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M A T H E M A T I C S

Models with higher effective dimensions tend 
to produce more uncertain estimates
Arnald Puy1,2,3*, Pierfrancesco Beneventano4, Simon A. Levin2, Samuele Lo Piano5, 
Tommaso Portaluri6, Andrea Saltelli3,7

Mathematical models are getting increasingly detailed to better predict phenomena or gain more accurate insights 
into the dynamics of a system of interest, even when there are no validation or training data available. Here, we 
show through ANOVA and statistical theory that this practice promotes fuzzier estimates because it generally 
increases the model’s effective dimensions, i.e., the number of influential parameters and the weight of high-order 
interactions. By tracking the evolution of the effective dimensions and the output uncertainty at each model upgrade 
stage, modelers can better ponder whether the addition of detail truly matches the model’s purpose and the 
quality of the data fed into it.

INTRODUCTION
Many mathematical models are getting increasingly complex with 
the assumption that ever-comprehensive representations of the 
process under study will eventually bound uncertainties and produce 
more accurate insights (1–3). This trend has been fueled by computa-
tional advances that have permitted to increase the number of tran-
sistors in a chip and thus the speed of arithmetic operations without 
substantially increasing power requirements—the combination of 
what is known as Moore’s law (4) and Dennard’s scaling (5). Such 
breakthroughs have allowed the simple general circulation models 
of the 1960s to evolve into comprehensive atmosphere-ocean general 
circulation models (6, 7), or the “bucket”-type models of the 1970s 
to turn into global hydrological models that simulate water uses and 
the human impact on the global water cycle (8, 9). In mathematical 
epidemiology, the basic compartmental models of Kermack and 
McKendrick (10) have expanded into the Imperial College’s trans-
mission model of severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2), based on more than 900 parameters (11).

In the environmental/climate sciences, hydrology, and epidemiol-
ogy domains, the development of finer-grained models often pro-
ceeds without having, at the scale required, specific data available to 
train or validate the model (12). Models tend to be based on physical 
laws or principles specific to the field and hence may project their 
estimations, predictions, or dynamics into the unknown. When the 
lack of validation data renders the assessment of model bias (i.e., 
how far off are the modeled estimates from the data available) 
unfeasible, modelers cannot benefit from existing statistical instru-
ments that help balance model complexity with error so as to 
align with science’s quest for parsimony, such as Akaike’s (13) or 
Schwarz’s (14) information criterion. In these cases, model expan-
sion may proceed without standardized approaches to assess whether 

the level of model detail matches the quality of the knowledge avail-
able, whether the newly added processes truly lead to more accurate 
estimates, or how the output uncertainty builds up at each model 
upgrade stage. This often limits the social usefulness of process-based 
models as instruments to inform policies in the real world (15), where 
reliance on excessively complex and overconfident models may 
have deleterious social-environmental consequences (16).

Here, we show that modelers can gauge the connection between 
model complexity and uncertainty at all stages of model development 
by calculating the model’s “effective dimensions,” that is, the number 
of influential parameters and active higher-order effects (17–19). 
The concept of effective dimensions helps to better tune the level of 
model detail to the context and purpose of the application, ulti-
mately improving the quality of models that do not (or cannot) fit 
any training or validation data. We also provide numerical evidence 
that the addition of model detail in process-based models tends to 
produce more (and not less) uncertain estimates because it increases 
the model’s effective dimensions, which generally boost the output 
variance. This fact, which may have gone unnoticed as yet because 
of the scarce uptake of uncertainty and sensitivity analyses in math-
ematical modeling (20), suggests that the quest toward ever-detailed 
mathematical models as a means to get sharper estimates or insights 
should be reassessed.

We first describe the mathematical foundations of our approach 
and the statistical theory behind the connection between model un-
certainty, complexity, and the notion of effective dimensions. After 
illustrating this relation with a numerical simulation, we stress-test 
our theory with a meta-model that generates a very broad range of 
functional forms and faithfully reproduces the effect of complexifi-
cation at higher effective dimensions. We then illustrate how the 
concept of effective dimensions can help modelers balance model 
complexity with uncertainty using several increasingly complex 
models of the energy, agriculture, and epidemiology domain. We 
conclude by discussing the implications of our results for the design 
of mathematical models and model-based policies.

RESULTS
Model complexity and uncertainty
We regard the number of parameters and the pattern of their con-
nections as key contributors to the complexity of mathematical 
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models (21, 22). Our approach thus relies on the notion of “aggregate 
complexity” (23) and focuses on system components and their 
interactions when no validation data are available. This can be the 
case of predicting the evolution of a new epidemic, exploring the 
impact of a new technology, predicting the potential scarcity of a 
natural resource, and so on, over a myriad of settings often encoun-
tered in impact assessment studies.

