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A remarkable feature in pancreatic cancer is the propensity to metastasize early, even for small, early
stage cancers. We use a computer-based pancreatic model to simulate tumor progression behavior where
fluid-sensitive migration mechanisms are accounted for as a plausible driver for metastasis. The model has
been trained to comply with in vitro results to determine input parameters that characterize the migration
mechanisms. To mimic previously studied preclinical xenografts we run the computer model informed with
an ensemble of stochastic-generated realizations of unknown parameters related to tumor microenvironment
only constrained such that pathological realistic values for interstitial fluid pressure (IFP) are obtained. The
in silico model suggests the occurrence of a steady production of small clusters of cancer cells that detach
from the primary tumor and form isolated islands and thereby creates a natural prerequisite for a strong
invasion into the lymph nodes and venous system. The model predicts that this behavior is associated with
high interstitial fluid pressure (IFP), consistent with published experimental findings. The continuum-based
model is the first to explain published results for preclinical models which have reported associations between
high IFP and high metastatic propensity and thereby serves to shed light on possible mechanisms behind the

clinical aggressiveness of pancreatic cancer.

1. Introduction

Pancreatic cancer is one of the deadliest of all solid organ malig-
nancies, with <8% overall 5-year survival even after surgical resection.
Almost 90% of all pancreatic malignancies are pancreatic ductal adeno-
carcinomas (PDAC) (Leinonen et al., 2017). Most PDACs are resistant
to chemotherapy and radiation treatment (Castellanos et al., 2011) and
surgery is the only treatment modality that may result in cure (Winter
et al.,, 2012). A majority (almost 80%) of patients with pancreatic
cancer have locally advanced disease or distant metastases at the time
of diagnosis and the predominant presentation at an advanced stage
clearly explains why pancreatic cancers are so deadly (Siegel et al.,
2018). A remarkable feature in pancreatic cancer is the propensity to
metastasize early, even for small, early stage cancers (Ansari et al.,
2017; Hur et al., 2016). A further contributor to poor cancer biology is
the invasion of small veins that occurs remarkably common in pancre-
atic cancer and is a relatively unique feature of PDAC compared with
cancers of other organs. Venous invasion is identifiable in two-thirds
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of surgically resected pancreatic cancers (Noe et al., 2018). In addi-
tion, the microenvironment of PDACs is characterized by an abundant
desmoplastic stroma that may occupy up to 80% of the tumor volume
(Whatcott et al., 2015; Feig et al., 2012). The PDAC stroma consists
of a dynamic assortment of extracellular matrix components including
fibronectin, collagen, proteoglycans, and hyaluronic acid, nonmalig-
nant cells including fibroblasts, endothelial cells, and immune cells,
and soluble proteins such as growth factors and cytokines (Feig et al.,
2012). Of clinical relevance, the PDAC stroma represents a physical
barrier to the delivery of chemotherapeutic agents and simultaneously
supports tumor growth and promotes metastatic dissemination. The
dense desmoplastic stroma has been suggested to be a determinant of
the aggressive metastatic growth (Whatcott et al., 2015; Feig et al.,
2012). The development of an abundant stroma during tumor growth
distorts the architecture of the normal pancreas, resulting in an abnor-
mal configuration of blood vessels and lymphatics in PDACs (Neesse
et al.,, 2011; Andersen et al., 2017; Hansem et al., 2019). Geometric
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Table 1
Model variables.
Variable Description Source
a., a, Volume fraction of cell and fluid Eq. (S1);,
S. Cell growth/death Eq. (S1),,
u, u, Interstitial cell and fluid velocity Eq. (S1)54
P,, AP,,, Ac IFP, cell-cell stress, chemotaxis stress Eq. (S1);
.8 L Cell-ECM, fluid-ECM, cell-fluid interaction coefficients Eq. (S1);, and (S2)
Q,, 0, Fluid between interstitium and vasculature, lymphatics Eq. (S4) and (S5)
T, T, Conductivity of vascular, lymphatic vessel wall Eq. (S4) and (S5)
I;;, 13,* Effective vascular pressure, lymphatic pressure Eq. (S4) and (S5)
p, G, C ECM component, protease, chemokine Eq. (S1)s_;

