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effect of disturbance. Reproductive success increased 
with increased Lmin and with higher probability of 
reproductive success by length. Multiple seismic sur-
veys were conducted in 2015 off the northeast coast 
of Sakhalin Island, with concomitant benthic prey 
surveys, photo-identification studies, and whale distri-
bution sampling, thus providing a unique opportunity 
to compare output from SDP models with empirical 
observations. SDP model predictions of reproduc-
tive success and habitat use were similar with and 
without acoustic disturbance, and SDP predictions 
of reproductive success and large-scale habitat use 
were generally similar to values and trends in the 
data. However, empirical estimates of the proportion 
of pregnant females nearshore were much higher than 
SDP model predictions (a large effect, measured by 
Cohen’s d) during the first week, and the SDP model 
overestimated whale density in the south and underes-
timated density around the mouth of Piltun Bay. Such 

Abstract  We used a stochastic dynamic program-
ming (SDP) model to quantify the consequences of 
disturbance on pregnant western gray whales during 
one foraging season. The SDP model has a firm basis 
in bioenergetics, but detailed knowledge of minimum 
reproductive length of females (Lmin) and the relation-
ship between length and reproductive success (Rfit) 
was lacking. We varied model assumptions to deter-
mine their effects on predictions of habitat use, pro-
portion of animals disturbed, reproductive success, 
and the effects of disturbance. Smaller Lmin values led 
to higher predicted nearshore habitat use. Changes 
in Lmin and Rfit had little effect on predictions of the 
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differences in nearshore habitat use would not affect 
SDP predictions of reproductive success or survival 
under the current seismic air gun disturbance scenario.

Keywords  Bayesian analysis · Eschrichtius 
robustus · Russia · Population consequences 
of disturbance · PCOD · Stochastic dynamic 
programming

Introduction

Each summer and fall, western gray whales (Eschrich-
tius robustus) forage off the NE Sakhalin coast in Rus-
sia in two defined areas, known as the offshore and 
nearshore feeding areas, both of which are close to 
long-term oil and gas developments and their associ-
ated activities. In 2015, two oil and gas companies con-
ducted multiple seismic surveys near or overlapping 
those gray whale feeding areas, which could change 
gray whale behavior and distribution (Gailey et  al., 
2007, 2016; Muir et  al., 2015, 2016; Yazvenko et  al., 
2007). Specifically, there was concern that the com-
bined 2015 seismic surveys could lead to decreased 
gray whale foraging activity and reduce population 
growth (Aerts et al., 2022).

The population-level effects of previously docu-
mented changes in behavior and distribution remain 
unclear. Since they are capital breeders, gray whales 
would generally be less affected by lost foraging 
opportunities than income breeders (McHuron et  al., 
2017). However, several characteristics of the popula-
tion make it susceptible to decline. Their two known 
feeding areas are small compared to that of eastern 
gray whales and many other baleen whales (Mate 
et  al., 2011; Moore et  al., 2003), and they exhibit 
a high degree of site fidelity to these areas (Fig.  1) 
(Bröker et al., 2020). In addition, the estimated popu-
lation size is small for a K-selected species, with 175 
identified non-calf individuals, of which 33 are known 
reproducing females (Cooke et  al., 2017). Further-
more, environmental factors such as ice conditions 
can limit the duration of their foraging season, reduce 
energy intake, and lower calf survival (Bradford et al., 
2012; Gailey et al., 2020; Perryman et al., 2020).

The population consequences of disturbance (PCOD) 
framework offers a conceptual model linking envi-
ronmental impacts, changes in behavior, physiologi-
cal health, and population growth through a series of 

transfer functions (New et al., 2014). Stochastic dynamic 
programming (SDP) modeling provides a way to simu-
late natural situations of disturbance in the presence of 
environmental variation while allowing individuals to 
vary in their behavioral responses to maximize repro-
ductive fitness, ultimately linking behavior to individ-
ual health and health to demographic rates (Clark & 
Mangel, 2000; Houston et  al., 2006; Mangel & Clark, 
1988; Mangel & Ludwig, 1992). Although the applica-
tion of SDP models to determine the effects of reduced 
marine mammal foraging is relatively new, the modeling 
approach has already provided novel insights on whale 
populations (Costa et al., 2016; McHuron et al., 2017; 
Pirotta et al., 2019).

McHuron et  al. (2021), using hypothetical acous-
tic disturbance data, developed the first SDP model 
for pregnant western gray whales. They showed that 
disturbances that excluded or reduced foraging in the 
nearshore area, where prey energy density is rela-
tively low, did not affect predictions of female sur-
vival or reproductive success (carrying a fetus to term 
and weaning the calf back on the foraging grounds). 
Regardless of disturbance scenarios, access to the 
high-energy, amphipod-dense offshore feeding area 
was particularly important to successful reproduc-
tion (McHuron et al., 2021). However, the effects of 
important underlying model assumptions about mini-
mum maternal length and the reproductive fitness 
functions were not investigated.

In 2015, benthic prey surveys, photo-identification 
studies, and distribution investigations occurred in con-
junction with seismic surveys and intensive acoustic 
monitoring in and near the gray whale feeding areas, 
providing a unique opportunity to further develop, apply, 
and test the SDP model of McHuron et al. (2021). Spe-
cifically, the objectives of the work described here were 
to (1) perform sensitivity analyses on the western gray 
whale SDP model of McHuron et al. (2021) to determine 
how changes in minimum reproductive female length 
and the reproductive fitness function affect predictions 
of habitat use, probability of disturbance, and reproduc-
tive success; (2) compare disturbance-free SDP model 
predictions of habitat use and reproductive success with 

Fig. 1   Map showing the defined feeding cells (numbered pink 
polygons) and the 2015 seismic survey areas (gray polygons). 
Distribution data were collected at the 13 shore-based behavior 
stations (red triangles), and nearshore gray whale density was 
highest around the mouth of Piltun Bay (tip of yellow triangle)
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predictions from models that include measured acous-
tic exposure during the 2015 seismic surveys; and (3) 
compare SDP model predictions that account for actual 
acoustic disturbance and the observed gray whale distri-
bution and photo-identification data collected in 2015.

Methods

Study area

Following McHuron et  al. (2021), we divided the 
feeding area into 11 cells (seven nearshore and 
four offshore) based on the 2015 seismic survey 
locations, gray whale density, and the locations 
of long-term benthic sampling stations (Fig.  1). 
Overall, prey energy density is much higher and 
a higher proportion of energy is provided by 
amphipods in the offshore feeding area (Maresh 
et  al.,  2022). Young of the year only utilize the 
nearshore area, and as they age, gray whales tend 
to increase their use of the offshore area (Schwarz 
et al., 2022).

SDP model

The SDP modeling development involves two parts, 
backward iteration and forward simulation, as described 
in detail in McHuron et  al. (2021). Backward itera-
tion determines the behavioral choices that maximize 
reproductive fitness using prey availability and energy 
requirements for survival and reproduction. Forward 
simulation predicts how a population will respond 
based on individuals’ behavioral choices, prey availabil-
ity, and disturbance.