By setting the focus on the number of model parts and their con-
nections, we can relate model complexity with uncertainty through 
statistical theory via the analysis of variance (ANOVA) decomposi-
tion framework and the notion of effective dimensions (17–19) (see 
Materials and Methods). In this framework, parameters are regarded 
as stochastic variables whose uncertainty is described by probability 
distributions reflecting their measurement error, natural variation, 
inherent randomness, or the subjective judgement of experts (24). 
Given a model of the form y = f(x), x = (x1, x2, …, xi, …, xk) ∈ ℝk, 
where y is a scalar output and x1, …, xk are k independent parameters, 
we can calculate the proportion of variance conveyed to y by each 
parameter (first-order effect, Si) and by the interaction between 
pairs of parameters (second-order effect, Si,j), triplets of parameters 
(third-order effect, Si,j,l), etc., up to the kth-order interaction. For a 
model with just three parameters, this is S1 + S2 + S3 + S1,2 + S1,3 + 
S2,3 + S1,2,3 = 1. This variance decomposition applies when f(x) is 
square-integrable over the dominion of existence, and is linked to 
Sobol’s (25) functional decomposition scheme, where f(x) is de-
composed as the sum of 1,2, …, k-dimensional functions.

The estimation of up to the kth-order interaction may be impracti-
cal for high-dimensional or computationally demanding models. 
Under these circumstances, the calculation of the total-order effect 
(Ti) allows one to capture the proportion of variance conveyed to y 
by the first-order effect of xi jointly with its interactions up the kth 
order (26). For parameter x1 in a three-parameter model, this would 
be ​​T​ 1​​  = ​ S​ 1​​ + ​S​ 1,2​​ + ​S​ 1,3​​ + ​S​ 1,2.3​​​ and similarly for x2 and x3. 

We can now introduce the concept of effective dimensions (17–19).
Effective dimension in the “superposition” sense
Let  = {1,2, …, k}. For any subset u ⊆ , let ∣u∣ denote its cardinality 
(18). In the “superposition sense,” the effective dimension of a 
model f is the smallest integer ks such that

	​​   ∑ 
0<∣u∣≤​k​ s​​

​​​ ​S​ u​​  ≥  p ​	 (1)

where 0 < p < 1. The value of p is arbitrarily set, and here, we use p = 
0.99 following Caflisch et al. (17). Using again a three-parameter 
model as an example, if (S1 + S2 + S3 + S1,2 + S2,3 + S1,3) ≥ p, then 
∣u∣= ks = 2. The effective dimension ks is therefore the order of the 
highest effect that needs to be included in Eq. 1 to reach p. Models 
with a high effective dimension in the superposition sense have im-
portant high-order effects and hence can be considered as a sum of 
ks-dimensional functions (see Materials and Methods and Eq. 4) (19). 
Since ks reflects the weight of interactions between the model’s pa-
rameters, ks is also a proxy for the pattern of connections in the model. 
For computation simplicity, here we calculate ks up to the third-order 
indices and assume that ks ≥ 4 when (∑ Si + ∑ Si, j + ∑ Si,j,l) < p.
Effective dimension in the “truncation” sense
Let us now consider the vector of total-order indices T = {T1, T2, …, 
Tk}. In the truncation sense, we define the effective dimension of a 
model f to be the integer kt, such that

	​​ k​ t​​  =∣C∣= ∣{​T​ i​​  ∈  T∣​T​ i​​  >  q}∣ ​	 (2)

where ∣C∣ is the cardinality of the subset C formed by the num-
ber of elements Ti in T such that Ti > q. Here, we define q = 0.05 
as this is the threshold commonly used in sensitivity analysis 
to screen “influential” from “noninfluential” parameters (those 
that convey uncertainty to y from those that do not). Models with 
a high effective dimension in the truncation sense have a large 
number of influential parameters and thus a large kt value. Note 
that our definition of effective dimension in the truncation sense is 
a simplification of the notion introduced by Wang and Fang (18) 
and Caflisch et al. (17). Here, we give precise kt values for all the 
models examined.

Usually, k ≫ kt ≫ ks due to the general dominance of low-order 
effects in mathematical models and the preeminence of the Pareto 
principle (c. 80% of the effects are conveyed by c. 20% of the param-
eters) (27–29). Models live in the space set by kt and ks and not in 
that nominally defined by k, which may be artificially large if the 
model includes a non-negligible number of noninfluential parameters. 
The space defined by kt and ks cannot be simplified without modi-
fying the model’s behavior, and thus, it is irreducibly complex (30). 
It follows that more complex models will generally display a higher 
effective dimension in kt and ks, an increase that promotes a larger 
output uncertainty (Fig. 1A). This is because the output variance of 
more complex models is increasingly driven by higher-order effects 
activated by the progressive addition of influential model parameters: 
Note in Fig. 1A how the larger the ks dimension is, the smaller the 
sum of first-order indices Si.

