
Intl. Trans. in Op. Res. 0 (2022) 1–37
DOI: 10.1111/itor.13234

INTERNATIONAL
TRANSACTIONS

IN OPERATIONAL
RESEARCH

Solving a pickup and delivery routing problem
for fourth-party logistics providers

Preben Bucher Johannessena, Ahmad Hemmatia

and Mohammad Moshref-Javadib,∗

aDepartment of Informatics, University of Bergen, Norway
bGies College of Business, University of Illinois at Urbana Champaign, Champaign, IL 61820, USA

E-mail: johannessen@deutschebahn.com [Johannessen]; ahmad.hemmati@uib.no [Hemmati]; moshref@illinois.edu
[Moshref-Javadi]

Received 1 December 2021; received in revised form 8 August 2022; accepted 24 October 2022

Abstract

This paper studies a pickup and delivery routing problem for fourth-party logistics providers. The problem
aims to schedule routes of vehicles to pick up orders from suppliers and deliver them to factory locations
considering multiple time windows at suppliers and factory locations, a non-conventional cost structure, and
certain factory dock constraints. We formulate the problem as a mathematical model and develop an efficient
algorithm based on the adaptive large neighborhood search to solve the problem. The algorithm incorporates
several heuristics to efficiently explore the search space for optimal solutions. The algorithm is refined through
extensive statistical experiments to optimize the performances of the heuristics and to tune the parameters
of the algorithm. The mathematical model and algorithm are evaluated on several problem instances based
on a real case study in Europe. The numerical results demonstrate that the solution algorithm consistently
obtains near-optimal solutions to real-sized problem instances.

Keywords: fourth-party logistics; multiple time windows; metaheuristic; pickup and delivery; routing problem

1. Introduction

The automobile and machinery manufacturing industry is dynamically changing due to the inter-
national market and cost competition (4Flow, 2019). This has made the supply chain and logis-
tics of paramount importance in this industry to not only perform cost-efficiently but also deliver
the auto parts and products to the worldwide markets with minimum delays. This challenging task
highlights the need for external expertise for auto manufacturers to manage the logistics operations,
providing the ground and needs for the fourth-party logistics (4PL) companies. These providers aim
to manage the logistics and distribution operations across and beyond the companies, and even

∗Corresponding author.

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
of Operational Research Societies.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which
permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no
modifications or adaptations are made.

 14753995, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/itor.13234 by U

niversitetsbiblioteket I, W
iley O

nline L
ibrary on [07/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0001-7777-5195
http://creativecommons.org/licenses/by-nc-nd/4.0/

2 P. B. Johannessen et al. / Intl. Trans. in Op. Res. 0 (2022) 1–37

Fig. 1. The role of a 4PL company for providing service to a manufacturer, suppliers, the third-party logistics provider
(3PL), and transportation companies. The arrows represent the flow of information

countries, with high flexibility in planning and modeling of logistics operations to provide efficient
and robust solutions. The manufacturers, through the 4PL providers, outsource several activities to
the third-party providers (3PL). These activities include not only the management of their logistics
operations but also the organizational and executive activities, management of resources, schedul-
ing, and coordination between different involved parties, often across the entire supply chain. Fig-
ure 1 illustrates the role of a 4PL company in relationships with a manufacturer as its customer, 3PL
company, supplier, and transportation company. This figure shows that the 4PL company serves as
the manager of transportation- and logistics-related operations to plan and manage resources on
behalf of the manufacturers.

One of the main challenges in 4PL operations is the routing problem, which is represented as a
pickup and delivery problem with time windows (PDPTW). In this problem, the number of vehicles
and sequences of pickups and deliveries for each vehicle must be obtained such that all the orders
are picked up within the predetermined time windows from the suppliers and delivered to the facto-
ries within the predetermined time windows. However, the role of a 4PL company differentiates this
problem from the classic pickup and delivery problems. Most importantly, since a 4PL company is
not handling its own fleet of vehicles, it relies on other third-party transportation companies, and,
therefore, it depends on their spot prices. This has several implications for a 4PL company’s cost
structure, as illustrated in Fig. 2. Primarily, this cost structure has three characteristics which differ
from the conventional transportation cost structures. First, it does not include the transportation
costs from the origin to the first stop and also from the last stop to the origin because the 4PL com-
pany does not own the vehicles. Second, the spot price of moving products from location A to B to
C to D is calculated based on the total vehicle schedule ABCD, which depends on several factors,
particularly including distance, product’s weight, and fixed labor costs. Finally, the transportation
company charges the manufacturer a fee per stop. All of these prices can vary depending on the ve-
hicle types and transportation carriers, such as less-than-truckload or full-truckload. Considering
all of the aforementioned complexities, planning and scheduling of routes by the 4PL companies
is a complicated problem. This problem can be significantly challenging when various constraints

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
of Operational Research Societies.

 14753995, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/itor.13234 by U

niversitetsbiblioteket I, W
iley O

nline L
ibrary on [07/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

P. B. Johannessen et al. / Intl. Trans. in Op. Res. 0 (2022) 1–37 3

Fig. 2. Spot prices when using a transportation company to serve different stops in a vehicles schedule. The 4PL
company does not pay for the costs of transportation from and to the origin, COA and CDO. The total cost of vehicle
schedule CABCD depends on the distance traveled, the total weight of transportation, and the fixed costs of hiring the

transportation company for the task

are incorporated in the problem, such as the number of vehicles, working hours, vehicle capacity,
and dock management rules in factories. Due to the fact that the fleet of vehicles is not owned by
the 4PL company or manufacturers, the number of vehicles is not limited to the vehicles owned by
a single company. Rather, a 4PL company schedules orders for pickups and deliveries performed
by various 3PL companies. Therefore, obtaining high-quality vehicle routes and effectively using
the available vehicles from various companies result in a significant amount of cost savings, as
well as reduction in greenhouse gas emissions. Another constraint is considering available working
hours of companies, as well as the defined time windows of manufacturers and suppliers across
different days. Therefore, the scheduling of pickups and deliveries must be performed accordingly,
ensuring minimum delays while maximizing resource utilization. In addition, the 4PL companies
need to consider the availability of resources at customer locations, especially dock availability and
dock–vehicle compatibility constraints. For example, some manufacturers may have more than one
loading/unloading docks at factories which can be used to serve certain types of vehicles based on
the available equipment, such as cranes, or compatibility of the vehicles and docks. The manufac-
turer might also limit the number of docks that can be visited by each vehicle for delivering the
products to reduce traffic in the yard.

Due to such complexities, it is essential for 4PL companies to use efficient solution algorithms
to be able to obtain optimal or near-optimal solutions to the underlying routing and scheduling
problems. In this paper, we study the fourth-party logistics problem (4PLP). We present a math-
ematical model of the problem and develop an efficient algorithm to solve the underlying pickup
and delivery problem with multiple time windows (PDPMTW) which considers several real-world
constraints, such as time windows at suppliers and factories, resource constraints at factories, and
a complex cost structure. The model and algorithm, however, are developed in a general frame-
work for use in other industries used by the 4PL providers. This problem incorporates several real-
world constraints, including type, capacity, and availability of vehicles, dock availability at factories,
vehicle–dock compatibility, and product–vehicle compatibility.

The rest of the paper is organized as follows. Section 2 reviews the literature on the relevant
routing problems. Section 3 presents the 4PLP along with the mathematical formulation. Section 4
describes the developed solution algorithm to solve the 4PLP. The detailed experimental results are
presented in Section 5. We also analyze the performance of the algorithm in comparison with the
benchmark results of the mathematical model. Finally, Section 6 concludes the paper and presents
the potential directions for future research.

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation

of Operational Research Societies.

 14753995, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/itor.13234 by U

niversitetsbiblioteket I, W
iley O

nline L
ibrary on [07/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

4 P. B. Johannessen et al. / Intl. Trans. in Op. Res. 0 (2022) 1–37

2. Literature review

The pickup and delivery problem (PDP) aims to schedule a set of orders for transportation be-
tween some given pairs of origins and destinations. The PDP is also known as a generalization of
the vehicle routing problem in which either all the origins or destinations are located at the de-
pot (Savelsbergh and Sol, 1995). This problem has various applications in ground transportation
(Wang et al., 2015), maritime transportation (Hemmati et al., 2014), and air transportation (Aza-
dian et al., 2017). Some surveys and classifications of the PDP are presented by Mitrovic-Minic
(1998), Berbeglia et al. (2007, 2010), and Parragh et al. (2008).

Several extensions to the pickup and delivery problem are modeled based on various real-
world assumptions and constraints, such as the pickup and delivery problem with time windows
(PDPTW). Ghilas et al. (2016) consider the PDPTW and scheduled truck routes. The problem con-
cerns scheduling a set of vehicles to serve customer orders such that each trip can be partly or fully
served using public transportation services. The problem is solved using an adaptive large neigh-
borhood search (ALNS) algorithm. Goeke (2019) study the pickup and delivery routing problem
with time windows for electric vehicles. Due to the limited battery capacity of electric vehicles, they
stop at recharging locations for partial or full recharge. They propose a granular tabu search al-
gorithm to solve this problem with several experiments on small- and large-size problem instances.
Favaretto et al. (2007) consider the pickup and delivery problem with multiple time windows and
multiple visits to pickup and delivery locations. An algorithm based on the ant colony system is
designed to solve the problem. An exact algorithm based on set partitioning and cutting planes
for the green pickup and delivery problem is developed by Sun et al. (2019). The problem aims to
minimize the total carbon emissions in a pickup and delivery problem with a heterogeneous fleet
of vehicles. Manier et al. (2016) present an exact mathematical model to solve the PDPMTW with
vehicle time and capacity constraints. The model is used to solve problems with up to 50 nodes.
A variable neighborhood search algorithm to solve the PDPMTW is proposed by Ferreira et al.
(2018). Since the algorithm only generates feasible solutions, all the computation time is spent on
searching the feasible space, enhancing the efficiency of the algorithm. Dondo and Cerdá (2015)
consider the pickup and delivery routing problem with time windows and cross-dock scheduling.
In addition to the vehicle routing problem for pickups and deliveries, the assignment of the avail-
able docks at facilities for loading and unloading tasks is also considered. A branch-and-cut search
and a sweep-based model are developed to solve the problem. A new variant of the PDPTW is
developed by Dahle et al. (2019), the so-called PDPTW with occasional drivers. This problem con-
siders different payment schemes for drivers which enable detours and divergence from the optimal
routes when occasional drivers are not considered in the problem. The problem is formulated as a
mixed-integer programming model, which is used to solve instances with 70 orders.

Since the PDP is an NP-hard problem, several articles focus on proposing efficient algorithms
to solve this problem and its variants. Nanry and Barnes (2000) propose a tabu search algorithm
to solve the PDPTW considering capacity constraints of the vehicles. The algorithm differs from
the conventional tabu search algorithm in that it justifies the strategies and parameters of the algo-
rithm, such as neighborhood search and switch strategies, based on the performance of the algo-
rithm. Li and Lim (2003) propose a tabu-embedded simulated annealing meta-heuristic to solve the
PDPTW. Besides the problem instances in Nanry and Barnes (2000), they solve several generated in-
stances based on Solomon (1987). Lau and Liang (2002) develop a tabu search to solve the PDPTW,

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
of Operational Research Societies.

 14753995, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/itor.13234 by U

niversitetsbiblioteket I, W
iley O

nline L
ibrary on [07/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

P. B. Johannessen et al. / Intl. Trans. in Op. Res. 0 (2022) 1–37 5

using several embedded construction heuristics to generate an initial solution. They also propose
a strategy to generate problem instances and benchmarking solutions for the PDPTW. Bent and
Van Hentenryck (2006) present a two-stage hybrid algorithm for the PDPTW. The first stage uses
a simulated annealing algorithm to reduce the number of routes, while the second stage uses the
large neighborhood search (LNS) to reduce the total travel cost. The results provide new best so-
lutions to several benchmark instances in Li and Lim (2003). Ropke and Pisinger (2006) propose
an ALNS algorithm for the PDPTW. The ALNS heuristic is composed of a number of competing
subheuristics which are used adaptively with respect to their past performances. The algorithm is
evaluated on more than 350 benchmark instances with up to 500 orders. Using this algorithm, they
improve the best known solutions to more than 50% of the problem instances. A new two-index
mathematical model of the PDPTW is formulated by Furtado et al. (2017). This two-index for-
mulation enables the assignments of vehicles to routes directly which enhances the computational
performance of the algorithm. Wang et al. (2015) develop a simulated annealing algorithm for the
simultaneous pickup and delivery problem with time windows. The algorithm is built based on the
concept of multiple Markov chains which compares the best obtained solutions obtained after a
few threads of runs and uses the best of the solutions for the next segments of runs. The algorithm
improves the best obtained solutions for several problem instances adopted from the literature.

In this paper, we consider a new problem, the 4PLP, which is a PDP with multiple time windows.
The problem considers several real-world constraints, including the number of vehicles, a noncon-
ventional cost structure, dock limitations at factory locations, compatibility of orders and trucks,
and compatibility constraints of trucks and factory docks. To solve this problem, we mathemati-
cally model the problem and develop an algorithm based on the ALNS. The algorithm uses several
heuristics to search the solution space effectively. In summary, the main contributions of the paper
are the followings:

• Propose a new routing and scheduling problem faced by 4PL providers. The problem, named the
4PLP, is a PDPMTW, considering several real-world constraints, such as multiple time windows
at supplier and factory locations, available vehicles, available docks at factories, a complex cost
structure, and compatibility of vehicles, orders, and docks at factories.