Because they are capital breeders, pregnant gray 
whales on the foraging grounds have to procure suffi-
cient energy to meet metabolic and reproductive needs 
for the foraging period, subsequent migrations, and 
time at the breeding grounds. The bulk of reproduc-
tive costs (most of gestation and almost all of lacta-
tion) are incurred during migrations and in the breed-
ing area, when females are presumed to fast or have 
minimal foraging success (Nerini, 1984; Sanchez-
Pacheco et al., 2001). McHuron et al. (2021) relied on 
quantification of metabolic rates of gray whales, cost 
of pregnancy, and cost of lactation from two previous 
bioenergetics modeling efforts (Villegas-Amtmann 

et al., 2015, 2017). During foraging, energy allocation 
was prioritized in the following order: current meta-
bolic needs, current fetal growth, future metabolic 
needs, and future gestation and lactation. If a foraging 
female could not meet her current energetic needs, fat 
reserves were used to maintain metabolism as well as 
allow for fetal growth at a reduced rate. Otherwise, 
surplus energy was stored as fat for future needs. The 
survival probabilities of the female and fetus during 
the non-foraging period were a function of the size of 
the fetus and the female’s total stored fat energy when 
the female left the foraging ground. Smaller females 
could store less fat for use during the fasting period.

Given the fetus length and the female’s fat energy 
stores at the end of the foraging season, fitness val-
ues of all potential behaviors at previous time steps 
were calculated via backwards iteration (Clark & 
Mangel, 2000; Mangel & Clark, 1988), thereby deter-
mining the behavior that optimized reproduction. 
At each daily time step, females could (1) leave the 
foraging area completely, (2) continue to feed at the 
current location, (3) travel within the current cell, 
or (4) travel to a different cell. In the modeling work 
described here, we used backward iteration to deter-
mine the probability of a whale selecting one of the 
four behavioral options given her fat mass, the length 
of the fetus, location, and food availability at each 
time step.

We calculated available benthic prey energy for 
each of the 11 cells (Fig. 1) for three periods (early, 
mid, and late season) using biomass values and 
energy density of six benthic prey groups collected  
in 2015 (Maresh et  al.,  2022). For use in the SDP 
model, prey energy distribution probabilities were 
modeled as lognormal distributions for each cell and 
time period and converted to equally spaced, discrete 
categories (McHuron et al., 2021).

In the forward Monte Carlo simulation, individual 
females behaved in one of the four ways at each 6-h 
time step. The behavioral state was determined using 
the probability of each behavior state conditioned on 
the female’s fat mass, the length of her fetus, loca-
tion, and food availability. Behavioral state probabili-
ties were determined from the backward iterations. 
We drew both population and individual parameters 
at the start of the feeding period from appropriate 
distributions (described below). The method allows 
us to capture uncertainty and natural variability in 
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parameter estimates, including population size, body 
length of each female, starting fat mass, and starting 
fetal length. We also varied travel (speed, time, and 
linearity) and foraging parameters (length of dive 
cycle and percentage of time spent diving) for each 
individual and 6-h time step by drawing from appro-
priate distributions.

We assumed females died if their fat mass fell 
below 5% of length-specific total body mass based 
on studies from many mammalian species and cited 
in McHuron et  al. (2021). Survival of a female to 
the following foraging season was a function of 
her length and fat reserves when she left the forag-
ing grounds. Alternatively, a female could die at any 
time from random chance based on the probability of 
mortality for non-calves estimated in mark-recapture 
studies (Cooke et al., 2017). Because the SDP model 
of McHuron et  al. (2021) considered only a single 
breeding event, we did not include the option of abor-
tion during a foraging season, which would occur 
in a multi-year SDP model (e.g., McHuron et  al., 
2018). We follow the terminology of Cooke (2010) 
and define reproduction (or reproductive success) as 
successfully carrying a fetus to term and weaning the 
calf upon return to the foraging grounds.

We slightly modified the forward simulation by 
changing the arrival date of individuals to reflect a 
later arrival at the foraging grounds distributed over 
several days (normal distribution with a mean date 
of June 15 ± 5 days  s.d.). The modification does not 
change overall survival or reproductive rates because 
females in the model compensate for lost forag-
ing at the beginning of the season (McHuron et  al., 
2021), but the more dispersed, later arrival date bet-
ter matches field observations. The model structure 
allowed females to arrive in the feeding area as early 
as mid-May and forage for up to 25 weeks.

For each population replicate, we calculated pro-
portions of pregnant females in the nearshore feed-
ing area (Cells 1–7), the offshore feeding area (Cells 
8–11), or outside both areas (not arrived yet or left 
the area) over the foraging season for each 6-h bin. To 
determine the mean and variance of those proportions 
over time, 6-h bins of the calculated proportions were 
pooled by the three areas, population replicate, and 
week of year. Weekly time bins were used to reduce 
the effects of individual movements that created a 
high level of stochasticity at smaller time scales.

Objective 1: Application of SDP model with different 
reproductive female lengths and fitness functions

The probability of successful reproduction (reproductive 
fitness function; Rfit) is dependent on time of departure 
from the foraging grounds, maternal mass at departure, 
maternal length, and fetal length at departure. Because 
Rfit is based on functions with a high level of uncertainty, 
we tested three different fitness functions to determine 
how the shape of the function affected overall reproduc-
tive success and female behavioral choices, as indicated 
by differences in foraging location over time. We used 
(1) Rfit of McHuron et al. (2021), (2) Rfit with a higher 
probability of calf survival by maternal mass and a small 
change in the shape of the function defining calf survival 
vs. fetus length, and (3) Rfit with a higher probability of 
calf survival by maternal mass and a large change in 
the shape of the function defining calf survival vs. fetus 
length (Supp. Mat.: Variations in Rfit; Table S1; Figs. S1 
and S2). We refer to the fitness functions as low, medium, 
and high probability of reproductive success (Fig. 2).

McHuron et  al. (2021) sampled female body 
length from a normal distribution (12.7 ± 0.6  m) 
with a range limit of 11–14 m. That distribution was 
based on lengths of southbound pregnant females 
from whaling data (Rice & Wolman, 1971; Villegas-
Amtmann et  al., 2015). However, their SDP model 
results indicated smaller females are unlikely to suc-
cessfully reproduce. In addition, the length distribu-
tion of reproductive females in the field is most likely 
shifted higher compared to the distribution tested 
by McHuron et  al. (2021) because photo-identifica-
tion studies can only identify a reproductive female 
once she has successfully returned to the foraging 
grounds with a calf, perhaps not when she was first 
pregnant. Thus, for comparison with field data, three 
additional distributions of reproductive female length 
were tested in this paper. These length distributions 
had the same normal mean and standard deviation as 
in McHuron et  al. (2021) but limited the minimum 
reproductive lengths (Lmin) to 12.1, 12.7, or 13.0 m 
instead of 11.0 m. The lower limits were determined 
by estimating the length at which 50% of the females 
had successfully reproduced, based on recent growth 
rate information of gray whale females (Agbayani 
et  al., 2020) and the three Rfit (Supp. Mat.: Deter-
mination of minimum limit on reproductive female 
length; Fig. S3).
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To provide a distribution of resulting reproductive 
rates from forward simulations, 100 populations were 
simulated for each of the twelve model permutations, 
that is, for three fitness (Rfit) functions with four mini-
mum reproductive lengths (Lmin) without disturbance.

