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Bjørn André Bredesen-AaID
1¤*, Marc Rehmsmeier2†

1 Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway,

2 Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany

¤ Current Address: Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of

Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway

† Deceased.

* bjorn.a.bredesen@ntnu.no

Abstract

Gene expression is regulated through cis-regulatory elements (CREs), among which are

promoters, enhancers, Polycomb/Trithorax Response Elements (PREs), silencers and insu-

lators. Computational prediction of CREs can be achieved using a variety of statistical and

machine learning methods combined with different feature space formulations. Although

Python packages for DNA sequence feature sets and for machine learning are available, no

existing package facilitates the combination of DNA sequence feature sets with machine

learning methods for the genome-wide prediction of candidate CREs. We here present Gno-

cis, a Python package that streamlines the analysis and the modelling of CRE sequences by

providing extensible APIs and implementing the glue required for combining feature sets

and models for genome-wide prediction. Gnocis implements a variety of base feature sets,

including motif pair occurrence frequencies and the k-spectrum mismatch kernel. It inte-

grates with Scikit-learn and TensorFlow for state-of-the-art machine learning. Gnocis addi-

tionally implements a broad suite of tools for the handling and preparation of sequence,

region and curve data, which can be useful for general DNA bioinformatics in Python. We

also present Deep-MOCCA, a neural network architecture inspired by SVM-MOCCA that

achieves moderate to high generalization without prior motif knowledge. To demonstrate

the use of Gnocis, we applied multiple machine learning methods to the modelling of D. mel-

anogaster PREs, including a Convolutional Neural Network (CNN), making this the first

study to model PREs with CNNs. The models are readily adapted to new CRE modelling

problems and to other organisms. In order to produce a high-performance, compiled pack-

age for Python 3, we implemented Gnocis in Cython. Gnocis can be installed using the PyPI

package manager by running ‘pip install gnocis’. The source code is available on

GitHub, at https://github.com/bjornbredesen/gnocis.
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Introduction

Gene expression is regulated through cis-regulatory elements (CREs) [1]. Multiple classes of

CREs have been identified, with functions ranging from directly stimulating target gene activ-

ity [2] over maintaining epigenetic memory [3] to delimiting the effects of other CREs [4].

CREs are typically enriched in a variety of protein binding sites which can be characterized as

sequence motifs [5].

Advances in experimental methods have given rise to a growing body of genome-wide

experimental data from a multitude of organisms, capturing binding patterns of DNA- and

chromatin-binding proteins, histone tail modifications, chromatin conformation, and DNA

accessibility [6]. Given a set of CREs, analyses of the underlying sequences can shed light on

the defining sequence criteria and enable the training of predictive models. Knowledge of the

defining sequence criteria can yield new insights about the function of the CRE class under

investigation, and predictive models can yield predictions beyond the confines of available

experimental data.

We previously observed improved generalization when training models with genome-wide

experimental data for Polycomb/Trithorax Response Elements (PREs) [7], a CRE class that

maintains epigenetic memory [8]. Given sets of relevant experimental data for a CRE class of

interest, several steps are necessary in order to produce candidate CRE predictions, including

data preparation, model specification, comparison with alternative models and genome-wide

prediction. Models of CRE sequences can be specified in a number of ways, for example by

combining a feature set with a machine learning method, such as Support Vector Machines

(SVMs) [9] or Random Forests (RFs) [10]. Feature spaces for CRE sequence models can also

be defined in numerous ways, including singular and paired motif occurrence frequencies [3]

and k-spectra—the set of occurrence frequencies of all motifs of length k—with or without

mismatches allowed [11]. Alternatively, Convolutional Neural Networks (CNNs) can be used

to learn predictive features directly from data without the need for a predefined feature set and

have yielded notable success for complex recognition tasks such as in the area of image classifi-

cation [12].

In order to decide what models yield the best generalization, unbiased comparison should

be employed, for example using cross-validation on the same training and test data for all

models. When data is highly imbalanced, as is typically the case with CREs versus non-CREs,

the Precision/Recall curve reflects expected generalization in light of the imbalance [13]. The

use of Jupyter Notebooks [14] enables interactive and reproducible workflows in Python, with

integrated visualization.

Powerful machine learning packages are available for Python, such as Scikit-learn [15] for

classical machine learning and TensorFlow [16] for neural networks. Packages also exist for

Python that enable the specification of motifs and the search for their occurrences [17] and for

k-spectrum feature sets [18–20]. These contributions notwithstanding, a package that provides

base functionality for combining machine learning methods with DNA sequence feature sets

has been absent, leaving the end-user to implement this functionality on his or her own. Such

functionality includes the bridging of outputs of feature set modules and inputs of machine

learning models, the scoring of sequences using sliding windows, prediction threshold calibra-

tion and genome-wide prediction. Additionally, such a package could simplify the comparison

of alternative models and feature sets. It could also implement a variety of optimizations to

reduce run-time cost for the end-user, for example through parallel model application and effi-

cient data handling.