• Formulate a mixed integer programming model of the problem.
• Develop an efficient algorithm based on the ALNS which utilizes seven insertion and removal

heuristics. The algorithm also uses a heuristic to change the search neighborhood to escape from
local optimal solutions.

• Present a systematic and statistics-based approach to evaluate and select the promising combina-
tion of the heuristics for the algorithm.

3. Problem description and formulation

The 4PLP aims to schedule routes of vehicles to pick up orders from suppliers and deliver them to
factory locations regarding several operational constraints and prespecified cost structures. Each
order is picked up at a supplier by a truck and delivered to a dock at a factory location. This prob-
lem considers several constraints, such as dock availability constraints at factory locations, pickup
and delivery time windows, and compatibility of orders, vehicles, and docks which are explained in

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation

of Operational Research Societies.

 14753995, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/itor.13234 by U

niversitetsbiblioteket I, W
iley O

nline L
ibrary on [07/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

6 P. B. Johannessen et al. / Intl. Trans. in Op. Res. 0 (2022) 1–37

the following. The goal of the problem is to optimize the schedules of the vehicles’ stops at the sup-
plier and factory locations to minimize the total costs of transportation, vehicle stops, and penalty
of unserved orders.

Each factory location has one or multiple docks where the vehicles can stop to unload the prod-
ucts. Each vehicle may pick up products from one or multiple suppliers and deliver them to one or
multiple docks at one or multiple factory locations. The vehicle does not have to perform all the
pickups before it can perform the deliveries. That is, once a vehicle is done with some of the deliv-
eries to factory locations, it may visit a supplier on its route to pick up more orders. At a factory
location, a vehicle may visit one or multiple docks within the same factory to deliver the orders.
Each factory determines an upper limit on the number of docks that can be used by a vehicle in a
visit. This constraint enforced by the factories aims to reduce traffic in the factory yard and, thus,
to facilitate pickups and deliveries. Each supplier or factory location can determine multiple time
windows for the vehicle to pick up or deliver orders, respectively. If a vehicle arrives earlier than
the time window lower bound, it has to wait until the time window starts. Given the hard time
windows, all the orders must be served within the specified time windows.

The fleet of vehicles consists of a set of heterogeneous trucks provided by different logistic car-
ries companies or through the 3PL carriers. The vehicles are heterogeneous with respect to the
capacity limit, which is represented by the maximum weight and volume of the products that can
be carried by a vehicle. We also consider the compatibility of the vehicles, products, and factories.
Some products are not compatible with certain vehicles, for example, because the vehicle does not
have the required temperature-control capabilities, and, therefore, they cannot be carried by the
vehicle. Also, some vehicles are not compatible with some suppliers/factories due to the fact that
the supplier/factory does not have the specific equipment needed to load/unload the shipment at
that location.

The total costs consist of three parts. The first part is the cost of transportation for a route
which is calculated based on the maximum onboard weight on a route (price per kg), as well as
the maximum distance traveled by the truck on the route (price per kilometer). Based on these
two measures, a fixed cost, a weight cost, and a distance cost are applied to each order. Since the
transportation of products starts from the suppliers, the travel cost of the vehicle to the first pickup
location is not included in the total costs. The second part is the fixed stop cost, which is associated
with each stop of the vehicle at the supplier and factory locations. Finally, the third part represents
the costs of unserved orders.

3.1. Mathematical model

Tables 1–3 define the notations used to formulate the mixed integer linear programming (MILP)
model of the problem. The 4PLP can be represented as a graph, G(A, N), where N = {1, 2, . . . , 2n}
is the set of nodes, n is the number of orders in the problem, and A = {(i, j) : i, j ∈ N, i �= j} is
the set of arcs in the graph. If i is an order pickup node, then i + n is its corresponding delivery
node. The set of pickup nodes (suppliers) is denoted by NP := {1, 2, . . . , n}, and the set of delivery
nodes is denoted by ND := {n + 1, n + 2, . . . , 2n}. Therefore, the set of all nodes is equivalent to
N = NP ∪ ND. Each delivery node i, that is, dock, belongs to a factory f ∈ F , forming the set of
all docks in factory f denoted by Nf . A vehicle may visit multiple docks in a factory to deliver

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
of Operational Research Societies.

 14753995, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/itor.13234 by U

niversitetsbiblioteket I, W
iley O

nline L
ibrary on [07/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

P. B. Johannessen et al. / Intl. Trans. in Op. Res. 0 (2022) 1–37 7

Table 1
Indexes and sets used in the mathematical model

Indexes

v Index of vehicles
i Index of nodes of the network
f Index of factory
p Index of time window
s Index of stop location
α Index of distance interval in cost structure
β Index of weight interval in cost structure

Sets

N Set of all nodes {1, 2, . . . , 2n}, where n is the number of orders
V Set of vehicles
A Set of arcs
Av Set of arcs that can be visited by vehicle v
Nv Set of nodes that can be visited by vehicle v
NP Set of pickup nodes [1, 2, . . . , n]
ND Set of delivery locations [n + 1, n + 2, . . . , 2n]
F Set of factories
Nf Set of delivery docks in factory f
Ev Set of elements (α, β) in the distance-weight matrix of the cost structure for vehicle v
Pi Set of time windows for node i, {1, 2, . . . , πi}
Ti Set of time window parameters [Tip, Tip] at node i, where p ∈ Pi

S Set of stops, including all pickup and factory locations
Ls Sets of nodes in a stop location s ∈ S

orders. However, the number of docks that can be visited by a vehicle in factory f is limited by
upper bound Hf . We also denote the set of all possible stops by s ∈ S. Therefore, Ls denotes the set
of nodes which are located at stop s.

The set of vehicles is denoted by V , and the weight and volume capacities of each vehicle v ∈ V
are represented by Kkg

v and Kvol
v , respectively. We also introduce Av and Nv as the set of arcs and

nodes that each vehicle v ∈ V can traverse, respectively. Also, Nv includes an origin node, o(v) and a
destination node d (v) which are two unique auxiliary start and end nodes for each vehicle v. Since
a 4PL company does not own its fleet and rather pays to other carriers for transportation, we do
not include the costs of transportation from o(v) to the first pickup location and also the costs of
return trip of the vehicle to d (v) after serving the last factory location.

Each order from pickup node i ∈ NP has weight Qkg
i and volume Qvol

i . Also, each node has a set
of time windows Ti represented by [Tip, Tip] ∈ [0, T], where p ∈ Pi = {0, 1, . . . , πi} denotes the pth
time window. All nodes, both pickup and delivery nodes, must be visited within one of the given
time windows. The distance from node i to node j is denoted by Di j , and the corresponding travel
time for vehicle v is represented by Ti jv.

The cost structure consists of three components. First, the cost structure of vehicle v depends
on the total distance that the vehicle travels as well as the maximum onboard weight of products
that are transported by this vehicle. This cost is represented by two sets of cost intervals for both

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation

of Operational Research Societies.

 14753995, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/itor.13234 by U

niversitetsbiblioteket I, W
iley O

nline L
ibrary on [07/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

8 P. B. Johannessen et al. / Intl. Trans. in Op. Res. 0 (2022) 1–37

Table 2
Parameters and variables used in the mathematical models

Parameters

n Number of orders
Kkg

v Weight capacity of vehicle v ∈ V
Kvol

v Volume capacity of vehicle v ∈ V
o(v) Start node of vehicle v
d (v) End node of vehicle v
Qkg

i Weight of order at node i ∈ N
Qvol

i Volume of order at node i ∈ N
Hf A limit on the number of docking at each visit to factory f ∈ F
Ti jv Travel time of vehicle v ∈ V along arc (i, j) ∈ Av

πi Number of time windows at node i ∈ N
Tip Upper bound of time window p ∈ Pi at node i ∈ N
Tip Lower bound of time window p ∈ Pi at node i ∈ N
γv Number of distance intervals for vehicle v to use in matrix Ev

μv Number of weight intervals for vehicle v to use in matrix Ev

Ckm
vαβ Cost per distance unit (km) based on distance-weight cost matrix element (α, β) ∈ EV for vehicle v

Ckg
vαβ Cost per weight unit (kg) based on distance-weight cost matrix element (α, β) ∈ EV for vehicle v

C f ix
vαβ Fixed cost based on distance-weight cost matrix element (α, β) ∈ EV for vehicle v

Cstop
i Costs of stopping at node i

Ci Penalty cost of not serving order i ∈ NP

Di j Distance between node i ∈ N and j ∈ N
Bα Upper limit on interval α in cost matrix EV

Zβ Upper limit on interval β in cost matrix EV

Table 3
Parameters and variables used in the mathematical models

Decision variables

xi jv Binary variable, equals 1 if vehicle v travels from node i ∈ N to j ∈ N, otherwise 0
yi Binary variable, equals 1 if order i ∈ NP is not picked up, otherwise 0
lkg
iv Weight of vehicle v after visiting node i

l vol
iv Volume of vehicle v after visiting node i

hi Number of times docked inside a factory after visiting node i ∈ ND

ti Arrival time of vehicle at node i ∈ N
uip Binary variable, equals 1 if time window p ∈ Pi at node i is used, otherwise 0.
dvαβ Total distance traveled by vehicle v ∈ V if it fits in distance-weight pair (α, β) ∈ Ev

bvαβ Binary variable, equals 1 if pair (α, β) ∈ Ev is used for vehicle v ∈ V , otherwise 0.
lvαβ Highest weight transported by vehicle v ∈ V for pair (α, β) ∈ Ev

the weight and distance measures. Each possible combination of weight and distance is represented
by an index pair (α, β), where α is the distance interval index belonging to set {1, 2, . . . , γv} and
β is the weight interval belonging to set {1, 2, . . . , μv}. The cost matrix Ev is created based on
all the combinations of α and β values. Since the three components of the cost structure, fixed,
distance, and weight measures depend on the (α, β) pair, therefore, the cost structure forms three
cost matrices, including fixed cost matrix C f ix

vαβ , distance matrix (Ckm
vαβ), and weight matrix (Ckg

vαβ).

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
of Operational Research Societies.

 14753995, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/itor.13234 by U

niversitetsbiblioteket I, W
iley O

nline L
ibrary on [07/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

P. B. Johannessen et al. / Intl. Trans. in Op. Res. 0 (2022) 1–37 9

The second component of the cost structure refers to each vehicle’s stop, that is, once vehicle v
stops at a supplier or factory i, a fixed stop cost Cstop

i is charged. Finally, the cost structure applies
a penalty Ci in the objective function for every unserved order i.

Variable ti denotes the visit time of node i ∈ N. Each delivery node is also assigned a variable (hi)
which indicates the number of docks in the factory used by a vehicle. Variables lkg

iv and l vol
iv represent

the weight and volume of load transported by vehicle v after it departs node i. Variable xi jv is a
binary variable indicating if vehicle v travels between nodes i and j. The cost of not serving an order
corresponding to node i is represented by Ci using a binary variable yi, set to 1 if the corresponding
order to node i is not picked up. The total distance traveled by vehicle v is denoted by variables dvαβ

for each pair (α, β) ∈ EV and v ∈ V . The maximum weight transported by a vehicle is represented
by lvαβ . Similarly, only one of these variables per vehicle obtains the maximum transported weight
value, which is determined by the binary variable bvαβ . Each bvαβ has a corresponding distance
parameter Bα and a weight parameter Zβ which represent the upper bounds of the intervals in
the distance and weight cost matrix, respectively. Using the defined notations, the mathematical
formulation of the problem is represented as follows:

min
∑
v∈V

∑
(α,β)∈EV

(Ckm
vαβdvαβ + Ckg

vαβ lvαβ + C f ix
vαβbvαβ) +

∑
v∈V

∑
s∈S

∑
i∈Ls

j∈Nv /∈Ls

Cstop
i xi jv +

∑
i∈NP

Ciyi (1)

subject to

∑
v∈V

∑
j∈Nv

xi jv + yi = 1, i ∈ NP, (2)

∑
j∈Nv

xi jv −
∑
j∈Nv

x jiv = 0, v ∈ V, i ∈ Nv /∈ {o(v), d (v)}, (3)

∑
j∈Nv

xo(v) jv = 1, v ∈ V, (4)

∑
j∈Nv

x jd (v)v = 1, v ∈ V, (5)

∑
j∈Nv

xi jv −
∑
j∈Nv

x(i+n) jv = 0, v ∈ V, i ∈ NP
v , (6)

lkg
iv + Qkg

j − lkg
jv ≤ Kkg

v (1 − xi jv), v ∈ V, j ∈ NP
v , (i, j) ∈ Av, (7)

lkg
iv − Qkg

j − lkg
(j+n)v ≤ Kkg

v (1 − xi(j+n)v), v ∈ V, j ∈ NP
v , (i, n + j) ∈ Av, (8)

0 ≤ lkg
iv ≤ Kkg

v , v ∈ V, i ∈ NP
v , (9)

l vol
iv + Qvol

j − l vol
jv ≤ Kvol

v (1 − xi jv), v ∈ V, j ∈ NP
v , (i, j) ∈ Av, (10)

l vol
iv − Qvol

j − l vol
(j+n)v ≤ Kvol

v (1 − xi(j+n)v), v ∈ V, j ∈ NP
v , (i, n + j) ∈ Av, (11)

0 ≤ l vol
iv ≤ Kvol

v , v ∈ V, i ∈ NP
v , (12)

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation

of Operational Research Societies.

