a technique that can be applied to the model to punish it for being too flexible.

For underfitting, the best approach is to use a more flexible model. If this
approach can’t be applied or doesn’t work, techniques such as feature engineer-
ing could work. Feature engineering is the process of extracting features from
the raw data that the model can more easily interpret.

All in all, the general method to prevent generalization error is to train a
model that is not too complex or too simple.

2.5 Evaluation
Evaluation is an essential part of any machine learning project. After the model
is trained, we need to test its performance. As explained in the previous section,
evaluation is done on an independent test set. The ultimate goal is usually to
apply the ML model to production. For this reason, it is important to choose
the right metric to evaluate the performance of the model. And what is “right”
depends on the task.

For simplicity, let’s consider the evaluation of a binary-classification algo-
rithm, that is, an algorithm that has to decide whether to classify each new
data point into one of two possible classes. Conventionally one class is called
‘positive’ and the other ‘negative’. The whole performance of the model on the
test set is embodied in four statistics:

6

Figure 2.1: Confusion matrix for binary classification

• True positives (TP): the number of cases in which the model chose the
positive class, and the true class was indeed the positive one.

• False positives (FP): the number of cases in which the model chose the
positive class, but the true class was the negative one.

• True negative (TN): the number of cases in which the model chose the
negative class, and the true class was indeed the negative one.

• False negatives (FN): the number of cases in which the model chose the
negative class, but the true class was the positive one.

These four statistics are collected in a 2-by-2 table or matrix, commonly
called a ‘confusion matrix’. The true classes constitute its rows, and the pre-
dicted classes are its columns, but can also be displayed with the predicted
classes as its rows and the true classes as its columns (as in our papers).

The best theoretical performance where all instances are correctly classified
based on their ‘ground truth’ label will have a confusion matrix with all nonzero
elements on the diagonal from the top left corner to the bottom right. Figure 2.1
shows the representation of a confusion matrix for binary classification where
TN and TP lie on the diagonal.

Some traditional metrics for binary classification are:

• Accuracy :

Accuracy =
TP + TN

TP + FP + TN + FN

• Precision:
Precision =

TP

TP + FP

• Recall :
Recall =

TP

TP + FN

• F1 score:
F1 = 2

1
1

Precision + 1
Recall

7

• Matthews correlation coefficient (MCC):

MCC =
TP × TN − FP × FN√

(TP + FP) (TP + FN) (TN + FP) (TN + FN)

Precision shows the ability of the model to not label a negative example as
positive. Recall shows the ability of the model to label positive samples. Recall
and precision have a linear relationship, meaning most of the time they are not
both high at the same time. An increase in precision will decrease recall and
vice versa. Because of this, it is important to look at the task to choose one or
the other.

The F1 score finds a balance between these two metrics, by taking their
harmonic mean.

Matthews correlation coefficient (MCC) compares the correlation between
the actual class and the predicted class. It scales from -1 to +1 where 0 indicates
a random correlation between the two. MCC is considered to be a balanced
evaluation metric and became known in the ML community from the work by
Matthews in [12].

These are all traditional evaluation metrics commonly used in binary classi-
fication. However, they can be misleading and can lead to overoptimistic results
as we will show and discuss in the included paper. For a brief overview and more
examples, consult also the paper by P. Flach [9].

For a regression task, we need something that can measure how close the pre-
diction are to the real number. Some of the most common metrics in regression
task are mean squared error (MSE):

L(x, y) =

D∑
i=1

(xi − yi)2

And the root mean squared error (RMSE):

L(x, y) =
√
MSE

Where x is the actual value and y is the predicted value.

2.6 Algorithm example: Random Forest
Random forest (RF) is a machine learning algorithm based on the ensembling
of decision trees [13]. RF has gained a lot of popularity in recent years due to
its ability to handle a large number of features, its good performance, and its
resilience to overfitting. Such models have already delivered powerful results
in compound classification and QSAR analysis [14]. The last layer in an RF
classifier, the output layer, bases the decision on votes from each tree for each
class, then rescales the output to be between 0 and 1.

8

Chapter 3

Deep Learning for Computer
Vision

3.1 Introduction
Deep learning (DL) is a sub-field of machine learning and is part of a class
of artificial neural networks (ANN). DL algorithms have complex architectures
which consist of several layers of processing elements (input, hidden and output
layers, etc.) [15]. The idea of DL is decades old but has become widely popular
in recent years thanks to the availability of computational power and data that
it demands. There are several popular DL models, the most common being:

• MLP: Multilayer perceptron (MLP) is the base architecture of deep learn-
ing or feed-forward artificial neural networks. It consists of a network with
an input layer, one or more hidden layers, and an output layer, with full
connections between successive layers, as seen in Figure 3.2. Each node
in a network is connected to the next layer with an assigned weight. The
weights are randomized before training but get updated to learn from the
data and correctly predict the true value. The weights get updated using
backpropagation and gradient descent [8].

• CNN or ConvNet: A convolutional neural network (CNN) is a network
that consists of convolutions, pooling layers as well as fully connected
layers.

The building blocks of a CNN are:

– Convolutional layer: A convolution takes advantage of the two-dimensional
(2D) structure of the data and computes a feature map. This is done
by multiplying a set of weights, called a kernel, over the 2D space of
the input which then produces an output with a single value. CNN
is great at detecting important features in 2D space and is, and the
standard deep learning network to use when it comes to image and
video tasks.

– Activation layer: The activation layer is used to provide a non-
linearity in the network. This function is usually a rectified linear

9

Figure 3.1: Max pooling with 2x2 stride

unit or ReLU. The ReLU function has become the most popular and
widely used in the last years due to its ability to significantly ac-
celerate training compared to other activation functions. The ReLU
function makes all negative numbers zero and is defined as F(x) =
max(0, x).

– Pooling layer: The pooling layer is often used in CNNs to reduce the
feature map created by the convolutional layer, saving computational
power and memory requirements. The two most common pooling
techniques are max pooling and average pooling. Max pooling works
by taking the max of each grid in the feature map, as illustrated in
figure 3.1. Average pooling works by taking the average inside each
grid. The pooling layer does not have any learnable parameters,
which could mean valuable features are lost in the process.

– Output layer: The output layer is the last layer in a CNN. In clas-
sification, it outputs a set of values for each class, then transformed
to values that should better represent probabilities for each class us-
ing a sigmoid, softmax or tanh functions. The sigmoid function is
a logistic regression function for binary classification and outputs a
set of numbers between 0 and 1. softmax works similarly to sigmoid
but works for multiclass classification as well, and the output sums
to 1. Tanh works the same as sigmoid but outputs numbers between
-1 and 1.

3.2 Loss functions
The loss function in a deep neural network (DNN) measures how well the model
predicted the correct outputs for the given input. The loss function is used
to decide how to update the weights in a stochastic gradient descent (SGD)
optimization step, the learning process in DNNs, to better fit the data. The
loss function is chosen based on the task. Here are some common loss functions
for classification and regression tasks.

10

Figure 3.2: Structure of an artificial neural network

Cross-Entropy Loss

Cross-entropy loss is often used in classification tasks. Cross-entropy loss can
be defined as:

CE = −
M∑
c=1

yo,c log(po,c)

The output of this loss function is a number between 0 and 1, where higher
values mean a higher loss/error in the prediction.

Focal loss

Focal loss is a dynamically scaled cross-entropy loss that can handle class imbal-
ance in the dataset. It tries to compensate for imbalanced datasets by increasing
the loss for classes with the lowest amount of data-points available. Focal loss
is defined as:

FL(pt) = −(1− pt)γ log(pt)

By choosing a value γ > 0 it reduces the loss for easily classified examples
where pt > 0.5 and focuses more on misclassified examples.

RMSE

Root mean squared error (RMSE) is a loss function used for regression tasks. It
is the root-mean-square average of the differences between predicted and actual

11

values. RMSE is defined as:

RMSE =

√√√√ 1

n

n∑
i=1

(xi − yi)2

3.3 Convolutional neural networks for computer
vision

Computer vision is a sub-field of artificial intelligence, described as the ability of
a computer to extract meaningful features from videos, images, or other visual
inputs. The breakthrough in deep learning for computer vision has become one
of the most important fields in the last years, thanks to the use of CNNs and
techniques such as pre-training.

3.3.1 ResNet
Residual neural network (ResNet) is a particularly deep and complex form of
CNN architecture. It was proposed by He et al. [16] and won the ImageNet
detection and visualization challenge in 2015 [17]. It adds so-called skip connec-
tions to the more standard architectures of its time. A skip connection allows
the network to skip unnecessary layers. In practice this means that a network
with 50 layers should perform at least as well as one with 20 layers, skipping
the last 30 layers if necessary. ResNet is to this day seen as one of the best
performing CNNs for solving many computer vision problems.

12

Chapter 4

Drug Discovery

4.1 Introduction
Simplifying things a little, a drug is a molecule, or compound, that fits into a
“hole” in a protein, called a target, in our body. The combination of the two
leads to a subtle structure change in the protein, inducing other chemical reac-
tions, possibly in a domino chain of reactions [11]. These reactions are expected
to have positive consequences for the organism’s health. When a compound has
the capability of combining with a target, it is said to be ‘active’, or we say
there ‘there is activity’ between the two.

The process of drug discovery has five critical stages:

• Target selection and validation:
The process of identifying relevant proteins that exist in the body and
that can be used as targets for compounds.

• Hit discovery:
Hit discovery focuses on screening millions of compounds to find activity
when binding to a target. High throughput screening (HTS) is the search
for finding this type of molecule, which is then called a ‘hit’. Virtual HTS
(VHTS) uses software to accomplish the same thing.

• Hit to lead:
This process focuses on optimizing the hit to increase the strength of the
binding between the drug molecule and the target (affinity).

• Lead optimization:
Further optimization to discover viable drug candidates by looking for
wanted properties, known as ADMET properties: absorption, distribu-
tion, metabolism, excretion, and toxicity. Toxicity, in this case, means the
drug binds to other targets than the intended one.

• Pre-clinical development:
The stage before clinical trials includes testing in a wet lab and on animals.

Clinical trials are the last stage and are a precondition for the drug to be
approved by the government.

13

4.2 Representations in Drug Discovery
There are a plethora of options to represent a molecule. In physical space, a
molecule is just a group of atoms kept together by particular physical forces
or ‘bonds’, with unique chemical features. A molecule is incredibly small and
always in motion; so, how can we represent a molecule with all the unique
chemical features and structures still visible to the computer?

Graphs

For a small molecule, graphs can be used. Atoms are represented as nodes
and the bonds between them as edges in the graph. It is a 2D representation
that is utilized to represent 3D information. Nodes in a graph do not have
spatial relationships, only topological relationships. The topological relationship
is encoded as a node and/or edge attribute in the graph. The resulting graph
also depends on the algorithm used to traverse the spatial structure of the
molecule. The order of atoms and alignment will be different depending on the
algorithm. Furthermore, when working with molecular graphs, there is no one
correct way to represent any molecule, and the representation chosen must be
appropriate for the task [18].

SMILES

The Simplified Molecular Input Line Entry System (SMILES) was developed
in 1988 by Weininger et al. [19] and has been a very popular molecular rep-
resentation since then. It is a single string of letters and is based on a graph
representation of the molecule. The SMILES are non-unique, representing each
atom that is traversed in the graph in order. In RDKit [20] the algorithm uses
a depth-first search.

Fingerprints

Another representation, chemical descriptors, can be used to describe certain
physicochemical, structural, topological, and/or electronic properties of a com-
pound. A common way to do this is hashed circular fingerprints, which are
representations of chemical structures by atom neighborhoods and have been
widely applied in Quantitative Structure-Activity Relationship (QSAR) analy-
sis. A widely used class of circular fingerprints is ECFP (Extended Connectivity
Fingerprints) [21], based on the Morgan algorithm.

2D Depictions

Depictions can be used for direct visualization of compounds and their physic-
ochemical properties. 2D depictions are a vector image representation of the
skeletal structure of the molecule. As with any representation, 2D depictions
also come with difficulties (orientation, overlap, rendering, etc.). Some difficul-
ties can be overcome with the use of algorithms. In this project, we use the
RDKit algorithm, which addresses a lot of those problems. The generation of
2D depictions from SMILES is illustrated in figure 4.1 Molecules can also be
depicted in various ways for describing interactions and reactions.

14

Figure 4.1: Generation of 2D depictions

15

3D Depictions

Software can also be used to represent and visualize molecules and interactions
in a 3D space. Popular representations are ball-and-stick, cartoon, and van der
Waals (vdW). Each comes with its own useful visualization of specific properties.
For example, vdW spheres can be used to visualize interactions between protein
and ligands. Because these interactions are more complex, 3D depictions are
especially useful in docking and mechanistic studies, whereas 2D depictions are
more useful in a less complex molecule space as in structure-activity predictions
studies [18].

16

Chapter 5

Overview of Part II

The core of this thesis consists of two papers that are connected to the study
of machine learning in drug discovery. The purpose of this chapter is to present
the papers with the current knowledge of the background information presented
in Part 2. In other words, additional information, context, and results are
discussed.

5.1 Does the evaluation stand up to evaluation?

5.1.1 Context
From the background information in chapter 4, it is clear that the drug discovery
process is extremely expensive and time-consuming, and that machine learning
algorithms have the potential and ability to alleviate this problem. For that to
be realized, the evaluation of machine learning models has to be improved [9].

In the paper, it is argued that evaluation metrics used in machine learning
can be misleading when put into a real-life application. A machine learning
algorithm that is favored by a majority of evaluation metrics can still turn out
to not be the best one in practice. It is proposed that the evaluation of machine
learning models must be grounded based on the principles of Decision Theory
[4, 22].

5.1.2 Results
In the paper, we show that the metric must depend on the type of classifica-
tion problem. A metric based on so-called utilities takes into account gains and
losses for each correct or incorrect classification. To calculate this we need to
specify the cost, or utility, for each class of (choice, true class) in the confusion
matrix. The utility yield is the sum of the product of utilities and the confusion
matrix of a classifier. The utility yield is a linear combination of the elements of
the confusion matrix, so for any metric to agree with the utility yield it has to
be a linear combination of the confusion matrix elements. We show that com-
mon metrics such as precision, F1-measure, Matthews correlation coefficient,
balanced accuracy, and Fowlkes-Mallows index are not linear combinations of
the confusion matrix. This means that these metrics are affected by cognitive

17

biases and that there is no classification problem where they can correctly rank
the performance of all pairs of algorithms.

We also show that using incorrect utilities, with errors as high as 20% of the
maximal utility, will still lead to more correctly ranked pairs than the use of
any other metric.

5.2 A probability transducer for machine-learning
classifiers

5.2.1 Context
This paper explains the important difference between a typical ‘cat vs dog’
image classification on one side, and, on the other side, classifying a particular
disease in a medical application, or classifying a compound as active or not
in a drug discovery application. In drug classification, specifically VHTS, we
know that the cost and time constraints of wrongly classifying a drug as a false
positive can be huge [5, 6]. The goal of a classifier should not be to guess the
correct class, but rather to choose the optimal class.

5.2.2 Results
The paper introduces an implementation of a ‘probability transducer’ for gen-
erating sensible probabilities from the algorithm output. The probabilities are
then used together with the utilities to choose the class with maximal expected
utility. This method, which we call ‘augmentation’, will ensure that the classi-
fier picks the most optimal class. The transducer has a low computational cost
and allows us to not make any structural changes in the algorithm architecture
or the training process. It also gives us an evaluation score of the future overall
performance of the classifier, to compare it to other classifiers. To illustrate our
method we trained two different classifiers, a random forest, and a convolutional
neural network, on the ChEMBL [23] dataset. The data consists of structure-
activity relationships, where the classifiers predict 0 for ‘inactive’ compounds
and 1 for ‘active’ compounds. The models use different pre-processing methods
for the data, ECFP for the random forest, and 2D depictions for the convo-
lutional neural network. Both models, according to commonly used metrics,
perform at the level of recent state-of-the-art models in VHTS [24]. Consider-
ing a large number of possible utility matrices, we show that the utility yield for
both models increases in basically all cases. The increase is most notable in the
cases where the performance is particularly high or low. The most important
utilities for drug discovery is when the FP has a relatively low score compared
to TP, as discussed earlier. For utilities where FP is low and TP high, the aug-
mentation gives a near-optimal utility yield and a huge relative increase over
the standard method.

18

Bibliography

[1] Kevin Yang, Kyle Swanson, Wengong Jin, Connor Coley, Philipp Eiden,
Hua Gao, Angel Guzman-Perez, Timothy Hopper, Brian Kelley, Miriam
Mathea, et al. Analyzing learned molecular representations for property
prediction. Journal of chemical information and modeling, 59(8):3370–
3388, 2019.

[2] Jochen Sieg, Florian Flachsenberg, and Matthias Rarey. In need of bias
control: evaluating chemical data for machine learning in structure-based
virtual screening. Journal of chemical information and modeling, 59(3):
947–961, 2019.

[3] Christian Merkwirth and Thomas Lengauer. Automatic generation of com-
plementary descriptors with molecular graph networks. Journal of chemical
information and modeling, 45(5):1159–1168, 2005.

[4] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-
proach. Pearson series in artificial intelligence. Pearson, Harlow, UK, fourth
global ed. edition, 2022.

[5] Roman Sink, Stanislav Gobec, S Pecar, and Anamarija Zega. False positives
in the early stages of drug discovery. Current medicinal chemistry, 17(34):
4231–4255, 2010.

[6] Aroon D Hingorani, Valerie Kuan, Chris Finan, Felix A Kruger, Anna
Gaulton, Sandesh Chopade, Reecha Sofat, Raymond J MacAllister, John P
Overington, Harry Hemingway, et al. Improving the odds of drug develop-
ment success through human genomics: modelling study. Scientific reports,
9(1):1–25, 2019.

[7] David JC MacKay. The evidence framework applied to classification net-
works. Neural computation, 4(5):720–736, 1992.

[8] Iqbal H Sarker. Machine learning: Algorithms, real-world applications and
research directions. SN Computer Science, 2(3):1–21, 2021.

[9] Peter Flach. Performance evaluation in machine learning: the good, the
bad, the ugly, and the way forward. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pages 9808–9814, 2019.

[10] Kjetil Dyrland, Alexander Selvikvåg Lundervold, and Piero Giovanni Luca
Porta Mana. Does the evaluation stand up to evaluation?: A first-principle
approach to the evaluation of classifiers, 2022.

19

[11] S Schroedl. Machine learning for drug discovery in a nutshell—part I, 17
june 2018, 2019.

[12] Brian W Matthews. Comparison of the predicted and observed secondary
structure of T4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-
Protein Structure, 405(2):442–451, 1975.

[13] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[14] Vladimir Svetnik, Andy Liaw, Christopher Tong, J Christopher Culberson,
Robert P Sheridan, and Bradley P Feuston. Random forest: a classifica-
tion and regression tool for compound classification and QSAR modeling.
Journal of chemical information and computer sciences, 43(6):1947–1958,
2003.

[15] Jiawei Han, Jian Pei, and Micheline Kamber. Data mining: concepts and
techniques. Elsevier, 2011.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–778, 2016.

[17] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bern-
stein, et al. ImageNet Large Scale Visual Recognition Challenge. Interna-
tional journal of computer vision, 115(3):211–252, 2015.

[18] Laurianne David, Amol Thakkar, Rocío Mercado, and Ola Engkvist. Molec-
ular representations in AI-driven drug discovery: a review and practical
guide. Journal of Cheminformatics, 12(1):1–22, 2020.

[19] David Weininger. SMILES, a chemical language and information system.
1. introduction to methodology and encoding rules. Journal of chemical
information and computer sciences, 28(1):31–36, 1988.

[20] Greg Landrum. Rdkit documentation. Release, 1(1-79):4, 2013.

[21] David Rogers and Mathew Hahn. Extended-connectivity fingerprints. Jour-
nal of chemical information and modeling, 50(5):742–754, 2010.

[22] D Warner North. A tutorial introduction to decision theory. IEEE trans-
actions on systems science and cybernetics, 4(3):200–210, 1968.

[23] A Patrícia Bento, Anna Gaulton, Anne Hersey, Louisa J Bellis, Jon Cham-
bers, Mark Davies, Felix A Krüger, Yvonne Light, Lora Mak, Shaun
McGlinchey, et al. The ChEMBL bioactivity database: an update. Nucleic
acids research, 42(D1):D1083–D1090, 2014.

[24] Alexios Koutsoukas, Keith J Monaghan, Xiaoli Li, and Jun Huan. Deep-
learning: investigating deep neural networks hyper-parameters and com-
parison of performance to shallow methods for modeling bioactivity data.
Journal of cheminformatics, 9(1):1–13, 2017.

20

Part II

Publications

21

Chapter 6

Does the evaluation stand up
to evaluation?

22

Open Science Framework doi:10.31219/osf.io/7rz8t

Does the evaluation stand up to evaluation?
A first-principle approach to the evaluation of classifiers

K. Dyrland
<kjetil.dyrland gmail.com>

A. S. Lundervold †
<alexander.selvikvag.lundervold hvl.no>

P.G.L. Porta Mana
<pgl portamana.org>

(listed alphabetically)

Dept of Computer science, Electrical Engineering and Mathematical Sciences,
Western Norway University of Applied Sciences, Bergen, Norway

†& Mohn Medical Imaging and Visualization Centre, Dept of Radiology,

Haukeland University Hospital, Bergen, Norway

27 May 2022; updated 1 June 2022

How can one meaningfully make a measurement, if the meter does not
conform to any standard and its scale expands or shrinks depending on
what is measured? In the present work it is argued that current evaluation
practices for machine-learning classifiers are affected by this kind of problem,
leading to negative consequences that appear when classifiers are put to
real use and that could have been avoided. It is proposed that evaluation be
grounded on Decision Theory, and the consequences of such foundation are
explored. The main result is that every evaluation metric must be a linear
combination of confusion-matrix elements, with coefficients – ‘utilities’ – that
depend on the specific classification problem. For binary classification, the
space of such possible metrics is effectively two-dimensional. It is shown that
popular metrics such as precision, balanced accuracy, Matthews Correlation
Coefficient, Fowlkes-Mallows index, 𝐹1-measure, and Area Under the Curve
are never optimal: they always give rise to an avoidable fraction of incorrect
evaluations. This fraction is larger than would be caused by the use of a
decision-theoretic metric with moderately wrong coefficients.

0 Prologue: a short story

The manager of a factory which produces a sort of electronic component
wishes to employ a machine-learning classifier to assess the durability
of each produced component. The durability determines whether the
component will be used in one of two possible kinds of device. The

1 Th
is

do
cu

m
en

ti
s

de
si

gn
ed

fo
rs

cr
ee

n
re

ad
in

g
an

d
tw

o-
up

pr
in

tin
g

on
A

4
or

Le
tte

rp
ap

er

Dyrland, Lundervold, Porta Mana Does the evaluation stand up to evaluation?

classifier should take some complex features of the component as input,
and output one of the two labels ‘0’ for ‘long durability’, or ‘1’ for ‘short
durability’, depending on the component type.

Two candidate classifiers, let us call them A and B, are trained on
available training data. When employed on a separate evaluation set,
they yield the following confusion matrices, written in the format

cla
ss

ifi
er

ou
tp

ut
1

0

true class
0 1[

True 0 False 0
False 1 True 1

]

and normalized over the total number of evaluation data:

classifier A:
[
0.27 0.15
0.23 0.35

]
, (1)

classifier B:
[
0.43 0.18
0.07 0.32

]
. (2)

These matrices show that the factory produces, on average, 50% short-
and 50% long-durability components.

The confusion matrices above lead to the following values of com-
mon evaluation metrics1 for the two classifiers. Class 0 is ‘positive’, 1
‘negative’. Blue bold indicates the classifier favoured by the metric, red
the disfavoured:

Table 1

Metric classifier A classifier B
Accuracy (also balanced accuracy) 0.62 0.75
Precision 0.64 0.70
𝐹1 measure 0.59 0.77
Matthews Correlation Coefficient 0.24 0.51
Fowlkes-Mallows index 0.59 0.78
True-positive rate (recall) 0.54 0.86
True-negative rate (specificity) 0.70 0.64

The majority of these metrics favour classifier B, some of them by
quite a wide relative difference. Only the true-negative rate favours
classifier A, but only by a relative difference of 9%.

1 Balanced accuracy: Brodersen et al. 2010; 𝐹1 measure: van Rĳsbergen 1974; Matthews
correlation coefficient: Matthews 1975; Fowlkes-Mallows index: Fowlkes & Mallows 1983.

