
UNIVERSITY OF BERGEN

Department of Informatics

MASTER’S THESIS

Communication in

Turn Based Multiplayer Games
Using Deep Reinforcement Learning

Author: John Isak Fjellvang Villanger

Supervisor: Troels Arnfred Bojesen

September 1, 2022

ii

Abstract

This work investigates communication in cooperative settings of multi-agent reinforcement

learning. We look at what conditions make it easier or harder for meaningful communica-

tion to arise between the agents. This includes introducing and showing the usefulness of

learning biases in a discrete or continuous setting. In order to do this we extend the game of

Negotiation to a continuous setting, introduce a new environment called Sequence Guess,

and introduce a new learning bias that helps facilitate the emergence of communication in

a continuous setting.

iii

Acknowledgment

First and foremost I would like to thank my supervisor Troels Arnfred Bojesen for the invalu-

able feedback and encouragement throughout this thesis. I would like to thank my fellow

students Johanna, Hans Martin, Knut, Mathias, Emir and Oda, my studies would be a lot less

interesting without you. I would like to thank my friend Adriaan Ludl for letting me stay at

his place for the final part of my thesis. And finally I would like to thank my family for their

support and encouragement.

J.I.F.V

iv

Contents

Abstract ii

Acknowledgment iii

1 Introduction 2

1.1 Motivation . 2

1.2 Objectives . 2

1.3 Approach and Limitations . 3

1.4 Contributions . 3

1.5 Outline . 3

2 Theoretical Background 5

2.1 Artificial Neural Networks . 5

2.1.1 Activation Functions . 7

Hyperbolic Tangent . 7

Sigmoid . 8

Softmax . 8

Leaky Rectified Linear Unit . 8

2.1.2 Gradient Based Optimization . 9

Tying Gradient Based Optimization Together With ANNs 10

Adam Optimizer . 10

2.1.3 Recurrent Neural Networks . 13

Vanishing and Exploding Gradients . 14

Long Short-Term Memory . 14

CONTENTS v

Encoder-Decoder RNN . 16

2.2 Reinforcement Learning . 17

2.2.1 Markov Decision Process . 18

Policy . 19

Value Functions . 19

2.2.2 Policy Gradient Methods . 20

2.2.3 Policy Gradient Theorem . 20

2.2.4 REINFORCE . 21

REINFORCE With a Baseline . 23

2.3 Multi Agent Reinforcement Learning . 23

2.3.1 Formal Definitions in MARL . 24

2.3.2 Challenges in MARL . 24

Credit Assignment Problem . 25

Moving Target Problem . 25

Shadowed Equilibrium . 25

2.3.3 Training and Execution Schemes . 25

Distributed Training, Decentralized Execution (DTDE) 26

Centralized Training, Centralized Execution (CTCE) 26

Centralized Training, Decentralized Execution (CTDE) 26

2.3.4 Cooperation in MARL . 27

2.3.5 Communication in MARL . 27

2.3.6 Positive Signalling . 28

3 Method 30

3.1 Negotiation . 30

3.1.1 Negotiation Through Communication . 32

3.1.2 Algorithm for Negotiation . 32

Output of the Policy . 34

Details on the Baseline . 34

3.2 Sequence Guess . 35

vi CONTENTS

3.2.1 Reward Structure . 36

3.2.2 Algorithm . 36

3.2.3 Network Architecture . 37

3.3 Positive Signalling . 37

3.3.1 Positive Signalling in Negotiation . 38

3.3.2 Positive Signalling in Sequence Guess . 39

3.4 How to Measure Communication . 40

4 Experiments and Discussion 41

4.1 Similarities and Differences Between the Two Games 41

4.2 Results of Cao et al. in a Discrete Cooperative Setting of Negotiation 42

4.3 Positive Signalling . 43

4.3.1 Results in Sequence Guess . 43

4.3.2 Results in Negotiation . 44

4.4 Differing Sequence Lengths and Alphabet Sizes in Sequence Guess 45

4.4.1 Greater Alphabet size and Sequence Length on Target Sequence 45

4.4.2 Higher Expressivity for Utterances than the Target 45

4.4.3 Lower Expressivity for Utterances than the Target 46

4.5 Nash Equilibrium in Negotiation Without Reward Sharing 47

5 Conclusions 50

5.1 Summary and Conclusions . 50

5.2 Recommendations for Further Work . 51

5.2.1 Short Term . 51

5.2.2 Long Term . 51

References 52

vii

List of Figures

2.1 An example of a two layer ANN. w (a)
x,y are called weights while b(a)

x are called

biases. The weights and biases are the parameters of the ANN (θ). The circles

are called nodes. For each node the input is multiplied by a set of weights and

then summed together with a bias term: z1 = w (1)
11 x1+w (1)

21 x2+...+w (1)
p1 xp +b(1)

1 .

Image taken from: [17] . 6

2.2 The three types of critical points in f (θ), critical points being points where the

gradient is 0. θ here is a single value, in reality the gradient space usually con-

sists of many more dimensions as θ will contain many parameters. 9

2.3 Showing gradient descent along a parameter space consisting of two parame-

ters. With and without exponential moving averages over a series of timesteps

t . The main idea being that using moving averages can help prevent oscilla-

tions along unwanted directions in the parameter space. The local parameter

space around the arrows can be imagined as a canyon, and without exponen-

tial moving averages one ends up jumping between the canyon walls. Image

adapted from: [23]. 12

2.4 One LSTM layer visualized. x t and ht−1 are used as input arguments to the

gates(ft , it and ot), and to the input unit g t . All of these functions generate

vectors, ¯ indicates the Hadamard product of two vectors and + means the

vector sum. Image adapted from: [18]. 15

2.5 An example of an encoder-decoder architecture, an encoder RNN is fed some

input sequence of length T1. The final hidden state of the encoder is used as

the context vector and is the input to the decoder RNN for every timestep in

order to generate some sequence of length T2. Both the encoder and decoder

RNN could for example be LSTM layers. 17

viii LIST OF FIGURES

2.6 The Agent-Environment interaction in a MDP. The Agent is input some state St

and reward Rt . From this the Agent outputs an action At . The action is input

into the environment and the environment outputs some state St+1 and reward

Rt+1. This cycle repeats itself for each timestep t 18

3.1 An example run of two agents negotiating over three different types of bever-

ages. A proposal of [0.9,0.3,0.5] from agent A would mean agent A receives

their proposed fraction of each beverage (here: soda, milk and orange juice),

while agent B receives the remainder. Agent B can either accept this proposal

or come with a counter proposal. The linguistic channel has no predefined

meaning. The hidden utilities indicates how each beverage is weighted when

calculating the reward. The robots have been taken from [19][20]. The bever-

ages have been taken from [26][25][27]. 31

3.2 The network architecture used in Negotiation both for the policy and the pa-

rameterized baseline, t is the current turn. σ is the sigmoid activation function.

The policy outputs means values (µs), while standard deviations are found

fromσ(s). These values are used to instantiate normal distributions from which

actions are sampled from. The policy also outputs ŷ3 that is used to find the

probability of termination. The numbers refer to the hidden layer size. FC

refers to a fully connected layer. one hot(t) refers to the one-hot encoding of

the current turn, i.e a zero vector except for component number t which is one. 33

3.3 An excerpt of Sequence Guess, the guesser attempts to guess some target se-

quence, while the mastermind tries to provide information about the target se-

quence to the guesser. The target alphabet size is 3 and target sequence length

is 3. Utterance alphabet size is 3 and utterance sequence length is 1. Robots

taken from [19][20] . 36

LIST OF FIGURES ix

3.4 The encoder-decoder architecture used for Sequence Guess. In the case of the

mastermind input xt will contain symbol number t from the guess sequence

and target sequence, T1 will be the length of the target sequence and T2 will

be the length of the utterance sequence. The output yt is used in a fully con-

nected layer with a Softmax activation function in order to find utterance sym-

bol number t . In the case of the guesser input xt will contain symbol number t

from the utterance, T1 will be the length of the utterance sequence and T2 will

be the length of the target sequence. yt is used in a fully connected layer with

a Softmax activation function in order to find guess symbol number t . In both

cases a one-hot encoding of the current turn is appended to the final hidden

state of the Encoder in order to produce the context vector. 38

4.1 This graph shows the average return in sequence guess over 20 runs with and

without positive signalling. The figure illustrates how positive signalling causes

the agents to converge on better policies. Theoretical optimal return with an

incorrect initial guess is 0.9. The maximum number of turns is 5. Both the

target and utterance languages have sequence length 3 and alphabet size 3. . . 43

4.2 This graph shows the average return in negotiation, with 10 runs for each com-

munication setting. The proposal channel is closed to the agents. The maxi-

mum number of turns is 5. The figure illustrates how meaningful communica-

tion fails to arise without using a learning bias to facilitate communication this

setting . 44

4.3 This graph shows the average return over 10 runs. The maximum number of

turns is 3. The utterance alphabet size and length is also the same as the target

alphabet size and length. The figure illustrates how the curse of dimensional-

ity applies and how further investigation is needed to find protocols that can

handle target sequences of high expressivity. 46

4.4 This graph shows the average return over 10 runs. The maximum number of

turns is 3. The utterance alphabet size is 100, the utterance length is the same

as the target alphabet length. The figure illustrates how the curse of dimension-

ality does not necessarily apply for the utterance policy. A large alphabet size

makes it easier to create different correlations for different inputs, when some

correlation is found it can be reinforced through RL. For a target alphabet size

and sequence length of 6 the algorithm failed to produce any convergence. . . 47

x LIST OF FIGURES

4.5 This graph shows the average return over 10 runs for different language lengths.

The maximum number of turns is 4. The utterance alphabet size and target al-

phabet size is 3. The hidden state of the decoder persists across turns for both

the guesser and the mastermind. Since the reward is -0.1 on the masterminds

turn, with a target length of 3 and utterance length of 1 a return of 0.7 is to be ex-

pected with an optimal communication policy given incorrect initial guesses.

In the two other cases however, a return of 0.8 is to be expected with an optimal

communication policy given incorrect initial guesses. 48

xi

List of Tables

3.1 Rewards calculated from Figure 3.1 with the final proposal being [0.5,0.3,0.4]

from agent B. When normalizing the reward it is divided by the maximum pos-

sible reward. Selfish refers to strongly competitive setting where individual re-

wards are not shared. Cooperative refers to a fully cooperative setting where

individual rewards are shared. Some values are rounded. 31

3.2 Hyperparameters used in Negotiation, the same layer sizes are used for the

agents and the parameterized baseline . 33

3.3 Hyperparameters used in Sequence Guess. The same hyperparameters are

used for the guesser and the mastermind. The reasoning behind the choice

of hyperparameters is similar to that of Negotiation. 37

4.1 Results from Cao et al. [2] for a fully cooperative setting of Negotiation. The

authors show joint reward (JR) and turns taken in a fully cooperative setting

under different conditions averaged over 20 runs, ± one standard deviation.

Termination is either: Random, between turn 4 and 10 at each round, accord-

ing to a truncated Poisson distribution with mean 7. Or at turn 10 42

1

List of Abbreviations

RL Reinforcement Learning

MARL Multi Agent Reinforcement Learning

LSTM Long Short-Term Memory

RNN Recurrent Neural Network

ANN Artificial Neural Network

MDP Markov Decision Process

DTDE Distributed Training, Decentralized Execution

CTCE Centralized Training, Decentralized Execution

CTDE Centralized Training, Decentralized Execution

ReLU Rectified Linear Unit

2

Chapter 1

Introduction

1.1 Motivation

This thesis will look at communication in order to facilitate greater cooperation in a Multi-

Agent Reinforcement Learning (MARL) setting. In MARL there are several decision makers

also known as agents that interact with a shared environment. When an agent interacts with

the environment, the state of the environment changes and the agent is given a reward. The

goal for the agent is to maximize the cumulative reward. MARL can be useful as there are

many potential applications where agents interact in a shared environment, for example in

multiplayer games. In addition, in many MARL settings, communication between agents is

desired, as this will grant the agents the ability to share information between each other. In

this work there is no predefined language that the agents use, and instead we investigate how

meaningful communication protocols can naturally arise between agents. This can help us

better understand how simple communication protocols can arise in other settings as well,

such as in nature, and how one could expect such communication protocols to behave. One

example of how this could be of interest is that it could help us better understand the process

that causes communication protocols to arise for organisms such as bacteria.

1.2 Objectives

The main goal of this thesis is to achieve "meaningful communication" between agents.

"Meaningful communication" here entails that the communication helps the agents max-

imize their expected cumulative reward, with the communication itself being a part of the

action space of the agents. In order to achieve meaningful communication, the effectiveness

of learning biases that can help facilitate the emergence of communication is estimated.