We here present Gnocis (read no-cis), a Python package that streamlines the modelling of

CRE sequences. Gnocis facilitates interactive and reproducible CRE sequence analysis and
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machine learning by providing a broad suite of tools for data preparation and analysis, a flexi-

ble vocabulary for the specification of feature sets, flexible and extensible APIs for feature set

and model specification, and base functionality for the combination of machine learning

methods and feature sets and for the application of models. The broad suite of data preparation

and handling functionality implemented in Gnocis also makes our package useful for more

general DNA bioinformatics in Python. Gnocis facilitates interactive use through integration

with IPython [21] and provides interoperability with existing packages through integration

with NumPy [22] and Pandas [23, 24]. In order to facilitate model comparison, Gnocis pro-

vides a cross-validation engine that supports imbalanced, multi-class data. Gnocis is open

source and extensible and can be installed via the PyPI package manager.

Implementation

A rich vocabulary for the preparation and interactive analysis of genomic

data

Multiple types of data are relevant for CRE machine learning, including DNA sequences,

genomic region coordinates and genome-wide factor binding profiles. For example, we previ-

ously used genomic coordinates of experimentally determined clusters of Polycomb/Trithorax

binding data to train sequence models of PREs [7]. Multiple formats have been formulated for

DNA sequences (e.g. FASTA and 2bit) and genomic regions (e.g. GFF and BED). A variety of

operations on data are useful for the preparation of training data, including the clustering of

experimentally determined protein binding data and the extraction of the underlying DNA

sequences. Although packages exist for the handling of DNA sequences [17] and genomic

regions [25], they each support only subsets of relevant file formats, and interoperability is lim-

ited, requiring code to bridge them. The Pandas [23, 24] package provides a broad suite of

intuitive tools for preparing and handling tabular data in Python and has achieved high popu-

larity in the data science community.

Inspired by the success of Pandas, we saw that there was an opportunity for improving on

how data can be handled and prepared in Python for CRE machine learning by providing a

broad suite of tools for handling multiple types of data, with interoperability and support for

established file formats. To facilitate the preparation and handling of sequence data, we imple-

mented classes for DNA sequences, with support for loading both FASTA and 2-bit format

files. To optimize memory efficiency, we implemented support for streaming sequences in

chunks from disk, including the streaming of sliding windows with a desired length and step

size. This avoids the need for loading large sequences to memory. Generative sequence models

can be useful for defining negative training data, and we accordingly implemented an i.i.d.

sequence generator and an nth-order Markov chain. To facilitate the preparation of genome-

wide region data, we implemented classes for regions and for sets of regions, and we imple-

mented a broad selection of transformation operations, including intersection, merging and

exclusion and the acquisition of overlaps and non-overlaps. Gnocis supports the loading of

regions in General Feature Format (GFF), Browser Extensible Data format (BED) and as coor-

dinate lists. We also implemented the extraction of underlying sequences based on sets of

regions and source sequences or a genome. Genome-wide curves are useful for representing

experimentally determined genome-wide binding of factors and for scores made by predictive

models. We implemented a class for handling curves, with support for the saving and loading

of Wiggle format files, and with functionality for deriving a set of regions by thresholding.

With the aim of high expressiveness with minimal verbosity, we implemented operations on

data as transformations that can be chained, with short and intuitive naming. For run-time
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efficiency, we implemented the sequence and region data handling in Cython. The data prepa-

ration facilities of Gnocis are listed in Table 1.

An expressive language for the specification and application of DNA

sequence feature sets

In order to train machine learning models on DNA sequences, a mapping must be established

from the input sequences to numerical vectors, where the mapping is commonly referred to as

a feature set. Among the feature sets that have been successfully employed for CRE machine

learning are motif occurrence frequencies [3, 7, 27] and k-spectra [28, 29]. A variety of pack-

ages useful for DNA sequence analysis in Python have been published, including packages that

implement motif occurrence search [17] and DNA sequence feature sets such as k-spectra

[18–20]. However, a Python package for generating feature sets based on known motifs, such

as motif pair occurrence frequencies, is absent. Furthermore, existing packages do not provide

or employ a general and extensible API for DNA sequence features with base functionality

such as sequence window application.

Table 1. Core data preparation features.

Sequence file operations FASTA (loading/saving)

2bit (loading)

Streaming from disk

Sliding window extraction

Region file operations Coordinate lists (loading/saving)

General Feature Format (GFF) (loading/saving)

Browser Extensible Data (BED) (loading/saving)

G-zipped GFF (loading)

G-zipped BED (loading)

Curve file operations Wiggle (loading/saving)

G-zipped Wiggle (loading)

Thresholding

Region set operations Merge

Intersect

Exclude

Get overlapping

Get non-overlapping

Resize

Randomly recentre

Extract underlying sequences

Genome operations Genomic sequences via sequence file operations

Loading of annotation (Ensembl General Transfer Format, GTF)

Biomarker set operations Define biomarker set based on sets of experimental signals

Extract highly biomarker-enriched (HBME) genomic regions

Extract lowly biomarker-enriched (LBME) genomic regions

Generative sequence models Training of i.i.d. sequence model and generation of sequences

Training of nth-order sequence model and generation of sequences

Visualization Plotting of genomic regions and curves with Matplotlib [26]

Plotting barplots of region overlap statistics with Matplotlib

Gnocis supports standard file formats for regions, curves and sequences, and implements a wide selection of

operations in order to facilitate data preparation and handling.

https://doi.org/10.1371/journal.pone.0274338.t001
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We noticed the potential for a general feature set API to facilitate powerful and flexible fea-

ture set specification, combination and filtering of features, and efficient feature extraction for

DNA sequence analysis and machine learning. We also noticed that certain feature sets can be

most efficiently extracted in bulk, including motif pair occurrence frequencies and k-spectra.

