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Abstract
An assessment of the human impact on the global water cycle requires estimating the volume of
water withdrawn for irrigated agriculture. A key parameter in this calculation is the irrigation
efficiency, which corrects for the fraction of water lost between irrigation withdrawals and the crop
due to management, distribution or conveyance losses. Here we show that the irrigation efficiency
used in global irrigation models is flawed for it overlooks key ambiguities in partial efficiencies,
irrigation technologies, the definition of ‘large-scale’ irrigated areas or managerial factors. Once
accounted for, these uncertainties can make irrigation withdrawal estimates fluctuate by more than
one order of magnitude at the country level. Such variability is larger and leads to more extreme
values than that caused by the uncertainties related with climate change. Our results highlight the
need to embrace deep uncertainties in irrigation efficiency to prevent the design of shortsighted
policies at the river basin-water-agricultural interface.

1. Introduction

Managing water withdrawals within water alloca-
tion balances desirable sustainable goals of attaining
food and water security, boosting human health, fos-
tering economic growth, protecting freshwater eco-
logy and reducing conflict over water [1, 2]. Cent-
ral to this task of apportionment is knowledge of
the large volumes of water withdrawn by irrigation,
which informs discussions on whether global water
availability can ensure future food production [3]
and whether we can safely reallocate water from
irrigation to other sectors [4]. Such knowledge is
also key to related water management tasks such as
determining water basin accounts [5], planning water
storage and abstraction infrastructure [6], finding
areas of untapped potential [7], managing licensed
abstractions on rivers or apportioning limited water

within specific drought events [8]. Climate change
will further exacerbate the scale of these withdraw-
als and allocation challenges by increasing the variab-
ility of precipitation and boosting crop water needs
due to higher temperatures and evapotranspiration
[9, 10].

These ever-sharpening water tasks require
increasingly accurate knowledge of withdrawn water
at the irrigation system, basin, country and global
levels. At the core of this knowledge there is the
concept of irrigation efficiency [11, 12], which helps
to transform net crop-level consumption into water
needs for the irrigation system, giving by extension
water withdrawals at the basin and global levels. In
its classical form [13, 14], the concept of irrigation
efficiency denotes the ratio of irrigation water bene-
ficially consumed by the crop to that diverted from
the water source and conveyed to the crop. The closer
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this ratio is to 1, the higher the irrigation efficiency of
the irrigated area under study.

Although continuously alterable via design, oper-
ation and management, irrigation efficiency is often
characterized with the static, sharp point-estimates
proposed by irrigation engineers more than 50 years
ago [15, 16]. This is especially the case of global mod-
els (GMs) [17–22], spatially distributed algorithms
that simulate hydrological processes at a global scale.
For instance, WaterGap [23], H08 [18] or MAT-
SIRO [17] characterize the irrigation efficiency of
USA with a value of 0.6 [23], whereas PCR-GLOBWB
[24] or LPJmL [25] use a value of 0.55 [26]. All
these GMs have gained momentum over the last 20
years and their water estimates currently feed into
the World Water Development Reports, the Global
Environmental Outlooks or studies commissioned
by the World Bank [27]. They are also regarded as
paramount when discussing the sustainable develop-
ment goals (SDGs) at the Water-Food nexus given
their capacity to simulate connections between crops,
water and humans over large spatial and temporal
scales [28].

Here we provide a comprehensive analysis of the
theoretical and empirical foundations of the irriga-
tion efficiency values used by GMs to simulate irrig-
ation water withdrawals. By means of a literature
review, sensitivity auditing and uncertainty analysis
methods [29, 30], we show that they endorse a vision
of irrigation that artificially downplays ambiguities
and reduces real-world complexity to a set of easy-
to-manage numbers. Once this spurious accuracy is
corrected for, irrigation efficiencies used by GMs turn
from point-estimates to ranges that can span almost
all the unit interval. Such variability engulfs the estim-
ation of irrigation water withdrawals with an uncer-
taintymuch larger than that propagated by the uncer-
tainties derived from climate change. Our results thus
show how a relatively obscure step in irrigation plan-
ning (irrigation efficiency) governs estimates of, and
discussions regarding, globally significant water bal-
ances, and concur with recent works suggesting that
GMs promote tunnel vision in the irrigation policy
field [31, 32]. This can potentially misguide initiat-
ives on the sectoral allocation of water out of agri-
culture [4], the planning for dams [33]; the viabil-
ity of groundwater storage [34] or the pursuit of the
SDGs [2]. We conclude by discussing the role that
GMs should play in informing sustainable policies at
the water-agricultural interface.