1.3. APPROACH AND LIMITATIONS 3

Learning biases here means a bias towards certain communication protocols among all pos-

sible communication protocols. In addition, we also wish to find what conditions of the

environment make it easier or harder for communication to arise between agents.

1.3 Approach and Limitations

This is an empirical study where simulations are done to investigate if the objectives are

achieved or not. This is done by running a simulation with some initial conditions 10 or 20

times, and comparing them to a simulation run with different initial conditions the same

number of times. The comparison is done by finding the mean and 95% confidence interval

of the samples from the different initial conditions for each iteration. For many cases when

comparing two different conditions there is no overlap of the confidence intervals which

indicates that the null hypothesis should be rejected at the α= 0.05 level. An example of the

approach mentioned above is estimating the reward difference if a communication channel

is open or not open, all else being equal.

Given more time and more computational resources one could increase the sample size and

thus increase the accuracy of the results.

Another limitation is that little is said about the generalizability of the comparison results.

This thesis shows how the different initial conditions affect the result in one environment,

but does this also apply to other environments as well?

1.4 Contributions

This work introduces a new discrete environment that "encourages" the emergence of com-

munication. We call this environment Sequence Guess and it is explained in section 3.2. This

work also introduces a new learning bias that helps facilitate the emergence of communica-

tion in a continuous environment, this learning bias is explained in section 3.3.1.

1.5 Outline

The rest of the thesis is organized as follows:

• Chapter 2 - Theoretical Background: Provides the necessary domain specific infor-

mation required to understand this thesis. This includes deep learning, reinforcement

learning and multi agent reinforcement learning.

4 CHAPTER 1. INTRODUCTION

• Chapter 3 - Method: Explains in detail the environments, network architectures used,

and the metric used for measuring the degree of communication.

• Chapter 4 - Results and Discussion: Shows and discusses the results of the experi-

ments, and also discusses some more general topics when it comes to communication

in MARL.

• Chapter 4 - Conclusions and Recommendations for Further Work: Concludes and

and comes with recommendations for further work.

• Bibliography

5

Chapter 2

Theoretical Background

This chapter will provide relevant background knowledge for understanding this thesis. It

will begin broadly with deep learning and reinforcement learning, and look at how these

two can be combined to form deep reinforcement learning. Then it will look more closely at

multi agent reinforcement learning before going into the specifics of cooperation and com-

munication in such a setting.

2.1 Artificial Neural Networks

Artificial neural networks (ANNs) are a class of parameterized functions fθ, that have been

shown to have good function-approximation properties. This is shown by the function ap-

proximation theorem [10], where an ANN can under certain conditions approximate any

function.

An example of an ANN can be seen in figure 2.1. This ANN can also be viewed as a series

mathematical operations, where the weights connecting to a row of nodes are represented

as a matrix W . The input x and bias b are vectors.

f 1(x) = z =W (1)>x +b(1) (2.1)

f 2(z) = y =W (2)>z +b(2)

f 1 and f 2 in (2.1) are referred to as layers, in this case f 1 and f 2 are specifically fully con-

nected layers. The first layer of an ANN is called the input layer, the final layer of an ANN

is called the output layer, any other layers are referred to as hidden layers. The number of

nodes in a layer is referred to as the width of the layer, while the number of layers is known

as the depth. Layers in an ANN is important to satisfy universal function approximation

6 CHAPTER 2. THEORETICAL BACKGROUND

x 1 x 2 x p...

z 1 z 2 z h...

...

w 11
w 12

w 1h w ph

b 1 b h

(1) b 2
(1)

(1)

(1)
(1)

(1)

w p1
(1)

w p2
(1)

(1)

y 1 y 2 y q...

...

b 1 b

(2) b 2
(2)

(2)

q

w 11
(2)

w 12
(2)

w 1q
(2)

w h1
(2)

w h2
(2) w hq

(2)

Figure 2.1: An example of a two layer ANN. w (a)
x,y are called weights while b(a)

x are called biases.
The weights and biases are the parameters of the ANN (θ). The circles are called nodes. For
each node the input is multiplied by a set of weights and then summed together with a bias
term: z1 = w (1)

11 x1 +w (1)
21 x2 + ...+w (1)

p1 xp +b(1)
1 . Image taken from: [17]

2.1. ARTIFICIAL NEURAL NETWORKS 7

properties. One of the conditions necessary for a network of arbitrary width to be able to

approximate any function as shown by Hornik [10] is at least one hidden layer.

The purpose of the ANN is to learn a mapping ŷ = fθ(x) that approximates some target func-

tion f ∗, this is done through the tuning of its parameters. One way to tune the parameters of

an ANN is through gradient based optimization. This is possible because ANNs are partially

differentiable with regards to their parameters θ:

∀i
∂

∂θi
fθ(x1, .., xn), θi ∈ θ (2.2)

A more detailed look at gradient based optimization will be given in section 2.1.2.

2.1.1 Activation Functions

Activation functions are functions generally applied to the nodes of a layer, for example in

the ANN represented equation (2.1) one could apply the activation function g twice:

a1 =W (1)>x +b(1) (2.3)

z = g (a1)

a2 =W (2)>z +b(2)

y = g (a2)

A linear model mapping from input to output can only represent linear functions. Thus one

of the conditions necessary for an ANN of arbitrary width to be able to approximate any

function is that the ANN contains non-linear activation functions [10]. Activation functions

are also useful in the output layer in order to ensure that the outputs are within a desired

range.

Here are the activation functions used in this work:

Hyperbolic Tangent

The hyperbolic tangent function (tanh):

tanh(x) = ex −e−x

ex +e−x
(2.4)

The activation function ensures the output is within the range (−1,1), while tanh(0) = 0. In

this work the tanh activation function is used as a way to ensure that "communication" hap-

pens within a bounded interval.

8 CHAPTER 2. THEORETICAL BACKGROUND

Sigmoid

The sigmoid function (σ):

σ(x) = 1

1+e−x
(2.5)

The activation function ensures the output is within the range (0,1), while σ(0) = 0.5. This

can for example be useful for modelling the probability of picking between two categories.

Softmax

The softmax activation function differs from the ones previously mentioned as it is depen-

dent upon x being a vector:

zi = exi∑J
j=1 ex j

(2.6)

for i = 1, ..., J . The softmax activation function ensures that
∑J

i=1 zi = 1. This can for example

be useful for policy modelling: let’s say you have J different possible actions, then each zi

can be viewed as the probability of picking that action. The softmax activation function can

be viewed as an extension of the sigmoid function to more than two categories.

Leaky Rectified Linear Unit

The Leaky Rectified Linear Unit is an extension of the Rectified Linear Unit (ReLU). ReLUs

use the activation function:

g (x) = max{0, x} (2.7)

ReLUs are easy to optimize because they are similar to linear units, its derivative is 1 in its

active domain. As will be shown in section 2.1.3, there are cases where optimization is easier

when the derivative is close to one. The drawback of ReLU is that they can not learn via gra-

dient based optimization when their activation is 0. This can lead to the network consisting

of "dead nodes", where if the activation is always 0 it will always be 0 since the gradient will

also always be 0. One proposed way to address this issue is the Leaky ReLU.

The Leaky ReLU is defined as:

g (x) = max{αx, x} (2.8)

α is typically set to a small value like 0.001, this can help alleviate the issue of "dead nodes".

2.1. ARTIFICIAL NEURAL NETWORKS 9

2.1.2 Gradient Based Optimization

Gradient based optimization refers to the process of minimizing or maximizing some func-

tion f (θ), by altering θ through gradient descent or gradient ascent [7]. One refers to f (θ) as

the objective function. If the purpose is specifically to minimize its also referred to as the cost

function or loss function. Maximization may be accomplished by a minimizing algorithm by

using − f (θ) or vice versa. Considering θ as a single value, when employing gradient descent:

if ∂
∂θ f (θ) < 0, θ is increased and if ∂

∂θ f (θ) > 0, θ is decreased. Similarly this also applies to

when θ is a vector of values, we find ∂
∂θi

f (θ) for each component in θ, this is known as the

gradient.

Since to goal is to find a value for θ such that f (θ) is minimized, gradient descent proposes a

new point by moving in the direction of the negative gradient [7]:

θ′ = θ−α∇θ f (θ) (2.9)

α is referred to as the learning rate or step size parameter and determines how much to

change the value of each parameter with regards to the gradient. If α is too large one can

easily overshoot a minimum point by moving too far, if α is too small learning may happen

very slowly.

Figure 2.2: The three types of critical points in f (θ), critical points being points where the
gradient is 0. θ here is a single value, in reality the gradient space usually consists of many
more dimensions as θ will contain many parameters.

10 CHAPTER 2. THEORETICAL BACKGROUND

As one can see on figure 2.2 there are three different cases for when ∂
∂θ

f (θ) = 0, a local or

global minimum, local or global maximum and a saddle point. For maximums and saddle

points, random noise will usually be enough to allow us to continue the gradient descent

towards a global minimum. In practice a local minimum that is not the global minimum will

be rare when optimizing ANNs, since the parameter space of an ANN is large. In order to

have a local minimum, every single parameter needs to have a derivative of 0 at that point.

However one usually does not even find a local minimum, it has been shown by Goodfellow

et al. [7], that in many cases the gradient norm increases in tandem with the loss function

decreasing.

Tying Gradient Based Optimization Together With ANNs

The loss function is applied to the output of the ANN. Let g be the ANN and f the loss func-

tion:

L = f (gθ(x)) (2.10)

Then to minimize this function with regards to θ one applies equation (2.9). In practice one

does not try minimize for only one value of x . One common strategy when minimizing for

many different values of x is to utilize mini-batching [7], where one find the average gra-

dient over a set of inputs. The size of this set is referred to as the batch size. When using

mini-batching one only estimates the true gradient, as the true gradient would be the aver-

age gradient over all inputs. In practice using this estimate of the gradient instead of the true

gradient often works better. There is a non-linear relationship between the number of sam-

ples and the accuracy of the estimate when estimating the standard error of the mean: σp
n

.

This leads to using a mini-batch size of 10000 compared to one of 100 would only improve

the accuracy of the estimate of the true gradient by a factor of 10. While the computational

costs associated with using a mini-batch size of 10000 compared to 100 would be a factor of

100.

Gradient based optimization also naturally extends to ANNs that take several inputs and out-

puts several values. For several outputs one can utilize a loss function that takes the output

of the ANN as input and returns a single loss value. Then one can find the gradient by finding

the partial derivative with regards to each parameter on the final loss.

Adam Optimizer

The Adam Optimizer is a potential improvement upon the update rule in equation (2.9).

It was introduced by Kingma and Ba [12]. When updating θ, instead of purely moving in

the direction of the negative gradient with every step, one can in addition use information

2.1. ARTIFICIAL NEURAL NETWORKS 11

from previous updates to potentially find a more optimal direction. This can help in the

case where one uses mini-batches (which the Adam optimizer is intended for) as the average

gradient across several mini-batches will potentially be closer to the true gradient. Adam

uses exponential moving averages of the gradient m and the squared gradient v . m is also

called momentum, since it essentially adds a momentum term to the gradient descent. With

the main idea being that this momentum can help update the parameters in the desired

direction since "noise" in the gradient space of the current mini-batch can then partially be

ignored. v can be viewed as an "adaptive learning rate" for each individual parameter, by

decreasing the magnitude of the update for parameters that generally have a large gradient

and vice versa.

Figure 2.3 shows the main idea behind the ADAM optimizer, and how it can help reach a

minimum faster.

The moving averages uses the decay rates β1 and β2. (∇θ f (θ))2 indicates the elementwise

square (∇θ f (θ))¯ (∇θ f (θ))

The update rules for m and v are:

m′ = mβ1 + (1−β1)∇θ f (θ) (2.11)

v ′ = vβ2 + (1−β2)(∇θ f (θ))2

Then one can use m′ and v ′ to update the parameters:

θ′ = θ−α m′
p

v ′+ε
(2.12)

where ε is some small value used to prevent division by 0. In the original implementation a

bias correction is also applied to avoid the bias that comes from initializing m and v as some

value.

From equation (2.11) and equation (2.12) one can see how m causes parameters that are

generally updated in one direction to continue to update in that direction with every step.

While v on the other hand will cause parameters that generally have a gradients with an

absolute value larger than 1 to have smaller updates and vice versa.

12 CHAPTER 2. THEORETICAL BACKGROUND

*

*

Figure 2.3: Showing gradient descent along a parameter space consisting of two parameters.
With and without exponential moving averages over a series of timesteps t . The main idea
being that using moving averages can help prevent oscillations along unwanted directions
in the parameter space. The local parameter space around the arrows can be imagined as a
canyon, and without exponential moving averages one ends up jumping between the canyon
walls. Image adapted from: [23].