2

Dyrland, Lundervold, Porta Mana Does the evaluation stand up to evaluation?

The developers of the classifiers therefore recommend the employ-
ment of classifier B.

The factory manager does not fully trust these metrics, asking, “how
do I know they are appropriate?”. The developers assure that these
metrics are widely used. The manager (of engineering background)
comments, “I don’t remember ‘widely used’ being a criterion of scientific
correctness – not after Galileo at least”, and decides to employ both
classifiers for a trial period, to see which factually leads to the best revenue.
The two classifiers are integrated into two separate but otherwise identical
parallel production lines.

During the trial period, the classifiers perform according to the
classification statistics of the confusion matrices (1) and (2) above. At the
end of this period the factory manager finds that the average net gains
per assessed component yielded by the two classifiers are

classifier A: 3.5e/component ,
classifier B: −3.5e/component .

(3)

That is, classifierB actually led to a loss of revenue. The manager therefore
decides to employ classifier A, commenting with a smug smile that it is
always unwise to trust the recommendations of developers, unacquainted
with the nitty-gritty reality of a business.

The average gains above are easy to calculate from some additional
information. The final net gains caused by the correct or incorrect
classification of one electronic component are as follows:

cla
ss

ifi
er

ou
tp

ut
1

0

true class
0 1[

15e −335e
−35e 165e

]
(4)

The reason behind these values is that short-durability components
(class 1) provide more power and are used in high-end, costly devices;
but they cause extreme damage and consequent repair costs and refunds
if used in devices that require long-durability components (class 0).
Long-durability components provide less power and are used in low-
end, cheaper devices; they cause some damage if used in devices that
require short-durability components, but with lower consequent costs.

Taking the sum of the products of the gains above by the respective
percentages of occurrence – that is, the elements of the confusion matrix

3

Dyrland, Lundervold, Porta Mana Does the evaluation stand up to evaluation?

– yields the final average gain. The final average gain returned by the use
of classifier A, for example, is

15e × 0.27 − 335e × 0.15 − 35e × 0.23 + 165e × 0.35 = 3.5e .

In the present case, the confusion matrices (1) and (2) lead to the amounts
(3) found by the manager.

1 Issues in the evaluation of classifiers

The story above illustrates several well-known issues of currently popular
evaluation procedures for machine-learning classifiers:

(a) We are swept by an avalanche of possible evaluation metrics. Often
it is not clear which is the most compelling. In the story above,
for example, one could argue that the true-negative rate was the
appropriate metric, in view of the great difference in gains between
correct and wrong classification for class 1, compared with that for
class 0.
But at which point does this qualitative reasoning fail? Imagine
that the net gains had been as follows instead:

cla
ss

ifi
er

ou
tp

ut
1

0

true class
0 1[

45e −335e
−65e 165e

]
. (5)

One could argue that also this case there is a great economic
difference between correct and wrong classification for class 1, as
compared with class 0. The true-negative rate should, therefore,
still be the appropriate metric. Yet a simple calculation shows that,
in this case, it is classifier B that actually leads to the best average
revenue: 7.3e/component, vs 4.7e/component for classifier A.
Hence the true-negative rate is not the appropriate metric here and
our qualitative reasoning failed us.

(b) A classifier favoured by the majority of available metrics can still
turn out not to be the best one in practice.

(c) Most popular metrics are introduced by intuitive reasoning, ad hoc
mathematical operations, special assumptions (such as gaussian-
ity2), and analysis of special cases. Unfortunately such derivations

2 e.g. Fisher 1963 § 31 p. 183 for the Matthews correlation coefficient.

4

Dyrland, Lundervold, Porta Mana Does the evaluation stand up to evaluation?

do not guarantee generalization to all cases, nor that the proposed
metric is uniquely determined by the chosen assumptions, nor
that it satisfies other basic but neglected requirements. By contrast,
compare for instance the derivation of the Shannon entropy3 as
the unique metric universally satisfying a set of general, basic re-
quirements for the amount of information; or the derivation of
the probability calculus4 as the unique set of rules satisfying gen-
eral rational requirements for inductive reasoning, learning, and
prediction5.

(d) Let us assume that some of the popular metrics identify the best
algorithm ‘in the majority of cases’ – although it is difficult to
statistically define such a majority, and no real surveys have ever
been conducted to back up such an assumption. Yet, do we expect
the end-user to simply hope not to belong to the unlucky minority?
Is such uncertainty inevitable?
We cannot have a cavalier attitude towards this problem: life and
death can depend on it in some machine-learning applications6.
Imagine a story analogous to the factory one, but in a medical
setting instead. The classifiers should distinguish between two
tumour types, requiring two different types of medical intervention.
The confusion matrices are the same (1) and (2). In the present case,
correct or incorrect classification lead to the following expected
remaining life lengths7 for patients in a specific age range:

cla
ss

ifi
er

ou
tp

ut
1

0

true class
0 1[

350 months 0 months
300 months 500 months

]
. (6)

These values might arise in several scenarios. For example, tumours
of class 0 and 1 may require very different kinds of treatment.
If a class 0 tumour is misdiagnosed and not properly treated, it
leads to immediate death (0 months); if correctly diagnosed, its

3 Shannon 1948; Woodward 1964 § 3.2; also Good & Toulmin 1968. 4 Cox 1946; Fine
1973; Jaynes 2003 chs 1–2. Some literature cites Halpern 1999a as a critique of Cox’s proof,
but curiously does not cite Halpern’s 1999b partial rebuttal of his own critique, as well as
the rebuttals by Snow 1998; 2001. 5 Self & Cheeseman 1987; Cheeseman 1988; Russell
& Norvig 2022 ch. 12. 6 cf. Howard 1980. 7 cf. the discussion in Sox et al. 2013 § 11.2.9.

5

Dyrland, Lundervold, Porta Mana Does the evaluation stand up to evaluation?

treatment is usually successful, leading to high life expectancy
(500 months). Class 0 tumours can be treated, but they lead to a
shorter life expectancy (350 months). If they are misdiagnosed as
class 1, however, the damage caused by class 1 treatment shortens
this life expectancy even further (300 months).
This matrix above is numerically equivalent to (4) up to a common
additive constant of 335, so the final net gains are also simply
shifted by this amount. It is easy to see that the metrics are exactly
as in Table 1, the majority favouring classifier B. And yet the use
of classifier A leads to a more than six-month longer expected
remaining life than classifier B.

(e) Often it is not possible to temporarily deploy all candidate classifiers,
as our fictitious manager did, in order to observe which factually
leads to the best results. Or it may even be unethical: consider a
situation like the medical one above, where a classifier may lead to
a larger number of immediate deaths than another.

(f) Finally, all issues listed above are not caused by class imbalance
(the occurrence of one class with a higher frequency than another).
In our story, for example, the two classes were perfectly balanced.
Yet all these issues can worsen for imbalanced datasets8.

But our story also points to a possible solution for all these issues.
The ‘metric’ that ultimately proved to be relevant to the manager was the
average net monetary gain obtained by using a candidate classifier. In
the medical variation discussed in issue (d) above, it was the average life
expectancy. In either case, such metric could have been easily calculated
beforehand, upon gathering information about the average gains and
losses of correct and incorrect classification, collected in the matrix (4)
or (6), and combining these with statistics collected in the confusion
matrix associated with the classifier. Denoting the former kind of matrix
by (𝑈𝑖 𝑗) and the confusion matrix by (𝐶𝑖 𝑗), where 𝑖 indexes the classifier
outputs (rows) and 𝑗 the true classes (columns), such a metric would
have the formula ∑

𝑖 , 𝑗

𝑈𝑖 𝑗 𝐶𝑖 𝑗 (7)

the sum extending to all matrix elements.
8 Jeni et al. 2013; Zhu 2020.

6

Dyrland, Lundervold, Porta Mana Does the evaluation stand up to evaluation?

In the present work, we argue that formula (7) is indeed the only
acceptable metric for evaluating and comparing the performance of two
or more classifiers, each with its own confusion matrix (𝐶𝑖 𝑗) collected
on relevant test data. The coefficients 𝑈𝑖 𝑗 , called utilities, are problem-
dependent. This formula is the utility yield of a classifier having confusion
matrix (𝐶𝑖 𝑗).

Our argument is based on Decision Theory, an overview of which is
given in § 2.

The utility yield (7) is a linear combination of the confusion-matrix
elements, with coefficients independent of the elements themselves. In
§ 3 we explore some properties of this formula and of the space of
such metrics for binary classification. We also show that some common
metrics such as precision, 𝐹1-measure, Matthews correlation coefficient,
balanced accuracy, and Fowlkes-Mallows index cannot be written as a
linear combination of this kind. This impossibility has two consequences
for such a metric. First, it means that the metric is always affected by
some kind of cognitive bias. Second, there is no classification problem
in which the metric correctly ranks the performance of all pairs of
classifiers: using such a metric always leaves open the possibility that
the evaluation is incorrect a priori. On the other hand, metrics such
as accuracy, true-positive rate, true-negative rate can be written in the
form (7). Consequently, each has a set of classification problems in which
it correctly ranks the performance of all pairs of classifiers.

What happens if we are uncertain about the utilities appropriate to a
classification problem? And what happens if the utilities are incorrectly
assessed? We show in § 4 that uncertainty about utilities still leads to a
metric of the form (7). We also show that an evaluation using incorrect
utilities, even with relative errors as large as 20% of the maximal utility,
still leads to a higher amount of correctly ranked classifiers than the use
of any other popular metric.

Some remarks about the area under the curve of the receiver operating
characteristic from the standpoint of our decision-theoretic approach are
given in § 5.

We summarize and discuss our results in the final § 6.

7

Dyrland, Lundervold, Porta Mana Does the evaluation stand up to evaluation?

2 Brief overview of decision theory

2.1 References

Here we give a brief overview of decision theory. We only focus on the
notions relevant to the problem of evaluating classifiers, and simply
state the rules of the theory. These rules are quite intuitive, but it
must be remarked that they are constructed in order to be logically
and mathematically self-consistent: see the following references. For
a presentation of decision theory from the point of view of artificial
intelligence and machine learning, see Russell & Norvig 2022 ch. 15.
Simple introductions are given by Jeffrey 1965; North 1968; Raiffa 1970,
and a discussion of its foundations and history by Steele & Stefánsson
2020. For more thorough expositions see Raiffa & Schlaifer 2000; Berger
1985; Savage 1972; and Sox et al. 2013; Hunink et al. 2014 for a medical
perspective. See also Ramsey’s 1926 insightful and charming pioneering
discussion.

2.2 Decisions and classes

Decision theory makes a distinction between
• the possible situations we are uncertain about: in our case, the

possible classes;
• the possible decisions we can make.

This distinction is important because it prevents the appearance of
various cognitive biases9 in evaluating the probabilities and frequencies
of the possible situations on the one hand, and the values of our decisions
on the other. Examples are the scarcity bias10 “this class is rare, therefore
its correct classification must lead to high gains”, and plain wishful
thinking: “this event leads to high gains, therefore it is more probable”.

Often even the number of classes and the number of decisions
differ. But in using machine-learning classifiers, one typically considers
situations where the set of available decisions and the set of possible
classes have some kind of natural correspondence and equal cardinality.
In a ‘cat vs dog’ image classification, for example, the classes are ‘cat’ and
‘dog’, and the decisions could be ‘put into folder Cats’ vs ‘put into folder

9 Kahneman et al. 2008; Gilovich et al. 2009; Kahneman 2011. 10 Camerer & Kunreuther
1989; Kim & Markus 1999; Mittone & Savadori 2009.

8

Dyrland, Lundervold, Porta Mana Does the evaluation stand up to evaluation?

Dogs’. In a medical application the classes could be ‘ill’ and ‘healthy’
and the decisions ‘treat’ vs ‘dismiss’. As already mentioned, most of our
discussions and examples focus for simplicity on binary classification.

2.3 Utilities and maximization of expected utility

To each decision we associate several utilities, depending on which of the
possible classes is actually true. A utility may, for instance, equal a gain
or loss in money, energy, number of customers, life expectancy, or quality
of life, measured in appropriate units; or it may equal a combination of
such quantities.

These utilities are collected into a utility matrix (𝑈𝑖 𝑗), like the ones
shown in formulae (4), (5), (6). The component 𝑈𝑖 𝑗 is the utility of the
decision corresponding to class 𝑖 if class 𝑗 is true, or simply the utility of
class 𝑖 conditional on class 𝑗.

In an individual classification instance, if we know which class is true,
then the optimal decision is the one having maximal utility among those
conditional on the true class. If, on the other hand, we are uncertain about
which class is true, with probability 𝑝 𝑗 for class 𝑗 such that

∑
𝑗 𝑝 𝑗 = 1,

then decision theory states that the optimal decision is the one having
maximal expected utility �̄�𝑖 , defined as the expected value of the utility
of decision 𝑖 with respect to the probabilities of the various classes:

�̄�𝑖 :=
∑

𝑗

𝑈𝑖 𝑗 𝑝 𝑗 . (8)

In formulae, this principle of maximization of expected utility is

choose class 𝑖∗ = arg max
𝑖

{�̄�𝑖} ≡ arg max
𝑖

{∑
𝑗

𝑈𝑖 𝑗 𝑝 𝑗

}
. (9)

A very important result in decision theory is that basic requirements
of rational decision-making imply that there must be a set of utilities
underlying the decisions of a rational agent, and the decisions must obey
the principle of maximization of expected utility11.

How are utilities determined? They are obviously problem-specific
and cannot be given by the theory (which would otherwise be a model
rather than a theory). Utilities can be obvious in decision problems

11 Russell & Norvig 2022 § 15.2; von Neumann & Morgenstern 1955 chs 2–3.

9

Dyrland, Lundervold, Porta Mana Does the evaluation stand up to evaluation?

involving gains or losses of measurable quantities such as money or
energy (the utility of money is usually not equal to the amount of money,
the relationship between the two being somewhat logarithmic12). In
medical problems they can correspond to life expectancy and quality of
life; see for example Sox et al. 2013 esp. ch. 8 and § 11.2.9 and Hunink
et al. 2014 esp. ch. 4 on how such health factors are transformed into
utilities.

The final utility of a single classification instance may depend, in some
cases, on a sequence of further uncertain events and further decisions.
In the story of § 0, for instance, the misclassification of a short-durability
component as a long-durability one leads the final device to break only
in a high fraction of cases, and in such cases the end customer requires a
refund in a high fraction of subcases; the refunded amount may even
depend on further circumstances. The negative utility 𝑈01 = −335e in
table (4) comes from a statistical average of the losses in all these possible
end results. This is the topic of so-called decision networks or influence
diagrams13. The decision-theory subfield of utility theory gives rules that
guarantee the mutual consistency of a set of utilities in single decisions or
decision networks. For simple introductions to utility theory see Russell
& Norvig 2022 § 15.2, North 1968 pp. 201–205, and the references given
at the beginning of the present section.

In the present work, we do not worry about such rules in order not
to complicate the discussion: they should be approximately satisfied if
the utilities of a problem have been carefully assessed.

3 Evaluation of classifiers from a decision-theoretic perspective

3.1 Admissible evaluation metrics for classification problems

Maximization of expected utility is the ground rule for rational decision
making14. In the present work we focus on the stage where a large
number of classifications have already been made by a classifier on a test
dataset with 𝑁 data. Denote by 𝐹𝑖 𝑗 the number of instances in which the
classifier chose class 𝑖 and the true class was 𝑗. Then (𝐹𝑖 𝑗) is the confusion
matrix of the classifier on this particular test set. For all instances in

12 e.g. North 1968 pp. 203–204; Raiffa 1970 ch. 4. 13 Besides the general references already
given: Russell & Norvig 2022 § 15.5; Howard & Matheson 2005; for a step-by-step tutorial:
Raiffa 1970. 14 We discuss and use it in our companion work Dyrland et al. 2022.

10

Dyrland, Lundervold, Porta Mana Does the evaluation stand up to evaluation?

which the classifier chose class 𝑖 and the true class was 𝑗, a utility 𝑈𝑖 𝑗 is
eventually gained. The total utility yielded by the classifier on the test
set is therefore

∑
𝑖 𝑗 𝑈𝑖 𝑗 𝐹𝑖 𝑗 . Dividing by 𝑁 we obtain the average utility

per datum, which we call the utility yield; it can be written as

∑

𝑖 𝑗

𝑈𝑖 𝑗 𝐶𝑖 𝑗 (10)

where 𝐶𝑖 𝑗 := 𝐹𝑖 𝑗/𝑁 is the relative frequency of choice 𝑖 and true class 𝑗,
and (𝐶𝑖 𝑗) is the normalized confusion matrix.

The utility yield, formula (10), is therefore the natural metric to evaluate and
compare the performance of classifiers on a test set for a classification problem
characterized by the utility matrix (𝑈𝑖 𝑗).

Note how the utilities 𝑈𝑖 𝑗 cannot depend on the frequencies 𝐹𝑖 𝑗 or
𝐶𝑖 𝑗 . If they did, it would mean that we had waited until all classification
instances had been made in order to assess the value of each single
instance. This would be a source of evaluation bias, such as the scarcity
bias mentioned in § 2.2. It would, moreover, be an impossible procedure
in contexts where the consequence of a single classification is manifest
before the next classification is made.

If we modify the elements of a utility matrix by a common additive
constant or by a common positive multiplicative constant,

𝑈𝑖 𝑗 ↦→ 𝑎 𝑈𝑖 𝑗 + 𝑏 𝑎 > 0 , (11)

then the final utilities yielded by a classifier with a particular confusion
matrix are modified by the same constants. The ranking of any set of
classifiers will therefore be the same. After all, an additive constant or a
positive factor represent only changes in the zero or the measurement
unit of our utility scale15. Such changes should not affect a decision
problem. Indeed, the fact that they do not is another example of the
logical consistency of decision theory.

3.2 Space of utility matrices for binary classification

Let us consider a problem of binary classification. It is characterized by a
matrix of 2× 2 utilities. We suppose that they are not all equal; the choice
of class would be immaterial otherwise, and the classification problem

15 cf. Russell & Norvig 2022 § 15.2.2.

11

Dyrland, Lundervold, Porta Mana Does the evaluation stand up to evaluation?

Figure 1 Space of utility matrices for binary classification.

trivial. We can use the freedom of choosing a zero and measurement unit
to bring the utility matrix to a standard form. Let us choose them such
that the maximum utility is 1 and the minimum utility is 0 (note that
this value may still correspond to an actual monetary loss, for example).
That is, we are effecting the transformation

𝑈𝑖 𝑗 ↦→
𝑈𝑖 𝑗 − min(𝑈𝑖 𝑗)

max(𝑈𝑖 𝑗) − min(𝑈𝑖 𝑗) . (12)

With this convention, it is clear that we only have two degrees of freedom
in choosing the utility matrix of a binary-classification problem. As a
consequence, the space of possible evaluation metrics for binary classifications
is two-dimensional. In order to evaluate candidate classifiers for a binary-
classification problem, we must choose a point from this space.

We can represent this space as in fig. 1. The centre is the utility
matrix with equal maximum utilities for correct classification and equal
minimum utilities for incorrect classification; we shall see later that it
corresponds to the use of accuracy as the evaluation metric. Moving to
the left from the centre, the utility for correct classification of class 1
decreases with respect to class 0; vice versa moving to the right. Moving

12

Dyrland, Lundervold, Porta Mana Does the evaluation stand up to evaluation?

upwards from the centre, the utility for misclassification of class 1
increases; moving downwards, the utility for misclassification of class 0
increases. We have excluded utility matrices in which misclassification
has a higher utility than correct classification (although they may occur
in some situations); they would appear in the missing upper-left and
lower-right corners. Fixing (𝑥, 𝑦) axes through the centre of the set, a
utility matrix has coordinates[

1 − 𝑥 δ(𝑥 > 0) 𝑦 δ(𝑦 > 0)
−𝑦 δ(𝑦 < 0) 1 + 𝑥 δ(𝑥 < 0)

]
. (13)

Note that this representation is not meant to reflect any convex or
metric properties, however. No metric or distance is defined in the
space of utility matrices. Convex combination is defined if we drop the
normalization (12) but it is not correctly reflected in the representation
of fig. 1.

3.3 Relationship with common metrics

In § 3.1 we found that the most general evaluation metric according to
decision theory must be a linear combination of the confusion-matrix
elements. The coefficients of this linear combination cannot depend on
the confusion-matrix elements themselves, because such a dependence
would reflect some sort of cognitive bias. Which common popular metrics
adhere to this mathematical form? We want to answer this question in
the binary-classification case while giving as much allowance as possible
in the typical context in which popular metrics are used.

Consider the case in which we are comparing several classifiers on
the same test set. The number of data 𝑁 and the relative frequencies 𝑓0 , 𝑓1
with which the two classes ‘0’, ‘1’ occur in the test set are fixed and
constant for all classifiers under evaluation.

A classifier yields a normalized confusion matrix (𝐶𝑖 𝑗) which we
write in the format

cla
ss

ifi
er

ou
tp

ut
1

0

true class
0 1[
𝐶00 𝐶01
𝐶10 𝐶11

]
.

Owing to the constraints 𝐶00 + 𝐶10 ≡ 𝑓0 and 𝐶01 + 𝐶11 ≡ 𝑓1 we can
always make two elements of the confusion matrix appear or disappear

13

Dyrland, Lundervold, Porta Mana Does the evaluation stand up to evaluation?

from any formula, replacing them with expressions involving the re-
maining two elements and the class frequencies. To avoid ambiguities
in interpreting the functional form of mathematical formulae, let us
agree to always express them in terms of 𝐶00 and 𝐶11 only, making the
replacements 𝐶10 = 𝑓0 − 𝐶00, 𝐶01 = 𝑓1 − 𝐶11 wherever necessary.

Recall that, given a utility matrix, we can always modify its elements
by a common positive multiplicative constant 𝑎 and by a common
additive constant 𝑏, eq. (11), because such a modification corresponds to
a change of unit and zero of the utility scale. With such a modification
the evaluation metric (10) takes the equivalent form

𝑎
∑

𝑖 𝑗

𝑈𝑖 𝑗 𝐶𝑖 𝑗 + 𝑏 (14)

because
∑

𝑖 𝑗 𝐶𝑖 𝑗 ≡ 1. Writing the sum explicitly and rewriting the ele-
ments 𝐶10 , 𝐶01 in terms of 𝐶00 , 𝐶11 as discussed above, this formula
becomes

𝑎 (𝑈00 −𝑈10) 𝐶00 + 𝑎 (𝑈11 −𝑈01) 𝐶11 + 𝑎 𝑓0 𝑈10 + 𝑎 𝑓1 𝑈01 + 𝑏 . (15)

Since in the present context 𝑁, 𝑓0 , 𝑓1 are constants, we are free to
construct the arbitrary constants 𝑎 > 0 and 𝑏 from them in any way we
please:

𝑎 = 𝑎(𝑁, 𝑓0 , 𝑓1) > 0 , 𝑏 = 𝑏(𝑁, 𝑓0 , 𝑓1) . (16)

We can also use this freedom to include the term 𝑎 𝑓0 𝑈10 + 𝑎 𝑓1 𝑈01 into
𝑏 in the formula above. We conclude that an evaluation metric for binary
classification complies with decision theory if and only if it can be written in the
general form

𝑎(𝑁, 𝑓0 , 𝑓1) 𝑋 𝐶00 + 𝑎(𝑁, 𝑓0 , 𝑓1) 𝑌 𝐶11 + 𝑏(𝑁, 𝑓0 , 𝑓1) (17)

where 𝑋,𝑌 are constants that do not depend on 𝐶00 , 𝐶11 , 𝑁 , 𝑓0 , 𝑓1; and 𝑎(·) >
0, 𝑏(·) are arbitrary functions of 𝑁, 𝑓0 , 𝑓1 only.

A monotonic function (such as an exponential) of such form is also
admissible if we only require a comparison score to rank several classifiers
from best to worst.

Let us examine some common evaluation metrics for binary classi-
fication from this point of view. We write their formulae in terms of
𝐶00 , 𝐶11.

The following metrics are particular instances of formula (17):

14

Dyrland, Lundervold, Porta Mana Does the evaluation stand up to evaluation?

✓ Accuracy: 𝐶00 + 𝐶11. We have 𝑎 = 1, 𝑋 = 𝑌 = 1, 𝑏 = 0. Indeed it
corresponds to the utility yield based on the identity utility matrix
(𝑈𝑖 𝑗) =

[1 0
0 1

]
(or equivalently a utility matrix that assigns the same

utility to the correct classification of any class, and the same, lower
utility to the misclassification of any class).