In order to exploit this efficiency, we implemented feature sets in Gnocis as directed, acyclic

graphs, henceforth referred to as feature networks. The input nodes of a feature network are

base feature sets (such as k-spectra), and subsequent nodes are transformations. Transforma-

tions can be chained, facilitating short and flexible feature network specification. Feature net-

work nodes can be trained recursively, enabling feature scaling and model training. Base

features and transformations implemented in Gnocis are listed in Table 2.

For ease of use, we implemented base functionality for extracting features from sequences,

including the extraction of features from sliding windows of sequences streamed from disk. To

facilitate interoperability with existing analytical tools, we implemented the output of features

to NumPy [22] arrays and Pandas data frames [23]. We implemented the feature network sys-

tem in Cython, which resulted in a compiled module with efficient feature extraction.

A flexible and extensible modelling API provides the glue required for

efficiently combining sequence feature sets and machine learning methods

and to apply them for prediction

A variety of machine learning methods have been developed that can be combined with arbi-

trary numerical feature sets, including Support Vector Machines [9] and Random Forests [10].

In order to successfully apply these methods for the modelling and genome-wide prediction of

CREs, bridging between the feature sets and the machine learning methods is required, and

also implementations of sequence scoring and genome-wide application. Models not based on

feature sets, such as DNA sequence Convolutional Neural Networks, also require this logic for

performing genome-wide prediction. Genome-wide prediction can output scores for sliding

windows, and thresholding can yield discrete predictions of candidate CREs. To our

Table 2. Sequence feature analysis.

Motifs IUPAC nucleotide code motifs

Position Weight Matrices (PWMs)

Transformation of motif sets into feature sets

Base feature sets Motif occurrence frequencies

Motif pair occurrence frequencies

k-spectrum kernel

k-spectrum mismatch kernel

Feature set transformations Combination of feature sets

Filtering of feature sets

Feature pairing by product

Scaling

Feature tables Construction of feature value tables

Output of summary statistics

Output of differential summary statistics

Conversion to NumPy [22] array

Conversion to Pandas [23] data frame

Gnocis provides a flexible framework for the specification of sequence feature sets and integrates with NumPy [22]

and Pandas [23] for analyses with external packages.

https://doi.org/10.1371/journal.pone.0274338.t002
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knowledge, no prior Python package has been published that implements this base functional-

ity, leaving the prospective CRE modeller to implement this logic on his or her own.

We were interested in the potential ease of use and experimentation that a general DNA

sequence modelling API could enable, and we implemented a modelling API with logic for

sequence scoring, prediction threshold calibration and genome-wide prediction. Model appli-

cation can be performed in parallel, and we implemented the optional use of multiprocessing.

We further noticed that a flexible and compact model specification could be achieved by

extending the feature network system. We added the transformation of feature sets into

sequence models, given a base model as an argument. The recursive training of feature net-

works, including scaling and modelling methods, enables the re-training of models on new

data, for example for cross-validation. Multi-class model training in Gnocis is achieved by

assigning labels to sequences. We implemented a log-odds base model, and we created wrap-

pers for Scikit-learn [15] implementations of Support Vector Machines (SVMs) and Random

Forests. For SVMs, we additionally implemented GPU-based kernel application with CuPy

[30]. We also implemented DNA sequence Convolutional Neural Networks and general Neu-

ral Networks via Keras [31] by integrating with TensorFlow [16]. We list features of the Gnocis

modelling API in Table 3.

A cross-validation workbench for DNA sequence models with support for

imbalanced, multi-class data facilitates unbiased assessment of

generalization

An important step when applying machine learning is that of cross-validation, which enables

the quantification of model generalization to independent data and the unbiased comparison

of models. CRE data is typically imbalanced, with a genome containing relatively few CREs

Table 3. Models.

Base models Unweighted sum

Log-odds

Support Vector Machine via Scikit-learn [15]

Support Vector Machine with GPU application via Scikit-learn [15] and CuPy [30]

Random Forest via Scikit-learn [15]

Sequence models Combination of base models and feature sets

Keras Neural Networks via TensorFlow [16]

Convolutional Neural Networks via TensorFlow [16]

PyPREdictor, a reimplementation of the PREdictor [3]

Dummy PREdictor as used in [7]

Wrapper for SVM-MOCCA [7]

Deep-MOCCA

Sequence model features Operations on feature sets for the definition of models

Multi-core processing

Validation

Prediction threshold calibration

Genome-wide prediction

Multi-class model specification via sequence labels

Retraining

Gnocis provides a flexible and extensible modelling API, with implementations of a variety of models and

integrations with Scikit-learn [15] and TensorFlow [16].

https://doi.org/10.1371/journal.pone.0274338.t003
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compared to non-CRE regions. Model generalization can be visualized using Receiver Operat-

ing Characteristic (ROC) curves and Precision/Recall (PR) curves. PR curves are more infor-

mative than ROC curves when data is imbalanced [13]. To our knowledge, no Python cross-

validation workbench for imbalanced, multi-class DNA sequence data has been published.