2.1. ARTIFICIAL NEURAL NETWORKS 13

2.1.3 Recurrent Neural Networks

Recurrent neural networks (RNNs) are a family of networks primarily used for working on

sequential data. Consider the the phrases "He was born in 1994" and "In 1994, he was born".

Let’s say one is assigned the task of extracting the year of birth in sentences. If one is going

to use a traditional feed forward network to solve this as in figure 2.1. One would need a

different set of parameters to detect "1994" and "born" in the first and second sentence,

since they occur at different places. In contrast a RNN could go through the two sequences

one word at a time and use the same parameters on each word to detect "born" and "1994",

for the two different sentences. It can also "remember" having seen "born" or "1994" since

it contains a recurrent hidden state.

Formalizing these thoughts one can define RNNs as ANNs that contain some sort of recur-

rence. In order to keep things within the scope of this work, we will only look at recurrent

layers, but you could also have layers consisting of some recurrent units and some non-

recurrent units. In general a recurrent layer can be explained by this equation:

ht = fθ(ht−1, x t) (2.13)

ht is the output of a recurrent layer at timestep t and is also called the hidden state. ht−1 is

used together with the input x t to compute ht . In practice this will cause the hidden state

to work as some sort of summary of the previous inputs up to timestep t . This leads to

the capability of detecting the date of birth in two different sentences while using the same

parameters as explained above. In a RNN the recurrent layer(s) are often just one part of the

network. For example ht can be the input to some fully connected layers as in figure 2.1 that

computes the final output of the network.

A recurrent layer can also be unfolded when t is finite, for example for t = 3:

h3 = fθ(h2, x3) (2.14)

= fθ(fθ(h1), x2), x3)

= fθ(fθ(fθ(h0, x1), x2), x3)

The unfolded recurrent layer is mathematically identical to its folded counterpart. This helps

illustrate how vanishing and exploding gradients can be a common problem when utilizing

RNNs.

14 CHAPTER 2. THEORETICAL BACKGROUND

Vanishing and Exploding Gradients

As more layers and certain activation functions are added to a network, the chance of gradi-

ents approaching zero or infinity increases. This is further exacerbated in RNNs where one

repeatedly multiplies by the same weight matrix. Goodfellow et al. [7] gives an example of

this: Suppose you have a very simple RNN lacking a nonlinear activation function and inputs

x :

ht =W >ht−1 (2.15)

After t steps this will be equivalent to multiplying by:

ht = (W t)>h0 (2.16)

Then assume there is an eigendecomposition of W of the form:

W t = (V diag(λ)V >)t =V diag(λ)t V > (2.17)

Suppose V is orthogonal, then the recurrence relation may be simplified to:

ht =V >diag(λ)t V h0 (2.18)

With repeated multiplication of the same eigenvalues, the eigenvalues will approach zero

or infinity if they are not close to 1. Goodfellow et al. [7] States that: "The vanishing and

exploding gradient problem refers to the fact that the gradient through such a graph are also

scaled according to diag(λ)t ." When the gradients vanish learning may happen very slowly

as updates to the parameters will become vanishingly small. When the gradients explode

learning may become very unstable as one can easily overshoot a minimum for some axis in

the gradient space.

One architecture that attempts to adresses the problem of vanishing gradients in RNNs is the

Long Short-Term Memory.

Long Short-Term Memory

Long Short-Term Memory (LSTM) is a form of gated recurrent layer introduced by Hochre-

iter and Schmidhuber [9]. The LSTM consists of two hidden states, ht and c t . ht is also the

output of the LSTM layer. The LSTM layer also contain several "gates". These "gates" help

2.1. ARTIFICIAL NEURAL NETWORKS 15

Figure 2.4: One LSTM layer visualized. x t and ht−1 are used as input arguments to the
gates(ft , it and ot), and to the input unit g t . All of these functions generate vectors, ¯ in-
dicates the Hadamard product of two vectors and + means the vector sum. Image adapted
from: [18].

determine what information should be stored in the hidden states. For the sake of the sim-

plicity of this explanation assume the gates are vectors consisting of zeroes and ones, a value

of 1 would mean that the information is let through and vice versa. In reality a sigmoid acti-

vation function is used. The values will still be very close to one or zero in many cases when

using a sigmoid activation function.

The three gates in order of use within an LSTM are:

• The forget gate (ft) determines based upon ht−1 and the current input x t , what infor-

mation should be forgotten in c t .

• The update gate (it) determines based upon ht−1 and x t , what information should be

added to c t .

• The output gate (ot) determines based upon ht−1 and x t what information from c t

should be used in order to generate ht . ht is also the output of the recurrent layer at

timestep t .

Figure 2.4 shows a LSTM layer with the gates marked. Based upon this figure and the expla-

16 CHAPTER 2. THEORETICAL BACKGROUND

nation above showing the equations that govern the LSTM layer follows:

Update Gate: it =σ(Wi i xt +bi i +Whi ht−1 +bhi) (2.19)

Forget Gate: ft =σ(Wi f xt +bi f +Wh f ht−1 +bh f)

Input Unit: g t = tanh(Wi g xt +bi g +Whg ht−1 +bhg)

Output Gate: ot =σ(Wi o xt +bi o +Whoht−1 +bho)

ct = ft ¯ ct−1 + it ¯ g t

ht = ot ¯ tanh(ct)

σ is the sigmoid activation function. ¯ is the Hadamard product. One reason for the tanh ac-

tivation function is to keep values from exploding over several recurrent steps. Showing the

range of the functions and dimensions of the matrices is useful in order to better understand

the equations above:

Variables:

xt ∈ Rd

ft ∈ (0,1)h

it ∈ (0,1)h

ot ∈ (0,1)h

g t ∈ (−1,1)h

ht ∈ (−1,1)h

ct ∈ Rh

Wi ∈ Rh×d , Wh ∈ Rh×h , b ∈ Rh

d refers to the number of components in the input(x t), h refers to the number of compo-

nents in the hidden state (ht). It should be noted that the input weight matrices are of shape

h ×d in order for all vectors to have the same the number of components so that one can

sum them together.

Encoder-Decoder RNN

There exists different RNN architectures depending on the "nature" of the function one de-

sires to approximate. The "nature" can be defined in terms of: the input being a sequence,

the output being a sequence or both. We employ RNNs for the case where both the input

and output are sequences that are not necessarily of the same length. An example of this

case is machine translation. One of the issues a simple RNN such as the one in equation

(2.13) would have with machine translation is the fact that the length of the input sequence

and the output sequence will not necessarily match, and that the order of words may change

2.2. REINFORCEMENT LEARNING 17

from one language to another.

Cho et al. [3] and Sutskever et al. [30] introduced the encoder-decoder architecture as a pos-

sible solution to this type of problem. They feed the input sequence to a RNN known as the

encoder. The encoder generates hidden states based upon the input sequence. The hidden

states can be used in many different ways to generate a context vector, one common and

simple way is to set the final hidden state as the context vector. The context vector is then

used in the decoder in one or more of several possible ways: One could for example initialize

the hidden state of the decoder as the context vector, or one can use the context vector as the

input to the decoder.

Figure 2.5: An example of an encoder-decoder architecture, an encoder RNN is fed some in-
put sequence of length T1. The final hidden state of the encoder is used as the context vector
and is the input to the decoder RNN for every timestep in order to generate some sequence
of length T2. Both the encoder and decoder RNN could for example be LSTM layers.

Figure 2.5 shows one possible encoder decoder architecture. The architecture shown is the

one used in this work.

2.2 Reinforcement Learning

Reinforcement learning (RL) is one of the three main fields of machine learning together with

supervised learning and unsupervised learning. In reinforcement learning a decision maker,

maps situations to actions, where the goal is to pick those actions that will maximize an

expected accumulated reward signal. The reward is generally represented as a real number.

For example in Tic-Tac-Toe the situation would be the board state and actions would be

possible moves. The reward signal could be zero for all states, except for terminal states that

is either a win or a loss, in that case the reward could be +1 for a win and −1 for a loss.

18 CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.6: The Agent-Environment interaction in a MDP. The Agent is input some state St

and reward Rt . From this the Agent outputs an action At . The action is input into the envi-
ronment and the environment outputs some state St+1 and reward Rt+1. This cycle repeats
itself for each timestep t .

2.2.1 Markov Decision Process

Decision making is often defined as a the process of making choices among several possible

alternative options. Sequential decision making would thus be a sequence of such choices.

When one makes an action based upon a choice, the action will affect the state of the world.

This also happens in Markov Decision Processes (MDPs), where an action affects what will be

the resulting state. One property of sequential decision making is intemporal choice, where

decisions made at one point in time affects possible decisions at a later point in time. For-

malizing these thoughts gives rise to MDPs.

MDPs provide a mathematical framework for modelling sequential decision making. One of

the assumptions of a MDP is that the environment can be split up into a series of discrete

timesteps. In a MDP the learner/decision maker is called the agent. The environment en-

compasses everything that is not the agent. A state is denoted s, the set of all states S. An

action a, the set of all actions A. A reward is some number r ∈ R. The agent interacts with

the environment in a series of discrete timesteps t = 0,1,2,3.... This gives rise to a trajectory:

S0, A0,R1,S1, A1,R2,S2, A2... (2.20)

2.2. REINFORCEMENT LEARNING 19

As shown in figure 2.6 the agent is input some representation of the state, decides on an

action receives a reward and a new representation of the state, from which the agent can

decide on a new action. A given state action pair does not necessarily always result in the

same new state, but there is instead a fixed probability for each s ∈ S:

p(s′ = St+1|s = St , a = At) ∈ (0,1) (2.21)

The fact that the state-transition probability in (2.21) is fully explained by the current state-

action pair is known as the Markov property. The Markov property is useful and many al-

gorithms in RL assume that the Markov property holds. Unfortunately as one shall see in

section 2.3.2 this property does not necessarily hold in Multi Agent RL.

The sum of the sequence of rewards from a trajectory is called the return, denoted G .

Gt = Rt+1 +Rt+2 +Rt+3...+RT (2.22)

where T is the final time step. There being some final time step implies that there is some

terminal state, a state from which no more actions can be made. The cases where there

exist some terminal state are called episodic cases, when there is no terminal state it is a

continuous case. This thesis focuses on the episodic case.

Policy

The agent in a MDP follows some policy. A policy, denoted π, is a mapping from states to

probabilities of selecting each possible action. π(a|s) denotes the probability that At = a if

St = s at timestep t . The goal in reinforcement learning is to find the optimal policy (π∗),

which is defined as the policy that will maximize expected return (G) from any given state.

Value Functions

Value functions are estimates of how "good" it is for an agent to be in state s, or how "good"

it is for an agent to perform action a in state s. More formally: A state-value function vπ is

a function that takes a state s as an argument and returns the expected return G from that

state following policy π. For MDPs the value function for a given state is defined as:

vπ(s) = Eπ[Gt |St = s] = Eπ
[∞∑

k=0
Rt+k+1|St = s

]
(2.23)

where E is the expectation value under π, i.e the expected return given state s following π,

20 CHAPTER 2. THEORETICAL BACKGROUND

An action-value function for policy π is denoted Qπ, it is the expected return in some state-

action pair (s, a) followingπ. The action-value function for a given state action pair is defined

as:

Qπ(s, a) = Eπ[Gt |St = s, At = a] = Eπ
[∞∑

k=0
Rt+k+1|St = s, At = a

]
(2.24)

2.2.2 Policy Gradient Methods

The main goal of policy gradient methods is to model a policy as a parameterized function.

Often denoted πθ where θ refers to the parameters. The parameterized function can be

anything as long as it is differentiable with regards to its parameters. In practice we also

wish to ensure that the policy never becomes deterministic so that learning can happen i.e

πθ(a, s) ∈ (0,1). This work uses ANNs as πθ.

Policy gradient methods differ from action-value methods in that instead of learning the

value of actions taken, and then selecting actions based on their estimated action values,

they select actions without consulting a value function.

Gradient based optimization is used in order to improve the policy. The objective for the

episodic case now becomes to optimize the policy so that it maximizes the true value func-

tion in the initial state vπθ (s0), this is done through gradient ascent:

θt+1 = θt +α∇θvπθ (s0) (2.25)

To tie this with gradient based optimization, section 2.1.2 vπθ (s0) is an objective function.

Note that we write θ as the arguments to the objective function in section 2.1.2, since in the

context of optimizing, the parameters are the variables we change the value of while s0 would

contain fixed constants. In order to make vπθ (s0) a loss function that can be optimized with

gradient descent all that is needed is to multiply it by −1.

