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Predicting conversion 
to Alzheimer’s disease 
in individuals with Mild Cognitive 
Impairment using clinically 
transferable features
Ingrid Rye1,6, Alexandra Vik2,6, Marek Kocinski2,3,4,6, Alexander S. Lundervold2,5 & 
Astri J. Lundervold1*

Patients with Mild Cognitive Impairment (MCI) have an increased risk of Alzheimer’s disease (AD). 
Early identification of underlying neurodegenerative processes is essential to provide treatment 
before the disease is well established in the brain. Here we used longitudinal data from the ADNI 
database to investigate prediction of a trajectory towards AD in a group of patients defined as MCI 
at a baseline examination. One group remained stable over time (sMCI, n = 357) and one converted 
to AD (cAD, n = 321). By running two independent classification methods within a machine learning 
framework, with cognitive function, hippocampal volume and genetic APOE status as features, we 
obtained a cross-validation classification accuracy of about 70%. This level of accuracy was confirmed 
across different classification methods and validation procedures. Moreover, the sets of misclassified 
subjects had a large overlap between the two models. Impaired memory function was consistently 
found to be one of the core symptoms of MCI patients on a trajectory towards AD. The prediction 
above chance level shown in the present study should inspire further work to develop tools that can 
aid clinicians in making prognostic decisions.

Alzheimer’s disease (AD) is by far the most common type of dementia, estimated to account for 60–70% of all 
dementia  cases1. The disease is characterized by an insidious onset caused by neurodegenerative processes, which 
lead to progressive loss of cognitive and functional abilities. Alongside the devastating personal consequences 
AD has on those affected and their caregivers, economical costs related to the disease are massive. In USA alone, 
the costs related to AD are estimated to reach $321 billion in  20222. And this is just the tip of the iceberg. With 
the demographic composition of the population being skewed towards an increasing proportion of elderly, we 
are facing what has been described an AD-epidemic3, and related costs are predicted to more than triple within 
the year  20502.

One of the difficulties for successful treatment of AD is the fact that its pathological hallmarks (i.e., amyloid 
beta and neurofibrillary tangles of tau proteins) tend to be established in the brain decades prior to the time 
a person’s cognitive and functional impairments are severe enough to get medical  attention4. Management of 
known risk factors for AD (e.g., high blood pressure and diabetes) is therefore emphasized. Moreover, several 
recent studies point towards promising life-style interventions reducing AD-pathology and neurodegenera-
tion and delaying symptom-onset (see e.g.,5). Taken together, much effort is put into early identification and 
treatment of patients in the prodromal phase of the disease. Mild Cognitive Impairment (MCI) has become a 
diagnostic concept to describe this  phase6. Individuals falling within this diagnostic category show a cognitive 
decline greater than expected in normal cognitive aging, but still not with the severity of functional impairment 
characterizing those with  dementia7.
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Over the past two decades, several studies have shown that MCI comprises a heterogeneous patient group. 
This is true both with respects to clinical phenotypes and individual disease trajectories. Their clinical presen-
tation is typically classified into an amnesic (aMCI) or non-amnesic type, and may affect a single or multiple 
cognitive  domains7. According to the original description of  MCI8, an impairment is defined when performance 
on a given psychometric test is at least 1.5 standard deviations below the expected mean for a given patient. 
An impairment in a patient may thus be defined as aMCI when results on a memory test is substantially lower 
than expected from sex and age corrected test norms or estimates of his/her general intellectual level. To sup-
port this definition, a clinical examination may also include brain measures of memory related structures like 
hippocampus, and sometimes also genetic analysis, where the presence of the APOE-e4 risk allele is known as 
the most reliable  marker9–11.

It has been shown that patients with an aMCI diagnosis are more likely to progress to AD than patients in 
a non-aMCI  subgroup7,12, with an annual conversion rate estimated to be 10–15%9. Others will remain stable 
over years, and some may even revert back to normal cognition in cases where somatic diseases or psychiatric 
disorders causing mild cognitive impairment are successfully  treated13. Differentiating between cognitive changes 
characterizing incipient AD and a more stable or fluctuating pattern of cognitive impairment is therefore an 
important endeavour in the research  field14.