We seized the opportunity to implement a flexible cross-validation workbench for Gnocis

that facilitates analyses of model generalization. The modelling API of Gnocis allows the

retraining of models. Our cross-validation workbench takes a training set, which can be multi-

class, and a binary test set of positives and controls. In order to reflect random variation, Gno-

cis constructs independent pairs of training and test sets. In order to facilitate multi-class train-

ing, when constructing cross-validation training sets, an equal number of examples are

randomly selected without replacement from each class, leaving out a desired minimal number

of sequences for testing. This procedure yields a balanced training set. When constructing the

test sets, sequences are randomly selected from the positives and negatives with a desired ratio,

leaving out any sequences that are included in the corresponding training sets. After construct-

ing the cross-validation training and test sets, Gnocis applies models to the sets in order to

measure generalization. In order to aid flexible experimentation, a Gnocis cross-validation is

constructed as a class that contains pairs of training and test sets, as well as models to cross-val-

idate, and supports the incremental addition of new models. In order to visualize generaliza-

tion, the Gnocis cross-validation workbench implements the generation of ROC and PR

curves with confidence intervals and integrates with Matplotlib [26].

Once models have been trained, prediction thresholds can be set and models can be applied

for the genome-wide prediction of CREs. The CREs that are predicted can vary depending on

the particular training set that was employed. Gnocis implements cross-validated genome-

wide prediction, in which the models trained for each cross-validation repeat are applied.

When visualizing measures of predictions, means and confidence intervals are calculated and

plotted. When visualizing predicted loci, the fraction of model cross-validation repeats that

predict each locus is indicated with prediction opacity.

Interactive and reproducible analysis

The Python read-eval-print loop (REPL) and Jupyter Notebooks [14] enable the user to inter-

actively write and execute code in Python. Jupyter Notebooks furthermore can store all steps

and display formatted tables and graphics. Packages that implement human-readable printout

or formatted tables of data structures, such as Pandas [23], enable interactive and reproducible

data analysis. Matplotlib [26] can generate figures and display them in Jupyter Notebooks, fur-

ther empowering Python with Jupyter Notebooks as an analytical platform.

In order to facilitate interactive and reproducible analysis and modelling with Gnocis, we

implemented the formatted table output of region sets, sequence sets and extracted feature val-

ues. Gnocis implements table objects that can be printed as formatted ASCII text or displayed

as formatted HTML tables in Jupyter Notebooks. Additionally, Gnocis tables can be converted

to NumPy arrays [22] and Pandas data frames [23]. Gnocis integrates with Matplotlib in order

to generate ROC and PR curves for cross-validation and barplots for region overlap statistics.

Additionally, Gnocis implements the visualization of genomic regions using Matplotlib.

Materials and methods

Genome

We used the Drosophila melanogaster genome assembly R5.57 for all analyses, downloaded

from FlyBase [32]. We downloaded genes from Ensembl [33] in GTF-format. The genome and

the gene annotations are included with Gnocis in the tutorial folder.
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Region sets

For the Kahn et al. PREs [34], we downloaded coordinates from their Supplementary Table S1

and manually converted them to GFF format. For the Enderle et al. PREs [35], we downloaded

coordinates from their Supplementary Table 3 and manually converted them to GFF format.

We downloaded peaks for the following factors and marks from ModENCODE [6]: Pc (ID:

3957_1816), Psc (ID: 3960_1817), dRING (ID: 5071_1819) and H3K27me3 (ID: 3955_1820).

Training and cross-validation set

We based the positives in the training set on Kahn et al. PREs [34] (see above). For the unbi-

ased comparison with known PREs at the invected and vestigial gene loci, we removed PREs

that were within 100kb of the bodies of these genes. We extended each PRE from its centre

position to a length of 3kb each. Finally, we extracted the underlying genomic sequences (196

sequences).

We generated four sets of non-PREs: dummy genomic sequences (as in [7]), dummy PREs

(as in [7]), coding sequences (as in [7]) and genomic non-PREs. For dummy genomic

sequences, we trained a 4th-order Markov chain genome-wide and generated 19,600

sequences (100 times as many as there are positives). For dummy PREs, we trained a 4th-order

Markov chain on the Kahn et al. PREs [34] and generated 19,600 sequences. For coding

sequences, we extracted coding regions from the genome annotation (described above) and

merged overlapping regions. We then extracted the genomic sequences, concatenated them

and split them into 3kb fragments. For genomic non-PREs, we extracted genomic regions that

were depleted of Pc, Psc, dRING and H3K27me3 (see above). We then identified all 3kb win-

dows (with a step size of 250) that were not enriched in any of the four markers, merged the

PcG-depleted windows and removed regions within 100kb from the invected and vestigial
gene bodies. Finally, we extracted the sequences from the genome and extracted non-overlap-

ping 3kb windows from the sequences.

Cross-validation

Cross-validation was performed using functionality implemented in Gnocis, using 20 repeats

per model. Genome-wide prediction was performed for each of the 20 repeats of each model,

and means and confidence intervals calculated for each measure considered. All confidence

intervals were calculated using functionality implemented in Scipy [36, 37], with a t-distribu-

tion with 19 degrees of freedom and the confidence level set to 95%.

PyPREdictor

We re-implemented the PREdictor [3] with Gnocis using a feature network, henceforth called

the PyPREdictor. We trained the PyPREdictor with PREs as positives and dummy PREs as

negatives (see above), as we did previously in [7]. We used a step size of 250bp and we used the

motifs from [3, 7].