The proportion of females nearshore and off-
shore was very similar for many of the twelve mod-
els. Therefore, to compare SDP model predictions of 
habitat use at a finer scale of SDP cell, we focused on 
a representative subset of three models: two models 
illustrating the highest and lowest nearshore propor-
tions and one model characterizing a roughly aver-
age nearshore proportion. On a weekly scale, we 
used Cohen’s d (Cohen, 1977; White et al., 2014) to 
compare results between SDP models. Cohen’s d is 
calculated as the difference in mean predicted values 
divided by the pooled standard deviation. The magni-
tude (effect size) of Cohen’s d values is defined as lit-
tle-to-no effect (|d|< 0.2), small effect (0.2 ≤|d|< 0.5), 
intermediate effect (0.5 ≤|d|< 0.8), and large effect 
(|d|≥ 0.8).

Objective 2: Comparison of modeled habitat use and 
reproductive success without disturbance and with 
measured acoustic disturbance in 2015

Sound levels within and outside both foraging areas 
during the 2015 seismic surveys were recorded by 
40 Autonomous Underwater Acoustic Recorders 
(AUARs) at 48 locations during the season (Rutenko 

et  al.,  2022). Not all locations had recorders for the 
entire season, with some recorders moved to differ-
ent locations relative to the seismic activity at the 
time. The measured air gun sound levels from the 
AUARs were used to calibrate acoustic propagation 
models (Rutenko et  al.,  2022). For the nearshore 
area, the maximum sound pressure level was esti-
mated in 1-km2 blocks over 5 min periods. A block 
was considered disturbed if the maximum SPL 
exceeded 163 dB re 1 µPa2 mean square sound pres-
sure level (SPL). For the offshore area, the estimation 
of acoustic metrics was performed on a broader spa-
tial scale of 10 × 10 km (or 100 km2) blocks because  
model calibration was based on records from only 
one AUAR. Although vessel sounds are known to 
cause gray whale behavioral and distribution changes  
(Gailey et  al.,  2022a, b), for simplicity they were  
not included in model iterations. Onshore pile driving 
also occurred in 2015, but it produced localized, low 
sound levels; like vessel sounds, pile driving sounds 
were not included in model iterations.

Forward simulations that include disturbance 
require quantification of the probability of exposure 
to a disturbance, the probability animals will respond 
to the disturbance, and the behavioral change that will 
occur if they do respond. For all twelve SDP models, 
air gun sound levels recorded during the 2015 seismic 
surveys were used to quantify disturbance. We com-
puted the probability of exposure to air gun sounds 
in each SDP cell as the proportion of acoustic blocks 

Fig. 2   Maximum probability of successful reproduction as a function of female length and fetal length for the three tested fitness 
functions. Values indicate the fitness function for maximum possible maternal fat mass on the last possible day of foraging
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above the disturbance threshold in a given SDP cell 
during each 6-h bin.

We set the threshold for behavioral change at 
163 dB re 1µPa2 SPL, which has been used for miti-
gation purposes when minimizing disturbance to  
gray whales from air gun sounds in the nearshore 
feeding area (Aerts et  al., 2022). The 163  dB re 
1µPa2 SPL threshold was based on a study in the Ber-
ing Sea, which estimated that 10% of gray whales 
stopped feeding and moved away from the area when 
exposed to received air gun sound levels of 163 dB re 
1µPa2 SPL (Malme et  al., 1988). We conservatively 
assumed any whale exposed to ≥ 163  dB re 1µPa2 
SPL during a 6-h period responded by moving to the 
next closest undisturbed cell and lost the opportunity 
to forage for 6 h.

To compare disturbed versus undisturbed SDP model 
estimates of reproduction, the proportion of pregnant 
females that successfully reproduced (gave birth and 
returned to the foraging area the following spring with 
a calf) was pooled by population replicate for each of 
the twelve SDP model combinations of the three fitness 
functions and the four minimum reproductive lengths.

We used Cohen’s d as described above to compare 
disturbed versus undisturbed SDP habitat use predic-
tions (proportion of pregnant females in a cell) for the 
three representative subsets of SDP models over the 
field season. We also calculated the predicted pro-
portion of animals disturbed in each 6-h bin using all 
three SDP models.

Objective 3: Comparison of model results with observed 
gray whale distribution and photo‑identification data 
from 2015

During the 2015 foraging season, the most coastal 
nearshore cells (Cells 1, 3, 5, and 7) were monitored 
for gray whales via photo-identification and distri-
bution surveys (shore-based scan sampling) on tem-
poral and spatial scales that can be compared with 
SDP model results. Photo-identification data pro-
vided information about individual use of the entire 
nearshore area over the season (seen versus not seen), 
including specific determination of nearshore use by 
known reproductive females. Distribution data, col-
lected using shore-based scan sampling techniques, 
can determine the spatial occurrence of animals 
within the nearshore area.

Schwarz et al. (2022) provide details on the photo-
identification data collection process off Sakhalin 
Island. In brief, unique permanent body pigmentation 
patterns along with additional scarring and barnacle 
patches were used to identify individual gray whales. 
Data were collected using a combination of up to five 
stationary and two mobile shore-based teams as well 
as up to two inflatable boats. Although effort was high, 
environmental conditions prevented consistency in 
photo-identification data collection both temporally and 
spatially.

Distribution data were collected at hourly intervals 
to quantify gray whale occurrence patterns within the 
nearshore area throughout the season, which were 
compared with SDP model density predictions. Dis-
tribution data were collected at 13 shore-based sta-
tions by 13 observation teams using scan sampling 
techniques. Shore-based stations were strategically 
placed roughly 10  km apart that covered around 
122 km of coastal habitat. A synchronized scan was 
conducted hourly (scan survey), weather permitting, 
at each station by two observers, equipped with 7 × 50 
Fujinon FMTRC-SX reticle binoculars, that continu-
ously scanned from the northern part of their obser-
vation area to the southern extent at a constant rate 
of 9.33°/min. For each gray whale(s) sighted during 
the scan, the magnetic bearing, reticle, and number of 
individuals were recorded. Environmental conditions 
(visibility, Beaufort sea state, swell height, etc.) were 
recorded prior to conducting a scan. All sighting data 
were recorded using the Pythagoras software system 
that calculates the geographic position of the animal 
using Lerczark and Hobbs’ distance approximation 
equation combined with Leaper and Gordon’s refrac-
tion correction (Gailey & Ortega-Ortiz, 2002; Leaper 
& Gordon, 2001; Lerczak & Hobbs, 1998). Further 
methodological details can be found in Gailey et  al. 
(2022b).