✓ True-positive rate (recall): 𝐶00/ 𝑓0. Here 𝑎 = 1/ 𝑓0, 𝑋 = 1, 𝑌 = 0, 𝑏 = 0.
It corresponds to using the utility matrix

[1 0
0 0

]
.

✓ True-negative rate (specificity): 𝐶11/ 𝑓1. Here 𝑎 = 1/ 𝑓1, 𝑋 = 0, 𝑌 = 1,
𝑏 = 0. It corresponds to using the utility matrix

[0 0
0 1

]
.

The following metrics instead cannot be written in the form (17), nor
as monotonic functions of that form:

✗ Precision: 𝐶00/(𝐶00 − 𝐶11 + 𝑓1). Non-linear in 𝐶00 , 𝐶11.
✗ 𝐹1-measure: 2𝐶00/(𝐶00 − 𝐶11 + 1). Non-linear in 𝐶00 , 𝐶11. The same

is true for the more general 𝐹β -measures.

✗ Matthews correlation coefficient: 𝑓1 𝐶00+ 𝑓0 𝐶11√
𝑓0 𝑓1 (𝑓1+𝐶00−𝐶11) (𝑓0+𝐶11−𝐶00)

. Non-

linear in 𝐶00 , 𝐶11.
✗ Fowlkes-Mallows index: 𝐶00/

√
𝑓0 (𝑓1 + 𝐶00 − 𝐶11). Non-linear in

𝐶00 , 𝐶11.
✗ Balanced accuracy: 𝐶00/(2 𝑓0) + 𝐶11/(2 𝑓1). Despite being linear in

𝐶00 , 𝐶11 and an average of two metrics (true-positive and true-
negative rate) that are instances of formula (17), it is not an instance
of that formula, because the two averaged metrics involve different
𝑎(·) functions.

We see that many popular evaluation metrics do not comply with the
principles of decision theory. Any such metric suffers from two problems.

First, as discussed in § 2, the metric involves an interdependence
of utilities and classification frequencies, which implies some form of
cognitive bias16.

Second, the ranking of confusion matrices yielded by the metric does
not fully agree with that yielded by any utility matrix – a full agreement
would otherwise imply that the metric could be written in the form (17).
Some confusion matrices must therefore be incorrectly ranked. Since
any rational classification problem is characterized by some underlying

16 Hand & Christen 2018 discuss such biases regarding the 𝐹1-measure.

15

Dyrland, Lundervold, Porta Mana Does the evaluation stand up to evaluation?

utility matrix, this means that the incompliant metric will always lead
to some wrong evaluations. By contrast, compliant metrics such as the
accuracy give completely correct rankings for all pairs of confusion
matrices in specific sets of classification problems.

The second phenomenon is illustrated in the plots of figs 2–3. Each
blue dot in a plot represents a hypothetical confusion matrix obtained
from a test dataset in a binary classification. The dot’s coordinates
are the utility yield of that confusion matrix according to a particular
utility matrix underlying the classification problem, and the score of the
confusion matrix according to another metric. The underlying utility
matrix is

[1 0
0 1

]
for all plots in the left column, and

[1 0
0 0

]
for all plots

in the right column. The other metrics considered, one for each row of
plots, are accuracy, true-positive rate (recall, class 0 being ‘positive’),
𝐹1-measure, Matthews correlation coefficient.

The confusion matrices are selected by first fixing a proportion of
classes in the dataset, which is 50%/50% (balanced dataset) for all plots
in fig. 2 and 90%/10% (imbalanced dataset) for all plots in fig. 3. Then a
true-positive rate and a true-negative rate are independently selected
from the range [1/2, 1], with a probability lin-
early increasing in the rate (median of 0.85, lower
and upper quartiles at 0.75 and 0.93; see side
plot). These confusion matrices therefore rep-
resent the classification statistics produced by
classifiers that tend to have good performance –
as is clear from the fact that the points tend to
accumulate on the upper-right corners of the
plots.

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

true−positive/negative rate

pr
ob

ab
ili

ty
 d

en
si

ty

We see that the accuracy (first-row plots) always gives correct relative
evaluations of all confusion matrices when the underlying utility matrix
is equivalent to

[1 0
0 1

]
(left column): the y-coordinate is a monotonically

increasing function – in fact a linear function – of the x-coordinate. Accur-
acy is indeed the utility yield corresponding to the identity utility matrix.
The true-positive rate (second-row plots) always gives correct relative
evaluations (provided the test set is the same) when the underlying
utility matrix is equivalent to

[1 0
0 0

]
(right column).

On the other hand, if any of these two metrics is used for a problem
having a different underlying utility matrix, then there is no deterministic
relationship between the metric’s score and the actual utility yield. In

16

Dyrland, Lundervold, Porta Mana Does the evaluation stand up to evaluation?

Figure 2 Relationship between various evaluation metrics and actual utility yields for two
different binary-classification problems with underlying utility matrices

[1 0
0 1

]
(left column)

and
[1 0

0 0
]

(right column). All confusion matrices (blue dots) are obtained from a dataset
with 50%/50% class balance. Pairs of red triangles in a plot show two confusion matrices
that are wrongly ranked by the metric (y-axis) with respect to the actual utility yield
(x-axis). Clearly, there can even be three or more confusion matrices ranked in completely
reverse order by the metric. The accuracy yields correct evaluations the classification
problem on the left column; and the true-positive rate, for the one on the right.

17

Dyrland, Lundervold, Porta Mana Does the evaluation stand up to evaluation?

Figure 3 As for fig. 2 but for confusion matrices obtained from an imbalanced dataset
with 90% occurrence of class 0 (‘positive’) and 10% of class 1 (‘negative’).

18

Dyrland, Lundervold, Porta Mana Does the evaluation stand up to evaluation?

this case it is always possible to find two or more confusion matrices
for which the metric gives completely reversed evaluations with respect
to the actual utility yield. In other words, the confusion matrix – and
associated algorithm – which is worst according to the true utility, is
ranked best by the metric; and vice versa. Pairs of red triangular shapes
in a plot are examples of such confusion matrices wrongly ranked by
the y-axis metric.

Metrics such as accuracy and true-positive rate, complying with
formula (17), thus require us to rely on evaluation luck only when they
are used in the wrong classification problem.

The plots for the 𝐹1-measure (third-row plots) and Matthews correla-
tion coefficient (fourth-row plots) show that these two metrics do not
have any functional relationship with the actual utility yield. It is again
always possible to find two or more confusion matrices for which either
metric gives completely reversed evaluations with respect to the actual
utility yield. But for these two metrics, unlike accuracy and true-positive
rate, cases of incorrect evaluation will always occur in every classification
problem.

Metrics such as 𝐹1-measure and Matthews correlation coefficient, not
complying with formula (17), thus always require us to rely on luck in our
evaluations. There are no classification problems for which these metrics
lead to always correct evaluations.

A metric non-compliant with decision theory can lead to a large
number of correct results for some classification problems and test sets.
The bottom-left plot of fig. 2, for instance, shows that the Matthews
correlation coefficient is almost a monotonically increasing deterministic
function of the utility yield when the underlying utility matrix is the iden-
tity and the dataset is balanced (but it is not when the underlying utility
matrix is

[1 0
0 0

]
or the dataset is imbalanced; see corresponding plots).

Such an occasional partial agreement is useless, however. Knowledge of
the utility matrix is a prerequisite for relying on such partial agreement–
but given such knowledge we can directly use the actual utility yield
instead, which has an exact agreement and is easier to compute.

4 Unknown or incorrect utilities

So far, we have argued that the natural evaluation metric for a classifier
is the utility yield of its confusion matrix, according to the utilities

19

Dyrland, Lundervold, Porta Mana Does the evaluation stand up to evaluation?

underlying the classification problem of interest. We have also argued
that many popular metrics, those not complying with formula (17), must
always a priori lead to instances of incorrect evaluation. Our arguments
are based on the principles of decision theory.

Several interrelated questions spring from our arguments, though:
• What to do when we are uncertain about the utilities underlying a

classification problem?
• What happens if the utilities we use are actually wrong, that is, not

the true ones underlying the problem?
• How often do uncompliant metrics such as 𝐹1-measure or Matthews

correlation coefficient lead to incorrect results, on average?
In fact, if a small error in the assessment of the utilities led to a large
number of wrong evaluations, while incompliant metrics led to a small
number of wrong evaluations on average, then all the rigorousness of
decision-theoretic metrics would be useless in practice, and incompliant
metrics would be best for real applications.

This is not the case, however. We now discuss how to deal with
uncertainty about the utilities and present an important result: Using
wrong utilities, even with relative errors almost as large as 20% of the
maximum utility, still leads to fewer incorrect relative evaluations on
average than using many currently popular metrics.

4.1 Unknown utilities; average performance on several classification
problems

Dealing with unknown utilities is straightforward. Suppose we are
uncertain whether the utility matrix appropriate to a classification
problem is U(1) ≡ (

𝑈 (1)
𝑖 𝑗

)
, or U(2), or U(3), and so on, where the number of

alternatives can even be infinite or continuous. Each alternative U(𝑎) has
a probability 𝑞𝑎 , or probability density 𝑞(𝑎) d𝑎 in the continuous case.
Then for this classification problem, we should use the expected utility matrix

Û := 𝑞1 U(1) + 𝑞2 U(2) + 𝑞3 U(3) + · · · (18)

or Û :=
∫
𝑞(𝑎)U(𝑎) d𝑎 in the continuous case.

We only give a sketch of the proof of this intuitive result17. If we
are uncertain about the utility matrix, then we have a double decision
17 see e.g. Raiffa 1970 esp. ch. 3.

20

Dyrland, Lundervold, Porta Mana Does the evaluation stand up to evaluation?

problem: choosing the optimal utility and choosing the optimal class. If
the true utility matrix is, for instance, U(2) ≡ (

𝑈 (2)
𝑖 𝑗

)
, and the true class is

class 0, then choosing class 1 would yield a utility 𝑈 (2)
10 , choosing class 0

would yield a utility𝑈 (2)
00 , and so on. Our double decision problem is thus

characterized by a rectangular utility matrix that is the row-concatenation
of the utility matrices U(𝑎). We make the realistic judgement that the
probabilities 𝑞𝑎 of the utility matrices and the probabilities 𝑝 𝑗 of the
classes are independent, so that 𝑞𝑎 · 𝑝 𝑗 is the probability that the true
utility matrix is U(𝑎) and the true class is 𝑗. The principle of maximum
expected utility, § 2.3 eq. (9), then leads to the maximization of the
expected utilities

�̄�𝑖 :=
∑

𝑗 ,𝑎

𝑈 (𝑎)
𝑖 𝑗 𝑞𝑎 · 𝑝 𝑗 ≡

∑

𝑗

[∑
𝑎

𝑞𝑎 𝑈
(𝑎)
𝑖 𝑗︸ ︷︷ ︸

Û

]
𝑝 𝑗 (19)

in which the expected utility matrix (18) appears as an ‘effective’ utility
matrix to be used for the class-decision problem alone.

If our uncertainty is symmetric with respect to the utilities conditional
on the different classes – for instance, our uncertainty about the utilities
conditional on class 0 is the same as on class 1 – then the expected
utility matrix is equivalent to the identity matrix. The utility yield is
in this case equal to the accuracy. The accuracy is therefore the natural
evaluation metric to use if we are in a complete state of uncertainty
regarding the underlying utilities. This fact is indeed reflected in some
results discussed in § 4.2.

For binary classification the set of possible utility matrices can be
represented as in fig. 1, as discussed in § 3.2. Our uncertainty about the
true underlying utility matrix corresponds to a discrete or continuous
distribution of probability over this set. Note, however, that the expected
utility matrix (18) does not correspond to the mass-centre of the distribu-
tion, because of the peculiar coordinate system used in that figure. The
actual mass-centre is obtained by representing the set of utility matrices
as a two-dimensional surface (a tetrahedron) in three-dimensional space.
For brevity we do not discuss this representation in the present work.

The procedure of averaging utilities, formula (18), also applies if
we want to evaluate how a classifier performs on average on several

21

Dyrland, Lundervold, Porta Mana Does the evaluation stand up to evaluation?

classification problems, which differ in their utility matrices. Again, what
we need to use is the average of their utility matrices.

4.2 Consequences of wrong utility assessments and comparison with
common metrics

It may happen that our assessment of the utility matrix of a classification
problem is incorrect, especially if it has been made on semi-quantitative
grounds owing to a lack of information. Then our comparative eval-
uations of classifiers may also end up being incorrect. What is the
probability of an incorrect comparative evaluation, on average, in such
cases? and how does it depend on the amount of error in the utilities? Is
it higher than the probability of incorrect evaluation by other metrics?

A precise answer to these questions is extremely difficult if not
impossible because to define ‘on average’ we would need to conduct
a survey of classification problems of any kind, collecting statistics
about their underlying utility matrices, about the confusion matrices
of candidate classification algorithms for their solution, and about the
errors committed in assessing utilities. We try to give a cursory answer
to the questions above for the binary-classification case, based on the
following assumptions and judgements:

(i) Two possible distributions of true utility matrices on the set of fig. 1
(in that coordinate system): 1. a uniform distribution; 2. a bivariate
(truncated) gaussian distribution centred on the identity matrix[1 0

0 1
]

and with standard deviation 1/3 in the 𝑥 and 𝑦 coordinates
of eq. (13), illustrated in fig. 4.

(ii) A distribution of confusion matrices for which the fraction of one
class is uniformly distributed in [0, 1], and the true-positive and
true-negative rates are independently distributed in [0.5, 1] with
linearly increasing probabilities (median of 0.85, lower and upper
quartiles at 0.75 and 0.93; see side plot on p. 16). This means that we
consider problems with highly imbalanced data to be as common
as problems with balanced data (a realistic assumption, according
to our experience), and candidate classifiers to be generally good.

(iii) A truncated gaussian distribution of error around each true utility-
matrix element, centred on the true utility value. We consider
standard deviations ranging from 0 to 0.3. The gaussian must be
truncated because each true utility has a value between 0 and 1, and

22

Dyrland, Lundervold, Porta Mana Does the evaluation stand up to evaluation?

Figure 4 Truncated gaussian distribu-
tion in the space of utility matrices of
fig. 1, described in item (i).

Figure 5 Extents of errors having stand-
ard deviations 0.1 (blue triangles) and 0.2
(red squares), around the utility matrices[0.5 0.5

0 1
]

and
[1 0

0.5 0.5
]

(black diamonds).

because we require the utilities of correct classifications to be larger
than those of incorrect ones. Figure 5 illustrates the extent of such
an error in the space of utility matrices, for standard deviations
equal to 0.1 (blue triangles) and 0.2 (red squares).

Under these assumptions, we calculate how often a pair of classifiers,
having two confusion matrices with the same class proportions, is
evaluated in reverse order, with respect to their true utility yield, when
an incorrect utility matrix or another metric is used for the evaluation.
This calculation is an integration problem that we solve by Monte Carlo
sampling. The procedure is intuitive:

1. Select a ‘true’ utility matrix according to the distribution (i).
2. Select errors around the elements of the true utility matrix, accord-

ing to the distribution (iii), and add them to it.
3. Select a class proportion and then two confusion matrices having

that class proportion (the class proportion must be the same since
the matrices are obtained from the same data), according to the
distributions (ii).

4. Calculate the signed difference between the true utility yield of
the second confusion matrix and that of the first confusion matrix,
using the true utility from step 1. If this difference is positive, then

23

Dyrland, Lundervold, Porta Mana Does the evaluation stand up to evaluation?

the second confusion matrix has higher utility than the first; if
negative, then the first confusion matrix has higher utility than the
second.

5. a. Consider several metrics (precision, Matthews correlation
coefficient, and so on). For each, calculate the signed difference
between the score it gives to the second confusion matrix, and
the score it gives to the first.

b. Consider the erroneous utility matrix from step 2. Calculate
the signed difference between the utility yield of the second
confusion matrix and that of the first confusion matrix, using
this erroneous utility matrix.

In either case, a positive difference means that the second confusion
matrix is ranked ‘best’ and the second ‘worst’, and vice versa for a
negative difference.

6. Now go through the signed differences obtained in step 5, and
compare them, in turn, with the signed difference obtained in step 4.
If the difference from step 5 has opposite sign to that of step 4, then
the two confusion matrices are oppositely and incorrectly ranked
by the corresponding metric or by the erroneous utility matrix.

The results of this sampling procedure for the case of uniform
distribution of true utility matrices, several metrics, and utilities affected
by errors with 0.1 standard deviation, are shown in fig. 6. Each point
represents a pair of confusion matrices (step 3); its coordinates are the true
utility yield and either the score given by a metric or (last plot) the yield
according to the incorrect utility matrix. The red or yellow triangular
points in the II and IV quadrants (discordant signs) are incorrectly
ranked pairs. The percentages of incorrect rankings are calculated from
106 samples, giving slightly more than one decimal significant digit;
fewer samples are shown in the plots.

The plots are displayed in order (left-right, top-bottom) of decreasing
percentages of incorrect rankings. The accuracy metric proves to be the
best among the ones considered, leading to 8.7% incorrect pairwise
rankings. But we see that a utility matrix affected by gaussian errors
with 0.1 standard deviation is even better, yielding 4% incorrect pairwise
rankings.

The dependence of the fraction of incorrect rankings on the standard
deviation of the error affecting the utilities is shown in the plots of fig. 7,

24

Dyrland, Lundervold, Porta Mana Does the evaluation stand up to evaluation?

Figure 6 Relationship between difference in utility yields according to a ‘true’ utility
matrix, and difference in scores according to other metrics including an incorrectly assessed
utility matrix (error with 0.1 standard deviation). Points landing in the II or IV quadrants
represent pairs of confusion matrices that were wrongly compared.

25

Dyrland, Lundervold, Porta Mana Does the evaluation stand up to evaluation?

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0

2

4

6

8

10

12

14

16

18

20

22

24

26

standard deviation of error in utilities

in
co

rr
ec

tly
 r

an
ke

d
pa

irs
/%

 True−positive rate

 Precision

 Balanced accuracy

 Matthews Corr. Coeff.
 Fowlkes−Mallows index
 F1−measure
 Accuracy

(with uniform distribution of true utility matrices)

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0

2

4

6

8

10

12

14

16

18

20

22

24

26

standard deviation of error in utilities

in
co

rr
ec

tly
 r

an
ke

d
pa

irs
/%

 True−positive rate

 Precision

 Balanced accuracy

 Matthews Corr. Coeff.
 Fowlkes−Mallows index
 F1−measure

 Accuracy

(with gaussian distribution of true utility matrices)

Figure 7 Dependence of the proportion of incorrectly ranked pairs of confusion matrices,
on the standard deviation of the assessment error on the utilities. Top plot: case with
uniform distribution of true utility matrices. Bottom plot: case with gaussian distribution
of true utility matrices, as in fig. 4.

26

Dyrland, Lundervold, Porta Mana Does the evaluation stand up to evaluation?

for the case of uniform distribution (top plot) and gaussian distribution
(bottom plot) of true utility matrices. It is approximately linear. The plots
also report the fractions of incorrect rankings for the other metrics. We
see that evaluations based on a utility matrix affected by errors with
standard deviation up to 0.15 or even 0.25 are still more reliable than
evaluations based on the other reported metrics. This is a remarkable
fact, considering that errors with such standard deviations are quite
large, as was shown in fig. 5.

A utility error with standard deviations around 0.25 covers the whole
space of utility matrices almost uniformly (cf fig. 5). Such a large error
means that we are almost completely uncertain about the utilities to
start with. It therefore makes sense that the accuracy, equivalent to using
the identity utility matrix, becomes a more reliable metric when this
error level is reached: as we saw in § 4.1, the identity utility matrix is the
natural one to use in a state of complete uncertainty about the utilities.
This result is just another example of the internal consistency of Decision
Theory.

5 What about the area under the curve of the receiver operating
characteristic?

Another very common metric for evaluating binary classifiers is the
Area Under the Curve of the Receiver Operating Characteristic, or ‘area
under the curve’ for short. This metric can only be used for particular
classifying algorithms, and its meaning is different from that of the
metrics reviewed so far. For these reasons, we leave a full discussion of it
to future works and only offer a couple of remarks here.

The area under the curve can only be computed for classifiers that
output a continuous variable rather than a class. A threshold for this
variable determines whether its value predicts one class or the other.
Different choices of threshold lead to different pairs of false-positive rate
𝑓 (which is 1 − true-negative rate) and true-positive rate 𝑡 in a given
test set. These pairs can be plotted as a curve 𝑓 ↦→ 𝑡(𝑓) on a graph with
corresponding axes. Given the proportion of classes in the test set, every
point on such curve corresponds to a possible confusion matrix 𝐶𝑖 𝑗(𝑓)
that the classifier can produce depending on the threshold chosen. The
area subtended by such curve is a weighted average of true-positive rates
with a peculiar choice of weights; the weights are uniform as a function

27

Dyrland, Lundervold, Porta Mana Does the evaluation stand up to evaluation?

of the false-positive rate, but generally not uniform as a function of the
threshold, for example. The meaning and proper use of the receiver
operating characteristic are discussed in a classic by Metz 1978, see
especially p. 290.

From the standpoint of decision theory, two remarks can be made18.
First, according to the principle of maximum expected utility, § 2.3, we
should choose a threshold and corresponding false-positive rate 𝑓 ∗ such
as to maximize the utility yield, given by eq. (10):

choose 𝑓 ∗ = arg max
𝑓

{ 1∑

𝑖 , 𝑗=0
𝑈𝑖 𝑗 𝐶𝑖 𝑗(𝑓)

}
. (20)

Any other values of 𝑓 and of the threshold are irrelevant. Averages over
𝑓 values are therefore irrelevant as well. Second, suppose our goal is
to evaluate the average performance over several possible classification
problems. In that case, the quantities to be averaged are the utility
matrices of those classification problems, as discussed in § 4.1, yielding
a unique expected utility matrix. Once this is computed, we go back to a
single choice of 𝑓 according to our first remark.

Owing to these issues, the area under the curve suffers from the
same problems as the non-compliant metrics discussed in § 3.3: in every
classification problem, it always leads to cases of incorrect evaluation.

A correct use of the receiver-operating-characteristic curve 𝑡(𝑓) can be
made, however. It is explained in Metz 1978 section Cost/Benefit Analysis
p. 295, and in Sox et al. 2013 § 5.7.4 (curiously Sox et al. also mention the
generally erroneous criterion of the area under the curve).

Denote the proportion of class 0 (positive) in the test set by 𝐵. The
confusion matrix as a function of 𝑓 is then[

𝐶00(𝑓) 𝐶01(𝑓)
𝐶10(𝑓) 𝐶11(𝑓)

]
=
[

𝐵 𝑡(𝑓) (1 − 𝐵) 𝑓
𝐵 [1 − 𝑡(𝑓)] (1 − 𝐵) (1 − 𝑓)

]
. (21)

The sum in formula (20) above can then be explicitly written, rearranging
some terms,

1∑

𝑖 , 𝑗=0
𝑈𝑖 𝑗 𝐶𝑖 𝑗(𝑓) ≡ (𝑈00 −𝑈10) 𝐵 𝑡(𝑓) − (𝑈11 −𝑈01) (1 − 𝐵) 𝑓 +

𝑈10 𝐵 +𝑈11 (1 − 𝐵) . (22)

18 similar points are made by Baker & Pinsky 2001; Lobo et al. 2008.

28

Dyrland, Lundervold, Porta Mana Does the evaluation stand up to evaluation?

The principle of maximum expected utility (20) is then equivalent to the
following condition, obtained using the explicit sum above but dropping
the constant term on the second line for simplicity:

choose 𝑓 ∗ = arg max
𝑓

{(𝑈00 −𝑈10) 𝐵 𝑡(𝑓) − (𝑈11 −𝑈01) (1− 𝐵) 𝑓 } . (23)

The function in braces is monotonically increasing because 𝑡(𝑓) is (we
assume, as always, that the utility of correct classification of a class is
higher than that of misclassification, so 𝑈00 −𝑈10 ⩾ 0 and 𝑈11 −𝑈01 ⩾ 0).
Its maximum can thus be found by setting its derivative to zero:

choose 𝑓 ∗ such that 𝑡′(𝑓 ∗) = (𝑈11 −𝑈01) (1 − 𝐵)
(𝑈00 −𝑈10) 𝐵 . (24)

If we have several classifiers, each with its own curve 𝑡(𝑓), then the best is

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

false−positive rate f

tr
ue

−
po

si
ti

ve
 r

at
e

 t

Figure 8 Receiver-operating-characteristic curves of two classifiers. The red dashed curve
clearly subtends a larger area than the blue solid curve. Yet the classifier with the latter
curve yields a higher utility, because it touches the family of parallel lines, eq. (25), at a
higher point. This example arises for a utility matrix equal to

[4 0
0 1

]
and a test set with

𝐵 = 0.5 (balanced), or for a utility matrix equal to
[1 0

0 1
]

and a test set with 𝐵 = 0.8.