 14753995, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/itor.13234 by U

niversitetsbiblioteket I, W
iley O

nline L
ibrary on [07/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

10 P. B. Johannessen et al. / Intl. Trans. in Op. Res. 0 (2022) 1–37

hi + 1 − h j ≤ (Hf + 1)(1 − xi jv), v ∈ V, f ∈ F, i ∈ Nf , j ∈ Nf , j �= i, (13)

h j ≤ Hf , f ∈ F, j ∈ Nf , (14)

h j ≥
∑
i∈Nv
i/∈Nf

(xi jv), v ∈ V, f ∈ F, j ∈ Nf , (15)

∑
p∈Pi

uip = 1, i ∈ N, (16)

∑
p∈Pi

uipTip ≤ ti, i ∈ N, (17)

∑
p∈Pi

uipTip ≥ ti, i ∈ N, (18)

ti + Ti jv − t j ≤ (Tiπi + Ti jv)(1 − xi jv), v ∈ V, (i, j) ∈ Av, (19)

ti + Ti(i+n)v − t(i+n) ≤ 0, v ∈ V, i ∈ NP
v , (20)

∑
(α,β)∈EV

dvαβ =
∑

(i, j)∈Av

xi jvDi j, v ∈ V, (21)

∑
(α,β)∈EV

lvαβ ≥ lkg
iv v ∈ V, i ∈ Nv, (22)

B(α−1)bvαβ ≤ dvαβ ≤ Bαbvαβ, v ∈ V, (α, β) ∈ EV , (23)

Z(β−1)bvαβ ≤ lvαβ ≤ Zβbvαβ, v ∈ V, (α, β) ∈ EV , (24)∑
(α,β)∈EV

bvαβ ≤
∑
j∈Nv

xo(v) jv, v ∈ V, (25)

hi, ti ≥ 0, i ∈ N, (26)

uip ∈ {0, 1}, i ∈ N, p ∈ Pi, (27)

bvαβ ∈ {0, 1}, v ∈ V, (α, β) ∈ EV , (28)

dvαβ, lvαβ ≥ 0 v ∈ V, (α, β) ∈ EV , (29)

yi ∈ {0, 1}, i ∈ NP, (30)

xi jv ∈ {0, 1}, v ∈ V, (i, j) ∈ Av, (31)

Objective function (1) represents the total costs to be minimized. The first term includes the trans-
portation costs calculated based on the order weight, vehicle-traveled distance, and fixed cost. These
three costs depend on the maximum onboarding weight and truck-traveled distance represented by
pair (α, β). The second term indicates the cost per stop of the vehicle at pickup and factory loca-
tions, and the third term is the penalty cost paid for unserved orders. Constraint (2) represents that
an order is served if it is picked up only once by only a vehicle; otherwise, it is considered as an

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
of Operational Research Societies.

 14753995, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/itor.13234 by U

niversitetsbiblioteket I, W
iley O

nline L
ibrary on [07/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

P. B. Johannessen et al. / Intl. Trans. in Op. Res. 0 (2022) 1–37 11

unserved order. Constraints (3)–(6) govern the flow of orders at each node visited by each vehicle,
such that a vehicle has to leave a node if it enters it. These constraints also guarantee that each ve-
hicle route starts and ends at the defined auxiliary depots. The total weight carried by each vehicle
based on the visited pickup and factory locations is calculated by Constraints (7) and (8). Con-
straint (9) represents the weight capacity constraint for each vehicle. Similarly, Constraints (10)–
(12) calculate the total volume loaded on a truck and also ensure the volume capacity constraints
of the vehicles. Constraint (13) calculates the number of docks visited by a vehicle located in a cer-
tain factory, and Constraints (14) and (15) ensure that the number of visited docks in each factory
by each vehicle cannot exceed the number of docks in the factory. Constraint (16) indicates that
only one of the available time windows is used per node, while Constraints (17) and (18) guarantee
that the vehicle visits each node within the time windows defined by the lower and upper bounds of
the time window. Constraint (19) computes the arrival times of the vehicle at each node. Constraint
(20) ensures that all the picked up orders must be delivered, and this delivery is done after the or-
der is picked up at the supplier node. Constraint (21) calculates the total distance traveled by each
vehicle. Note that only one variable dvαβ obtains the value equal to the total traveled distance by
that vehicle, and the variables for the remaining pairs of (α, β) are set to zero. Similarly, Constraint
(22) calculates the maximum onboarding weight transported by each vehicle. Constraint (23) cor-
responds to the total distance traveled by each vehicle to the defined distance interval α. Similarly,
Constraint (24) relates the maximum onboarding transported weight by the vehicle to the defined
weight interval β. Constraint (25) indicates that we do not consider a cost interval for those vehicles
that do not leave their origin depot, and, therefore, we do not assign any fixed costs to such vehicles.
Finally, Constraints (26)–(31) define the types and ranges of the variables.

4. The proposed solution algorithm

Due to the NP-hardness of the problem and high computation time based on our preliminary
experiments, we develop a metaheuristic algorithm to solve this problem. An effective and efficient
meta-heuristic algorithm needs to employ both intensification and diversification strategies to not
only find better quality solutions but also effectively escape from local optimal solutions (Blum and
Roli, 2003).

Our proposed algorithm is built based on the ALNS (Ropke and Pisinger, 2006), which is an
extension of the LNS algorithms introduced by Shaw (1997). This algorithm employs the diversi-
fication and intensification strategies, particularly by using several heuristics, so-called the removal
and insertion heuristics. Additionally, the ALNS stores and evaluates the performances of all the
heuristics during the search process and adaptively chooses and applies the most effective heuristics
based on their performance history.

The overview of the algorithm is shown in Algorithm 1. The algorithm starts with generating an
initial solution s and saves the best solution sbest as the current solution s. Thereafter, the main loop
starts which continues until the stop conditions are met. At the beginning of this loop, the algorithm
evaluates whether it is stuck in a local optimal by counting twihe number of iterations that the best
found solution is not improved. If this value is not improved for a specified number of iterations,
the algorithm applies the wild escape heuristic to change the search neighborhood (see Section 4.6).
In each iteration of this loop, a heuristic h is chosen and applied to the current solution s′. These

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation

of Operational Research Societies.

 14753995, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/itor.13234 by U

niversitetsbiblioteket I, W
iley O

nline L
ibrary on [07/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

12 P. B. Johannessen et al. / Intl. Trans. in Op. Res. 0 (2022) 1–37

Algorithm 1. Proposed algorithm

heuristics choose a number of demand orders q to be removed from the current solution s′ using
the removal heuristics and then be reinserted to the current solution using the insertion heuristics.
The number of orders (q) that are removed and reinserted to the current solution can be used to
control the level of diversification/intensification during the search process. Once the new modified
solution s′ is evaluated, the best found solution sbest is updated if the new solution results in a better
objective function value. The algorithm not only accepts all the improving solutions but also accepts
the nonimproving solutions probabilistically to be able to escape from local optimal. Therefore,
solution s is updated if the modified solution s′ is accepted. We use the Boltzmann probability
function from the simulated annealing algorithm to accept non-improving solutions (Kirkpatrick,
1984) based on function accept(s′, s) described in Section 4.5. For further diversification, we use
a hashset to create a list of already visited solutions and, therefore, avoid visiting these solutions
during the search process. We employ this strategy by guiding the search towards new solutions
using the adaptive weight adjustment method described in Section 4.4. The algorithm stops after a
specified number of iterations.

4.1. Solution representation

Each solution is represented by a permutation-based structure. Each vehicle route Sv is separated
by a 0, and each order pickup and delivery location is represented by a positive integer value.

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
of Operational Research Societies.

 14753995, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/itor.13234 by U

niversitetsbiblioteket I, W
iley O

nline L
ibrary on [07/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

P. B. Johannessen et al. / Intl. Trans. in Op. Res. 0 (2022) 1–37 13

Fig. 3. Example of a solution representation of an instance with five orders and three vehicles. The dark green cells
indicated with * represent a pickup node, while the red cells indicated with ’ represent a delivery node. The 0 cells

separate a vehicle route from other vehicle routes. The cells in the Sdummy section represent unserved orders.

Figure 3 illustrates an example of a solution s with five orders and three vehicles. A vehicle schedule
represented by Sv contains the delivery and pickup schedule and their sequence starting from the
left side of this representation. The pickup nodes are represented by green cells with *, while the
delivery nodes are indicated by red cells with ’. As an example, vehicle #3 picks up order #4 and
delivers it right after pickup. Similarly, vehicle 1’s schedule shows that it picks up order #5 and #3,
and delivers order #3 and #5, respectively. S2 is an example of an empty vehicle schedule, indicating
that this vehicle is not used. The final part of the solution representation, Sdummy, shows a dummy
vehicle’s schedule containing those orders that are not served. A penalty cost is applied for the
unserved orders. In this section, we continue to refer to s as a solution to the problem and Sv as a
vehicle schedule.

4.2. Initial solution

To avoid premature convergence, we start with an initial solution s in which no orders are assigned
to any of the vehicles, that is, all orders are assigned to the dummy vehicle Sdummy. This strategy en-
ables us to start from a feasible solution and reduce the running time, as well as using this algorithm
to solve any problem instances regardless of the initial solution.

4.3. Heuristics

In this section, we present the designed heuristics for our algorithm. Each of the following heuristics
consists of one heuristic for removing some of the elements from a solution s and one heuristic for
reinserting the removed elements to the solution. The first two heuristics Swap and 3-Exchange,
explained in Sections 4.3.1 and 4.3.2, are focused on diversification, escaping from local optimal
solutions by shuffling a selected part of the current solution to generate new solutions regardless
of their objective values. The 2-Opt heuristic explained in Section 4.3.3 follows the intensification
strategy to search for high-quality solutions in the search space. The removal and insertion heuristics
described in Section 4.3.4 to 4.3.7 are inspired by the well-known removal and insertion heuristics
in the literature for solving the PDP (Shaw, 1997; Ropke and Pisinger, 2006; Korsvik et al., 2011;
Sze et al., 2016).

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation

of Operational Research Societies.

 14753995, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/itor.13234 by U

niversitetsbiblioteket I, W
iley O

nline L
ibrary on [07/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

14 P. B. Johannessen et al. / Intl. Trans. in Op. Res. 0 (2022) 1–37

Fig. 4. A swap heuristic performed on a vehicle route with three orders. The numbered nodes indicate the locations of
orders, and the letters P and D indicate pickup and delivery, respectively. 1P is the pickup location of order 1, and 1D

indicates the delivery location of order 1 in the route. The bold numbers in the vehicle route are selected by the heuristic
for swap

Fig. 5. A 3-exchange heuristic performed on a vehicle route with three orders. The numbered nodes indicate the
locations of orders, and the letters P and D indicate pickup and delivery, respectively. 1P is the pickup location of order

1. In this example, the bold numbers in the vehicle route are selected by the heuristic for exchange

4.3.1. Swap heuristic
The swap heuristic iteratively exchanges the pickup and delivery locations of two randomly selected
orders in the route until it obtains a feasible solution, or it reaches a certain number of iterations.
If the operator does not find a feasible solution, it returns the input solution without any changes
to the solution. Figure 4 illustrates the swap heuristic.

4.3.2. 3-Exchange heuristic
The 3-exchange heuristic selects a vehicle route with at least two orders and iteratively performs
an exchange of three randomly selected elements in the solution until a new feasible combination
is obtained, or it reaches a certain number of iterations. If it does not find a feasible solution, it
returns the input solution without any changes to the solution. In Fig. 5, the 3-exchange heuristic
is applied to index positions 2, 4, and 6 in a vehicle route.

4.3.3. 2-Opt heuristic
The 2-opt heuristic selects a random vehicle with more than two orders. The vehicle route is divided
into three segments and the order of visits in the middle segment is reversed. This procedure is
performed for all the possible combinations of the three segment sizes. This operation is continued
until no improvement can be obtained. Figure 6 illustrates one iteration of the 2-opt heuristic.

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
of Operational Research Societies.

 14753995, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/itor.13234 by U

niversitetsbiblioteket I, W
iley O

nline L
ibrary on [07/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

P. B. Johannessen et al. / Intl. Trans. in Op. Res. 0 (2022) 1–37 15

Fig. 6. One 2-opt heuristic operation performed on a vehicle route with three orders. The numbered nodes indicate the
locations of orders, and the letters P and D indicate pickup and delivery locations, respectively. 1P is the pickup location

of order 1. The bold numbers indicate the nodes in the middle segment of the route. The order of visits in the middle
segment is reversed in the new solution

Fig. 7. The cohesion and separation factors are illustrated, respectively, by the red and yellow lines. The green node
represents location i, and a represents its cluster. Cluster b is the cluster with the minimum average distance to i

4.3.4. Random fit heuristic
This heuristic selects a random number of orders q, which are removed and reinserted to the solu-
tion. The value of q is between 2% and 10% of the number of orders in the problem. Once orders
are removed from the solution, the heuristic selects a random vehicle v and inserts the removed
orders to the vehicle route Sv randomly until a feasible vehicle route is obtained.