The meta-model check
To check whether the relation between higher effective dimensions, 
the addition of model detail, and larger output uncertainty holds 
regardless of the model functional form, we stress-test our approach 
with a meta-model based on the Becker (29) metafunction. Our 
meta-model randomizes over 13 different univariate equations rep-
resenting common responses observed in physical systems, from 
linear to multimodal (fig. S1) (31). It also randomly activates up to 
the nth-order effect, for n ≤ k, to observe how different combina-
tions of k and ks values affect the output uncertainty. This approach 
allows the creation of more than two million models with different 
dimensionalities, functional forms, and degree of interactions (see 
Materials and Methods).

Also in this case, the output uncertainty tends to increase with 
the number of model parameters and the activation of up to the 
kth-order interaction (the blue trend in Fig. 1B). Note how a model 
with more parameters does not necessarily lead to a larger uncertainty 
if n ≠ k (the orange trend in Fig. 1B). This highlights the importance 
of high-order interactions in defining both the complexity of the 
model and its output uncertainty. The number of parameters can be 
fixed and the uncertainty increases all the same just by progressively 
adding new interactions between the parameters (Fig. 1C).

The width of the trend in Fig. 1 indicates that the addition of new 
parameters does not mechanically have to promote more uncertain 
estimates: Several models with different effective dimensions in both 
kt and ks may display the same output variance. By routinely assess-
ing the model’s effective dimensions in every model upgrade stage, 
modelers can appraise the link between complexity and uncertainty 
during model development and ponder whether the addition of 
detail truly suits the model’s purpose. Optimal complexity would 
depend on whether the model aims at predicting variables, under-
standing dynamics, managing resources, or guiding policy-making. 
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In the next section, we illustrate the practical implications of our 
approach using several increasingly complex models as examples.

The link between effective dimensions and 
uncertainty in action
Compartmental models
In many fields, model complexification involves linking models in a 
causal chain, where the output of a given link is used as the input of 
the next one. In climate change research, greenhouse gas emission 
scenarios are usually transferred into impact models whose output is 
used to assess local impacts and, lastly, to design adaptation responses 

(32, 33). In flood management, flood wave forecasts require runoff 
predictions, which previously demand rainfall forecasts (34). Basic 
epidemiological models also follow this layout, as individuals flow 
from one compartment to another depending on whether they are 
susceptible, infected by the virus, or recovered (35). Eventually, new 
compartments are added to improve the model’s descriptive capacity 
and its usefulness for policy-making.

We illustrate how adding complexity affects the effective dimensions 
of compartmental models with the Probabilistic System Assessment 
Code Intercomparison (PSACOIN) Level 0 model (36). It simulates 
the leaking of radionuclides from a given repository and its transport 

A

B C

Fig. 1. The link between model complexity and uncertainty. (A) Trend between the effective dimension in the truncation sense (kt), the effective dimension in the 
superposition sense (ks), the sum of the first-order effects of the models’ parameters Si, and the coefficient of variation (CV), which we use as a proxy for uncertainty. Each 
dot is a simulation (N = 210) that randomizes the coefficients of Sobol’s G function (68) (see Materials and Methods). The small rectangle frames some simulations in which 
models with different kt and ks dimensions have an almost identical output variance. (B) The meta-model approach. Evolution of uncertainty through different dimen-
sions k as a function of the order of the highest interaction activated, for n ≤ k. The line shows the median value, whereas the ribbon displays the SD. N = 211. (C) Evolution 
of uncertainty after fixing the model dimensionality at k = 15 and activating up to the nth-order interaction.
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to a buffer, then to the geosphere, and lastly to the biosphere, where 
they are ingested by humans and animals after drinking water from 
a contaminated well or stream (figs. S2A and S3). Overall, the PSACOIN 
Level 0 model includes 10 uncertain parameters described with proba-
bility distributions and 11 constants (table S1). If the model’s effec-
tive dimensions are assessed in every model upgrade stage, the progressive 
rise in kt and ks unfolds: kt goes from kt = 1 in the waste level to kt = 2, 
kt = 5, and kt = 6 in the buffer, geosphere, and biosphere level, re-
spectively (Fig. 2A). As for ks, it goes from ks = 2 in the buffer level 
to ks ≥ 4 in the geosphere and biosphere level, since the sum of up 
to third-order effects in these levels is not enough to reach p (Fig. 2B). 
Note how uncertainties get larger in each model complexification 
stage, with the largest increase taking place in the transition between 
the buffer and the geosphere model: This is the critical leap in the 
development of the PSACOIN Level 0 model in terms of output 
uncertainty and complexity.

Flagging the progression of kt and ks values and related uncer-
tainty in each PSACOIN upgrade stage allows one to see that the 
regulation on the safety of nuclear waste disposal should not set limits 
on doses to humans in the biosphere [as is usually done in the United 
States; see the case of the Yucca Mountain nuclear waste repository 
in Nevada (16, 37, 38)]. This is because once the contaminant reaches 
the buffer-geosphere interface, its fate is extremely hard to predict, 
and the addition of model detail just boosts the uncertainty. Regulations 
would thus establish more realistic and defensible safety standards 
if they define a maximum level of radioactivity leaving the buffer onto 
the aquifer and the geosphere (expressed in becquerels per year) rather 
than a total dose to the biosphere (expressed in sieverts per year). 
The PSACOIN Level 0 case illustrates how the concept of effective 
dimensions may help regulators distinguish in compartmental 
models which compartment produces the most solid inferences 
to guide policy-making, and where is the threshold beyond which 
the addition of complexity no longer makes the model fit for purpose.
Structural uncertainties
During the upgrade of a model, modelers may be unsure as to which 
is the best way to mathematically represent the newly added process. 