We compared SDP model predictions with field 
estimates of (1) the proportion of pregnant females 
identified nearshore across the foraging season, (2) 
pregnant female whale density in the seven nearshore 
cells over the foraging season, and (3) reproductive 
rates. Sightings of all possibly pregnant females 
in 2015 were used in our analysis. The group con-
sisted of known pregnant females that were seen with 
calves in 2016 and potentially pregnant females that 
were seen with a calf prior to 2015. Since females 
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known to have successfully reproduced (seen with a 
calf in 2016) may utilize the habitat differently than 
other reproductive females, the “known pregnant” 
or “successfully pregnant” group was also ana-
lyzed separately. “All potentially pregnant” females 
included all successfully pregnant and possibly preg-
nant females. Note that we analyzed habitat use for a 
subset of females that were seen in 2015 and 2016, 
since not all mothers were identified. Also, nearshore 
counts of pregnant females may be underestimated as 
photo-identification efforts were largely from shore, 
and within the nearshore area, older whales tend to 
forage farther from the coast where identification is 
not possible (Sychenko, 2011).

To determine the proportion of reproductive 
females seen in the nearshore area over time (pnear), 
the number of identified known pregnant or all 
potentially pregnant females identified nearshore 
was counted on a daily scale and divided by the 
total number in their respective group (N = 8 and 
18, respectively). Zero-inflated beta regression was 
used to estimate pnear over time to allow for a daily 
proportion of zero (no whales of interest) nearshore 
for a given day. The regression estimates the prob-
ability of pnear > 0 (αB) using the total number of 
days when photo-identification surveys occurred (S) 
and the number of days when at least one pregnant 
whale was seen (Sy≠0). Proportions greater than 
zero were then estimated from a beta distribution, 
leading to an overall likelihood of

Both αB and the mean of the beta distribution (µB) 
were independently estimated as a function of vis-
ibility, Beaufort sea state, week of year (week), and 
week of year squared (week2). The beta distribution 
precision parameter (φ) was estimated as a constant. 
Daily visibility and Beaufort sea states were calcu-
lated as the mean of daily station mean values from 
the 13 shore-based stations, where environmental data 
were collected during hourly scan samples (Gailey  
et al., 2022b). Regression results were compared with 

bi0
(
pnear|𝛼B,𝜇B,𝜑

)
=

{
1 − 𝛼B

𝛼B f
(
pnear|𝜇B,𝜑

) if pnear = 0

if 0 < pnear < 1
, where

f
(
pnear|�B,�

)
∼ Beta

(
�B,�

)
andSyp≠0 ∼ Bin

(
S, �B

)

SDP model predictions of pnear pooled weekly for 
Cells 1, 3, 5, and 7 from the disturbance scenario.

To estimate whale density within each of the seven 
nearshore SDP cells, we converted spatially detailed 
density estimates from scan surveys (D). Methodol-
ogy for determining detailed density estimates can be 
found in Gailey et al. (2022b) and Muir et al. (2015). 
In brief, the nearshore area was divided into a grid of 
1-km2 blocks. For a given survey, gray whale sightings 
were assigned to a respective block and converted to 
density, accounting for the proportion of the block area 
covered and whale availability (not all whales are above 
water during a scan). Previous analyses suggest a flat 
detection probability curve equal to 1.0 out to the maxi-
mum distance analyzed (which is unique for each scan 
station height at 0.1 binocular reticles), so detection 
probability was set at 1.0 (Muir et al., 2016). Sightings 
from only one station were used to calculate density  
when scan stations had overlapping visible area.

To calculate density within the seven large nearshore 
SDP cells, each 1-km2 block was assigned a cell based 
on its location. Blocks that overlapped cell boundaries 
were split into two blocks with smaller areas. Survey 
(i), block (j), and cell (k) specific density estimates 
( Di,j,k ) were reconverted to count estimates Ni,j,k by 
multiplying by a block’s area ( Aj ). Counts within a cell 
were summed over all blocks in that cell and divided by 
the total block area in that cell (Ai,k) covered during the 
survey to determine gray whale density in a cell for a 
given survey 

(
Di,j,k

)

We used a hurdle gamma regression model to analyze 
density as a function of time to allow for a density of zero 
(no whales). The hurdle gamma regression estimates the 
probability of the density being greater than zero (αG) 
using the total number of surveys (R) and the number 
of surveys when at least one whale was seen ( R

D̂≠0
 ). 

Di,k =

∑Ji,k

j=1
Ni,j,k

Ai,k

, where

Ni,j,k = Di,j,k ⋅ Ai,j,k

Ai,k =
∑Ji,k

j=1
Ai,j,k and

Ji,k = total number of blocks in survey i for cell k.
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Densities greater than zero were then estimated from a 
gamma distribution, leading to an overall likelihood of

Both αG and the mean of the gamma distribution 
(µG) were independently estimated as a function of 
week, week2, and week3 separately by cell. Not all 
blocks were observed during every survey, so the 
proportion of each cell covered in a survey was also 
included as a predictor variable in the models. The 
gamma distribution shape parameter (ω) was assumed 
constant.

The above density estimates include all nearshore 
gray whales, while the SDP predicts density for preg-
nant whales only. To convert regression estimates to 
pregnant female density, we used photo-identification 
data to calculate the proportion of pregnant females 
(Dpreg) compared to the total number of identified 
whales in the coastal nearshore cells (ppreg) on a daily 
scale for both known pregnant females and all poten-
tially pregnant females. Logistic regression was used 
to estimate ppreg as a function of week, week2, daily 
Beaufort sea state, and visibility. Weekly estimates 
of D were multiplied by estimates of ppreg and com-
pared with SDP predictions of Dpreg in the nearshore 
(Cells 1–7) from the three SDP models with distur-
bance. SDP predictions of Dpreg were calculated as 
the predicted proportion of females in a cell, multi-
plied by the number of known pregnant females (or 
all potentially pregnant females), and divided by total 
cell area.

The Bayesian R package “brms” was used to esti-
mate posterior distributions of regression parameters 
and to determine the best-fitting models (Bürkner, 
2017, 2018; Plummer, 2019). Priors on parameters 
were uniform with boundaries wide enough that pos-
terior distributions of the parameters were not trun-
cated at any prior boundaries. Standard practices 
(multiple independent chains with low lag-1 autocor-
relation) ensured mixing, convergence, and station-
arity in posterior samples using R packages “MCM-
Cvis,” “coda,” and “bayesplot” (Gabry & Mahr, 2021; 
Gabry et al., 2019; Plummer et al., 2006; Youngflesh, 
2018). Bayesian model stacking using the leave-one-
out criteria was used to average over multiple models 

Gamma0
(
D|𝛼G,𝜇G,𝜔

)
=

{
1 − 𝛼G

𝛼G f
(
D|𝜇G,𝜔

) if D = 0

if D > 0
, where

f
(
D|�G,�

)
∼ Gamma

(
�G,�

)
and RD≠0 ∼ Bin

(
R, �G

)

when no one individual model was weighted > 0.9 
(Yao et al., 2017). When Beaufort sea state or visibil-
ity was included as a predictor variable, the depend-
ent variable was estimated using posterior samples of 
parameters and ideal environmental conditions (Beau-
fort = 0 and visibility = 1). In posterior estimates of 
density, the proportion of each cell covered in a survey 
was held constant at the seasonal mean value.