4.3.5. Cluster insertion and removal heuristic
Since some pickup and delivery locations are distributed in cities, and possibly they form some
clusters, we design a heuristic which attempts to remove and reinsert clusters of orders rather a
single order. This heuristic removes those orders with delivery and pickup locations from different
clusters but served by the same vehicle, and then it bundles them and reinserts them to a single
vehicle route. To this end, we use two clustering metrics to determine the sizes of clusters and
effectively distribute the pickup and delivery locations to the clusters.

The silhouette coefficient. This coefficient (νi) is an effective metric to compare clusters of differ-
ent sizes (Kaufman and Rousseeuw, 1990; Reddy and Vinzamuri, 2019). The Silhouette coefficient
is calculated based on two factors, cohesion (ιi) and separation (ηi) of a node i in a network of
nodes. Figure 7 illustrates the cohesion and separation calculation factors for a node i as a part of
cluster ai ∈ [1, 2, . . . , k], where k is the number of clusters and ai represents the index of the cluster
for node i. The cohesion is the mean of the distances, di j , from i to all other nodes j ∈ κai where κai

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation

of Operational Research Societies.

 14753995, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/itor.13234 by U

niversitetsbiblioteket I, W
iley O

nline L
ibrary on [07/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

16 P. B. Johannessen et al. / Intl. Trans. in Op. Res. 0 (2022) 1–37

Fig. 8. The tables represent the distance matrices for the pairs of nodes, a, b, c, and d. In the first table (left), dbd marked
in yellow is the shortest distance, and, therefore chosen to be clustered together. In the second table (middle), dac is the

shortest distance and therefore forms a cluster. The third table (right) shows the final clustering results

is a set containing all nodes in cluster ai. The separation ηi is the minimum of the mean of the
distances, di j , from node i to all the nodes j ∈ κa j in cluster a j , where a j �= ai. The separation and
cohesion factors can be calculated as follows:

ιi = 1
|κai | − 1

∑
j∈κai ,i �= j

dij, (32)

ηi = min
b ∈ [1, 2, . . . , k]

b �= ai

1
|κb|

∑
j∈κb

dij, (33)

Then, the silhouette coefficient νi for node i is calculated as follows:

νi = ηi − ιi

max ιi, ηi
, if |κai | > 1, (34)

νi = 0, if |κai | = 1,

The silhouette coefficient calculates the average νi for all i ∈ N. To decide the cluster for each
pickup and delivery location, we choose the cluster with the smallest value of average νi.

Hierarchical single linkage clustering. To cluster the nodes when the number of clusters k is
given, we use the hierarchical single linkage clustering algorithm (Reddy and Vinzamuri, 2019).
Figure 8 illustrates the procedure of the algorithm for a set of nodes a, b, c, and d . In each iteration,
we choose the pair of nodes (locations) with the smallest distance, di j , and group these nodes into
one cluster. The new distance matrix contains the shortest distance from the merged nodes to any
other nodes. The grouping procedure continues until k clusters are obtained.

Having defined these two metrics, we can compare clusters of different sizes and also perform
the clustering of a given set of pickup and delivery locations for a given number of clusters. To use
the clustering approach, we run a preprocessing algorithm that assigns each location i ∈ N to their
corresponding clusters, where k is decided by calculating the average silhouette coefficient, νi, for all
i ∈ NP and keeping the clusters with the lowest value of average νi. Therefore, each location i ∈ N
is assigned to a cluster index ai and is assigned to cluster set κai .

Algorithm 2 shows the cluster removal and insertion heuristic. The algorithm selects a number
of orders q for removal from the current solution and sorts all the orders in the given solution s

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
of Operational Research Societies.

 14753995, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/itor.13234 by U

niversitetsbiblioteket I, W
iley O

nline L
ibrary on [07/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

P. B. Johannessen et al. / Intl. Trans. in Op. Res. 0 (2022) 1–37 17

Algorithm 2. Cluster heuristic

according to the cluster value σi, where i is the pickup location of the order. The cluster value of an
order is calculated based on the visited locations by the vehicle, that is, those orders that are grouped
together to be visited by the same vehicle. The idea of the cluster value is to evaluate the possibility
of clustering an order i with other orders on a vehicle route. This measure (σi) is calculated by

σi = |�iv| + |�(i+n),v|
2(|Sv| − 2)

∀i ∈ NP. (35)

In this equation, set �iv contains all the locations visited by vehicle v from the same cluster κi
as the pickup location i, excluding i and/or i + n. Set �(i+n),v includes all the locations visited by
vehicle v from the same cluster κi+n as the delivery location i + n, excluding i + n and/or i. Set Sv
is the vehicle route of vehicle v, that is, |Sv| is the number of locations visited by vehicle v, and,
therefore, 2(|Sv| − 2) is the maximum possible common cluster locations that |�iv| + |�(i+n),v| can
contain. We divide this by 2(|Sv| − 2) to be able to compare the cluster value with orders on other
vehicle routes. The resulting σi, therefore, yields a value between [0,1] where a high value indicates
that orders are highly clustered, that is, the locations of other orders on the same vehicle route
are within the same cluster. A value close to 0 indicates that order locations belong to different
clusters.

Algorithm 2 uses the cluster value σi to remove the customer orders with the lowest rank. We
choose to remove the order in position yp in the ascending sorted list of σi, where y is a random
number between [0,1] (Ropke and Pisinger, 2006). To reinsert the orders, the algorithm sorts the
removed orders based on their σi values and inserts the orders with the highest cluster value σi in the
best possible position in s that yields the least incremental costs. The insertion cost is dynamically
recalculated after reinsertion of each order. The procedure continues until all the selected orders
are reinserted to the routes (including the dummy route), keeping routes feasible.

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation

of Operational Research Societies.

 14753995, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/itor.13234 by U

niversitetsbiblioteket I, W
iley O

nline L
ibrary on [07/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

18 P. B. Johannessen et al. / Intl. Trans. in Op. Res. 0 (2022) 1–37

Algorithm 3. Greedy heuristic

4.3.6. Greedy heuristic
In this heuristic, those customer orders with the highest cost CS

i ∀ i ∈ NP
i are selected and rein-

serted in the solution where the minimum incremental cost of insertion is obtained. CS
i is the in-

crease in a vehicle’s route cost when it includes order i compared to the route without this order.
Algorithm 3 shows the pseudocode of the algorithm. To remove the orders from the solution, we
sort the customer orders in descending order of their cost CS

i values. The cost is calculated as
CS

i = f (Sv) − f−i(Sv) for a given order i served by vehicle v, where f (Sv) is the objective value
(total costs) of vehicle route Sv. In this equation, −i indicates that we calculate the cost of vehicle
route Sv without order i. We choose to remove the order in position yp. To reinsert an order, we
sort the removed orders based on their minimum increase in the objective value, ci, which is calcu-
lated as ci = minv∈V (� fiv). Here, � fiv represents the difference in the objective function value fiv
by inserting order i in position v with the lowest increase in the objective function value.

4.3.7. Similar regret heuristic
This heuristic identifies similar customer orders and replaces them to generate new solutions. We
define a relatedness factor ri j , which measures the relatedness of order i to order j. The relatedness
factor depends on the following properties: (a) travel distance, (b) order weight, (c) whether the
same vehicles can be used to serve each order, (d) whether both orders i and j belong to the same
factory, and (e) overlapping time window. The relatedness factor is calculated by the following
equation:

rij = ψ (Dij + D(i+n)(j+n)) + ω|Qi − Qj| + φ

(
1 − |Vi ∩ Vj|

max(|Vi|, |Vj |)
)

+ τGij + χ (Uij + U(i+n)(j+n)).

(36)

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
of Operational Research Societies.

 14753995, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/itor.13234 by U

niversitetsbiblioteket I, W
iley O

nline L
ibrary on [07/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

P. B. Johannessen et al. / Intl. Trans. in Op. Res. 0 (2022) 1–37 19

Since each term is normalized between 0 and 1, the relatedness measure ri j has a range 0 ≤ ri j ≤
2ψ + ω + φ + τ + χ . A lower value of ri j represents that two orders i and j are more similar. In
Equation (36), Di j represents the distance between nodes i and j, and Qi indicates the weight of
shipment of order i. Set Vi contains the vehicles that can serve order i. Parameter Gi j is a binary
parameter equal to 1 if the factories of orders i and j are different, while it is equal to 0 if they
are delivered to the same factory. Parameter Ui j is the portion of overlapping time windows at the
pickup and delivery locations of orders i and j divided by the total span of the two time window
sets. A value of 0 indicates no overlapping time windows, while a value of 1 means identical time
windows. This can be calculated as follows:

Uij = 1 − T O
ij

T A
ij − T NO

ij

. (37)

Tip and Tip are the upper and lower limits on the time windows, respectively. Parameter T O
i j

consists of all the time windows where order i overlaps with the time windows of order j. This is
represented as follows:

T O
i j =

∑
p∈πi
o∈π j

Tip≤Tjo

Tjo≤Tip

(min(Tip, Tjo) − max(Tip, Tjo)), (38)

where T A
i j represents the total span of the time window sets of locations i and j. It starts from the

first time window lower bound and ends at the last time window upper bound of these locations.
This can be formulated as

T A
i j = max (max

p∈πi
Tip, max

o∈π j
Tjo) − min (min

p∈πi
Tip, min

o∈π j
Tjo). (39)

Parameter T NO
i j is the opposite of the above factor T O

i j and represents when orders i and j do not
have a time window. This can be explained by night time when factories are not open. It can be
formulated as follows:

T NO
i j =

∑
p∈πi

o∈π :q j

Tip≥Tj(o−1)

Tjo≥Ti(p−1)

(min(Tip, Tjo) − max(Ti(p−1), Tj(o−1))). (40)

Figure 9 illustrates how T O
i j , T NO

i j , T A
i j , and T A

i j − T NO
i j are calculated for two locations i and

j. For Equation (36), the following values are chosen: ψ = 0.7, ω = 1.0, φ = 0.8, τ = 0.3, and
χ = 0.3.

Algorithm 4 shows the pseudo-code of the similar regret heuristic. It starts by removing a random
order i from the solution and adding it to a set I . Then, it creates an array and adds all orders j �∈ I
to this array and sorts the array in ascending order based on ri j values. Thereafter, it selects a
customer order with the largest relatedness value and removes it from s, and adds it to I . This

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation

of Operational Research Societies.

 14753995, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/itor.13234 by U

niversitetsbiblioteket I, W
iley O

nline L
ibrary on [07/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

20 P. B. Johannessen et al. / Intl. Trans. in Op. Res. 0 (2022) 1–37

Fig. 9. This figure shows time window sets ([T1p, T1p] and [T2p, T2p]) at two locations 1 and 2. The purple T O
12 is the

overlapping time windows. The red T NO
12 represents the time when no location has a time window. The green T A

12
represents the whole span of both time windows, and the yellow T A

12 − T NO
12 represents the intersection of the two time

window sets

Algorithm 4. Similar regret heuristic

procedure continues until q orders are added to I . The insertion part of this heuristic improves the
insertion algorithm from the greedy heuristic (see Section 4.3.6) by calculating a regret value, c∗

i .
The regret value estimates the cost of not inserting an order i to the solution. We let Si1, Si2, and
Si3 represent the vehicle schedules with, respectively, the first, second, and third lowest insertion
cost for an order i ∈ NP. That means � fSi1 ≤ � fSi2 ≤ � fSi3 , where � represents the difference in
objective value fSik by inserting order i in its k ∈ [1, 2, 3] best vehicle schedules. We define the regret
value as follows:

c∗
i = � fSi2 − � fSi1 + � fSi3 − � fSi2 . (41)

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
of Operational Research Societies.

 14753995, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/itor.13234 by U

niversitetsbiblioteket I, W
iley O

nline L
ibrary on [07/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

P. B. Johannessen et al. / Intl. Trans. in Op. Res. 0 (2022) 1–37 21

Equation (41) represents that c∗
i is the difference in inserting order i in its best position and its

second best position plus the difference in inserting it in its second best position and its third best
position. In each iteration, the heuristic chooses to insert the order with the largest c∗

i value. The
selected order is inserted in its best possible position, and ties are broken by choosing the order
with the lowest insertion cost ci defined in Section 4.3.6.