resistance to blood flow is high in microvascular networks showing
high fractions of low-diameter vessels, resulting in elevated microvas-
cular pressure (Stylianopoulos et al., 2018). Preclinical and clinical
investigations have revealed that PDACs may show highly elevated
interstitial fluid pressure (IFP) (Chauhan et al., 2014; DuFort et al.,
2016) as well as high fractions of hypoxic tissue (Dhani et al., 2015).
Intertwining in vivo and in vitro data and in silico models are essential
to overcome intrinsic challenges associated with a complex system like
PDAC (Jackson et al., 2014; Yankeelov et al., 2015; Zhang et al., 2017;
Jarrett et al., 2021). In this work we use an in silico PDAC model to
deal with the interplay between data from in vitro experiments based
on microfluidic systems and data from preclinical models and clinical
patient-derived observations. The proposed mathematical model builds
on a previously derived computer model (Waldeland and Evje, 2018;
Evje and Waldeland, 2019) that has been trained with data from in
vitro experiments (Shields et al., 2007; Shieh et al., 2011; Polacheck
et al., 2011). These experimental studies have focused on detecting
finer details of fluid-driven migration mechanisms motivated by the
fact that many solid tumors are associated with elevated interstitial
fluid pressure (IFP) (Netti et al., 2003; Stylianopoulos et al., 2018;
Andreozzi et al.,, 2019; Nia et al., 2020; Follain et al., 2020; Zhou
et al., 2021). In addition, the in silico PDAC model is informed with
input data as reported from the study of preclinical models of human
PDAC (Andersen et al., 2017) with focus on various aspects of the tumor
microenvironment (TME). We aim at using the model to shed light on
the questions: Why is lymphatic and venous invasion so common in
pancreatic cancer? Which associations can be found between metastatic
propensity and characteristics of the TME? A natural presumption for
having a large and aggressive invasion of cancer cells to the lymphatics
and the venous system in the peritumoral region is that there are
small clusters of tumor cells that escape from the primary tumor. If the
pancreatic cancer cells are encoded with well-tuned migration mecha-
nisms promoting this behavior, this suggests an explanation why it is so
difficult to detect metastatic spreading, even for small tumors (Hruban
et al., 2019).

2. Methods

The mathematical model builds on our recently published frame-
work (Waldeland and Evje, 2018; Evje and Waldeland, 2019; Walde-
land et al., 2021). The baseline parameters of the model are summa-
rized in Table S1-S4 (Supporting Information). Description of model
equations, methodology, and limitations can be found in Supporting
Information. A main novelty of the current paper is to adapt the
model to a setting which is relevant for preclinical and clinical data.
New elements that must be addressed are: (i) Represent the unknown
stochastic intratumoral vasculature as well as the collecting peritu-
moral lymphatic network in an appropriate form; (ii) Show that the
two competing fluid-sensitive migration mechanisms, when exposed
to a realistic fluid velocity field, have the ability to create aggressive
behavior; (iii) Verify that this aggressive behavior, in terms of number
of isolated islands that are formed, in fact are correlated to higher IFP.

3. Results

Recent research has highlighted the potential important role played
by fluid flow as a driver for metastatic dissemination (Nia et al., 2020;
Follain et al., 2020; Zhou et al., 2021). We formulate the computer
model as simple as possible in terms of number of different cells (cancer
cells, fibroblasts and other stromal cells, immune cells, etc.), different
chemical components (chemokines, cytokines, proteases, growth fac-
tors, etc.), and stromal components (ECM components). Main variables
that are used in the model are given in Table 1. The starting point for
model simulations is a non-metastatic, coherent primary solid tumor
(see Fig. 1A, left) where the pancreatic cancer cells are armed with
two fluid-sensitive migration mechanisms (Shields et al., 2007; Shieh
et al.,, 2011; Polacheck et al., 2011). Faced with the fact that not
much details are known regarding the TME, we run the in silico PDAC
model informed with an ensemble of stochastic generated realizations
of parameters that characterize features of the physicochemical mi-
croenvironment (Waldeland et al., 2021). The following aspects of the
TME is varied:

(i) Amount of produced fluid due to varying density and position of
leaky microvascular vessels as expressed through T, (x), see Eq. (S4)
and Eq. (S8) in Supporting Information, and high internal pressure }3;‘
(which is kept constant) reflecting high resistance to blood flow. A
typical example of T,(x) is visualized in Fig. 1A (middle);

(ii) Amount of fluid collected through the peritumoral lymphatics and
venous system as represented by T;(x), see Eq. (S5) and Eq. (S9) in
Supporting Information. A typical example of 7;(x) is shown in Fig. 1A
(right);

(iii) density of the PDAC stroma expressed in terms of its hydraulic
conductivity through ifw, see Eq. (S1),, Eq. (§2), and Eq. (S3) combined
with Eq. (S7) in Supporting Information.

Armed with the simulated ensemble of in silico tumors, we analyze
these computer generated data and search for associations between
metastatic propensity and features of the physicochemical microenvi-
ronment. Model assumptions are:

(i) We assume an aggressive cell line whose aggressiveness is character-
ized by the choice of parameters that determine the strength of the first
and last term of Eq. (S6) associated with the upstream and downstream
migration (Waldeland and Evje, 2018; Evje and Waldeland, 2019). We
refer to Supporting Information Table (S3) and Table (S4) for values.
(ii) We consider a domain of size 1 cmx 1 cm and assume characteristic
length L* = 1 cm and characteristic time 7* = 10* s (Supporting
Information Table (S1)) and consider a simulation period of T = 25
(dimensionless) which amounts to approximately 69 h. We consider an
ensemble of 50 randomly generated realizations of k, (dimensionless),
T,(x), and T;(x) ([Pa s]™") as described, respectively, in Eq. (S7), (S8),
and (S9) (Supporting Information).

(iii) In the preclinical study (Andersen et al., 2017), metastatic propen-
sity is quantified by exploring the peritumoral lymph nodes and mea-
suring their length. Metastatic propensity in the context of the in silico
model is measured by computing the averaged number of isolated
islands of tumor cells which have been formed during the time period
[0,T]. More precisely, we introduce the set E, that identifies the
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Fig. 1. The physicochemical microenvironment (1 cm x 1 cm) of the in silico PDAC model versus preclinical data. A, Primary tumor before simulation starts (left), example of
T,(x) generated from Eq. (S2) in Supplementary Data characterizing the intratumoral microvascular network (middle), and T;(x) generated from Eq. (S3) in Supplementary Data
describing the peritumoral lymphatic network (right). B, Plot of interstitial fluid pressure (IFP) vs. microvascular density through T}, (left) and Q,,,, (right). C, Plot of T}y,
vs. Ty p (left) and Q. p vs. Qypp (right). Green circle = non-metastatic growth (n = 0). Pink circle = medium metastatic propensity (1 < n < 4). Blue circle = high metastatic
propensity (n >5). D. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Source: Data from PDAC preclinical model reproduced from Andersen et al. (2017) reflecting microvascular density (MVD) vs. IFP.

connected regions with a cell volume fraction larger than or equal to a
lower limit ¢

E.(x,t)={x€ 2| a.(x,1) > €}, (@D)]

where we choose e € [0.005,0.025]. For the simulation results presented
below, we have set e = 0.011. From E| ,;,(x,?), we count the number of
isolated islands N (¢) at any time ¢. Finally, we take the average of N (7)
over [0,T]

nzN:f/o N(s)ds @

which gives the averaged number of isolated islands N. This number is
rounded off to its nearest integer n ~ N and used as a metric to measure
metastatic propensity. We have grouped the degree of aggressiveness
into the following categories (motivated by Andersen et al. (2017)):
n = 0 (non-metastatic), 1 < n < 4 (medium metastases), and n > 5
(strong metastases).