The reproductive success predictions from the 
twelve SDP model scenarios (with disturbance) were 
compared with the number of calves identified in 
2016 taking into account the number of potentially 
pregnant females in 2015, defined as known repro-
ductive females that were not observed with a calf in 
2015. The reproductive success estimate assumes the 
inter-birth interval is at least 2 years (Rice & Wolman, 
1971; Weller et  al., 2009), and all known reproduc-
tive females not identified with a calf in 2015 were 
pregnant. Not all mothers were identified in 2015 and 
2016. Nine out of the 11 calves (82%) in 2015 were 
identified with their mothers, while 8 out of 14 calves 
(57%) were identified with their mothers in 2016.

As described above, we used Cohen’s d (Cohen, 
1977; White et  al., 2014) to compare SDP model 
results with and without disturbance. We also used 
Cohen’s d to compare SDP model predictions with 
estimates derived from field data. The proportion 
of pregnant females nearshore over the season was 
compared between SDP predictions and results from 
regression analysis of photo-identification data on 
pregnant and potentially pregnant females. Within 
the nearshore habitat, whale density by cell was 
compared between SDP predictions and results from 
regression analysis of empirical whale densities, 
scaled to pregnant female whale density.

Results

Objective 1: Application of SDP model with different 
reproductive female lengths and fitness functions

The SDP model results indicated a relatively equal pro-
portion of the pregnant female population occupying 
the nearshore and offshore areas (pnear and poff, respec-
tively) at the beginning of the foraging season (Fig. 3). 
The models predicted that pnear would steadily decline 
throughout the season, and poff would show an opposite 
trend. The low reproductive fitness function produced 
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higher pnear predictions earlier in the season compared 
to the medium and high reproductive fitness functions. 
Predictions of poff were higher with increased mini-
mum maternal length (Lmin), although differences in 
habitat use for different Lmin values became less pro-
nounced with higher reproductive fitness functions. In 
fact, Lmin did not affect habitat use with the high repro-
ductive fitness function. Using the low reproductive 

fitness function with the shortest Lmin (11.0  m) led 
to the highest pnear early in the season (original SDP 
model). The low reproductive fitness function with the 
longest Lmin (13.0 m) led to the highest poff late in the 
season (adjusted length SDP model). Weekly habi-
tat use patterns were approximately the same for the 
medium reproductive fitness function with Lmin > 12.1 
and for all high reproductive fitness function SDP 
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Fig. 3   SDP model results of mean weekly proportion of preg-
nant females nearshore (left column) and offshore (right col-
umn) without disturbance, using three different reproductive 
fitness functions and four minimum maternal lengths. Three 
combinations of reproductive fitness function and minimum 
maternal length were used in analyses of the consequences 

of disturbance: Original = low fitness function, minimum 
length = 11.0 (bold black circles), adjusted length = low fit-
ness function, minimum length = 13.0 (bold purple stars), 
and adjusted fitness = medium fitness function, minimum 
length = 12.7 (bold orange squares)
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models. Therefore, we chose one of those models 
(adjusted function SDP model: medium fitness func-
tion, Lmin = 12.7) as a representative model. The two 
low reproductive fitness function models represented 
the most extreme pnear and poff values.

Comparing cell-use predictions between the three 
SDP models without disturbance, the original SDP 
model predicted a higher proportion of nearshore 
females, primarily in Cells 3 and 5 (|d| between 0.2 
and 0.5). For all three models, use in offshore Cells 
8, 9, and 10 was generally constant once whales 
arrived but declined in the last several weeks (Fig. 4). 
In contrast, the proportion of the population in Cell 
11 increased throughout the season. The adjusted 
function model had a higher proportion of females 
in Cells 8 and 9 at the beginning of the season and 
Cell 10 in the middle of the season with |d| between 
0.2 and 0.5 (Fig.  4). There was a moderate-to-high 
difference in the proportion of animals in Cell 11, 
with highest proportions for the adjusted length SDP 
model and lowest for the original SDP model (Fig. 4).

Objective 2: Comparison of modeled habitat use and 
reproductive success without disturbance and with 
acoustic disturbance data from 2015

The probability of disturbance in a 6-h period, i.e., 
the probability an individual could be exposed to air 
gun sound levels of 163  dB re 1µPa2 or more and 
move away to the closest undisturbed cell if it was in 
that cell, was spatially and temporally variable and 
reflects the seismic survey activities (Fig. 5). Distur-
bance in the nearshore cells occurred earlier in the 
season, and coastal nearshore area (Cells 1, 3, and 
5) overall had lower disturbance probabilities than 
their equivalent non-coastal area (Cells 2, 4, and 6, 
respectively). Offshore Cell 8 had some level of air 
gun sound exposure for almost the entire seismic 
survey period. The probability of disturbance was 
highest in offshore Cells 8 and 9. SDP models pre-
dicted the proportion of disturbed pregnant females 
increased through the beginning of the season 
and peaked around 0.035 throughout August then 
sharply declined (Fig. S4).

Using the 2015 measured acoustic values, forward 
simulations from the three representative models were 
used to predict the proportion of animals disturbed in 
2015 and to compare cell use with and without dis-
turbance. Although a higher proportion of pregnant 

females were disturbed in the adjusted function model, 
Cohen’s d values indicate no-to-little effect (|d|< 0.1) 
of SDP model choice on the predicted proportion of 
pregnant females disturbed (Fig. S4). Cohen’s d com-
parisons between the disturbed and undisturbed sce-
narios indicated there was little effect of disturbance 
on nearshore cell usage for all three SDP models 
(Cohen’s d between − 0.2 and 0.2). Regardless of SDP 
model type, disturbance had a no-to-small effect on 
use patterns in offshore Cells 10 and 11 and a small-
to-medium effect on cell use in Cells 8 and 9, showing 
an increased proportion of females in cells with higher 
probability of disturbance (Fig. 6).

Objective 3: Comparison of model results 
with observed gray whale distribution and 
photo‑identification data from 2015

Photo-identification surveys were conducted on 
99 days from June 1 to October 1, 2015 (Supp Data) 
(Schwarz et  al.,  2022). Zero-inflated beta regres-
sion analysis was used to estimate the proportion of 
known pregnant and possibly pregnant females utiliz-
ing the coastal nearshore cells (ppreg) over the forag-
ing season suggested a slight decline in the propor-
tion with time (Tables S2 and S3, Fig. 7). Proportions 
increased with better environmental conditions (lower 
Beaufort sea state and better visibility).

The number of scan surveys conducted in each 
cell ranged from 962 to 1281 (Table S4). The num-
ber of surveys with whale density > 0 ranged from 
15 to 1019  depending on cell. Whale density was 
extremely low in Cell 2; of the 962 scan surveys that 
covered that cell, only 15 had a whale density > 0. 
Therefore, sample size limited the gamma regres-
sion analysis to one explanatory variable per model 
in Cell 2. Hurdle-gamma regression results of whale 
density by cell consistently indicated the probability 
of whale density > 0 increased with the proportion of 
the cell covered during the scan survey (Tables  S5 
and S6). However, given that whales are seen, the 
density estimate declines with higher cell coverage 
(Tables S5 and S6). The proportion of the nearshore 
group that was known to be pregnant declined 
slightly over the season (Tables S7 and S8; Fig S4). 
The proportion of all potentially pregnant females 
in the nearshore group exhibited a u-shaped func-
tion over the season, although uncertainty was high 
(Tables S7 and S8; Fig S4).
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Regression estimates indicated the highest density 
of successfully pregnant females was in the coastal 
nearshore Cells 3 and 5 (Fig.  8). Density estimates 
were highest in the coastal nearshore area (Cells 1, 3, 
and 5) and lowest in Cells 4, 6, and 7.