4.4. Adaptive weight adjustment

We have defined seven heuristics to effectively search the solution space. To select a heuristic in each
iteration of Algorithm 1, we use the roulette wheel strategy. If we represent each heuristic by an
index h ∈ {1, 2, . . . , m}, where m is the number of heuristics, we select heuristic h with a probability
ph calculated based on each heuristic’s weight wh as follows:

ph = wh∑m
g=1wg

. (42)

We choose an adaptive weight adjustment strategy (see Section 4.4) to calculate the weights of
the heuristics and automatically update the above weights. This strategy updates the weight of
each heuristic based on the performance of the heuristic using a scoring model. A better per-
formance by a heuristic leads to a higher score for the heuristic. To this end, after a prespeci-
fied number of iterations, so-called a segment, the weight of each heuristic is updated based on
its performance. At the beginning of the search, all the heuristics are given equal weights, re-
sulting in an equal probability to select each heuristic. Throughout a segment, each heuristic
is rewarded points based on its performance, which depends on whether it finds a new global
best solution, a new better local solution, or a new solution. The sum of all the scores received
during a segment is used in Equation (43) to update the heuristic’s weight. If we let whg be
the weight of heuristic h in segment g as well as πh and λh be the score and number of times
that heuristic h was run in the current segment, respectively, the updated weight is calculated as
follows:

whg = wh(g−1)Y + (1 − Y)
πh

λh
, (43)

where ϒ represents a weight adjustment coefficient, which is set to 80%. We enforce a lower limit
on the weight of each heuristic to ensure that every heuristic is selected at least for a certain number
of times in each segment. Figure 10 shows the heuristics’ weights ph of five heuristics in one of
the experiments.

4.5. Acceptance criteria and stopping condition

To prevent early convergence to local optimal, the generated solution in each iteration of the algo-
rithm is accepted/declined based on the acceptance criteria of the simulated annealing algorithm
(Kirkpatrick, 1984). Using this method, if the new generated solution is better than the current

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation

of Operational Research Societies.

 14753995, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/itor.13234 by U

niversitetsbiblioteket I, W
iley O

nline L
ibrary on [07/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

22 P. B. Johannessen et al. / Intl. Trans. in Op. Res. 0 (2022) 1–37

Fig. 10. The adjustment of the heuristic’s weight probability ph using our model. The x-axis represents a segment and
the y-axis shows the weights for selecting each of the heuristics

solution with respect to the objective function value, it is accepted and set as the current solu-
tion. However, if the new generated solution is a nonimproving solution compared to the current
solution, it accepts it with the probability e−| f − fnew|/T , where T < 0 is the temperature, f is the
objective value of the current solution, and fnew is the objective value of the new solution. The cool-
ing schedule, that is, the method used to update temperature T , is inspired by Crama and Schyns
(2003). This method sets a certain starting temperature Tstart which decreases per iteration with
a certain cooling rate of 0 < c < 1. To determine Tstart based on the problem instance, we run
100 iterations of the algorithm with a fixed acceptance rate of a = 0.8 on each instance and cal-
culate the average objective function value (f T

average) of all the accepted nonimproving solutions
based on the described acceptance criteria. We use this value to calculate the starting temperature
by (44):

Tstart = f T
average

ln(a)
. (44)

The algorithm stops after a prespecified number of iterations (10,000 iterations).

4.6. Wild escape algorithm

To enhance diversification of the algorithm and prevent local convergence, we use the wild escape
strategy if the algorithm cannot improve the best found solution after 500 iterations. Using this
strategy, the algorithm accepts any new found solution for 20 iterations regardless of its objective
function value to change the solution search neighborhood. We use three heuristics random fit
(see Section 4.3.4), 3-exchange (see Section 4.3.2), and swap (see Section 4.3.1) to generate the new
solution in this strategy because these three heuristics do not target a specific improvement to the
solution, and, rather, they generate new solutions randomly. The pseudocode of the algorithm is
described in Algorithm 5.

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
of Operational Research Societies.

 14753995, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/itor.13234 by U

niversitetsbiblioteket I, W
iley O

nline L
ibrary on [07/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

P. B. Johannessen et al. / Intl. Trans. in Op. Res. 0 (2022) 1–37 23

Algorithm 5. Wild escape algorithm

5. Numerical results

This section presents the numerical results of our mathematical model and algorithm on several
problem instances. We explain the experimental setup for our numerical analysis, problem in-
stances, heuristic selection procedure, and analysis of the algorithm for solving large-scale problem
instances. The experiments are run on a 64-bit computer with a 1.8 GHz quad-core i7 processor and
16GB RAM. The mathematical model (see Section 3.1) is solved using the Gurobi solver version
8.1, and our proposed algorithm (see Section 4) is implemented in Java SE 11.0.4.

5.1. Problem instances

The problem instances are generated based on the provided data from a real case study. The data
include the number of orders |N|, locations |L|, factories |F |, and number of vehicles |V | which is
between |N|/2 ≤ |V | ≤ 2/3|N|. The data also include information about the cost structure, capacity
of the vehicles and their compatibility, such as cooling possibilities, special equipment for transport
(e.g. fragile or hazardous goods), or special equipment required at the pickup or delivery location,
for example, a crane to unload goods. We refer to these capabilities as vehicle requirements.

Orders are assigned to pickup and delivery locations randomly, and those orders that are assigned
to the same location are given the same stop Ls. Each delivery location is independently assigned
to a factory at random Nf . We assign the necessary vehicle requirement to 5% of pairs of order-
location. This affects which vehicle is capable of picking up an order, NP

v and ND
v . We consider

three different vehicle types, small, medium, and large. Large vehicles have low speed, with Qkg
v =

24k and Qvol
v = 102, and they are compatible with all locations and orders. Medium vehicles have

medium speed vehicles, with Qkg
v = 18k and Qvol

v = 71, and they are compatible with all locations,
except for those orders that require vehicle requirements. Small vehicles have high-speed vehicles,
with Qkg

v = 12k and Qvol
v = 55, and they are not compatible with any vehicle requirements. The

Euclidean distance measure is used for each pair of location to calculate di j and the travel time
Ti jv is scaled with 60% of the travel distance, added with a random variation of ±10% of the travel
distance. The travel time also depends on the speed of the vehicle. That is, slow-speed vehicles have

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation

of Operational Research Societies.

 14753995, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/itor.13234 by U

niversitetsbiblioteket I, W
iley O

nline L
ibrary on [07/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

24 P. B. Johannessen et al. / Intl. Trans. in Op. Res. 0 (2022) 1–37

Fig. 11. Areas used for pickup and delivery locations when generating the instances

a 5% increase in travel time, while the medium-speed vehicles have a 2.5% increase, and the fast-
speed vehicles have no increase in travel time. The cost matrices Ckm

vαβ , Ckg
vαβ , C f ix

vαβ obtained from the
data are scaled based on the size of the instance and capacity of the vehicles. The cost of not serving
an order Ci is set to a minimum lower bound (the most expensive transport) and scaled based on
the weight, volume, and travel distance of the order. Time windows [Tip, Tip] are generated with one
to two time windows per day for each location, and three to seven days per week.

To generate the problem instances, we consider three areas for the geographical locations of cus-
tomers. These three sets include Germany, Europe, and a uniformly distributed squared area. The
two generated maps for Germany and Europe contain real-scale approximations of geographical
points shown by an elliptic uniformly distributed area to represent a country or a city. To generate
an instance, locations are uniformly and randomly chosen in the defined regions shown in Fig. 11.

For our numerical analysis, we generate five problem sets. Each set consists of five instances of
varying sizes as the following:

• Sets 1 and 2 are generated based on the European map from Fig. 11(a).
• Sets 3 and 4 are generated based on the German map from Fig. 11(b).
• Set 5 is generated based on the uniform distribution from Fig. 11(c).

These five sets of instances contain 4, 12, 35, 80, and 150 orders, 3, 7, 20, 45, and 80 vehicles, and
7, 9, 22, 45, and 85 locations, respectively.

5.2. Analysis of heuristics

In this section, we conduct a comprehensive analysis of the performances of the heuristics. For the
experiments we use five instances, each consists of 80 orders. The algorithm is applied to solve each
problem instance 10 times, and the best and average objective function values of these runs, as well
as the run-time, are reported. We analyze the performance of each heuristic individually, and in
combination with other heuristics using statistical experiments, analysis of variance III, (ANOVA-
III), multiple linear regression, and pairwise t-tests. For all statistical experiments, we use a 95%
confidence interval. A final combination of heuristics is chosen to conduct the final experiments and

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
of Operational Research Societies.

 14753995, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/itor.13234 by U

niversitetsbiblioteket I, W
iley O

nline L
ibrary on [07/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

P. B. Johannessen et al. / Intl. Trans. in Op. Res. 0 (2022) 1–37 25

Fig. 12. Ranking of improvements over the initial solution. Highlighted squares indicate the use of a heuristic. The
combinations with better results appear on the left of this figure. Blue highlighted squares show the final composition

from Section 5.4, and the yellow highlighted squares show the use of all heuristics

compare with the results of the mathematical model. For the sake of brevity, we use the following
terms to refer to the defined heuristics:

• H1-swap: the swap heuristic described in Section 4.3.1.
• H2-exchange: the exchange heuristic from Section 4.3.2.
• H3-2opt: the 2-opt heuristic described in Section 4.3.3.
• H4-random: the random fit heuristic from Section 4.3.4.
• H5-cluster: the clustering heuristic described in Section 4.3.5.
• H6-greedy: the Greedy heuristic described in Section 4.3.6.
• H7-similar: similar regret heuristic described in Section 4.3.7.

5.2.1. Initial evaluations of heuristics
To evaluate the performances of the heuristics, we run the algorithm on a total of 27 = 128 com-
binations of the heuristics and use the best and average percentage of improvements of 10 runs
compared to the initial solution. First, we rank the combinations based on the best and average
of improvements. We also use the ANOVA and regression analysis to assess the significance of the
impact of the heuristic combinations. Finally, we run t-tests to evaluate whether certain heuristics
in combination with other heuristics have positive impacts on the results.

Figure 12 shows the ranking of the heuristic combinations. A colored square in each row indi-
cates that the corresponding heuristic is used. Those combinations that appear on the left side of the
figure yield higher improvements over the initial solution. Figures 12(a) and 12(b) show the combi-
nation of heuristics ranked based on the average and best improvement over the initial solution for
each heuristic combination. Finally, Fig. 12(c) shows the ranking considering both the average and

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation

of Operational Research Societies.

 14753995, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/itor.13234 by U

niversitetsbiblioteket I, W
iley O

nline L
ibrary on [07/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

26 P. B. Johannessen et al. / Intl. Trans. in Op. Res. 0 (2022) 1–37

best improvements which lead to obtain the overall ranking. The blue highlighted squares indicate
the final composition from Section 5.4, and the yellow highlighted squares show the combination
in which all the heuristics are used.

The ranking provides an overview of the performances of the heuristics. This ranking shows that
using all the designed heuristics is not necessarily effective. The ranking also shows that heuristics
H6-greedy and H7-similar are often included in the combinations which yield better performances.

The ANOVA (III) and multiple linear regression analysis help evaluate which heuristics have
significant positive impacts on the performance of the algorithm. Table A1 shows the results of the
ANOVA (III) analysis. The ANOVA analyses for the average improvement and best improvement
of 10 runs are shown in Tables A1(a) and A1(b), respectively. In Table A2, we perform a multiple
linear regression analysis of the same results used in the ANOVA analysis. The multiple linear
regression analysis elaborates on whether a heuristic positively influences the effectiveness of the
algorithm based on R2.

The results of the ANOVA (III) analysis from Tables A1(a) and A1(b) reveal that four heuris-
tics H4–H7 have significant impacts on the results with a 95% confidence interval. However,
Tables A2(a) and A2(b) indicate that only three heuristics H4-random, H6-greedy, and H7-similar
have positive coefficients, that is a positive significant influence, for both the average and best im-
provement. Thus, we can conclude that H4-random, H6-greedy, and H7-similar effectively search
the solution space. We refer to these heuristics as the significant heuristics. H5-cluster negatively
influences the algorithm’s results; therefore, this leads us to conclude that this heuristic either per-
forms poorly alone or has a negative influence on the algorithm.

According to the performances of heuristics H1-swap, H2-exchange, and H3-2opt, we can con-
clude that they do not contribute significantly to the results individually, that is, an algorithm con-
taining only these heuristics do not yield a significant positive impact on the results with a 95%
confidence interval. However, since they can positively affect the results if they are used in com-
bination with the significant heuristics; therefore, we need further assessment of these heuristics.
We refer to the set of heuristics H1-swap, H2-exchange, H3-2opt, and H5-cluster as the undecided
group, or “G-heuristics” for further evaluations.

5.2.2. Further evaluations of heuristics
To evaluate the performances of the G-heuristics, we include those combinations that use one or
multiple heuristics of the G-heuristics. To this end, we conduct this analysis in two parts. First, we
evaluate if the G-heuristics, as a group, have a positive or negative influence on the result. We use
2-sample t-tests to compare the mean of the population where we use the G-heuristics along with
one or more of the significant heuristics, to the mean of the population without using the G-
heuristics. In the second part, we analyze if using the G-heuristics in combination with the sig-
nificant heuristics have impact on the results. For this analysis, we use the ANOVA (III) statistical
analysis and multilinear regression model.

Using the t-test, we compare the mean of the results obtained by the combinations which include
one or multiple G-heuristics, with the results of those combinations without any G-heuristics. The
results of the t-test are summarized in Table A3. In this table, PN represents the results of those
combinations without any G-heuristics, while PH represents the results of the combinations with
some of the G-heuristics. The results show that the null hypothesis cannot be rejected, that is, the

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
of Operational Research Societies.