2. Methods

2.1. Sensitivity auditing
Two main studies provide GMs with irrigation effi-
ciency values: Döll and Siebert [23] (utilized byMAT-
SIRO, H08, WaterGap and WBMplus [17–20]) and
Rohwer et al [26] (used by LPJmL andPCR-GLOBWB
[21, 22, 35, 36]). Döll and Siebert’s are regional

estimates based on a literature survey, whereas
Rohwer et al’s are country-level estimates modeled
as a function of partial efficiencies (field, conveyance
and management efficiencies) and irrigation techno-
logies (surface, sprinkler and micro-irrigation). GMs
use the values proposed by either Döll and Siebert or
Rohwer et al to transform country or region-based
crop water needs into irrigation water withdrawals.

We cross-check the estimates by Döll and Siebert
[23] and Rohwer et al [26] against the studies they cite
to support their proposed irrigation efficiency values
[15, 16, 37–42]. Our goal is twofold:

• To highlight the assumptions embedded in the
calculation of irrigation efficiency. We rely on
sensitivity auditing [29], an extension of sensit-
ivity analysis to gauge the framing of mathem-
atical models. Sensitivity auditing investigates the
value-ladenness of key assumptions and norm-
ative frameworks of models. This is achieved by
hunting for tacit or neglected assumptions, stra-
tegic minimizations of uncertainties and normat-
ive stances underlying the framing of the prob-
lem. Such scrutiny increases the transparency of
model-based inferences and helps assessing their
social robustness for policy-making. The use of
sensitivity auditing is recommended in the new
guidelines for impact assessment issued by the
European Commission [43].

• To extract numerical data to describe the uncer-
tainty in the parameters used to calculate irrigation
efficiency [16, 26, 37] (see section 2.4).

2.2. Data collection from ISI-MIP
We retrieve irrigation water withdrawal estimates
from WaterGap [19], H08 [44], PCR-GLOBWB [45]
and LPJmL [25] in the Inter-Sectoral Impact Model
Intercomparison Project (ISI-MIP) [46]. In ISI-MIP
all these GMs assume an irrigation efficiency of 1
except LPJmL, whose irrigation efficiencies vary spa-
tially. To make all estimates comparable, we cor-
rect the irrigation water withdrawal values pro-
duced by LPJmL following the indications given by
ISI-MIP [47].

All these models have a spatial resolution of
0.5◦ × 0.5◦ and compute irrigation water withdraw-
als at the grid cell level. We retrieve data from
2010 at a monthly time step and allocate each cell
to a country according to its coordinates. We pro-
duce annual irrigation water withdrawal estimates
by adding all the values of all cells within the same
country. We also retrieve from ISI-MIP the water
withdrawal estimates projected by these models for
2050 under four different Representative Concentra-
tion Pathways (RCP2.6, RCP4.5, RCP6, RCP8.5). We
aim to examine whether the preferential attention
given in the literature to uncertainties related to cli-
mate change versus those related to irrigation effi-
ciency appears justified [48, 49].

2



Environ. Res. Lett. 17 (2022) 044014 A Puy et al

2.3. The model
Irrigation efficiency (Ep) [-] is a key parameter to
compute irrigation water withdrawals (Iw) [m3],
since

Iw =
Ic
Ep

, (1)

where Ic [m3] is the water needed by the crop due
to transpiration, evapotranspiration and evaporation
from the soil surface. Hence limEp→1 Ic = Iw. To calcu-
late Ep we use the classical approach based on partial
efficiencies [16, 37, 50], also employed byRohwer et al
[26] and sanctioned by GMs, which reads as

Ep = EaEcMf, (2)

where Ea [-] is the field efficiency, Ec [-] is the con-
veyance efficiency andMf [-] is a management factor
defined by Rohwer et al [26] as

Mf =

{
m for sprinkler and micro-irrigation

m− rLfL for surface irrigation

(3)

where m [-] is a management parameter, rL [-]
denotes the reduction in management efficiency
in large-scale irrigated areas and f L [-] designates
the fraction of large-scale irrigated areas. Note that
Rohwer et al [26] assume the existence of a manage-
ment penalization due to scalar stress only in large-
scale surface irrigation systems (equation (3)), which
they define as those larger than 10 000 ha based on
the Global Map of Irrigated Areas (FAO-GMIA [51]).
The final Ep is in the interval [0,1], with higher irrig-
ation efficiencies showing values closer to 1.