Machine learning (ML) has in this context been established as an effective tool for making prognostic predic-
tions in  AD15, with several algorithms classifying stable MCI versus converting MCI subjects with impressive 
 accuracy16,17. Despite this, translation into clinical practice has to a large degree been lacking. There are several 
factors contributing to  this18, with one crucial obstacle being that most of these algorithms are constructed 
using data that are expensive and/or invasive to obtain. Although the inclusion of more invasive  biomarkers19,20 
and/or longitudinal  data21–23 would increase the predictive power of the algorithms, this information is rarely 
obtained in an initial clinical examination of a MCI subject. To the best of our knowledge, few studies have aimed 
at creating classification models based on clinically relevant features, with a study from Grassi and  colleagues24 
being an exception. Their algorithm predicted conversion from MCI to AD with a balanced accuracy of 78% 
when sociodemographic and clinical characteristics were included as predictors. As indicated by the authors, 
scores from the neuropsychological tests used to define “ground truth” labels (i.e. stable or converters) were 
also included as predictors, which potentially could lead to inflated predictive performance due to circularity.

The short review presented above inspired the current study to further investigate predictive models of tra-
jectories from MCI to AD. Longitudinal data were used to identify two groups of patients who were diagnosed 
with MCI at a baseline clinical examination: one group including patients who were diagnosed with AD and one 
group retaining their MCI diagnosis during the observation period. With an aim to make the results relevant 
to diagnostic decisions, we included features commonly used as part of an assessment of older adults present-
ing cognitive problems. These features included demographic data, information from neuropsychological and 
Magnetic Resonance Imaging (MRI) examinations and genetic information about APOE status. These features 
were used to train two different supervised learning algorithms to classify the patients into the two predefined 
groups: (1) an ensemble-based model constructed by combining five different models, and (2) a Random For-
est (RF)  model25. The results from the two models were compared, and the RF model used to identify feature 
 importance26. The complex nature of MCI and AD surely leave us to expect misclassifications. We therefore 
explore clinical characteristics of the prediction labels (i.e true negative, false positive, false negative and true 
positive) returned from the most accurate model.

Results
A total of 708 subjects defined as MCI at baseline met the inclusion criteria for the current study. From this, 30 
subjects (24 sMCI, 6 cAD) had missing data points on at least one of the features used in model construction. 
These subjects were removed from further analyses, resulting in a final sample comprising 357 sMCI and 321 cAD 
subjects. Exploratory analysis showed that all features deviated from a normal distribution, and non-parametric 
analyses were therefore added. These analyses yielded similar results as the descriptive and comparative statistics 
presented in Table 1, with no differences in statistical significance. At baseline, the converters to AD showed 
significantly lower results on all included cognitive tests, lower hippocampus volumes and a higher number of 
APOE-4 carriers than the stable MCI group.

Performance of classification algorithms. Our top performing RF classification had an average accu-
racy of 74.6% (mean across 50 cross-validation folds). When the model was evaluated on our unseen test set, the 
overall classification accuracy was 66.2%. Similar results were obtained for the ensemble model. It achieved an 
average accuracy of 74.9% (mean across the same 50 folds), while evaluation on the test set yielded a somewhat 
higher accuracy of 68.3%. The 2 × 2 confusion matrices in Fig. 1 illustrate the correspondence between the true 
labels, the predictions returned from the RF model (Fig. 1a) and the predictions of the ensemble model (Fig. 1b). 
The RF model misclassified 22

74
 sMCI subjects as converters and 25

65
 cAD subjects as stable, resulting in a specificity 

of 70.3% and a sensitivity of 61.5%. The ensemble algorithm misclassified 20
74

 sMCI subjects as converters and 24
65

 
cAD subjects as stable, resulting in a specificity of 73.0% and a sensitivity of 63.1%. As illustrated by Fig. 2, the 
two models largely overlapped in the subjects they misclassified: 18 of the same sMCI subjects (Fig. 2a) and 20 
of the same cAD subjects (Fig. 2b).

Based on classification labels returned from the most accurate model (i.e. the ensemble model), comparative 
statistical analysis was conducted to investigate potential group differences between the four labels returned 
from the model. Table 2 shows that both groups of misclassified subjects (i.e. FP and FN) deviated from the 
correctly classified groups on several measures. Compared to correctly classified cAD, the group of misclassified 
cAD showed poorer results on all three memory tests and had smaller hippocampal volume. The same pattern, 
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in addition to poorer score on TMTB, was evident for misclassified sMCI when compared to correctly classified 
sMCI, with FP showing cognitive impairments more similar to TP.