(iv) As a measure of the intratumoral density of the microvascular
system (MVD), we use the following quantities Q,,p (s7!) and Ty, p
([Pa s]~!) extracted from the computer model:

Ouvp = / 0,0 dx = / T,00(P* = P) dx.
QUﬂSC QUGSC (3)

Tyyp = / T,(x) dx.

vasc
O v p represents the total amount of fluid that is produced from the
intratumoral leaky vascular system. We note that Q,,, p is influenced

by IFP P, which in turn is sensitive to whether the ECM is dense or
sparse. In contrast, Ty, p, is more directly related to the density of the
microvascular network. Similarly, we introduce Q,; p and T),; p given

by
O,(x)dx = /
Qymp Q

Tyip = / T)(x) dx

Qlyrrw
to characterize the lymphatic network and its ability to drain interstitial
fluid in the peritumoral region.
(v) We use the variable IAcw to divide the ECM into three different
categories: (i) sparse, which amounts to 1 < lAcw < 11; (ii) intermediate,
which amounts to 11 < I}w < 19; (iii) dense, which amounts to 19 <
k, < 30. In other words, we use the level of resistance force felt by
the interstitial fluid as it flows as a measure of the density of ECM (Wu
et al., 2013; Waldeland et al., 2021).

Associations between metastatic behavior and the physicochemi-
cal microenvironment were searched for by comparing maximal IFP
(Pyax =maxg  P,), Opyp (OF Tyyyp) and QO p (or Ty p) as given
by (3) and (4). The computed values were related to the metastatic
status as expressed by #n of isolated clusters of tumor cells (island)
to mimic the study of preclinical models of human PDAC (Andersen
et al., 2017). The underlying assumption is that isolated islands is an
indicator of the tendency to generate dissemination of tumor cells to
peritumoral lymphatics (Onozato et al., 2013). For statistical analysis
of the in silico generated data we rely on the Wilcoxon rank sum test

T,(x)(P,, — P) dx,
b 4

Opmip =
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Fig. 2. The metastatic propensity of the in silico PDAC model. A, Interstitial fluid pressure (IFP) in tumors with non-metastatic growth (n = 0), medium metastatic propensity
(1 £ n <4), and high metastatic propensity (n > 5.) B, Q,,,p Vs. metastatic propensity. C, T, , vs. metastatic propensity. D, Data from two PDAC preclinical models reflecting
IFP vs. metastatic propensity (reproduced from Andersen et al. (2017)). E, Data from preclinical PDAC models reflecting vascular density (MVD) vs. metastatic propensity.

Source: Reproduced from Andersen et al. (2017)

(Mann Whitney U Test) as implemented in MATLAB, The MathWorks,
Inc., Natick, Massachusetts, United States.