This structural uncertainty, also known as process-based uncertainty 
(39), often needs to be appraised to discern how the selection of a 
given equation over another conditions the model’s behavior and 
its output. The link between model complexity and uncertainty can 
be examined to unfold the uncertainty buildup due to the accumu-
lation of both parametric and structural uncertainties, and to check 
whether model complexification should proceed without the need 
to address this source of structural uncertainties.

We illustrate this exercise with a basic formula to estimate the 
total amount of water withdrawn to irrigate a crop. Such a formula 
requires the calculation of the evapotranspiration of a reference crop 
(usually grass or alfalfa), the calculation of the crop evapotranspira-
tion (wheat in this case), and lastly the estimation of the water 
withdrawn for irrigation (40). However, there are c. 50 different 
equations available to calculate the reference evapotranspiration 
and no agreement as to which method might work best (41). 
Some of the most used are the Priestley-Taylor and the FAO-56 
Penman-Monteith (42), known to provide results that can differ by 
a factor of 2 or more (40). We examine the impact that this source 
of uncertainty has on the model’s effective dimensions and uncer-
tainty with a trigger (43), a parameter that randomly decides which 
evapotranspiration equation should be used in each model simula-
tion (see the Supplementary Materials).

The uncertainty in the selection of the reference evapotranspira-
tion equation slightly increases the model’s effective dimensions in 
all compartments: kt values rise from 2 to 3 in the crop evapotrans-
piration compartment and from 5 to 6 in the irrigation water with-
drawal compartment (Fig. 3A). The raise in ks is also moderate: ks 
values increase from 1, 1, and 2 to 2, 2, and 3 in the reference evapo-
transpiration, crop evapotranspiration, and water withdrawal com-
partment, respectively (Fig. 3B). Such minor increase in complexity, 
however, leads to a much larger output uncertainty than the uncer-
tainty yielded by a model that uses either the Priestley-Taylor or the 
Penman-Monteith equations (blue lines in Fig. 3A).

The evolution of the model complexity and output uncertainty 
in these irrigation models suggests that (i) opting for either the 
Penman-Monteith or the Priestley-Taylor equation leads to over-
look an important source of structural uncertainty whose effect in 
the model lasts until the very last compartment, (ii) the selection of 
just one reference evapotranspiration equation is hard to justify on 
the basis of parsimony since the effective dimensions of the result-
ing models are similar to those of the “uncertain” model, and (iii) 
regardless of the model selected, the largest boost in output uncer-
tainty takes place in the transition to the irrigation water withdrawal 
compartment, which also displays comparatively higher ks values. 
Policy-makers using irrigation models to guide action in the field 
should plan with regard to an uncertainty that may be irreducible 
given the importance of higher-order interactions.
Complexification of compartmental models
The addition of model detail often goes along with the establishment 
of new compartment flows, links, and information delays. The 
upgraded model is then no longer a causal chain but a system with 
feedback loops and several input-output relationships. This is com-
mon practice in epidemiology, where the descriptive capacity of the 
classic susceptible-infected-recovered (SIR) model is often enhanced 
with the addition of fine-grained features such as seasonality or age 
stratification (44).

Such complexification may also produce fuzzier estimates at each 
model upgrade stage due to the increase in the model’s effective 

A B

Fig. 2. Relation between uncertainty (represented by the CV) and complexity 
in the PSACOIN Level 0 model. (A) Evolution of the CV and kt across the four com-
partments of the PSACOIN Level 0 model. (B) Proportion of the model output variance 
explained by the sum of first (Si)–, second (Si,j)–, and third (Si,j,l)–order effects. The 
horizontal dashed line is at p = 0.99. Note that the waste level is missing because it 
only contains one uncertain parameter and thus kt = ks = 1.
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dimensions. To illustrate this fact, we propagate uncertainties in 
three increasingly detailed SIR-based models, extracted from 
Saad-Roy et al. (45, 46): a SIR-based model with waning immunity 
and no vaccination [SIR(S)], a SIR upgraded with a vaccination 
compartment [SIR(S-V)], and an extended SIR with different vacci-
nation strategies [SIR(S-E)] (figs. S2, B to D, and S4). These SIR 
models aimed at providing insights into the magnitude of future 
SARS-CoV-2 cases in 2020-2021 given different assumptions on 
the nature of the adaptive immune response and pharmaceutical 
interventions.