SVM-MOCCA

In our experiments, we used the wrapper for the SVM-MOCCA implementation in the

MOCCA suite [38] that is included in Gnocis. We used a window size of 3kb, a step size of

1kb, a quadratic kernel and the motifs from [3, 7]. We trained one SVM-MOCCA model with

PREs, dummy genomic sequences, dummy PREs and coding sequences (as in [7]), and one

SVM-MOCCA model with PREs, dummy PREs, coding sequences and genomic non-PREs.
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For the core-PRE prediction, we used the default core prediction algorithm implemented in

the MOCCA suite.

5-spectrum mismatch SVM

We trained the 5-spectrum mismatch SVM with a quadratic kernel (polynomial degree 2)

using a feature network in Gnocis and CUDA SVM, with PREs as positives and genomic non-

PREs as negatives. We used a window size of 500bp and a step size of 250bp.

Convolutional neural network

We constructed a CNN using TensorFlow and Keras, with four convolutional layers, each with

25 three-nucleotide convolutions and followed by an average pooling layer that halved the res-

olution of the preceding convolution. The final convolution and average pooling layer is fol-

lowed by a global max pooling layer and a dense softmax layer for class label prediction. We

trained the CNN with PREs, dummy PREs, coding sequences and genomic non-PREs. We

used a window size of 500bp and a step size of 250bp.

Deep-MOCCA

Deep-MOCCA uses a layer of sequence convolutions and dinucleotide convolutions. For effi-

ciency, the input convolutions are followed by an average pooling layer for 10-fold downscal-

ing of resolution. In order to model local motif occurrence combinatorics within a

bidirectional cut-off distance, the third layer is a convolution of length 50 (corresponding to

500bp) with constant and equal weights (weight = 1/50), effectively averaging with a sliding

window. This is followed by a layer of motif/dinucleotide pairing convolutions of width 1.

Finally, a global max pooling layer and a dense softmax layer are used to predict sequence

labels. The model architecture is visualized in Fig 1.

Fig 1. Deep-MOCCA schematic. Deep-MOCCA is a convolutional neural network architecture that mimics the structure of SVM-MOCCA [7].

https://doi.org/10.1371/journal.pone.0274338.g001
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In our experiments, we used 25 motif convolutions of length 10, 25 dinucleotide convolu-

tions and 25 pairing convolutions. We used a window size of 500bp and a step size of 250bp.

We trained Deep-MOCCA with PREs, dummy PREs, coding sequences and genomic non-

PREs for 350 epochs.

Software and packages

The present analyses were performed using Python version 3.8.5 and Gnocis version 0.9.12.

For Support Vector Machines, we used the implementation available in Scikit-learn [15] ver-

sion 0.23.2. For neural networks, we used the TensorFlow [16] version 2.4.1 package for

Python. For CuPy, we used version 7.8.0. For the calculation of confidence intervals we used

Scipy [36, 37] version 1.6.3. For SVM-MOCCA, we used the implementation in the MOCCA

suite [38] version 1.4.7.

Results

We applied Gnocis to the problem of modelling PREs. The code used to generate all results is

available in a Jupyter Notebook on GitHub, at https://github.com/bjornbredesen/gnocis/tree/

master/tutorial/tutorial.ipynb.

A quadratic 5-spectrum mismatch SVM achieves moderate generalization

to independent PREs without prior motif knowledge

We have previously found that SVM-MOCCA improves the generalization to independent

PREs over the PREdictor [7]. Gnocis implements the k-spectrum kernel, which has previously

been applied with SVMs for the prediction of Polycomb targets in Xenopus tropicalis [29] and

for other regulatory elements [28, 39]. An important benefit of the k-spectrum kernel is that

no prior motif knowledge is required. Gnocis additionally implements the k-spectrum mis-

match kernel [40], which to our knowledge has not previously been applied to PREs. We were

interested in how well a k-spectrum mismatch SVM would generalize to PREs.

We cross-validated the PyPREdictor (re-implementation of the PREdictor [3]),

SVM-MOCCA and a 5-spectrum mismatch SVM with PREs and non-PREs (see Materials and

methods). For the PyPREdictor, we used PREs as positives and dummy PREs as negatives (as

in [7]). For the 5-spectrum mismatch SVM, we reasoned that the dummy PREs, which model

5-mer occurrence frequencies of PREs, are too similar in the model feature space. For

increased realism, we trained the 5-spectrum mismatch SVM with PREs as positives and geno-

mic non-PREs (see Materials and methods) as negatives. For SVM-MOCCA, we trained one

model with PREs as positives and dummy genomic, dummy PREs and coding sequences as

negatives, as in [7]. Additionally, we trained an SVM-MOCCA model where we replaced the

dummy genomic sequences with genomic non-PREs (SVM-MOCCA T2021). For the k-spec-

trum mismatch SVM, we used a quadratic (second-degree polynomial) kernel in order to

model motif pairing—which is predictive of PREs [3]—, and we set k to 5, since multiple

known PRE motifs are 4-mers or 5-mers (GTGT, GCCAT and GAGAG).