3.1. Model predicts that metastatic propensity is associated with high IFP

The physicochemical tumor microenvironment of the generated in
silico tumors differed substantially. We observed that T, varied
between 1-10~% /T* and 12-10~% /T*, see Fig. 1B (left). We found that IFP
varied approximately between 1 and 51 mmHg whereas Q,,, ,, varied
between 0.05/7* and 0.44/T*, see Fig. 1B (right). For the lymphatic
network it was observed that Ty,; , varied between 1 - 10~*/T* and
12 - 10™*/T* (Fig. 1C, left) whereas Q,,;;p varied between 0.06/T*
and 0.43/T* (Fig. 1C, right). The metastatic level varied between 0
and 12 groups of tumor cells that had detached from the primary
tumor and formed isolated islands as computed by (2). In Fig. 1C (left)
Ty p and Ty, ; p have been plotted. As expected, there is no correlation
between these quantities as they have been generated randomly and
independently. Fig. 1B (left) shows that IFP did not correlate with
Tyyp characterizing the microvascular density (MVD) nor O,y p, See
Fig. 1B (right). This is consistent with the preclinical data shown in
Fig. 1D. On the other hand, from Fig. 1C (right), we see that there
is a rather clear correlation between Q,,,,, and Q,,; p which charac-
terize, respectively, the amount of fluid that leaks from the vascular
system and the amount that is collected in the peritumoral region.
This visualizes the fact that the underlying conductivity, through k,,, is
homogeneous and that there is a good balance between fluid produced
and collected. Regarding the metastatic propensity the total number
of in silico tumors with no detachment, i.e., n = 0, was found to be
21, the number with mild (medium) metastasis, i.e., 1 < n < 4, was
18, whereas the number of tumors with strong metastatic propensity
(n > 5) was found to be 11. Fig. 2A shows that the more metastatic-
positive (both medium and high) tumors had significantly higher IFP
than the non-metastatic (P =3-107° < 0.05and P = 5 107° < 0.05,
respectively). This is consistent with preclinical data from (Andersen
et al., 2017) shown in Fig. 2D for two different PDAC models. On the
other hand, these three different groups did not differ significantly in
terms of leaked IF reflected by Q,,,p (Fig. 2B) with P-values given
by P 08 > 005 and P = 0.8 > 0.05, when comparing non-
metastatic group versus medium and high metastatic propensity group,
respectively. The corresponding visualization of Ty, (Fig. 2C) also
shows behavior similar to preclinical data in Fig. 2E. A finer check
of the role of the density of ECM as reflected by the coefficient k,,

representing the fluid-ECM resistance force, is shown in Fig. 3. We
found that 20 of the in silico tumors were in the category sparse ECM,
12 classified as medium ECM, and the remaining 18 classified as dense
ECM. For all three categories (sparse is shown in panel A, medium
in panel B, dense in panel C) the same correlation is reflected that
higher metastatic propensity is associated with high IFP. The P-value
in Fig. 3A is P 0.0074 < 0.05 when we compare non-metastatic
versus metastatic group. The corresponding P-values in Fig. 3B and
C are P = 0.004 < 0.05 and P = 0.0098 < 0.05, respectively. The
case with sparse ECM shown in Fig. 3A reflects a situation with many
instances of non-metastatic propensity and a large spread in the IFP
ranging from 1 to 37 mmHg. For dense ECM shown in Fig. 3G, it is
the opposite with many instances of high metastatic propensity and IFP
varying from approximately 40 to 52 mmHg. Taken together, the above
observations suggest that the metastatic propensity was associated with
high IFP but not with high (or low) leakage of fluid through QO p.
This behavior is similar to what was reported in Andersen et al. (2017)
for two preclinical models (Capan-2 and BxPC-3) as shown in Fig. 2D,
which may be compared to Fig. 2A for the in silico model. The in
silico model also suggests that high IFP combined with denser ECM
(Fig. 3B and C combined) is a more certain indication of high metastatic
propensity than when ECM is sparse (Fig. 3A).

Having looked at the ensemble behavior of the in silico PDAC
models, we now turn to more detailed simulations of selected samples
from the total ensemble of 50 PDAC models. The only preference used
in this selection is that they demonstrate clearly different types of tumor
progression behavior, i.e., metastatic versus non-metastatic.

3.2. Sparse ECM is associated with less metastatic propensity

We take a closer look at the tumor progression pattern predicted by
the in silico PDAC model. We focus on two of the instances shown in
Fig. 3A which correspond to tumors with sparse ECM. We are interested
to see under what circumstances metastatic behavior may evolve. We
select case #23 for that purpose. The simulation result is shown in Fig. 4
at time T' = 25. We find that the number of isolated clusters of tumor
cells that form vary between 0 and 7 with an average equal to n = 4,
see Fig. 4B. The invasive front is heterogeneous and the periphery of
the primary tumor contains finger-like parts (Fig. 4A). The cell velocity
associated with the isolated clusters is relatively high (Fig. 4C) and
seems correlated to the accumulated high chemokine concentration in
the peritumoral region (Fig. 4E). The interstitial fluid velocity (Fig. 4F)
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is a result of the leaked fluid from the intratumoral vascular network
(Fig. 4H) and the collecting lymphatic network (Fig. 4I) and the tissue
conductivity through k,, (here k, ~ 10). The IFP (Fig. 4G) takes a
maximal pressure close to 42 mmHg. The main reason for this relatively
high IFP for this case with sparse ECM is the high value of T, shown in
Fig. 4H.