In practice one makes stochastic estimates whose resulting gradient approximates ∇vπθ (s0).

This gradient can be found by using the policy gradient theorem.

2.2.3 Policy Gradient Theorem

The policy gradient theorem shows that θ can be updated without consulting a value func-

tion [31]. From the definition of a policy 2.2.1 and an action-value function (2.24):

2.2. REINFORCEMENT LEARNING 21

∇vπ(s0) =∇
[∑

a
π(a|s0)qπ(s0, a)

]
(2.26)

Here it is left implicit that π is a function with parameters θ and that the gradients ∇ are with

respect to θ. When knowing the gradients of the policy parameters, one knows which way to

update the policy parameters in order to maximize the expected return. The problem here,

and the reason for the policy gradient theorem is that it can be difficult to compute the true

value function. The true value function is dependent upon two things:

• Given a state, the effect of the policy on actions and thus on reward. This can be com-

puted relatively straightforwardly.

• The effect of the policy on the state distribution. This is a function of the environ-

ment and is typically unknown. To illustrate this one could imagine a policy to play

the "crosses" in tic-tac-toe, let there be another unknown policy to play "circles, by

definition the policy of the "circles" player is considered part of the environment when

viewed from the perspective of the "crosses" player. Since this policy of the "circles"

player is unknown, one can’t know the effect of this policy on the state distribution.

Thus the effect of the "crosses" policy on the state distribution will also be unknown.

This illustrates the problem that the policy gradient theorem provides a solution to, it gives a

metric one can use in order to maximize vπ(s0) without knowing the value of vπ(s0). In order

to maximize vπ(s0) through gradient descent one only need to know ∇vπ(s0).

The policy gradient theorem [31] derives from (2.26) that:

∇vπ(s0) =∑
s′
η(s′)

∑
s
µ(s)

∑
a
∇π(a|s)qπ(s, a) (2.27)

∝∑
s
µ(s)

∑
a
∇π(a|s)qπ(s, a)

η(s′) number of time steps on average spent in sate s′. Since only which direction to update θ

matters,
∑

s′ η(s′) can be removed if the equals is replaced with proportionality (∝).
∑

s′ η(s′)

would be absorbed into the learning rate parameter of the stochastic gradient ascent anyway.

µ(s) is the on policy distribution over states, how big a proportion of the states encountered

is state s under some policy π.

2.2.4 REINFORCE

From the policy gradient theorem (2.27) one can infer that:

22 CHAPTER 2. THEORETICAL BACKGROUND

∇vπ(s0) ∝ Eπ

[∑
a

qπ(St , a)∇π(a|St ,θ)

]
(2.28)

One can stop here and instantiate an all-actions algorithm. This would entail for each state

encountered: looking at every possible action, this probably requires an estimate to the ex-

pected return from an action-state pair instead of stochastically sampling it. One way to es-

timate the expected return from an action-state pair could be to use a parameterized action-

value function. For REINFORCE instead, one only looks at action At , the action actually

taken at time t . Continuing from equation (2.28), one can multiply by π(a|St ,θ)
π(a|St ,θ) :

∇vπ(s0) ∝ Eπ

[∑
a
π(a|St ,θ)qπ(St , a)

∇π(a|St ,θ)

π(a|St ,θ)

]
(2.29)

Replacing all actions with one action sampled from π:

= Eπ
[

qπ(St , At)
∇π(At |St ,θ)

π(At |St ,θ)

]

Because Eπ [Gt |St , At] = qπ(St , At):

= Eπ
[

Gt
∇π(At |St ,θ)

π(At |St ,θ)

]

From this one arrives at the update rule of Reinforce:

θt+1 = θt +αGt
∇π(At |St ,θt)

π(At |St ,θt)
(2.30)

= θt +αGt∇ ln(π(At |St ,θt))

As a policy gradient algorithm REINFORCE has some advantages compared to other algo-

rithms in reinforcement learning. Methods based solely upon value functions often employ

ε-greedy action selection, where ε-greedy action selection means selecting the action with

highest expected return except for ε of the time where you select a random action instead.

The reason for including ε is to ensure that the agent may learn that some action for a given

state leads to a greater return than what the action-value function currently predicts is the

optimal action. With REINFORCE on the other hand the policy is updated through gradi-

ent descent, and this causes the probabilities for selecting different actions also to change

2.3. MULTI AGENT REINFORCEMENT LEARNING 23

smoothly.

One reason for picking the REINFORCE algorithm is that it is more robust to violations of the

Markov property. This is because it does not update its value estimates based on the value

estimates of successor states [31]. Another reason for using the REINFORCE algorithm is

that this work is mainly based upon Eccles et al. [4] and Cao et al. [2] where they employ the

REINFORCE algorithm.

REINFORCE With a Baseline

A baseline for the reinforce algorithm b(St) is a value subtracted from the return in the up-

date rule of REINFORCE [31]:

θt+1 = θt +α(Gt −b(St))∇ ln(π(At |St ,θ)) (2.31)

A baseline can help speed up learning by reducing variance. This generally happens when

the baseline is close to the same value as the return. The introduction of a baseline is a

generalization of the REINFORCE algorithm as the baseline can be 0.

We can show that a baseline will not affect the expected policy gradient as long as it is not

dependent upon the current action and the policy gradient, by including a baseline in the

policy gradient theorem:

∇vπ(s0) ∝∑
s
µ(s)

∑
a
∇π(a|s)(qπ(s, a)−b(s)) (2.32)

Based upon equation (2.32) one can show that the baseline will not affect the expected policy

gradient: ∑
a
∇π(a|s)b(s) = b(s)

∑
a
∇π(a|s) = b(s)∇1 = 0 (2.33)

2.3 Multi Agent Reinforcement Learning

Multi Agent Reinforcement Learning (MARL) is a sub-field of reinforcement learning. Sin-

gle agent reinforcement learning involves a single agent interacting with some environment.

With MARL on the other hand, you have several agents interacting with a shared environ-

ment. Depending on the task an interplay may arise between the agents; they can cooperate

in order to achieve a shared goal, or they can compete and try to excel each other.

One can subdivide MARL into three categories. These categories are based upon the reward

structure of the environment:

24 CHAPTER 2. THEORETICAL BACKGROUND

• Full Cooperation. All agents will receive the same reward for any state transition.

• Full Competition. The sum of rewards equal zero for any state transition, this is also

known as a zero sum game.

• Mixed, does not satisfy any of the previously mentioned.

2.3.1 Formal Definitions in MARL

Since one now deals with several interacting policies it is useful to define a joint policy as the

collection of all individual policies: π= {π1,π2,π3, ...} withπ−i being the joint policy without

πi . v i
π(s) is the expected return in state s for agent i given joint policyπ.

Definition 1. Best response [8]. Agent i ’s best response πi∗ to the joint policyπ−i is when:

v i
πi∗,π−i (s) ≥ v i

πi ,π−i (s) (2.34)

for all states s and policies πi . The best response is the optimal policy for some agent given

a joint policy.

Definition 2. Nash Equilibrium [8]. A solution where each agent’s policy πi∗ is the best re-

sponse to the remaining joint policyπ−i∗ such that the following inequality holds for all states

s and all policies πi :

v i
πi∗,π−i∗

(s) ≥ v i
πi ,π−i∗

(s) (2.35)

One can imagine a Nash equilibrium as a "global" or "local" maximum as any updates to a

single policy will only result in a lower or the same return for that policy. A Nash equilibrium

is not necessarily a solution with the highest joint return, and a MARL setting may contain

more than one Nash equilibrium.

Definition 3. Pareto optimality [8]. A joint policyπ Pareto-dominates another joint policy π̂

iff:

v i
π(s) ≥ v i

π̂
(s)∀i ,∀s ∈ S and v i

π(s) > v i
π̂

(s)∃i ,∃s ∈ S (2.36)

A policy π is regarded as Pareto-optimal if no policy π̂ can Pareto-dominate it. Note that a

Nash equilibrium is not necessarily Pareto-optimal, but it follows from the definitions that a

Pareto-optimal solution is also a Nash equilibrium in a fully cooperative setting.

2.3.2 Challenges in MARL

MARL is a nascent field, and is still undergoing several challenges. Some of the main chal-

lenges of MARL are:

2.3. MULTI AGENT REINFORCEMENT LEARNING 25

Credit Assignment Problem

The credit assignment problem arises in a fully cooperative setting. In a fully cooperative

setting the reward is the same for all agents. This leads to a sub optimal reward signal for

each agent since the reward signal will include the contributions of every agent. This can

make it harder to conclude what impact each individual action has. There has been done

research into alleviating the credit assignment problem by finding various ways to factor out

each agent’s individual contribution [21].

Moving Target Problem

One of the core assumptions of a MDP, is that the transition probabilities remain fixed, i.e.

p(s′|s, a) does not change. Unfortunately when introducing several agents this is no longer

the case. From the perspective of one agent the transition probabilities p(s′|s, a) will change

when the policies of the other agents change. This leads to MARL problems violating the

Markov property. Because of this, MARL problems often don’t have the same theoretical

convergence guarantees that you would find in the single agent case.

Shadowed Equilibrium

Another challenge that has been shown to often arise in MARL is "relative over generaliza-

tion". Here each agent has a tendency to converge towards a robust policy that pairs rela-

tively well with wide range of other policies. A joint policy π̄ is shadowed by another joint

policy π̂ in state s if and only if [6]:

∃i ,π̄i such that vπ̄i ,π̄−i (s) < min
j ,π̂ j

vπ̂ j ,π̂− j (s). (2.37)

What can often happen is that a more optimal joint policy will be shadowed by these more

robust joint policies, if the more optimal joint policy can "collapse" when one of the agents

change their policy.

2.3.3 Training and Execution Schemes

MARL can be divided into three combinations of two training and execution schemes. For

training schemes you have centralized and distributed training, while for execution schemes

you have centralized and decentralized execution.

26 CHAPTER 2. THEORETICAL BACKGROUND

Distributed Training, Decentralized Execution (DTDE)

Each agent has its own policy that maps a local observation to a distribution over individual

actions. Information is not shared between agents. One of the biggest drawbacks of DTDE

is the moving target problem. One example of DTDE is to have separate ANNs parameterize

the policy of each agent while using the REINFORCE algorithm.

Centralized Training, Centralized Execution (CTCE)

Centralized training centralized execution describes a training scheme where a centralized

executor learns the joint policy of all the agents. This allows the straightforward employ-

ment of single agent training methods, naturally this then also removes some of the issues in

MARL, such as the moving target problem. One issue that gets exacerbated by this execution

scheme is what is known as the curse of dimensionality; The total state action space becomes

the product of the state action space of each individual agent. This implies that the compu-

tational costs associated with training a centralized executor are exponentially greater than

it would be for a single agent.

Centralized Training, Decentralized Execution (CTDE)

Centralized training, decentralized execution is considered the state of the art practice in

MARL. CTDE is similar to DTDE, the difference is that information of some type is shared

between the agents during training that is not shared during execution. The type of infor-

mation shared between the agents during training can be highly varied, in the case of ho-

mogeneous agents i.e. agents that are input equivalent local states and output equivalent

individual actions. It can take the form of parameter sharing. Parameter sharing can for

example entail using only one policy network for all the agents, it has been shown that pa-

rameter sharing will most likely speed up the learning process [8], what differentiates this

method from CTCE is that the policy network will only receive the observations of a single

agent at a time, and output the actions of a single agent at a time. Another way to centralize

the training has been to use a centralized critic when employing Actor-Critic methods1. Here

different techniques have also been tried, such as having the critic marginalizes out a single

1Actor-Critic methods in comparison to the REINFORCE algorithm learn during the episode, that is it boot-
straps. In order to do this, it employs a value function v̂ like the REINFORCE with baseline does. The value
function is used to estimate the one step return. That is given At results in Rt+1 and St+1 the update rule for
the policy parameters will be:

θt+1 = θt +α(Rt+1 + v̂(St+1)− v̂(St))∇ ln(π(At |St ,θ)) (2.38)

Note that Rt+1 + v̂(St+1) is the one-step return estimate and −v̂(St) is a baseline.

2.3. MULTI AGENT REINFORCEMENT LEARNING 27

agents contribution from the global reward [5].

2.3.4 Cooperation in MARL

According to Lindenfors [15] a definition of cooperation within the field of biology is: Coop-

eration is the collective functioning of some kind of units for the benefit of themselves and/or

their component parts. Cooperation within MARL also fit into this definition. Interestingly

one can in addition also determine from the perspective of an agent "what is to the benefit

of itself" by deciding on the reward function. From this, it naturally arises to define the col-

laborative nature of a MARL problem as the degree to which the agents rewards are positively

correlated. From this one also arrives at the definition of a fully cooperative setting in sec-

tion 2.3. The link between reward structure and cooperative behaviour has been confirmed

by Leibo et al. [13], where they show that the degree to which the rewards are shared helps

determine the degree of cooperation.