For PREs versus dummy PREs, the quadratic 5-spectrum mismatch SVM achieves a

1.13-fold improvement in PRC AUC over that of the PyPREdictor (Fig 2, panel A). Both

SVM-MOCCA models yield similar and superior generalization over that of the spectrum

SVM (Fig 2, panel A). For PREs versus coding sequences (Fig 2, panel B), the PyPREdictor and

SVM-MOCCA achieve high generalization (PRC AUC>60%), and the 5-spectrum mismatch

SVM achieves moderate generalization (PRC AUC>30%). We also trained the quadratic

5-spectrum mismatch SVM with PREs and dummy PREs, which resulted in overfitting to the

negative training set and close to random generalization with other negative test sets (S1 Fig).
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In conclusion, the quadratic 5-spectrum mismatch SVM achieves moderate generalization

to independent PREs, without prior motif knowledge. The moderate generalization to PREs

versus dummy PREs indicates that the spectrum SVM learns to model motif pair occurrence

frequencies. Overall, the quadratic 5-spectrum mismatch SVM achieves respectable generaliza-

tion to independent PREs without prior motif knowledge. However, SVM-MOCCA—which

uses known motifs—yields superior generalization.

GPU-based SVM application reduces running time by an order of

magnitude

Gnocis implements support for multiprocessing for machine learning models. Additionally,

for SVMs, Gnocis implements GPU-based model application. We were interested in how the

parallelism implemented in Gnocis affects run-time performance.

In order to yield a fair comparison, we trained three 5-spectrum mismatch kernel SVMs on

the same data (PREs as positives and genomic non-PREs as negatives) and the same hyper-

parameters (quadratic kernel): one with multiprocessing disabled, one with multiprocessing

enabled (12 processes) and one with GPU-based application. We timed the application of each

SVM to the same set of 19,600 dummy genomic sequences. The run-times are listed in

Table 4.

Multiprocessing almost halves the running time. GPU-based model application further

improves running time, shortening it to almost a tenth of the single-threaded model

application.

In conclusion, parallel application of SVMs significantly reduces run-time cost. That multi-

threaded run-time cost does not scale with the number of threads can be attributed to how

Fig 2. Cross-validation Precision/Recall curves. We cross-validated our models trained with PREs and non-PREs, and tested with independent A)

PREs versus dummy PREs and B) PREs versus coding sequences.

https://doi.org/10.1371/journal.pone.0274338.g002
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Python implements multiprocessing. GPU-based application of SVMs further reduces running

time by an order of magnitude.

Convolutional neural networks achieve low to moderate generalization to

PREs

Convolutional neural networks (CNNs) [41] have recently shown great success in computer

vision [12]. A successful CNN architecture in computer vision is one with multiple layers of

small convolutions, combined by pooling layers [12]. A convolution over one-hot-encoded

DNA sequences is effectively a Position Weight Matrix (PWM). CNNs have not previously

been applied to the task of modelling PREs, and we were interested in how well CNNs would

perform in this modelling task.

We trained a CNN with four layers of 25 3bp convolutions each (see Materials and meth-

ods), and a dense softmax layer with four classes: PREs, dummy PREs, coding sequences and

genomic non-PREs.

The CNN achieved low generalization (PRC AUC<20%) to PREs versus dummy PREs

(Fig 2, panel A), and moderate generalization (PRC AUC>30%) to PREs versus coding

sequences (Fig 2, panel B).

In summary, a multilayer CNN with short convolutions achieves low to moderate generali-

zation to independent PREs. The low generalization might be attributed to multiple factors.

The CNN preserves positional information, which previous models do not, and which

increases model complexity but may be irrelevant to the modelling problem. It is also possible

that tuning the number of layers, the number of convolutions per layer and the length of the

convolutions may improve generalization.

The convolutional neural network architecture Deep-MOCCA improves

the state-of-the-art of PRE models without prior motif knowledge

There is significant freedom in how artificial neural networks can be architected. Inspired by

this freedom and the high generalization of SVM-MOCCA to independent PREs [7], we were

interested in how an artificial neural network architecture with similar model structure would

perform at the task of modelling PREs.

We designed Deep-MOCCA, a convolutional neural network architecture that mimics the

structure of SVM-MOCCA by modelling local motif occurrence combinatorics and dinucleo-

tide patterns but without the need for prior motif knowledge. The model architecture is

described in detail in Materials and methods. In order to learn motifs, Deep-MOCCA has a

layer of longer convolutions, and in order to model dinucleotides, a layer of 2bp convolutions.

These two convolutional layers are concatenated. In order to model local motif occurrence

combinatorics, Deep-MOCCA uses a sliding window averaging layer and a layer of single-

Table 4. Multiprocessing and GPU application of SVMs significantly reduces run-times.

Application method Running time (h:mm:ss)

1 core 0:10:24

12 cores/threads 0:05:18

GPU 0:01:28

We applied a quadratic 5-spectrum mismatch SVM to 19,600 3kb-long dummy genomic sequences using a single

core, twelve cores/threads and a GPU. CPU: Intel Core i9–9900K, 3.6 GHz, 8 cores, 16 threads. GPU: GeForce GTX

980.

https://doi.org/10.1371/journal.pone.0274338.t004
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nucleotide pairing convolutions. Finally, Deep-MOCCA outputs predicted class probabilities

with a dense softmax layer. We trained Deep-MOCCA with four classes: PREs, dummy PREs,

coding sequences and genomic non-PREs.