29

Dyrland, Lundervold, Porta Mana Does the evaluation stand up to evaluation?

the one tangent to the line

𝑡 =
(𝑈11 −𝑈01) (1 − 𝐵)

(𝑈00 −𝑈10) 𝐵 𝑓 + const. (25)

that has the highest intercept.
From this criterion it can be seen geometrically that if a classifier has

its curve 𝑡(𝑓) completely above the curve of another classifier, then it must
have a higher utility yield. But nothing, in general, can be said if the
curves of the two classifiers cross. It is the tangent of a receiver-operating-
characteristic curve that matters, not its subtended area. Figure 8 shows
an example of this.

6 Summary and discussion

The evaluation and ranking of classification algorithms is a critical stage
in their development and deployment. Without such evaluation we
cannot even say whether an algorithm is better than another, or whether
a set of parameter values for a specific algorithm is better than another
set.

And yet, at present, we have not an evaluation theory but only an
evaluation folklore: different procedures, proposed only out of intuition
and of analysis of special cases, with fuzzy criteria to decide which
should be used, and without rigorous theoretical foundations that
should guarantee uniqueness and universality properties and absence
of biases. We believe that some of the surprising failures of machine
learning in actual applications19 come not only from biases in the choice
of test datasets and other similar biases but also from the use of wrong
evaluation metrics in the development stage.

In the present work, we have argued that theoretical foundations for
the evaluation process are available in Decision Theory. Its main notions
and principle – utilities and their maximization – are very intuitive, as
shown (we hope) by the introductory story.

These are the main results of the application of decision theory to
the evaluation of classifiers:

• The evaluation metric must depend on the specific classification
problem.

19 see e.g. Varoquaux & Cheplygina 2022.

30

Dyrland, Lundervold, Porta Mana Does the evaluation stand up to evaluation?

• Such metric is completely defined by 𝑛2 parameters, called utilities,
collected in a utility matrix; 𝑛 is the number of classes. Two parameters
are arbitrary and represent a zero and measurement unit of the utility
scale. In the binary-classification case, this means that we have a two-
dimensional set of possible metrics.

• The score of a classifier on a test set is simply given by its utility
yield: the grand sum of the products of the elements of the utility matrix
and the confusion matrix of the classifier. It is a simple linear expression
in the confusion-matrix elements.

• A utility matrix, obtained from an average, is also used when
we are uncertain about the utilities underlying a classification problem
or when we want to consider the average performance over several
classification problems.

• Some popular metrics such as precision, balanced accuracy, Mat-
thews correlation coefficient, Fowlkes-Mallows index, 𝐹1-measure, and
area under the receiver-operating-characteristic curve do not comply
with decision theory. As a consequence, they are affected by cognitive
biases and always lead to some erroneous comparative evaluations of
classifiers in every classification problem, even when all utilities and
frequencies are correctly assessed.

• Using a utility matrix with incorrectly assessed utilities still leads,
on average, to fewer wrong comparative evaluations than using other
popular metrics.

We believe that the decision-theoretic evaluation of classifiers also
has remarkable advantages:

First, it translates the fuzzy problem “which of the numerous scores
should I rely on?” into a more structured, thus easier to confront, one:
to assess, at least semi-quantitatively, how many times more valuable,
desirable, or useful is the correct classification of a class than its incorrect
classification, than the correct classification of another class, and so
on. Such utilities usually have a more immediate, problem-dependent
interpretation than other metrics.

Second, it leads to a mathematically simple, computationally con-
venient metric: a linear combination of confusion-matrix elements – no
need for non-linear functions or integration of curves.

Third, the principles of the underlying theory guide us if we have
to face new peculiar problems. Imagine, for instance, a classification

31

Dyrland, Lundervold, Porta Mana Does the evaluation stand up to evaluation?

problem where we cannot say, in general, whether true positives are more
important than true negatives and so on, because such valuation can vary
from one tested item to another. Decision theory, in this case, requires an
item-wise assessment of utilities, and still provides an item-wise score,
which can be accumulated across items to obtain a total evaluation score
for the performance of candidate classifiers.

The theory, remarks, and results of the present work generalize
beyond classification: to regression and more complex classification-like
problems such as image segmentation, with important applications in
medicine20. It would be interesting to examine whether popular metrics
in the latter field, such as Dice score21 and Hausdorff distance22, comply
with decision-theoretic principles, and which alternatives could be used
otherwise.

In a companion work23 we apply the general ideas presented here to
improve the performance of machine-learning classifiers.

Author contributions

All authors have contributed equally to the present work.

Thanks

KD and ASL acknowledge support from the Trond Mohn Research
Foundation, grant number BFS2018TMT07, and PGLPM from The Re-
search Council of Norway, grant number 294594.

KD would like to thank family for endless support; partner Synne
for constant love, support, and encouragement; and the developers and
maintainers of Python, FastAi, PyTorch, scikit-learn, NumPy and RDKit
for free open source software and for making the experiments possible.

PGLPM thanks Maja, Mari, Miri, Emma for continuous encourage-
ment and affection; Buster Keaton and Saitama for filling life with awe
and inspiration; and the developers and maintainers of LATEX, Emacs,
AUCTEX, Open Science Framework, R, Python, Inkscape, LibreOffice,
Sci-Hub for making a free and impartial scientific exchange possible.

20 Lundervold & Lundervold 2019. 21 Dice 1945; Fleiss 1975; Zĳdenbos et al. 1994.
22 Alt & Guibas 2000. 23 Dyrland et al. 2022.

32

Dyrland, Lundervold, Porta Mana Does the evaluation stand up to evaluation?

Bibliography

(‘de 𝑋’ is listed under D, ‘van 𝑋’ under V, and so on, regardless of national conventions.)

Alt, H., Guibas, L. J. (2000): Discrete geometric shapes: matching, interpolation, and approximation.
In: Sack, Urrutia (2000): ch. 3:121–153. doi:10.1016/B978-044482537-7/50004-8.

Baker, S. G., Pinsky, P. F. (2001): A proposed design and analysis for comparing digital and analog
mammography special receiver operating characteristic methods for cancer screening. J. Am.
Stat. Assoc. 96454, 421–428. doi:10.1198/016214501753168136.

Berger, J. O. (1985): Statistical Decision Theory and Bayesian Analysis, 2nd ed. (Springer, New
York). doi:10.1007/978-1-4757-4286-2. First publ. 1980.

Brodersen, K. H., Ong, C. S., Stephan, K. E., Buhmann, J. M. (2010): The balanced accuracy
and its posterior distribution. Proc. Int. Conf. Pattern Recognit. 20, 3121–3124. doi:
10.1109/ICPR.2010.764.

Camerer, C. F., Kunreuther, H. (1989): Decision processes for low probability events: policy
implications. J. Policy Anal. Manag. 84, 565–592. doi:10.2307/3325045.

Cheeseman, P. (1988): An inquiry into computer understanding. Comput. Intell. 42, 58–66.
doi:10.1111/j.1467-8640.1988.tb00091.x.

Cox, R. T. (1946): Probability, frequency, and reasonable expectation. Am. J. Phys. 141, 1–13.
doi:10.1119/1.1990764.

Dice, L. R. (1945): Measures of the amount of ecologic association between species. Ecology 263,
297–302. doi:10.2307/1932409.

Dyrland, K., Lundervold, A. S., Porta Mana, P. G. L. (2022): A probability transducer and
decision-theoretic augmentation for machine-learning classifiers. Open Science Framework
doi:10.31219/osf.io/vct9y.

Fine, T. L. (1973): Theories of Probability: An Examination of Foundations. (Academic Press,
New York). doi:10.1016/C2013-0-10655-1.

Fisher, R. A. (1963): Statistical Methods for Research Workers, rev. 13th ed. (Hafner, New
York). First publ. 1925.

Fleiss, J. L. (1975): Measuring agreement between two judges on the presence or absence of a trait.
Biometrics 313, 651–659. doi:10.2307/2529549.

Fowlkes, E. B., Mallows, C. L. (1983): A method for comparing two hierarchical clusterings. J.
Am. Stat. Assoc. 78383, 553–569. doi:10.1080/01621459.1983.10478008.

Gilovich, T., Griffin, D., Kahneman, D., eds. (2009): Heuristics and Biases: The Psychology
of Intuitive Judgment, 8th pr. (Cambridge University Press, Cambridge, USA). doi:
10.1017/CBO9780511808098. First publ. 2002.

Good, I. J., Toulmin, G. H. (1968): Coding theorems and weight of evidence. IMA J. Appl. Math.
41, 94–105. doi:10.1093/imamat/4.1.94.

Halpern, J. Y. (1999a): A counterexample to theorems of Cox and Fine. J. Artif. Intell. Res. 10,
67–85. doi:10.1613/jair.536. See also Snow (1998), Halpern (1999b).

— (1999b): Cox’s theorem revisited. J. Artif. Intell. Res. 11, 429–435. doi:10.1613/jair.644.
See also Snow (1998).

Hand, D., Christen, P. (2018): A note on using the F-measure for evaluating record linkage
algorithms. Stat. Comput. 283, 539–547. doi:10.1007/s11222-017-9746-6.

Howard, R. A. (1980): On making life and death decisions. In: Schwing, Albers (1980): 89–113.
With discussion. doi:10.1007/978-1-4899-0445-4_5. Repr. in Howard, Matheson
(1984) pp. 481–506.

33

Dyrland, Lundervold, Porta Mana Does the evaluation stand up to evaluation?

Howard, R. A., Matheson, J. E., eds. (1984): Readings on the Principles and Applications of
Decision Analysis. Vol. II: Professional Collection. (Strategic Decisions Group, Menlo Park,
USA).

— (2005): Influence diagrams. Decis. Anal. 23, 127–143. doi:10.1287/deca.1050.0020.
First publ. 1984 in Howard, Matheson (1984) pp. 719–762.

Hunink, M. G. M., Weinstein, M. C., Wittenberg, E., Drummond, M. F., Pliskin, J. S.,
Wong, J. B., Glasziou, P. P. (2014): Decision Making in Health and Medicine: Integrating
Evidence and Values, 2nd ed. (Cambridge University Press, Cambridge). doi:10.1017/
CBO9781139506779. First publ. 2001.

Jaynes, E. T. (2003): Probability Theory: The Logic of Science. (Cambridge University
Press, Cambridge). Ed. by G. Larry Bretthorst. First publ. 1994. doi:10 . 1017 /
CBO9780511790423, https://archive.org/details/XQUHIUXHIQUHIQXUIHX2, http:
//www-biba.inrialpes.fr/Jaynes/prob.html.

Jeffrey, R. C. (1965): The Logic of Decision. (McGraw-Hill, New York).
Jeni, L. A., Cohn, J. F., De La Torre, F. (2013): Facing imbalanced data: recommendations for

the use of performance metrics. Proc. Int. Conf. Affect. Comput. Intell. Interact. 2013,
245–251. doi:10.1109/ACII.2013.47.

Kahneman, D. (2011): Thinking, Fast and Slow. (Farrar, Straus and Giroux, New York).
Kahneman, D., Slovic, P., Tversky, A., eds. (2008): Judgment under uncertainty: Heurist-

ics and biases, 24th pr. (Cambridge University Press, Cambridge). doi:10.1017/
CBO9780511809477. First publ. 1982.

Kim, H., Markus, H. R. (1999): Deviance or uniqueness, harmony or conformity? A cultural
analysis. J. Pers. Soc. Psychol. 774, 785–800. doi:10.1037/0022-3514.77.4.785.

Kyburg Jr., H. E., Smokler, H. E., eds. (1980): Studies in Subjective Probability, 2nd ed. (Robert
E. Krieger, Huntington, USA). First publ. 1964.

Lobo, J. M., Jiménez-Valverde, A., Real, R. (2008): AUC: a misleading measure of the
performance of predictive distribution models. Glob. Ecol. Biogeogr. 172, 145–151. doi:
10.1111/j.1466-8238.2007.00358.x, https://www2.unil.ch/biomapper/Download/
Lobo-GloEcoBioGeo-2007.pdf.

Lundervold, A. S., Lundervold, A. (2019): An overview of deep learning in medical imaging
focusing on MRI. Z. Med. Phys. 292, 102–127. doi:10.1016/j.zemedi.2018.11.002.

Matthews, B. W. (1975): Comparison of the predicted and observed secondary structure of T4 phage
lysozyme. Biochim. Biophys. Acta 4052, 442–451. doi:10.1016/0005-2795(75)90109-9.

Metz, C. E. (1978): Basic principles of ROC analysis. Semin. Nucl. Med. VIII4, 283–298. doi:
10.1016/S0001-2998(78)80014-2.

Mittone, L., Savadori, L. (2009): The scarcity bias. Appl. Psychol. 583, 453–468. doi:
10.1111/j.1464-0597.2009.00401.x.

North, D. W. (1968): A tutorial introduction to decision theory. IEEE Trans. Syst. Sci. Cybern. 43,
200–210. doi:10.1109/TSSC.1968.300114, https://stat.duke.edu/~scs/Courses/
STAT102/DecisionTheoryTutorial.pdf.

Raiffa, H. (1970): Decision Analysis: Introductory Lectures on Choices under Uncertainty, 2nd
pr. (Addison-Wesley, Reading, USA). First publ. 1968.

Raiffa, H., Schlaifer, R. (2000): Applied Statistical Decision Theory, repr. (Wiley, New York).
First publ. 1961.

Ramsey, F. P. (1926): Truth and probability. In: Ramsey (1950): ch.VII:156–198. Repr. in
Kyburg, Smokler (1980), pp. 23–52. Written 1926.

34

Dyrland, Lundervold, Porta Mana Does the evaluation stand up to evaluation?

Ramsey, F. P. (1950): The Foundations of Mathematics: and other Logical Essays. (Routledge &
Kegan Paul, London). doi:10.4324/9781315887814, https://archive.org/details/
in.ernet.dli.2015.46352. Ed. by R. B. Braithwaite. First publ. 1931.

Russell, S. J., Norvig, P. (2022): Artificial Intelligence: A Modern Approach, Fourth Global ed.
(Pearson, Harlow, UK). First publ. 1995.

Sack, J.-R., Urrutia, J., eds. (2000): Handbook of Computational Geometry. (Elsevier, Amster-
dam). doi:10.1016/B978-0-444-82537-7.X5000-1.

Savage, L. J. (1972): The Foundations of Statistics, 2nd rev. and enl. ed. (Dover, New York).
First publ. 1954.

Schwing, R. C., Albers Jr., W. A., eds. (1980): Societal Risk Assessment: How Safe is Safe
Enough? (Springer, New York). doi:10.1007/978-1-4899-0445-4.

Self, M., Cheeseman, P. C. (1987): Bayesian prediction for artificial intelligence. In: Proceedings
of the third conference on uncertainty in artificial intelligence (uai’87), ed. by J. Lemmer,
T. Levitt, L. Kanal (AUAI Press, Arlington, USA): 61–69. Repr. in arXiv doi:10.48550/
arXiv.1304.2717.

Shannon, C. E. (1948): A mathematical theory of communication. Bell Syst. Tech. J. 273, 4,
379–423, 623–656. https://archive.org/details/bstj27-3-379, https://archive.
org/details/bstj27-4-623, http://math.harvard.edu/~ctm/home/text/others/
shannon/entropy/entropy.pdf.

Snow, P. (1998): On the correctness and reasonableness of Cox’s theorem for finite domains.
Comput. Intell. 143, 452–459. doi:10.1111/0824-7935.00070.

— (2001): The reasonableness of possibility from the perspective of Cox. Comput. Intell. 171,
178–192. doi:10.1111/0824-7935.00138.

Sox, H. C., Higgins, M. C., Owens, D. K. (2013): Medical Decision Making, 2nd ed. (Wiley,
New York). doi:10.1002/9781118341544. First publ. 1988.

Steele, K., Stefánsson, H. O. (2020): Decision theory. In: Stanford encyclopedia of philosophy,
ed. by E. N. Zalta (The Metaphysics Research Lab, Stanford). https://plato.stanford.
edu/archives/win2020/entries/decision-theory. First publ. 2015.

van Rĳsbergen, C. J. (1974): Foundation of evaluation. J. Doc. 304, 365–373. doi:10.1108/
eb026584.

Varoquaux, G., Cheplygina, V. (2022): Machine learning for medical imaging: methodological
failures and recommendations for the future. npj Digit. Med. 51, 48. doi:10.1038/s41746-
022-00592-y.

von Neumann, J., Morgenstern, O. (1955): Theory of Games and Economic Behavior, 3rd ed.,
6th pr. (Princeton University Press, Princeton). https://archive.org/details/in.
ernet.dli.2015.215284. First publ. 1944.

Woodward, P. M. (1964): Probability and Information Theory, with Applications to Radar,
2nd ed. (Pergamon, Oxford). doi:10.1016/C2013-0-05390-X. First publ. 1953.

Zhu, Q. (2020): On the performance of Matthews correlation coefficient (MCC) for imbalanced
dataset. Pattern Recognit. Lett. 136, 71–80. doi:10.1016/j.patrec.2020.03.030.

Zĳdenbos, A. P., Dawant, B. M., Margolin, R. A., Palmer, A. C. (1994): Morphometric analysis
of white matter lesions in MR images: method and validation. IEEE Trans. Med. Imaging
134, 716–724. doi:10.1109/42.363096.

35

Chapter 7

A probability transducer
and decision-theoretic
augmentation for
machine-learning classifiers

58

Open Science Framework doi:10.31219/osf.io/vct9y

A probability transducer
and decision-theoretic augmentation

for machine-learning classifiers

K. Dyrland
<kjetil.dyrland gmail.com>

A. S. Lundervold †
<alexander.selvikvag.lundervold hvl.no>

P.G.L. Porta Mana
<pgl portamana.org>

(listed alphabetically)

Dept of Computer science, Electrical Engineering and Mathematical Sciences,
Western Norway University of Applied Sciences, Bergen, Norway

†& Mohn Medical Imaging and Visualization Centre, Dept of Radiology,

Haukeland University Hospital, Bergen, Norway

Draft. 1 June 2022; updated 1 June 2022

In a classification task from a set of features, one would ideally like to have
the probability of the class conditional on the features. Such probability is
computationally almost impossible to find in many important cases. The
primary idea of the present work is to calculate the probability of a class con-
ditional not on the features, but on a trained classifying algorithm’s output.
Such probability is easily calculated and provides an output-to-probability
‘transducer’ that can be applied to the algorithm’s future outputs. In conjunc-
tion with problem-dependent utilities, the probabilities of the transducer
allows one to make the optimal choice among the classes or among a set
of more general decisions, by means of expected-utility maximization. The
combined procedure is a computationally cheap yet powerful ‘augmentation’
of the original classifier. This idea is demonstrated in a simplified drug-
discovery problem with a highly imbalanced dataset. The augmentation
leads to improved results, sometimes close to theoretical maximum, for
any set of problem-dependent utilities. The calculation of the transducer
also provides, automatically: (i) a quantification of the uncertainty about
the transducer itself; (ii) the expected utility of the augmented algorithm
(including its uncertainty), which can be used for algorithm selection; (iii)
the possibility of using the algorithm in a ‘generative mode’, useful if the
training dataset is biased. It is argued that the optimality, flexibility, and
uncertainty assessment provided by the transducer & augmentation are
dearly needed for classification problems in fields such as medicine and
drug discovery.

1 Th
is

do
cu

m
en

ti
s

de
si

gn
ed

fo
rs

cr
ee

n
re

ad
in

g
an

d
tw

o-
up

pr
in

tin
g

on
A

4
or

Le
tte

rp
ap

er

Dyrland, Lundervold, Porta Mana Probability transducer for classifiers

1 The inadequacy of common classification approaches

As the potential of using machine-learning algorithms in important
fields such as medicine or drug discovery increases1, the machine-
learning community ought to keep in mind what the actual needs and
inference contexts in such fields are. We must avoid trying (intentionally
or unintentionally) to convince such fields to change their needs, or to
ignore their own contexts just to fit machine-learning solutions that are
available and fashionable at the moment. Rather, we must make sure the
that solutions fit needs & context, and amend them if they do not.

The machine-learning mindset and approach to problems such as
classification in such new important fields is often still inadequate in
many respects. It reflects simpler needs and contexts of many inference
problems successfully tackled by machine learning earlier on.

A stereotypical ‘cat vs dog’ image classification, for instance, has
four very important differences from a ‘disease I vs disease II’ medical
classification, or from an ‘active vs inactive’ drug classification:

(i) Nobody presumably dies or loses large amounts of money if a
cat image is misclassified as dog or vice versa. But a person can
die if a disease is misdiagnosed; huge capitals can be lost if an
ultimately ineffective drug candidate is pursued. The gains and
losses – or generally speaking the utilities – of correct and incorrect
classifications in the former problem and in the two latter problems
are vastly different.

(ii) To what purpose do we try to guess whether an image’s subject is a
cat or a dog? For example because we must decide whether to put
it in the folder ‘cats’ or in the folder ‘dogs’. To what purpose do we
try to guess a patient’s disease or a compound’s chemical activity?
A clinician does not simply tell a patient “You probably have
such-and-such disease. Goodbye!”, but has to decide among many
different kinds of treatments. The candidate drug compound may
be discarded, pursued as it is, modified, and so on. The ultimate goal
of a classification is always some kind of decision, not just a class guess. In
the cat-vs-dog problem there is a natural one-one correspondence
between classes and decisions. But in the medical or drug-discovery

1 Lundervold & Lundervold 2019; Chen et al. 2018; Green 2019.

2

Dyrland, Lundervold, Porta Mana Probability transducer for classifiers

problems the set of classes and the set of decisions are very different, and
have even different numbers of elements.

(iii) If there is a 70% probability that an image’s subject is a cat, then it is
natural to put it in the folder ‘cats’ rather than ‘dogs’ (if the decision
is only between these two folders). If there is a 70% probability
that a patient has a particular health condition, it may nonetheless
be better to dismiss the patient – that is, to behave as if there was
no condition. This is the optimal decision, for example, when the
only available treatment for the condition would severely harm the
patient if the condition were not present. Such treatment would be
recommended only if the probability for the condition were much
higher than 70%. Similarly, even if there is a 70% probability that a
candidate drug is active it may nonetheless be best to discard it. This
is the economically most advantageous choice if pursuing a false-
positive leads to large economic losses. The target of a classification is
not what’s most probable, but what’s optimal.

(iv) The relation from image pixels to house-pet subject may be almost
deterministic; so we are effectively looking for or extrapolating a
function pet= 𝑓 (pixels) contaminated by little noise. But the relation
between medical-test scores or biochemical features on one side,
and disease or drug activity on the other, is typically probabilistic;
so a function disease = 𝑓 (scores) or activity = 𝑓 (features) does not
even exist. We are assessing statistical relationships P(disease, scores)
or P(activity, features) instead, which include deterministic ones as
special cases.

In summary, there is place to improve classifiers so as to (i) quantitat-
ively take into account actual utilities, (ii) separate classes from decisions,
(iii) target optimality rather than ‘truth’, (iv) output and use proper
probabilities.

In artificial intelligence and machine learning it is known how to
address all these issues in principle – the theoretical framework is for
example beautifully presented in the first 18 chapters or so of Russell &
Norvig’s 2022 text2.

Issues (i)–(iii) are simply solved by adopting the standpoint of Decision
Theory, which we briefly review in § 3 below and discuss at length in a

2 see also Self & Cheeseman 1987; Cheeseman 1988; 2018; Pearl 1988; MacKay 2005.

3

Dyrland, Lundervold, Porta Mana Probability transducer for classifiers

companion work3. In short: The set of decisions and the set of classes
pertinent to a problem are separated if necessary. A utility is associated
to each decision, relative to the occurrence of each particular class; these
utilities are assembled into a utility matrix: one row per decision, one
column per class. This matrix is multiplied by a column vector consisting
in the probability for the classes. The resulting vector of numbers contains
the expected utility of each decision. Finally we select the decision having
maximal expected utility, according to the principle bearing this name.
Such procedure also takes care of the class imbalance problem4.

Clearly this procedure is computationally inexpensive and ridicu-
lously easy to implement in any machine-learning classifier. The difficulty
is that this procedure requires sensible probabilities5 for the classes, which
brings us to issue (iv), the most difficult.