Rohwer et al [26] calculated irrigation efficiency
based on the ‘predominant’ technology in the coun-
try due to the sparcity of data on the specific pro-
portion of flood, sprinkler and micro-irrigation at
the national level. These data were recently produced
by Jägermeyr et al [25]. To see whether the addi-
tion of spatial detail in the distribution of irrigation
technologies improves the accuracy of the estimation,
we also calculate the irrigation efficiency with the
Jägermeyr et al [25] coefficients, as

Ep = CsEps +CpEpp +CmEpm , (4)

where Eps , Epp and Epm respectively denote the irrig-
ation efficiency of surface, sprinkler and micro-
irrigation (calculated as in equation (2)) and Cs, Cp

and Cm are constants denoting the fraction of irrig-
ated area with surface, sprinkler and micro-irrigation
as reported by Jägermeyr et al [25].

Note that equations (2) and (4) are different ver-
sions of themethod known as the ‘factorial’ approach
to irrigation efficiency. This method offers a single
snap-shot of irrigation efficiency by multiplying dif-
ferent tiers of irrigation together (three in this case),

which makes it very sensitive to errors or changes
in the values of these tiers. The limitations of the
factorial approach are thoroughly discussed in Lank-
ford [52].

2.4. Probability distributions
We describe the uncertainty in the parameters of
equations (2) and (3) with probability distribu-
tions based on the literature review outlined in the
section 2.1 (table 1). We model Ea and Ec for surface
and sprinkler irrigation based on Bos and Nugteren
[37], and Ea and Ec for micro-irrigation according to
the ranges reported by Fairweather et al [41], Brouwer
et al [16] and Rohwer et al [26]. With regards to Mf,
we assume that m tends to 1 but that mismanage-
ment and bad communication can eventually bringm
down to 0.65, thus reducing the efficiency as proposed
by Doorenbos and Pruitt [15]. For the parameter rL
we set the upper bound at 0.5 following Rohwer et al
[26] and assume that its lower bound may be zero
given the existence of large irrigated areas successfully
managed through time, such as the huerta of València
or Murcia (Spain) [53].

Finally, we operationalize f L with two triggers
(X1,X2), e.g. random parameters that account for the
uncertainty in two key aspects related with the char-
acterization of ‘large-scale’ irrigated areas: the data-
set used to document the extension of irrigation and
the threshold size used to define ‘large-scale’ irrigated
areas. Although Rohwer et al use the FAO-GMIA and
10 000 ha respectively, there are currently four differ-
ent datasets informing on the extension of irrigation
[51, 54, 55], and no clear agreement as to what ‘large-
scale’ irrigated areas are [56]. We thus employ X1 to
select one of these four irrigated area datasets and X2

to define the threshold size beyond which irrigated
areas are considered ‘large-scale’ (see section 2.5).
This design results in ten uncertain parameters/
triggers (table 1).

2.5. ‘Large-scale’ irrigated areas
We consider four irrigation maps to characterize
X1: the FAO-GMIA [57], the IWMI-GIAM [55], the
GRIPC [58] and the map by Meier et al [54]. The
FAO-GMIA is based on spatially aggregated official
statistics and reports irrigated areas relative to the
total grid cell area. The IWMI-GIAMdefines irrigated
areas depending on the crop class, whereas theGRIPC
and the Meier et al map provide a binary irrigation
mask. To remain consistent with Rohwer et al [26],
we adjust all datasets to the FAO-GMIA and determ-
ine the percentage of irrigated area in each grid cell.
We identify ‘large-scale’ irrigated areas as contiguous
grid cells with >50% irrigation coverage and a total
irrigated area> p, where p is the uncertain threshold
size operationalized by X2. We focus on p= 1000 ha,
p= 3000 ha and p= 10000 ha. We could not explore
p< 1000 ha given the need for >50% irrigation cov-
erage and the spatial resolution of the dataset.
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Table 1. Probability distributions used to describe the uncertainty in the parameters involved in the estimation of irrigation efficiency.
TWei, TBeta andDU stand for truncated Weibull, truncated Beta and discrete univariate respectively. See figure S1 for a graphical
representation of the selected probability distributions.