 14753995, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/itor.13234 by U

niversitetsbiblioteket I, W
iley O

nline L
ibrary on [07/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

P. B. Johannessen et al. / Intl. Trans. in Op. Res. 0 (2022) 1–37 27

effect of combining G-heuristics with other heuristics is not significant with a 95% confidence level.
This is true for both the average and best improvement results for the right, left, and both-tails
analyses. Therefore, further evaluations are required to make the final conclusion.

We continue the evaluations of the G-heuristics using different combinations of the G-heuristics
and significant heuristics. The results of the ANOVA (III) analysis are summarized in Tables A4
and A5. In these tables, G+H4, for example, contains all the observations where at least one of the
G-heuristics is used in combination with the H4-random heuristic. The results in Table A4(a) in-
dicate that only two of the defined combinations have considerable impacts on the results with a
95% confidence level. Using the G-heuristics combined with heuristics H6-greedy and H7-similar,
as well as its combination with heuristic H4-random have significant impacts on the average im-
provement results. Table A5(a) shows that such combinations also obtain a positive coefficient
value. Since R2 = 0.95 is considerably high, this model explains the results very well, and therefore,
this supports the use of G-heuristics in combination with other heuristics in regard to the average
improvement.

The same combinations show the positive significance in regard to the best improvement
(Tables A4(b) and A5(b)). It can be seen that the combinations with the highest positive estimated
coefficients still include heuristics H6-greedy and H7-similar, or heuristics H6-greedy, H7-similar,
and H4-random. The increased R2 = 0.967 represents that this model explains the results regard-
ing the best improvements very well. This indicates that the combination including H6-greedy, H7-
similar, and H4-random consistently contributes to the improvement of results. Therefore, this sup-
ports our conclusions from Section 5.2.1 on the significance of heuristics H6-greedy, H7-similar,
and H4-random. This also indicates that there are some combinations of the G-heuristics and the
significant heuristics that have positive impacts on the result with respect to both the average and
best improvement results. In the next section, we conduct more evaluations on individual heuristics.

5.2.3. Evaluation of individual heuristics
We aim to determine which of the G-heuristics have a positive, or negative impact on the results
using a pairwise t-test. This analysis assesses if a G-heuristic significantly improves or decreases the
best and average improvements. We test if the mean of the results from combining the G-heuristics
with the significant heuristics is significantly different from the results of combinations without any
of the G-heuristics. Similar to the analysis in Section 5.2.2, we remove the combinations in which
only G-heuristics are used due to their weak performance.

The results of the pairwise t-tests are summarized in Table A6. We use PHi
NA to refer to the combi-

nations without heuristic Hi for the average improvement, and parameter PHi
HB as the combinations

including heuristic Hi for the best improvement. We conduct this test for all the four heuristics in
the set of G-heuristics, which includes H1, H2, H3, and H5.

For heuristic H1-swap, the means of both the best and average improvements are not signifi-
cantly different with a 95% confidence interval. Regarding the results for heuristic H2-exchange,
we reject the null hypothesis that the means are equal for the average and best improvements. The
left tail alternative hypothesis is accepted, indicating that the mean of PH2

HA and PH2
HB is lower than

PH2
NA and PH2

NB, while the right tail alternative hypothesis is rejected for both the best and average
improvements. The results of H3-2opt show that the null hypothesis is rejected, that is, the mean
improvements by PH3

HA is not equal to the mean results of PH3
NA, whereas it is accepted for PH3

HB and

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation

of Operational Research Societies.

 14753995, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/itor.13234 by U

niversitetsbiblioteket I, W
iley O

nline L
ibrary on [07/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

28 P. B. Johannessen et al. / Intl. Trans. in Op. Res. 0 (2022) 1–37

Table 4
Analysis of the wild escape heuristic. Best and average results obtained by the algorithm and its run-time when all the
heuristics are used for the three defined settings

Average objective Best objective Run-time (second)

Initial No Random Wild No Random Wild No Random Wild
#Ord #Veh #Loc objective escape reset escape escape reset escape escape reset escape

4 3 7 609,680.3 3,444.7 3,444.7 3,444.7 3,444.7 3,444.7 3,444.7 0.18 0.20 0.20
12 7 9 1,023,745.5 149,692.6 154,832.9 149,692.4 149,692.4 149,692.4 149,692.4 0.39 0.51 0.46
35 20 22 2,682,067.9 10,639.1 10,849.5 10,350.9 10,404.9 10,358.6 10,025.1 2.31 1.61 2.49
80 45 45 6,422,128.6 22,262.2 25,802.9 21,377.4 20,761.2 21,777.4 20,831.3 15.89 8.05 14.97
150 80 85 12,059,380.3 40,667.2 38,313.0 35,705.7 34,316.0 34,345.0 34,282.3 88.21 48.92 77.78

PH3
NB, respectively. The left tail alternative hypothesis is accepted, indicating that the mean of PH3

HA is
lower than PH3

NA with a 95% confidence level. For H5-cluster, the null hypothesis is rejected for PH5
HB

and PH5
NB, while it is accepted for PH5

HA and PH5
NA. The alternative hypothesis of the right tail of the

best improvement is accepted, that is, the mean is significantly higher in PH5
HB than PH5

NB.
The results summarized above demonstrate that using H1-swap has no significant effect on the

performance of the algorithm. Also, H2-exchange and H3-2opt significantly deteriorate the average
improvements, whereas H2-exchange decreases the improvements for the best obtained solutions.
Therefore, it is not beneficial to include these heuristics in the algorithm. Finally, H5-cluster does
not affect the average improvements; however, it positively affects the best improvement, indicating
that it could be beneficial to include this heuristic in the final combination of the heuristics.

5.3. Evaluation of wild escape algorithm

To evaluate the implementation of the wild escape heuristic, we use the algorithm to solve prob-
lem Set 1 in three different settings: the algorithm without the wild escape heuristic (no escape),
the algorithm with complete random restart (random reset), and the algorithm with the wild es-
cape heuristic (wild escape). The results for these three settings are summarized in Table 4, which
includes the average of objective values during each of the 10 runs, the best solution found, and the
average run-time. On average, the wild escape heuristic outperforms both the random reset and no
escape strategies. The wild escape strategy obtains the best results with respect to both the average
and best found solutions in almost all the problem instances. Due to the effectiveness of the wild
escape algorithm and comparable run-time, we include this heuristic in the final composition of
the algorithm.

5.4. Final experimental results and analysis

Based on the analyses in Section 5.2.1 to 5.2.3, the finalized algorithm uses the wild escape algo-
rithm along with heuristics H1-swap, H4-random, H5-cluster, H6-greedy, and H7-similar.

We apply our algorithm to solve 25 problem instances described in Section 5.1. The numerical
results by our algorithm and the mathematical model are summarized in Table 5. We enforce a

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
of Operational Research Societies.

 14753995, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/itor.13234 by U

niversitetsbiblioteket I, W
iley O

nline L
ibrary on [07/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

P. B. Johannessen et al. / Intl. Trans. in Op. Res. 0 (2022) 1–37 29

Table 5
Numerical results of the algorithm and mathematical model on the generated problem instances. delta is calculated as
(solution objective MM - Algorithm best objective)/solution objective MM

Mathematical model Algorithm

Inst Solution Optimality Run Average Best Average
Set #Ord #Veh #Loc objective gap time (seconds) objective objective run time Delta

Set 1 4 3 7 3,444.7 0.00% 0.1 3,444.7 3,444.7 0.1 0.00%
12 7 9 149,692.3 0.00% 9,963.7 149,692.4 149,692.3 0.5 0.00%
35 20 22 2,091,776.5 99.91% 10,000.2 10,323.2 9,997.9 2.8 99.52%
80 45 45 6,422,128.6 99.99% 10,000.0 21,170.5 20,911.5 21.1 99.67%

150 80 85 NA NA NA 34,479.1 32,798.0 100.8 NA

Set 2 4 3 7 2,501.0 0.00% 0.1 2,501.0 2,501.0 0.1 0.00%
12 7 9 5,987.8 0.00% 1,041.8 5,987.8 5,987.8 0.6 0.00%
35 20 22 1,985,165.5 99.90% 10,000.3 14,382.4 14,272.1 2.6 99.28%
80 45 45 6,809,899.5 99.99% 10,000.0 25,736.6 24,760.8 16.8 99.64%

150 80 85 NA NA NA 36,927.2 35,932.1 112.1 NA

Set 3 4 3 7 1,404.0 0.00% 0.3 1,404.0 1,404.0 0.1 0.00%
12 7 9 5,862.5 33.16% 10,000.0 5,862.5 5,862.5 0.9 0.00%
35 20 22 679,594.8 99.71% 10,000.4 6,334.7 6,267.7 3.7 99.08%
80 45 45 5,748,613.6 99.99% 10,000.5 12,609.0 12,347.6 32.2 99.79%

150 80 85 NA NA NA 19,771.9 19,149.8 126.1 NA

Set 4 4 3 7 1,696.1 0.00% 0.7 1,696.1 1,696.1 0.1 0.00%
12 7 9 3,285.2 21.45% 10,000.0 3,109.6 3,109.6 1.5 5.35%
35 20 22 547,881.6 99.72% 10,000.2 4,652.8 4,494.5 5.1 99.18%
80 45 45 6,201,301.5 99.99% 10,000.1 15,540.0 15,290.6 21.4 99.75%

150 80 85 NA NA NA 22,508.6 22,252.6 103.4 NA

Set 5 4 3 7 5,154.9 0.00% 0.4 5,154.9 5,154.9 0.1 0.00%
12 7 9 3,716.2 22.93% 10,000.2 3,716.2 3,716.2 0.6 0.00%
35 20 22 1,757,079.6 99.90% 10,000.2 13,138.9 12,944.2 2.1 99.26%
80 45 45 5,909,616.9 99.99% 10,000.0 24,034.0 23,855.5 9.1 99.60%

150 80 85 NA NA NA 41,343.4 39,847.0 82.6 NA

maximum processing time limit of 10,000 seconds for the experiments using the mathematical
model. If the solver cannot find a feasible solution within this time limit, we report NA in column
run-time. The results show that the performance of the mathematical model deteriorates as the size
of the instance increases. Although the mathematical model can find the optimal solution to the
smallest instances in all the five problem sets, it cannot find the optimal solution for set 3 and set 5.
The optimality gap is considerably large for the third and fourth instances (with 35 orders and 80
orders) in all the problem sets, where the algorithm reaches the maximum time limit of 10,000 sec-
onds. The comparison of the results of the algorithm with the mathematical model shows that the
algorithm can efficiently obtain optimal solutions to small problem instances with 4 and 12 orders.
For the larger problem instances (orders ≥ 35), the algorithm outperforms the mathematical model
as the solver cannot find a near-optimal solution within the time limit. The delta value in Table 5
is higher than 99% for all of these problem instances, indicating that our algorithm is significantly

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation

of Operational Research Societies.

 14753995, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/itor.13234 by U

niversitetsbiblioteket I, W
iley O

nline L
ibrary on [07/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

30 P. B. Johannessen et al. / Intl. Trans. in Op. Res. 0 (2022) 1–37

Fig. 13. Heuristics’ weights obtained when running the algorithm on the problem instances in set 1. The y-axis
represents the weight of each heuristic, and the x-axis represents a segment run. The blue vertical line represents the

segment in which the best solution was found

efficient in finding near-optimal solutions. The comparison of the average and best found solutions
shows that the algorithm is very robust and consistently finds optimal/near-optimal solutions to
small and large problem instances.

Figure 13 shows the weights of the heuristics through each segment of the runs for some selected
problem instances. Figure 13(b) shows that for smaller-size instances, the weights of heuristics

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
of Operational Research Societies.

 14753995, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/itor.13234 by U

niversitetsbiblioteket I, W
iley O

nline L
ibrary on [07/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

P. B. Johannessen et al. / Intl. Trans. in Op. Res. 0 (2022) 1–37 31

H1-swap, H5-cluster, and H7-similar increase until the algorithm obtains the optimal solution.
This indicates that these heuristics are essential in the effectiveness of the algorithm for smaller-
size instances. Figures 13(c)–(e) show that heuristics H6-greedy and H7-similar are critical to the
performance of the algorithm since their weights are consistently higher than the weights of other
heuristics. The spikes in the weights of heuristics H5-cluster and H1-swap indicate that they often
help the algorithm to move to a new and/or better solution neighborhood. These observations also
confirm our observations of the heuristics’ performances from Sections 5.2.1 and 5.2.2, in which
heuristics H6-greedy and H7-similar outperform the other heuristics. The observations in Table 5
show that our adaptive weight strategy plays an important role in the search process to adjust the
heuristics’ weights toward a more effective search in the solution space.