Some machine-learning algorithms for classification, such as support-
vector machines, output only a class label. Others, such as deep networks,
output a set of real numbers that can bear some qualitative relation to
the plausibilities of the classes. But these numbers cannot be reliably in-
terpreted as proper probabilities, that is, as the degrees of belief assigned
to the classes by a rational agent6; or, in terms of ‘populations’7, as the
expected frequencies of the classes in the hypothetical population of units
(degrees of belief and frequencies being related by de Finetti’s theorem8).
Algorithms that internally do perform probabilistic calculations, for
instance naive-Bayes or logistic-regression classifiers9, unfortunately rest
on strong probabilistic assumptions, such as independence and particular
shapes of distributions, that are often unrealistic (and their consistency
with the specific application is rarely checked). Only particular classifiers
such as Bayesian neural networks10 output sensible probabilities, but
they are computationally very expensive. The stumbling block is the
extremely high dimensionality of the feature space, which makes the
calculation of the probabilities

P(class, feature | training data)
3 Dyrland et al. 2022a. 4 cf. the analysis by Drummond & Holte 2005 (they use the term

‘cost’ instead of ‘utility’). 5 “credibilities [that] would be agreed by all rational men if
there were any rational men” Good 1966. 6 MacKay 1992a; Gal & Ghahramani 2016;
Russell & Norvig 2022 chs 2, 12, 13. 7 Lindley & Novick 1981. 8 Bernardo & Smith
2000 ch. 4; Dawid 2013. 9 Murphy 2012 § 3.5, ch. 8; Bishop 2006 §§ 8.2, 4.3; Barber 2020
ch. 10, § 17.4. 10 Neal & Zhang 2006; Bishop 2006 § 5.7.

4

Dyrland, Lundervold, Porta Mana Probability transducer for classifiers

(a problem opaquely called ‘density regression’ or ‘density estimation’11)
computationally unfeasible.

If we solved the issue of outputting proper probabilities then the
remaining three issues would be easy to solve, as discussed above.

In the present work we propose an alternative solution to calculate
proper class probabilities, which can then be used in conjunction with
utilities to perform the final classification or decision.

This solution consists in a sort of ‘transducer’ that transforms the
algorithm’s raw output into a probability. It has a low computational cost,
can be applied to all commonly used classifiers and to simple regression
algorithms, does not need any changes in algorithm architecture or in
training procedures, and is grounded on first principles. The probab-
ility thus obtained can be combined with utilities to perform the final
classification task.

Moreover, this transducer has three other great benefits, which come
automatically with its computation. First, it gives a quantification of how
much the probability would change if we had further data to calculate
the transducer. Second, it can give an evaluation of the whole classifier
– including an uncertainty about such evaluation – that allows us to
compare it with other classifiers and choose the optimal one. Third,
it allows us to calculate both the probability of class conditional on
features, and the probability of features conditional on class. In other words
it allows us to use the classification algorithm in both ‘discriminative’
and ‘generative’ modes12, even if the algorithm was not designed for a
generative use.

In § 2 we present the general idea behind the probability transducer
and its calculation. Its combination with the rule of expected-utility
maximization to perform classification is discussed in § 3; we call this
combined use the ‘augmentation’ of a classifier.

In § 4 we demonstrate the implementation, use, and benefits of clas-
sifier augmentation in a concrete drug-discovery classification problem
and dataset, with a random forest and a convolutional neural network
classifiers.
11 Ferguson 1983; Thorburn 1986; Hjort 1996; Dunson et al. 2007. 12 Russell & Norvig
2022 § 21.2.3; Murphy 2012 § 8.6.

5

Dyrland, Lundervold, Porta Mana Probability transducer for classifiers

Section 5 offers a synopsis of further benefits and uses of the prob-
ability transducer, which are obtained almost automatically from its
calculation.

Finally, we give a summary and discussion in § 6, including some
teasers of further applications to be discussed in future work.

2 An output-to-probability transducer

2.1 Main idea: algorithm output as a proxy for the features

Let us first consider the essentials behind a classification (or regression)
problem. We have the following quantities:

• the feature values of a set of known units,
• the classes of the same set of units,

which together form our learning or training data; and
• the feature value of a new unit,

where the ‘units’ could be widgets, images, patients, drug compounds,
and so on, depending on the classification problem. From these quantities
we would like to infer

• the class of the new unit.
This inference consists in probabilities

P(class of new unit | feature of new unit, classes & features of known units)
(1)

for each possible class.
These probabilities are obtained through the rules of the probability

calculus13; in this case specifically through the so-called de Finetti
theorem14 which connects training data and new unit. This theorem is
briefly summarized in appendix B.1.

Combined with a set of utilities, these probabilities allow us to determ-
ine an optimal, further decision to be made among a set of alternatives.
Note that the inference (1) includes deterministic interpolation, i.e. the
assessment of a function class= 𝑓 (feature), as a special case, when the
probabilities are essentially 0s and 1s.

13 Jaynes 2003; Russell & Norvig 2022 chs 12–13; Gregory 2005; Hailperin 2011; Jeffreys
1983:see further references in appendix B. 14 Bernardo & Smith 2000 ch. 4; Dawid 2013.

6

Dyrland, Lundervold, Porta Mana Probability transducer for classifiers

A trained classifier should ideally output the probabilities above
when applied to the new unit. Machine-learning classifiers trade this
capability for computational speed – with an increase in the latter of
several orders of magnitude15. Thus their output cannot be considered
a probability, but it still carries information about both class and feature
variables.

Our first step is to acknowledge that the information contained in
the feature and in the training data, relevant to the class of the new unit,
is simply inaccessible to us because of computational limitations. We do
have access to the output for the new unit, however, which does carry
relevant information. Thus what we can do is to calculate the probability

P(class of new unit | output for new unit) (2)

for each class.
Once we calculate the numerical values of these conditional probab-

ilities, we effectively have a function that maps the algorithm’s output to
class probabilities. It therefore acts as an output-to-probability transducer.

This idea can also be informally understood in two ways. First: the
classifier’s output is regarded as a proxy for the feature. Second: the
classifier is regarded as something analogous to a diagnostic test, such
as any common diagnostic or prognostic test used in medicine for
example. A diagnostic test is useful because its result has a probabilistic
relationship with the unknown of interest, say, a medical condition. This
relationship is easier to quantify than the one between the condition
and the more complex biological variables that the test is exploiting
‘under the hood’. Likewise, the output of a classifier has a probabilistic
relationship with the unknown class (owing to the training process); and
this relationship is in many cases easier to quantify than the one between
the class and the typically complex ‘features’ that are the classifier’s
input. We do not take diagnostic-test results at face value – if a flu test
is ‘positive’ we do not conclude that the patient has the flu – but rather
arrive at a probability that the patient has the flu, given some statistics
about results of tests performed on verified samples of true-positive and
true-negative patients16. Analogously, we need some calibration data to
find the probabilities (2).
15 to understand this trade-off in the case of neural-network classifiers see e.g. MacKay
1992b,c,a; Murphy 2012 § 16.5 esp. 16.5.7; see also the discussion by Self & Cheeseman
1987. 16 Sox et al. 2013 ch. 5; Hunink et al. 2014 ch. 5; see also Jenny et al. 2018.

7

Dyrland, Lundervold, Porta Mana Probability transducer for classifiers

2.2 Calibration data

To calculate the conditional probabilities (2) it is necessary to have
examples of further pairs (class of unit, output for unit), of which the new
unit’s pair can be considered a ‘representative sample’17 and vice versa –
exactly for the same reason why we need training data in the first place
to calculate the probability of a class given the feature. Or, with a more
precise term, the examples and the new unit must be exchangeable18.

For this purpose, can we use the pairs (class of unit, output for unit) of
the training data? This would be very convenient, as those pairs are
readily available. But answer is no. The reason is that the outputs of
the training data are produced from the features and the classes jointly;
this is the very point of the training phase. There is therefore a direct
informational dependence between the classes and the outputs of the
training data. For the new unit, on the other hand, the classifier produces
its output from the feature alone. As regards the probabilistic relation between
class and output, the new unit is not exchangeable with (or a representative
sample of) the training data.

We need a data set where the outputs are generated by simple
application of the algorithm to the feature, as it would occur in its
concrete use, and the classes are known. The test data of standard
machine-learning procedures are exactly what we need. The new unit
can be considered exchangeable with the test data. We rename such data
‘transducer-calibration data’, owing to its new purpose.

The probability we want to calculate is therefore

P(class of new unit | output for new unit, classes & outputs of calibr. data) .
(3)

For classification algorithms that output a quantity much simpler than
the features, like a vector of few real components for instance, the
probability above can be exactly calculated. Thus, once we obtain the
classifier’s output for the new unit, we can calculate a probability for the
new unit’s class.

The probability values (4), for a fixed class and variable output, con-
stitute a sort of ‘calibration curve’ (or hypersurface for multidimensional
outputs) of the output-to-probability transducer for the classifier. See
the concrete examples of figs 1 on page 17, and 2 on page 18. It must be
17 for a critical analysis of the sometimes hollow term ‘representative sample’ see Kruskal
& Mosteller 1979a,b,c; 1980. 18 Lindley & Novick 1981.

8

Dyrland, Lundervold, Porta Mana Probability transducer for classifiers

stressed that such curve needs to be calculated only once, and it can be
used for all further applications of the classifier to new units.

What is the relation between the ideal incomputable probability (1)
and the probability (4) obtained by proxy? If the output 𝑦 of the classifier
is already very close to the ideal probability (1), or a monotonic function
thereof, isn’t the proxy probability (4) throwing it away and replacing
it with something different? Quite the opposite. Owing to de Finetti’s
theorem, if the output 𝑦 is almost identical with the ideal probability,
then it becomes increasingly close to the frequency distribution of the
training data, as their number increases (see appendix B.1); the same
happens with the proxy probability and the frequency distribution of
the calibration data. But these two data sets should be representative of
each other and of future data – otherwise we would be ‘learning’ from
irrelevant data – and therefore their frequency distributions should also
converge to each other. Consequently, by transitivity we expect the proxy
probability to become increasingly close to the output 𝑦. Actually, if the
output is not exactly the ideal probability (1) but a monotonic function
of it, the proxy probability (4) will reverse such monotonic relationship,
giving us back the ideal probability.

Obviously all these considerations only hold if we have good training
and calibration sets, exchangeable with (representative of) the real data
that will occur in our application.

Since we are using as calibration data the data traditionally set aside
as ‘test data’ instead, an important question arises. Do we then need a
third, separate test dataset for the final evaluation and comparison of
candidate classifiers or hyperparameters? This would be inconvenient: it
would reduce the amount of data available for training.

The answer is no: the calibration set automatically also acts as a test set.
In fact, from the calculations for the probability transducer, discussed
in the next section, we can also arrive at a final evaluation value for the
algorithm as a whole. See § 5.2 and appendix B.5 for more details about
this.

It may be useful to explain why this is the case, especially for those
who may mistakenly take for granted the universal necessity of a test set.
Many standard machine-learning methodologies need a test set because
they are only an approximation of the ideal inference performed with
the probability calculus. The latter needs no division of available data

9

Dyrland, Lundervold, Porta Mana Probability transducer for classifiers

into different sets: something analogous to such division is automatically
made internally, so to speak (see appendix B.1). It can be shown19 that
the mathematical operations behind the probability rules correspond
to making all possible divisions of available data between ‘training’ and
‘test’, as well as all possible cross-validations with folds of all orders. It is
this completeness and thoroughness that makes the ideal inference by
means of the probability calculus almost computationally impossible in
some cases. We thus resort to approximate but faster machine-learning
methods. These methods do not typically perform such data partitions
‘internally’ and automatically, so we need to make them – and only
approximately – by hand.

Let us stress that the performance of a classifier equipped with a
probability transducer still depends on the training of the raw classifier,
which is the stage where a probabilistic relation between output and
class is established. If the classifier’s output has no mutual information
with the true class (their probabilities are essentially independent), then
the transducer will simply yield a uniform probability over the classes.

The question then arises of what is the optimal division of available
data into the training set and the calibration set. If the calibration set
is too small, the transducer curve is unreliable. If the training set is
too small, the correlation between output and class is unreliable. In
future work we would like to find the optimal balance, possibly by a
first-principle calculation.

2.3 Calculation of the probabilities

Let us denote by 𝑐 the class value of a new unit, by 𝑦 the output of the
classifier for the new unit, and by 𝐷 := {𝑐𝑖 , 𝑦𝑖} the classes and classifier
outputs for the transducer-calibration data.

It is more convenient to focus on the joint probability of class and
output given the data,

p(𝑐, 𝑦 | 𝐷) , (4)

rather than on the conditional probability of the class given the output
and calibration data, (4).

19 Porta Mana 2019; Fong & Holmes 2020; Wald 1949; many examples of this fact are
scattered across the text by Jaynes 2003.

10

Dyrland, Lundervold, Porta Mana Probability transducer for classifiers

The joint probability is calculated using standard non-parametric
Bayesian methods20. ‘Non-parametric’ in this case means that we do
not make any assumptions about the shape of the probability curve as
a function of 𝑐, 𝑦 (contrast this with logistic regression, for instance),
or about special independence between the variables (contrast this
with naive-Bayes). The only assumption made – and we believe it is
quite realistic – is that the curve must have some minimal degree of
smoothness. This assumption allows for much leeway, however: figs 1
and 3 for instance show that the probability curve can still have very
sharp bends, as long as they are not cusps.

Non-parametric methods differ from one another in the kind of
‘coordinate system’ they select on the infinite-dimensional space of all
possible probability curves, that is, in the way they represent a general
positive normalized function.

We choose the representation discussed by Dunson & Bhattacharya21.
The end result of interest in the present section is that the probability
density 𝑝(𝑐, 𝑦 | 𝐷), with 𝑐 discrete and 𝑦 continuous and possibly multi-
dimensional, is expressed as a sum

𝑝(𝑐, 𝑦 | 𝐷) = ∑

𝑘

𝑞𝑘 𝐴(𝑐 | α𝑘) 𝐵(𝑦 | β𝑘) (5)

of a finite but large number of terms22. Each term is the product of a
positive weight 𝑞𝑘 , a probability distribution 𝐴(𝑐 | α𝑘) for 𝑐 depending
on parameters α𝑘 , and a probability density 𝐵(𝑐 | β𝑘) for 𝑦 depending
on parameters β𝑘 . These distributions are chosen by us according to
convenience; see the appendix B.1 for further details. The parameter
values can be different from term to term, as indicated by the index
𝑘. The weights {𝑞𝑘} are normalized. For simplicity we shall from now
on omit the dependence ‘ | . . . , 𝐷)’ on the calibration data, leaving it
implicitly understood.

This mathematical representation can approximate (under some
norm) any smooth probability density in 𝑐 and 𝑦. It has the advantages
of being automatically positive and normalized, and of readily producing

20 for introductions and reviews see e.g. Walker 2013; Müller & Quintana 2004; Hjort 1996.
21 Dunson & Bhattacharya 2011; see also the special case discussed by Rasmussen 1999.
22 see Ishwaran & Zarepour 2002 on why the number of terms does not need to be infinite.

11

Dyrland, Lundervold, Porta Mana Probability transducer for classifiers

the marginal distributions for 𝑐 and for 𝑦:

𝑝(𝑐) = ∑

𝑘

𝑞𝑘 𝐴(𝑐 | α𝑘) , 𝑝(𝑦) = ∑

𝑘

𝑞𝑘 𝐵(𝑦 | β𝑘) , (6)

from which also the conditional distributions are easily obtained:

𝑝(𝑐 | 𝑦) = ∑

𝑘

𝑞𝑘 𝐵(𝑦 | β𝑘)∑
𝑙 𝑞𝑙 𝐵(𝑦 | β𝑙) 𝐴(𝑐 | α𝑘) (7a)

𝑝(𝑦 | 𝑐) = ∑

𝑘

𝑞𝑘 𝐴(𝑐 | α𝑘)∑
𝑙 𝑞𝑙 𝐴(𝑐 | α𝑙) 𝐵(𝑦 | β𝑘) . (7b)

In the rest of the paper we shall use formula (7a), the probability of the
class given the algorithm’s output, as typically done with discriminative
algorithms.

The weights and parameters {𝑞𝑘 ,α𝑘 ,β𝑘} are the heart of this repres-
entation, because the shape of the probability curve 𝑝(𝑐 | 𝑦, 𝐷) depends
on their values. They are determined by the test data 𝐷. Their calcu-
lation is done via Markov-chain Monte Carlo sampling, discussed in
appendix B.3. For low-dimensional 𝑦 and discrete 𝑐 (or even continuous,
low-dimensional 𝑐, which means we are working with a regression
algorithm), this calculation can be done in a matter of hours, and it only
needs to be done once.

Once calculated, these parameters are saved in memory and can
be used to compute any of the probabilities (5), (6), (7) as needed, as
discussed in the next subsection. Such computations take less than a
second.

Note that the role of the classifier in this calculation is simply to
produce the outputs 𝑦 for the calibration data, after having been trained
in any standard way on a training data set. No changes in its architecture
or in its training procedure have been made, nor are any required.

3 Utility-based classification

We refer to our companion work Dyrland et al. 2022a, § 2, for a more de-
tailed presentation of decision theory and for references. In the following
we assume familiarity with the material presented there.

Our classification or decision problem has a set of decisions, which
we can index by 𝑖 = 1, 2, As discussed in § 1, these need not be

12

Dyrland, Lundervold, Porta Mana Probability transducer for classifiers

the same as the possible classes; the two sets may even be different in
number. But the true class, which is unknown, determines the utility
that a decision yields. If we choose decision 𝑖 and the class 𝑐 is true,
our eventual utility will be 𝑈𝑖𝑐 .23 These utilities are assembled into a
rectangular matrix (𝑈𝑖𝑐) with one row per decision and one column per
class. Note that the case where decisions and classes are in a natural
one-one correspondence, as in the cat-vs-dog classification example of
§ 1, is just a particular case of this more general point of view. In such
a specific case we may replace ‘decision’ with ‘class’ in the following
discussion, and the utility matrix is square.

Now let us consider the application of the algorithm, with the
probabilities calculated in the preceding section, to a new unit.

1. Fed the unit’s features to the classifier, which outputs the real value
𝑦.

2. Calculate 𝑝(𝑐 | 𝑦), for each value of 𝑐, from formula (7a), using
the parameters {𝑞𝑘 ,α𝑘 ,β𝑘} stored in memory. These are the prob-
abilities of the classes, which are collected in a column vector
(𝑝𝑐).

3. The expected utility �̄�𝑖 of decision 𝑖 is given by the matrix product
of an appropriate utility matrix (𝑈𝑖𝑐) and the column vector (𝑝𝑐):

�̄�𝑖 :=
∑

𝑐

𝑈𝑖𝑐 𝑝𝑐 . (8)

4. Choose the decision 𝑖∗ having largest �̄�𝑖 , according to the principle
of maximum expected utility:

choose 𝑖∗ = arg max
𝑖

{
�̄�𝑖

} ≡ arg max
𝑖

{∑
𝑐

𝑈𝑖𝑐 𝑝𝑐

}
(9)

We call the procedure above, especially steps 2.–4., the augmentation
of the classifier.

In step 2. we have effectively translated the classifier’s raw output
into a more sensible probability. From this point of view the function

23 We apologize for the difference in notation from our companion work, where the class
variable is ‘𝑗’ and the utilities ‘𝑈𝑖 𝑗 ’

13

Dyrland, Lundervold, Porta Mana Probability transducer for classifiers

𝑝(𝑐 | 𝑦) can be considered as a more appropriate substitute of the softmax
function, for instance, at the output of a neural network (compare fig. 2).

The matrix multiplication of and subsequent selection of steps 3.–4.
are computationally inexpensive; they can be considered as substitutes
of the ‘argmax’ selection that typically happen at the continuous output
of a classifier.

It should be noted that the utilities𝑈𝑖𝑐 used in step 3. can either be the
same for each new unit, or different from unit to unit. The augmentation
procedure is therefore extremely flexible, at no additional computational
cost.

4 Demonstration

4.1 Overview

We illustrate the implementation of the probability transducer and its
combination with utility-based decisions in a concrete example. The
evaluation of the results is also made from the standpoint of decision
theory, using utility-based metrics, as explained in our companion
paper24.

A couple of remarks may clarify the purpose of this illustration and
our choice of classification problem.

The internal consistency of decision theory guarantees that utility-
based decisions always improve on, or at least give as good results as,
any other procedure, including the standard classification procedures
used in machine learning. This is intuitively obvious: we are, after all,
grounding our single class choices upon the same gains & losses that
underlie our classification problem and that are used in its evaluation.
The present illustration is therefore not a proof for such improvement –
none is needed. It is a reassuring safety check, though: if the results were
negative it would mean that errors were made in applying the method
or in the computations.

Rather than looking for some classification problem and dataset
on which the decision-theoretic approach could lead to astounding
improvements, we choose one where machine-learning classifiers already
give excellent results, therefore difficult to improve upon; and which

24 Dyrland et al. 2022a.

14

Dyrland, Lundervold, Porta Mana Probability transducer for classifiers

is characterized by a naturally high class imbalance. The classification
problem is moreover of interest to us for other ongoing research projects.

The binary-classification task is a simplified version of an early-stage
drug-discovery problem: to determine whether a molecule is chemically
‘inactive’ (class 0) or ‘active’ (class 1) towards one specific target protein.

Two machine-learning classifiers are considered: a Random Forest
and a residual Convolutional Neural Network (ResNet), details of which
are given in appendix A. The random forest takes as input a set of
particular physico-chemical characteristics of a molecule, and outputs a
real number in the range [0, 1], corresponding to the fraction of decision
trees which vote for class 1, ‘active’. The convolutional-neural-network
takes as input an image representing the chemical and spatial structure
of the molecule, and outputs two real numbers roughly corresponding
to scores for the two classes.

We use data from the ChEMBL database25, previously used in the
literature for other studies of machine-learning applications to drug
discovery26. One set with 60% of the data is used to train and validate
the two classifiers. One set with 20% is used for the calibration of the
probability transducer and evaluation of the classifiers. One further data
set with 20% is here used as fictive ‘real data’ to illustrate the results of
our procedure; we call this the ‘demonstration set’.

Note that the additional demonstration dataset has an illustrative purpose
only for the sake of the present example. In a real design & evaluation of
a set of candidate classifiers, the calibration set will at the same time be
the evaluation test set, and no further data subset will be necessary, as
explained in § 2.2.

In all data sets, class 0 (‘inactive’) occurs with a 91% relative frequency,
and class 1 (‘active’) with 9%; a high class imbalance.

Technical details about the setup and training of the two classifiers
and of the calculation of the probability-transducer parameters are given
in appendix B.3.

25 Bento et al. 2014. 26 Koutsoukas et al. 2017.

15

Dyrland, Lundervold, Porta Mana Probability transducer for classifiers

4.2 Probability-transducer curves

Random forest

The joint probability of class 𝑐 and output 𝑦, eq. (5), for the random
forest is expressed by the sum

𝑝(𝑐, 𝑦) = ∑

𝑘

𝑞𝑘 [𝑐 α𝑘 + (1 − 𝑐) (1 − α𝑘)] N(𝑦 | µ𝑘 , σ𝑘) (10)

where N(·) is a Gaussian as in eq. (30). The sum contains 218 ≈ 260 000
terms.

Figure 1 shows the probabilities of classes 1 and 0 conditional on
the random-forest output: p(class 1 | output) and p(class 0 | output). It also
shows the range of variability that these probabilities could have if
more data were used for the calibration: with a 75% probability they
would remain within the shaded regions. This variability information is
provided for free by the calculation; we plan to discuss and use it more
in future work.

The probabilities increase (class 1) or decrease (class 0) monotonic-
ally up to output values of around 0.9. The minimum and maximum
probabilities are 0.14% and 92.9%; these values will be important for a
later discussion. The output, if interpreted as a probability for class 1
(‘active’), tends to be too pessimistic for this class (and too optimistic
for the other) in a range from roughly 0.25 to 0.95; and too optimistic
outside this range. For instance, for an output of 0.3 the probability for
class 1 is 40%; for an output of 1 the probability for class 1 is 92%.

Convolutional neural network

The joint probability of class 𝑐 and the bivariate output 𝑦 ≡ (𝑦0 , 𝑦1) of
the convolutional neural network is expressed by the sum

𝑝(𝑐, 𝑦0 , 𝑦1) =
∑

𝑘

𝑞𝑘 [𝑐 α𝑘 + (1 − 𝑐) (1 − α𝑘)] N(𝑦0 | µ0𝑘 , σ0𝑘) N(𝑦1 | µ1𝑘 , σ1𝑘) (11)

containing again 218 ≈ 260 000 terms, and with parameters analogous to
those of eq. (10).