Fourteen new calves were identified in the Sakhalin 
feeding areas in 2016 (Tyurneva et al., 2018), and eleven 

calves were identified in 2015 (Yakovlev et  al., 2016). 
With a minimum inter-birth interval of 2 years, eleven 
reproductive females would not be able to return with a 
calf in 2016. Our dataset included a total of 27 reproduc-
tive females based on their previous reproductive history. 
An additional six reproductive females have been identi-
fied by another group (Cooke et al., 2017), meaning we 
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Fig. 4   SDP model results of mean weekly proportion of preg-
nant females in the four offshore cells without disturbance. Three 
combinations of reproductive fitness function and minimum 
maternal length were used in analyses of the consequences of dis-

turbance: Original = low fitness function, minimum length = 11.0 
(black circles), adjusted length = low fitness function, minimum 
length = 13.0 (purple stars), and adjusted fitness = medium fitness 
function, minimum length = 12.7 (orange squares)
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never had confirmed sightings of those individuals with 
a calf. Assuming 27 reproductive females in the popula-
tion, only 16 females could be pregnant in 2015 since 
the other 11 produced a calf in 2015, leading to a meas-
ured successful reproductive rate of 0.88. If we include 
the additional six females in the total, the measured suc-
cessful reproductive rate is 14/22 or 0.64 (Fig. 9).

Given the differences in predicted cell use, the three 
representative SDP models were used to compare SDP 
predictions with empirical estimates of pnear, nearshore 
density, and reproduction. SDP predictions of ppreg in 
the coastal nearshore area (Cells 1, 3, 5, and 7) increased 
dramatically from June 1 through the first 4  weeks of 
the season followed by a gradual decline throughout the 
rest of the season (Fig. 7). Compared to other SDP mod-
els and empirically derived estimates, the original SDP 
model predicted the highest ppreg (Fig. 7). Empirical esti-
mates under ideal conditions (Beaufort = 0 and visibil-
ity = 1) were higher than SDP model predictions at the 

beginning and end of the season and lower during the 
middle of the season (Fig. 7). Cohen’s d values indicate 
empirical estimates were much higher than SDP model 
predictions (large effect) during the first week.

All three SDP models predicted a higher whale den-
sity in Cells 1, 2, and 4 than the regression estimates, 
with large Cohen’s d effects. The SDP models predicted 
lower whale densities in Cell 3 compared to regression 
results, with intermediate-to-high Cohen’s d values. 
Once the females arrived, all three SDP models pre-
dicted a decline in the nearshore density of pregnant  
females as the foraging season progressed, a similar trend 
generally mirrored in the regression results. Regression 
estimates indicated the peak whale density and the rate 
of the subsequent decline were higher in Cells 5 and 7 
than what was predicted from the SDP model. In par-
ticular, Cell 5 Cohen’s d values indicated an intermedi-
ate effect in the first part of the season (Fig. 8). Trends in  
density estimates of all possible pregnant females were 

Fig. 5   Disturbance probability by cell. Probability of disturbance is defined as the proportion of acoustic data points within a 
cell ≥ 163 dB re 1µPa2 SPL measured every 300 s, pooled in 6-h bins
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similar to estimates for the smaller group of known preg-
nant females with the exception of Cell 3 where density 
of females increased at the end of the season (Fig. S5). 
The proportion of all possibly pregnant females within 
the photo-identified coastal nearshore area group of 
animals was a function of week2 (Fig. S6), which when 
combined with scan regression analyses created the 
U-shaped density estimates in Cell 3.

SDP predictions of the probability of successful 
reproduction increased with increased minimum mater-
nal length (Lmin) and with changes in fitness function 
(Fig.  9). Mean SDP predictions of reproductive rate 
ranged from 0.24 to 0.74, with two means of the models 
falling within the range of empirical values (high repro-
ductive fitness function with Lmin > 12.1  m). Of the 12 
SDP model simulations, the field reproductive rate range 
was included in the ± two standard deviation span around 
SDP predicted means for all but three models (low repro-
ductive fitness function with Lmin < 13.0  m). Cohen’s 
d values indicated no-to-little effect of disturbance on 
reproductive rate predictions (|d|< 0.2).

Discussion

Objective 1: Application of SDP model with different 
reproductive female lengths and fitness functions

Reproductive fitness functions are one of the greatest 
sources of uncertainty for SDP models, particularly 
for large whales, because there is little-to-no empiri-
cal data to determine their shape or limits. There-
fore, it was important to explore various functions to 
determine their effect on habitat use, probability of 
disturbance, and probability of reproductive success. 
Overall, our modifications of the reproductive func-
tions used in McHuron et al. (2021) did not result in 
large differences in nearshore-offshore habitat use 
patterns or proportion of animals disturbed. Predic-
tions from all of the SDP models indicated a general 
decline over the season in nearshore habitat use that 
coincided with an increase in use of offshore Cell 11.

Increased use of the most prey energy-dense area 
(Cell 11) over the season aligned with the females’ 
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Fig. 6   Model results of proportion of pregnant females in 
offshore Cells 8 and 9, binning 6-h periods into weeks, with 
and without disturbance (open circles and crosses, respec-
tively). Cohen’s d values compare disturbed and undisturbed 
scenarios for three SDP models. Cohen’s d > 0 indicates higher 

proportions in a cell under disturbed conditions. Gray lines in 
Cohen’s d graphs indicate thresholds between no-to-little effect 
(|d|< 0.2), small (0.2 ≤|d|< 0.5), intermediate (0.5 ≤|d|< 0.8), 
and large effect (|d|≥ 0.8). Disturbance had no-to-little effect in 
proportions of pregnant females in all other cells
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higher energetic needs as the season progressed. 
When the pregnant female population consisted of 
smaller animals (Lmin = 11.0 m), a lower proportion 
of females utilized Cell 11 because their energetic 
needs were lower. Future analysis of offshore whale 
density from line-transect vessel surveys could fur-
ther our understanding of those links.