Deep-MOCCA achieves the highest generalization to PREs versus dummy PREs of all mod-

els tested, with a 1.31-fold improvement in PRC AUC over that of SVM-MOCCA (Fig 2, panel

A). For PREs versus coding sequences, Deep-MOCCA achieves a lower generalization than

that of SVM-MOCCA, but a higher one than the 5-spectrum mismatch SVM and the conven-

tional CNN (1.35-fold improvement in PRC AUC; Fig 2, panel B).

In summary, we have developed a convolutional neural network architecture, Deep-

MOCCA, that improves the state-of-the art for PRE models that require no prior motif knowl-

edge by exploiting prior knowledge about successful PRE sequence model structure

(SVM-MOCCA [7]). Deep-MOCCA significantly improves generalization over a more con-

ventional CNN with more layers and smaller convolutions. Part of the improvement in Deep-

MOCCA over the conventional CNN may be attributed to a lower model complexity (Deep-

MOCCA has 2,629 trainable parameters, the conventional CNN has 6,129), which in turn may

reduce overfitting. Also, Deep-MOCCA discards spatial information beyond local pairing.

When motifs are known, there is still a benefit in including these motifs in PRE models, as

SVM-MOCCA achieves superior generalization to PREs versus coding sequences. Gnocis

includes an implementation of Deep-MOCCA that can be adapted to new modelling

problems.

Deep-MOCCA precisely predicts independent PREs without prior motif

knowledge

We were interested in how well models implemented in Gnocis can predict PREs genome-

wide.

We calibrated the prediction threshold of each model (six models with 20 cross-validation

repeats each) for an expected genome-wide precision of 80%, based on independent PREs

from the corresponding cross-validation test set and a 7th-order Markov chain trained

genome-wide. We then applied each model genome-wide for prediction of candidate PREs

using a sliding window, predicting windows with scores above the prediction threshold and

merging overlapping predictions. For SVM-MOCCA, we additionally predicted core-PREs

using the algorithm from the MOCCA suite [38]. For validation of predictions, we did not

train on regions from the invected and vestigial loci, where multiple known PREs reside. Addi-

tionally, we extracted the subset of PREs from Enderle et al. (2011) [35] that are at least 1kb

away from all PREs from the Kahn et al. (2014) [34] set.

Of the models tested, the quadratic 5-spectrum mismatch SVM yielded the largest number

of candidate PRE predictions genome-wide and Deep-MOCCA the second largest (Fig 3).

Training the SVM-MOCCA model with genomic non-PREs instead of dummy genomic

sequences resulted in a drop of the number of predictions. At the invected locus, Deep-

MOCCA predicts three known PREs (Fig 4, panel A). At the vestigial locus, Deep-MOCCA

predicts one known PRE for the majority of cross-validation repeats, and another known PRE

for a subset of repeats (Fig 4, panel B). In addition, Deep-MOCCA predicts multiple other

regions for subsets of repeats. At the invected locus, the 5-spectrum SVM and both

SVM-MOCCA models predict two out of three known PREs (Fig 4, panel A). At the vestigial
locus, the 5-spectrum SVM predicts one known PRE, both SVM-MOCCA models predict one

(different) known PRE, and the SVM-MOCCA model trained with dummy genomic

sequences predicts an additional PRE (Fig 4, panel B). The conventional CNN predicts no

known PREs for either of the two loci. Of the models tested, the quadratic 5-spectrum
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mismatch SVM achieves the highest sensitivity to independent PREs from [35], with Deep-

MOCCA in second and SVM-MOCCA in third (Fig 5). SVM-MOCCA trained with genomic

non-PREs achieves the highest nucleotide precision (fraction of predicted nucleotides that

land inside a [35] PRE), with the PyPREdictor in second place, SVM-MOCCA trained with

dummy genomic sequences in third and Deep-MOCCA in fourth.

In conclusion, Deep-MOCCA precisely predicts independent PREs without prior motif

knowledge. Of the models tested without prior motif knowledge, Deep-MOCCA achieves the

second highest sensitivity and the highest nucleotide precision. Nucleotide precision is low for

all models (<13%), which is expected if experimental signals of PcG-binding may be shifted

Fig 3. Numbers of predictions.

https://doi.org/10.1371/journal.pone.0274338.g003
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Fig 4. Predictions at the A) invected and B) vestigial loci. Visualized using the Gnocis genomic track plotting, which

uses Matplotlib [26]. Opaque predictions are predicted in the majority of cross-validation repeats, and semi-

transparent predictions in a subset of repeats.

https://doi.org/10.1371/journal.pone.0274338.g004
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from the PREs. Furthermore, our models may predict PREs that are not active in the cells that

Enderle et al. (2011) [35] used.

Discussion

Gnocis is a versatile and extensible system for interactive and reproducible analysis and model-

ling of CRE sequences, and for predicting candidate CREs genome-wide. Gnocis fills a gap left

by existing Python packages by implementing the base functionality that is necessary in order

to efficiently combine machine learning methods and feature sets. Gnocis provides data prepa-

ration facilities and feature-rich APIs for feature set and model specification and application.

The data preparation facilities implement common data preparation operations and employ

standardized file formats, streamlining the use of published data, integration with external

tools and collaboration. In addition to being useful for the preparation and handling of data

for CRE machine learning, the data handling facilities in Gnocis can also be useful for general

DNA sequence bioinformatics.