Parameter Description Distribution

Easu Field efficiency surface irrigation TWei(3.5,0.5,0.14,0.87)
Easp Field efficiency sprinkler irrigation TWei(6.99,0.74,0.49,0.88)
Eami Field efficiency micro-irrigation U(0.75,0.9)
Ecsu Conveyance efficiency surface irrigation TBeta(5.75,1.4,0.26,0.98)
Ecsp Conveyance efficiency sprinkler irrigation U(0.64,0.96)
Ecmi Conveyance efficiency micro-irrigation U(0.9,0.95)
m Management irrigation TBeta(5.75,1.4,0.65,1)
rL Reduction in efficiency due to

mismanagement in large-scale irrigation U(0,0.5)
X1 Irrigated area dataset DU(1,2,3,4)
X2 Threshold size for large-scale irrigation DU(1000,3000,10000)

2.6. Uncertainty analysis
To appraise how these ambiguities affect the calcu-
lation of irrigation efficiency, we conduct a Monte
Carlo-based uncertainty analysis with the R pack-
age sensobol [59]. We first create a sample matrix
with N= 214 rows and k= 10 columns using Sobol’
quasi-randomnumbers [60, 61]. The Sobol’ sequence
is a base-2 sequence that explores the uncertainty
space more effectively than random numbers, for it
leaves smaller unexplored volumes. We allocate each
column in thematrix to one of the ten uncertain para-
meters/triggers listed in table 1, and use a quantile
transformation to bring the values populating each
column to its appropriate probability distribution.
Any point in this matrix can be designated as xυi,
where υ indexes the row (from 1 to N) and i indexes
the column (from 1 to k). We then run the model: for
υ = 1,2, . . . ,N rows, we calculate the country-level
irrigation efficiency Epυ based on the values defined
by Eaυ , Ecυ , . . . following equations (2) and (3). This
design allows the same set of simulations to be used
also for sensitivity analysis, which helps pinpoint
which parameters/triggers convey the most uncer-
tainty to themodel output [30, 62]. Due to space con-
straints, we provide the results of the sensitivity ana-
lysis in the supplementary materials (available online
at stacks.iop.org/ERL/17/044014/mmedia).

3. Results

3.1. Large variability in irrigation efficiencies
At the regional level, the irrigation efficiency point-
estimates used by GMs hide wide ranges. This is
the case of the United States, whose assigned irrig-
ation efficiency value (0.6) contrasts with the data
compiled by Solley et al [40] at the state level
(figure 1(a)). The values allocated to South (0.35),
East (0.35) and South-East (0.4) Asia also tie in poorly
with the estimates by Guera et al [39] for Indone-
sia (0.4–0.65), Malaysia (0.35–0.45), Thailand (0.37–
0.62) and India (0.3–0.38). For the latter, Bos and
Nugteren [37] report a much larger interval of effi-
ciency values (0.14–0.4). The same applies to the

efficiency apportioned by GMs to North (0.7), West
(0.55), East (0.45) and South (0.45) Africa, which sig-
nificantly shrink the range reported by FAO [38] for
the continent (figure 1(b)). In some cases, the estim-
ates do not seem to fall within the interval formed
by the irrigation efficiency of countries within the
region. This is the case of theMiddle East (0.6), whose
irrigation efficiency falls outside the range formed
by the values of Egypt (0.3), Turkey (0.15) and Iran
(0.29) reported by Bos andNugteren [37].We provide
a detailed comparison between the point-estimates
used by GMs at the regional level and the underlying
irrigation efficiency data in table S1.