Importance of features. We used two different methods to investigate feature importance in the RF model. As 
illustrated in Fig. 3, the calculation of importance based on Mean Decrease in Impurity ranked hippocampus 
volume, RAVLT immediate and RAVLT delayed to be most important for prediction.

A model agnostic permutation importance test was also conducted. This algorithm shuffles each feature 
several times, with different permutations, while all the other features are kept constant. Table 3 shows the 
output of these calculations. Positive values means poorer predictions on shuffled data compared to real data, 
indicating that the feature contains information important for the prediction. Similarly to calculations of features 

Table 1.  Demographics, cognitive function and biological measures in patients defined as stable MCI and 
converters to AD. sMCI stable Mild Cognitive Impairment, cAD converted to Alzheimer’s disease, RAVLT Rey 
Auditory Verbal Learning Test, TMT Trail Making Test, CTF Category Fluency Test, GDS Geriatric Depression 
Scale, ANART  American National Reading Test.

sMCI (N = 357) cAD (N = 321)

t/x2 p value Effect sizeMean (SD) Mean (SD)

Demographics

Age 73.1 (7.45) 73.9 (7.11) 1.35 0.176 0.10

Gender (%F) 41.2 38.9 0.352 0.553 0.02

Cognitive function

RAVLT-Im 36.9 (10.5) 29.3 (7.7) 10.56 < 0.001 0.81

RAVLT-delay 4.88 (3.93) 2.05 (2.67) 10.87 < 0.001 0.84

RAVLT-recog 11.26 (3.16) 9.42 (3.56) 7.13 < 0.001 0.55

TMTA 39.2 (15.6) 44.7 (21.5) 3.90 < 0.001 0.30

TMTB 108.1 (56.9) 133.8 (73.9) 5.10 < 0.001 0.39

CFT animals 17.8 (5.17) 15.8 (4.75) 5.13 < 0.001 0.39

GDS: mean (SD) 1.71 (1.44) 1.65 (1.38) 0.53 0.596 0.04

ANART Total errors 12.9 (9.3) 13.3 (9.6) 0.61 0.539 0.05

Biological measures

Hippocampus volume 0.00451 (7.6∗10−4) 0.00398 (6.8∗10−4) 9.64 < 0.001 0.74

APOE (%positive) 42.3 64.2 32.45 < 0.001 0.22

Figure 1.  2 × 2 confusion matrices computed for the sMCI and cAD labels returned from prediction on test set 
compared with the co-occurrences of the observed outcome. The black and purple cells represent misclassified 
subjects, while the beige and red cells represent correctly classified subjects. The number of occurrences in each 
cell is given as number of subjects and percentage of the total test set for RF model and ensemble.
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importance based on decrease in Gini impurity, hippocampus volume and RAVLT immediate were ranked as 
the two most important features.

Discussion
AD, a progressive and multifactorial neurodegenerative disease, is identified by cognitive symptoms that tend 
to manifest itself long after the disease process is well established in the brain. Characterizing early markers 
of subsequent progression towards AD is therefore a paramount goal in the research field. The present study 
contributes to this endeavor by characterizing and separating two groups of patients identified with MCI at a 
baseline examination: one group that over time become AD patients (cAD) and one group remaining stable 
with an MCI diagnosis (sMCI). By running two independent classification methods within a machine learning 

Figure 2.  The figure illustrates the two models’ overlap in misclassified sMCI (a) og cAD (b). Gray symbols 
represent subjects for which the two models overlapped in misclassification. Purple and blue symbols represents 
additional subjects misclassified by the Random Forest model and the ensemble model, respectively.

Table 2.  Demographics, cognitive function and biological measures in correctly and misclassified patients. 
TN correctly classified sMCI, FP sMCI subjects misclassified converters, FN cAD subjects misclassified as 
stable, TP cAD subjects correctly classified, RAVLT Rey Auditory Verbal Learning Test, TMT Trail Making 
Test, CTF Category Fluency Test, GDS Geriatric Depression Scale, ANART  American National Reading Test. A
Multiple comparisons abbreviated as: a = TN differ from FP; b = FN differ from TP. Group mean differences 
at Bonferroni corrected alpha level of 0.004 (αaltered = 0.05/12 = 0.004 , rounded) considered statistically 
significant.