Objective 2: Comparison of modeled habitat use and 
reproductive success without disturbance and with 
acoustic disturbance data from 2015

Using measured air gun sound levels as the only 
source of disturbance, SDP models predicted a mod-
erate increase in use of offshore Cells 8 and 9, with 

Fig. 7   Mean proportion of 
pregnant females in coastal 
nearshore area (Cells 1, 3, 
5, and 7), comparing predic-
tions from three SDP models 
with regression estimates 
from photo-identification 
data (top). Cohen’s d values 
comparing SDP models 
with the proportion of 
known pregnant females 
nearshore (middle) and the 
proportion of all potentially 
pregnant females nearshore 
(bottom). Cohen’s d > 0 
indicates higher estimates 
from empirical data, while 
Cohen’s d < 0 indicates 
higher predictions from 
SDP models. Gray lines in 
Cohen’s d graphs indicate 
thresholds between no-to-
little effect (|d|< 0.2), small 
(0.2 ≤|d|< 0.5), intermediate 
(0.5 ≤|d|< 0.8), and large 
effect (|d|≥ 0.8)
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small changes in other cells, including nearshore. In 
the SDP models, disturbed whales moved to the near-
est undisturbed cell, and the SDP model Cells 8 and 
9 were defined as each other’s closest cell. When 
disturbance was high in Cell 8, it was comparatively 
lower in Cell 9 and vice versa. The predicted pattern 
of higher proportions in Cells 8 and 9 during distur-
bance indicates movement between the cells. While 
the model indicated offshore females may have lost 
foraging time when moving out of a disturbed cell, 
they moved to cells with equal or more prey availabil-
ity, effectively compensating for lost energy later in 
the season.

However, the assumption that whales would move 
to the closest undisturbed cell was not based on 
empirical data, since the magnitude of the behavio-
ral response (how far an animal moves and how much 
foraging is lost) has yet to be quantified. Whales 
could show displacement farther from disturbed cells, 
which could lead to different predicted habitat use 

patterns and energetic outcomes. While disturbance 
had the most impact on use of Cells 8 and 9 (which 
have lower prey energy than Cell 11), the location of 
the highest offshore prey resources may not be con-
sistent (Blanchard pers. com.). Thus, future seismic 
surveys with similar spatial and temporal patterns 
may not have the same impact on whale foraging or 
distribution.

Objective 3: Comparison of model results with observed 
gray whale distribution and photo‑identification data 
from 2015

SDP model predictions of the proportion of pregnant 
females utilizing the coastal nearshore area in 2015 
were similar to estimates from photo-identification 
data. However, the data indicated the animals were 
present in the area before data collection began. 
Although arrival time of gray whales to Sakhalin 
Island is unknown, very few animals are successfully  
identified at the beginning of the season, and discov-
ery rates were relatively constant throughout 2015 
(Schwarz et  al.,  2022). That information led us to 
believe that whales were still arriving after photo-
identification data collection began. Therefore, we 
assumed an arrival time of June 15 ± 5  days in the 
SDP models but did not account for demographic-
specific differences in arrival time. For example, the 
identified pregnant and potentially pregnant females 
in 2015 were first seen on June 2nd and June 7th, 
respectively. The first calf was identified on June 

Fig. 8   Density of known pregnant females in the nearshore 
area (Cells 1–7) over the foraging season, comparing SDP 
model predictions with regression estimates from empirical 
data, assuming ideal sighting conditions (visibility = 1, Beau-
fort = 0). Cohen’s d values > 0 indicate a higher regression 
estimate than SDP model predictions, while Cohen’s d val-
ues < 0 indicate a lower regression estimate than SDP model 
predictions. Gray lines in Cohen’s d graphs indicate thresh-
olds between no-to-little effect (|d|< 0.2), small (0.2 ≤|d|< 0.5), 
intermediate (0.5 ≤|d|< 0.8), and large effect (|d|≥ 0.8). For 
density of all possibly pregnant females, see Figure S3

◂

Fig. 9   Predicted prob-
ability of successful 
reproduction from 12 
SDP simulations with 
varying reproductive fitness 
functions and minimum 
maternal length compared 
to the possible range of 
observed reproductive rates 
in 2015 (gray-shaded area). 
The three SDP models used 
for habitat use comparisons 
are highlighted for refer-
ence. Points are means and 
whiskers are ± 2 sd
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24th, and the first mother was identified on July 7th, 
indicating a much earlier arrival time for pregnant 
females. Model sensitivity analysis from the initial 
SDP effort indicated arrival date had no effect on suc-
cessful reproduction or maternal survival (McHuron 
et  al., 2021) nor on the timing of the shift between 
nearshore and offshore cells. So, a change in the SDP 
arrival date would only change whale proportions in 
the nearshore and offshore area during the first few 
weeks of the season. Studies to determine arrival 
times earlier than June 1st would be limited due to ice 
and fog, but future model assumptions about arrival 
time should be developed with demographic-specific 
information in mind.

Within the nearshore area, SDP models pre-
dicted a higher density of animals in Cells 1, 2 
(large effect, |d|≥ 0.8), and 4 (small-to-intermediate 
effect, 0.2 ≤|d|< 0.8) and a lower density in Cell 3 
(intermediate-to-large effect, 0.5 ≤|d|) compared to 
density estimates from scan surveys. In fact, den-
sity estimates from scan surveys indicated an almost 
complete lack of whales in the southeastern part of 
the nearshore foraging area (Cell 2). Inter-annual 
whale densities in the southern part of the nearshore 
area (Cells 1 and 2) have been highly variable since 
density data have been collected (Exxon Neftegas, 
2018), with Cell 1 usually an area of lower prey 
biomass (Blanchard et al., 2019, 2022a, b). Little is 
known about whale prey energy in Cell 2. Amphi-
pods are considered the whales’ prey of choice 
(Budnikova & Blokhin, 2012; Dunham & Duffus, 
2001; Oliver et  al., 1983), and we adjusted habitat 
use probabilities in the SDP model as a function of 
the proportion of energy from amphipods. We also 
assumed in SDP models that Cell 2 prey energy had 
the same mean prey energy value as other offshore 
cells (Cells 4 and 6) with lower variability (McHuron 
et al., 2021). Clearly the adjustment and assumption 
relative to prey availability need to be reassessed.

Cell 3 includes the mouth of Piltun Bay, and 
more-detailed analysis of the distribution data 
indicated whale density in that area was particu-
larly high (Gailey et  al.,  2022b). Empirical den-
sity estimates in Cell 3 may be a reflection of high 
densities of mother-calf pairs and young animals 
concentrated at the mouth of Piltun Bay. The high-
est observed densities were within 1  km of shore  
(Gailey et  al.,  2022b), while pregnant females 
are more likely to be seen further from shore 

(Sychenko, 2011). Thus, our adjustment to deter-
mine the density of pregnant females from the den-
sity of all whales may not be accurate for this area 
since non-pregnant females may make up a higher 
proportion of animals in the area.

Conversely, if pregnant females are foraging < 1 km 
from shore, benthic prey data (a key input in the SDP 
model) may not be an accurate representation of the 
level of prey energy available to pregnant whales in 
Cell 3 because nearshore whales are regularly seen 
foraging in depths considered too shallow to safely or 
adequately sample benthic prey (< 7  m) (Blanchard 
et al., 2022b).