Figure 2 shows the probability of class 1 conditional on the bivariate
output of the convolutional neural network, p(class 1|outputs). Its extremal

16

Dyrland, Lundervold, Porta Mana Probability transducer for classifiers

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

output

P
(c

la
ss

 | o
ut

pu
t)

class 1
class 0

Figure 1 Probabilities of class 1 (‘active’, blue solid curve) and class 0 (‘inactive’, red
dashed curve) conditional on the random-forest output. Their extremal values are 0.0014
and 0.929. The shaded region around each curve represents its 12.5%–87.5% range of
possible variability if more data were used to calculate the probabilities.

values are 0.14% and 92.3%. It is interesting to compare this probability
with the softmax function of the outputs, shown in the smaller side plot,
typically used as a proxy for the probability.

A cross-section of this probability surface along the bisector of the II
and IV quadrants of the output space is shown in fig. 3, together with the
cross-section of the softmax. The probability takes on extremal values,
around 1% and 90%, only in very narrow ranges, and quickly returns
and extrapolates to 50% everywhere else. The softmax, on the other
hand, extrapolates to extreme probability values – a known problem of

17

Dyrland, Lundervold, Porta Mana Probability transducer for classifiers

Figure 2 Probability of class 1 conditional on the
convolutional-neural-network outputs. Its extremal val-
ues are 0.0014 and 0.923. Plot on the side: softmax function
of the same outputs, for comparison.

neural networks27. The conservative extrapolation of the transducer is
also reflected in the 75% interval of possible variability of the probability
(shaded region), which becomes extremely wide at the extremities.

27 Gal & Ghahramani 2016.

18

Dyrland, Lundervold, Porta Mana Probability transducer for classifiers

−10 −8 −6 −4 −2 0 2 4 6 8 10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

output 1 = − output 0

P
(c

la
ss

 1
 |

ou
tp

ut
 1

=
−

ou
tp

ut
 0

)
softmax

Figure 3 Cross-section of the probability surface of fig. 2 across the bisector of the II
and IV quadrants of output space. The shaded region represents the 12.5%–87.5% range
of possible variability upon increase of the calibration dataset. The cross-section of the
softmax function (grey dashed curve) is also shown for comparison.

4.3 Results on demonstration data

The essential point of the decision-theoretic approach is that we first need
to specify the utilities involved in the classification problem, because they
determine (i) together with the probabilities, which class we choose in
each single instance; (ii) the metric to evaluate a classifier’s performance.
The utilities are assembled into a utility matrix which we write in the
format

de
cis

io
n

1
0

true class
0 1[

True 0 False 0
False 1 True 1

]
. (12)

We call equivalent two utility matrices that differ by a constant additive
term and a positive multiplicative term, since changes in the zero or unit
of measurement of utilities do not affect comparative evaluations.

19

Dyrland, Lundervold, Porta Mana Probability transducer for classifiers

For illustration we choose four utility matrices:

utility case I[
1 0
0 1

] utility case II[
1 −10
0 10

] utility case III[
1 0

−10 10

] utility case IV[
10 0

−10 1

]
. (13)

Case I represents any case where the correct classification of either class
is equally valuable; and the incorrect classification, equally invaluable.
Note that this utility matrix is equivalent to any other of the form

[
𝑎 𝑏
𝑏 𝑎

]
with 𝑎 > 𝑏. Accuracy is the correct metric to evaluate this case. Case II
represents any case where the correct classification of class 1, ‘active’
or ‘positive’, is ten times more valuable than that of class 0, ‘inactive’
or ‘negative’, and its incorrect classification is as damaging as correct
classification is valuable. The remaining two cases are interpreted in an
analogous way. The ‘value’ could simply be the final average monetary
revenue at the end of the drug-discovery project that typically follows
any of these four situations. Of particular relevance to drug discovery,
where false positives are known to be especially costly28, is the utility
matrix of case II and possibly that of case III.

We consider each of these utility matrices, in turn, to be the one
underlying our classification problem. In each case we perform the
classification of every item – a molecule – in the demonstration data as
follows:

1. feed the features of the item to the classifier and record its output
2. feed this output to the probability transducer and record the result-

ing probability for class 1; form the normalized probability vector
for the two classes

3. multiply the probability vector by the utility matrix to determine
the expected utility of each class choice, eq. (8)

4. choose the class with higher expected utility (ties have to be decided
unsystematically, to avoid biased results), eq. (9).

Confusion matrices – and a peculiar situation

Once all items in the demonstration dataset are classified, we compare
their chosen classes with their true ones and compute the resulting
confusion matrix, which we also write in the format (12). The confusion
28 Sink et al. 2010; Hingorani et al. 2019.

20

Dyrland, Lundervold, Porta Mana Probability transducer for classifiers

matrices for all cases, methods, and algorithms are presented in table 1
on page 23. Ties (both classes were equally preferable) are solved by
giving half a point to each class.

The standard method produces the same confusion matrix in all
four utility cases because it does not use utilities to choose a class. The
augmentation produces instead a different confusion matrix in each
utility case: even if the class probabilities for a give datum are the same
in all cases, the threshold of acceptance varies so as to always be optimal
for the utilities involved.

A peculiar case of this automatic optimization of the threshold is
visible for the transducer applied to either algorithm in case IV: it leads,
for both the random forest and the convolutional neural network, to the
confusion matrix [

3262 326
0 0

]
(14)

which means that all items were classified as ‘0’, ‘inactive’. How can this
happen? Let us say that the probabilities for class 0 and 1, determined
by the transducer from algorithm output, are 1 − 𝑝 and 𝑝. In case IV,
the expected utilities of choosing class 0 or 1 are given by the matrix
multiplication

[10 0
−10 1

] [1−𝑝
𝑝
]
:

choose 0: expect 10 · (1 − 𝑝) + 0 · 𝑝 = 10 − 10 𝑝 ,

choose 1: expect −10 · (1 − 𝑝) + 1 · 𝑝 = −10 + 11 𝑝 .
(15)

It is optimal to choose class 1 only if (disregarding ties)

− 10 + 11 𝑝 > 10 − 10 𝑝 or 𝑝 > 20/21 ≈ 0.952 , (16)

that is, only if the probability of class 1 is higher than 95%. The threshold
is so high because on the one hand there is a high cost (−10) if the true
class is not 1, and on the other hand a high reward (10) if the true class is
indeed 0. Now, a look at the transducer curve for the random forest, fig. 1,
shows that the transducer never assigns a probability higher than 93%
to class 1. Similarly the transducer for the convolutional neural network,
fig. 2, never reaches probabilities above 92%. So the threshold of 95%
will never be met in either case, and no item will be classified as 1. It is
simply never rewarding, on average, to do so29. It can be seen that this

29 Drummond & Holte 2005 cf. the analysis by.

21

Dyrland, Lundervold, Porta Mana Probability transducer for classifiers

situation will occur with any utility matrix
[
𝑎 𝑏
𝑐 𝑑

]
, with 𝑎 > 𝑐 and 𝑑 > 𝑏,

such that 𝑎−𝑐
𝑎−𝑐+𝑑−𝑏 ≈ 0.93.

This peculiar situation has a notable practical consequence. We have
found the transducer curve for a classifier, and see that its maximum
probability for class 1 is 93%. We have assessed that the utilities involved
are

[10 0
−10 1

]
, so the threshold to classify as 1 is 95%. Then we immediately

find that there is no need to employ that classifier, in this utility case: it is
simply more profitable to automatically treat all data as class 0.

A look at the other confusion matrices of table 1 shows the effect of
the automatic threshold optimization also in utility cases II and III: as the
cost of some misclassification increases, the number of the correspoding
misclassifications decreases.

Utility yields

We can finally assess the performance of both classifiers, with and
without augmentation, on the demonstration dataset. As explained in
our companion work30 and summarized in § 3, the correct metric for
such performance must naturally depend on the utilities that underlie
the problem. It is the utility yield per datum produced by the classifier
on the dataset, obtained by taking the grand sum of the products of
the homologous elements of the utility matrix (𝑈𝑖 𝑗) and the confusion
matrix (𝐶𝑖 𝑗): ∑

𝑖 𝑗

𝑈𝑖 𝑗 𝐶𝑖 𝑗 . (17)

The utility yields for the different cases, classifiers, and methods
are presented in table 2. The maximum and minimum theoretically
achievable yields, which are obtained when all data are correctly classi-
fied or incorrectly misclassified, are also shown for each case. Since the
maximum and minimum differ from case to case, the table also reports
the rescaled utilities: for each case, the rescaled utility is obtained by
a change in the zero and scale of its measurement unit such that the
minimum and maximum achievable yields become 0 and 1:

rescaled utility =
utility − theoretical min

theoretical max − theoretical min
. (18)

Let us first compare the two algorithms when employed in the
standard way (red). Their performance is very close to the theoretical
30 Dyrland et al. 2022a.

22

Dyrland, Lundervold, Porta Mana Probability transducer for classifiers

[1 0
0 1

] [1 −10
0 10

] [1 0−10 10
] [10 0−10 1

]
standard method

[3225 79.5
37 246.5

]

Ra
nd

om
Fo

re
st

augmentation
[3207 38

55 288
] [3050 7

212 319
] [3207 40

55 286
] [3262 326

0 0
]

standard method
[3165 49

97 277
]

N
eu

ra
l

N
et

w
or

k

augmentation
[3189 65

73 261
] [2882 12

380 314
] [3189 66

73 260
] [3262 326

0 0
]

Table 1 Confusion matrices from demonstration dataset

[1 0
0 1

] [1 −10
0 10

] [1 0−10 10
] [10 0−10 1

]
min achievable utility 0 −0.91 −9.09 −9.09
max achievable utility 1 1.82 1.82 9.18

standard method 0.968 1.36 1.48 8.95

Ra
nd

om
Fo

re
st

augmentation 0.974 1.72 1.54 9.09

standard method 0.959 1.52 1.38 8.63

N
eu

ra
l

N
et

w
or

k

augmentation 0.962 1.64 1.41 9.09

Rescaled utility yields, eq. (18)

standard method 0.968 0.834 0.969 0.988

Ra
nd

om
Fo

re
st

augmentation 0.974 0.964 0.974 0.995

standard method 0.959 0.890 0.960 0.970

N
eu

ra
l

N
et

w
or

k

augmentation 0.962 0.937 0.963 0.995

Table 2 Utility yields from demonstration dataset

23

Dyrland, Lundervold, Porta Mana Probability transducer for classifiers

maximum in most cases, the worse being the random forest in case II.
The random forest outperforms the convolutional neural network in
cases I, III, IV.

Then let us look at the performances obtained with the augmentation
(blue bold). We note the following:

• The augmentation improves the performance of each algorithm in
all cases. The improvement also occurs in case IV for the random
forest, where the standard method already had an extremely high
performance (rescaled utility of 0.988).

• In cases II and IV the augmentation improves the originally worse
algorithm above the originally better one.

• In case IV the augmentation brings the utility yield to above 99%
of the theoretical maximum; remember from the previous section
that this is achieved by classifying all data as class 0.

• With augmentation, the random forest outperforms the convolu-
tional neural network in all cases, with a possible tie for case IV.

These were four particular cases only, though. Does the augmentation
lead to an improvement (or at least to no change), on average, over all
possible utility matrices? We expect this to be the case, owing to the
internal consistency of decision theory.

We give evidence of this fact by considering a large number (10 000)
of utility matrices selected uniformly from the utility-matrix space for
binary classification. This two-dimensional space, shown in fig. 4, is
discussed in our companion work31.

For each of these utility matrices, we calculate the rescaled utility
yields obtained by using either classifier in the standard way, and with
the augmentation – probability-transducer & utility-based classification.
The utility yields obtained in the two ways are plotted against each other
in fig. 5. Histograms of their distributions are also shown on the sides.

The augmentation clearly leads to increased utility yields, especially
for those cases where the standard performance of the two algorithms is
particularly high or low – compare the left tails of the histograms for the
standard method and augmentation. The standard method in some cases
has utility yields as low as 0.76 for the random forest and 0.85 for the
convolutional neural network; whereas the augmentation never leads to

31 Dyrland et al. 2022a § 3.2.

24

Dyrland, Lundervold, Porta Mana Probability transducer for classifiers

Figure 4 Space of utility matrices (modulo equivalence) for binary classification.

yields below 0.96 for the random forest and 0.92 for the convolutional
neural network. This explains the U-shapes of the scattered points. Note
that the minimum values of the plot’s axes is 0.75, so the improvement is
upon utility yields that are already quite high.

There are a few apparent decreases in the utility yield, in some
cases. The extremal relative decreases are −0.09% for random forest and
−0.2% for convolutional neural network. Given their small magnitude,
we believe them to be caused by numerical-precision error rather than
to be real decreases

4.4 From ‘inactive vs active’ to more general decisions

In the demonstration just discussed we assumed that the decisions
available for each molecule examined were just two: ‘molecule is inactive’
vs ‘molecule is active’, corresponding to the two unknown classes. In a
more general drug-discovery problem we could have a different set of
decisions, for instance ‘discard’ vs ‘promote to next examination stage’
vs ‘examine with different method’. Each decision would have its own
utilities conditional on the two possible classes, forming a 3×2 utility
matrix. The analysis and calculations of the present section would be
easily generalized to such case.

25

Dyrland, Lundervold, Porta Mana Probability transducer for classifiers

0.76 0.80 0.84 0.88 0.92 0.96 1.00

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

rescaled utility yield, standard method

re
sc

al
ed

 u
til

ity
 y

ie
ld

, a
ug

m
en

ta
tio

n

Random Forest
Neural Network

Figure 5 Rescaled utility yields obtained using the two classifiers in the standard way, vs
those obtained with augmentation, for a uniform distribution of possible utility matrices
over the utility-matrix space of fig. 4. The augmentation always leads to an improved utility
yield, especially in cases where the standard method has a low or high performance. Owing
to noise coming from numerical rounding, in some cases the yield from augmentation
may appear lower than from the standard method (points below the dashed grey line).

5 Additional uses of the probability-transducer: an overview

The probability-transducer presented in § 2 and illustrated in the previous
section has several other uses and advantages, all of which come for
free or almost for free with its calculation. We give a brief overview of
them in the present section, leaving a more thorough discussion and
applications to future works.

26

Dyrland, Lundervold, Porta Mana Probability transducer for classifiers

The additional uses are mainly three:
• Quantification of the possible variability of the transducer probab-

ility curve.
• Evaluation of the optimal algorithm, including the uncertainty

about such evaluation.
• ‘Generative use’ of the augmented algorithm, even if the original

algorithm is not designed for generative use.

5.1 Variability of the transducer’s probability curve

The output-to-probability function, eq. (4), such as those plotted in
figs 1 and 2–3, is determined by the data in the calibration set. There is
the question, then, of how the function could change if we used more
calibration data. Such possible variability could be of importance. For
example, we may find that the transducer only yields class probabilities
around 0.5, and wonder whether this is just a statistical effect of a too
small calibration dataset, or whether it would persist even if we used
more calibration data.

The calculation of the transducer parameters automatically tells us
the probabilities of these possible variations, in the form of a set of
possible alternative transducer curves, from which we can for example
calculate quantiles. The shaded regions in figs 1, 7 and 3 are examples of
such probability intervals. Their calculation is sketched in appendix B.4.

5.2 Expected utility of the classifying algorithm

At the end of the discussion about the calibration dataset, § 2.2, we
gave our assurances that no additional data must be set apart – with
a detrimental reduction in training data – for evaluation or testing
purposes. This is because from the probabilities (4), obtained from the
calibration data, we can also calculate the expected, future utility yield of the
augmented algorithm, once we have specified the utility matrix underlying
the particular application. More details about this calculation, which
amounts to a low-dimensional integration, are given in appendix B.5;
see especially formula (31).

For the random forest and convolutional neural network of the
demonstration § 4, for instance, this calculation gives the expected
utilities (non-rescaled) of table 3. The augmented random forest is

27

Dyrland, Lundervold, Porta Mana Probability transducer for classifiers

[1 0
0 1

] [1 −10
0 10

] [1 0
−10 10

] [10 0
−10 1

]
Random Forest 0.973 1.68 9.59 9.08
Neural Net 0.962 1.62 9.56 9.08

Table 3 Expected utilities for the two algorithms of § 4

0.950 0.955 0.960 0.965 0.970 0.975 0.980

algorithm's long−run utility

pr
ob

ab
ili

ty
 d

en
si

ty

Random Forest
Conv. Neural Net

case I

1.45 1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85

algorithm's long−run utility

case II

8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5

algorithm's long−run utility

pr
ob

ab
ili

ty
 d

en
si

ty

case III

8.90 8.95 9.00 9.05 9.10 9.15 9.20 9.25

algorithm's long−run utility

case IV
Figure 6 Probability distributions of the long-run utility yields of random forest and
convolutional neural network in the four cases of § 4

28

Dyrland, Lundervold, Porta Mana Probability transducer for classifiers

expected to be optimal for cases I and II, possibly also in case III, although
the difference in utilities is likely affected by numerical-precision error.
There is no preference in case IV.

Let us emphasize again that these values are obtained from the
parameters of the transducer curve, without the need of any additional dataset.
The demonstration dataset discussed in § 4.1 was not used for their
calculation. The results from that dataset, reported in table 2, corroborate
these values.

One may ask: but how can you be sure that what you basically found
from the calibration data will generalize to new data? The answer goes
back to the discussion at the end of § 2.2, about how the probability
calculus works, and to the technical details explained in appendix B: the
probability calculus automatically considers all possible sets of new data
that could be encountered in the future application32.

In fact, the calculation of an algorithm’s expected utility automatically
produces a probability distribution of the possible long-run yields the
algorithm could give. The distributions for the long-run utilities of the
random forest and the convolutional neural network in cases I–IV of § 4
are shown in fig. 6. It can be calculated, eq. (32), that in case I the random
forest will very probably, 99%, be superior to the convolutional neural
network. In case II the probability is somewhat lower, 83%. In cases III
and IV it is completely uncertain (50%) which algorithm will be best.

The evaluation of candidate classifiers’ performances and their un-
certainties are obviously extremely important for the choice and final
deployment of the optimal classifier.

5.3 Discriminative and generative modes

The transducer parameters, calculated as discussed in § 2.3 and ap-
pendix B, allow us to calculate not only the ‘discriminative’ probability of
the class given the algorithm’s output, formula (7a), but also the inverse,
‘generative’ probability33 of the output given the class, formula (7b). The
transducer thus allow us to use the original algorithm both in ‘discrim-
inative mode’ and in ‘generative mode’, even if it is not a generative
algorithm in itself.

Having an available generative mode is extremely useful, because it
is the required way to calculate the class probabilities if the calibration and

32 cf. Smith & Winkler 2006. 33 Russell & Norvig 2022 § 21.2.3; Murphy 2012 § 8.6.

29

Dyrland, Lundervold, Porta Mana Probability transducer for classifiers

training sets do not have the same class frequencies as the real population on
which the classifier will be employed. For instance, two classes may appear
in a 50%/50% proportion in the calibration set but in a 90%/10% pro-
portion in the real population. This discrepancy in the two populations’
frequencies can occur for several reasons. Examples: samples of the real
population are unavailable or too expensive to be used for calibration
purposes; the class statistics of the real population has suddenly changed
right after the deployment of the classifier; it is necessary to use the
classifier on a slightly different population; or the sampling of calibration
data was poorly designed.

In such situations, the discriminative probabilities p(𝑐 | 𝑦) are usually
no longer the same in the two populations either, owing to the identity

p(𝑐 | 𝑦) p(𝑦) ≡ p(𝑦 | 𝑐) p(𝑐) . (19)

Typically, a change in p(𝑐) leaves p(𝑦 | 𝑐) the same; but then both p(𝑦)
and p(𝑐 | 𝑦) must change as well. This means that the discriminative
probabilities the algorithm and transducer have learned from the training
and calibration sets are actually wrong: they cannot lead to reliable
inferences on the real population.

But, as we just said, the generative probabilities p(𝑦 | 𝑐) often remain
the same. And these have been automatically computed in the transducer
calibration, formula (7b). We can then use them to calculate the prob-
ability of class 𝑐 through Bayes’s theorem, by supplying the population
prevalence 𝑟𝑐 of the class:

𝑝(𝑐 | 𝑦, prevalences) = 𝑝(𝑦 | 𝑐) 𝑟𝑐∑
𝑐 𝑝(𝑦 | 𝑐) 𝑟𝑐 . (20)

The population prevalences34, also called base rates35, are the relative
frequencies of occurrence of the various classes in the population whence
our unit originates. This notion is very familiar in medicine and epidemi-
ology. For example, a particular type of tumour can have a prevalence of
0.01% among people of a given age and sex, meaning that 1 person in
10 000 among them has that kind of tumour, as obtained through a large
survey.

We recommend the outstandingly insightful discussion by Lindley
& Novick 1981 on the problem of population mismatch and on which
conditional probabilities to use in that case.
34 Sox et al. 2013 ch. 3; Hunink et al. 2014 § 5.1. 35 Bar-Hillel 1980; Axelsson 2000.

30

Dyrland, Lundervold, Porta Mana Probability transducer for classifiers

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

1

2

3

4

5

6

7

8

output

p
(o

ut
pu

t |
cl

as
s)

class 1
class 0

Figure 7 Probability densities of the random-forest output conditional on class 1 (‘active’,
blue solid curve) and on class 0 (‘inactive’, red dashed curve, truncated). The shaded region
around each curve represents its 12.5%–87.5% range of possible variability upon increase
of the calibration dataset.

Figure 7 shows the ‘generative’ probability densities p(output | class 1),
p(output | class 0) of the random-forest output from the demonstration of
§ 4. The shaded regions are 75% intervals of possible variability upon
increase of the calibration dataset.

There is a high probability of output values close to 0 when the true
class is 0 (‘inactive’), and a peak density around 0.8 when the true class
is 1 (‘active’), as expected. The density conditional on class 0 is narrower
than the one conditional on class 1 owing to the much larger proportion
data in the former class. Intuitively speaking, we have seen that most
data in class 1 correspond to high output values, but we have seen too
few data in this class to reliably conclude, yet, that future data will show
the same correspondence.

We can show the usefulness of using the probability transducer in
generative mode by altering the class frequencies of the demonstration
set: we keep all data of class 1 (the less frequent) and unsystematically
select a number of data from class 0 equal to half that of class 1. This new

31

Dyrland, Lundervold, Porta Mana Probability transducer for classifiers

0.76 0.80 0.84 0.88 0.92 0.96 1.00

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

rescaled utility yield, standard method

re
sc

al
ed

 u
til

ity
 y

ie
ld

, a
ug

m
en

ta
tio

n
in

 g
en

er
at

iv
e

m
od

e

Random Forest
Neural Network

Figure 8 Rescaled utility yields obtained using the two classifiers in the standard way, vs
those obtained with augmentation in generative mode, on an altered dataset with very
different class balance from the training and calibration sets. The distribution of possible
utility matrices is uniform over their space, as before. The utility yields of the standard
method have worsened with respect to those of fig. 5, as can be seen from the histogram
tails. The augmentation in generative mode, however has not suffered from this dataset
mismatch.

demonstration set has thus a proportion 1/3 vs 2/3 of class 0 and class 1:
their preponderance has been almost inverted. Finally we apply both
classifiers in the standard way and with the augmentation in generative
mode, considering again a large number of possible utility matrices,
uniformly selected from their space. The rescaled utility yields are shown
in fig. 8.

We see that the performance of the standard method has worsened;

32

Dyrland, Lundervold, Porta Mana Probability transducer for classifiers

this is especially manifest by a comparison of the top histograms of figs 5
and 8. The median utility yield of the random forest has gone from 0.967
to 0.834; that of the convolutional neural network from 0.959 to 0.893.
And yet the augmentation in generative mode is almost unaffected, the
median changing from 0.974 to 0.967 for the random forest and from
0.961 to 0.941 for the convolutional neural network.

6 Summary and discussion

The successful application of machine-learning classifiers in fields such as
medicine or drug discovery, which involve high risks and special courses
of action, demands that we replace a too-simplistic view of classification
with a more articulated and flexible one. A classifier must be able to
handle decisions that do not correspond to some unknown classes; it must
take into account problem-specific gains and losses arising from such
decisions; it must choose not what’s likely, but what’s optimal; and the
uncertainties underlying its operation must be amenable to assessment.
And it should preferably face all these requirements with methods based
on first-principles guaranteeing consistency and universal applicability.