TN (n = 54) FP (n = 20) FN (n = 24) TP (n = 41)

p < 0.004
AMean (SD) Mean (SD) Mean (SD) Mean (SD)

Demographics

Age 72.1 (7.32) 74.9 (7.19) 74.8 (8.01) 73.3 (7.61) –

Gender (% F) 38.9 55.0 29.2 43.9 –

Cognitive function

RAVLT-Im 39.15 (8.85) 30.60 (7.23) 35.38 (7.60) 28.12 (4.83) a, b

RAVLT-delay 5.89 (3.41) 1.20 (1.54) 4.38 (3.00) 1.24 (1.55) a, b

RAVLT-recog 12.15 (2.66) 9.40 (3.42) 11.71 (2.60) 8.66 (3.63) a, b

TMTA 37.2 (13.1) 40.8 (8.3) 42.6 (28.9) 45.1 (25.8) –

TMTB 91.6 (31.9) 129.6 (61.3) 130.0 (88.6) 134.4 (77.4) a

CFT animals 18.69 (4.82) 16.80 (5.35) 16.00 (4.23) 15.81 (4.24) –

GDS 1.82 (1.35) 1.85 (1.14) 1.29 (1.12) 1.51 (1.25) –

ANART total errors 13.0 (9.7) 9.2 (7.3) 13.0 (9.9) 13.3 (10.3) –

Biological measures

Hippocampus volume 0.00457 (7.4*10−4) 0.00384(6.1*10−4) 0.00439 (6.2*10−4) 0.00372 (6.8*10−4) a, b

APOE (% positive) 37.0 55.0 45.8 78.0 –
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framework, including information about cognitive function, total hippocampal volume and genetic APOE status 
from the baseline examination as features, we obtained a cross-validation accuracy of about 70% when classify-
ing patients as belonging to one of the two predefined groups. This level of accuracy was confirmed across two 
different classification methods, which overlapped largely in their classifications at the subject-level. Impaired 
memory function was found to be a core symptom in MCI patients on a trajectory towards AD. Exploratory 
data analysis comparing results among correctly and misclassified individuals showed that sMCI patients who 
were falsely defined as AD converters tended to be more impaired than those who truly belonged to this group. 
A slow response-time and a high number (78%) of APOE-e4 carriers in the true positive group were also noted.

In line with previous studies characterizing the cognitive profiles of stable and converting  MCI27, we found 
that the two groups could be differentiated already at the baseline examination, with the largest effects sizes 
associated with measures of episodic memory function and hippocampal volume. These measures were also 
given strong weights according to two different analytic approaches for feature importance. Although the RF 
generated feature importance and the permutation importance converged in the upper ranking, delayed recall 
was rated differently between the two estimates. This suggests that possible mutual information in memory tests 
should be controlled for when running such random  shuffling28. Overall, these results confirm a close relation 
between memory function and  hippocampus29, and that both tend to be affected already in an early stage of  AD4.

Some interesting findings emerged from the exploratory analysis of correct and misclassified patients. Per-
formance among the sMCI patients falsely classified as AD converters showed lower performance on tests of 
memory function as well as executive function (EF) than those correctly classified as sMCI. This may indicate 
that these patients would be diagnosed with AD in a longer time perspective. Together with the most severe 
impairment in the group correctly allocated to the cAD group, the results gave some support to include impair-
ment of EF processes as prodromal symptoms of  AD30, even when a patient originally was defined within the 

Figure 3.  Feature importances calculated by decrease in impurity from evaluation on test set. All the predictors 
included in the model are displayed on the y-axis while the x-axis depicts their relative importance.

Table 3.  The table depicts each feature’s importance in descending order calculated by permutation. The 
leftmost column in each row depict average effect on model accuracy by random shuffling ± how the accuracy 
varied from one reshuffling to the next. The two most important features are hippocampal volume and RAVLT 
immediate, followed by age, category fluency and gender.