2.3.5 Communication in MARL

A lot of the recent research in MARL has been focused on Communication [8]. The main rea-

sons for this is that many issues in MARL can be partially solved if communication is properly

incorporated. For example partial observability can be loosened if agents are able to com-

municate information about their observed state to other agents. Partial observability refers

to cases where each individual agent is not input the entire state but instead only a partial

observation of it, this is often done intentionally when one desires to achieve communica-

tion in a MARL setting [4][2]. Another reason for intentional partial observability is due to

the curse of dimensionality, and so learning can be easier if only the relevant information

about the state is given to the agent. There are settings where better performance has been

achieved by partial observability and communication rather than almost full observability

[29].

The moving target problem can also be partially solved if agents communicate information

about their policy to other agents.

One issue faced when trying to achieve communication is the shadowed equilibrium [8]. If

some agents achieved meaningful communication and the actions of the agents are largely

based upon the communication channel, then the joint policy becomes vulnerable to changes

in the communication protocol. Some parameter update may cause the communication

protocol to collapse and the joint reward to decrease drastically. Because of this what can

happen is that the joint policy instead converges towards a more robust sub-optimal policy

28 CHAPTER 2. THEORETICAL BACKGROUND

that ignores the communication channel.

This work focuses upon the case where communication is done through action selection

in a MARL setting. There has however also been other approaches to communication in

MARL, such as the sharing of the hidden states of the parameterized policies between net-

works [29][24][14]. There are also approaches that straddle the line between these two main

approaches such as by Jiang and Lu [11] where the decision to communicate is treated as

an action but the communication itself is the sharing of some hidden states. The reason

this work uses the approach of having communication done through action selection is that

communication as an action more closely models communication in other settings, where

there often is some decision maker that decides what it wants to say among several possi-

ble options. It can be interesting to see what properties communication will have in such a

setting and if parallels can be found to communication in other settings.

When there is a communication channel with no predefined meaning for messages we de-

fine such messages as utterances. If the messages are discrete then they are a sequence of

symbols of some length, the set of all symbols is referred to as the alphabet size.

2.3.6 Positive Signalling

Positive signalling is one proposed learning bias to help facilitate communication in a MARL

setting where communication is done through action selection. Positive signalling and pos-

itive listening was first introduced by Lowe et al. [16] in order to distinguish cases of real

communication from pathological ones. If an agent exhibits positive signalling then its mes-

sages will be statistically dependent on its current action or its current observation. While if

an agent exhibits positive listening then different messages to the agent will produce differ-

ent actions. Eccles et al. [4] developed the idea of positive signalling and positive listening

further and introduced them as loss functions in order to facilitate the emergence of commu-

nication in a discrete MARL setting. For positive signalling an agent that produces messages

is encouraged to produce different messages in different situations. This is done by adding

a loss term that incentivizes the speaker to produce messages that are uniformly random

overall, but where each message is non-random when conditioned upon the current trajec-

tory. They denote πi
M the average message policy for agent i over all trajectories, weighted

by frequency. πi
M is estimated from the current mini-batch:

πi
M ≈ 1

BT

I∑
b

T∑
t
πi

M (·|xi
b,t) (2.39)

B is the batch size and T is the length of the trajectory. πi
M (·|xi

b,t) denotes the distribution over

2.3. MULTI AGENT REINFORCEMENT LEARNING 29

messages the policy outputs given xi
b,t . In order to produce messages that are uniformly ran-

dom overall they seek to maximize the entropy of the average message policy, H (mi
t). While

in order to produce messages that are non-random when conditioned upon the current tra-

jectory they seek to minimize the entropy of the message policy when conditioned upon the

current trajectory, H (mi
t |xi

t). This then gives us an equation with two terms. M i is the set of

all messages agent i can choose from. The positive signalling loss for agent i at timestep t ,

with regards to their current trajectory xi
t is then:

Lps(πi
M , xi

t) =−H (mi
t)+H (mi

t |xi
t) (2.40)

= ∑
m∈Mi

πi
M (m) ln(πi

M (m))− ∑
m∈Mi

πi
M (m|xi

t) ln(πi
M (m|xi

t))

In practice however, minimizing the entropy when it is conditioned upon the current trajec-

tory does not work well. One reason for this may be according to Eccles et al. [4]: "for any

c < log(2) the space of policies with entropy at most c is disconnected, in that there is no

continuous path in policy space between some policies in this set".

Because of this they instead introduce a target entropy for H (mi
t |xi

t), Htarget. One can view

Htarget as an exploration parameter, with higher Htarget meaning a higher degree of explo-

ration. With the introduction of Htarget the loss function becomes [4]:

Lps(πi
M , xi

t) =−H (mi
t)+λ(H (mi

t |xi
t)−Htarget)

2 (2.41)

We assume λ here is a weighting for the two loss terms.

Note that this loss is only a learning bias, in order to produce the final loss for the message

policy following trajectory x at timestep t one also needs to include the loss with regards

to, for example the REINFORCE algorithm, the final loss term for such a message policy at

timestep t with regards to trajectory x would then be:

L(πi
M , xi

t) = Lps(πi
M , xi

t)−Gt ln(πi
M (mt |xi

t)) (2.42)

Note that in general when using a learning bias loss, we find the loss with regards to for

example the REINFORCE algorithm and add the loss with regards to the learning bias to

produce a final loss which we use as a loss function in gradient based optimization.

30

Chapter 3

Method

This chapter will introduce the two environments used in this work, Negotiation and Se-

quence Guess. It will also provide the necessary details on the algorithms used for the ex-

periments, including network architecture. And finally it will discuss the metric used in the

experiments to measure degree of communication.

3.1 Negotiation

Negotiation is a game that consists of two agents, A and B , who try to distribute a set of n

different types of beverages among themselves. Note that they agree on a division of each

individual beverage, so the agents can for example split the first beverage evenly. Each agent

is assigned a utility for each type of beverage, once a partition of the beverages has been

agreed upon they are rewarded in part based upon their assigned utility for each beverage,

u ∈ (0,1)n , the utility for each beverage is sampled from a uniform distribution, and each

agent only receives its own utility as input.

As shown in figure 3.1 the agents have two communication channels; a proposal channel

and a linguistic channel. The meaning of a proposal is predetermined, a proposal p ∈ (0,1)n ,

is a suggested partition of the beverages. The linguistic channel, on the other hand, does

not contain such predetermined meanings. Utterances are sent in the linguistic channel; an

utterance is a vector z ∈ (−1,1)n . The hope is for some communication protocol that helps

the agents solve their task, to arise within this channel.

For each timestep, the input for an agent is: The current turn, the agents hidden utilities, the

current utterance if the linguistic channel is open, and the current proposal if the proposal

channel is open. If the proposal or linguistic channel is closed then the channels respective

messages will be replaced by a zero vector as input to the agent. The output of an agent is:

3.1. NEGOTIATION 31

Figure 3.1: An example run of two agents negotiating over three different types of bever-
ages. A proposal of [0.9,0.3,0.5] from agent A would mean agent A receives their proposed
fraction of each beverage (here: soda, milk and orange juice), while agent B receives the
remainder. Agent B can either accept this proposal or come with a counter proposal. The
linguistic channel has no predefined meaning. The hidden utilities indicates how each bev-
erage is weighted when calculating the reward. The robots have been taken from [19][20].
The beverages have been taken from [26][25][27].

A proposal, an utterance, and agreement; whether or not an agent agrees to the previous

proposal. Agreements are ignored on the first turn.

Agent A Agent B

Selfish 0.5×0.8+0.7×0.35+0.6×0.5 = 0.95 0.5×0.4+0.3×0.2+0.8×0.4 = 0.58
Selfish Normalized 0.945÷ (0.8+0.35+0.5) = 0.57 0.58÷ (0.4+0.2+0.8) = 0.414
Cooperative 0.945+0.58 = 1.52 0.58+0.945 = 1.52
Cooperative Normalized 1.52÷ (0.8+0.35+0.8) = 0.78 1.52÷ (0.8+0.35+0.8) = 0.78

Table 3.1: Rewards calculated from Figure 3.1 with the final proposal being [0.5,0.3,0.4] from
agent B. When normalizing the reward it is divided by the maximum possible reward. Selfish
refers to strongly competitive setting where individual rewards are not shared. Cooperative
refers to a fully cooperative setting where individual rewards are shared. Some values are
rounded.

Table 3.1 shows how the rewards are calculated from the example run in figure 3.1, note that

for Negotiation the reward and the return will always be the same value. For selfish agents,

with a proposal p the proposing agent’s (B) reward will be rB =∑
i pi uB i , while the agreeing

agent’s (A) reward will be r A = ∑
i (1−pi)uAi . If the rewards are shared, meaning that both

agents receive the reward r A + rB the setting is fully cooperative. The degree of potential

32 CHAPTER 3. METHOD

cooperation can be tuned by a sharing parameter sp , where sp = 1 will mean full cooperation

and sp = 0 will mean "strong competition". Note that sp = 0 is not full competition as defined

in chapter 2.3, since the sum of rewards for any state transition will not equal 0. The reward

for agent A with the sharing parameter will then be: r A + sp rB . The rewards are normalized

by dividing on the maximum possible reward, the maximum possible reward is found by

finding the reward of the optimal proposal for each agent. The optimal proposal for agent A

with n = 3 item categories will satisfy this formula:

∀i∈{1,2,3} : (uAi ≥ sp uB i → pi = 1)∧ (uAi < sp uB i → pi = 0) (3.1)

I.e for each beverage i , if uAi ≥ sp uB i then it is best for A to take everything, else B should

take everything. Combing this together a general reward for agent A can be found. Let the

reward calculated from the optimal proposal for agent A be rmax. And let A’s final reward be

rfinal.

rfinal =
r A + sp rB

rmax
(3.2)

The agents have a set number of discrete timesteps T to reach an agreement, if no agreement

is reached within the allotted timesteps they both receive −1 as a reward.

3.1.1 Negotiation Through Communication

One of the main papers this negotiation environment is based on is a paper investigating

emergent communication through negotiation by Cao et al. [2]. We have modified the setting

from a discrete setting to a continuous one. In their case there are three types of items and

between 0 and 5 items of each item type. Each agent is assigned a discrete hidden utility for

an item between 0 and 10. An utterance is a sequence of length 5 with an alphabet size of 10.

The main reason for extending this work to a continuous setting was curiosity, will the same

results be observed in a continuous setting?

3.1.2 Algorithm for Negotiation

For Negotiation the REINFORCE algorithm is used with a parameterized baseline. The policy

is parameterized by a single ANN. Consisting of a single LSTM layer and two fully connected

layers. Each agent’s individual policy is parameterized by its own ANN. The baseline is pa-

rameterized by a single LSTM layer and two fully connected layers. Figure 3.2 gives more

details on the architecture.

The learning rate α begins at 0.001 for both the baseline and the policies. When an iteration

3.1. NEGOTIATION 33

Figure 3.2: The network architecture used in Negotiation both for the policy and the pa-
rameterized baseline, t is the current turn. σ is the sigmoid activation function. The policy
outputs means values (µs), while standard deviations are found from σ(s). These values are
used to instantiate normal distributions from which actions are sampled from. The policy
also outputs ŷ3 that is used to find the probability of termination. The numbers refer to the
hidden layer size. FC refers to a fully connected layer. one hot(t) refers to the one-hot en-
coding of the current turn, i.e a zero vector except for component number t which is one.

Hyperparameter Value

Batch Size 2048
Iterations 50 000
LSTM Layer Size 100
First Hidden Layer Size 100
Second Hidden Layer Size 100
Utterance Size 3
Max Turns 5
n beverages 3
sp 1

Table 3.2: Hyperparameters used in Negotiation, the same layer sizes are used for the agents
and the parameterized baseline

34 CHAPTER 3. METHOD

with r ≥ 0.9 is reached, the learning rate is reduced to 0.0001 for both the baseline and the

policies. r ≥ 0.9 indicates a close to optimal joint policy if the agents only know their own

hidden utilities. The reason for the learning rate adjustment is that the learning can very

easily become unstable with a learning rate of 0.001. While learning would be very slow if it

began with a learning rate of 0.0001. This approach made the learning more stable. Table

3.2 shows the hyperparameters used. The hidden layer sizes, utterance sizes and number

of item categories are the same ones that Cao et al. [2] used for their implementation. A

large batch size is picked since this helps make the positive signalling learning bias more

accurate, and also because training is done on a GPU. A GPU can handle large batch sizes

with little increase in training time. Jiang and Lu [11] also noted that a large batch size helped

accelerate their learning process in a MARL setting.