5.5. Evaluation of the algorithm on the PDPTW

In this section, we evaluate the performance of the proposed algorithm on some problem in-
stances adopted from Homsi et al. (2020). The problem is known as the industrial and tramp
ship routing and scheduling problem (ITSRSP), which is a common routing and scheduling prob-
lem in the shipping industry for bulk and liquid products, such as crude oil; chemical products
(wet bulk), and phosphate rock (dry bulk). The ITSRSP extends the PDPTW with a heteroge-
neous fleet, compatibility constraints, different starting points and starting times for ships, and
service flexibility with penalties. In this problem, a shipping company has a mix of mandatory
and optional cargoes for transportation. Each cargo in the planning period must be picked up
at its loading port within a specified time window, and then must be delivered to its destination
port within a given time window. The shipping company controls a heterogeneous fleet of ships;
each ship has a given initial time and location where it becomes available to handle new trans-
portation tasks. Compatibility constraints, such as draft limits at the ports may restrict the mix of
cargoes that a ship can transport. The shipping company may charter ships from the spot mar-
ket to transport some of the cargoes. The goal of the problem is to construct the ships’ routes
and schedules, aiming at minimizing costs. In addition, it determines which spot cargo should be
accepted for transportation, and which cargo should be transported by a spot charter to serve
deliveries of all the mandatory cargo orders. Homsi et al. (2020) report extensive experimental
analyses for the ITSRSP on several real-world problem instances. We use our proposed algo-
rithm to solve the ITSRSP and compare the results with the results of their branch-and-price
algorithm which obtained optimal solutions to 239 problem instances out of the 240 available
instances.

The problem set includes 48 problem categories based on the types of load, types of sea, number
of orders, and number of vehicles. Each category includes five problem instances, resulting in a
total of 240 problem instances in this problem set. The algorithm is run five times on each problem
instance to be able to report the best and average of obtained solutions for each problem instance.
The results are presented in Table A7 for each problem category. In the first column, MUN and
FUN represent mixed and full load, respectively. Also, SS, DS, C, and V stand for short sea, deep
sea, the number of cargoes, and number of vessels for each problem category, respectively. The
algorithm can solve small problems to optimally with a 0% gap. The overall average gap of 1.02%
shows the promising performance of the algorithm.

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation

of Operational Research Societies.

 14753995, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/itor.13234 by U

niversitetsbiblioteket I, W
iley O

nline L
ibrary on [07/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

32 P. B. Johannessen et al. / Intl. Trans. in Op. Res. 0 (2022) 1–37

6. Conclusion and future research

In this paper, we considered a 4PL routing and scheduling problem which determines the alloca-
tion of orders to vehicles and schedules the routes of vehicles for pickup and delivery regarding
several real-world constraints, such as vehicle capacity, factory dock availability, product–vehicle
compatibility, vehicle–dock compatibility, and a nonconventional cost structure. We formulated
the problem mathematically and used a Gurobi solver to solve the problem. Due to the computa-
tional difficulty of the problem and limited performance of the mathematical model, we developed
an algorithm inspired by the adaptive large neighborhood search. We incorporated seven heuris-
tics in the algorithm to effectively search the solution space and escape from local optimal. These
heuristics include swap heuristic, 3-exchange heuristic, 2-opt heuristic, random fit heuristic, clus-
tering heuristic, greedy heuristic, and similar regret heuristic in addition to a wild escape heuristic
which allows the algorithm to change the search neighborhood to enhance diversification. To de-
termine the final combination of our heuristics to use in our algorithm based on their performance
history, we conducted a comprehensive analysis of the heuristics. The experiments included the
analysis of all possible combinations of heuristics, as well as individual analysis of each algorithm,
using ANOVA (III), t-tests, and multiple linear regression analyses. On the basis of the complete
evaluation of our heuristics, we chose a final combination of our heuristics, including the wild es-
cape algorithm along with swap, random fit, clustering, greedy, and similar regret. The algorithm
was used to solve several problem instances generated based on a real case study in Europe. The
results demonstrate that the algorithm outperforms the mathematical model in terms of solution
quality and run-time. The results also confirm that the greedy and similar regret heuristics are the
best performing heuristics in terms of finding new improving solutions. Overall, the results illustrate
that the proposed algorithm is a robust and efficient algorithm to find near-optimal solutions for a
4PL provider company.

For future research, we encourage research and development of heuristics to further improve the
performance of the algorithm. The algorithm can also be tailored to solve similar problems in other
industries considering specific constraints, such as worker availability.

References

4Flow, 2019. Industries & references - automotive manufacturers. https://www.4flow.com/ (accessed 24 October).
Azadian, F., Murat, A., Chinnam, R.B., 2017. An unpaired pickup and delivery problem with time dependent as-

signment costs: Application in air cargo transportation. European Journal of Operational Research 263, 1, 188–
202.

Bent, R., Van Hentenryck, P., 2006. A two-stage hybrid algorithm for pickup and delivery vehicle routing problems with
time windows. Computers & Operations Research 33, 4, 875–893.

Berbeglia, G., Cordeau, J.F., Gribkovskaia, I., Laporte, G., 2007. Static pickup and delivery problems: a classification
scheme and survey. Top 15, 1, 1–31.

Berbeglia, G., Cordeau, J.F., Laporte, G., 2010. Dynamic pickup and delivery problems. European Journal of Operational
Research 202, 1, 8–15.

Blum, C., Roli, A., 2003. Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM
Computing Surveys 35, 3, 268–308.

Crama, Y., Schyns, M., 2003. Simulated annealing for complex portfolio selection problems. European Journal of Opera-
tional Research 150, 3, 546–571.

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
of Operational Research Societies.

 14753995, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/itor.13234 by U

niversitetsbiblioteket I, W
iley O

nline L
ibrary on [07/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://www.4flow.com/

P. B. Johannessen et al. / Intl. Trans. in Op. Res. 0 (2022) 1–37 33

Dahle, L., Andersson, H., Christiansen, M., Speranza, M.G., 2019. The pickup and delivery problem with time windows
and occasional drivers. Computers & Operations Research 109, 122–133.

Dondo, R., Cerdá, J., 2015. The heterogeneous vehicle routing and truck scheduling problem in a multi-door cross-dock
system. Computers & Chemical Engineering 76, 42–62.

Favaretto, D., Moretti, E., Pellegrini, P., 2007. Ant colony system for a VRP with multiple time windows and multiple
visits. Journal of Interdisciplinary Mathematics 10, 2, 263–284.

Ferreira, H.S., Bogue, E.T., Noronha, T.F., Belhaiza, S., Prins, C., 2018. Variable neighborhood search for vehicle routing
problem with multiple time windows. Electronic Notes in Discrete Mathematics 66, 207–214.

Furtado, M.G.S., Munari, P., Morabito, R., 2017. Pickup and delivery problem with time windows: a new compact
two-index formulation. Operations Research Letters 45, 4, 334–341.

Ghilas, V., Demir, E., Van Woensel, T., 2016. An adaptive large neighborhood search heuristic for the pickup and delivery
problem with time windows and scheduled lines. Computers & Operations Research 72, 12–30.

Goeke, D., 2019. Granular tabu search for the pickup and delivery problem with time windows and electric vehicles.
European Journal of Operational Research 278, 3, 821–836.

Hemmati, A., Hvattum, L.M., Fagerholt, K., Norstad, I., 2014. Benchmark suite for industrial and tramp ship routing
and scheduling problems. INFOR: Information Systems and Operational Research 52, 1, 28–38.

Homsi, G., Martinelli, R., Vidal, T., Fagerholt, K., 2020. Industrial and tramp ship routing problems: closing the gap for
real-scale instances. European Journal of Operational Research 283, 3, 972–990.

Kaufman, L., Rousseeuw, P.J., 1990. Finding Groups in Data: An Introduction to Cluster Analysis. Wiley Series in Proba-
bility and Statistics. Wiley-Interscience, New York.

Kirkpatrick, S., 1984. Optimization by simulated annealing: quantitative studies. Journal of Statistical Physics 34, 5-6,
975–986.

Korsvik, J.E., Fagerholt, K., Laporte, G., 2011. A large neighbourhood search heuristic for ship routing and scheduling
with split loads. Computers and Operations Research 38, 2, 474–483.

Lau, H.C., Liang, Z., 2002. Pickup and delivery with time windows: algorithms and test case generation. International
Journal on Artificial Intelligence Tools 11, 3, 455–472.

Li, H., Lim, A., 2003. A metaheuristic for the pickup and delivery problem with time windows. International Journal on
Artificial Intelligence Tools 12, 2, 173–186.

Manier, H., Manier, M.A., Al Chami, Z., 2016. Shippers’ collaboration in city logistics. IFAC-PapersOnLine 49, 12,
1880–1885.

Mitrovic-Minic, S., 1998. Pickup and delivery problem with time windows: a survey. SFU CMPT TR 12, 1-43, 38.
Nanry, W.P., Barnes, J.W., 2000. Solving the pickup and delivery problem with time windows using reactive tabu search.

Transportation Research Part B: Methodological 34, 2, 107–121.
Parragh, S.N., Doerner, K.F., Hartl, R.F., 2008. A survey on pickup and delivery problems. Journal für Betriebswirtschaft

58, 2, 81–117.
Reddy, C.K., Vinzamuri, B., 2019. A survey of partitional and hierarchical clustering algorithms. In Aggarwal, C.C.

Reddy, C.K. (eds) Data Clustering. Chapman and Hall/CRC, New York, pp. 87–110.
Ropke, S., Pisinger, D., 2006. An adaptive large neighborhood search heuristic for the pickup and delivery problem with

time windows. Transportation Science 40, 4, 455–472.
Savelsbergh, M.W.P., Sol, M., 1995. The general pickup and delivery problem. Transportation Science 29, 1, 17–29.
Shaw, P., 1997. A new local search algorithm providing high quality solutions to vehicle routing problems. APES Group,

Department of Computer Science, University of Strathclyde, Glasgow, Scotland, UK.
Solomon, M.M., 1987. Algorithms for the vehicle routing and scheduling problems with time window constraints. Oper-

ations Research 35, 2, 254–265.
Sun, W., Yu, Y., Wang, J., 2019. Heterogeneous vehicle pickup and delivery problems: formulation and exact solution.

Transportation Research Part E: Logistics and Transportation Review 125, 181–202.
Sze, J.F., Salhi, S., Wassan, N., 2016. A hybridisation of adaptive variable neighbourhood search and large neighbourhood

search: application to the vehicle routing problem. Expert Systems with Applications 65, 383–397.
Wang, C., Mu, D., Zhao, F., Sutherland, J.W., 2015. A parallel simulated annealing method for the vehicle routing

problem with simultaneous pickup-delivery and time windows. Computers and Industrial Engineering 83, 111–122.

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation

of Operational Research Societies.

 14753995, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/itor.13234 by U

niversitetsbiblioteket I, W
iley O

nline L
ibrary on [07/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

34 P. B. Johannessen et al. / Intl. Trans. in Op. Res. 0 (2022) 1–37

Appendix: Detailed evaluation results of heuristics

Table A1
Analysis of variance (ANOVA III). The sum of squares, degrees of freedom, mean squares, F-statistic, and p-value are
reported for each heuristic as the source of variability

(a) Average improvement statistics (b) Best improvement statistics

Source Sum sq. df Mean sq. F P >F Source Sum sq. df Mean sq. F P>F

H1-swap 0.052 1 0.052 0.09 0.7682 H1-swap 0.075 1 0.0745 0.23 0.6306
H2-exchange 0.748 1 0.748 1.26 0.2628 H2-exchange 0.195 1 0.1949 0.61 0.4369
H3-2opt 0.038 1 0.038 0.06 0.8017 H3-2opt 0 1 0.0001 0 0.988
H4-random 22.432 1 22.432 37.66 0 H4-random 8.372 1 8.3718 26 0
H5-cluster 12.734 1 12.734 21.38 0 H5-cluster 3.679 1 3.6789 11.43 0.0008
H6-greedy 117.945 1 117.945 198 0 H6-greedy 66.236 1 66.2357 205.71 0
H7-similar 112.406 1 112.406 188.7 0 H7-similar 67.081 1 67.0813 208.33 0
Instances 371.704 4 92.926 156 0 Instances 344.971 4 86.2428 267.84 0
Error 350.257 588 0.596 Error 189.331 588 0.322
Total 975.207 599 Total 671.378 599

Table A2
Results of multiple linear regression analysis. We report the coefficient estimate, standard error of the coefficients,
t-statistics to test if the term is significant, and p-value. Instances #1 to #4 are added to calculate the instance-specific
random effects

(a) Average improvement statistics, R2 = 0.641 (b) Best improvement statistics, R2 = 0.718

Term Estimate SE t-Stat p-Value Term Estimate SE t-Stat p-Value

Intercept 994.58 0.11713 8491.5 0 Intercept 994.97 0.086114 11554 0
H1-swap −0.018582 0.063017 −0.29487 0.7682 H1-swap 0.022291 0.046332 0.48112 0.63061
H2-exchange −0.07063 0.063017 1.1208 0.26283 H2-exchange −0.036047 0.046332 −0.77801 0.43687
H3-2opt −0.01583 0.063017 −0.2512 0.80175 H3-2opt −0.00069693 0.046332 −0.015042 0.988
H4-random 0.39108 0.063729 6.1366 1.5502e−09 H4-random 0.23891 0.046855 5.099 4.6112e−07
H5-cluster −0.29466 0.063729 −4.6236 4.6407e−06 H5-cluster −0.15838 0.046855 −3.3801 0.00077249
H6-greedy 0.89676 0.063729 14.071 5.7098e−39 H6-greedy 0.67202 0.046855 14.342 3.2e−40
H7-similar 0.87544 0.063729 13.737 1.923e−37 H7-similar 0.67629 0.046855 14.434 1.2062e−40
Instance #1 0.50928 0.099639 5.1113 4.3337e−07 Instance #1 0.64176 0.073257 8.7605 2.0732e−17
Instance #2 −0.051052 0.099639 −0.51237 0.60859 Instance #2 0.16783 0.073257 2.291 0.022316
Instance #3 1.6601 0.099639 16.662 2.4375e−51 Instance #3 1.837 0.073257 25.077 6.2887e−95
Instance #4 1.755 0.099639 17.614 4.4128e−56 Instance #4 1.6686 0.073257 22.778 8.2582e−83

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
of Operational Research Societies.