0.0403 ± 0.0503 HC

0.0245 ± 0.0413 RAVLT-Im

0.0086 ± 0.0108 AGE

0.0058 ± 0.0141 CFT

0.0000 ± 0.0129 GENDER

− 0.0014 ± 0.0211 APOE

− 0.0014 ± 0.0058 GDS

− 0.0029 ± 0.0503 RAVLT-delay

− 0.0058 ± 0.0168 TMTA

− 0.0101 ± 0.0147 TMTB

− 0.0129 ± 0.0058 ANART 

− 0.0158 ± 0.0279 RAVLT-recog
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amnestic subgroup of MCI. It must, however, be underscored that a test of EF selected for the present study—the 
B version of the Trail Making Test—assesses only a fraction of the cognitive processes involved in  EF31, and that 
other fractions may be more specific to other neurodegenerative diseases (see e.g.,32). The highest number of 
APOE positive subjects were recognised in the true and false positive subgroups, in line with conclusions from 
previous  studies9–11. Despite these group level differences, APOE status did not have large discriminating power 
in the classification model. There are several plausible explanations for these findings. While the ε4 allele is well-
characterized as a risk factor in a dose-dependent manner, there are two other common alleles of the APOE 
gene; ε2 and ε3 . The APOE ε3 is considered neutral in terms of AD risk, but APOE ε2 has been shown to have a 
protective  effect33. Our operationalization of APOE genotype as binary a feature, i.e., negative (no ε4 alleles) and 
positive (at least one ε4 allele), may thus have resulted in the loss of important information, as subjects who were 
heterozygote with ε2/ε4 (neutral APOE profile) in the current study were grouped with subjects homozygote 
for ε4 (highest risk APOE profile).

Taken together, our results confirmed that early prediction of AD is indeed a challenging task. Developmental 
trajectory in an individual patient is determined by numerous biological, lifestyle and environmental factors, and 
their interplay may all act as mediators of susceptibility for AD. This explains the large heterogeneity in both the 
pathological and clinical manifestations characterizing AD and other neurodegenerative diseases. Furthermore, 
pure AD pathology is the exception rather than the rule. Post-mortem examinations have shown that pure AD 
pathology is identified in only 3-30% (age-dependent) of patients with a clinical AD  diagnosis34, and that high 
loads of AD pathology is found even in individuals without clinical symptoms of the  disease35–37. Although the 
present study was not designed to investigate such heterogeneity, we find it intriguing that a high number of 
subjects were correctly predicted from two independent statistical models primarily including cognitive measures 
as predictors. The results should thus inspire further longitudinal studies to investigate cognitive as well as other 
mediators of trajectories from non-pathological to pathological  aging38,39.

The size of the MCI group, the longitudinal design and the consistency of findings across analytic approaches 
are considered to be main strengths of the present study. We showed that two independent classification algo-
rithms yielded comparable predictive accuracy as well as a large subject-specific overlap regarding patients who 
were misclassified. The re-analysis of the T1-weighted MRI images by the FreeSurfer longitudinal stream should 
be considered as another strength by increasing the reliability of the extracted hippocampus  volume40. We will 
also underscore the importance of our careful selection of patients to be included in our study. While most stud-
ies using ADNI data restrict inclusion to one or two study phases or the reprocessed data made available by the 
ADNI project (and shared in e.g. the ’ADNIMERGE’ file), the present study included subjects across all four study 
phases. This gave us a relatively large longitudinal sample where we could select variables that are commonly 
included as part of a clinical examination of patients suspect of a neurodegenerative disease. There are several 
limitations that should be noted. Although we obtained a classification accuracy above chance level, it should still 
be described as modest. This is partly related to restrictions associated with the AD and MCI definitions in the 
ADNI dataset. As already mentioned, an AD diagnosis is defined “probable” until post-mortem examinations. It 
is therefore possible that some of the subjects defined as AD, and thus used as “ground truth” in this study, were 
misdiagnosed. The patients defined with an MCI diagnosis is also a heterogeneous group, clearly illustrated in 
the work of Edmond et al.41. Among patients defined by ADNI as aMCI, they described several subgroups. One 
of those did even show performance on cognitive tests and brain measures (MRI) within the limits of normal 
function. A range of other factors should therefore be included to potentially raise the sensitivity and specific-
ity to a clinically acceptable level. It should also be underscored that the ADNI dataset mainly includes highly 
educated and motivated volunteers geographically restricted to North America. Finally, some limitations related 
to the analytic approach should be mentioned. Although we ensured complete independence between features 
used to define outcome and features used to train the classification model, we are aware of the circularity associ-
ated with conducting group analysis on the prediction labels for true and false classifications returned from the 
ensemble models. Hence, these results should be viewed as exploratory. It is also a limitation that information 
about participation length was not controlled for in the statistical models.