Secondly, we illustrate an example, still for the case with sparse
ECM, where there is no metastatic behavior, i.e., n = 0. We consider
case #10 for that purpose. The only difference between this case and
the previous is k,, T,, and T}. The simulation result is shown in Fig. 5.
For this case the hydraulic conductivity is slightly higher as k, ~ 6
(i.e., less resistance force felt by the fluid). Looking at Fig. 5H we see
that the amount of leaky microvascular vessels is considerably lower
compared to the previous example in Fig. 4. This gives rise to a lower
IFP shown in Fig. 5G (around 29 mmHg). This implies a lower stress
from the fluid on the tumor cells that results in a weaker mobilization
of the upstream migration mechanism through %UT, see discussion
of Eq. (S6) in Supporting Information. Panel 5A shows that the resulting
invasive front is somewhat irregular but no clusters of cells have been
able to detach throughout the simulation period (Fig. 5B).

~
~

3.3. Dense ECM increases the metastatic propensity

We focus on the cases with tumor evolution when ECM is dense.
As seen in Fig. 3C, when ECM is dense (i.e., kw is high) most of the

samples show medium or high metastatic propensity. What is a typical
behavior for this group? As a representative example we consider case
#30. The simulated result is shown in Fig. 6. The situation seen here
strongly contrasts the previous case. We counted up to 16 isolated
groups of cancer cells (Fig. 6B) during the simulated period. ECM
density is high as represented by k, 29. Most strikingly is the
high and heterogeneous T, seen in panel 6H. This results in a high
IFP with a maximum close to 50 mmHg (Fig. 6G). This creates a
stronger stress from the fluid on the tumor cells that strengthens the
upstream migration mechanism which in turn effectively cleaves groups
of cells from the primary coherent tumor, as seen in Fig. 6A. Once
this aggressive metastatic migration pattern has been established, it
will persistently continue and guide new tumor cells from the primary
tumor to the lymphatics.

~
~

4. Discussion

The in silico PDAC model has confirmed that the combination of
autologous chemotaxis (Shieh et al.,, 2011) and the upstream fluid
stress-mediated mechanism (Polacheck et al., 2011) can give rise to
metastatic behavior. Elevated IFP will force interstitial fluid to flow
from the tumor tissue into the adjacent peritumoral tissues. This fluid
flow may transport proteolytic enzymes and chemokines that facilitate
tumor cell migration towards lymphatic vessels (Fink et al., 2016;
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Andersen et al., 2017; Nia et al., 2020). Combined with the upstream- matrix of connective tissue fibers appearing in thick filament bundles,
mediated migration this helps small groups of tumor cells at the periph- and the majority of blood vessels were located in these bundles. To
ery to form isolated islands. A major challenge in pancreatic cancer mimic this situation we generated stochastic fields of T, T}, and k,,
treatment is the presence in lymph nodes of single or small clusters as input to the in silico PDAC model but constrained within certain
of tumor cells (Fink et al., 2016). The preclinical PDAC model studied ranges to ensure that the resulting IFP was consistent with the findings
in Andersen et al. (2017) showed distinct ductal structures enclosed in Andersen et al. (2017). The results produced by the in silico model
by an abundant desmoplastic stroma. The stroma was seen as a dense with 50 tumors showed a behavior with striking similarities to the
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results reported in Andersen et al. (2017) in the following sense: (i) No
correlation was found between IFP and amount of leaked fluid from
the intratumoral vascular system through T, or O, p (Fig. 1B).
This behavior is also consistent with other studies both in patients with
cervix cancer (Milosevic et al., 2001) and in experimental tumors (Lunt
et al., 2008). (ii) No clear association was seen between metastatic
propensity and amount of leaked fluid from the intratumoral vascular
system through Q,,y p or Ty, p (Fig. 2B and C). (iii) Clear association
was observed between high IFP and metastatic propensity in terms of
number of generated isolated groups of tumor cells (Fig. 2A).