3.2. Irrigation technologies do not have sharp,
distinguishable efficiencies
The efficiency ladder in GMs is framed as surface
< sprinkler < micro-irrigation, with each technolo-
gical category unequivocally improving on the pre-
vious one in both field (Ea) and conveyance (Ec)
efficiency. Micro-irrigation is positioned at the sum-
mit with almost perfect values (Ea = 0.9, Ec = 0.95)
(table S2). This narrative sanctions an engineering
perspective of irrigation in which technologies have
essential features and perform independently from
social-ecological particularities and farming prac-
tices. Yet data reported at the project level indicates
largely overlapping, variable partial efficiencies for
surface and sprinkler irrigation [37] (figure 1(c)). The
irrigation efficiency of surface, sprinkler and micro-
irrigation are also reported as intervals laying consid-
erably one over the other by Clemmens and Molden
[63], Rogers et al [42] and Fairweather et al [41].

3.3. What are ‘large-scale’ irrigated areas?
By using Rohwer et al’s data [26], many GMs assume
that ‘large-scale’ irrigated areas have lower efficiencies
due to mismanagement problems and scalar stress,
penalizing the irrigation efficiency of irrigated areas
larger than 10 000 ha [21, 26, 36]. In figure 1(d) we
show that there may not be any difference in applic-
ation (Ea) or conveyance (Ec) efficiency between
irrigated areas below and beyond 10 000 ha, whereas
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Figure 1. Comparison between the irrigation efficiency
estimates used in GMs and the underlying data.
(a) Distribution of efficiencies in USA according to Solley
et al [40], calculated as consumptive water use/total water
withdrawal. The vertical dashed line is the value assigned to
USA by Rohwer et al and used by some GMs [17–20].
(b) Distribution of project efficiencies for Africa as reported
by FAO [38]. (c) Distribution of field (Ea) and conveyance
(Ec) efficiencies in surface and sprinkler irrigation
according to Bos and Nugteren [37]. ‘Surface’ irrigation
includes furrow, basin and border irrigation systems. The
dashed vertical lines mark the point estimates defined by
Rohwer et al and utilized by some GMs [21, 22, 35, 36].
(d) Partial efficiencies for irrigated areas below and beyond
10 000 ha according to the data compiled by Bos and
Nugteren [37]. The dashed vertical lines mark the point
estimates proposed by Rohwer et al [21, 22, 35, 36]. We
have been unable to retrieve the point-estimates that
Rohwer et al use to describe Ea.

in table S3 we report some alternative thresholds util-
ized in different countries to screen‘large’ from ‘small’
irrigation systems based on size (e.g. 100 ha, 1000 ha,
3000 ha). The case of Nepal is paradigmatic since
the physical threshold varies one order of magnitude
depending on the location of the irrigated area (flat
areas: small< 500 ha, large> 5.000 ha; non-flat areas:
small< 50 ha, large> 500 ha) [64].

3.4. Quantitative uncertainties
If we propagate all these uncertainties in the calcula-
tion of irrigation efficiency we obtain large irrigation
efficiency ranges at the country level. We also observe
that the accuracy of the estimation is not improved

by refining the share occupied by flood, sprinkler
and micro-irrigation: the median overlap between
the density areas obtained with the Rohwer et al and
the Jägermeyr et al approach is 90% for Asian and
African countries, 85% for American countries and
80% for European countries (figures 2 and 3, S2). The
presence of contrasting density areas for countries
such as Botswana, South Africa, Oman, Mongolia,
Canada or Spain is explained by a mismatch between
what Rohwer et al identify as the most predomin-
ant technology and the share assigned to that tech-
nology by Jägermeyr et al: if the weight of sprinkler/
micro-irrigation is high (or low) in a country classi-
fied by Rohwer et al into the surface (or micro) irrig-
ation category, the irrigation efficiency values pro-
duced under the Jägermeyr et al approach will tend
to be higher (or lower). For these countries, the selec-
tion of either a fine or a coarse-grained approach in
mapping irrigation technologies already is a signific-
ant source of uncertainty in the production of irriga-
tion efficiency estimates.