In conclusion, the present study showed challenges related to early identification of patients at risk of a tra-
jectory from MCI to AD. Although existing treatment is still far from reversing already established pathological 
changes, it may slow down the disease progression (see e.g.,5,42). Thus, early identification is essential to treatment 
of a neurodegenerative disorder. The present study proposed a multi-modal machine learning framework that 
uses clinically relevant data to classify MCI subjects into a group remaining stable and a group progressing to 
AD. The complexity related to diagnosing AD is illustrated by studies investigating family physicians’ accuracy 
of dementia diagnoses, which shows sensitivity for detecting mild dementia to be especially poor (14–33%)43. 
Although the accuracy achieved in the current study is below what should be considered sufficient to enable 
direct implementation in clinical practice, we believe the study should inspire further work towards developing 
automated prognostic tools, with an ultimate aim to design a supportive aid for clinicians responsible for giving 
information about prognostics to individual patients.

Methods
Sample. Data were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni. 
loni. usc. edu). The ADNI project was launched in 2003 as a public–private partnership, led by Principal Inves-
tigator Michael W. Weiner, MD. The primary goal of ADNI has been to investigate whether serial magnetic 
resonance imaging (MRI), positron emission tomography (PET), other biological markers, and clinical and neu-
ropsychological assessment can be combined to measure the progression of mild cognitive impairment (MCI) 
and early Alzheimer’s disease (AD). ADNI consists of four study phases, and for the present study we included 
subjects across all these phases who according to ADNI’s criteria were defined as MCI at their baseline (first) 

http://adni.loni.usc.edu
http://adni.loni.usc.edu
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assessment. The ADNI study was approved by the Institutional Review Boards at each participating ADNI site 
(see full list here: http:// adni. loni. usc. edu). All procedures were performed in accordance with relevant guide-
lines and regulations, and informed consent was obtained from all subjects prior to enrollment. The current 
study was approved by the ADNI Data and Publications Committee (ADNI DPC). Data used in the present 
study were downloaded on November 9th 2020, and inclusion is thus restricted to subjects whose data was 
uploaded to the ADNI database prior to this date.

Using ADNI’s definition, a subject is diagnosed as MCI if the study participant (i) reports concern due to 
impaired memory function; (ii) obtains a Mini Mental State Examination (MMSE) score between 24 and 30; 
(iii) a Clinical Dementia Rating Scale (CDR) score of 0.5; (iv) a score lower than expected (adjusted for years 
of education) on the Wechsler Memory Scale Logical Memory II (WMS-II); and (v) reports preserved function 
of daily living. From this group of MCI subject we restricted inclusion to subjects that had a minimum of three 
study visits (i.e., baseline visit and at least two additional visits) and had undergone a minimum of three MRI 
examinations. This resulted in inclusion of 708 subjects who were further divided into two diagnostic groups 
defined according to their longitudinal diagnostic status. One group was defined as stable MCI (sMCI; N = 
357, 52.7%), meaning that they met the applied ADNI criteria for MCI on all study visits (n = 381, age range 
at baseline = 55–91). The other diagnostic group was defined as converters to AD (cAD; n = 321, 47.3%), and 
included subjects who were diagnosed with MCI at their first study visit, but met the criteria for probable AD 
on a subsequent assessment (n = 327, age range at baseline = 55–88). AD was defined according to following 
criteria; (i) MMSE score between 20-26 (inclusive), (ii) CDR score of 0.5 or 1.0, and (iii) meeting the National 
Institute of Neurological and Communication Disorders and Stroke/Alzheimer’s Disease and Related Disorders 
Association (NINCDS-ADRDA) criteria for probable AD (McKhann et al., 1984). To ensure uniform application 
of diagnostic criteria across the more than 59 different study cites involved in ADNI, a Central Review Commit-
tee verified each individual subject’s conversion to AD.

Feature selection. The rationale and motivation behind the selection of features in the present study was 
our aim of keeping the features clinically relevant and close to being a proxy of an initial clinical assessment of a 
patient presenting problems suspect of an MCI diagnosis.

Demographic characteristics. Gender and age at baseline assessment were included as demographic features.

Neurocognitive features. Rey auditory verbal learning test (RAVLT). RAVLT44 is a list learning test in-
cluded to measure different aspects of verbal learning and memory function. In the first learning trial, a list of 15 
nouns is read aloud by the test administrator at a rate of one word per second. Immediately after the first pres-
entation, the subject is asked to freely recall as many of these 15 words as possible. This procedure, with reading 
and recall of the same list, is repeated for 4 more trials. A total score for immediate recall [‘RAVLT-Im’] is 
calculated by adding the number of words correctly recalled across all five trials. After a 30-minutes delay period 
filled with testing unrelated to the verbal content of RAVLT, the subject is again asked to recall the 15 words from 
the original list, and the number of correct responses is used as a measure of delayed recall [‘RAVLT-Delay’]. 
Immediately following this, a list including the 15 target words from the learning trials intermixed with 15 
distractor words is presented to the subject who is asked to identify the target words. From this, a recognition 
[‘RAVLT-Recog’] score is derived from the sum of correct responses.