The basic theory that allows us to face most of these requirements
has been around for a long time36: Decision Theory, whose methods keep
on see-sawing in machine learning37. It allows us to consider decisions
separate from classes, to evaluate gains and losses, and to decide what’s
optimal. In the present work we have tried to revive it, showing that
its application is straightforward, involves little computational cost,
and always leads to improvement on results obtained with standard
machine-learning methods, even when these are already nearly optimal.

The main obstacle in using decision theory is that it requires proper
probabilities, which in many applications might only be obtained at
too high computational costs – if these probabilities are conditional on the
‘features’ constituting the input to classifier.

We have proposed the idea of using probabilities conditional on the
output of the classifier instead. This is somehow like using the classifier in
the guise of a diagnostic test, such as a typical medical test.

36 at least since Luce & Raiffa 1957; cf. Russell & Norvig 2022 § 1.2. 37 e.g. Self &
Cheeseman 1987; Elkan 2001; Drummond & Holte 2005.

33

Dyrland, Lundervold, Porta Mana Probability transducer for classifiers

This probabilistic quantification is not computationally expensive,
can be calculated exactly by Bayesian model-free (non-parametric) density-
regression methods38, and only needs to be done once per trained algorithm.

We have called the resulting output-to-probability function a ‘prob-
ability transducer’. Concrete examples are given in fig. 1 for the output
of a random-forest classifier, and in figs 2, 3 for the bivariate output
of a convolutional neural network. In the latter case, the probability
transducer is essentially a replacement of the popular softmax.

The quantification of the probabilistic relationship between a clas-
sifier’s output and the unknown class requires a ‘calibration dataset’,
whose role can perfectly be played by the ‘test’ or ‘evaluation’ set of
standard machine-learning methodology. The calibration dataset also
delivers all necessary evaluations; thus a third, additional test set is not
required.

The probability transducer gives probabilities that are easily com-
bined with the set of utilities specific to the problem, to make a classi-
fication or a more general decision based on maximum expected utility,
according to the principles of decision theory. This procedure is compu-
tationally inexpensive: a low-dimensional matrix multiplication followed
by an ‘argmax’. We have called ‘augmentation’ the joint use of transducer
and utility-maximization. The utilities employed by the augmentation
can also differ from one tested item to the other, without any changes to
the computational costs.

We have demonstrated the use of the probability transducer and
augmentation on a random forest and a convolutional neural network in
a drug-discovery problem: classifying molecules as ‘inactive’ or ‘active’.
The problem has a naturally high class imbalance, and standard machine-
learning classifiers often have nearly optimal performance on the dataset
used to explore this problem. Yet, the augmentation led to improvements
for all possible choice of utilities underlying the classification, as shown in
fig. 5. The calculation of the two probability transducers’ parameters
took at most 75 min.

The calculation of a probability transducer from a calibration dataset
also provides extremely useful additional information, for free or almost
so: (a) the possible variability of the transducer function, if more calibra-
tion data were acquired; (b) the expected utility of the whole algorithm
on which the transducer is used, including the uncertainty about such
38 Dunson & Bhattacharya 2011.

34

Dyrland, Lundervold, Porta Mana Probability transducer for classifiers

utility; (c) the possibility of using the classifier in a ‘generative mode’,
giving the probability of the output conditional on the class; this is
useful when the only available data for training has different statistical
properties from the real-use data.

Some literature has promoted and employed the use of utilities in
so called cost-sensitive learning39. One approach is to bake utilities into
the loss function used at the training stage, so that the utilities can
have an effect on the training of the classifier. This approach effectively
wastes information and has computational disadvantages. First, since the
optimal decision depends on the product of utilities and probabilities,
the algorithm learns about this product only, and not about the two
factors separately.40 Yet, the utilities are known, otherwise they could
not be combined with the loss function. The information about them is
therefore wasted. Second, if the statistics of the data involved remain the
same, but the utilities suddenly change, the classifier has to be trained
anew. Such a classifier cannot be used in cases where the utilities differ
from one tested item to the next (see discussion above).

The method proposed in the present work does not suffer from either
of these drawbacks. The training phase needs no changes, and focuses
on retrieving information about the data’s statistics – which is then
extracted by the probability transducer. The full information contained
in the utilities is used. And the utilities can even be changed on the fly
during the use of the classifier.

Future directions

It is possible to construct a probability transducer that takes the output
from several classifiers at once. This would be the optimal way of doing
‘ensembling’ from the point of view of the probability theory. In future
work we plan to examine this possibility and compare it with standard
ensembling methods.

As mentioned at the end of § 2.2, we also plan to assess what is the best
way to split available data into the training set and the calibration set, in
order to have an optimal amount of mutual information between features,

39 Elkan 2001; Correa Bahnsen et al. 2015; Ling & Sheng 2017. 40 In Elkan 2001 §§ 2–3,
for example, the decision threshold of the algorithm is changed by making the algorithm
learn wrong class probabilities on purpose.

35

Dyrland, Lundervold, Porta Mana Probability transducer for classifiers

class, and algorithm output (training data) and a reliable transducer
(calibration data).

For the demonstration of § 4 we also tried a ‘mixed’ method: directly
combining the output of the classifier (raw output for the random forest
and standard softmax for the CNN), as it were a probability, with the
utilities; and then classifying by utility maximization as usual. This
method generally led to improvements with respect to the standard
one, and in some cases also with respect to the probability-transducer
augmentation. But on average, over the space of utility matrices, the
mixed method was worse than the augmentation method, for both
random forest and convolutional neural network. In future work we may
try to compare the performance of the two methods with different kinds
of dataset.

Author contributions

The authors were so immersed in the development of the present work,
that unfortunately they forgot to keep a detailed record of who did what.

Thanks

KD and ASL acknowledge support from the Trond Mohn Research
Foundation, grant number BFS2018TMT07, and PGLPM from The Re-
search Council of Norway, grant number 294594.

The computations of the parameters for the probability transducer
were performed on resources provided by Sigma2 – the National Infra-
structure for High Performance Computing and Data Storage in Norway
(project NN8050K).

KD would like to thank family for endless support; partner Synne
for constant love, support, and encouragement; and the developers and
maintainers of Python, FastAi, PyTorch, scikit-learn, NumPy and RDKit
for free open source software and for making the experiments possible.

PGLPM thanks Maja, Mari, Miri, Emma for continuous encourage-
ment and affection; Buster Keaton and Saitama for filling life with awe
and inspiration; and the developers and maintainers of LATEX, Emacs,
AUCTEX, Open Science Framework, R, Nimble, Inkscape, LibreOffice,
Sci-Hub for making a free and impartial scientific exchange possible.

36

Dyrland, Lundervold, Porta Mana Probability transducer for classifiers

Appendices: mathematical and technical details

A Algorithms and data used in the demonstration

A.1 Data

The data comes from the open-access ChEMBL bioactivity database41.
The dataset used in the present work was introduced by Koutsoukas
et al. (2017). The data consist in structure-activity relationships from
version 20 of ChEMBL, with Carbonic Anhydrase II (ChEMBL205) as
protein target.

A.2 Pre-processing

For our pre-processing pipeline, we use two different methods to rep-
resent the molecule, one for the Random Forest (RF) and one for the
Convolutional Neural Network (CNN). The first method turns the mo-
lecule into a hashed bit vector of circular fingerprints called Extended
Connectivity Fingerprints (ECFP)42. From our numerical analysis, there
was little to no improvement using a 2048-bit vector over a 1024-bit
vector.

For our convolutional neural network, the data is represented by
converting the molecule into images of 224 pixels × 224 pixels. This is
done by taking a molecule’s SMILES (Simplified Molecular Input Line
Entry System) string43 from the dataset and converting it into a canonical
graph structure by means of RdKit44. This differs from ECFP in that it
represents the actual spatial and chemical structure (or something very
close to it) of the molecule rather than properties generated from the
molecule.

The dataset has in total 1631 active molecules and 16310 non-active
molecules which act as decoys. For training, the active molecules are
oversampled, as usually done with imbalanced datasets45, to match the
same number of non-active molecules.

A.3 Prediction

Virtual screening is the process of assessing chemical activity in the
interaction between a compound (molecule) and a target (protein). The
41 Bento et al. 2014. 42 Rogers & Hahn 2010. 43 David et al. 2020. 44 Landrum et al.
2017. 45 Provost 2000.

37

Dyrland, Lundervold, Porta Mana Probability transducer for classifiers

goal of the machine learning algorithms is to find structural features
or chemical properties that show that the molecule is active towards
the protein46. Deep neural networks have previously been shown to
outperform random forests and various linear models in virtual high-
throughput screening and in quantitative structure-activity relationship
(QSAR) problems47.

A.4 Chosen classifiers

The algorithms and methods used to create the models have previously
been shown to give great results for a lot of different fields.

Random Forest

The first machine learning model used in the experiments is an RF
model implemented in sci-kit learn48. RF is an ensemble of classifying or
regression trees where the majority of votes is chosen as the predicted
class49. It is known for being robust when dealing with a large number
of features (as in our case), being resilient to over-fitting, and achieving
good performance. And has already been shown to deliver powerful
and accurate results in compound classification and QSAR analysis50.
The following parameters were used when training the model:

Number of trees: 200
Criterion: Entropy
Max Features: Square root

Convolutional Neural Network

The second model is a pre-trained residual network (ResNet)51 with 18
hidden layers trained on the well-known ImageNet dataset52 by using the
PyTorch framework53. ResNet has shown to outperform other pre-trained
convolutional neural network models54. A ResNet with 34 hidden layers

46 Green 2019. 47 Koutsoukas et al. 2017. 48 Pedregosa et al. 2011. 49 Breiman 2001.
50 Svetnik et al. 2003. 51 He et al. 2016. 52 Russakovsky et al. 2015. 53 Paszke et al. 2019.
54 He et al. 2016.

38

Dyrland, Lundervold, Porta Mana Probability transducer for classifiers

showed little to no performance gain, so we chose to go with the simpler
model. The model is trained with the following hyperparameters:

Learning rate: 0.003
Optimization technique: Stochastic Gradient Descent
Activation Function: Rectified linear unit (ReLU)
Dropout: 50%
Number of epochs: 20
Loss function: Cross-entropy loss

A.5 Dateset split

The data set is split into four parts:
• Training set: 45% of the dataset to train the model.
• Validation set: 15%, for validating the model after each epoch.
• Calibration set: 20%, for calibrating the probability transducer.
• Demonstration set: 20%, for evaluation.

B Mathematical details and computation of the transducer

The notation is the one used in § 2.3: the class is denoted 𝑐 and the
algorithm output 𝑦. In our demonstration 𝑐 takes on values in {0, 1}, and
𝑦 either in [0, 1] or in R2; but the method can be applied to more general
cases, such as continuous but low-dimensional spaces for both 𝑐 and 𝑦,
or combinations of continuous and discrete spaces. For convenience we
use a single symbol for the pair 𝑑 := (𝑐, 𝑦).

For general references about the probability calculus and concepts
and specific probability distributions see Jaynes 2003; MacKay 2005;
Jeffreys 1983; Gregory 2005; Bernardo & Smith 2000; Hailperin 1996;
Good 1950; Johnson et al. 1996; 2005; 1994; 1995; Kotz et al. 2000.

39

Dyrland, Lundervold, Porta Mana Probability transducer for classifiers

B.1 Exchangeability and expression for the probability transducer

There is a fundamental theorem in the probability calculus that tells
us how extrapolation from known units – molecules, patients, widgets,
images – to new, unknown units takes place: de Finetti’s theorem55. It
is a consequence of the assumption that our uncertainty is invariant or
‘exchangeable’ under permutations of the labelling or order of the units
(therefore it does not apply to time series, for example).

De Finetti’s theorem states that the probability density of a value
𝑑0 for a new unit ‘0’, conditional on data 𝐷, is given by the following
integral:

p(𝑑0 | 𝐷) =
∫

𝐹(𝑑0) 𝑤(𝐹 | 𝐷) d𝐹 , (21)

which can be given an intuitive interpretation. We consider every possible
long-run frequency distribution 𝐹(𝑑) of data; give it a weight density
𝑤(𝐹 |𝐷)which depends on the observed data; and then take the weighted
sum of all such long-run frequency distributions.

The weight𝑤(𝐹 |𝐷) given to a frequency distribution 𝐹 is proportional
to two factors:

𝑤(𝐹 | 𝐷) ∝ 𝐹(𝐷) 𝑤g(𝐹) . (22)

• The first factor (‘likelihood’) 𝐹(𝐷) quantifies how well 𝐹 fits
known data of the same kind, in our case the calibration data
𝐷 := {𝑑1 , . . . , 𝑑𝑀}. It is simply proportional to how frequent the
known data would be, according to 𝐹:

𝐹(𝐷) := 𝐹(𝑑1) · 𝐹(𝑑2) · · · · · 𝐹(𝑑𝑀) ≡ exp
[
𝑀

∑

𝑑

�̂�(𝑑) ln 𝐹(𝑑)
]
, (23)

where �̂�(𝑑) is the frequency distribution observed in the data.
• The second factor (‘prior’) 𝑤g(𝐹) quantifies how well 𝐹 generalizes

beyond the data we have seen, owing to reasons such as physical
or biological constraints for example. In our case we expect 𝐹 to
be somewhat smooth in 𝑋 when this variable is continuous56. No
assumptions are made about 𝐹 when 𝑋 is discrete.

Formula (22) is just Bayes’s theorem. Its normalization factor is the
integral

∫
𝐹(𝐷)𝑤g(𝐹)d𝐹, which ensures that 𝑤(𝐹) is normalized.

55 Bernardo & Smith 2000 ch. 4; Dawid 2013; de Finetti 1929; 1937. 56 Cf. Good &
Gaskins 1971.

40

Dyrland, Lundervold, Porta Mana Probability transducer for classifiers

The exponential expression in eq. (23) is proportional to the number
𝑀 of data, and in it we recognize the cross-entropy between the observed
frequency distribution �̂� and 𝐹. This has two consequences. First, it makes
the final probability 𝑝(𝑑0) increasingly identical with the distribution
�̂�(𝑑) observed in the data, because the average (21) gets more and more
concentrated around �̂�. Second, a large amount of data indicating a
non-smooth distribution 𝐹 will override any smoothness preferences
embodied in the second factor. Note that no assumptions about the shape
of 𝐹 – Gaussians, logistic curves, sigmoids, or similar – are made in this
approach (compare fig. 9).

B.2 Conditional probabilities

From eq. (21), which is expressed in terms of joint probabilities for 𝑐0
and 𝑦0, there are two ways of obtaining the probability of 𝑐0 conditional
on 𝑦0, which we report without proof:
Exchangeable output: if the newly observed value 𝑦0 of the output is

considered to be exchangeable with (or representative of) the 𝑦
values in the calibration data, then

p(𝑐0 | 𝑦0 , 𝐷, exch.) = p(𝑐0 , 𝑦0 | 𝐷)
p(𝑦0 | 𝐷) =

∫
𝐹(𝑐0 , 𝑦0) 𝑤(𝐹 | 𝐷) d𝐹∫
𝐹(𝑦0) 𝑤(𝐹 | 𝐷) d𝐹

, (24)

where 𝐹(𝑦0) = ∑
𝑐 𝐹(𝑐, 𝑦0). This expression is effectively doing two

things: first, implicitly updating the probability distribution for
𝑦, taking as new evidence the observed 𝑦0; second, yielding the
conditional distribution of 𝑐0 given 𝑦0.

Non-exchangeable output: if the newly observed value 𝑦0 of the output
is not considered to be exchangeable with the 𝑦 values in the
calibration data, then

p(𝑐0 | 𝑦0 , 𝐷, non-exch.) =
∫

𝐹(𝑐0 , 𝑦0)
𝐹(𝑦0) 𝑤(𝐹 | 𝐷) d𝐹 ; (25)

This expression does not implicitly update of the distribution for 𝑦.
The second formula should be used if new data are considered to

lead to a distribution of features different from that of the calibration
data – although the basic assumption that the conditional distributions of
classes given features are the same still holds57.
57 see Lindley & Novick 1981 for a thorough discussion of these two cases.

41

Dyrland, Lundervold, Porta Mana Probability transducer for classifiers

The two formulae converge to one another and to the long-run
conditional probability of 𝑐 given 𝑦, as the number of calibration data
increases. With a large number of calibration data, say hundreds or more,
the values obtained from the two formulae are negligible.

B.3 Representation of the long-run distribution and Markov-chain
Monte Carlo sampling

The integral in (21) is calculated in either of two ways, depending
on whether 𝑑 is discrete or continuous. For 𝑑 discrete, the integral is
over R𝑛 , where 𝑛 is the number of possible values of 𝑑, and can be
done analytically. For 𝑑 with continuous components, the integral is
numerically approximated by a sum over 𝑇 representative samples,
obtained by Markov-chain Monte Carlo, of distributions 𝐹 according to
the weights (22):

p(𝑑0 | 𝐷) =
∫

𝐹(𝑑0) 𝑤(𝐹 | 𝐷) d𝐹 ≈ 1
𝑇

𝑇∑

𝑡=1
𝐹𝑡(𝑑0) . (26)

The error of this approximation can be calculated and made as small as
required by increasing the number of Monte Carlo samples.

We must find a way to express any kind of distribution 𝐹(𝑑). As
mentioned in § 2.3, this is done by writing it as

𝐹(𝑐, 𝑦) = ∑

𝑙

𝑤𝑙 𝐴(𝑐 | α𝑙) 𝐵(𝑦 | β𝑙) , (27)

where the sum has a large number of terms58, {𝑤𝑙} are normalized
weights, and 𝐴(𝑐 | α), 𝐵(𝑦 | β) are distributions, possibly the product of
further one-dimensional distributions. Effectively we are expressing 𝐹(·)
by the ‘coordinates’ (𝑤𝑙 ,α𝑙 ,β𝑙) in a space of extremely high dimensions.

This representation59 has several advantages:
• Its marginal distributions for 𝑐 and 𝑦 are also of the form (27), as

shown in § 2.3, and easily computable.
• Its conditional distributions for 𝑐 given 𝑦 and vice versa have also a

form similar to eq. (27) and easily computable.
• It can be used with conjugate priors.

58 see Ishwaran & Zarepour 2002 on why the number of terms does not need to be infinite.
59 promoted by Dunson & Bhattacharya 2011; see also Rasmussen 1999.

42

Dyrland, Lundervold, Porta Mana Probability transducer for classifiers

• The final probability 𝑝(𝑐, 𝑦), approximated by the sum (26), has
also the form (27):

p(𝑐0 , 𝑦0) ≈
∑

𝑡 ,𝑙

𝑤𝑡 ,𝑙

𝑇
𝐴(𝑐0 | α𝑡 ,𝑙) 𝐵(𝑦0 | β𝑡 ,𝑙) . (28)

This is the expression given in § 2.3 with 𝑘 running over both
indexes 𝑡 , 𝑙 and with 𝑞𝑘 := 𝑤𝑡 ,𝑙/𝑇.

In our demonstration of § 4, where the class variable 𝑐 takes on
conventional values {0, 1}, we use a Bernoulli distribution for the first:

𝐴(𝑐 | α) = 𝑐 α + (1 − 𝑐) (1 − α) ≡
{
α if 𝑐 = 1,
1 − α if 𝑐 = 0 ;

(29)

and a Gaussian distribution for the second, β ≡ (µ , σ) being its mean
and standard deviation:

𝐵(𝑦 | β) = N(𝑦 | µ , σ) := 1√
2πσ2

exp
[
−(𝑦 − µ)2

2σ2

]
, (30)

or a product of such Gaussians, each with its own parameters, if 𝑦
is multidimensional. For the random-forest output 𝑦 ∈ [0, 1] such a
Gaussian should in principle be truncated; we did not use any truncation
as the error committed is small and the computation much faster.

The samples {𝐹𝑡(·)} of the sum (26) – these are samples of the distribu-
tion 𝑤(𝐹) – are obtained through Markov-chain Monte Carlo; specifically
Gibbs sampling60. Effectively we obtain samples of the coordinates
(𝑤𝑙 ,α𝑙 ,β𝑙), and the prior 𝑤g(𝐹) is a prior over these coordinates.

For the demonstration of § 4 we use a Dirichlet distribution for (𝑤𝑙), a
beta distribution for (α𝑙), a Gaussian distribution for (µ𝑙), and a gamma
distribution for (1/σ𝑙

2).
The Markov-chain Monte Carlo sampling scheme is implemented

using the R61 package nimble62, and uses 16 parallel chains63. The
sampling took approximately 45 min for the random forest and 75 min
for the convolutional neural network, wall-clock time. The resulting
parameters are available in our supplementary data64.

60 Neal 1993; MacKay 2005 ch. 29. 61 R Core Team 2022. 62 nimble 2021. 63 Dyrland et al.
2022b, scripts RFmcmc.R and NNmcmc.R. 64 Dyrland et al. 2022b, files transducer_params-
Random_Forest.zip and transducer_params-Neural_Net.zip.

43

Dyrland, Lundervold, Porta Mana Probability transducer for classifiers

B.4 Assessment of the possible variability of the probability

In §r we mentioned that the calculation of the transducer parameters
automatically also tells us how much the probabilities curves could
change if we used more data for the calibration. The range of this
possible variability was shown for example in figs 1, 7, and 3 of the
demonstration.

This possible variability is encoded in the weight 𝑤(𝐹 | 𝐷), which can
be interpreted as the probability distribution of the long-run frequency
distribution 𝐹; remember that the probability p(𝑑0 | 𝐷), for the new unit,
eq. (21), becomes closer and closer to the distribution 𝐹 at which 𝑤(𝐹 |𝐷)
peaks, as the number of data increases.

In the approximation (26), the probability 𝑤(𝐹 | 𝐷) is effectively
represented by a large number of samples {𝐹𝑡} from it. Plotting these
samples alongside p(𝑑0 | 𝐷) gives an approximate idea of how the latter
probability could change with new data. Figure 9 shows a small number
of such samples for the transducer curve of the random forest of § 4 (cf.
fig. 1). For fixed 𝑑, the samples {𝐹𝑡(𝑑)} also give estimates of the quantiles
of such change. This is how the ranges of figs 1, 7, 3 were obtained.

An analogous discussion holds for the marginal and conditional
probabilities that we can obtain from p(𝑑0 | 𝐷).

B.5 Assessment of the augmented algorithm’s long-run utility yield

Besides making a decision – such as choosing a class – for each new
unit, we generally must also decide which algorithm to use for such a
future task, among a set of candidates. This latter decision depends on
the future performance of each algorithm, which in turn depends on the
decision that the algorithm will make for each new unit. Two kinds of
unknown accompany this double decision: we do not know the classes
of the future units, and we do not know which outputs each algorithm
will give for the future data.

This more complex kind of decision & uncertainty problems are also
dealt with decision theory. Their theory is presented and applied step-
by-step in the humorous lectures by Raiffa 1970 ch. 2; other references
are65. We here give only a sketch and refer to the works above for details.

65 Bernardo & Smith 2000 § 2.2; Pratt et al. 1996; Raiffa & Schlaifer 2000; Luce & Raiffa
1957.

44

Dyrland, Lundervold, Porta Mana Probability transducer for classifiers

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

output

P
(c

la
ss

 1
 | o

ut
pu

t)

Figure 9 Samples (thin light-blue curves) of probable transducer curves (for class 1) that
could be obtained if we had more calibration data in the demonstration of § 4. They are
samples obtained from the distribution 𝑤(𝐹 | 𝐷) of eq. (22). According to the probability
calculus, the curve to be used for a new unit is their average (thicker dark-blue curve),
which is the same as plotted in fig. 1.

Our double decision & uncertainty problem can be represented as a
decision tree. A very simplified example is illustrated in fig. 10.

We imagine to have to choose between two classification algorithms
𝑀′ and 𝑀′′. This choice corresponds to the decision node on the left
(green). Decision nodes are represented by squares.

If we choose to use algorithm 𝑀′, then it may happen that it will give
either output 𝑦1 or 𝑦2 when applied to a new unit. We are uncertain about
which output will occur, with probabilities P(𝑦1 | 𝑀′) and P(𝑦2 | 𝑀′).
This uncertainty corresponds to an uncertainty node (yellow). Uncertainty
nodes are represented by circles.

Once the output of the algorithm is known, we must decide (blue
decision nodes) among choices 𝑖′ and 𝑖′′, for example to choose whether
to consider the new unit as class 0 or class 1.