Figure 4A indicates that the simplest SIR, the SIR(S), generally 
provides the least uncertain estimates, followed closely by the SIR(S-V). 
The more detailed model, the SIR(S-E), yields the most uncertain 
estimates, especially for IP and IS at t > 80. The progressive increase 
in uncertainty as a result of the addition of model detail is mirrored 
by a gradual raise in the effective dimensions: Notice how ks = 
2 in all compartments of the SIR(S), ks = 3 in all compartments 
of the SIR(S-V), and ks ≥ 4 for the compartments SP, IP, R, and IS of 
the SIR(S-E), since at least fourth-order effects are needed to reach 
p (Fig. 4, B and C).

The link between the output variance and the concept of effec-
tive dimensions permits to ponder which SIR model offers more 
appropriate insights to guide action. Note how the SIR(S) and the 
SIR(S-V) display an almost identical output variance through all the 
time intervals considered (Fig. 4A), and yet the SIR(S-V) has higher 
kt and ks values (Fig. 4, B and C). The propagation of uncertainty 
also evidences that the increase in the effective dimensions in the 
upgrade from the SIR(S-V) to SIR(S-E) blurs the evolution of sus-
ceptible, infected, and recovered individuals; the relative effects of 
vaccination programs; or the best timing for interventions from t > 80 
onward (Fig. 5). If the goal of the model is to gain insights into the 

effects that vaccination and nonpharmaceutical interventions may 
have on the spread of the virus, then the SIR(S-V) might be pre-
ferred over the more complex SIR(S-E) because the extra detail in 
the latter does not help clarify potential courses of action. However, 
if the goal of the SIR-based model is to inform on the potential evo-
lution of infected and susceptible individuals, then the SIR(S) might 
be favored over the SIR(S-V) because the higher effective dimen-
sions of the latter do not provide any significant additional insights 
into the possible dynamics of the epidemic to justify its higher detail 
(Fig. 5).

DISCUSSION
Here, we analyze the relation between complexity and uncertainty 
in process-based mathematical models that do not (or cannot) rely 
on a training and/or validation dataset. Such models, ubiquitous 
and often prevalent at the science-policy interface, provide insights 
into complex issues that may escape verification: How many radio-
nuclides can leak from a waste repository and get into humans via 
drinking water? How will a new pandemic spread? How much 
water for irrigation will be needed worldwide by 2050? Will the det-
onation of the first nuclear device set fire to the atmosphere? What 
is the cost of CO2 averaged over the next century? For these types of 
questions, we show that the addition of model detail promotes 
fuzzier estimates because it generally increases the model’s effective 
dimensions kt (the number of influential parameters) and ks (the 
order of the highest-order effect active in the model). This makes 
the model’s uncertain space more dominated by interactions, which 
promote larger uncertainties. The addition of complexity, rather 
than sharpen the accuracy of the estimation, may swamp it under 
indeterminacy.

A B

Fig. 3. Relation between uncertainty (both parametric and structural) and complexity using the modeling of irrigation water withdrawals as a case study. 
(A) Evolution of uncertainty and kt in the three compartments needed in the model: reference evapotranspiration, crop evapotranspiration, and water withdrawal. 
(B) Sum of first-, second-, and third-order effects in each compartment as a function of the reference evapotranspiration equation (ET0) used (Penman-Monteith, 
Priestley-Taylor, or uncertain).
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Greater complexity can be useful if the scope of the mathematical 
model is to explore the implications of its underpinning assump-
tions and theories. A higher level of detail permits the modeled pro-
cess to exhibit in full its range of variation once the hyperspace of its 
input parameters is thoroughly explored, an insight that may help 
detect hitherto unexpected behaviors. In other words, “model re-
sponsibly” rather than “simple is beautiful” is the stance of the present 
work. What is undesirable is the coupling of excess complexity with 
the illusory accuracy that results from scarce attention to the prop-
agation of uncertainties onto the prediction of the model. This 
practice may miss on the unanticipated behaviors, foster tunnel 
vision, and underestimate serious socioenvironmental risks such as 
the effects of climate change (47), the impact of insecticides on bees 
(48) or the environmental impact of irrigated agriculture (40, 43). 
Among practitioners, this pathology is known as “garbage in, 
garbage out” (“where uncertainties in inputs must be suppressed 
lest outputs become indeterminate”) (49).

Examining the link between effective dimensions and output 
uncertainty at each model upgrade stage may improve the quality 
of process-based models. The lack of validation data at the spatial/

temporal scales required means that these models often only have 
access to the measurement error part of the systemic bias and mea-
surement error trade-off, known as the O’Neill (50) conjecture in 
ecology, as Zadeh’s (51) principle of incompatibility in systems analy-
sis, or as the “bias-variance trade-off” in machine learning (52). The 
concept of effective dimensions, however, enhances the examination 
of measurement error by tracking the uncertainty buildup at each 
model upgrade stage and facilitating consideration of a broad set of 
quality criteria beyond goodness-of-fit statistics, such as model pur-
pose, complexity, and transparency. It sets the ground for a reflective 
(and not mechanical) approach to model selection, along the lines 
of what Fisher and Neyman recommended as best practices in 
inferential statistics (53). Unlike information criterion, the calcula-
tion of the effective dimensions can also integrate epistemic uncer-
tainties [uncertainty due to the imperfection of our knowledge (54)], 
which often expand when models get enlarged to include new pro-
cesses. This exercise ensures that model complexity remains within 
bounds compatible with the quality of the evidence fed into the 
model itself, ultimately providing modelers with insights to help 
them select the “most appropriate” model.