Density estimates from scan data indicated highest 
use of Cell 7 from late June through early July, which 
was not predicted using the SDP model. Analysis of 
smaller 1-km2 blocks indicated a higher density of gray 
whales farther than usual from shore in Cell 7 (Gailey  
et al., 2022b) which could have been related to a sea-
sonal patch of high energy sand lance (Ammodytes 
sp.) (Blanchard et  al.,  2022a). Gray whales have  
previously been observed in that area feeding on sand 
lance (Fadeev, 2011). Because of the limited structure  
of the distribution of prey energy across space and 
time, the SDP models were not sensitive enough to 
capture behavioral differences driven by seasonal prey 
patches. That is, limitations in temporal and spatial 
benthic biomass sampling (Blanchard et  al.,  2022b) 
restricted us to one overall prey energy distribution 
for the entire foraging season in Cell 7 (McHuron  
et al., 2021; Maresh et al., 2022).

While disturbance had no-to-little effect on predic-
tions of reproductive rate from SDP models, predic-
tions were generally lower than the range of reproduc-
tive rate observed in 2015. However, of the 12 SDP 
model simulations that included 2015 disturbance, only 
three models (low reproductive fitness function and 
minimum length < 13.0) were inconsistent with obser-
vations. Analysis of long-term photo-identification data 
of Sakhalin Island gray whales estimated age at sexual 
maturity at 9.0 years old (7.7–11.2 years old) (Bradford 
et al., 2010; Cooke, 2010), which is consistent with find-
ings in eastern gray whales (Rice & Wolman, 1971). 
An additional 10.5-year-old female was first seen with 
a calf in 2014 (Schwarz et  al.,  2022). Based on gray 
whale growth rates (Agbayani et  al., 2020), we esti-
mated roughly 50% of females would have successfully 
reproduced by age 9 years (with a mean value of 12.1 m 
in length) using both the medium and high reproductive 
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fitness functions (Fig.  S3). Thus, both the empirical 
probability of reproductive success and age/size at sex-
ual maturity support use of the medium and high repro-
ductive fitness functions. Empirically determined age 
at sexual maturity estimates a minimum length around 
11.7 m (mean length at 7.7 years old) and does not sup-
port a minimum maternal length > 12.1 m, which would 
translate to a minimum age of sexual maturity > 10 years 
old.

The empirical probabilities of successful repro-
duction would be biased high if the counted number 
of pregnant females was low. The long-term dataset 
(2002–2015) shows that the mothers are unknown for 
38% of identified calves, likely due to variability in tim-
ing and photo-identification data collection effort each 
year, as calves could have separated from their moth-
ers prior to data collection. Sakhalin Island gray whales 
have also been sighted off Kamchatka Peninsula, includ-
ing mother-calf pairs that have separated before arrival 
at Sakhalin Island (Tyurneva et al., 2013). Therefore, it 
is likely that some Sakhalin Island reproductive females 
have not yet been identified. In 2015, 11 individuals of 
reproductive age (> 6 years old) were either female or 
of unknown gender and could have been unidentified 
first-time mothers in 2016. An additional 81 identi-
fied whales were of unknown reproductive status (two 
female, 79 unknown gender). Four of those individu-
als were first identified in 2015. Based on sighting his-
tories, the other 77 animals had a mean minimum age 
of 11 years, with 71% of them (N = 55) at least 10 years 
old, at the higher end of the range for age of sexual 
maturity (Cooke, 2010; Rice & Wolman, 1971). Overall, 
several attributes of the photo-identification data lead to 
the potential for underestimates of the number of preg-
nant females in 2015.

If SDP models were adjusted to more-closely 
simulate the habitat use patterns seen from empirical 
data (no-to-little use of Cells 1 and 2, higher use of 
Cell 3), SDP predictions of reproductive rates would 
most likely remain the same, either with or without 
disturbance. McHuron et  al. (2021) tested several 
theoretical disturbance scenarios that involved high 
levels of disturbance in all nearshore cells, resulting 
in no effect on predictions of successful reproduction. 
Alternatively, given that prey energy in Cell 11 can be 
up to ten times higher than energy in nearshore cells, 
exclusion from offshore cells could result in complete 
reproductive failure and maternal death (McHuron 
et al., 2021).

Conclusion

To identify the behavioral choices and demographic 
results of disturbance on pregnant western gray 
whales during one foraging season, a stochastic 
dynamic programming (SDP) model has been devel-
oped (McHuron et  al., 2021). However, important 
underlying model assumptions about minimum mater-
nal length (Lmin) and the reproductive fitness functions 
(Rfit) remained untested. Coincidentally, multiple seis-
mic surveys were conducted in 2015 off the northeast 
coast of Sakhalin Island, Russia, in and near an impor-
tant foraging habitat, which could lead to decreased 
gray whale foraging activity and reduced population 
growth via lower survival or reproduction. We var-
ied assumptions about Lmin and Rfit to determine their 
effects on SDP predictions of habitat use, proportion 
of animals disturbed (pdist), and reproductive success 
(ϕ), as well as the effects of disturbance from air gun 
sounds on predictions of habitat use and ϕ.

Benthic prey surveys, photo-identification stud-
ies, and distribution sampling occurred in conjunc-
tion with seismic surveys in 2015, providing a unique 
opportunity to compare output from SDP models 
with empirical observations of whale distribution, 
behavior, and vital rates. Resulting SDP predictions 
indicated higher nearshore habitat use with shorter 
Lmin, which reflects the expected differences in behav-
ior based on size-specific energetic needs. Changes 
in Lmin and Rfit had no-to-little effect on predictions 
of pdist or ϕ. Disturbance had a small-to-medium 
effect on predicted cell use in the northern offshore 
foraging area where disturbance was highest, show-
ing an increased proportion of females in cells with 
higher probability of disturbance. SDP predictions 
of large-scale habitat use over the season were gen-
erally similar to values and trends seen from photo-
identification and distribution data. However, empiri-
cal estimates of the proportion of pregnant females 
nearshore were much higher than SDP model predic-
tions (large effect: |Cohen’s d|> 0.8) during the first 
week, so arrival date was most likely too late in the 
SDP model. Within their nearshore habitat, the SDP 
model overestimated whale density in the south and 
underestimated density around the mouth of Piltun 
Bay compared to empirical estimates. SDP predic-
tions of ϕ increased with increased Lmin and Rfit, and 
measured ϕ was a possible outcome in nine of the 12 
SDP models.
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Overall, this work, using data from a specific well-
studied situation, underscores the potential useful-
ness of SDP modeling as a means of quantitatively 
applying the PCOD framework. However, and not 
surprisingly, SDP model predictive abilities can be 
limited due to assumptions in the model and param-
eter inputs. Sensitivity analyses can test the effects 
of SDP model assumptions on predictions and pro-
vide valuable information about where researchers 
need to focus data collection to improve SDP model 
accuracy. For example, measured lengths of known-
age animals, particularly reproductive females, 
would aid in predicting reproductive success. Com-
parisons with field studies also identify SDP model 
limitations. For example, the SDP model could not 
capture some detailed gray whale nearshore spatial 
distribution because the temporal and spatial scales 
of prey input parameters (derived from data) were 
too coarse. Notably, the assumptions and limita-
tions in the SDP model did not affect the compari-
sons between disturbed and undisturbed scenarios. 
If future SDP models are expanded to determine the 
effects of disturbance over longer periods, accuracy 
of vital rates may become more important, and addi-
tional and expanded field studies will be needed to 
improve SDP model inputs and functions and vali-
date SDP model outputs.
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