Output of the Policy

Figure 3.2 includes the output of the policy used for Negotiation.

The proposal p and utterance z are sampled from normal distributions.

Each p ∈ p is sampled from a normal distribution whose mean and standard deviation are

outputs from the policy network, a sigmoid activation is used on the output for standard

deviations in order to avoid negative numbers and large values for the standard deviation.

After sampling from the normal distribution the sigmoid activation function is used in order

to ensure a legal proposal. Each z ∈ z is sampled in the same manner as p except that the

tanh activation function is used instead of the sigmoid function. The tanh activation func-

tion is used in order to keep the communication channel bounded, if the communication

channel isn’t bounded then numerical stability will be an issue as the policy may increase or

decrease the value of an utterance indefinitely.

The network also outputs the probability of termination from a sigmoid activation, and the

termination action is sampled from this probability.

Details on the Baseline

The baseline is centralized, so the baseline always receives the same input as the agent whose

turn it is. A negotiation trajectory can be described like this:

O A
0 , A A

0 , ...,O A
T−1, A A

T−1,OB
T , AB

T ,RT (3.3)

Where T is the final timestep, O A is the observation tensor for agent A. A A Is the action for

agent A. When calculating the baseline for agent A at timestep T , the sequence of states

3.2. SEQUENCE GUESS 35

up to A’s final timestep O0, ...,OT−1 is used, and when calculating the baseline for agent B

O0, ...,OT is used. When calculating the loss for the parameterized baseline Mean Squared

Error is used:

L A = 1

I

I∑
i=1

(r i
A − r̂ i

A)2 (3.4)

Where r̂ is the output of the network and r is the actual reward. i refers to the sample within

a batch of size I . A is the agent the loss is calculated for, the final loss for the baseline will be

the sum of the loss when predicting As reward and Bs reward: L A +LB .

Since learning has been observed to be unstable we have decided to use a parameterized

baseline that is potentially able to accurately predict the expected reward from a given state,

in order to reduce variance in the reward signal.

The inclusion of a centralized baseline does not affect the idea of the agent’s only being al-

lowed to communicate through a communication protocol, because during an episode no

information is shared between the agents through the baseline.

3.2 Sequence Guess

We propose a new game inspired by the board game Mastermind. Sequence Guess is a two

player game consisting of a mastermind and a guesser. The game consists of the guesser at-

tempting to guess some target sequence, while the mastermind knows the target sequence.

The goal for the mastermind is to provide information to the guesser through a communi-

cation channel about the target sequence, potentially with respects to the guesses made so

far. The length and alphabet size of the target sequence are hyperparameters. The target

sequence is sampled uniformly. After each guess the mastermind replies with an utterance.

The length and alphabet size of an utterance are also hyperparameters. The game consists

of T turns, where T is finite, a turn consists of one guess and one utterance. Figure 3.3 shows

an excerpt of Sequence Guess.

The set of all target sequences is referred to as the Target Language, while the set of all utter-

ance sequences is defined as the Utterance language. Furthermore we define the Expressivity

of a language as the size of its respective set, so for example a sequence length of 4 and al-

phabet size of 3 will have an expressivity of 34 = 81. This game differs from Negotiation in

a few key aspects, in Negotiation each agent is given the same type of information, and the

game is dialogue focused. Sequence Guess, on the other hand, is monologue focused. The

mastermind needs to formulate some utterance and the guesser needs to understand how

this utterance is related to the target sequence and previous guesses.

36 CHAPTER 3. METHOD

MastermindGuesser

RG B

Guess 1

RR B

Guess 2

R

Utterance

R G B

Target Sequence

Figure 3.3: An excerpt of Sequence Guess, the guesser attempts to guess some target se-
quence, while the mastermind tries to provide information about the target sequence to the
guesser. The target alphabet size is 3 and target sequence length is 3. Utterance alphabet size
is 3 and utterance sequence length is 1. Robots taken from [19][20]

3.2.1 Reward Structure

The meaning of a guess is already predefined and rewards are determined based upon guesses.

The guesser receives the latest utterance and current turn number and makes a guess of the

target sequence. If it is the correct sequence the game terminates and both agents receive a

reward of one, else the game continues, the mastermind receives the correct sequence, the

current guess, and current turn number as input and outputs an utterance. On the master-

minds turn both agents receive -0.1 in reward, as an incentive to guess the correct sequence

as fast as possible. On the final turn they are rewarded according to how good a guess the

final guess was. Let J be the target sequence length, for every correct letter in its correct place

in the guess, 1
J will be added to the reward.

3.2.2 Algorithm

The REINFORCE algorithm with a baseline is used. A moving average is used as the baseline.

This is how the baseline is calculated at iteration t +1:

bt+1 = 0.7bt +0.3Gt (3.5)

3.3. POSITIVE SIGNALLING 37

Hyperparameter Value

Batch Size 2048
Learning Rate 0.001
Iterations 100 000
Encoder Size 100
Decoder Size 100 + n turns
Hidden Layer Size 100

Table 3.3: Hyperparameters used in Sequence Guess. The same hyperparameters are used
for the guesser and the mastermind. The reasoning behind the choice of hyperparameters is
similar to that of Negotiation.

Where Gt is the mean return over the entire mini-batch for the current iteration. This is the

same baseline that Cao et al. [2] used. Since the stability issues observed in Negotiation has

not been observed in this game, a more simple baseline should suffice.

3.2.3 Network Architecture

DTDE is employed for this setting. Both agents are parameterized by an encoder-decoder

architecture using LSTMs. Where a vector is generated from the input sequence, and some

output sequence is generated by using this vector as input to the decoder together with a

one-hot encoding of the current turn. The reason for the one-hot encoding of the current

turn is so that different turns can produce different guesses. This can also be achieved by

having the hidden state of the decoder persist across turns as has been done for experiments

where the expressivity of the utterance language is smaller than the target language. Figure

3.4 illustrates the encoder-decoder architecture in more detail. The decoder output is used

in a fully connected layer. Guesses and utterances are sampled according to the distribution

from the softmax activation function in the final output layer.

Table 3.3 shows the hyperparameters used in Sequence Guess.

3.3 Positive Signalling

For Negotiation and Sequence Guess, learning biases are employed to encourage different

messages to be produced from different trajectories. The term trajectories is used here since

the policies are parameterized by an LSTM so the current action will not only depend on the

current observation, but also previous observations. The exception to this is Sequence Guess

if the hidden state of the decoder does not persist across turns.

38 CHAPTER 3. METHOD

Figure 3.4: The encoder-decoder architecture used for Sequence Guess. In the case of the
mastermind input xt will contain symbol number t from the guess sequence and target se-
quence, T1 will be the length of the target sequence and T2 will be the length of the utterance
sequence. The output yt is used in a fully connected layer with a Softmax activation function
in order to find utterance symbol number t . In the case of the guesser input xt will contain
symbol number t from the utterance, T1 will be the length of the utterance sequence and T2

will be the length of the target sequence. yt is used in a fully connected layer with a Soft-
max activation function in order to find guess symbol number t . In both cases a one-hot
encoding of the current turn is appended to the final hidden state of the Encoder in order to
produce the context vector.

3.3.1 Positive Signalling in Negotiation

For Negotiation, positive signalling is not implemented in the same manner as shown by

Eccles et al. [4], as they assume a set of discrete symbols is used for communication, but

here continuous variables are used instead. Because of this we introduce a new learning

bias.

In the case of Negotiation, an utterance consists of three numbers each in the range (−1,1).

Thus an utterance can be viewed as a 3-dimensional vector. Every turn an agent outputs

some utterance Z I×J , where I is the size of the current mini-batch and J is the sequence

length. In order to produce different utterances for different trajectories, we seek a more

uniform distribution of utterances. we do this by trying to maximize the distance between

utterances in vector space.

Z is multiplied by I
2 in order to account for varying batch sizes (as some games within a mini-

batch can terminate before others): Z normalized = Z I
2 . Z normalized is randomly split into two

parts of equal size along the mini-batch dimension, Z1 and Z2.

Z1 and Z2 is used to find the mean distance between two utterances:

3.3. POSITIVE SIGNALLING 39

µdist =
2

I

I
2∑
i

√√√√ J∑
j

(z1i , j − z2i , j)2 (3.6)

We then define a loss penalty as:

L1 = 1

µdist +ε
(3.7)

Where ε is some small value to prevent division by 0. One issue that arose with this loss

function was that several utterances could end up getting "pushed" to -1 or 1 causing the

loss to explode. Thus a second loss term is introduced that punishes values that are close to

-1 or 1:

L2 = 1

I J

I∑
i

J∑
j

(
1

1− zi , j +ε
+ 1

1+ zi , j +ε
) (3.8)

Then these two terms are added together to produce a final learning bias loss for the current

turn:

Lps = L1 +λL2 (3.9)

λ is a weighting for the second loss term. We used λ = 0.001. The Lpss from different turns

are summed together in order to produce the final learning bias loss for an agent.

3.3.2 Positive Signalling in Sequence Guess

The mastermind outputs some utterance Z I×J×K on his turn. I is the batch size. J is the

sequence length and K is the alphabet size. There is a softmax activation function applied

over the third dimension. Each value zi , j ,k can thus be viewed as the probability of picking

letter k in position j of the utterance sequence, with this being game number i within some

mini-batch.

Recall the loss function for positive signalling 2.41:

Lps(πM , xt) =−H (mt)+λ(H (mt |xt)+Htarget)
2 (3.10)

Where H (mt) is the entropy of an estimate of the average message policyπ. H (mt |xt) will in

our case be the average entropy of the message policy when conditioned upon a trajectory.

Htarget is some target entropy. We estimate the average message policy from the current

40 CHAPTER 3. METHOD

mini-batch:

π̄≈
I∑
i

U i

I
= A (3.11)

The entropy of the approximation of the average policy is then found:

H (mt) ≈−
J∑
j

K∑
k

a j ,k ln(a j ,k)

J
(3.12)

Intuitively one would like to maximize the entropy of the average policy, as target sequences

in sequence guess are sampled from a uniform distribution, one would thus also expect the

utterances to follow a similar distribution.

Next we estimate the average entropy of the message policy when conditioned upon an input

trajectory. The average conditioned entropy is found like this:

H (mt |x t) ≈−
I∑
i

J∑
j

K∑
k

zi , j ,k ln(zi , j ,k)

J I
(3.13)

Intuitively one would like to minimize H (mt |x t) to ensure that the same input states pro-

duce the same messages every time. Yet a target entropy Htarget is still included. What seems

to happen is that without Htarget the agent converges quickly upon a sub optimal message

policy and gets stuck in this local optimum. Htarget is then included as sort of a exploration

parameter increasing the chances of converging towards an optimal policy.

H (mt |x t) and H (mt) is then used in equation (3.10) in order to produce the learning bias

loss for the current turn for the entire mini-batch. The value used for Htarget is 0.1ln(K)

which is 1
10 of the maximum possible entropy. The learning bias loss for each turn in a mini-

batch is summed together in order to produce the final learning bias loss.

3.4 How to Measure Communication

In order to measure communication in Sequence Guess and Negotiation the Return differ-

ence,∆G is used. Where∆G is the return difference when running the same experiment with

or without communication. Running the experiment without communication means always

setting the communication channel to zeroes. As shown by Lowe et al. [16] ∆G is sufficient

indicator of communication, however it may not be necessary. In other words if ∆G is big

then there is communication happening, but there may also be communication happening

without ∆G being big.

41

Chapter 4

Experiments and discussion

Here we will look at experiments and their results with regards to the objectives. We estimate

the effect of positive signalling in Negotiation and Sequence Guess. With regards to finding

out more about what conditions of the environment makes it easier or harder for communi-

cation to arise between agents we will:

• Discuss similarities and differences between the two games.

• Look at the effects of different levels of expressivity in the target and utterance lan-

guage in Sequence Guess.

• Discuss the risk of falling into a sub-optimal Nash equilibrium in a strongly competi-

tive setting of Negotiation.

4.1 Similarities and Differences Between the Two Games

One of the main differences between the two games is that Negotiation is symmetric and

continuous while sequence guess is asymmetric and discrete.

When it comes to achieving communication Negotiation seems to be the more challenging

game. There are several possible reasons for the increased challenge in Negotiation:

1. The difference in reward for optimal play with or without communication is very small.

As can be seen in table 4.1, expected reward when not using any communication chan-

nel is very close to one. This also applies to the continuous setting of Negotiation. One

theory is that since the expected gain from using the communication channel is so

small it is easy for the agents to fall into a shadowed equilibrium where they ignore the

communication channel.