A

B

C

Fig. 4. Relation between complexity and uncertainty in three SIR(S)-based models. Models from Saad-Roy et al. (45, 46). (A) Evolution of the uncertainty across time 
in the five compartments shared by all the models: fully susceptible individuals (SP), fully immune individuals as a result of recovery from either primary or secondary in-
fection (IP), individuals that have recovered (R), individuals whose immunity has waned (SS), and individuals with secondary infection that transmit at reduced rate (IS). 
(B) Mean kt values of each of the compartments for each of the SIR(S) models considered. The error bar shows the SD. (C) Proportion of the model output uncertainty at 
t = 200 explained by the sum of first-, second-, and third-order effects. The horizontal dashed line is at p = 0.99.
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Our approach is especially valuable for models that aim at playing 
a role in policy arenas. Pinpointing the model’s effective dimensions 
can contribute to take more robust actions because the space of pos-
sible options is no longer artificially constrained by spuriously 
accurate model outputs. Both modelers and their constituency gain 
by a process of transparent communication of the uncertainty, which 
results from proper monitoring of each model upgrade stage. This 
facilitates the identification of the “stopping point” beyond which 
the addition of extra detail  no longer makes the model suitable, thus 
promoting a reciprocal domestication between models and society 
(15). Such a control is especially needed to prevent policy-oriented 
models from getting as complex as to cloak value-laden assump-
tions and output uncertainties (55). For instance, how many readers 
outside the circle of practitioners know that the 1.5 degree climate 
target is achieved in integrated assessment models thanks to the 
adoption of so-called negative emissions, a technology still to be fully 
developed (56)? Or that global hydrological models assume that irriga-
tion optimizes crop production and water use (a premise at odds 
with the practices of traditional irrigators) (40)?

Since larger-scale models can command more epistemic authority 
(57), modelers may be tempted to add detail to reinforce their status 
as influential actors at the science-policy interface and gain recogni-
tion and reward (58). More complex models are also more ductile to 
political calibration, a sequential process of continuously refining the 
fit between modeling and policy requirements (56). In this situation, 
the model becomes a moving target as it is continuously rearranged 
to include new data and processes to match evolving policy needs, 
with no evidence as to how it works prospectively. This makes larger 
models more prone to fall into the “Texas sharpshooter” fallacy, where 
you shoot first and then draw the bull’s-eye where the bullet hits. 
The calculation of the model’s effective dimensions may contribute 
to prevent or minimize these biases by systematically unfolding the 
balance between model prowess, uncertainty, and policy goals.

Our work also stresses the importance of stripping mathematical 
models of superfluous parameters, processes, or linkages. This is 
related to Occam’s razor principle by which “entities should not be 
multiplied without necessity” (59). There are few reasons to keep 

models in their nominal dimension k when k ≫ kt, because such in-
equality points to unneeded redundancy. An example is the irrigation 
module of many global hydrological models (60, 61): Although com-
putationally demanding and formed by several parameters and equa-
tions, their behavior is ultimately very similar to a linear regression 
of irrigated areas (62). This suggests the existence of a mismatch 
between their “real” complexity and their computational require-
ments. The concept of effective dimensions, by distilling the model 
from superfluous elements, refines also the notion of algorithmic 
complexity down to its “true” value (23).

The key dimension determining the model output uncertainty is 
ks, i.e., the order of the highest-order effect active in the model. This 
dimension cannot be pinpointed by intuition alone and is often com-
putationally elusive if k is high. However, the influence of high-order 
effects can be pondered with the calculation of the total-order index 
Ti. This requires submitting the model to a global sensitivity analysis 
(63). If many inputs are uncertain and the model is time-consuming 
to run, this may prove impossible: A model that takes days to run 
for a single combination of its inputs cannot be run hundreds, 
let alone thousands of times, to properly characterize its uncertainty 
space (64). The trend toward increasingly complex process-based 
mathematical models discussed in Introduction may be grounded 
in this paradox: More detailed models may be thought of as more 
accurate simply because their very design complicates any attempt 
at proving otherwise.