The Gnocis feature set API provides the user with a flexible vocabulary for the specification

and application of sequence feature sets, with integration with NumPy [22] and Pandas [23]

for advanced analyses. In order to enable efficient feature extraction, feature sets in Gnocis are

implemented as graphs that can be transformed via a variety of operations. This enables the

user to specify feature sets and models with a short syntax, and simplifies retraining, for exam-

ple for cross-validation. To our knowledge, Gnocis is the first DNA sequence feature package

for Python to employ this design. The modelling API implements common procedures for

model validation and prediction. For additional efficiency, the modelling API implements

multiprocessing support.

When multiple candidate models are available, it is useful to have a platform for unbiased

benchmarking. Gnocis provides a cross-validation engine that constructs multiple training

Fig 5. Prediction overlap with experimental data. A) Overlap sensitivity of predictions to Enderle et al. (2011) [35] PREs. B) Nucleotide precision of

predictions to Enderle et al. (2011) [35] PREs. In order to avoid bias, for the calculations in both A) and B), we removed PREs from [35] and predictions

that were within 1kb of overlapping with a Kahn et al. (2014) [34] PRE.

https://doi.org/10.1371/journal.pone.0274338.g005
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and test sets, trains and applies models, and calculates measures of generalization. The Gnocis

cross-validation engine supports imbalanced, multi-class data.

In order to facilitate interactive data analysis and modelling, Gnocis integrates with IPython

[21] and Matplotlib [26]. Gnocis outputs tables for sequence feature enrichment, simplifying

interactive analysis. Gnocis also implements visualization of model generalization via Receiver

Operating Characteristic (ROC) and Precision/Recall curves, with means and confidence

intervals visualized for cross-validation. In order to probe predictions at genomic loci of inter-

est, Gnocis implements visualization of genomic tracks, enabling visual inspection of genomic

loci in Jupyter Notebooks [14].

To demonstrate the utility and ease of use of Gnocis, we applied six models for the predic-

tion of PREs: the PyPREdictor (a Python re-implementation of the PREdictor method [3]), a

quadratic 5-spectrum mismatch SVM, a (conventional) CNN, two versions of SVM-MOCCA,

and Deep-MOCCA—a neural network architecture inspired by SVM-MOCCA. The 5-spec-

trum SVM achieves the highest sensitivity to independent PREs, but also the lowest precision.

Deep-MOCCA achieves the second highest sensitivity to independent PREs and the highest

precision of models without prior motif knowledge. SVM-MOCCA achieves the highest preci-

sion of the models tested. Our present work is the first to apply Convolutional Neural Net-

works to the modelling of PRE sequences. Notably, there are numerous potential network

structures that can be employed for a CNN, and other network architectures may outperform

the ones we tested here. Gnocis provides the user with the tools necessary in order to test new

neural network architectures. Additionally, Gnocis includes Deep-MOCCA, which can be

trained on new problems. We previously demonstrated the applicability of SVM-MOCCA to

new problems by training it to predict Boundary Elements [38]. We expect similar broader

applicability for Deep-MOCCA, and as Deep-MOCCA requires no prior motif knowledge, it

may also be interesting to apply it to problems where motif knowledge is lacking. Gnocis is

species agnostic and our methods can be trained for prediction tasks in other species where

appropriate data can be collected. For example, Support Vector Machines have previously

been applied for modelling H3K27me3 nucleation sites in Western clawed frog (X. tropicalis)
[29], and methods implemented in Gnocis could in principle be trained using the same or sim-

ilar data.

The PyPI package manager makes Gnocis easy to install on multiple operating systems and,

with Gnocis having no dependencies, further improves the portability of our package. In addi-

tion to internally implementing a broad suite for data preparation, Gnocis abstractly imple-

ments DNA sequence feature spaces and sequence modelling, facilitating the exploration of

different modelling approaches, both in terms of feature space definitions and of machine

learning methods. The suite of tools that Gnocis provides can aid in elucidating the sequence

criteria that define a CRE class, and in predicting new CREs genome-wide.

Software availability and requirements

• Project name: Gnocis

• Project home page: https://github.com/bjornbredesen/gnocis

• Operating systems: GNU/Linux, Windows, MacOS X

• Programming languages: Python, Cython

• Requirements: Python 3.6/3.7/3.8/3.9

• License: MIT license
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The code for generating all results presented here is available as Jupyter Notebooks on the

Gnocis GitHub repository.

Supporting information

S1 Fig. Training with dummy PREs as negatives leads to overfitting to the training classes.

Shown are the dummy PREdictor, the PyPREdictor trained with PREs (positives) and dummy

PREs (negatives), a quadratic 5-spectrum mismatch kernel SVM trained with PREs (positives)

and genomic non-PREs (negatives) and finally a quadratic 5-spectrum mismatch kernel SVM

trained with PREs (positives) and dummy PREs (negatives). Models were tested with A) PREs

versus dummy PREs, B) PREs versus coding sequences and C) PREs versus genomic non-

PREs. AUC is high for the SVM trained with dummy PREs when tested with dummy PREs

(A) but low otherwise (B, C).

(PDF)
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Supervision: Marc Rehmsmeier.

Validation: Bjørn André Bredesen-Aa.
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