The in silico PDAC model suggests that high IFP typically is a
result of a proper combination of sufficiently high internal vascular
pressure 130*, production of IF through Q,, and high k, (density of
ECM). The most aggressive tumor cell migration was seen when the
density of ECM was high, see Fig. 3B and C where k,, > 11. The model
suggests that this is due to an increase in the stress from the outgoing
fluid at the tumor periphery that triggers tumor cells to go upstream
where they are more closely packed (see Fig. 6A). This amplifies a
detachment mechanism as cancer cells at the tumor margin, where
they are sparsely distributed, is under a stronger dominance of the
downstream migration where cells move towards higher chemokine
concentrations in the peritumoral region close to the lymphatics, see
Fig. 6E. In the recent work (Waldeland et al., 2021) we explored a cell-
fibroblast-fluid model where the upstream migration was not included.
This model did not reflect that invasive and metastatic behavior was
correlated to high IFP. A key point in the current cell-fluid model
is the relation between k., and k, in Eq. (S3). It suggests that the
upstream force through k,,, is adjusted by the cancer cells to the cell-
fluid resistance force l}w. A denser ECM (i.e., higher IAcw) gives rise to
a stronger stress from the fluid on the cancer cells which respond with
a stronger upstream force. Previous preclinical studies for melanoma
and cervix carcinoma xenografts have shown that high IFP and lymph
node metastasis are correlated both in tumors with and without hypoxic
regions (Rofstad et al., 2002; Hompland et al., 2012). This suggests
that the detachment mechanism demonstrated in this work might
represent a general strategy by which cancer cells can create metastatic
dissemination. We can easily envision to modify the model to apply
it in the context of other solid tumors where fluid flow is thought to
play an active role in the tumor progression. Nearby examples include
cervic cancer (Hompland et al., 2012), breast cancer (Shieh et al., 2011;
Polacheck et al., 2011), melanoma (Rofstad et al., 2002), and brain
cancer (Munson et al., 2013; Kingsmore et al., 2016).

Can the proposed in silico PDAC model be relevant for clinical data?
The incidence and the site of development of lymph node metastasis
depend on the density and structure of the peritumoral lymphatics
which may differ in PDAC xenografts versus human PDACs. This may
be different from patient to patient, explaining in part the differences
observed in preclinical behavior and clinical outcomes. Another aspect
is whether there are clinical data available for quantification of ECM
density and vascular architecture. This is (currently) only available for
assessment in the tissue proper through biopsies or by microscopy of
the resected tumor. The latter represents a problem as usually less than
20% of patients with PDAC are resectable at time of diagnosis. Other
surrogate measures of ECM density may thus be entertained, currently
only available in the experimental setting or by imaging modalities
such as CT/MRI or novel techniques of ultrasonography (Li et al., 2019;
Wang et al., 2019).

In summary, we have demonstrated a simplest possible compu-
tational model, based on sound fluid mechanical and bio-chemical
principles on tissue level, that can give a plausible explanation of
the association which has been found between metastatic propensity
and high IFP for preclinical PDAC models. Future work will seek to
enhance the applicability of the model by combining it with robust data
assimilation methods for revealing hidden characteristics of TME based
on patient-specific type of data, as well as extending it to explore drug
delivery scenarios (Stylianopoulos and Jain, 2013; Weis et al., 2015;
Dewhirst and Secomb, 2017; d’Esposito et al., 2018).
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