MATERIALS AND METHODS
Variance-decomposition framework
Given a model of the form y = f(x), x = (x1, x2, …, xi, …, xk) ∈ ℝk, 
where y is a scalar output and x1, …, xk are k independent parameters 
whose uncertainty is described by probability distributions, the 
variance of the output V(y) can be decomposed as

	​ V(y ) = ​ ∑ 
i=1

​ 
k
  ​​ ​V​ i​​ + ​∑ 

i
​ ​​​ ∑ 

j>i
​ ​​ ​V​ i,j​​ + … + ​V​ 1,2,…,k​​​	 (3)

where Vi, Vi,j, … are, respectively, the conditional variances of xi, 
(xi, xj), … on y. Equation 3 is linked to Sobol’s (25) functional de-
composition scheme

	​​
f(x)

​ 
= ​f​ 0​​ + ​ ∑ 

i=1
​ 

k
  ​​ ​f​ i​​(​x​ i​​)

​  
​
​ 

+ ​∑ 
i
​ ​​​ ∑ 

j>i
​ ​​ ​f​ i,j​​(​x​ i​​, ​x​ j​​ ) + … +  ​f​ 1,2,…,k​​(​x​ 1​​, ​x​ 2​​, … , ​x​ k​​) 

​​	 (4)

given that

	​​ 
​f​ 0​​

​ 
= E(y)

​  ​f​ i​​​  = ​E​ ​x​ ​∼​ i​​​​​​(y∣​x​ i​​ ) − E(y)​   
​f​ i,j​​

​ 
= ​E​ ​x​ ​∼​ i,j​​​​​​(y∣​x​ i​​, ​x​ j​​ ) − ​f​ i​​ − ​f​ j​​ − E(y) 

​​	 (5)

where E(.) is the mean operator and x∼i denotes all parameters ex-
cept the ith, and therefore 

	​​ 

​V​ i​​

​ 

= V [ ​f​ i​​(​x​ i​​ ) ] = ​V​ ​x​ i​​​​ [ ​E​ ​x​ ∼i​​​​(y∣​x​ i​​ ) ]

​   
​V​ i,j​​

​ 
= V [ ​f​ i,j​​(​x​ i​​, ​x​ j​​ ) ] = ​V​ ​x​ i​​,​x​ j​​​​ [ ​E​ ​x​ ∼i,j​​​​(y∣​x​ i​​, ​x​ j​​ ) ]

​    
​
​ 

− ​V​ ​x​ i​​​​ [ ​E​ ​x​ ∼i​​​​(y∣​x​ i​​ ) ]
​   

​

​ 

− ​V​ ​x​ j​​​​ [ ​E​ ​x​ ∼j​​​​(y∣​x​ j​​ ) ]

 ​​	  (6)

Variable

SP IP R SS IS

V V1 V2 IV SS1

SS2 IS1 IS2

SIR(S) SIR(S−V) SIR(S−E)

0 100 200 0 100 200 0 100 200
0.00

0.25

0.50

0.75

1.00

t

N

Fig. 5. Monte Carlo propagation of uncertainties in three SIR-based models. Models 
from Saad-Roy et al. (45, 46). Each of the 128 lines in each state variable and model 
reflects a simulation conducted with parameters taking specific values according 
to their uncertainty range. V, vaccinated; V1, one-dose vaccinal immunity; V2, two-
dose vaccinal immunity; IV, infection after vaccination; SS1, waned one-dose immu-
nity; SS2, waned two-dose immunity; IS1, infection after waned one-dose immunity; 
IS2, infection after waned two-dose immunity. For the rest of the state variables, see 
the caption of Fig. 4.
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Sobol’s (25) indices are then calculated as

	​​ S​ i​​  = ​   ​V​ i​​ ─ V(y) ​, ​S​ i,j​​ = ​ 
​V​ i,j​​ ─ V(y) ​…​	 (7)

where Si is the first-order effect of xi, Si,j is the second-order effect 
of (xi, xj), etc.

The total-order index (Ti) captures the proportion of variance in 
y propagated by the first-order effect of xi jointly with its interactions 
up to the kth order (26). In other words, Ti includes all terms in 
Eq. 3 with the index i and is computed as

	​​ T​ i​​  =  1 − ​ 
​V​ ​x​ ∼i​​​​ [ ​E​ ​x​ i​​​​(y∣​x​ ∼i​​ ) ]

  ────────── V(y) ​   = ​ 
​E​ ​x​ ∼i​​​​ [ ​V​ ​x​ i​​​​(y∣​x​ ∼i​​ ) ]  ────────── V(y) ​  ​	 (8)

Uncertainty and sensitivity analysis
To assess how the addition of model complexity increases the out-
put uncertainty, we submit all models and functions studied here to 
global uncertainty and sensitivity analysis. For each model, we con-
struct a (N, k) Q matrix, where k is the number of model parameters 
and N is the row dimension, using Sobol’s quasi-random numbers 
(65). We allocate the leftmost k columns to an A matrix and the 
rightmost k columns to a B matrix. In these matrices, each column 
is a parameter and each row is a sampling point. Any sampling point 
in A or B can be indicated as xvi, where v indexes the row (from 1 to 
N) and i indexes the column (from 1 to k). We also construct k ​​A​B​ (i)​​ 
(​​B​A​ (i)​​) matrices, where all parameters come from the A (B) matrix 
except the ith, which comes from the B (A) matrix.