The sharp and contrasting efficiency values
assigned by GMs to surface, sprinkler and micro-
irrigation do not stand once uncertainties are thor-
oughly accounted for (figures S3 and S4). We observe
a 40%–50% overlap between the efficiency of surface
and mixed irrigation, a 50% overlap between sprink-
ler and mixed irrigation and a 30% overlap between
sprinkler and surface irrigation regardless of the con-
tinent under study. In Asia, the overlap between
micro and mixed irrigation is of 8% (figures S5 and
S6). Overall, the irrigation efficiency ranges produced
with the uncertainty analysis for surface, sprink-
ler and micro irrigation are much larger than those
previously reported, and include much lower values
(figure 4). This is explained by the factorial approach
to irrigation efficiency sanctioned by GMs, which
is based on the multiplication of partial efficiencies
[52] (Methods, equation (2)). Very low irrigation
efficiency values may be produced when partial effi-
ciencies are characterized with values at the lower end
of their distribution. For instance, an irrigation effi-
ciency of 0.1 for surface irrigation is feasible with the
factorial approach given that the uncertainty ranges
for Ea, Ec and Mf include the values 0.4, 0.5 and 0.5
respectively, and thus 0.4× 0.5× 0.5= 0.1.

All countries except Cyprus, the United Arab
Emirates and Israel (∼0.48) display uncertainty
ranges in irrigation efficiency larger than 0.5, with
countries such as Somalia, Colombia, Serbia or
Bolivia showing the largest ranges (∼0.78). Many of
the top countries in irrigation water withdrawals (e.g.
China, India, Iran, Spain) show uncertainty ranges
larger than 0.6 (figure S7). If we let the irrigation effi-
ciency values fluctuate within the uncertainty bounds
just computed, the irrigation water withdrawals of
these countriesmay vary by up to a factor of 50. Over-
all, the uncertainty in irrigation efficiency makes the
irrigation water withdrawal estimates of 25%, 50%,

5
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Figure 2. Comparison between the uncertainty in the irrigation efficiency of African and Asian countries under two different
assumptions: (a) the share occupied by surface, sprinkler and micro-irrigation is known (Jägermeyr et al approach, equation (4)),
and (b) the share occupied by surface, sprinkler and micro-irrigation is not known (Rohwer et al approach, equation (2)).

75% and 97.5% of the countries vary by up to a factor
of 4, 19, 25 and 32 respectively. The countries placed
at the top 2.5% of this distribution present values that
can vary by up to a factor of 48 (figure S8).

Uncertainties in irrigation efficiency have a much
larger effect on the estimation of irrigation water
withdrawals than those derived from climate change
(figure 5). In the case of India, potential water with-
drawals range from 400 to 800 109m3 under climate
change and from 400 to 7000 109 m3 if irrigation effi-
ciency uncertainties are accounted for (q2.5–q97.5). A
similar situation occurs for Mexico (40–70 109 m3

under climate change; 90–500 109 m3 under irriga-
tion efficiency uncertainties), Egypt (50–180 109 m3;
60–1300 109 m3) or Spain (20–60 109 m3; 30–170
109 m3) (q2.5–q97.5). Note how the integration of

irrigation efficiency uncertainties makes Egypt and
India produce irrigation water withdrawal values that
extend out of scale, i.e. that are beyond the estim-
ates projected by GMs at the global level for 2050
(3000–5000 109 m3). This illustrates the extent to
which current calculations of irrigation water with-
drawals are constrained by arbitrarily precise irriga-
tion efficiency values.

For 75% of the countries, the highest irrigation
water withdrawal value produced after integrating
irrigation efficiency uncertainties is at least two times
higher than the highest value produced under cli-
mate change. For example, countries such as Bhutan,
Guyana, Cameroon or Indonesia present values that
are 100, 30, 20 and 17 times higher respectively.
Only ten countries out of 143 (6%) (e.g. Benin,
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Figure 3. Comparison between the uncertainty in the irrigation efficiency of American and European countries under two
different assumptions: (a) the share occupied by surface, sprinkler and micro-irrigation is known (Jägermeyr et al approach,
equation (4)), and (b) the share occupied by surface, sprinkler and micro-irrigation is not known (Rohwer et al approach,
equation (2)).

Figure 4. Boxplots displaying the values in irrigation efficiency proposed by Rohwer et al [26], Clemmens and Molden [63],
Rogers et al [42], Van Halsema and Vincent [11] and Brouwer et al [16] and those produced in this study (in red) (center line,
median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; points, outliers).
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Figure 5. Comparison between the aggregated irrigation water withdrawal estimates produced by WaterGap, LPJmL, H08 and
PCR-GLOBWB (GMs) and the aggregated estimates obtained once the uncertainty in climate change and irrigation efficiency is
accounted for. The error bars frame the 2.5% and 97.5% quantiles. The ‘GMs’ and ‘GMs+ uncertainty in irrigation efficiency’
labels show data for 2010 while the ‘GMs+ uncertainty in climate change’ label displays data for 2050. Only the five top countries
in irrigation water withdrawals in each continent are plotted. See figures S9 and S10 for a ranking of all countries.