The unit will turn out to be class 0 or class 1: we are uncertain

45

Dyrland, Lundervold, Porta Mana Probability transducer for classifiers

M’

Ui’0

Ui’1

Ui”0

Ui”1

y1

i’
c = 0

c = 1

i”

y2

M”

Figure 10 Decision tree for the choice of algorithm. From left to right: Decision node
about the algorithm (green), uncertainty node about the algorithm’s output (yellow),
decision node (e.g. about class) for the inspected item (blue), uncertainty node about the
class (red). Only some example nodes and branches are labelled.

about which (red decision nodes), with probabilities P(𝑐 = 0 | 𝑦1 , 𝑀′),
P(𝑐=1 | 𝑦1 , 𝑀′) if the output was 𝑦1, and with probabilities P(𝑐=0 | 𝑦2 , 𝑀′),
P(𝑐=1 | 𝑦2 , 𝑀′) if the output was 𝑦2.

Finally, depending on our choice between 𝑖′ and 𝑖′′ and on the actual
class, we will gain one of the four utility amounts 𝑈𝑖1 0, 𝑈𝑖′ 1, 𝑈𝑖′′ 0, 𝑈𝑖′′ 1.
These are the elements of the utility matrix discussed in § 3; we have
seen concrete numerical examples in the demonstration of § 4.

An analogous analysis and probabilities hold if we choose algorithm
𝑀′′ (the output space of this algorithm can be different from that of 𝑀′).

The basic procedure of this decision problem is to first calculate
expected utilities starting from the terminal uncertainty nodes, making
optimal decisions at the immediately preceding decision nodes. Each
such decision will therefore have an associated utility equal to its corres-
ponding maximal expected utility. The same procedure is then applied
to the uncertainty nodes about the outputs. In this way each algorithm

46

Dyrland, Lundervold, Porta Mana Probability transducer for classifiers

receives a final expected utility; in formulae,

utility of algorithm 𝑀 =
∑

𝑦

[
max

𝑖

{∑
𝑐

𝑈𝑖𝑐 P(𝑐 | 𝑦, 𝑀)
}]

P(𝑦 | 𝑀) . (31)

Either sum is replaced by an integral over a density if the related quantity,
𝑦 or 𝑐, is continuous.

What is important in the formula above is that the probabilities for
the outputs and the conditional probabilities for the classes given the
outputs are known: they are the ones calculated for the transducer from the
calibration set.

The expected utilities of table 3, § 5.2, were calculated with the
formula above (the integral over 𝑦 being approximated by a sum over a
dense grid).

These values are expected utilities, though. One may ask: what is the
probability that the final utility of one model will actually be higher or
lower than the other’s?

We can answer this question, again thanks to de Finetti’s formula (21),
similarly to how we did with the variability of the transducer curves,
explained in the previous § B.4. The long-run utility of the algorithm
𝑀 is given by formula (31) but with the probabilities replaced by the
long-term frequencies 𝐹(𝑐 | 𝑦) and 𝐹(𝑦). The probability of this long-run
utility is then determined by the density 𝑤(𝐹) represented by a set
of samples. Calculating the long-run utility for each sample we can
finally construct a probability histogram for each algorithm’s utility.
The histograms of fig. 6 are obtained this way. From them we can also
calculate the probability that an algorithm’s utility 𝑢′ will be higher than
another’s utility 𝑢′′, corresponding to the integral∬

δ(𝑢′ > 𝑢′′) p(𝑢′) p(𝑢′′) d𝑢′ d𝑢′′ . (32)

47

Dyrland, Lundervold, Porta Mana Probability transducer for classifiers

Bibliography

(‘de 𝑋’ is listed under D, ‘van 𝑋’ under V, and so on, regardless of national conventions.)

Axelsson, S. (2000): The base-rate fallacy and the difficulty of intrusion detection. ACM Trans.
Inf. Syst. Secur. 33, 186–205. doi:10.1145/357830.357849, http://www.scs.carleton.
ca/~soma/id-2007w/readings/axelsson-base-rate.pdf.

Bar-Hillel, M. (1980): The base-rate fallacy in probability judgments. Acta Psychol. 443, 211–233.
doi:10.1016/0001-6918(80)90046-3.

Barber, D. (2020): Bayesian Reasoning and Machine Learning, online update. (Cambridge
University Press, Cambridge). http://www.cs.ucl.ac.uk/staff/d.barber/brml.
First publ. 2007.

Bento, A. P., Gaulton, A., Hersey, A., Bellis, L. J., Chambers, J., Davies, M., Krüger, F. A., Light,
Y., et al. (2014): The ChEMBL bioactivity database: an update. Nucleic Acids Res. 42D1,
D1083–D1090. doi:10.1093/nar/gkt1031. Release doi:10.6019/CHEMBL.database.20.

Bernardo, J. M., Bayarri, M. J., Berger, J. O., Dawid, A. P., Heckerman, D., Smith, A. F. M.,
West, M., eds. (2011): Bayesian Statistics 9. (Oxford University Press, Oxford). doi:
10.1093/acprof:oso/9780199694587.001.0001.

Bernardo, J.-M., Berger, J. O., Dawid, A. P., Smith, A. F. M., eds. (1996): Bayesian Statistics 5.
(Oxford University Press, Oxford).

Bernardo, J.-M., Smith, A. F. (2000): Bayesian Theory, repr. (Wiley, New York). doi:
10.1002/9780470316870. First publ. 1994.

Bishop, C. M. (2006): Pattern Recognition and Machine Learning. (Springer, New York).
https://www.microsoft.com/en-us/research/people/cmbishop/prml-book.

Breiman, L. (2001): Random forests. Mach. Learn. 451, 5–32. doi:10.1023/A:1010933404324.
Cheeseman, P. (1988): An inquiry into computer understanding. Comput. Intell. 42, 58–66.

doi:10.1111/j.1467-8640.1988.tb00091.x.
— (2018): On Bayesian model selection. In: Wolpert (2018): 315–330. First publ. 1995.
Chen, H., la Engkvist, Wang, Y., Olivecrona, M., Blaschke, T. (2018): The rise of deep learning

in drug discovery. Drug Discov. Today 236, 1241–1250. doi:10.1016/j.drudis.2018.
01.039.

Cifarelli, D. M., Regazzini, E. (1979): Considerazioni generali sull’impostazione bayesiana di
problemi non parametrici. Le medie associative nel contesto del processo aleatorio di Dirichlet.
Riv. mat. sci. econ. soc. 21, 2, 39–52, 95–111.

Correa Bahnsen, A., Aouada, D., Ottersten, B. (2015): Example-dependent cost-sensitive
decision trees. Expert Syst. Appl. 4219, 6609–6619. doi:10.1016/j.eswa.2015.04.042.

Damien, P., Dellaportas, P., Polson, N. G., Stephens, D. A., eds. (2013): Bayesian Theory
and Applications. (Oxford University Press, Oxford). doi:10.1093/acprof:oso/
9780199695607.001.0001.

David, L., Thakkar, A., Mercado, R., Engkvist, O. (2020): Molecular representations in AI-driven
drug discovery: a review and practical guide. J. Cheminf. 12, 56. doi:10.1186/s13321-020-
00460-5.

Dawid, A. P. (2013): Exchangeability and its ramifications. In: Damien, Dellaportas, Polson,
Stephens (2013): ch. 2:19–29. doi:10.1093/acprof:oso/9780199695607.003.0002.

de Finetti, B. (1929): Funzione caratteristica di un fenomeno aleatorio. In: Atti del Congresso
Internazionale dei Matematici: ed. by S. Pincherle (Zanichelli, Bologna): 179–190.
https://www.mathunion.org/icm/proceedings, http://www.brunodefinetti.it/
Opere.htm. Transl. in Cifarelli, Regazzini (1979). See also de Finetti (1930).

48

Dyrland, Lundervold, Porta Mana Probability transducer for classifiers

de Finetti, B. (1930): Funzione caratteristica di un fenomeno aleatorio. Atti Accad. Lincei: Sc.
Fis. Mat. Nat. IV5, 86–133. http://www.brunodefinetti.it/Opere.htm. Summary in
de Finetti (1929).

— (1937): La prévision: ses lois logiques, ses sources subjectives. Ann. Inst. Henri Poincaré 71,
1–68. http://www.numdam.org/item/AIHP_1937__7_1_1_0. Transl. in Kyburg, Smokler
(1980), pp. 53–118, by Henry E. Kyburg, Jr.

de Valpine, P., Paciorek, C., Turek, D., Michaud, N., Anderson-Bergman, C., Obermeyer, F.,
Wehrhahn Cortes, C., Rodríguez, A., et al. (2021): Nimble: MCMC, particle filtering, and
programmable hierarchical modeling. https://cran.r-project.org/package=nimble,
doi:10.5281/zenodo.1211190, https://r-nimble.org. First publ. 2016.

Drummond, C., Holte, R. C. (2005): Severe class imbalance: why better algorithms aren’t
the answer. Eur. Conf. Mach. Learn. 2005, 539–546. doi:10.1007/11564096_52,
https://webdocs.cs.ualberta.ca/~holte/Publications.

Dunson, D. B., Bhattacharya, A. (2011): Nonparametric Bayes regression and classification
through mixtures of product kernels. In: Bernardo, Bayarri, Berger, Dawid, Heckerman,
Smith, West (2011): 145–158. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.178.1521, doi:10.1093/acprof:oso/9780199694587.003.0005, older version
at https://www.researchgate.net/publication/228447342_Nonparametric_Bayes_
Regression_and_Classification_Through_Mixtures_of_Product_Kernels.

Dunson, D. B., Pillai, N., Park, J.-H. (2007): Bayesian density regression. J. R. Stat. Soc. B 692,
163–183.

Dyrland, K., Lundervold, A. S., Porta Mana, P. G. L. (2022a): Does the evaluation stand
up to evaluation?: A first-principle approach to the evaluation of classifiers. Open Science
Framework doi:10.31219/osf.io/7rz8t.

— (2022b): Bayesian augmentation of machine-learning algorithms: supplementary data. Open
Science Framework doi:10.17605/osf.io/mfz5w.

Elkan, C. (2001): The foundations of cost-sensitive learning. In: Proceedings of the seventeenth
international joint conference on artificial intelligence, ĳcai 2001, ed. by B. Nebel (Kaufmann):
973–978. https://www.ijcai.org/Proceedings/01/IJCAI-2001-k.pdf.

Ferguson, T. S. (1983): Bayesian density estimation by mixtures of normal distributions. In:
Rizvi, Rustagi, Siegmund (1983): 287–302.

Fong, E., Holmes, C. C. (2020): On the marginal likelihood and cross-validation. Biometrika
1072, 489–496. doi:10.1093/biomet/asz077.

Gal, Y., Ghahramani, Z. (2016): Dropout as a Bayesian approximation: representing model
uncertainty in deep learning. Proc. Mach. Learn. Res. 48, 1050–1059. See also Appendix
at arXiv doi:10.48550/arXiv.1506.02157.

Good, I. J. (1950): Probability and the Weighing of Evidence. (Griffin, London).
— (1966): How to estimate probabilities. J. Inst. Maths. Applics 24, 364–383.
Good, I. J., Gaskins, R. A. (1971): Nonparametric roughness penalties for probability densities.

Biometrika 582, 255–277. doi:10.1093/biomet/58.2.255.
Green, D. V. S. (2019): Using machine learning to inform decisions in drug discovery: an industry

perspective. In: Machine learning in chemistry: data-driven algorithms, learning systems,
and predictions, ed. by E. O. Pyzer-Knapp, T. Laino (American Chemical Society,
Washington, DC): ch. 5:81–101. doi:10.1021/bk-2019-1326.ch005.

Gregory, P. C. (2005): Bayesian Logical Data Analysis for the Physical Sciences: A Comparative
Approach with Mathematica Support. (Cambridge University Press, Cambridge). doi:
10.1017/CBO9780511791277.

49

Dyrland, Lundervold, Porta Mana Probability transducer for classifiers

Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L. A., eds. (2006): Feature Extraction: Foundations
and Applications. (Springer, Berlin). doi:10.1007/978-3-540-35488-8.

Hailperin, T. (1996): Sentential Probability Logic: Origins, Development, Current Status, and
Technical Applications. (Associated University Presses, London).

— (2011): Logic with a Probability Semantics: Including Solutions to Some Philosophical
Problems. (Lehigh University Press, Plymouth, UK).

He, K., Zhang, X., Ren, S., Sun, J. (2016): Deep residual learning for image recognition. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR) 2016, 770–778. doi:10.1109/CVPR.2016.90,
https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_
Learning_CVPR_2016_paper.html.

Hingorani, A. D., Kuan, V., Finan, C., Kruger, F. A., Gaulton, A., Chopade, S., Sofat, R.,
MacAllister, R. J., et al. (2019): Improving the odds of drug development success through
human genomics: modelling study. Sci. Rep. 9, 18911. doi:10.1038/s41598-019-54849-w.

Hjort, N. L. (1996): Bayesian approaches to non- and semiparametric density estimation. In:
Bernardo, Berger, Dawid, Smith (1996): 223–253. With discussion by M. Lavine, M.
Gasparini, and reply.

Hunink, M. G. M., Weinstein, M. C., Wittenberg, E., Drummond, M. F., Pliskin, J. S.,
Wong, J. B., Glasziou, P. P. (2014): Decision Making in Health and Medicine: Integrating
Evidence and Values, 2nd ed. (Cambridge University Press, Cambridge). doi:10.1017/
CBO9781139506779. First publ. 2001.

Ishwaran, H., Zarepour, M. (2002): Dirichlet prior sieves in finite normal mixtures. Stat.
Sinica 123, 941–963. http://www3.stat.sinica.edu.tw/statistica/J12n3/j12n316/
j12n316.htm.

Jaynes, E. T. (2003): Probability Theory: The Logic of Science. (Cambridge University
Press, Cambridge). Ed. by G. Larry Bretthorst. First publ. 1994. doi:10 . 1017 /
CBO9780511790423, https://archive.org/details/XQUHIUXHIQUHIQXUIHX2, http:
//www-biba.inrialpes.fr/Jaynes/prob.html.

Jeffreys, H. (1983): Theory of Probability, 3rd ed. with corrections. (Oxford University Press,
London). First publ. 1939.

Jenny, M. A., Keller, N., Gigerenzer, G. (2018): Assessing minimal medical statistical literacy
using the Quick Risk Test: a prospective observational study in Germany. BMJ Open 8,
e020847, e020847corr2. doi:10.1136/bmjopen-2017-020847, doi:10.1136/bmjopen-
2017-020847corr2.

Johnson, N. L., Kemp, A. W., Kotz, S. (2005): Univariate Discrete Distributions, 3rd ed. (Wiley,
New York). First publ. 1969.

Johnson, N. L., Kotz, S., Balakrishnan, N. (1994): Continuous Univariate Distributions. Vol. 1,
2nd ed. (Wiley, New York). First publ. 1970.

— (1995): Continuous Univariate Distributions. Vol. 2, 2nd ed. (Wiley, New York). First
publ. 1970.

— (1996): Discrete Multivariate Distributions. (Wiley, New York). First publ. 1969 in chapter
form.

Kotz, S., Balakrishnan, N., Johnson, N. L. (2000): Continuous Multivariate Distributions.
Vol. 1: Models and Applications, 2nd ed. (Wiley, New York). First publ. 1972 by N. L.
Johnson and S. Kotz.

Koutsoukas, A., Monaghan, K. J., Li, X., Huan, J. (2017): Deep-learning: investigating deep
neural networks hyper-parameters and comparison of performance to shallow methods for
modeling bioactivity data. J. Cheminf. 9, 42. doi:10.1186/s13321-017-0226-y.

50

Dyrland, Lundervold, Porta Mana Probability transducer for classifiers

Kruskal, W., Mosteller, F. (1979a): Representative sampling, I: Non-scientific literature. Int. Stat.
Rev. 471, 13–24. See also Kruskal, Mosteller (1979b,c; 1980).

— (1979b): Representative sampling, II: Scientific literature, excluding statistics. Int. Stat. Rev.
472, 111–127. See also Kruskal, Mosteller (1979a,c; 1980).

— (1979c): Representative sampling, III: The current statistical literature. Int. Stat. Rev. 473,
245–265. See also Kruskal, Mosteller (1979a,b; 1980).

— (1980): Representative sampling, IV: The history of the concept in statistics, 1895–1939. Int.
Stat. Rev. 482, 169–195. See also Kruskal, Mosteller (1979a,b,c).

Kyburg Jr., H. E., Smokler, H. E., eds. (1980): Studies in Subjective Probability, 2nd ed. (Robert
E. Krieger, Huntington, USA). First publ. 1964.

Landrum, G., Kelley, B., Tosco, P., sriniker, NadineSchneider, Vianello, R., gedeck, adalke,
et al. (2017): RDKit: open-source cheminformatics software. https://www.rdkit.org.
Release doi:10.5281/zenodo.268688.

Lindley, D. V., Novick, M. R. (1981): The role of exchangeability in inference. Ann. Stat. 91,
45–58. doi:10.1214/aos/1176345331.

Ling, C. X., Sheng, V. S. (2017): Cost-sensitive learning. In: Sammut, Webb (2017): 285–289.
doi:10.1007/978-1-4899-7687-1_181.

Luce, R. D., Raiffa, H. (1957): Games and Decisions: introduction and critical survey. (Wiley,
New York).

Lundervold, A. S., Lundervold, A. (2019): An overview of deep learning in medical imaging
focusing on MRI. Z. Med. Phys. 292, 102–127. doi:10.1016/j.zemedi.2018.11.002.

MacKay, D. J. C. (1992a): The evidence framework applied to classification networks. Neural
Comput. 45, 720–736. http://www.inference.phy.cam.ac.uk/mackay/PhD.html, doi:
10.1162/neco.1992.4.5.720.

— (1992b): Bayesian interpolation. Neural Comput. 43, 415–447. http://www.inference.
phy.cam.ac.uk/mackay/PhD.html, doi:10.1162/neco.1992.4.3.415.

— (1992c): A practical Bayesian framework for backpropagation networks. Neural Comput.
43, 448–472. http : / / www . inference . phy . cam . ac . uk / mackay / PhD . html, doi:
10.1162/neco.1992.4.3.448.

— (2005): Information Theory, Inference, and Learning Algorithms, Version 7.2 (4th pr.)
(Cambridge University Press, Cambridge). https://www.inference.org.uk/itila/
book.html. First publ. 1995.

Müller, P., Quintana, F. A. (2004): Nonparametric Bayesian data analysis. Stat. Sci. 191, 95–110.
http://www.mat.puc.cl/~quintana/publications/publications.html.

Murphy, K. P. (2012): Machine Learning: A Probabilistic Perspective. (MIT Press, Cambridge,
USA). https://probml.github.io/pml-book/book0.html.

Neal, R. M. (1993): Probabilistic inference using Markov chain Monte Carlo methods. Tech.
rep. CRG-TR-93-1. (University of Toronto, Toronto). http://www.cs.utoronto.ca/
~radford/review.abstract.html, https://omega0.xyz/omega8008/neal.pdf.

Neal, R. M., Zhang, J. (2006): High dimensional classification with Bayesian neural networks and
Dirichlet diffusion trees. In: Guyon, Gunn, Nikravesh, Zadeh (2006): ch. 10:265–296. doi:
10.1007/978-3-540-35488-8_11.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., et al.
(2019): PyTorch: an imperative style, high-performance deep learning library. Adv. Neural
Inf. Process. Syst. (NIPS) 32, 8026–8037. https://papers.nips.cc/paper/9015-
pytorch-an-imperative-style-high-performance-deep-learning-library. https:
//pytorch.org.

51

Dyrland, Lundervold, Porta Mana Probability transducer for classifiers

Pearl, J. (1988): Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference,
rev. 2nd pr. (Kaufmann, San Francisco). doi:10.1016/C2009-0-27609-4.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., et al. (2011): Scikit-learn: machine learning in python. J. Mach.
Learn. Res. 1285, 2825–2830. https://www.jmlr.org/papers/v12/pedregosa11a.html.
https://scikit-learn.org.

Porta Mana, P. G. L. (2019): A relation between log-likelihood and cross-validation log-scores.
Open Science Framework doi:10.31219/osf.io/k8mj3, hal:hal-02267943, arXiv doi:
10.48550/arXiv.1908.08741.

Pratt, J. W., Raiffa, H., Schlaifer, R. (1996): Introduction to Statistical Decision Theory, 2nd pr.
(MIT Press, Cambridge, USA). First publ. 1995.

Provost, F. (2000): Machine learning from imbalanced data sets 101. Tech. rep. WS-00-05-001.
(AAAI, Menlo Park, USA). https://aaai.org/Library/Workshops/2000/ws00-05-
001.php.

R Core Team (2022): R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing. https://www.R-project.org. First released 1995.

Raiffa, H. (1970): Decision Analysis: Introductory Lectures on Choices under Uncertainty, 2nd
pr. (Addison-Wesley, Reading, USA). First publ. 1968.

Raiffa, H., Schlaifer, R. (2000): Applied Statistical Decision Theory, repr. (Wiley, New York).
First publ. 1961.

Rasmussen, C. E. (1999): The infinite Gaussian mixture model. Adv. Neural Inf. Process.
Syst. (NIPS) 12, 554–560. https://www.seas.harvard.edu/courses/cs281/papers/
rasmussen-1999a.pdf.

Rizvi, M. H., Rustagi, J. S., Siegmund, D., eds. (1983): Recent Advances in Statistics: Papers in
Honor of Herman Chernoff on His Sixtieth Birthday. (Academic Press, New York).

Rogers, D., Hahn, M. (2010): Extended-connectivity fingerprints. J. Chem. Inf. Model. 505,
742–754. doi:10.1021/ci100050t.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A.,
et al. (2015): ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 1153,
211–252. doi:10.1007/s11263-015-0816-y. https://www.image-net.org.

Russell, S. J., Norvig, P. (2022): Artificial Intelligence: A Modern Approach, Fourth Global ed.
(Pearson, Harlow, UK). First publ. 1995.

Sammut, C., Webb, G. I., eds. (2017): Encyclopedia of Machine Learning and Data Mining,
2nd ed. (Springer, Boston). doi:10.1007/978-1-4899-7687-1. First publ. 2011.

Self, M., Cheeseman, P. C. (1987): Bayesian prediction for artificial intelligence. In: Proceedings
of the third conference on uncertainty in artificial intelligence (uai’87), ed. by J. Lemmer,
T. Levitt, L. Kanal (AUAI Press, Arlington, USA): 61–69. Repr. in arXiv doi:10.48550/
arXiv.1304.2717.

Sink, R., Gobec, S., Pečar, S., Zega, A. (2010): False positives in the early stages of drug discovery.
Curr. Med. Chem. 1734, 4231–4255. doi:10.2174/092986710793348545.

Smith, J. E., Winkler, R. L. (2006): The optimizer’s curse: skepticism and postdecision surprise in
decision analysis. Manag. Sci. 523. doi:10.1287/mnsc.1050.0451.

Sox, H. C., Higgins, M. C., Owens, D. K. (2013): Medical Decision Making, 2nd ed. (Wiley,
New York). doi:10.1002/9781118341544. First publ. 1988.

Svetnik, V., Liaw, A., Tong, C., Culberson, J. C., Sheridan, R. P., Feuston, B. P. (2003): Random
forest: a classification and regression tool for compound classification and QSAR modeling. J.
Chem. Inf. Comput. Sci. 436, 1947–1958. doi:10.1021/ci034160g.

Thorburn, D. (1986): A Bayesian approach to density estimation. Biometrika 731, 65–75.

52

Dyrland, Lundervold, Porta Mana Probability transducer for classifiers

Wald, A. (1949): Statistical decision functions. Ann. Math. Stat. 202, 165–205. doi:10.1214/
aoms/1177730030.

Walker, S. G. (2013): Bayesian nonparametrics. In: Damien, Dellaportas, Polson, Stephens
(2013): ch. 13:249–270.

Wolpert, D. H., ed. (2018): The Mathematics of Generalization, repr. (CRC Press, Boca Raton,
USA). doi:10.1201/9780429492525. First publ. 1995.

53

	Summary
	I Background
	Overview of Machine Learning
	Introduction to Machine Learning
	Strengths and limitations
	Dataset and inputs
	Overfitting and Underfitting
	Evaluation
	Algorithm example: Random Forest

	Deep Learning for Computer Vision
	Introduction
	Loss functions
	Convolutional neural networks for computer vision
	ResNet

	Drug Discovery
	Introduction
	Representations in Drug Discovery

	Overview of Part ii
	Does the evaluation stand up to evaluation?
	Context
	Results

	A probability transducer for machine-learning classifiers
	Context
	Results

	Bibliography

	II Publications
	Does the evaluation stand up to evaluation?
	A probability transducer and decision-theoretic augmentation for machine-learning classifiers