Trail making test (TMT). TMT45 has two parts, where the first (TMT-A) is used as a measure of processing 
speed, and the second (TMT-B) as a measure of the cognitive flexibility aspect of executive function. In part A, 
a sheet of paper with printed numbers from 1 to 25 is presented to the subject. The subject is then instructed to 
use a pen to connect the numbers in ascending order, and encouraged to work as fast as they can. Part B is simi-
lar, but here the numbers (1–13) are intermixed with letters (A–L). The subject is instructed to connect these by 
switching between the ascending numerical and alphabetical order, putting a stronger load on cognitive flexibil-
ity than the TMT-A part. The total number of seconds used to complete part A [‘TMTA’] and part B [‘TMTB’] 
are used as measures of processing speed and executive function, respectively. Maximum scores are 150 and 300 
for part A and B, respectively, as the subject was stopped if these time limits were exceeded.

Category fluency test (CFT). CFT46 is used as a verbal test of executive function in the present study. In CFT, the 
subject is asked to generate as many words as possible belonging to a given semantic category (animals) within 
a time limit of 1 minute. In addition to assessing verbal ability, and more specifically lexical access  ability47, the 
task require aspects of executive  function48: the subjects must focus on the task at hand, select words meeting the 
condition of belonging to the semantic category, as well as inhibit repetitive responses.

Geriatric depression scale (GDS), short form. The short form of the  GDS49 is a self-reported questionnaire 
designed to identify symptoms of depression, specifically in an elderly population. As participants obtaining a 
total GDS score [‘GDS’] between 6 and 15 were excluded from the ADNI sample, the total GDS scores in our 
selected sample range between 0-5. The score in individual participants is still used to assess severity of depres-
sion, because even symptoms below diagnostic threshold may affect cognitive function in older  adults50. The 
form includes 15 items to which the subjects answer by circling “yes” or “no” based on how they felt the past 
week. Ten questions are positively oriented for depression (e.g., “Do you feel that your life is empty?”) and the 
remaining five questions are negatively oriented (e.g., “Are you basically satisfied with your life?”). All questions 
are weighted equally, with one point given for each answer indicative of depression (maximum 15 points).

http://adni.loni.usc.edu
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American national adult reading test (ANART). ANART 51 is designed to obtain an estimate of premorbid intel-
lectual function. Subjects are asked to read a list of 50 words that are printed on a sheet of paper. All words 
are irregular in that they do not follow phonological and orthographical rules, and they are graded in terms 
of difficulty of correct pronunciation. Because of this irregularity, correct pronunciation depends on previous 
familiarity with the words. Performance is assessed according to phonetic accuracy in pronunciation of each 
word. In the present study we used the total number of errors [‘ANART’] as a proxy for premorbid intellectual 
function, obtaining a baseline measure that is expected to be relatively preserved in the MCI patients included 
in the present study.

MRI acquisition and brain segmentation. Acquisition of 1.5 T MRI (for ADNI 1) and 3.0 T MRI (for 
ADNI GO/2/3) data at each of the multiple ADNI sites followed a described standardized protocol developed by 
ADNI. See http:// adni. loni. usc. edu/ metho ds/ mri- analy sis/ mri- acqui sition for sequence details.

The MRI images from ADNI were originally processed with two different versions of FreeSurfer (v.4.3 and 
v.4.1) and made available through the ADNI database. In previous work we have shown that the use of differ-
ent versions of FresSurfer may lead to a relatively large discrepancy in the atrophy  estimations23. We therefore 
re-processed all the included MRI images using the same version of FreeSurfer (v.7.1.1), using the longitudinal 
stream of  FreeSurfer52. In the longitudinal stream, an unbiased within-subject template space and  image53 is 
created using robust, inverse consistent  registration54. Several processing steps, such as skull stripping, Talairach 
transforms, atlas registration as well as spherical surface maps and parcellations are then initialized with com-
mon information from the within-subject template, significantly increasing reliability and statistical  power52.