Cyprus, Switzerland, United Arab Emirates) display
higher irrigation water withdrawal values under cli-
mate change (figure S11).

Finally, we note that the integration of climate
change uncertainties produces in some cases ranges
that are narrower than the ranges produced by run-
ning the GMs alone (e.g. the blue error bar for
Indonesia, Pakistan or China is narrower than the
red error bar, figure 5). Given that the addition
of uncertainties most often expands (and not con-
tracts) themodel output uncertainty [65, 66], this fea-
ture suggests the presence of errors in the ISI-MIP
simulations.

4. Discussion

The irrigation efficiency values used by GMs are
problematic. They rely on (and simplify) data pro-
duced 40–50 years ago despite all the work on the
use, applicability and interpretation of the irriga-
tion efficiency concept developed in the past dec-
ades [11, 12, 67]. GMs also sanction a technocratic
vision of irrigation that includes sharp categories
in the definition of irrigation efficiency values, e.g.

large-scale–small-scale, modern–traditional, micro–
sprinkler–surface irrigation. These distinct categories
are idealized because (1) labels classifying irrigation
systems based on physical dimensions are highly con-
textual, (2) the same irrigated area may combine
sprinkler with micro-irrigation or micro with sur-
face irrigation [68, 69], (3) irrigation efficiency values
are highly contingent on maintenance and mana-
gerial activities besides technological features [70],
and (4) remarkably different performances can arise
within categories due to differences in design or lack
of adjustment to specific features of the irrigated area,
such as local topography, rising water scarcity and
prevalence of drought.

The idealization of categories is especially appar-
ent in the conceptualization of ‘large-scale’ irrig-
ated areas and irrigation technologies: firstly, the
term ‘large-scale’ does not necessarily refer to phys-
ical dimensions. An irrigation system may also be
described as ‘large-scale’ if managed by an irrigation
organization responsible for distributing water to the
farmers or by a state, regardless of its dimensions [56].
With this qualitative criteria, very extensive irrigated
areas such as the huerta of València orMurcia (Spain)
(>11 000 ha) would not fit the ‘large-scale’ category
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given their bottom-up, decentralized management
[53, 71].

Secondly, the inclusion of surface, sprinkler
and micro-irrigation in a sequence of increasingly
irrigation-efficient technologies assumes that micro
irrigation is always adopted to increase water effi-
ciency because it leads to the largest efficiency gains
[26, p 39]. But farmers may also embrace micro-
irrigation to reduce workloads, to maintain a land-
lord status [70], to irrigate steep slopes [72], or simply
as a bandwagon effect [73]. Governments can pro-
mote micro-irrigation to alleviate poverty or tame
more informal, difficult-to-control irrigation [74].
And micro-irrigation may actually increase water
consumption at the farm, system and basin levels if it
goes alongside the extension of the irrigated area or a
switch to more water-intensive crops, a phenomenon
known as the rebound effect [75].

Our study reproduces the approach of GMs in
computing irrigation efficiency but integrates the
main uncertainties characterizing the data they rely
upon. We show that these uncertainties impact the
estimation of irrigation water withdrawals more than
the uncertainties related with climate change: they
generally lead to broader ranges and more extreme
values at the upper end of the distribution (figures 5,
S9 and S10). This relevance contrasts with the much
larger attention given to climatic scenarios and their
potential effect on irrigation water demands in the
scientific literature [48, 49, 76, 77]. Although the
existence of irrigation efficiency uncertainties was
noted when the concept of irrigation efficiency
entered GMs [23, 26], ambiguities received no formal
recognition and ended up hidden behind artificially
sharp point-estimates. This process fits with what
Rayner calls ‘displacement’ [78, 79], the process by
which reality gets substituted by a more manageable
surrogate, the model. With the vagueness of irriga-
tion efficiency moved to the background and climate
change increasingly permeating the public imagery
[80], the study of climatic uncertainties and their
effect on irrigation demands has taken center stage in
the GMs field. Based on the weight of uncertainties,
our results suggest that this order of priorities should
be revised.