42 CHAPTER 4. EXPERIMENTS AND DISCUSSION

2. In Negotiation, each agent needs to learn to communicate their hidden utilities, and to

understand how other agents communicate their hidden utilities. In sequence guess it

is a monologue, one agent needs to communicate the target sequence, while the other

agent needs to understand the message of the agent attempting to communicate the

target sequence, but not vice versa.

3. It seems easier to converge on a stable communication policy when the communi-

cation is done with discrete symbols rather than continuous variables. When using

continuous variables every parameter update will either increase or decrease the out-

put value for some input. This seems to result in a less stable communication proto-

col than the discrete case, due to the "moving" nature of the communication policy.

In a discrete case on the other hand every parameter update either increases or de-

creases the probability of picking some symbol. This results in there being one direc-

tion you can update the parameters for greater stability. In the continuous case you

can’t achieve this kind of stability.

4.2 Results of Cao et al. in a Discrete Cooperative Setting of

Negotiation

Cao et al. seem to have a working communication policy for the fully cooperative setting [2],

as can bee seen in table 4.1. One interesting thing to note is that how the final turn is decided

upon seems to affect how well the algorithm performs with respect to the communication

channels. When having random termination between 4 and 10 turns using only the linguis-

tic channel seem to outperform all other cases. The same can not be said when having a

termination at turn 10, then, Proposal, Linguistic and Both seem to perform equally well.

Termination turn Proposal Linguistic Both None

Random 4-10
Fraction of JR 0.93 ± 0.10 0.99 ± 0.02 0.92 ± 0.11 0.95 ± 0.11
Turns Taken 3.10 ± 0.99 3.71 ± 0.58 2.98 ± 0.97 2.27 ± 0.69

10
Fraction of JR 0.96 ± 0.07 0.95 ± 0.10 0.96 ± 0.07 0.85 ± 0.31
Turns Taken 9.06 ± 2.50 4.56 ± 2.83 9.06 ± 2.41 3.30 ± 2.50

Table 4.1: Results from Cao et al. [2] for a fully cooperative setting of Negotiation. The au-
thors show joint reward (JR) and turns taken in a fully cooperative setting under different
conditions averaged over 20 runs, ± one standard deviation. Termination is either: Random,
between turn 4 and 10 at each round, according to a truncated Poisson distribution with
mean 7. Or at turn 10

4.3. POSITIVE SIGNALLING 43

4.3 Positive Signalling

4.3.1 Results in Sequence Guess

For Sequence Guess the findings by Eccles et al. [4] extend to this new game, positive sig-

nalling results in an improved performance, As can be seen by the increase in ∆G in Figure

4.1. With positive signalling you can expect convergence to better communication policies

than what you would expect without positive signalling. However it does not necessarily

converge to an optimal communication policy if the alphabet size and sequence length of

an utterance is the same as the target.

0 20000 40000 60000 80000 100000
Iteration

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
et

ur
n

 Effect of Positive Signalling on return. Showing 95% confidence intervals

Positive Signalling
With
Without

Figure 4.1: This graph shows the average return in sequence guess over 20 runs with and
without positive signalling. The figure illustrates how positive signalling causes the agents to
converge on better policies. Theoretical optimal return with an incorrect initial guess is 0.9.
The maximum number of turns is 5. Both the target and utterance languages have sequence
length 3 and alphabet size 3.

44 CHAPTER 4. EXPERIMENTS AND DISCUSSION

0 10000 20000 30000 40000 50000
Iteration

0.65

0.70

0.75

0.80

0.85

0.90

0.95

R
et

ur
n

Effect of communication on return. Showing 95% confidence intervals

Communication
With+PosSig
With
Without

Figure 4.2: This graph shows the average return in negotiation, with 10 runs for each com-
munication setting. The proposal channel is closed to the agents. The maximum number of
turns is 5. The figure illustrates how meaningful communication fails to arise without using
a learning bias to facilitate communication this setting

4.3.2 Results in Negotiation

For Negotiation the new positive signalling learning bias introduced also improves perfor-

mance. As can be seen by the increase in ∆G in Figure 4.2. Using communication without

positive signalling does not result in any meaningfully improved performance compared to

the no communication baseline. What has been observed with positive signalling in Nego-

tiation is that the average return from each iteration oscillates greatly between around 0.985

and around 0.925, where an average return of around 0.985 indicates a working communi-

cation policy while an average return of 0.925 indicates very little use of a communication

policy. This is most likely due to point 3 in section 4.1.

More generally however there are still some issues with the stability of the policies, this ap-

plies to every communication setting in figure 4.2. As can be seen by how wide the confi-

dence intervals are and oscillations of the mean values. Several approaches have been tried

such as decreasing learning rate, changing how the baseline is calculated and so on. But it

4.4. DIFFERING SEQUENCE LENGTHS AND ALPHABET SIZES IN SEQUENCE GUESS 45

seems that still more work is required to solve this issue. It does however look promising and

considering how the main idea of positive signalling applied for a discrete and for a contin-

uous setting, it seems reasonable to assume that this new learning bias specifically will also

apply to other continuous settings.

4.4 Differing Sequence Lengths and Alphabet Sizes in Sequence

Guess

Here we will look at differing sequence lengths and alphabet sizes in Sequence Guess in order

to find out more about what conditions make it easier or harder for communication to arise.

Positive signalling is used for all experiments in this section.

4.4.1 Greater Alphabet size and Sequence Length on Target Sequence

One case where the curse of dimensionality does really apply is on the alphabet size and

length of the target sequences, as illustrated in figure 4.3, where one can see a clear decrease

in expected return as the alphabet size and sequence length increases.

The expressivity of a language increases exponentially with a linear increase in sequence

length. For example an alphabet size and sequence length of 4, the language has expressivity

44 = 256. While an alphabet size and sequence length of 5 will lead to an expressivity of 55 =
3125. There are cases where an encoder decoder architecture is not the best architecture,

for example if the sequence lengths and sizes are the same the problem can be trivialized to

just correlating one letter in each alphabet with each other. We do wish however, to through

communication in a RL setting find more general solutions that can apply to varying sizes

and sequence lengths of the two languages.

4.4.2 Higher Expressivity for Utterances than the Target

One of main problems that arise during Sequence Guess that positive signalling helps allevi-

ate, is that the the agents pretty quickly converge on some solution to the problem but that

this solution is not necessarily close to an optimal solution. When the agents converge on

a sub-optimal solution; The mastermind will in many cases produce the same utterance for

two different target sequences, but divergence from this policy will still lead to a lower ex-

pected return. However if the utterance sequence is longer than the target sequence length,

and/or the alphabet size is greater than target alphabet size. There is a greater chance there

may be some letter in the utterance that can be changed in order to differentiate the two

46 CHAPTER 4. EXPERIMENTS AND DISCUSSION

0 20000 40000 60000 80000 100000
Iteration

0.4

0.2

0.0

0.2

0.4

0.6

R
et

ur
n

Effect of target sequence length and alphabet size on return,
with 95% confidence intervals

Alphabet size &
sequence length

3
4
5
6
7

Figure 4.3: This graph shows the average return over 10 runs. The maximum number of turns
is 3. The utterance alphabet size and length is also the same as the target alphabet size and
length. The figure illustrates how the curse of dimensionality applies and how further inves-
tigation is needed to find protocols that can handle target sequences of high expressivity.

target sequences. Comparing the results in figure 4.4 with those in figure 4.3 illustrates this

point. In conclusion, the curse of dimensionality does not necessarily apply to the commu-

nication policy and big action spaces can be helpful.

4.4.3 Lower Expressivity for Utterances than the Target

Figure 4.5 shows cases for where the mastermind can’t theoretically provide all the infor-

mation about the target sequence in just one turn. Interestingly, with a target size of 3 and

utterance size of 1 a close to optimal solution is observed, however this is not the case for

the other language lengths. This may be due to the fact that in these other cases the utter-

ance size is greater than 1, this indicates that the algorithm currently seems more optimized

for utterances of a single symbol rather than a sequence. This indicates that the use of an

encoder may not be an optimal solution for this type of problem.

4.5. NASH EQUILIBRIUM IN NEGOTIATION WITHOUT REWARD SHARING 47

0 20000 40000 60000 80000 100000
Iteration

0.0

0.2

0.4

0.6

0.8

R
et

ur
n

Effect of large utterance size on varying target size on return,
with 95% confidence intervals

Alphabet size &
sequence length

3
4
5

Figure 4.4: This graph shows the average return over 10 runs. The maximum number of turns
is 3. The utterance alphabet size is 100, the utterance length is the same as the target alphabet
length. The figure illustrates how the curse of dimensionality does not necessarily apply for
the utterance policy. A large alphabet size makes it easier to create different correlations for
different inputs, when some correlation is found it can be reinforced through RL. For a target
alphabet size and sequence length of 6 the algorithm failed to produce any convergence.

4.5 Nash Equilibrium in Negotiation Without Reward Shar-

ing

If some fraction of the rewards are not shared it does not seem reasonable for communica-

tion to arise. Assume a setting of negotiation with no reward sharing:

Assume agent A uses policy πA that comes with some utterance providing some form of in-

formation about its hidden utilities, then it is highly likely there will exist some adversarial

agent B using policy πB that uses this information to its advantage. Since πB acts partially

upon information from the communication channel, it is highly likely there exists some ad-

versarial policy πC that gains from the utterances it provides to B . This illustrates how the

use of a communication channel is inherently unstable in a strongly competitive setting.

However there does exist a stable solution.

48 CHAPTER 4. EXPERIMENTS AND DISCUSSION

0 20000 40000 60000 80000 100000
Iteration

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
et

ur
n

Results of less expressivity in utterance language than target language

Language lengths
Target 3, Utt 1
Target 3, Utt 2
Target 4, Utt 2

Figure 4.5: This graph shows the average return over 10 runs for different language lengths.
The maximum number of turns is 4. The utterance alphabet size and target alphabet size is
3. The hidden state of the decoder persists across turns for both the guesser and the mas-
termind. Since the reward is -0.1 on the masterminds turn, with a target length of 3 and
utterance length of 1 a return of 0.7 is to be expected with an optimal communication pol-
icy given incorrect initial guesses. In the two other cases however, a return of 0.8 is to be
expected with an optimal communication policy given incorrect initial guesses.

Agent A can avoid the existence an adversarial policyπB by using a policy providing no useful

information in the communication channel. Agent B can avoid the existence of an adversar-

ial policy πC by using a policy that does not act upon information in the communication

channel.

When the use of a communication channel will be inherently unstable, it seems reasonable

to assume that through RL one will eventually converge towards more stable solutions that

don’t use the communication channel.

Recall the definition of a Nash equilibrium 2. Assume you have two communication policies

πD and πE that both ignore inputs to the communication channel and don’t output anything

meaningful to the communication channel. These two policies will form a Nash equilibrium

with respects to the communication channel as neither policy will increase its reward by

4.5. NASH EQUILIBRIUM IN NEGOTIATION WITHOUT REWARD SHARING 49

deviating from the current communication policy. Note that this Nash equilibrium will exist

regardless of the degree to which the rewards are shared. The main argument here is that it is

easier to fall into such a Nash equilibrium if the rewards are not shared. In a fully cooperative

setting the "adversarial" policies mentioned couldn’t exist as they would only increase the

joint reward and thus not be adversarial.

As has been shown in the MARL literature, there is a strong tendency in MARL to converge

towards a Nash equilibrium rather than a Pareto-optimal solution [8]. This was also con-

firmed specifically for negotiation in a discrete setting by Cao et al. [2]. A fully cooperative

setting naturally helps solve this issue, in a fully cooperative setting by definition a Pareto-

optimal solution will also be a Nash equilibrium since all agents will receive the same reward.

This argument and previous findings is the reason we are not showing results of experiments

where there is no reward sharing in negotiation.

50

Chapter 5

Conclusions and Recommendations for

Further Work

5.1 Summary and Conclusions

This work found that for cooperative settings meaningful communication can naturally arise

between agents. It confirmed the findings of Eccles et al. [4] that positive signalling as a

learning bias helps facilitate the emergence of communication. This was done by introduc-

ing a new environment where one player has to learn to communicate a target sequence to

a guesser.

This work also introduced a new learning bias based upon the idea of positive signalling

that facilitates the emergence of communication in a continuous setting. This was shown by

adapting the work of Cao et al. [2] to a continuous setting.