A measure of the total hippocampus volume [‘HC’] was derived by combining the volume of the left and 
right hippocampi. To reduce the effect of individual and gender differences in brain sizes, the volumes were 
normalized using the total intracranial volume measure (eTIV) estimated by FreeSurfer.

APOE status. Blood samples were collected at baseline for APOE genotyping. As part of the ADNI study, 
samples were transported from each study site by overnight transport to the University of Pennsylvania Alzhei-
mer’s Disease Biomarker Laboratory where the genotyping was carried out. In the present study, APOE status 
was divided into a binary variable [‘APOE’] allocating subjects having no (APOE negative) and subjects having 
at least one ε 4 allele (APOE positive) into separate groups.

Analytic approach. A core objective of our study was to provide a broad phenotypic characterization of 
the two MCI subgroups (i.e. cAD and sMCI) at baseline, and compare the groups on these characteristics. The 
groups were therefore checked for similarities and differences with respect to all features used as input to the 
classification algorithms. Student’s t test for independent samples was used for continuous variables, and Pearson 
Chi-Square test for nominal variables. Statistical analysis of the twelve included variables were Bonferroni cor-
rected for multiple comparisons, with an alpha level of 0.004 ( αaltered = 0.05/12 = 0.004 , rounded) considered 
to be statistically significant. If exploratory analyses indicated deviation from a normal distribution and/or het-
eroscedasticity, non-parametric Mann–Whitney U tests were conducted.

Classification methods. We constructed two different machine learning models: (1) an ensemble based model 
constructed by combining five different models, and (2) a Random Forest (RF)  model25. The results from the two 
models were compared, and the RF model used to identify feature  importance26.

The RF was constructed, trained and evaluated using Python and Scikit-learn (v. 0.19). For the ensemble based 
model, we trained 15 different supervised algorithms using  PyCaret55, an open source machine learning library 
for Python. From these 15 models, we selected the top five performing models. All analysis were conducted on a 
single workstation running GNU/Linux Ubuntu 20.04.2 LTS. See the accompanying code repository for details 
about the training and evaluation of our models, https:// github. com/ ingryy/ AD_ conve rison.

Evaluating performance. To estimate a model’s generalization ability it is vitally important to use separate data 
sets for model construction and model evaluation. In our work the complete sample (n = 678) was split into a 
training set comprising 79% (n = 539) used for training the model, while a test set comprising 21% (n = 139) was 
held aside to be used for a final evaluation of how well the model performs on unseen data. The split into training 
and test sets was stratified with respect to age, gender and class membership.

Hyperparameter optimization and K‑fold cross validation. To find hyperparameter settings for the machine 
learning models we used model-specific parameter grids and a randomized grid search across 50 cross-valida-
tion folds. The cross-validation folds were defined to preserve the ratio of the two classes in each fold.

Feature importance and model interpretation. After establishing how well the RF model can classify the two 
MCI subgroups we further assessed the predictive importance of the twelve individual features included in 
the model. Tree-based models, including RFs, has a built-in assessment of feature importance based on Mean 
Decrease in Impurity (MDI). Through this method, each feature’s relative importance is calculated by assessing 
to which degree the feature decreases impurity at a splitting node, with higher purity implying the features to 
have higher discriminatory power.

However, MDI can artificially inflate the importance of features if predictor variables vary in measurement 
scales and/or number of  categories56,57. We therefore additionally measured feature importance using permuta-
tion feature importance, a technique introduced by  Breiman25,58. This method quantifies each features importance 

http://adni.loni.usc.edu/methods/mri-analysis/mri-acquisition
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by randomly reshuffling each predictor variable (one at the time), while assessing how this affects model per-
formance. As the random permutation breaks the true relationship between a given feature and the outcome, 
model accuracy will decrease when a feature with true predictive power is permuted, whereas permuting a 
non-informative feature will likely render model performance unchanged, or even improved. Note that when 
permuting one feature at the time, the interactions or dependencies between features are not considered. As a 
result, if two features held mutual information important for prediction, permuting one of them will not neces-
sarily negatively affect model performance as the information is preserved in the other.

Data availability
The data used in the current study are available from Alzheimer’s Disease Neuroimaging Initiative (ADNI) upon 
application. See http:// adni. loni. usc. edu/ data- sampl es/ access- data/ for more information. For details about the 
experimental pipeline used in the current study see https:// github. com/ ingryy/ AD_ conve rison.
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