 14753995, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/itor.13234 by U

niversitetsbiblioteket I, W
iley O

nline L
ibrary on [07/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

P. B. Johannessen et al. / Intl. Trans. in Op. Res. 0 (2022) 1–37 35

Table A3
t-Tests for mean results of the G-heuristics versus no use of G-heuristics. 1 rejects the null hypothesis, and 0 represents a
failure to reject it

Improvement Confidence
Populations type Tail H-stat p-value t-Stat interval

PH − PN Average Both 0 0.5187 −0.6458 −0.3785 – 0.1912
PH − PN Average Right 0 0.7407 −0.6458 −0.3326 – inf
PH − PN Average Left 0 0.2593 −0.6458 −inf – 0.1453
PH − PN Best Both 0 0.6903 0.3986 −0.2174 – 0.3281
PH − PN Best Right 0 0.3452 0.3986 −0.1734 – inf
PH − PN Best Left 0 0.6548 0.3986 −inf – 0.2841

Table A4
Analysis of variance for the G-heuristics in combination with the significant heuristics

(a) Average improvement statistics (b) Best improvement statistics

Source Sum sq. df Mean sq. F P>F Source Sum sq. df Mean sq. F P >F

G+H4 19.024 1 19.0236 538.34 0 G+H4 12.879 1 12.8793 609.42 0
G+H6 0 1 0 0 0.9859 G+H6 0.131 1 0.1307 6.19 0.0132
G+H7 0.005 1 0.0045 0.13 0.7204 G+H7 0.239 1 0.2389 11.31 0.0008
G+H4+H6 0.059 1 0.0589 1.67 0.1973 G+H4+H6 0.223 1 0.2227 10.54 0.0012
G+H4+H7 0.001 1 0.0009 0.03 0.8722 G+H4+H7 0.153 1 0.1525 7.22 0.0074
G+H6+H7 0.22 1 0.2202 6.23 0.0128 G+H6+H7 0.42 1 0.4195 19.85 0
G+H4+H6+H7 0.166 1 0.1657 4.69 0.0308 G+H4+H6+H7 0.395 1 0.395 18.69 0
Instances 309.022 4 77.2555 2186.21 0 Instances 295.738 4 73.9346 3498.45 0
Error 19.365 548 0.0353 Error 11.581 548 0.0211
Total 385.274 559 Total 352.547 559

Table A5
Results of multiple linear regression model for the G-heuristics in combination with the significant heuristics. Instances
#1 to #4 are added to calculate the instance-specific random effects

(a) Average improvement statistics, R2 = 0.95 (b) Best improvement statistics, R2 = 0.967

Term Estimate SE t-Stat p-Value Term Estimate SE t-Stat p-Value

Intercept 995.85 0.035525 28,032 0 Intercept 995.88 0.027473 36,249 0
G+H4 −0.89285 0.038481 −23.202 1.8003e−83 G+H4 −0.73464 0.029759 −24.686 5.012e−91
G+H6 0.00068095 0.038481 0.017696 0.98589 G+H6 0.07402 0.029759 2.4873 0.013167
G+H7 0.013782 0.038481 0.35815 0.72037 G+H7 0.10006 0.029759 3.3625 0.00082635
G+H4+H6 0.049672 0.038481 1.2908 0.19731 G+H4+H6 0.096599 0.029759 3.246 0.0012417
G+H4+H7 −0.0061945 0.038481 −0.16097 0.87217 G+H4+H7 0.079948 0.029759 2.6865 0.0074396
G+H6+H7 0.096062 0.038481 2.4963 0.012841 G+H6+H7 0.13259 0.029759 4.4554 1.0157e−05
G+H4+H6+H7 0.083317 0.038481 2.1651 0.030808 G+H4+H6+H7 0.12865 0.029759 4.3232 1.8269e−05
Instance #1 0.53458 0.02512 21.281 1.0604e−73 Instance #1 0.70773 0.019426 36.432 1.6371e−148
Instance #2 0.031671 0.02512 1.2608 0.20793 Instance #2 0.27728 0.019426 14.273 1.5823e−39
Instance #3 1.71 0.02512 68.073 1.6221e−-269 Instance #3 1.873 0.019426 96.415 0
Instance #4 1.5959 0.02512 63.531 6.3233e−255 Instance #4 1.5781 0.019426 81.237 8.6749e−308

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation

of Operational Research Societies.

 14753995, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/itor.13234 by U

niversitetsbiblioteket I, W
iley O

nline L
ibrary on [07/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

36 P. B. Johannessen et al. / Intl. Trans. in Op. Res. 0 (2022) 1–37

Table A6
t-tests for analysis of individual heuristics

Populations Tail H-stat p-value t-Stat Confidence interval

PH1
HA − PH1

NA Both 0 0.5427 −0.6090 −0.1580 – 0.0727
PH1

HA − PH1
NA Right 0 0.7286 −0.6090 −0.1325 – inf

PH1
HA − PH1

NA Left 0 0.2714 −0.6090 −inf – 0.0472
PH1

HB − PH1
NB Both 0 0.9240 −0.0955 −0.1428 – 0.1296

PH1
HB − PH1

NB Right 0 0.5380 −0.0955 −0.1208 – inf
PH1

HB − PH1
NB Left 0 0.1076 −0.0955 −inf – 0.1076

PH2
HA − PH2

NA Both 1 3.4853e−10 −6.5098 −0.0692 – 0.0412
PH2

HA − PH2
NA Right 0 1.0000 −6.5098 −0.0661 – inf

PH2
HA − PH2

NA Left 1 1.7426e−10 −6.5098 −inf – 0.0443
PH2

HB − PH2
NB Both 1 4.5425e−10 −3.5486 −0.0370 – 0.0106

PH2
HB − PH2

NB Right 0 0.9998 −3.5486 −0.0349 – inf
PH2

HB − PH2
NB Left 1 2.2712e−04 −3.5486 −inf – 0.0127

PH3
HA − PH3

NA Both 1 0.0244 −2.2635 −0.0276 – -0.0043
PH3

HA − PH3
NA Right 0 0.9878 −2.2635 −0.0250 – inf

PH3
HA − PH3

NA Left 1 0.0122 −2.2635 −inf – -0.0069
PH3

HB − PH3
NB Both 0 0.6271 −0.4864 −0.0134 – 0.0081

PH3
HB − PH3

NB Right 0 0.6865 −0.4864 −0.0116 – inf
PH3

HB − PH3
NB Left 0 0.3135 −0.4864 −inf – 0.0063

PH5
HA − PH5

NA Both 0 0.4702 −0.7231 −0.0301 – 0.0118
PH5

HA − PH5
NA Right 0 0.7649 −0.7231 −0.0255 – inf

PH5
HA − PH5

NA Left 0 0.2351 −0.7231 −inf – 0.0071
PH5

HB − PH5
NB Both 1 1.7956e−04 −3.7972 −0.0167 – 0.0528

PH5
HB − PH5

NB Right 1 8.9779e−05 −3.7972 −0.0197 – inf
PH5

HB − PH5
NB Left 0 0.9999 −3.7972 −inf – 0.0499

Table A7
Evaluation of the algorithm on the PDPTW problems from Homsi et al. (2020)

Lower bound by
Problem category Homsi et al. (2020) Best Average Min. gap% Average gap%

SS-MUN-C7-V3 1,244,723.8 1,244,723.8 1,244,723.8 0 0
SS-MUN-C10-V3 2,074,204.4 2,074,204.4 2,074,204.4 0 0
SS-MUN-C15-V4 2,319,665.2 2,319,665.2 2,321,030.6 0 0.06
SS-MUN-C18-V5 2,575,253.8 2,575,253.8 2,575,965.6 0 0.02
SS-MUN-C22-V6 3,575,102.2 3,575,102.2 3,616,344.4 0 1.15
SS-MUN-C23-V1 2,294,171 2,302,963.4 2,309,484.6 0.38 0.67
SS-MUN-C30-V6 4,516,864.8 4,564,848.2 4,626,170.6 1.06 2.38
SS-MUN-C35-V7 4,790,688.4 4,803,117.2 4,861,170.6 0.25 1.53
SS-MUN-C60-V1 8,227,186.8 8,311,401.8 8,362,004.8 1.02 1.64
SS-MUN-C80-V2 1,0460,352 10,674,740.2 10,767,238.6 2.04 2.88
SS-MUN-C100-V3 12,836,636.8 13,102,804 13,264,492.6 2.08 3.32
SS-MUN-C130-V4 16,679,910.2 17,025,237.4 17,108,167.4 2.08 2.57

Continued

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
of Operational Research Societies.

 14753995, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/itor.13234 by U

niversitetsbiblioteket I, W
iley O

nline L
ibrary on [07/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

P. B. Johannessen et al. / Intl. Trans. in Op. Res. 0 (2022) 1–37 37

Table A7
(Continued)

Lower bound by
Problem category Homsi et al. (2020) Best Average Min. gap% Average gap%

SS-FUN-C8-V3 1,550,159.4 1,550,159.4 1,550,159.4 0 0
SS-FUN-C11-V4 1,165,548 1,165,548 1,166,450.2 0 0.08
SS-FUN-C13-V5 2,434,916.6 2,434,916.6 2,437,966.2 0 0.14
SS-FUN-C16-V6 3,664,758.8 3,664,758.8 3,674,431.4 0 0.26
SS-FUN-C17-V1 2,767,263.8 2,767,481.8 2,767,518 0 0.01
SS-FUN-C20-V6 3,175,169.6 3,175,169.8 3,182,503.6 0 0.23
SS-FUN-C25-V7 4,015,184.4 4,024,034 4,028,984.8 0.23 0.35
SS-FUN-C35-V1 3,263,905.2 3,264,732.8 3,269,839 0.02 0.17
SS-FUN-C50-V2 7,577,835.4 7,598,806.4 7,623,339.2 0.27 0.59
SS-FUN-C70-V3 10,484,147.8 10,586,647.8 10,627,010 0.99 1.37
SS-FUN-C90-V4 13,556,888.4 13,722,603.6 1,3760,974.8 1.22 1.51
SS-FUN-C100-V5 14,086,575.6 14,182,778 14,223,850.6 0.68 0.97
DS-MUN-C7-V3 6,181,445.2 6,181,445.2 6,181,445.2 0 0
DS-MUN-C10-V3 8,502,254.6 8,502,254.6 8,502,254.6 0 0
DS-MUN-C15-V4 12,217,923.6 12,217,923.6 12,427,880.4 0 1.77
DS-MUN-C18-V5 34,066,702.4 343,31,049.8 34,331,049.8 0.64 0.64
DS-MUN-C22-V6 39,427,492 39,454,569.8 39,716,623.2 0.07 0.75
DS-MUN-C23-V1 34,091,535.6 34,091,535.6 34,091,535.6 0 0
DS-MUN-C30-V6 20,552,646 20,624,263.4 20,639,655.2 0.36 0.43
DS-MUN-C35-V7 60,267,056 60,513,381.6 61,294,901.2 0.43 1.7
DS-MUN-C60-V1 85,097,329.4 86,785,225.2 88,511,693 2.05 4
DS-MUN-C80-V2 74,530,364.2 76,298,963.4 76,923,325 2.39 3.25
DS-MUN-C100-V3 152,663,613.8 157,078,220.8 159,555,512.2 2.89 4.52
DS-MUN-C130-V4 230,403,055.8 241,065,696.8 242,802,090.4 4.63 5.38
DS-FUN-C8-V3 7,453,236.2 7,453,236.2 7,453,236.2 0 0
DS-FUN-C11-V4 30,244,798 3,024,4798 30,244,798 0 0
DS-FUN-C13-V5 11,359,352.8 11,359,352.8 11,359,352.8 0 0
DS-FUN-C16-V6 44,680,989 44,743,419.4 44,743,419.4 0.15 0.15
DS-FUN-C17-V1 13,532,838.8 13,532,838.8 13,532,838.8 0 0
DS-FUN-C20-V6 16,761,493 16,761,493 16,765,955.2 0 0.02
DS-FUN-C25-V7 21.558.743.4 21,559,136.8 21,614,392.6 0 0.27
DS-FUN-C35-V1 87.473.158.4 87,596,993.6 88,173,408 0.13 0.78
DS-FUN-C50-V2 40.965.239.8 41,149,781.2 41,244,028.6 0.44 0.66
DS-FUN-C70-V3 150.576.798 151,264,279.6 151,516,467.2 0.46 0.63
DS-FUN-C90-V4 199.938.155.8 201,551,756.6 202,338,530.8 0.81 1.21
DS-FUN-C100-V5 214,956,251.8 216,698,140.2 217,243,959.8 0.82 1.07

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation

of Operational Research Societies.

 14753995, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/itor.13234 by U

niversitetsbiblioteket I, W
iley O

nline L
ibrary on [07/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