It was found that in Sequence Guess, a higher alphabet size of the utterance language than

the target language made it easier to converge towards a more optimal solution. It was also

found that a high expressivity of the target language made it harder to converge towards a

more optimal solution.

A theoretical argument was also made with regards to Negotiation, that some degree of re-

ward sharing makes it easier for meaningful communication to arise.

5.2. RECOMMENDATIONS FOR FURTHER WORK 51

5.2 Recommendations for Further Work

5.2.1 Short Term

It was observed that learning in the continuous case of Negotiation was not very stable. One

could take steps to try improve the stability of the learning. This could for example be testing

out weight decay [7], dropout [28], stochastic weight averaging [22] or layer normalization

within the LSTM-unit [1].

One could also take steps to prevent the oscillations observed in the return for Negotiation

when using positive signalling. One possible solution to this problem could be to separate

the message policy from the remaining action policy when a certain reward threshold is

reached, for example 0.99, and then freeze the parameters of the message policy while con-

tinuing training for some iterations. This would then remove the "moving" nature of the

message policy as mentioned in section 4.1 since the message policy would be static, but

it would still allow for improvement of the remaining joint policy with regards to the static

joint message policy.

The new learning bias of positive signalling in a continuous setting should be explored fur-

ther in order to find out more about its general effectiveness. One way to to this would be to

measure the effectiveness of this bias in other continuous settings.

For Negotiation experiments could be run with different degrees of reward sharing in order

to find out if there is some threshold value for the amount of reward sharing that causes the

agents to converge on a stable communication policy, or maybe the the agents will oscillate

between a working communication policy and no communication policy, and the degree of

reward sharing will predict how long the agents will stay at each end of the oscillation.

5.2.2 Long Term

As stated in section 2.3.5. One can subdivide the communication protocols in MARL into two

categories, communication protocols that are are updated as if they are actions in a RL set-

ting, and the sharing of hidden states within networks. As has been done by Sukhbaatar et al.

[29], Peng et al. [24], and Lin et al. [14]. A proper comparison between these two approaches

to communication in MARL should be done. So that one can get a deeper understanding of

what strengths and weaknesses of these two approaches have compared to each other.

For Negotiation, but also MARL in general, it would be interesting to see what dynamics

arise when you use more than two agents in some sort of negotiation game. Especially with

regards to a reward sharing parameter, will the agents form "alliances" and "bully" the other

52 CHAPTER 5. CONCLUSIONS

agents? One could also extend this to training populations of agents and then pit groups of

agents against each other, is it possible for some "shared language" within a group of agents

to arise if they communicate through action selection? Note that in order to extend things

in this direction a very simple negotiation game is probably needed since the environment

itself will still have a high degree of complexity when each agent’s individual policy is taken

into account.

In the case of Sequence Guess finding a protocol that can solve for target sequences of high

expressivity and utterance sequences of arbitrary expressivity also remains an open ques-

tion. The goal could be to find a general method of breaking the sequences down into smaller

parts of a recurrent nature that adapts itself to arbitrary lengths and utterance sizes of the two

alphabets, much like how words form sentences in human language.

53

References

[1] Ba, J. L., J. R. Kiros, and G. E. Hinton (2016). Layer normalization. stat 1050, 21.

[2] Cao, K., A. Lazaridou, M. Lanctot, J. Z. Leibo, K. Tuyls, and S. Clark (2018). Emergent

communication through negotiation. arXiv preprint arXiv:1804.03980.

[3] Cho, K., B. van Merriënboer, D. Bahdanau, and Y. Bengio (2014). On the properties of

neural machine translation: Encoder–decoder approaches. Syntax, Semantics and Struc-

ture in Statistical Translation, 103.

[4] Eccles, T., Y. Bachrach, G. Lever, A. Lazaridou, and T. Graepel (2019). Biases for emergent

communication in multi-agent reinforcement learning. Advances in neural information

processing systems 32.

[5] Foerster, J., G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson (2018). Counterfactual

multi-agent policy gradients. In Proceedings of the AAAI conference on artificial intelli-

gence, Volume 32.

[6] Fulda, N. and D. Ventura (2007). Predicting and preventing coordination problems in

cooperative q-learning systems. In IJCAI, Volume 2007, pp. 780–785.

[7] Goodfellow, I., Y. Bengio, and A. Courville (2016). Deep Learning, pp. 82, 85, 282–283,

402–403, 290, 231. MIT Press. http://www.deeplearningbook.org.

[8] Gronauer, S. and K. Diepold (2022). Multi-agent deep reinforcement learning: a survey.

Artificial Intelligence Review 55(2), 895–943.

[9] Hochreiter, S. and J. Schmidhuber (1997). Long short-term memory. Neural computa-

tion 9(8), 1735–1780.

[10] Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neu-

ral networks 4(2), 251–257.

[11] Jiang, J. and Z. Lu (2018). Learning attentional communication for multi-agent cooper-

ation. Advances in neural information processing systems 31.

http://www.deeplearningbook.org

54 REFERENCES

[12] Kingma, D. P. and J. Ba (2014). Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980.

[13] Leibo, J. Z., V. Zambaldi, M. Lanctot, J. Marecki, and T. Graepel (2017). Multi-agent re-

inforcement learning in sequential social dilemmas. In Proceedings of the 16th Conference

on Autonomous Agents and MultiAgent Systems, AAMAS ’17, Richland, SC, pp. 464–473.

International Foundation for Autonomous Agents and Multiagent Systems.

[14] Lin, T., J. Huh, C. Stauffer, S. N. Lim, and P. Isola (2021). Learning to ground multi-

agent communication with autoencoders. Advances in Neural Information Processing Sys-

tems 34, 15230–15242.

[15] Lindenfors, P. (2017). For Whose Benefit?: The Biological and Cultural Evolution of Hu-

man Cooperation. Springer.

[16] Lowe, R., J. Foerster, Y.-L. Boureau, J. Pineau, and Y. Dauphin (2019). On the pitfalls of

measuring emergent communication. arXiv preprint arXiv:1903.05168.

[17] Mcstrother (2010). Two layer ann. https://en.wikipedia.org/wiki/File:Two_

layer_ann.svg. Seen: 05/08/2022. License: Creative Commons Attribution 3.0 Un-

ported.

[18] MingxianLin (2018). Lstm. https://commons.wikimedia.org/wiki/File:LSTM.

png. Seen: 08/08/2022. License: Creative Commons Attribution-Share Alike 4.0 Inter-

national.

[19] Mvolz (2019a). Kawaii robot power clipart. https://commons.wikimedia.org/wiki/

File:Kawaii_robot_power_clipart.svg. Seen: 05/08/2022. License: Creative Com-

mons CC0 1.0 Universal Public Domain Dedication.

[20] Mvolz (2019b). Kawaii robot with heart clipart. https://commons.wikimedia.org/

wiki/File:Kawaii_robot_power_clipart.svg. Seen: 05/08/2022. License: Creative

Commons CC0 1.0 Universal Public Domain Dedication.

[21] Nguyen, D. T., A. Kumar, and H. C. Lau (2018). Credit assignment for collective multia-

gent rl with global rewards. Advances in neural information processing systems 31.

[22] Nikishin, E., P. Izmailov, B. Athiwaratkun, D. Podoprikhin, T. Garipov, P. Shvechikov,

D. Vetrov, and A. G. Wilson (2018). Improving stability in deep reinforcement learning

with weight averaging. In Uncertainty in artificial intelligence workshop on uncertainty in

Deep learning.

https://en.wikipedia.org/wiki/File:Two_layer_ann.svg
https://en.wikipedia.org/wiki/File:Two_layer_ann.svg
https://creativecommons.org/licenses/by/3.0/deed.en
https://creativecommons.org/licenses/by/3.0/deed.en
https://commons.wikimedia.org/wiki/File:LSTM.png
https://commons.wikimedia.org/wiki/File:LSTM.png
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://commons.wikimedia.org/wiki/File:Kawaii_robot_power_clipart.svg
https://commons.wikimedia.org/wiki/File:Kawaii_robot_power_clipart.svg
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://commons.wikimedia.org/wiki/File:Kawaii_robot_power_clipart.svg
https://commons.wikimedia.org/wiki/File:Kawaii_robot_power_clipart.svg
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://creativecommons.org/publicdomain/zero/1.0/deed.en

REFERENCES 55

[23] Olegalexandrov, Z. (2012). Gradient descent. https://commons.wikimedia.org/

wiki/File:Gradient_descent.svg. Seen: 05/08/2022. License: Public Domain.

[24] Peng, P., Y. Wen, Y. Yang, Q. Yuan, Z. Tang, H. Long, and J. Wang (2017). Multiagent

bidirectionally-coordinated nets: Emergence of human-level coordination in learning to

play starcraft combat games. arXiv preprint arXiv:1703.10069.

[25] smart.servier.com (2016a). Milk. https://smart.servier.com/smart_image/milk/.

Seen: 05/08/2022. License: Creative Commons Attribution 3.0 Unported.

[26] smart.servier.com (2016b). Orange juice. https://smart.servier.com/smart_

image/orange-juice/. Seen: 05/08/2022. License: Creative Commons Attribution 3.0

Unported.

[27] smart.servier.com (2016c). Soda. https://smart.servier.com/smart_image/

soda-2/. Seen: 05/08/2022. License: Creative Commons Attribution 3.0 Unported.

[28] Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov (2014).

Dropout: a simple way to prevent neural networks from overfitting. The journal of ma-

chine learning research 15(1), 1929–1958.

[29] Sukhbaatar, S., R. Fergus, et al. (2016). Learning multiagent communication with back-

propagation. Advances in neural information processing systems 29.

[30] Sutskever, I., O. Vinyals, and Q. V. Le (2014). Sequence to sequence learning with neural

networks. CoRR abs/1409.3215.

[31] Sutton, R. S. and A. G. Barto (2018). Reinforcement Learning: An Introduction (Second

ed.)., pp. 324–332, 115. The MIT Press.

https://commons.wikimedia.org/wiki/File:Gradient_descent.svg
https://commons.wikimedia.org/wiki/File:Gradient_descent.svg
https://smart.servier.com/smart_image/milk/
https://creativecommons.org/licenses/by/3.0/deed.en
https://smart.servier.com/smart_image/orange-juice/
https://smart.servier.com/smart_image/orange-juice/
https://creativecommons.org/licenses/by/3.0/deed.en
https://creativecommons.org/licenses/by/3.0/deed.en
https://smart.servier.com/smart_image/soda-2/
https://smart.servier.com/smart_image/soda-2/
https://creativecommons.org/licenses/by/3.0/deed.en

	Abstract
	Acknowledgment
	Introduction
	Motivation
	Objectives
	Approach and Limitations
	Contributions
	Outline

	Theoretical Background
	Artificial Neural Networks
	Activation Functions
	Hyperbolic Tangent
	Sigmoid
	Softmax
	Leaky Rectified Linear Unit

	Gradient Based Optimization
	Tying Gradient Based Optimization Together With ANNs
	Adam Optimizer

	Recurrent Neural Networks
	Vanishing and Exploding Gradients
	Long Short-Term Memory
	Encoder-Decoder RNN

	Reinforcement Learning
	Markov Decision Process
	Policy
	Value Functions

	Policy Gradient Methods
	Policy Gradient Theorem
	REINFORCE
	REINFORCE With a Baseline

	Multi Agent Reinforcement Learning
	Formal Definitions in MARL
	Challenges in MARL
	Credit Assignment Problem
	Moving Target Problem
	Shadowed Equilibrium

	Training and Execution Schemes
	Distributed Training, Decentralized Execution (DTDE)
	Centralized Training, Centralized Execution (CTCE)
	Centralized Training, Decentralized Execution (CTDE)

	Cooperation in MARL
	Communication in MARL
	Positive Signalling

	Method
	Negotiation
	Negotiation Through Communication
	Algorithm for Negotiation
	Output of the Policy
	Details on the Baseline

	Sequence Guess
	Reward Structure
	Algorithm
	Network Architecture

	Positive Signalling
	Positive Signalling in Negotiation
	Positive Signalling in Sequence Guess

	How to Measure Communication

	Experiments and Discussion
	Similarities and Differences Between the Two Games
	Results of Cao et al. in a Discrete Cooperative Setting of Negotiation
	Positive Signalling
	Results in Sequence Guess
	Results in Negotiation

	Differing Sequence Lengths and Alphabet Sizes in Sequence Guess
	Greater Alphabet size and Sequence Length on Target Sequence
	Higher Expressivity for Utterances than the Target
	Lower Expressivity for Utterances than the Target

	Nash Equilibrium in Negotiation Without Reward Sharing

	Conclusions
	Summary and Conclusions
	Recommendations for Further Work
	Short Term
	Long Term

	References