The model f runs row-wise in each matrix, and we use the model 
output y to compute the coefficient of variance and the sensitivity 
indices. We compute Si and Ti with the Azzini estimators (66)

	​​ S​ i​​  = ​ 
2​∑ v=1​ N  ​​(f ​(​B​A​ (i)​)​ v​​ − f ​(B)​ v​​ ) (f ​(A)​ v​​ − f ​(​A​B​ (i)​)​ v​​)    ──────────────────────────    

​∑ v=1​ N  ​​ [ ​(f ​(A)​ v​​ − f ​(B)​ v​​)​​ 2​ + ​(f ​(​B​A​ (i)​)​ v​​ − f ​(​A​B​ (i)​)​ v​​)​​ 
2
​]
 ​​	 (9)

	​​ T​ i​​  = ​ 
​∑ v=1​ N  ​​ ​[f ​(B)​ v​​ − f ​(​B​A​ (i)​)​ v​​]​​ 

2
​ + ​[f ​(A)​ v​​ − f ​(​A​B​ (i)​)​ v​​]​​ 

2
​
    ─────────────────────────    

​∑ v=1​ N  ​​ ​[f ​(A)​ v​​ − f ​(B)​ v​​]​​ 2​ + ​[f ​(​B​A​ (i)​)​ v​​ − f ​(​A​B​ (i)​)​ v​​]​​ 
2
​
 ​​	 (10)

We conduct all of the uncertainty and sensitivity analyses with 
the sensobol package in R (67). We provide a detailed description of 
the models and of the probability distributions used to characterize 
parametric uncertainties in the Supplementary Materials.

Sobol’s G function
To create Fig. 1A, we randomize in a Monte Carlo setting the 
coefficients of Sobol’s G function (68), an analytically tractable, 
well-known function among modelers. It reads as

	​ y  = ​ ∏ 
i=1

​ 
k
  ​​ ​ ∣4 ​x​ i​​ − 2∣+ ​a​ i​​ ─ 1 + ​a​ i​​

 ​  ​	 (11)

where xi ∼ 𝒰(0,1), ai ∈ ℝ+, i = 1,2, …, k. The typology of the func-
tion is driven by k and the value of the coefficients ai: If more than 
one parameter has a low a, then high-order interactions will be 
present. The more parameters with a low a, the stronger the inter-
actions and the higher the ks dimension of the function. Here, we 
sample with replacement the coefficients from the set {0,1,4.5,9,99}, 

weighted as {0.4,0.3,0.2,0.05,0.05} to promote the creation of non-
additive functions. This approach allows one to explore the connec-
tion between k, kt, ks, and output uncertainty in a wide range of 
model settings and across models with very different behaviors.

The meta-model
Our meta-model is based on the Becker (29) metafunction. Let u = 
{u1, u2, …, uk} be a k-length vector formed by randomly sampling 
integer values from 1 to 13, in which each integer value is linked to 1 
of the 13 univariate functions in fig. S1. We then apply the ith func-
tion in u to the ith model input: If k = 3 and u = {u3, u1, u12}, then 
​​f​ 3​​(​x​ 1​​ ) = ​(​e​​ ​x​ 1​​​ − 1) _ e − 1 ​​ , ​​f​ 1​​(​x​ 2​​ ) = ​x​2​ 3​​, and ​​f​ 12​​(​x​ 3​​ ) = ​x​3​ 2​​.

We also randomly activate up to the nth-order interaction, for 
n ≤ k, and create n matrices V, …, W of dimension k2 × 2, …, kn × n, 
where ​​k​ 2​​ = ​   k ! _ 2 !(k − 2)​, … , ​k​ n​​ = ​   k ! _ n !(k − n)​​. Each row in these matrices rep-
resents an nth-order interaction between the model inputs. Overall, 
this model can be formalized as

	​​

y =

​ 

​ ∑ 
i=1

​ 
k
  ​​ ​f​​ ​u​ i​​​(​x​ i​​)+

​  ​​   ​  ∑ 
i=1

​ 
​k​ 2​​

 ​​ ​f​​ ​u​ ​V​ i,1​​​​​(​x​ ​V​ i,1​​​​ ) ​f​​ ​u​ ​V​ i,2​​​​​(​x​ ​V​ i,2​​​​)​   
​
​ 

+ ⋯
​  

​

​ 

+ ​ ∑ 
i=1

​ 
​k​ n​​

 ​​ ​f​​ ​u​ ​W​ i,1​​​​​(​x​ ​W​ i,1​​​​ ) … ​f​​ ​u​ ​W​ i,n​​​​​(​x​ ​W​ i,n​​​​)

​​	 (12)

where the first term represents the first-order effects, the second term 
the second-order effects, and so on up to the nth-order effect.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abn9450
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