The use of spuriously precise irrigation efficiency
valuesmisguides high level policies relying onmodel-
based irrigation water withdrawal estimates. The
extent of this deception may be appreciated with the
example of Mexico, whose volume of water with-
drawn for irrigation goes from 40–70 109 to 80–500
109 m3 after integrating irrigation efficiency uncer-
tainties. For the planning of water storage infrastruc-
tures, this means assuming a margin of error equal to
the volume of water stored by either 2 or 13 Hoover
dams (35 109 m3). At the local level, it equals a
measurement error of either 2 million or 16 mil-
lion smallholder farmers whose access to water might
be overlooked (assuming 1 l/s/hectare and 1 ha per

smallholder). Note in this case how the uncertainty
in irrigation efficiency alone boosts the uncertainty
range in water withdrawals by one order of mag-
nitude. In the calculation of irrigation water with-
drawals by GMs there are other sources of uncertainty
besides irrigation efficiency [32], such as the area
under irrigation (hard to precisely define due to unre-
liable country-based statistical data or sources of error
in the remote sensing of irrigated areas [55, 81]), the
crop evapotranspiration (there are several equations
to compute it and no agreement as to which one
works best [82]), or the precipitation dataset (prone
to ambiguities due to sparcity in the gauge network,
inaccuracy in measurements or errors in data colla-
tion and synthesis) [83]. These are likely to expand
the uncertainty in the estimation of irrigation water
withdrawals even further due to the ‘uncertainty cas-
cade’ effect [65].

While we value the benefits of more research on
irrigation efficiency, we argue that uncertainties in
the estimates used by GMs are unlikely to disappear.
Firstly, because the collection of field data at the scale
required by the simulations is unfeasible. Secondly,
because sharp single values may be elusive regardless:
a fine-grained study conducted on micro-irrigation
plots in Morocco documented a coefficient of vari-
ation of 34% for irrigation efficiencies due to differ-
ent irrigation and maintenance activities [70]. Other
ranges may apply elsewhere given the local charac-
ter of agrarian practices. Thirdly, because by the time
the collected data has been introduced in the mod-
els, field realitiesmight have changed significantly due
to the dynamical nature of agricultural systems [84].
In general, the increase of our knowledge on a spe-
cific topic tends to open up unexpected uncertainties
not considered in the original problem framing [85].
This is well-known by the climate change community
after more than 30 years collecting data on climate
sensitivity (the average global warming that would
be produced by doubling CO2 atmospheric concen-
tration from 280 to 560 ppm), leading to ever-larger
uncertainties [86].

The ranges proposed in this paper are pro-
duced with the irrigation efficiency data underpin-
ning the irrigation efficiency values used by GMs.
They are also conditioned by the GMs’ factorial
approach to irrigation efficiency, known to mag-
nify errors and misrepresent efficiencies [52]. Hence
they should not be taken at face value but as evid-
ence of important unattended ambiguities, with crit-
ical implications for the production of irrigation
water withdrawal estimates and the design of robust
policies at the water-agricultural interface. The ‘inex-
act’ nature of Hydrology as a science [87] matches
poorly with the use of sharp point-estimates: once
audited, the rhetorical nature of these numbers (e.g.
their use as tools to constrain complexities and con-
firm pre-existent narratives) is often revealed. In the
case of existing ecological or agricultural estimates
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this frequently leads to a redefinition, reversal or
even a rebuttal of the associated policy implica-
tions [88], with the subsequent delay in the design
of appropriate responses to social-environmental
challenges.

Rather than attempting to drive uncertainties out,
GMs might increase their social and policy relevance
by thoroughly—and more realistically—exploring
their uncertain space, including both quantitative
uncertainties and the impact that disciplinary or
normative assumptions have in the production of the
model output [32, 89]. Opening up the box of the
modeling process should be backed up by a disclos-
ure of the conditionalities underpinning the model
inferences. This approach minimizes the knowledge
asymmetry between modelers and model users (e.g.
regulators) and prevents a reductionist framing of the
problem, thus circumventing the formation of tunnel
visions that would align policies along a single, pos-
sibly non-optimal direction.
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